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Abstract: We develop a method for the stability analysis of bifurcating spatially pe-
riodic patterns under general nonperiodic perturbations. In particular, it enables us to
detect sideband instabilities. We treat in all detail the stability question of roll solutions
in the two–dimensional Swift–Hohenberg equation and derive a condition on the am-
plitude and the wave number of the rolls which is necessaryand sufficent for stability.
Moreover, we characterize the set of those wave vectorsσ ∈ R2 which give rise to
unstable perturbations.

1. Introduction

The bifurcation of periodic patterns for partial differential equations on unbounded
domains attracted a lot of attention within the last decade, especially concerning stability
aspects. Often stability of bifurcating patterns is studied with respect to perturbations of
related symmetry classes. However, for practical purposes it is also important to have
stability with respect to general nonperiodic perturbations. To tackle this problem the
theory of sideband instabilities was devised starting with the pioneering work of Eckhaus
[Eck65]. Yet this theory remained purely formal, due to its usage of multiple scaling
arguments.

Only very few rigorous results where obtained at that time, as for instance in [KiS69],
where instability of bifurcating roll–type solutions in the Navier–Stokes equations was
proven whenever the period is not the one which is associated to the critical Reynolds
number. However, the Eckhaus criterion for instability was mathematically justified only
twenty–five years later: first, for scalar model problems in [CoE90, Mie95] and then for
the Navier–Stokes equation in [KvW97, Mi97b].

A more general method, called theprinciple of reduced instability, was developed
in [Mie95, BrM96] which then was applied to the Benjamin–Feir instability of sur-
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face waves on a fluid layer of finite depth [BrM95] and to the sideband instabilities of
convection rolls in the Rayleigh–B́enard problem [Mi97b]. This principle of reduced
instability employs local arguments in the set of wave vectors, and is thus ideally suited
to detect sideband instabilities. However, it only provides sufficient conditions for linear
instability and is not able to give stability results. It is the purpose of this work to show
how necessary conditions for stability can be provided.

Problems with more than one unbounded direction display a more complex behavior
and are less well understood. First rigorous (in)stability results for the two–dimensional
Swift–Hohenberg equation (SHE) were obtained in [Mie95] and [Kuw96]. The former
work gives sufficient conditions for instability while the latter also establishes sufficient
conditions for stability. However, there remained a region in parameter space where
no result could be obtained, see Remark 2 after Theorem 3.2. Here we generalize the
principle of reduced instability such that it provides stability results also. In particular,
we are able to derive condition (1.2) below which is necessaryandsufficient for stability.
Moreover, for the case of instability we can characterize the set of those wave vectors
σ ∈ R2 which give rise to unstable modes.

We will explain the main philosophy of the method in Sect. 2 and work out a first
example in Sects. 3 and 4, namely the sideband instabilities for the roll patterns in the
SHE:

∂tu = −(1 +1)2u + εu − u3, t ≥ 0, x ∈ R2. (1.1)

There are roll solutionsu(t, x) = Uε,κ(kx1) =
√

4(ε−κ2)/3 cos(kx1) + O(|ε−κ2|3/2)
which are independent of (t, x2) and periodic inx1 with period 2π/k. For notational
convenience we throughout use the parameterκ = k2 − 1. These solutions exist for all
ε ∈ (κ2, ε0] for some small positiveε0.

However, some of these roll patterns are unstable: There are two curvesκ = KZ(ε) =
O(ε2) andε = EE(κ) = 3κ2 + O(|κ|3) such that the rolls withε < EE(κ) areEckhaus
unstableand that the rolls withκ < KZ(ε) arezigzag unstable. These bounds were
known on the formal level for more than 25 years, see [Eck65] and [Bus71] for the first
studies. Exploiting the ideas introduced in [KiS69] it is possible to prove instability of
the rolls withε ∈ (κ2, (1 + c0)κ2) for some smallc0, yet the Eckhaus bound isc0 = 2.
A more general theory was developed in [CoE90, KvW97] for the Eckhaus criterion
and [Kuw96, Mie95, Mi97b] for both cases. The novel result of the present work is that
we are able to show that these conditions are not only sufficient for instability but also
necessary:

Uε,κ is linearly stable if and only if κ ≥ KZ(ε) andε ≥ EE(κ). (1.2)

This result is stated in Sect. 3 and proved in Sect. 4. SinceKZ(ε) = −ε2/512 +O(ε3)
we conclude that there are stable rolls withκ < 0. As far as we know this result is new.

For comparison we derive, in Sect. 3, the sideband instabilities of the roll solution
Aε,κ(x1) =

√
ε − κ2 eikx1, with k =

√
1 +κ, of the complex SHE,

∂tA = −(1 +1)2A + εA − |A|2A, t ≥ 0, x ∈ R2,

whereA(t, x) ∈ C. This stability problem is easier as it reduces to a purely algebraic
one. Lengthy algebraic manipulations yield

Aε,κ is linearly stable if and only if κ ≥ 0 andε ≥ κ2 6 + 7κ
2 + 3κ

.
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To establish result (1.2) we generalize the principle of reduced instability in Sect. 2.
There we use a general setting for arbitrary elliptic operators, however in this introduction
we give the ideas for the SHE only. Our notion of stability forUε,k is always spectral
stability, that is, we have to study the spectral problem

λv = Bε,κv whereBε,κv
def
= −(1 +1)2v + εv − 3U2

ε,κ(kx1)v.

The main difference from classical approaches is that we allowv to lie in Wn,∞(R2)
rather than restricting it to the spaceH4(T2π), containing only the patterns with the same
periodicity asUε,κ. (We continue to useTα = R/αZ for the one–dimensional torus of
lengthα.) Following [MiS95] we use the more general spaceL2

lu(R2), the Banach space
of uniformly localL2 functions, see Sect. 2 for the definition. The methods developed
there imply that SHE defines a global semiflow inL2

lu(R2). Using the results in [Sca94]
we immediately conclude nonlinear instability ofUε,κ if it is spectrally unstable. In
the case of spectral stability the nonlinear stability is less understood. For the one–
dimensional case (nox2–dependence) local nonlinear stability inL2(R) is proved in
[Sch96] (forκ = 0), but the caseL2

lu(R) and the two–dimensional problem are still
open.

