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Abstract: We develop a method for the stability analysis of bifurcating spatially pe-
riodic patterns under general nonperiodic perturbations. In particular, it enables us to
detect sideband instabilities. We treat in all detail the stability question of roll solutions
in the two—dimensional Swift-Hohenberg equation and derive a condition on the am-
plitude and the wave number of the rolls which is necesaad/sufficent for stability.
Moreover, we characterize the set of those wave veetoes R? which give rise to
unstable perturbations.

1. Introduction

The bifurcation of periodic patterns for partial differential equations on unbounded
domains attracted a lot of attention within the last decade, especially concerning stability
aspects. Often stability of bifurcating patterns is studied with respect to perturbations of
related symmetry classes. However, for practical purposes it is also important to have
stability with respect to general nonperiodic perturbations. To tackle this problem the
theory of sideband instabilities was devised starting with the pioneering work of Eckhaus
[Eck65]. Yet this theory remained purely formal, due to its usage of multiple scaling
arguments.

Only very few rigorous results where obtained at that time, as for instance in [KiS69],
where instability of bifurcating roll-type solutions in the Navier—Stokes equations was
proven whenever the period is not the one which is associated to the critical Reynolds
number. However, the Eckhaus criterion for instability was mathematically justified only
twenty—five years later: first, for scalar model problems in [COE9Q0, Mie95] and then for
the Navier—Stokes equation in [KYW97, Mi97b].

A more general method, called tpeinciple of reduced instabilitywas developed
in [Mie95, BrM96] which then was applied to the Benjamin—Feir instability of sur-
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face waves on a fluid layer of finite depth [BrM95] and to the sideband instabilities of
convection rolls in the Rayleigh-é®ard problem [Mi97b]. This principle of reduced
instability employs local arguments in the set of wave vectors, and is thus ideally suited
to detect sideband instabilities. However, it only provides sufficient conditions for linear
instability and is not able to give stability results. It is the purpose of this work to show
how necessary conditions for stability can be provided.

Problems with more than one unbounded direction display a more complex behavior
and are less well understood. First rigorous (in)stability results for the two—dimensional
Swift—-Hohenberg equation (SHE) were obtained in [Mie95] and [Kuw96]. The former
work gives sufficient conditions for instability while the latter also establishes sufficient
conditions for stability. However, there remained a region in parameter space where
no result could be obtained, see Remark 2 after Theorem 3.2. Here we generalize the
principle of reduced instability such that it provides stability results also. In particular,
we are able to derive condition (1.2) below which is necessadgufficient for stability.
Moreover, for the case of instability we can characterize the set of those wave vectors
o € R? which give rise to unstable modes.

We will explain the main philosophy of the method in Sect. 2 and work out a first
example in Sects. 3 and 4, namely the sideband instabilities for the roll patterns in the
SHE:

ou = —(L+A)u+eu—u® t>0, zeR2 (1.2)

There are roll solutiona(t, z) = U ..(kz1) = \/4(—~2)/3 cosz1) + O(|c — x2[*/?)
which are independent of,(z,) and periodic inx; with period 2r/k. For notational
convenience we throughout use the parameterk? — 1. These solutions exist for all
e € (K2, g0 for some small positivey.

However, some of these roll patterns are unstable: There are two aurvés; (¢) =
O(e?) ande = Eg(k) = 3x2 + O(|x|®) such that the rolls witk < Eg(x) areEckhaus
unstableand that the rolls withc < Kz(¢) arezigzag unstableThese bounds were
known on the formal level for more than 25 years, see [Eck65] and [Bus71] for the first
studies. Exploiting the ideas introduced in [KiS69] it is possible to prove instability of
the rolls withe € (k2, (1 + co)x?) for some smalkg, yet the Eckhaus bound ig = 2.
A more general theory was developed in [COE90, KvW97] for the Eckhaus criterion
and [Kuw96, Mie95, Mi97b] for both cases. The novel result of the present work is that
we are able to show that these conditions are not only sufficient for instability but also
necessary:

U... is linearly stable if and only if « > K () ande > Eg(k). (1.2)
This result is stated in Sect. 3 and proved in Sect. 4. Sitigé) = —<2/512 +O(£%)
we conclude that there are stable rolls witk: 0. As far as we know this result is new.

For comparison we derive, in Sect. 3, the sideband instabilities of the roll solution
Ac n(z1) = Ve — k2 et @1 with k = /1 + &, of the complex SHE,

HA = —(L+A)A+cA—|APA, t>0, z€R?

where A(t, z) € C. This stability problem is easier as it reduces to a purely algebraic
one. Lengthy algebraic manipulations yield

- . . 6+ 7k
A. . is linearly stable if and only if ~ > 0 ande > 522 T3
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To establish result (1.2) we generalize the principle of reduced instability in Sect. 2.
There we use a general setting for arbitrary elliptic operators, however in this introduction
we give the ideas for the SHE only. Our notion of stability &ar;, is always spectral
stability, that is, we have to study the spectral problem

Av =B ,v whereB; v def —(A+A)v+ev— 3U€2’H(kx1)v.

The main difference from classical approaches is that we allowlie in W™ >°(R?)
rather than restricting it to the spafé(7>. ), containing only the patterns with the same
periodicity asU, . (We continue to us€,, = R/,z for the one—dimensional torus of
lengtha.) Following [MiS95] we use the more general sp@ée(R?), the Banach space
of uniformly local L? functions, see Sect. 2 for the definition. The methods developed
there imply that SHE defines a global semiflow/if), (R?). Using the results in [Sca94]
we immediately conclude nonlinear instability &t , if it is spectrally unstable. In
the case of spectral stability the nonlinear stability is less understood. For the one—
dimensional case (n@,—dependence) local nonlinear stability id(R) is proved in
[Sch96] (forx = 0), but the casd.? (R) and the two—dimensional problem are still
open.

We may treatB. ,, as operator orl? (R?) or L2(R?) with domain of definition
H} (R?) or H*(R?), respectively. The first variant allows us especially to study so—
called Bloch waves given in the formu(z) = eikorztoaz2 V7 (¢) with € = kaq, V €
X = H%T), and wave vector € R?. We use the fact thatl® , (kz1), the onlyz;—
dependent coefficient d8. ,;, has periodr/k sinceU; (€ + 7) = —U. ,.(§). The main
point s that the whole stability questionii, (R?) or L?(R?) can be reduced to the study
of Bloch waves. Such results are well known for Sittinger operators with periodic
potentials, cf. [ReS78], and were generalized to reaction diffusion problems in [Sca94]
and to the Navier—Stokes equations in [Sca95].

Because of € H*(T,) it suffices to consider wave vectaronly in7* = 7, x R
and for givenos we are left with a spectral problem for € X:

AV = Be, 5, 0)V B (1 + (L +1)(0 +i01)? — 022V +eV —3U2, V. (13)

The operator$ (e, , o) are called Bloch operators. The essential feature is the following
spectral identity:

L?-specB. ) = L? —specB. ) = cIosure( U spec@B(e, &, 0))). (1.4)

oeT™

We establish this result for general elliptic operators in Appendix A in a short, self—
contained way.

For the above—mentioned general theory no smallness assumption on the non—
constant parts of the coefficients in the operaBor, was needed. However, for the
analysis of the spectra of eaél{e, , o) we heavily rely on the fact, that we are dealing
with small perturbations from a homogeneous state, thatig,. ||.. = O((c — #2)).

Thus, we are able to study the Bloch operatB(s, «, o) as small perturbations of
B(0,0, ¢), which have constant coefficients. For eackk R? the linear spectral prob-
lem (1.3) can be attacked by the Liapunov—Schmidt reduction with a splitting /o + V1
according to the kernel d8(0, 0, o). We find reduced finite—dimensional spectral prob-
lems
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0 =b(z, 5,0, Wo B P[B(e, 5, 0) — M| (Vo + Ve, 5,0, WVo),  (1.5)
whereV; = V(.. .)V, defines the associated reduction.

It is important to note that we can handle general large wave vegtasaly the
eigenvalue parametere C needs to be small. However, since the spectrulBgf is
equalto (oo, 0] C C, classical perturbation arguments (cf. [Kat76]) show that possible
unstable modes can only occur faf = O((e — x2)). In our caseX = PX is, depending
ono, one- or two—dimensional and thi(s, «, o, A) corresponds to a scalar or &x2—
matrix. The control of sped(e, «, o)) is now managed by solving

0= A, 1,0, )) T detb(e, x, 0, )

for X\ as a function of4, , o).
Our method allows us to characterize theSgf, of unstable wave vectors for the
statelU, :

S.w={o e T" : B(e,k,o) has an eigenvaluge with Re\ > 0}.

In Sect. 4 we give all curves in the,() plane where the topological structure of
S.,» changes. Moreover, we point out some differences between thésetand its
counterparng‘},Q for the rolls A, ,, in the complex SHE.

The knowledge of the se& ;, can in fact be used to study the stability of the solution
Ue,1. on finite domaing2 = (0,27 N/k) x (0,27 L), whereN € N andL > 0, with
periodic boundary conditions. Considering functions with such periodicity the stability
analysis has to be restricted to perturbations having wave vectith o1 N, 0, L € Z.
Under this periodicity assumption we have stability if and only if

SenN{(/N,I/JL)eT* :n=0,....2N -1, 1€Z}=0.

Thus, it is possible to rederive and refine the results in [Kuw96] by using the character-
ization of the se8. ,, given in the present work.

2. General Theory

We consider systems of partial differential equations which are posed over unbounded
physical domain® = R? x X with variables £, z) € R? x X. We assume for simplicity
the form

Oru = Au(Op)u+ N(u,0pyu) In Q=R x X, (2.1)

whereu = u(t, z, z) € R™ is the state variabled,,(d,) is an elliptic operator of order
2m in the (z, 2) variables and incorporates the boundary conditiBns= 0 onoQ =
R? x 9X. The cross—sectiol is a bounded domain iR* with Lipschitz boundary,
and the vector, € R? denotes all parameters. The problem is translational invariant (no
x—dependence) while dependence on the cross—sectional variebédlowed but not
explicitly displayed.

Our aim is to study the linearized stability of a given stationary spatially periodic
patterriz,, of (2.1) under general nonperiodic perturbations. The linearizatiopaads

00 = Bu(@,)v With B(9:) ' A,(82) + DuN (1, 0, 10). 2.2)

To study (2.1) in a large function space which contains all sufficiently smooth bounded
functions we define the uniformly loc&P space as in [MiS95]: Let
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L2(Q)={ue L2(Q) : |[ufli, < o},
||qu2u = Sup{ fg Typ(m)|u(x,z)|2dxdz : y S Rd}a

wherep : R¢ — [0, o0) is a suitable bounded and integrable weight function’Bnis
the translation operator with,v(x) = v(z — y). For definiteness we choose the weight

p(x) = e~ 17|, The finalL?, uniformly local L?~space is given by
Li(Q = {ue L}(Q) : |ITyu — ullu — Ofory — 0}.

As usual we define Sobolev spadé§ (Q) by asking that all partial derivatives im,(z)
up to orderk lie in L2 (Q). Then, Hf (Q) is densely contained i&?, (Q), and the

classical spac&?(Q) is continuously embedded ilhlzu(Q) but not dense.
The linear operatoB,, can now be defined on two spaces:

B, : D(Ao) = {u € H*™(Q) : Bu=00ndQ} — LA(Q), u— B.(0:)u;

B, : D(Ao) ={u € H>(Q) : Bu=00n0Q} — L2 (9Q), u+ B,(0x)u. (2:3)

The stationary periodic pattetn, lies in H2™(Q). Its stability analysis can first be done
with respect to perturbations i¥(Q), but finally we will show that the spectrum of the
linearization around the periodic pattern is the same considedet{ @) and inleu(Q).

For the spectral analysis 6, we exploitthe fact thaB,, has periodic coefficients via
D, N(u, 0z, u,(x)). Using the translation operatdf this periodicity is characterized
by the lattice groupC C R¢ such thatB, T, = T, B, for all £ € L. In some cases, see
e.g. the SHE in Sect. 3, the lattice grodps larger tharC = {yeR?: Tyu,=1,},
which is the translation group @i, but£ C £ always holds. Restricting the functions
in L? (Q) to the subclass with the given lattice grodpve obtain as natural space

12(Q)/c ={u€eI2(Q) : Tiu=uforallle L},

which is easily identifiable witd?(Q/ ») whereQ/ . = 7 x X is the periodicity domain
and7 =R%/,.
For the wave vectors the dual lattice grafip C R? is relevant. It is given by

L*={heR: h-tec2rZforallle L}

Throughout we assume that containsd linearly independent vectors and that the
connected components Sfared—dimensional, thef is a ( — d )—dimensional torus.
Under these conditions of, the dual latticeC* is discrete and contained in & { cT)—
dimensional subspace. By choosing appropriate coordNina}I@‘S\Me canarrange things
such that = (2rZ)4~% x R? ¢ R9. Then,T = (T2,)? % x {0}, £* = 794 x {0},

and7* = (71)%? x R?, whereT,, = R/, is the one—dimensional torus of length

The main idea is to reduce the spectral analysi£4(Q) to the spacd.’(Q/ )
by using the Bloch decomposition which is also called the direct integral, cf. [ReS78],
XII1.16. Itis given by the isomorphisr® : L2(T*, L2(Q/r)) — L?(Q) with

DWU)(x,2) = U (o, x, 2) do, (2.4)
oceT*
. . -1
and satisfying| D(U)||7 ) = (2m)*(vol(T)) ~ [, 7. IU(o, -)||2LZ(Q/L)da. For more

details we refer to [ReS78] and to Appendix A.
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We define the closed subspaces
X, ={e""U 1 Ue L¥(Q/r)} C L;,(Q),

such that (2.4) tells us thdf’(Q) can be understood as the diré@t—prgduct of all the
spacesX,. Itis clear that eaclX, is left invariant under the action d@,,, and we are
able to define the Bloch operataB{u, o) : D(B) C L*(Q/.) — L*(Q/ ) as follows

B(u, 0)U = e~ 7% B, (8,)[e”*U] = B,(ic + d,)U, (2.5)

whereD(B) = {u € H*(Q/,) : Bu = 0} does not depend an if the boundary
operators3 do not contain tangential derivatives (ic&.).

The family of Bloch operators allows us to gain full control over the oper&ig®).,.).
In fact, assuming that the resolvent3({, o) — AXI)~* : L?(Q/,) — L?(Q/ ) exist for
all o € 7* with their norm uniformly bounded, we have

(B, — AXI)"f =D[B(u, )F(-)], whereF =D 1f. (2.6)

See Lemma A.3 for the exact statement.

In such a way it is possible to reduce the set of perturbatioig(@) to the space
L?(Q/ ) while o € T* appears as an additional parameter. If we are able to control the
perturbations for all € 7* simultaneously, then we are able to decide on stability. Note
that no assumption on self-adjointness is needed for this theory. The only important fact
is that we are in a Hilbert space setting, which enables us to use the Bloch decomposition.
In Appendix A we show that all this can be made rigorous for general elliptic operators
with suitable boundary conditions. The following result is provided there.

Theorem 2.1. Let B,(0,) be an elliptic operator or@ with £L—periodic coefficients
and B a boundary operator o®Q satisfiying conditions A.2. DefinB,(0.), B,.(0:)

according to(2.3)on L?(Q) and L? (Q), respectively, and the Bloch operatdbgy., o)
according to(2.5). Then we have

spedB,.(9,)) = spe¢B,.(9,)) = closure( U spec(B(u,o))). @2.7)

oceT*

Remarks. _ N
1. The spectra of3,, and B,, are the same as sets, however the type of spectrum
usually differs dramatically. In fact, it is easy to see th#f specB(u,0)) is con-

tained in sped@t)) as point spectrum. Observe that frd®u, o)U = AU immediately
B,[eio*U] = Xe'o*U € L?,(Q) follows. For the operatoB3,, these points are not
necessarily in the point spectrum, siné&*U ¢ L?(Q).