We may treatBε,κ as operator onL2
lu(R2) or L2(R2) with domain of definition

H4
lu(R2) or H4(R2), respectively. The first variant allows us especially to study so–

called Bloch wavesv given in the formv(x) = ei(kσ1x1+σ2x2)V (ξ) with ξ = kx1, V ∈
X = H4(Tπ), and wave vectorσ ∈ R2. We use the fact that 3U2

ε,κ(kx1), the onlyx1–
dependent coefficient ofBε,κ, has periodπ/k sinceUε,κ(ξ + π) = −Uε,κ(ξ). The main
point is that the whole stability question inL2

lu(R2) orL2(R2) can be reduced to the study
of Bloch waves. Such results are well known for Schrödinger operators with periodic
potentials, cf. [ReS78], and were generalized to reaction diffusion problems in [Sca94]
and to the Navier–Stokes equations in [Sca95].

Because ofV ∈ H4(Tπ) it suffices to consider wave vectorsσ only in T ∗ = T2 × R
and for givenσ we are left with a spectral problem forV ∈ X:

λV = B(ε, κ, σ)V
def
= −(1 + (1 +κ)(∂ξ + iσ1)2 − σ2

2)2V + εV − 3U2
ε,κV. (1.3)

The operatorsB(ε, κ, σ) are called Bloch operators. The essential feature is the following
spectral identity:

L2–spec(Bε,κ) = L2
lu–spec(Bε,κ) = closure

( ⋃
σ∈T ∗

spec(B(ε, κ, σ))
)
. (1.4)

We establish this result for general elliptic operators in Appendix A in a short, self–
contained way.

For the above–mentioned general theory no smallness assumption on the non–
constant parts of the coefficients in the operatorBε,κ was needed. However, for the
analysis of the spectra of eachB(ε, κ, σ) we heavily rely on the fact, that we are dealing
with small perturbations from a homogeneous state, that is,‖U2

ε,κ‖∞ = O((ε − κ2)).
Thus, we are able to study the Bloch operatorsB(ε, κ, σ) as small perturbations of
B(0, 0, σ), which have constant coefficients. For eachσ ∈ R2 the linear spectral prob-
lem (1.3) can be attacked by the Liapunov–Schmidt reduction with a splittingV = V0+V1
according to the kernel ofB(0, 0, σ). We find reduced finite–dimensional spectral prob-
lems
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0 = b(ε, κ, σ, λ)V0
def
= P

[
B(ε, κ, σ) − λI

](
V0 + V(ε, κ, σ, λ)V0

)
, (1.5)

whereV1 = V(. . .)V0 defines the associated reduction.
It is important to note that we can handle general large wave vectorsσ; only the

eigenvalue parameterλ ∈ C needs to be small. However, since the spectrum ofB0,0 is
equal to (−∞, 0] ⊂ C, classical perturbation arguments (cf. [Kat76]) show that possible
unstable modes can only occur for|λ| = O((ε−κ2)). In our caseX0 = PX is, depending
onσ, one– or two–dimensional and thusb(ε, κ, σ, λ) corresponds to a scalar or a 2× 2–
matrix. The control of spec(B(ε, κ, σ)) is now managed by solving

0 = 3(ε, κ, σ, λ)
def
= detb(ε, κ, σ, λ)

for λ as a function of (ε, κ, σ).
Our method allows us to characterize the setSε,κ of unstable wave vectors for the

stateUε,κ:

Sε,κ = { σ ∈ T ∗ : B(ε, k, σ) has an eigenvalueλ with Reλ > 0}.

In Sect. 4 we give all curves in the (ε, κ) plane where the topological structure of
Sε,κ changes. Moreover, we point out some differences between the setsSε,κ and its
counterpartSA

ε,κ for the rollsAε,κ in the complex SHE.
The knowledge of the setsSε,k can in fact be used to study the stability of the solution

Uε,k on finite domains� = (0, 2πN/k) × (0, 2πL), whereN ∈ N andL > 0, with
periodic boundary conditions. Considering functions with such periodicity the stability
analysis has to be restricted to perturbations having wave vectorsσ with σ1N, σ2L ∈ Z.
Under this periodicity assumption we have stability if and only if

Sε,κ ∩ { (n/N, l/L) ∈ T ∗ : n = 0, . . . , 2N − 1, l ∈ Z } = ∅.

Thus, it is possible to rederive and refine the results in [Kuw96] by using the character-
ization of the setSε,κ given in the present work.

2. General Theory

We consider systems of partial differential equations which are posed over unbounded
physical domainsQ = Rd×Σ with variables (x, z) ∈ Rd×Σ. We assume for simplicity
the form

∂tu = Aµ(∂x)u + N (µ, ∂x, u) in Q = Rd × Σ, (2.1)

whereu = u(t, x, z) ∈ Rn is the state variable,Aµ(∂x) is an elliptic operator of order
2m in the (x, z) variables and incorporates the boundary conditionsBu = 0 on∂Q =
Rd × ∂Σ. The cross–sectionΣ is a bounded domain inRs with Lipschitz boundary,
and the vectorµ ∈ Rp denotes all parameters. The problem is translational invariant (no
x–dependence) while dependence on the cross–sectional variablez is allowed but not
explicitly displayed.