2. Another difference appears when approaching the spectrum from inside the resolvent
set. For instance, iB,, is self—adjoint we have

1By — AD ™ 120y 12(0) = C(diSt(% Specéu))) /

with C' = n = 1. However, the blow up for the operatoi( — AI)~! might be much
worse, i.e. withC' > 1 andn > 1. This question plays an important role if spectral
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stability has to be improved to linearized stability. Then, we want to estimate the semi-
group €5#1);>0 or (eB+!);>o for larget. Under the additional assumption thay, is a
sectorial operator, one obtaifis?+f|| < C(1 +t"~1)e! for t > 1.

3. In our application we cannot expect exponential stability since the spectrum always
contains the origir\ = 0 if the periodic solution:,, is non—constant. This is easily seen

since some partial derivativé, ;u,, is nonzero and it is in the kernel (E‘H(aw).

Thus, it remains to study the spectra of the Bloch operaB{ys o). For elliptic
operators3,,(0,) the Bloch operators are also elliptic and they are defined on the bounded
spatial domair@/, =7 x X. Hence, they are Fredholm operators of index zero with
compact resolvent. In order to analyze the spectrum we assume further on that we are
in a bifurcation situation, where the stationary periodic patigsms small. Then, it is
natural to assume that= 0 is stable fop = 0. If w = 0 would be unstable, then small
u,, could not gain stability. Thus, our main assumption on system (2.1) istd{ay,) is
an elliptic operator or.?(Q) which is spectrally stable.

More precisely, our method can only work when the spectruaw(d. ) is contained
inasetS, = {\A € C : Rex < —g(/lmA|) } whereg : [0,00) — [0, c0) satisfies
g(0) = 0 andg(t) > g(s) > O fort > s > 0. The reason for this spectral bound is
that our method involves perturbation arguments. Linearization around a small solution
(1, u,) leads to the linear operatd, = A,,(0;) + Dy N (1, 0z, u,,) with 6(w) = [|(B, —
Ao)(Ag—I)~1|| — Ofor|u| — 0.Hence, standard perturbation arguments (see [Kat76])
show that the distance of the spectrumi)f from that of Ag is less thary(x). Our
assumption sped() C S, now implies that the spectrum @f,, is contained in{ X €
C : dist(\, S,) < d(w) }. Thus, we immediately conclude that for— 0 the unstable
part (i.e., Re\ > 0) of the spectrum o3, is contained in a small neighborhood of
zero. More precisely, for each> 0 there is gu such that for all with |u| < po the
spectrum ofB,, is contained il A € C : ReA < 0or|A\| <e}.

Our method is exactly devised to study the spectrum cloge=td® in the case that
u,, is a small spatially periodic steady state of (2.1). We are not able to controllarge
nor large solutiong:,, since our analysis is based in the exact control of the operator
Ao(0,), which can be obtained by Fourier transform with respeat toR?.

For . = 0 we know that the spectrum &f(0, o) is contained inff0} U {\ € C :

Re\ < 0}. The kernel is finite—dimensional and dependssoiThe general a—priori
estimate (A.9) tells us that for largec 7 * the kernelis trivial, so that only a compact set
Sp of wave vectors can be important, i.&5 = { o € 7* : dimkernel(3(0,s)) > 0}.
Considering now general smallwe immediately see that we only have to control the
operators in a neighborhood &§. In fact, defining the sef,, of unstable wave vectors
as

S, ={0€T" : B(u,o) has an eigenvalug with ReX > 0}, (2.8)

perturbation theory for operators with compact resolvent implies${ig)( Sp) — 0 for
w— 0.

Thus, it remains to control the finitely many eigenvalue$3¢f., o) for 1 ~ 0 and
o = gg € Sp. This, we can do with the help of theéapunov—Schmidt reducticapplied
to the linear eigenvalue problem

K, 0, VU %" B(u, o)U — AU = 0. (2.9)

It is our aim to find nontrivial solutions of this equation, and we do this by treating it as
a bifurcation problem. Although this is a perturbation problem for linear operators we
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use the Liapunov—Schmidt reduction since it is so closely related to the typical way of
establishing the bifurcation result for the nonlinear problem, cf. [Mie95, Mi97b].

The main pointis that it is sufficient to consider sma#ls was shown above. Hence,
for og € Sp fixed, (u, o — 0o, A) can be treated as a small bifurcation parameter in (2.9).
For (i, o, \) = (0, a9, 0) we find splittingsD(B) = Xo(oo) ® X1(oo) andL3(Q/ ) =
Yo(oo) @ Yi(oo) such thatXo(oo) is the finite—dimensional kernel df(0, 0o,0) =
B(0, op) andY1(oy) its range. Since the Fredholm indexBf., o) is 0, the dimensions
of Yy and X, are the same. DecompoBe= Uy + Uy with U; € X, F' = Fy + Fy with
F; € Y;, and letP : L3(Q/.) — L?(Q/.) be the projection withPF = Fp. Then,
K(u, o, \)U = 0 is equivalent to

PK(u, 0, \)(Up+U1) =0, (I— P)K(u,o,\)(Uo+U1)=0,

where the second relation can be inverted faro{ — o, A) sufficiently small in order
to obtainU; = U(u, o, A\)Up. Inserting this result into the first equation we are left with
the reduced spectral problem

K1, 0, NUo " PIC (11, 0, \)(Uo + Upt, 0, o) = 0. (2.10)

T~his reduced problem is no longer linearnhowever, it is finite—dimensional with
K(u, o, ) : Xo(og) — Yo(oo). Equation (2.10) has nontrivial solutiob if and only
if

A, 0, )) BN detC(u, 0, ) = 0.

We note thatr has to be close tey € Sp. By compactness it is sufficient to do this
reduction for finitely many,, where the subspacesy(og) and Yp(op) can change
dramatically: generally, even the dimension will change.

The present approach does not only provide a tool to decide on stability or instability
of the periodic pattern. It also gives a way to describe the set of unstable wave vectors
quite precisely. Analyzing the problemg, o, A) = 0 we obtain information on the set
S, cf. (2.8). Moreover, itis possible to find those wave vectoes S, which correspond
to those\ having the largest real part. Such characterizatiorts,ire important in the
theory of pattern formation.

One special case attracted a lot of attention over the last thirty years, namely those of
sideband instabilities. This phenomenon is now easily identified in the present context
with the situation wher$,, is contained in a small neighborhood ®f= 0, buto = 0
itself is not inS,,. We will discover such sideband instabilities in the next section.

3. The Real and Complex Swift-Hohenberg Equation

We work out the details of the method for a simple model problem showing the same the-
oretical behavior as many other pattern forming systems. The two—dimensional Swift—
Hohenberg equation (SHE) is given by

up = —(1+A)u+eu — u, fort >0, r € Q =R? (3.1)

whereA = 6§1+8§2 isthe Laplace operator. The linearization at zero admits the solutions
v(t, v) = eMrilkizitkera) with \(kq, kp) = —(1 — k2 — k3)2 + . Henceu = 0 is weakly
unstable with unstable modes having wave vectors infith k5 ~ 1.



Stability of Rolls in the Swift-Hohenberg Equation 837

The basic patterns of interest are so—called rolls, which are independent of time and
of x, (after a suitable rotation), and periodican. Taking the period i1 to be 2r/k
with k& = v/1 +x we are looking for a solutiom of (3.1) in the formu(¢, z) = U(€)
where¢ = kx1 € To =R/2,7. The problem folU reads

0=N(e,r,U) B (1 + @)D +2U — U%, U € HYTzy),  (3.2)

whereN : R? x H*(T»,) — L?(T»,) is an analytical mapping.
From [Mie95] (see also [COE90], Thm. 17.1) we have the following result on the
existence of steady roll patterns.

Theorem 3.1. There is areg > 0 such that for alle € (0, 0] and all x € (—+/€, \/€)
there is a unique small solutioi = U, , € H*(T2,) of (3.2) which is even irf and
positive at¢ = 0. This solution has the expansion

U. (€) = a1 cost + azcos(F) + O(@) for (¢, k) — 0, (3.3)

wherea = a(e, k) = \/4(c — x2)/3 and

ay = % 027T Ug’ﬁ(g) COSf dg = a+’d3/512 +O(El,/4)7

a3 =1 [T U .(€) cos() de = —a3/256 +O(@").
Moreoverl. ,.(r +&) = —Us. (9.

Inlight of Sect. 2 we say that the solution . (z) = U, ..(kz1) is (spectrally) unstable,
if there exists\ € C with Re\ > 0 and a nontrivial smooth bounded functiorsuch
that
M =—(1+A)P%v+ (e - 3ﬂ§ﬁ)v.
The following necessary and sufficient stability criterion is derived in the next section
together with precise information on the gkt,; of unstable wave vectors.

Theorem 3.2. There is a positive;, and there are curves = Kz(¢) ande = Eg(k),
satisfying the expansions

Kz(e) = —%/512+0(%), Ep(k) = 3:* — x>+ O(|x|"),
such that the roll solutio/, ,, withe € (0,¢1] and || < /e is stable if and only if
e>Fg(k) and k> Kz(e). (3.4)

Remarks.

1. Thebound > Eg(x)is called the Eckhaus criterion (cf. [Eck65]), which contains the
universal factor 3: rolls exist far > «2 but the rolls are stable only fer> 3x2+0O(|x|%).

The bound: > K z(¢) is the zigzag instability bound, see [Bus71] for a first discussion.

2. Our results are sharper than those in [COE90], Thm. 20.1+2 and [Kuw96]. Reformu-
lating the latter results in our notation gives a statement as follows: there are curves
KL(e) < 0 < K2(e) and EL(k) < E%(k) with K2(c) — K%(¢) = O(e®) and
E2(x) — Ex(k) = O(|x|?) for suitablea > 1 and3 > 2 such that stability can be
concluded if: > E2(x) andx > K2(c) whereas instability holds if either < EL (k)

or k < K}(g). Hence, small tongues around the exact boundaries remained where no
conclusion could be made.

3. There are parameters, €) with « < 0 such that the roll/, ,, is stable. Moreover, all
small rolls withx = 0 are stable.
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We postpone the proof of this result to Sect. 4 and study first a somewhat similar
problem which is much easier as no Liapunov—Schmidt reduction is necessary. But
nevertheless it shows the ideas and technicalities in the discussion of the algebraic
eigenvalue problem. The complex SHE is given by

B A= —(L+APA+eA—[APA, t>0, 2 €R? (3:5)

whereA(t, z,y) € C.Incontrastto the real SHE this problem has an additional symmetry
group, namely the phase invariande— e'® A for a € 7p,.
Obviously, the real SHE is contained in (3.5) by restricting to real-valieWe
will study the stability of the explicitly known family of stationary roll solutions given
by .
Az) = rez(oﬁklzl’rszﬂz)’ wherer? = ¢ — 1- ]{;% - k’g)z (3.6)

Using the rotational invariance we may assurg k,) = (k,0) with &£ = +/1 +x and
denote byA. ,. the unique solution in (3.6) with = 0. These solutions are not related
to the previously studietl. .., which are, of course, also stationary solutions of (3.5).
To study the stability ofi. , we consider the linearization of (3.5) around this steady
state:
B=—(1+A)?B+eB—2/A. .[°B— A%, B, (3.7)

whereB is the complex conjugate d8. We letB = (w; + iwy)e?**t with wy, wy € R
and arrive at the constant coefficient problem

w1\ _ [ La+e—3r? 4k L70,, w1
O <w2) - ( —4kLy0,, La+e— r2 wy )’ (3-8)
where Ly = —L3 + 4(1 +x)92, and L, = A — k. This linear system can be

solved completely by Fourier transform. Looking for solutions in the farm=
eMilk(orzitoz2) 17 with constani? € C2 we obtain the algebraic problem

<p+c¢;)\pw>\>W:O’ (3.9

where

p = —(k+ (L+x) (01— 1) + 05)* — 4(L+r)* (01— 1) + K2, 3.10
v = —4(1+k)(o1—1)(k + (1+k) (01— 1)? + 02), andc = —2(¢ — k?). (3.10)
Since roll solutions only exist for > x? we always have < 0. Note that we have
shifted back the vectar by (—1,0) to account for the factar’**1 in the ansatzB =

(w1 + jwp)etF=1,

The two eigenvaluea obtained from solving (3.9) are real and can be expressed
explicitly by solving\? — (2p + c)A + p(p + ¢) — v = 0. Our aim is to characterize the
unstable wave vectots where at least one eigenvalue is positive. This is the case if and
only if either (i) or (ii) hold, where

() p+c/2>0 and (i) p(p+c) — 2 < 0. (3.11)
To analyze these conditions in more detail we use the abbreviations
5=k¥0o1—17, t=o035, andu=p+8(1l+k)3.

In this notation conditions (3.11) take the form
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(i) p—(c— K% —8(L+K)s >0, (3.12)
(i) p?—2( — K?)u+16E — 2x%)(L +k)5 < 0. '

Of course, only suchs( ) are allowed which can be obtained fro@#) € [0, 00)?,
namely

- def q(k,s) if 5> —k,
O0<s<oo andp<g(ks) = {n2+4(1+m)§if§€[0,—ﬁ]; ’

whereq(k, 3) = —3% + 2(2 +£)3. Then,t = —5 — k & \/k2 + 4(1 +x)3 — p, where the
minus sign is only allowed if(x,3) < p < K% + 4(1 +K)5.
Condition (i) in (3.12) can only hold if. € [—+/e, —/2/2], namely in the region

Ar={(E.p) : 0<5< 2025 o~ k2+8(1+K)5 < p < n2+4(L+r)3 }.

For condition (ii) we first consider the case € [0, \/¢]. The instability set is
characterized by the intersection of the sets

Azz{(g,M)E[0,00)XR : Ngg(’ivg)} and
Az={(5,pn) €[0,00) xR : p? —2(c — k) +16€ — 2x?)(L +K)5 < 0}.

Both regions are bounded by a parabola which contains the origin. Checking their po-
sition it is immediate thatd, N Az is honempty if and only if the slope @A, in

the origin is larger than that adA3. This gives the stability condition 2(2 #) <

8(c — 2x%)(1 + k) /(e — w2), which is the classical Eckhaus criterion:

def ,6+ 7k

e>FES(k) = K Y 36?2 — K3+ 36 /2 + O(|K[Y).

Fore < E$(x) we have a nontrivial intersectiaf, N Az, which changes its type
whene ~ 2x2. Fore € (EY (k), FS(k)) the setd, \ Az has one connected component
while for e € [x2, ES (k)] the setA, \ A3 has two connected components: one above
the linex = 0 and one below. The boundary= ES (k) is determined by the condition
that the boundaries of, and A3 touch each other in a poing,(i:) ~ (4, 0). We find the
expansion

1
ES (k) = 2x% + aff' +O(|k[%).

The analysis of the casec [—+/¢, 0) is more involved, since the sdb is enlarged
due to the fact thag(x,s) > q(k,s) for s < —k. Now the intersectiod, N Aj is
always nontrivial and hence instability is concluded. To characterize the intersection
we note thatd, \ Az consists of one or two connected componentsfor ES'(x) or
e € [r?, E ()] respectively. Moreover,

AN As={G) : p< W2 +AL+R)E, m_(e,k,5) < p < male,5,3) },

wherem (e, k,3) = — k2 + /(e — k22 + 16(22 — £)(1 +K)3.

For x € [—e,—+/2¢/3) the boundm. lies below the straight linge = mo(s) =
k% + 4(1 +x)5 for smalls. However, the setl* lying betweenng andm. is contained
inside the regiomd,, wherep + ¢/2 > 0. Hence,A* characterizes those for which
both eigenvalues, , are positive.
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For the interpretation of the above results in terms wfe recall thatd, N A3 always
lies in a strip of widthO(e) around thes—axis. Moreover, the ling = 0 corresponds in
the case: = 1 to the two circles

S§={ceR?: gs+05=10r(1-2P%+05=1}.
For a given solutiom. ,, with e € [k2, o) of (3.5) we define the instability set
SEC’,€ ={o € R? : either (i) or (i) hold }.

Using the semidistance dist(B) = sup{inf{|a —b] : b€ B} : a € A} for
A, B ¢ R? we have the following results.

Theorem 3.3. There is a positiveg and curves = E¢(x) ande = ES (k) in the form

as given above such that for a roll solutioh ,, with ¢ € (x2, =) of the complex SHE

(3.5)the following holds.

€) (1,0) ¢ ng, and(oy,07) € SEC:K implies(2 — 01, 0), (01, —02) € SEC:H.