Our aim is to study the linearized stability of a given stationary spatially periodic
patterñuµ of (2.1) under general nonperiodic perturbations. The linearization atũµ reads

∂tv = Bµ(∂x)v with Bµ(∂x)
def
= Aµ(∂x) + DuN (µ, ∂x, ũµ). (2.2)

To study (2.1) in a large function space which contains all sufficiently smooth bounded
functions we define the uniformly localL2 space as in [MiS95]: Let
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L̃2
lu(Q) = { u ∈ L2

loc(Q) : ‖u‖lu < ∞ },
‖u‖2

lu = sup{
∫

Q Tyρ(x)|u(x, z)|2dx dz : y ∈ Rd },

whereρ : Rd → [0, ∞) is a suitable bounded and integrable weight function andTy is
the translation operator withTyv(x) = v(x − y). For definiteness we choose the weight
ρ(x) = e−|x|. The finalL2

lu uniformly localL2–space is given by

L2
lu(Q) = { u ∈ L̃2

lu(Q) : ‖Tyu − u‖lu → 0 for y → 0}.

As usual we define Sobolev spacesHk
lu(Q) by asking that all partial derivatives in (x, z)

up to orderk lie in L2
lu(Q). Then,Hk

lu(Q) is densely contained inL2
lu(Q), and the

classical spaceL2(Q) is continuously embedded inL2
lu(Q) but not dense.

The linear operatorBµ can now be defined on two spaces:

B̂µ : D(Â0) = { u ∈ H2m(Q) : Bu = 0 on∂Q } → L2(Q), u 7→ Bµ(∂x)u;
B̃µ : D(Ã0) = { u ∈ H2m

lu (Q) : Bu = 0 on∂Q } → L2
lu(Q), u 7→ Bµ(∂x)u.

(2.3)

The stationary periodic patterñuµ lies inH2m
lu (Q). Its stability analysis can first be done

with respect to perturbations inL2(Q), but finally we will show that the spectrum of the
linearization around the periodic pattern is the same considered inL2(Q) and inL2

lu(Q).
For the spectral analysis ofBµ we exploit the fact thatBµ has periodic coefficients via

DuN (µ, ∂x, ũµ(x)). Using the translation operatorsTy this periodicity is characterized
by the lattice groupL ⊂ Rd such thatBµT` = T`Bµ for all ` ∈ L. In some cases, see
e.g. the SHE in Sect. 3, the lattice groupL is larger thanL̃ = { y ∈ Rd : Tyũµ = ũµ },
which is the translation group of̃uµ, butL̃ ⊂ L always holds. Restricting the functions
in L2

lu(Q) to the subclass with the given lattice groupL we obtain as natural space

L2
lu(Q)/L = { u ∈ L2

lu(Q) : T`u = u for all ` ∈ L },

which is easily identifiable withL2(Q/L) whereQ/L = T ×Σ is the periodicity domain
andT = Rd/L.

For the wave vectors the dual lattice groupL∗ ⊂ Rd is relevant. It is given by

L∗ = { h ∈ Rd : h · ` ∈ 2πZ for all ` ∈ L }.

Throughout we assume thatL containsd linearly independent vectors and that the
connected components ofL ared̃–dimensional, thenT is a (d − d̃ )–dimensional torus.
Under these conditions onL, the dual latticeL∗ is discrete and contained in a (d − d̃)–
dimensional subspace. By choosing appropriate coordinates inRd we can arrange things

such thatL = (2πZ)d−d̃ × Rd̃ ⊂ Rd. Then,T = (T2π)d−d̃ × {0}, L∗ = Zd−d̃ × {0},

andT ∗ = (T1)d−d̃ × Rd̃, whereTα = R/αZ is the one–dimensional torus of lengthα.
The main idea is to reduce the spectral analysis inL2(Q) to the spaceL2(Q/L)

by using the Bloch decomposition which is also called the direct integral, cf. [ReS78],
XIII.16. It is given by the isomorphismD : L2(T ∗, L2(Q/L)) → L2(Q) with

D(U )(x, z) =
∫

σ∈T ∗
eiσ·xU (σ, x, z) dσ, (2.4)

and satisfying‖D(U )‖2
L2(Q) = (2π)d

(
vol(T )

)−1 ∫
σ∈T ∗ ‖U (σ, ·)‖2

L2(Q/L)dσ. For more
details we refer to [ReS78] and to Appendix A.
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We define the closed subspaces

Xσ = { eiσ·xU : U ∈ L2(Q/L) } ⊂ L2
lu(Q),

such that (2.4) tells us thatL2(Q) can be understood as the directL2–product of all the
spacesXσ. It is clear that eachXσ is left invariant under the action of̃Bµ, and we are
able to define the Bloch operatorsB(µ, σ) : D(B) ⊂ L2(Q/L) → L2(Q/L) as follows

B(µ, σ)U = e−iσ·xB̃µ(∂x)[eiσ·xU ] = Bµ(iσ + ∂x)U, (2.5)

whereD(B) = { u ∈ H2m(Q/L) : Bu = 0} does not depend onσ if the boundary
operatorsB do not contain tangential derivatives (i.e.∂x).

The family of Bloch operators allows us to gain full control over the operatorBµ(∂x).
In fact, assuming that the resolvents (B(µ, σ) −λI)−1 : L2(Q/L) → L2(Q/L) exist for
all σ ∈ T ∗ with their norm uniformly bounded, we have

(B̂µ − λI)−1f = D
[
B(µ, ·)F (·)

]
, whereF = D−1f. (2.6)

See Lemma A.3 for the exact statement.
In such a way it is possible to reduce the set of perturbations inL2(Q) to the space

L2(Q/L) while σ ∈ T ∗ appears as an additional parameter. If we are able to control the
perturbations for allσ ∈ T ∗ simultaneously, then we are able to decide on stability. Note
that no assumption on self–adjointness is needed for this theory. The only important fact
is that we are in a Hilbert space setting, which enables us to use the Bloch decomposition.
In Appendix A we show that all this can be made rigorous for general elliptic operators
with suitable boundary conditions. The following result is provided there.