(b) dist(S. ., S§) = O(y/¢) for e — 0.

(c) The solutiond. ,. is stable (i.e.SC, = () if and only ifx > 0 ande > E¢(x).

(d) On the curves = E{ (k) the boundary ofS. ,, has a pair of double points on the
line o, = 0close tosy = —1ando; = 3.

The curves = E§(k),c = E{ (k) andx = 0 divide the regiom > x?into six regions
R{, see Fig. 3.1. The boundaries betwd&n and RS, are exactly those curves where
the topological structure cﬁg,i changes. We depict the different shapes in Fig. 3.2.

The cases = /¢ andx = —,/ can be given explicitly:
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SC.={oeR?: 3B {0,2} such thatlhf < (o1 +B)2+ }M <1}, 619
876_{0-6]:&2 . HﬁE{O,Z} such that 1< (O’]_'Fﬁ)z lf\zf 1+\[}

In both cases we have two annuli of radii close to 1 and thickngés20(¢). For
k = /¢ the annuli touch each other it = (1, 0), while forx = —,/z they overlap such
thato* remains an isolated point in the complemensﬁf_s

For later reference we consider the case 2x? such that the boundary i, for
o =~ (2,1) has two branches, = X, _(¢, 5, 01) with the expansions

Zi,- (6,5, 01) = e (6, K) + B~ (€, K)(01 — 2) + O(|o1 — 2?), (3.14)

= 2 _ = (e=r?)? 2
whereo, — =1+ 3 \/2f<; e+ 0O(e) andfs, - $32\/27 +O(e9).

4. On the Set of Unstable Wave Vectors

We return to the real SHE and study theSgt, of the unstable wave vectors associated
to the rollU, .. In showingsS. . = () we prove Theorem 3.2. The linearization of (3.1)
around the roll solutiod/. ,. given in (3.3) defines the full operator

B. () : H(R?) C L¥(R?) — LA(R?)
Bex(@e)o = —(L+ K202 + 2,20 + (= = BU. ()2 ) v

Of course we can also consider the operdioy, : H}} (R?) C leu(RZ) — L2 (R?),
which is defined by the same formula.

The basic stat# ,, is 2r—periodic, however the coefficieat- 3U? . is 7—periodic
in &, sincel, (& + 7r) -Ue, K(g) Hence, it is advantageous to work with the lattice

group £ = 77Z rather than withC = 277Z, which is the translation group éf. .. We

apply the abstract theory of Sect. 2 (using the coordindtes)) with d = 2,d = 1,

Q=R% L=7ZxR,L*=27Zx{0},T =R?/; =T, x{0},andT* =R?/. = T, xR.
The Bloch operator family is given by

Bl(e, k,0) : HYT;) C LA(T;) — LX(Ty),
B, 5, 0)V = —(1 +k2(0c +io1)? — 02)2V + (s 3U37,€(5)) 1%

where €,x,0) € R* Here B is even ino,, and the operatoB(e, k, 01 + m, 02),
m € 27, is unitary equivalent td(e, x, o), since it is connected (e, x, o) by the
transformatiori/ (€) — e™<V (€). Moreover, there are two reflection symmetries given
by

(RV)(€) = V(=€) and R2V)(§) = V(&) (4.1)

In both cases we ha\léjfl = Rj andB(e, k,0) = R;B(e, k, (—o1, 02))R;. Hence, it is
sufficient to study the casee [0, 1] x [0, oo) which is only one quarter &f * = 75 x R.

All the Bloch operatorsB(e, «, o) are selfadjoint, which is helpful but not essen-
tial for our theory. We strongly use the fact that the operators are small perturbations

of B%(0) def B(k?, k,0) which is trivially analyzed as it has constant coefficients:
B (0)pm = (tm (5, 0) + K2 With ¢,,(€) = €%, m € 2Z, and
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fim (K, 0) = —(1 — (1 + K)(m + 01)? — 02)2. (4.2)

Thus, fora; € [0, 1] we have the explicit upper bound
| B @V i < 8 VI,

wheres(k, o) = min{(1 — (1 +k)o? — 03)?, (1 — (1L +k)(2—01)? — 03)?} — k2. Since
k ~ 0 we immediately identify the dangerous set

So={0c€T*"=T, xR : oi+05=10r(o1—2f +05=1}.

Hence, ifo is bounded away fronSy, we obtain a good bound on the spectrum of
B. Choosing a smali € (0, 1] independent of<, x, o) we define the set of good wave
vectors as
Gs ={0 €]0,1] x [0,00) : dist(o,Sp) > ¢ }.

Foro € Gs we haves(o, k) > §2/2 for all sufficiently smalls. For general small
e > k?we have| B(e, k,0) — B*(0)|| 2 2 = ||e — % —3UZ || o < a? for sufficiently
smalleg. Thus, foro € G5 we derive the estimate

/0 (Be, v, )YV de < —(62/2 = @)V |[L2(z,) < —(62/2 = 22)||V | 2z, .

This shows that we may choose the widthf the good se's to be of order/z, e.g.,
§ = 3y/e. However, for our purposes it suffices to fix a sndaithdependent of.

It remains to studyB(e, «, o) in the dangerous parts close to the cireler o5 = 1.
To this end we distinguish the two regions

C1={0€0,1] x [0,2] : dist(o, So) < 6, andar > /3 },
Cy={0€[1-26,1] x [0,V/3] : dist(o,So) < }.

The operatoB*(o) has only one small eigenvalue ferc C1, while foro € C> there
are two small eigenvalues. It suffices to control the movement of these small eigenvalues
only, since all other eigenvalues are bounded away from the imaginary axis.

RegionC;. Foro € (C; the eigenfunctionpg(¢) = 1 is the only eigenfunction for
B*(0) associated to a small eigenvalue, namily= —(1 — k?0% — 02)? + 2. The
associated eigenvalue &f(c, , o) is constructed by Liapunov—Schmidt reduction of
the eigenvalue problel®V — AV = 0. To this end we defin®V = %foﬂ V ¢od€ ¢o
which is the orthogonal projection ih?(7;.) onto spafi¢o}, and write the eigenvalue
problem as

Pl[B(Ea K, U) - )\[][Oéofﬁo + sz] = 07
(I — P)[B(e, k,0) — M][appo + V2] =0, whereP1V, = 0.

Since B*(o) is invertible on { — P)L?(7,), the second equation can be solved for
V2 = V(e, k, 0, \)ag yielding the expansion

Vie,k, 0 0) = 5 (o) + h50-2(9) ) + 0@,
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where,, is defined in (4.2) and the error ter@(a?) is uniform in bounded sets for
(o, N), e.g.,|]o] < 3and|\| < 1. Inserting the result in the first equation we obtain the
reduced spectral problebg(z, , o, A)agpge = 0 with

bo(e, k,0,\) = o +e — A — 32 ZfoTr UZ (do +V) dod§
&! N
= ,U,o+€ —A- 2 gl%(pz+if)\ + ,u,_g‘i-E*A) +O(a6)'
The small eigenvalua is determined by solvingo(s, <, o, A\) = 0. To discuss the
sign of A it is convenient to use polar coordinates

o= (le 02) =v1+r (% Sin’yv COS’V))
where the regioi’; corresponds tg € [0,7/2 — v/6] and|r| < §. We obtain

3, 5. 9 ,l+sify .
= —e——=a7—1r°"*+-—a —— + + . 4.
A= dole, w,m ) =€ — sag =17+ goga cod - O(a*(a+|r) (4.3)

Fore > 2x2 + O(|x|%) we always have\ < 0, while for smallere there is a band of
unstabler of width O(,/) around the circléo| = 1.

RegionC,. We are now in the situation of =~ o* = (1, 0), whereB" (o) has the critical
eigenfunctiong)y = 1 andp_,(¢) = e~*%. In fact, this is the realm of classical sideband
instability as discussed in [Mie95]. There, the analysis was done in a space of functions
which are Z—periodic in¢ such that our regio’; corresponds te ~ 0 there (asr;
is taken modulo 1). There the instability result of Theorem 3.2 was already derived, yet
for our stability proof we have to repeat and improve upon these calculations.

To be compatible with the calculations in [Mie95] we use the basis functio(3 =
e~ cos¢ andUy(€) = e~ sin¢ and set = o — 0* = (01 — 1,07). Letting P,V =
2 [TVUdEUL+2 [ VURdEUz andV = 31U +3,Up+ Vi with P14 = 0, the equation
(I — P)[B(...)— M]V = 0can be solved uniquely féf = V(e, x, o, \)3 = O(@?|3]),
for all sufficiently small €, <, o, \). Again the estimate follows easily from the fact that
the coupling only occurs through the temﬁsUf’,ﬂV.

Inserting this expansion intB,[ B(. ..) — AIlV = 0 leads to the reduced eigenvalue
problem. It is given by a % 2—matrix, which depends nonlinearly an

m(57 K, 0, )‘)6 = P[B(€7 K, J) - )‘I][/BlUl + ﬁZUZ + V(é, K, 0, A)ﬁ]»
whereP : V i 2([FV U1 dE, [ V Uod€) € C2. This gives

ey = (PHED @Y (O o)
(€50, ) < “iv p—A>+ < o(a:) o(al+y)> 4P

with p = (u1 +p—1)/2 andy = (ug — p—1)/2 from (3.10) andi(e, ) = —3a%/2+O(a*).
Of course,m is Hermitian and each entry is evendn. Two additional facts in

this expansion are nontrivial. Firstly, the symmetrigsand R, in (4.1) show that the

diagonal elements are evendn = o1 —1 while my, = —7,; is odd ingy. Secondly,

m(e, k, 0", 0) takes the forrr( C(EO’”') 8), where the lower diagonal element vanishes as

it corresponds to the eigenvalue= 0 associated to the translational magié/. ,. =
—asiné + O(a®) (compare to Lemma 5.3 in [Mi97h]).
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In fact, we need a more refined expansion which follows from determining the term
of ordera? in V:

ma(e, k,0,A) =pte— A — %ai - %alas +n, +0(a%),
mao(e, k,0,\) = —moi(e, k, 0, ) = i[V +n_ + O(’(ie’)}, (4.5)
maa(e, k,0,0) = pt+e— A — 2a2 + 3azaz + 1. + O(@P),

whereny = 2a*[(ua+e — A1+ (u_a+e — X)L
In order to study which wave vectors are stable we have toXifidm

A(e, k,0,) =detm(e, k,0,\) = 0.
Applying Weierstral3’ preparation theorem (see [ChH82], Ch. 2.6) we have
Ag, k,0,X) = Ao(e, k, 0, ) [)\2 +ni(e, K, o)A + nol(e, K, J)] ,
whereAy, n1, andng are analytical functions with (0, 0,0,0) = 1 and
n1=—2p—c+OEGR) andno = plp+c) — v? + O (Ve + [5)]).

On the one hand, we know that is Hermitian implying that both eigenvalues are
real. Hence, without calculation we always ham{ez 4ng. On the other hand, these
two eigenvalues have negative real part if and onlygf > 0 andn; > 0. Since
n1(0,0,0*) > 0 and since:; can only change sign whern, < 0, we conclude that it
suffices to consider the conditiory > 0 when we are only interested in the question
whetherU, ,. is stable or not. However, for the subsequent calculatiafi. of we need
to consider both conditions; > 0 andng > 0. Sinceng is a positive multiple of
the determinant ofn(z, , o, 0) the stability condition is det(e, x, o,0) > 0 for all
o€ CLuUCh.

From (4.5) we obtain the following expansion for= o*.

Lemma4.1. Lets = (01— 1) t = o3, and M(e, k, o) = detm(e, x, o, 0). Then, we
have

M = pigat + 11,05 + pio.2t? + pa.15t + o 3t> + 12,05 + p1, 2512 + o at* + O((s+t%)°/?),

where
to.1(g, k) = c(g, K)[ — 2k — (e — K?)?/256 +O(e/?)],
pa0(e, k) = 8(e — 3k2) + 4r(5e — 132) + O(c?),
po2(e, k) = 2( + £2) + O(?),
p1a(e, k) = =16k + 4( — Tr?) + O(%/?),
to3(e, k) = 4k + (€ — K?)?/128 +O(e%/?),
p2.0(e, k) = 16 + 48: + 2(c + 25+2) + O(%/?),
p12(e, k) = —8— 4k + 412 + O(e%?),
po4(e, k) = 1+0O(%3).

(4.6)

This expansion is suitable to discuss the set of unstable wave vectors in region
Cy C [1 — 26,1] x [0,V/4]. While instability is easily obtained from the signs ©f o
andpo,1, it will be a rather delicate task to prove the stability result.

Proof of Theorem 3.2The expansion det = g1t + p10s + O(s? + t2) immediately
leads to instability if eithef:g 1 or p1,0 in (4.6) is negative. Thus, definingz andEg
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viapa o(Er(k), k) = 0andug 1(e, Kz(€)) = 0, the instability result follows by choosing
suitably smallr; or o, respectively.

To establish stability we need to conclusle,, = () for those ¢, ) satisfying (3.4).
In that region we have < 2a? < 3¢ such that the error terms in (4.6) can be expressed
in terms of powers of. At first we note that the intersection 8t ,. with C is empty
sincee > Eg(k) = 3x2 + O(|x|3) clearly impliese > Ei(k) = 2+ + O(|x[%). Thus, it
remains to consider regiafh. As argued before of Lemma 4.1 it suffices to show that
detm(e, k, 0,0) > 0 in a neighborhood af* which is independent ot( ).

Before employing Lemma 4.1 we recall the expansion (4.4) which gives

M(e, k,0) = plp+c) — 12+ (’)(54[65 +12+ 32]) 4.7)
We defineM (e, k,0) = Y g 1y<4 117.(c, k)57t and find

R(e, r,0) € M (e, v, 0) = M(e, 5, 0) = O@G (s + 12)%/?).

Our aim is to use positivity ol in order to show Pr| < M in a neighborhood of*.
This estimate is subtle, sindé is degenerate far = 0, namelyM (0, 0, o) = (4s — t?).
For estimatingl/ from below we use

p12 > —2\/l20ft04 and — pa1./foa < Ho3v/H2,0-

Both inequalities hold (after cancellation of the leading order terms) for sufficiently
small ¢, ) satisfying the stability criterion (3.4). Whence,

— 2
M(e, k,0) > poat +paos + it + (\/uo,4t2 — V2,08 — 2\%%@ ’

where
1 (e, k) = po2 — 151/ (Buz0) = 2 — k) + 0@@°) > a°
for sufficiently smalla. .
For all smalls, ¢ > 0 we obtainM > pg 1t + 1,05 +a2t?. Additionally, fors > ¢ we
have, /fiz,0 s—/fio.4 t*— 2\‘;% t > s,implying M > pig 1t + 13 05 + a2 + s2. Together

with the previous estimate, this gives (e, x,0) > poat + 108 + %(Szﬂz)_ Since
R = O(a*|5|°) we conclude that for all smalk(x) which satisfy the stability criterion
we have

=2
M(e, k,0) > p010% + 11,005 + %|8\4 forall o € Co. (4.8)

This proves Theorem 3.2. 0O

In the unstable case it is desirable to describe thé&sgtof unstable wave vectors
o. The analyses fof’; andC, provides us with a lot of information. To formulate the
results correctly it is useful to consider the full set of wave vectors, namely{) €
T =T, x R, whereT, = R/,;. Recall that the identification @f; with o1 + m, where
m € 27, is due to the fact thaB(e, x, (01 + m, 02)) IS unitary equivalent td(e, x, o).
The critical setSo = {0 €[0,2) xR : |o| =1 or|(c1 — 2,02)| = 1} considered as a
set in the cylindefl * consists of onlyonecircle which is wrapped around the cylinder
once, touching itself i *.

We have the following results.
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Fig. 4.3.The regionsi; to R for the real SHE

Theorem 4.2. There exists amy > 0 such that for all(s, ) with 0 < ¢ < gy and
k? < e the setS. , C 7* of unstable wave vectors for the roll solutien= U. ,, has
the following properties.

(@) 0*=(1,0)¢ S, ., ando € S, ., implies(o1, —02), (2 — 01,02) € S¢ 1.
(b) dist(S; ., So) = O(/e) fore — 0.
(c) There is a curve = E1(k) with the expansion

Ei(r) = 26% + g + O(|w[%),

such that for = E1(x) the boundary o8 ,. has a pair of double points on the line
o1 =0nearc, = +1.