Theorem 2.1. Let Bµ(∂x) be an elliptic operator onQ with L–periodic coefficients
andB a boundary operator on∂Q satisfiying conditions A.2. DefinêBµ(∂x), B̃µ(∂x)
according to(2.3)onL2(Q) andL2

lu(Q), respectively, and the Bloch operatorsB(µ, σ)
according to(2.5). Then we have

spec(B̃µ(∂x)) = spec(B̂µ(∂x)) = closure
( ⋃

σ∈T ∗
spec(B(µ, σ))

)
. (2.7)

Remarks.
1. The spectra of̃Bµ and B̂µ are the same as sets, however the type of spectrum
usually differs dramatically. In fact, it is easy to see that

⋃
σ spec(B(µ, σ)) is con-

tained in spec(̃Bµ)) as point spectrum. Observe that fromB(µ, σ)U = λU immediately
B̃µ[eiσ·xU ] = λeiσ·xU ∈ L2

lu(Q) follows. For the operator̂Bµ these points are not
necessarily in the point spectrum, sinceeiσ·xU 6∈ L2(Q).

2. Another difference appears when approaching the spectrum from inside the resolvent
set. For instance, if̃Bµ is self–adjoint we have

‖(B̃µ − λI)−1‖L2(Q)→L2(Q) = C
(

dist(λ, spec(̃Bµ))
)−n

with C = n = 1. However, the blow up for the operator (B̂µ − λI)−1 might be much
worse, i.e. withC ≥ 1 andn ≥ 1. This question plays an important role if spectral
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stability has to be improved to linearized stability. Then, we want to estimate the semi-

group (eB̃µt)t≥0 or (eB̂µt)t≥0 for larget. Under the additional assumption thatBµ is a
sectorial operator, one obtains‖eBµt‖ ≤ C̃(1 + tn−1)eνt for t ≥ 1.

3. In our application we cannot expect exponential stability since the spectrum always
contains the originλ = 0 if the periodic solutioñuµ is non–constant. This is easily seen
since some partial derivative∂xj

ũµ is nonzero and it is in the kernel of̃Bµ(∂x).

Thus, it remains to study the spectra of the Bloch operatorsB(µ, σ). For elliptic
operatorsBµ(∂x) the Bloch operators are also elliptic and they are defined on the bounded
spatial domainQ/L = T × Σ. Hence, they are Fredholm operators of index zero with
compact resolvent. In order to analyze the spectrum we assume further on that we are
in a bifurcation situation, where the stationary periodic patternũµ is small. Then, it is
natural to assume thatu = 0 is stable forµ = 0. If u = 0 would be unstable, then small
ũµ could not gain stability. Thus, our main assumption on system (2.1) is thatA0(∂x) is
an elliptic operator onL2(Q) which is spectrally stable.

More precisely, our method can only work when the spectrum ofA0(∂x) is contained
in a setSg = { λ ∈ C : Reλ ≤ −g(|Im λ|) } whereg : [0, ∞) → [0, ∞) satisfies
g(0) = 0 andg(t) ≥ g(s) > 0 for t > s > 0. The reason for this spectral bound is
that our method involves perturbation arguments. Linearization around a small solution
(µ, ũµ) leads to the linear operatorBµ = Aµ(∂x) +DuN (µ, ∂x, ũµ) with δ(µ) = ‖(Bµ −
A0)(A0−I)−1‖ → 0 for |µ| → 0. Hence, standard perturbation arguments (see [Kat76])
show that the distance of the spectrum ofBµ from that ofA0 is less thanδ(µ). Our
assumption spec(A0) ⊂ Sg now implies that the spectrum ofBµ is contained in{ λ ∈
C : dist(λ, Sg) ≤ δ(µ) }. Thus, we immediately conclude that forµ → 0 the unstable
part (i.e., Reλ > 0) of the spectrum ofBµ is contained in a small neighborhood of
zero. More precisely, for eachε > 0 there is aµ0 such that for allµ with |µ| ≤ µ0 the
spectrum ofBµ is contained in{ λ ∈ C : Reλ < 0 or |λ| ≤ ε }.

Our method is exactly devised to study the spectrum close toλ = 0 in the case that
ũµ is a small spatially periodic steady state of (2.1). We are not able to control largeλ
nor large solutions̃uµ since our analysis is based in the exact control of the operator
A0(∂x), which can be obtained by Fourier transform with respect tox ∈ Rd.

For µ = 0 we know that the spectrum ofB(0, σ) is contained in{0} ∪ {λ ∈ C :
Reλ < 0}. The kernel is finite–dimensional and depends onσ. The general a–priori
estimate (A.9) tells us that for largeσ ∈ T ∗ the kernel is trivial, so that only a compact set
S0 of wave vectorsσ can be important, i.e.S0 = { σ ∈ T ∗ : dim kernel(B(0, σ)) > 0}.
Considering now general smallµ we immediately see that we only have to control the
operators in a neighborhood ofS0. In fact, defining the setSµ of unstable wave vectors
as

Sµ = { σ ∈ T ∗ : B(µ, σ) has an eigenvalueλ with Reλ > 0}, (2.8)

perturbation theory for operators with compact resolvent implies dist(S(µ), S0) → 0 for
µ → 0.

Thus, it remains to control the finitely many eigenvalues ofB(µ, σ) for µ ≈ 0 and
σ ≈ σ0 ∈ S0. This, we can do with the help of theLiapunov–Schmidt reductionapplied
to the linear eigenvalue problem

K(µ, σ, λ)U
def
= B(µ, σ)U − λU = 0. (2.9)

It is our aim to find nontrivial solutions of this equation, and we do this by treating it as
a bifurcation problem. Although this is a perturbation problem for linear operators we
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use the Liapunov–Schmidt reduction since it is so closely related to the typical way of
establishing the bifurcation result for the nonlinear problem, cf. [Mie95, Mi97b].