(d) For € (—1/v/2,1/+/2) there exists a constanit such that the estimate

S

.z C[-CVE CVe] x [~ Ce™]

holds.

Part (c) is obtained by studying the behavion\af regionC1, where formula (4.3)
holds. The curve?; is obtained by solving\(s, x,r,0) = 0 andd, Ao(e, x,r,0) = 0
that is, we search for a double zeraifni= v/1 +r on the symmetry line; = 0 (v = 0).

The curves = Eg(k), € = E1(k), andr = K (¢) divide the regiore > 2 into six
regionsR; to Rg, see Fig. 4.1. In each of these regions the shape of the set of unstable
wave vectorsS, ,, can be derived from the above analysis. The curves separafiagd
R;+1 stand for a topological change in the structuresgf..

In R4 the rollsU, ,, are stable, i.es$. .. = (. In Rz and Rs the setS, ,, consists of
two simply connected components such that the boundary is a figure 8 with the double
pointing*. In R, the setS; ,, is homeomorphic to a pointed disc, namely a disc—shaped
region where the interior point* is taken away. Schematic drawings of the boundary
of S, ;; are given in Fig. 4.2 for each of the regioRs.

We now mention a few differences between the stability analyses for théiolls
in the real SHE (3.1) and the roli. ,; for the complex SHE (3.5). For this purpose we
define the factorization mapping

. R? —T7T*=7 xR,
(01,02) — (012 mod 2 g5).

Thus, we can compa&. ,. with S, = JSY

g,k

the results from Sect. 3 taking modulo 2.

which means that we have to interpret
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Ao2 4 |

R
¥

Fig. 4.4.The setS; . of unstable wave vectors féf. . with (¢, k) € R;.

As a first result we find, due to (4.7) amd= 0, thatS, | - = S which is
explicitly given in (3.13). However, the number of unstable modes in the complex case
is twice the number in the real case, e.g., Jor: o* the complex case has the four
unstable mode$;), (3), (})e?€, and(*,)e2%, whereas the real case has only two

K2

unstable modes, namety and¢,
We easily find the counterpart of the cutige. It means that the topological structure
of S“‘ changes since the boundary meets itself at points nearl(0 For the complex

SHE this occurs when the boundary&ﬁﬁ touchesr; = 2. Usings = (1 +k)(01 — 1)
we simply have to inseff = 1 + into (3.12) (ii) (W|th < O replaced by = 0) and solve
for a double zero i, giving E{' (k) = 2x?+ lé w +(9(|m|6). The difference between
the real and the complex SHE is that the boundar&i&ij(nm touches itself on the line
o1 = 0 whereas the boundary 6%z, (. . has a double point. Moreover, for smalter
the boundary of. ,. is smooth close to- = (0, £1), whereas in the complex case the
boundary ofSA has corners on the line; = 0 which follows from the expansions
(3.14) whereﬁtf are nonzero.

The shape o8, . inside the regiorC; is in fact similar toSg‘},{. This follows from
(4.7) and the scaling:(x, o) = (a*, a®&, (a®51, ao2)) giving

M(d?, %R, (a%51, a52)) = a®A(R, ) + O(a'9).

Because of (4.7) the limit function is the same for the real and the complex SHE and
thus determines for ea¢he [-1, 1] the shape of , -~ andsg1 oo lowest order.

Remark.Instead of working in the spade?(7,) we could also have usetf(7Z>,) by
ignoring the difference in the minimal periods©f ,, andeﬁ. We would encounter a
completely similar analysis with wave vectardying in T* =T, x R. In fact, the above
results can easily be transferred to that case by using the magpirg* — T 0
(o1 mod 1 o). The critical seSy = JoSy is still one circle, but now it is wrapped around
the cylinder twice such that additional intersections at (1/2, ++/3/2) appear. Thus,
the sets'S;,Q = J»S..,. will undergo an additional topological change along a curve
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E,(x) which lies slightly above the curve= E1(x). When the boundary &. ,. touches

the linego; — 1] = 1/2 this corresponds to a touching of the bounda&gﬁ with itself.
Employing (4.3) withy = 7/6 yields the expansiofi,(x) = 2k2 + 77x%/288 +O(|x[%).

A. Elliptic Operators
Let A be a differential operator of order2given in the form

(A@o)u)(w,2)= > apgle,2)(DyDLu)(w,2) for (z,2) € Q (A.1)

Ipl+lal<2m

together withm—dimensional boundary operatBr= (B, .. ., B,,) with

(Biu)(x, 2) = Z b o(z, 2)(Diu)(x, z), forl=1,...,m, (A.2)

lq|<2m—1

where ,2) € 9Q = R? x 9X. We assume thalX is of classC?" and thatA is
uniformly strongly elliptic onQ and (4, B) satisfies the complementing condition for
each {, z) € 09, see [ReR92], Ch. 8.4, for the definitions. For simplicity, we do not
allow for tangential derivatives in the boundary operatBrsAdditionally, we assume
that all coefficient matrices, ,(x, ), b, 4(x,2) € R™*™ are bounded together with
their first 2n derivatives. (Our main interest lies in the case of periodic coefficients,
where uniformity and boundedness are trivial.)

We define theL2—based operatot : D(4) C L%(Q) — L*(Q) via

DA) % {u e H?™(©Q) : Bu=00n8Q}, Au=A@d,)u, (A.3)

and similarly theL.2 —based operatot : D(A) c L2 (Q) — L2 (Q) via

©f ue HZ(Q) : Bu=00ndQ}, Au= A@d,)u. (A.4)

D(A)
We simply writeA : D(A) C X — X in order to denote both cases simultaneously.
Moreover,X* denotes7*(Q) or Hf' (Q), respectively. The associated norms are written
as||u||x and||u||x 1., Where the subscrigt = 0 is dropped. The general theory of elliptic
operators (see [ReR92], Thm. 8.31) provides the a—priori regularity estimate

[ullxzm < C([Aullx + [lullx) forallu e D(A), (A.5)

whereC is independent ofi.
In order to relate the casesc L?(Q) andu € L? (Q) with each other, we use the
weight functionw(z) = cosh(z|) onRR¢ and the scala to define the operators

A = 0 = 1) A@0(- — p)u] = A@, + =D (i~ ).
Mostly we omit the indexy. Applying this transformation to the boundary operators
has no effect; hence for all € R we obtain elliptic opertorsl,, : D(4) € X — X.
Moreover, there is a consta@tsuch that for allv € [—1, 1] andy € R¢ we have the
estimate
(Aq,y — Aullx < Ci|a ||ul| xem—1 forall u € D(A). (A.6)
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Thus, if A is invertible fromX into D(A) ¢ X?™, then for sufficiently smalla| the
operator4,, is also invertible and satisfie$;1f = w=* A~ [w? f]. This follows by
combining (A.5) and (A.6).

The weightw allows us to go fronl.?, (Q) to L?(Q) or vice versa via: — w™“u
by using the following simple characterlzauons

LemmaA.l. Leta > 0 andw as above.

(@) Letw=u € L*(Q). Thenu € L? () if and only if there exists & > 0 such that
|w(- —y)~@ul| < Cforally € Rd
(b) There is a constan,, such that for allu € L? (Q)

ulliu < CosUP [lw(- —y)~“ul| = y € R!} < CFllullpe-

(c) Afunctionu € LZ (Q) lies in L3(Q) ifand only if >° ;. [[xnul|2, < oo, where

the partition of unityy,, n € Z4, is given byx,(z) = 1for x € [n,n +n) and 0
otherwise (herey=(1,...,1) € Zd).

For a proof we refer to Lemma C.1 in [Mi97a]. We now obtain the first main result.

Theorem A.2. Let the elliptic operatorA(9,) from (A.1) satisfy the assumptions from
above and let and A be the operators defined (A.3) and(A.4). Then,A is invertible
if and only if A is invertible and moreover, spet) = spe¢A).