The main point is that it is sufficient to consider smallλ as was shown above. Hence,
for σ0 ∈ S0 fixed, (µ, σ −σ0, λ) can be treated as a small bifurcation parameter in (2.9).
For (µ, σ, λ) = (0, σ0, 0) we find splittingsD(B) = X0(σ0) ⊕ X1(σ0) andL2(Q/L) =
Y0(σ0) ⊕ Y1(σ0) such thatX0(σ0) is the finite–dimensional kernel ofK(0, σ0, 0) =
B(0, σ0) andY1(σ0) its range. Since the Fredholm index ofB(µ, σ) is 0, the dimensions
of Y0 andX0 are the same. DecomposeU = U0 + U1 with Uj ∈ Xj , F = F0 + F1 with
Fj ∈ Yj , and letP : L2(Q/L) → L2(Q/L) be the projection withPF = F0. Then,
K(µ, σ, λ)U = 0 is equivalent to

PK(µ, σ, λ)(U0 + U1) = 0, (I − P )K(µ, σ, λ)(U0 + U1) = 0,

where the second relation can be inverted for (µ, σ − σ0, λ) sufficiently small in order
to obtainU1 = U (µ, σ, λ)U0. Inserting this result into the first equation we are left with
the reduced spectral problem

K̃(µ, σ, λ)U0
def
= PK(µ, σ, λ)(U0 + U (µ, σ, λ)U0) = 0. (2.10)

This reduced problem is no longer linear inλ, however, it is finite–dimensional with
K̃(µ, σ, λ) : X0(σ0) → Y0(σ0). Equation (2.10) has nontrivial solutionsU0 if and only
if

3(µ, σ, λ)
def
= detK̃(µ, σ, λ) = 0.

We note thatσ has to be close toσ0 ∈ S0. By compactness it is sufficient to do this
reduction for finitely manyσ0, where the subspacesX0(σ0) and Y0(σ0) can change
dramatically: generally, even the dimension will change.

The present approach does not only provide a tool to decide on stability or instability
of the periodic pattern. It also gives a way to describe the set of unstable wave vectors
quite precisely. Analyzing the problems3(µ, σ, λ) = 0 we obtain information on the set
Sµ, cf. (2.8). Moreover, it is possible to find those wave vectorsσ ∈ Sµ which correspond
to thoseλ having the largest real part. Such characterizations ofSµ are important in the
theory of pattern formation.

One special case attracted a lot of attention over the last thirty years, namely those of
sideband instabilities. This phenomenon is now easily identified in the present context
with the situation whenSµ is contained in a small neighborhood ofσ = 0, butσ = 0
itself is not inSµ. We will discover such sideband instabilities in the next section.

3. The Real and Complex Swift–Hohenberg Equation

We work out the details of the method for a simple model problem showing the same the-
oretical behavior as many other pattern forming systems. The two–dimensional Swift–
Hohenberg equation (SHE) is given by

ut = −(1 +1)2u + εu − u3, for t > 0, x ∈ Q = R2, (3.1)

where1 = ∂2
x1

+∂2
x2

is the Laplace operator. The linearization at zero admits the solutions
v(t, x) = eλt+i(k1x1+k2x2) with λ(k1, k2) = −(1 − k2

1 − k2
2)2 + ε. Hence,u ≡ 0 is weakly

unstable with unstable modes having wave vectors withk2
1 + k2

2 ≈ 1.
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The basic patterns of interest are so–called rolls, which are independent of time and
of x2 (after a suitable rotation), and periodic inx1. Taking the period inx1 to be 2π/k

with k =
√

1 +κ we are looking for a solutionu of (3.1) in the formu(t, x) = U (ξ)
whereξ = kx1 ∈ T2π = R/2πZ. The problem forU reads

0 = N (ε, κ, U )
def
= −(1 + (1+κ)∂2

ξ)2U + εU − U3, U ∈ H4(T2π), (3.2)

whereN : R2 × H4(T2π) → L2(T2π) is an analytical mapping.
From [Mie95] (see also [CoE90], Thm. 17.1) we have the following result on the

existence of steady roll patterns.

Theorem 3.1. There is anε0 > 0 such that for allε ∈ (0, ε0] and all κ ∈ (−
√

ε,
√

ε)
there is a unique small solutionU = Uε,κ ∈ H4(T2π) of (3.2) which is even inξ and
positive atξ = 0. This solution has the expansion

Uε,κ(ξ) = a1 cosξ + a3 cos(3ξ) + O(ã5) for (ε, κ) → 0, (3.3)

whereã = ã(ε, κ) =
√

4(ε − κ2)/3 and

a1 = 1
π

∫ 2π

0 Uε,κ(ξ) cosξ dξ = ã + ã3/512 +O(ã4),

a3 = 1
π

∫ 2π

0 Uε,κ(ξ) cos(3ξ) dξ = −ã3/256 +O(ã4).

Moreover,Uε,κ(π + ξ) = −Uε,κ(ξ).

In light of Sect. 2 we say that the solutionũε,κ(x) = Uε,κ(kx1) is (spectrally) unstable,
if there existsλ ∈ C with Reλ > 0 and a nontrivial smooth bounded functionv such
that

λv = −(1 +1)2v +
(
ε − 3ũ2

ε,κ

)
v.

The following necessary and sufficient stability criterion is derived in the next section
together with precise information on the setSε,κ of unstable wave vectors.

Theorem 3.2. There is a positiveε1, and there are curvesκ = KZ(ε) andε = EE(κ),
satisfying the expansions

KZ(ε) = −ε2/512 +O(ε3), EE(κ) = 3κ2 − κ3 + O(|κ|4),

such that the roll solutionUε,κ with ε ∈ (0, ε1] and|κ| ≤
√

ε is stable if and only if

ε ≥ EE(κ) and κ ≥ KZ(ε). (3.4)

Remarks.
1. The boundε ≥ EE(κ) is called the Eckhaus criterion (cf. [Eck65]), which contains the
universal factor 3: rolls exist forε > κ2 but the rolls are stable only forε ≥ 3κ2+O(|κ|3).
The boundκ ≥ KZ(ε) is the zigzag instability bound, see [Bus71] for a first discussion.

2. Our results are sharper than those in [CoE90], Thm. 20.1+2 and [Kuw96]. Reformu-
lating the latter results in our notation gives a statement as follows: there are curves
K1

Z(ε) < 0 < K2
Z(ε) and E1

E(κ) < E2
E(κ) with K2

Z(ε) − K1
Z(ε) = O(εα) and

E2
E(κ) − E1

E(κ) = O(|κ|β) for suitableα > 1 andβ > 2 such that stability can be
concluded ifε ≥ E2

E(κ) andκ ≥ K2
Z(ε) whereas instability holds if eitherε < E1

E(κ)
or κ < K1

Z(ε). Hence, small tongues around the exact boundaries remained where no
conclusion could be made.

3. There are parameters (κ, ε) with κ < 0 such that the rollUε,κ is stable. Moreover, all
small rolls withκ = 0 are stable.



838 A. Mielke

We postpone the proof of this result to Sect. 4 and study first a somewhat similar
problem which is much easier as no Liapunov–Schmidt reduction is necessary. But
nevertheless it shows the ideas and technicalities in the discussion of the algebraic
eigenvalue problem. The complex SHE is given by

∂tA = −(1 +1)2A + εA − |A|2A, t ≥ 0, x ∈ R2, (3.5)

whereA(t, x, y) ∈ C. In contrast to the real SHE this problem has an additional symmetry
group, namely the phase invarianceA 7→ eiαA for α ∈ T2π.

Obviously, the real SHE is contained in (3.5) by restricting to real–valuedA. We
will study the stability of the explicitly known family of stationary roll solutions given
by

A(x) = rei(α+k1x1+k2x2), wherer2 = ε − (1 − k2
1 − k2

2)2. (3.6)

Using the rotational invariance we may assume (k1, k2) = (k, 0) with k =
√

1 +κ and
denote byAε,κ the unique solution in (3.6) withα = 0. These solutions are not related
to the previously studiedUε,κ, which are, of course, also stationary solutions of (3.5).

To study the stability ofAε,κ we consider the linearization of (3.5) around this steady
state:

∂tB = −(1 +1)2B + εB − 2|Aε,κ|2B − A2
ε,κB, (3.7)

whereB is the complex conjugate ofB. We letB = (w1 + iw2)eikx1 with w1, w2 ∈ R
and arrive at the constant coefficient problem

∂t

(
w1
w2

)
=

(
L4 + ε − 3r2 4kL2∂x1

−4kL2∂x1 L4 + ε − r2

) (
w1
w2

)
, (3.8)

where L4 = −L2
2 + 4(1 + κ)∂2

x1
and L2 = 1 − κ. This linear system can be

solved completely by Fourier transform. Looking for solutions in the formw =
eλt+i(k(σ1−1)x1+σ2x2)W with constantW ∈ C2 we obtain the algebraic problem(

ρ + c − λ iν
−iν ρ − λ

)
W = 0, (3.9)

where

ρ = −(κ + (1+κ)(σ1−1)2 + σ2
2)2 − 4(1+κ)2(σ1−1)2 + κ2,

ν = −4(1+κ)(σ1−1)(κ + (1+κ)(σ1−1)2 + σ2
2), andc = −2(ε − κ2).

(3.10)

Since roll solutions only exist forε > κ2 we always havec < 0. Note that we have
shifted back the vectorσ by (−1, 0) to account for the factoreikx1 in the ansatzB =
(w1 + iw2)eikx1.

The two eigenvaluesλ obtained from solving (3.9) are real and can be expressed
explicitly by solvingλ2 − (2ρ + c)λ + ρ(ρ + c) − ν2 = 0. Our aim is to characterize the
unstable wave vectorsσ, where at least one eigenvalue is positive. This is the case if and
only if either (i) or (ii) hold, where

(i) ρ + c/2 > 0 and (ii) ρ(ρ + c) − ν2 < 0. (3.11)

To analyze these conditions in more detail we use the abbreviations

s̃ = k2(σ1−1)2, t = σ2
2, andµ = ρ + 8(1 +κ)s̃.

In this notation conditions (3.11) take the form
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(i) µ − (ε − κ2) − 8(1 +κ)s̃ > 0,
(ii) µ2 − 2(ε − κ2)µ + 16(ε − 2κ2)(1 +κ)s̃ < 0.

(3.12)

Of course, only such (̃s, µ) are allowed which can be obtained from (s̃, t) ∈ [0, ∞)2,
namely

0 ≤ s̃ < ∞ and µ ≤ g(κ, s̃)
def
=

{
q(κ, s̃) if s̃ > −κ,

κ2 + 4(1 +κ)s̃ if s̃ ∈ [0, −κ];
,

whereq(κ, s̃) = −s̃2 + 2(2 +κ)s̃. Then,t = −s̃ − κ ±
√

κ2 + 4(1 +κ)s̃ − µ, where the
minus sign is only allowed ifq(κ, s̃) ≤ µ ≤ κ2 + 4(1 +κ)s̃.

Condition (i) in (3.12) can only hold ifκ ∈ [−
√

ε, −
√

ε/2], namely in the region

A1 = { (s̃, µ) : 0 ≤ s̃ < 2κ2−ε
4(1+κ) , ε − κ2 + 8(1 +κ)s̃ < µ < κ2 + 4(1 +κ)s̃ }.