Proof. We assume that is invertible. Thus we know that there existsan- 0 such that
A, is invertible fromL2(Q) into D(A) for anyy € R% with a boundC; not depending
ony. For f € L2,(Q) we knoww°f € L2(Q) such thaty = A~1f = w* A7 [w=° f]
is well defined. Usmg LemmaA.1b) we obtdjm ~(- —y)ul|2m < Collw™ a( - f| <
C2Cu | flliw- Thus, we have proved finiteness of the norm and the opeﬁa‘[brmaps
L2,(Q) into HZ™(Q).

We still have to establish the continuity of the translajes: 7;u. To this end we
use that the coefficients of(0,.) are uniformly continuous and define the operaté¥s
which is obtained by using the translated coefficiéfifs,,. Then,||(4Y — A)ul;, <
’y(|y|)||u||2m 1w, Wherey(t) — Ofort — O. ObwouslyTyu satisfiesﬁyT u="1T,fifand
onIyAu = f.Hence, applylng4 ltothe equallty4(u T, u)+(A Ay)T u=f-T,f,
we obtain the desired estimate — T} u| 21, 14, < C’[”y(\y|)||uH2m lu Hf T, f||lu]

For the opposite direction we now assume that D(A) — L2 (Q) is invertible.
There is ax > 0 such thaﬂ(w is invertible with bound_; for anyy € R?. We use the
partitiony,, as in Lemma A.1(c) and define, for afiye L?(Q), the functionsf,, = x» f
andu,, = A~1f, =w (-—n)A~% n[w(-—n)* fn]. Thus, we obtain for each, m € Z¢
the estimate

||XmunH f[ ,m+n) U)( 7”) 2a|A:o¢ ngn| dx
<sup{w(z —n)™" 1z € [m,m+n)} [paw( —n)"AZL 902 dx
< Ce=n= mlHA—a ndn

Hlu7

whereg,(z) = w(x — n)® f,(x) satisfies||gn|li. < C|f»||. Thus, we can define the

functionw via y,,u = Znezd XmUn, Where the sum convergesii. To show that this
u lies in fact in L2(Q) we employ Young's inequality for convolutions applied to the
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sequences|»u||)» and (| f||)» which satisfy the convolutional estimatg,,,u| <
> neza Ce=o/2n=ml| £ || Thus, we obtain

full = (3 Ienul?)” ZCe_a'p'/z(ZanH) = Col /]

pEZL?

such that: = A—1f € L%(Q), and the invertibility ofA is established.
Applying the result on the invertibility tol — AT andA — AI we conclude that the
resolvent sets afl and A are equal. But this is the desired result on the spectra.]

The above result holds for general elliptic operators without any periodicity assump-
tion. We now return to operators where the Bloch decomposition is available. Every
functionu € L?(Q) can be decomposed int&/ (o, -))oecr- € LA(T*, L*(Q/)) via
the directintegral. = D(U) = fgeT* e’ ¢lJ(o, -)do. Recall the notations from Sect. 2:

Q=Rix%, 7T =R?/,,andQ/, = T x ¥. TheintegraD(U) has to be understood in the
L?(Q)-sense, see [ReS78]. For example, for simple funclit(as-) = Z;V:l x4, (@)U;
with A; C 7* andU; € L*(Q/ ) we have

N
u(2) = DU 2) =Y v;@)U;() with v;(z) = / 7T o,
j=1 oEA;

wherev; € L*(R?) N L>°(R?) andU; € L*(Q/,) C L?,(Q) such that;U; € L*(Q)
is well-defined.

The inverse ofD can be constructed by using the inverse of the classical Fourier
transform in thez—variable,

d_ef 1 —ik-x
(Fu)(k,z) = (27T)d/2/£e]1§d6 u(zx, 2) dx.

Settingk = o + £ with o0 € 7* and/ € £ we immediately find: = D(U) with

U(o,z,2) = el (Fu)o + 1, 2).
&y 2

Using Parseval’s identity fai/(o, -) we obtain the norm relation

= Fue= [ S [ e s do

o€T” yer
_ (@n) 2
- vol(T) Jyer- 1V (@, M zz0yydo-

This shows thaD defines an isomorphism betwegf(Q) and L3(7*, L?(Q/¢)).
Additionally, we have the following characterization. A direct integrat D(U)
liesin H*(Q) ifand only if U(o,-) € H*(Q/) fora.e.c € T* and

/UGT* {(1 +o[P)|U (o, ')HZLZ(Q/L) +[|U(o, ‘)H%{k(g/ﬁ)}da < 0. (A7)
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Assume now that an elliptic operatdr= A(d,.) and a boundary operatBrwith the
properties from above are given such tiahas periodic coefficients with periodicity
lattice £. Applying A(9,,) to a Bloch wave leads to the definition of the Bloch operators
B(o) : D(B) C LX(Q/ ) — LA(Q/) with

B(o)U = e~ A(9,)[e*° U] = A(io + 8,)U, (A.8)

whereD(B) = {u € H*™(Q/,) : Bu =0} does not depend ansince the boundary
operator3 does not contain tangential derivatives.

Inserting Bloch waves, = ¢**U into the regularity estimate (A.5) we obtain the
a—priori estimate

@+ oMU 2oy o) ¥ U 2y ) < CUB, YU || 20/ o) U L2y ) (A9)
foranyo € 7* andU € D(B), whereC'is independent o andU.

LemmaA.3. Let A : D(A) c L¥Q) — L% Q) be given as above witB—periodic
coefficients and associated Bloch operatBi(g). Then,A has a bounded inversé—! :
L%(Q) — D(E) if and only if all B(c), ¢ € T*, have a bounded inversB(c)~! :
L¥(Q/ ) — D(B) with

b= Sup[ ||B(U)_1||L2(Q/L)—>L2(Q/L) ToeTH } < 00.
If b < oo then”AilHLZ(Q)ﬁLZ(Q) =bandA4A1= ’DB(')ilDil.

Proof. Assume thafl is invertible. By Theorem A.2 we know that alsds invertible on
L?,(9Q). Since Bloch waves lie ii?, (Q) the inverse of the Bloch operators is given by

B(0)"1F = e~ A-1[¢io* F|and there is a consta6tsuch that for alF € L4(Q/ ),

”B(U)_%F”LZ(Q/L) < CB(o) ' F |2 (o) = Clle " " " A7 " * F1|| 12 (g
< C?le F 12 () < CPllF |l ooy .)-

This proves the ‘only if’ part.
For the opposite assertion inséft= B(c)~1F into (A.9) giving

A +10PU | 120y o) + U | rrzmioy ey < CA+B)F| 120y 1) (A.10)

with C(1+b) independent of ando. Thus, we may defing : f — D[B(-)"XD~1f)())]
as a bounded operator frab?(Q) into D(A) C H?™(Q). The boundedness i#2™(Q)
is a consequence of (A.10) and the criterion (A.7). The fact&hataps into the closed
subspacé(A) of H2m(Q) follows sinceB(s)~! maps intaD(B). Obviously,X is the
desired inverse ofl and the if’ part is proved.

The norm identity follows easily aB(c)~* as the operator from?(Q/ ) into itself
depends continuously an O

The main result of this appendix reads as follows.

Theorem A.4. Let A(9,) be an elliptic operator or@ with L—periodic coefficients and
BB a boundary operator o0 Q satisfying the conditions from above. Then, we have

speo;fl) = speoﬁ) = cIosure( U spectB(o))), (A.11)
ceT*

whereB(o) are the associated Bloch operators, (@.8).
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Proof. The first identity was already proved in Theorem A.2.

Denote byC the set on the right—hand side of (A.11) and takez spec@). Then,
by Lemma A.3 we know thaB(c) — \oI, 0 € 7* is invertible with the inverse having
a uniform bound. Hence, for eaclr € 7*theset{ A € C : |\ — Xg| < 1/b}isinthe
resolvent set of3(o) which impliesAg ¢ C. This proves C spec@).

Now take\; ¢ C. Then, the functiony : o — [(B(0) — Al) | 120/ )— 120/ )
is well-defined and maps™ into (0, c0). It is continuous, sincé3(s) as the bounded
operator fromD(B) into L?(Q/ ) is continuous ins. Moreover,q decays like (1 +
|o|?)~™ for large o because of (A.9). Thus, = sup{q(c) : o € T*} is finite and
Lemma A.3 provides a bounded inversef- \11. This shows spe@() C C and the
theorem is proved. O
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