For condition (ii) we first consider the caseκ ∈ [0,
√

ε]. The instability set is
characterized by the intersection of the sets

A2 = { (s̃, µ) ∈ [0, ∞) × R : µ ≤ g(κ, s̃) } and
A3 = { (s̃, µ) ∈ [0, ∞) × R : µ2 − 2(ε − κ2)µ + 16(ε − 2κ2)(1 +κ)s̃ < 0}.

Both regions are bounded by a parabola which contains the origin. Checking their po-
sition it is immediate thatA2 ∩ A3 is nonempty if and only if the slope of∂A2 in
the origin is larger than that of∂A3. This gives the stability condition 2(2 +κ) ≤
8(ε − 2κ2)(1 +κ)/(ε − κ2), which is the classical Eckhaus criterion:

ε ≥ EC
E (κ)

def
= κ2 6 + 7κ

2 + 3κ
= 3κ2 − κ3 + 3κ4/2 +O(|κ|5).

For ε < EC
E (κ) we have a nontrivial intersectionA2 ∩ A3, which changes its type

whenε ≈ 2κ2. Forε ∈ (EC
3 (κ), EC

E (κ)) the setA2 \ A3 has one connected component
while for ε ∈ [κ2, EC

3 (κ)] the setA2 \ A3 has two connected components: one above
the lineµ = 0 and one below. The boundaryε = EC

3 (κ) is determined by the condition
that the boundaries ofA2 andA3 touch each other in a point (s̃, µ) ≈ (4, 0). We find the
expansion

EC
3 (κ) = 2κ2 +

1
64

κ4 + O(|κ|5).

The analysis of the caseκ ∈ [−
√

ε, 0) is more involved, since the setA2 is enlarged
due to the fact thatg(κ, s̃) > q(κ, s̃) for s̃ < −κ. Now the intersectionA2 ∩ A3 is
always nontrivial and hence instability is concluded. To characterize the intersection
we note thatA2 \ A3 consists of one or two connected components forε > EC

3 (κ) or
ε ∈ [κ2, EC

3 (κ)] respectively. Moreover,

A2 ∩ A3 = { (s̃, µ) : µ ≤ κ2 + 4(1 +κ)s̃, m−(ε, κ, s̃) < µ < m+(ε, κ, s̃) },

wherem±(ε, κ, s̃) = ε − κ2 ±
√

(ε − κ2)2 + 16(2κ2 − ε)(1 +κ)s̃.
For κ ∈ [−

√
ε, −

√
2ε/3) the boundm+ lies below the straight lineµ = m0(s̃) =

κ2 + 4(1 +κ)s̃ for small s̃. However, the setA∗ lying betweenm0 andm+ is contained
inside the regionA1, whereρ + c/2 > 0. Hence,A∗ characterizes thoseσ for which
both eigenvaluesλ1,2 are positive.
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Fig. 3.2.The setSC
ε,κ of unstable wave vectors forAε,κ with (ε, κ) ∈ RC

j

For the interpretation of the above results in terms ofσ we recall thatA2∩A3 always
lies in a strip of widthO(ε) around thẽs–axis. Moreover, the lineµ = 0 corresponds in
the casek = 1 to the two circles

SC
0 = { σ ∈ R2 : σ2

1 + σ2
2 = 1 or (σ1−2)2 + σ2

2 = 1}.

For a given solutionAε,κ with ε ∈ [κ2, ε0) of (3.5) we define the instability set

SC
ε,κ = { σ ∈ R2 : either (i) or (ii) hold }.

Using the semidistance dist(A, B) = sup{ inf{ |a − b| : b ∈ B } : a ∈ A } for
A, B ⊂ R2 we have the following results.

Theorem 3.3. There is a positiveε0 and curvesε = EC
E (κ) andε = EC

3 (κ) in the form
as given above such that for a roll solutionAε,κ with ε ∈ (κ2, ε0) of the complex SHE
(3.5) the following holds.

(a) (1, 0) 6∈ SC
ε,κ, and(σ1, σ2) ∈ SC

ε,κ implies(2 − σ1, σ2), (σ1, −σ2) ∈ SC
ε,κ.

(b) dist(Sε,κ, SC
0 ) = O(

√
ε) for ε → 0.

(c) The solutionAε,κ is stable (i.e.,SC
ε,κ = ∅) if and only ifκ ≥ 0 andε ≥ EC

E (κ).

(d) On the curveε = EC
3 (κ) the boundary ofSε,κ has a pair of double points on the

line σ2 = 0 close toσ1 = −1 andσ1 = 3.

The curvesε = EC
E (κ),ε = EC

3 (κ) andκ = 0 divide the regionε ≥ κ2 into six regions
RC

j , see Fig. 3.1. The boundaries betweenRC
j andRC

j+1are exactly those curves where
the topological structure ofSC

ε,κ changes. We depict the different shapes in Fig. 3.2.
The casesκ =

√
ε andκ = −

√
ε can be given explicitly:
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SC
ε,ε = { σ ∈ R2 : ∃ β ∈ {0, 2} such that1−

√
ε

1+
√

ε
< (σ1 + β)2 + σ2

2
1+

√
ε

< 1},

SC
ε,−ε = { σ ∈ R2 : ∃ β ∈ {0, 2} such that 1< (σ1 + β)2 + σ2

2
1+

√
ε

< 1+
√

ε
1−

√
ε
}.

(3.13)

In both cases we have two annuli of radii close to 1 and thickness 2
√

ε + O(ε). For
κ =

√
ε the annuli touch each other inσ∗ = (1, 0), while forκ = −

√
ε they overlap such

thatσ∗ remains an isolated point in the complement ofSC
ε,−ε.

For later reference we consider the caseε < 2κ2 such that the boundary ofSC
ε,κ for

σ ≈ (2, 1) has two branchesσ2 = Σ+,−(ε, κ, σ1) with the expansions

Σ+,−(ε, κ, σ1) = α+,−(ε, κ) + β+,−(ε, κ)(σ1 − 2) +O(|σ1 − 2|2), (3.14)

whereα+,− = 1± 1
2

√
2κ2 − ε + O(ε) andβ+,− = ∓ (ε−κ2)2

32
√

2κ2−ε
+ O(ε2).

4. On the Set of Unstable Wave Vectors

We return to the real SHE and study the setSε,κ of the unstable wave vectors associated
to the rollUε,κ. In showingSε,κ = ∅ we prove Theorem 3.2. The linearization of (3.1)
around the roll solutionUε,κ given in (3.3) defines the full operator

B̂ε,κ(∂ξ) : H4(R2) ⊂ L2(R2) → L2(R2)

B̂ε,κ(∂ξ)v = −(1 +k2∂2
ξ + ∂2

x2
)2v +

(
ε − 3Uε,κ(ξ)2

)
v.

Of course we can also consider the operatorB̃ε,κ : H4
lu(R2) ⊂ L2

lu(R2) → L2
lu(R2),

which is defined by the same formula.
The basic stateUε,κ is 2π–periodic, however the coefficientε− 3U2

ε,κ is π–periodic
in ξ, sinceUε,κ(ξ + π) = −Uε,κ(ξ). Hence, it is advantageous to work with the lattice
groupL = πZ rather than withL̃ = 2πZ, which is the translation group ofUε,κ. We
apply the abstract theory of Sect. 2 (using the coordinates (ξ, x2)) with d = 2, d̃ = 1,
Q = R2,L = πZ×R,L∗ = 2Z×{0},T = R2/L = Tπ×{0}, andT ∗ = R2/L∗ = T2×R.

The Bloch operator family is given by

B(ε, κ, σ) : H4(Tπ) ⊂ L2(Tπ) → L2(Tπ),

B(ε, κ, σ)V = −(1 +k2(∂ξ + iσ1)2 − σ2
2)2V +

(
ε − 3U2

ε,κ(ξ)
)
V,

where (ε, κ, σ) ∈ R4. Here B is even inσ2, and the operatorB(ε, κ, σ1 + m, σ2),
m ∈ 2Z, is unitary equivalent toB(ε, κ, σ), since it is connected toB(ε, κ, σ) by the
transformationV (ξ) 7→ eimξV (ξ). Moreover, there are two reflection symmetries given
by

(R1V )(ξ) = V (−ξ) and (R2V )(ξ) = V (ξ). (4.1)

In both cases we haveR−1
j = Rj andB(ε, κ, σ) = RjB(ε, κ, (−σ1, σ2))Rj . Hence, it is

sufficient to study the caseσ ∈ [0, 1]× [0, ∞) which is only one quarter ofT ∗ = T2×R.
All the Bloch operatorsB(ε, κ, σ) are selfadjoint, which is helpful but not essen-

tial for our theory. We strongly use the fact that the operators are small perturbations

of Bκ(σ)
def
= B(κ2, κ, σ) which is trivially analyzed as it has constant coefficients:

Bκ(σ)φm = (µm(κ, σ) + κ2)φm with φm(ξ) = eimξ, m ∈ 2Z, and
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µm(κ, σ) = −(1 − (1 +κ)(m + σ1)2 − σ2
2)2. (4.2)

Thus, forσ1 ∈ [0, 1] we have the explicit upper bound∫ π

0
(Bκ(σ)V ) V dξ ≤ −β(κ, σ)‖V ‖2

L2(Tπ),

whereβ(κ, σ) = min{(1 − (1 +κ)σ2
1 − σ2

2)2, (1 − (1 +κ)(2−σ1)2 − σ2
2)2} − κ2. Since

κ ≈ 0 we immediately identify the dangerous set

S0 = { σ ∈ T ∗ = T2 × R : σ2
1 + σ2

2 = 1 or (σ1−2)2 + σ2
2 = 1}.

Hence, ifσ is bounded away fromS0, we obtain a good bound on the spectrum of
B. Choosing a smallδ ∈ (0, 1] independent of (ε, κ, σ) we define the set of good wave
vectors as

Gδ = { σ ∈ [0, 1] × [0, ∞) : dist(σ, S0) ≥ δ }.

For σ ∈ Gδ we haveβ(σ, κ) ≥ δ2/2 for all sufficiently smallκ. For general small
ε ≥ κ2 we have‖B(ε, κ, σ)−Bκ(σ)‖L2→L2 = ‖ε−κ2 −3U2

ε,κ‖∞ ≤ ã2 for sufficiently
smallε0. Thus, forσ ∈ Gδ we derive the estimate∫ π

0
(B(ε, κ, σ)V ) V dξ ≤ −(δ2/2 − ã2)‖V ‖2

L2(Tπ) ≤ −(δ2/2 − 2ε)‖V ‖2
L2(Tπ).

This shows that we may choose the widthδ of the good setGδ to be of order
√

ε, e.g.,
δ = 3

√
ε. However, for our purposes it suffices to fix a smallδ independent ofε.

It remains to studyB(ε, κ, σ) in the dangerous parts close to the circleσ2
1 + σ2

2 = 1.
To this end we distinguish the two regions

C1 = { σ ∈ [0, 1] × [0, 2] : dist(σ, S0) ≤ δ, andσ2 ≥
√

δ },

C2 = { σ ∈ [1−2δ, 1] × [0,
√

δ] : dist(σ, S0) ≤ δ }.

The operatorBκ(σ) has only one small eigenvalue forσ ∈ C1, while for σ ∈ C2 there
are two small eigenvalues. It suffices to control the movement of these small eigenvalues
only, since all other eigenvalues are bounded away from the imaginary axis.

RegionC1. For σ ∈ C1 the eigenfunctionφ0(ξ) ≡ 1 is the only eigenfunction for
Bκ(σ) associated to a small eigenvalue, namelyλ0 = −(1 − k2σ2

1 − σ2
2)2 + κ2. The

associated eigenvalue ofB(ε, κ, σ) is constructed by Liapunov–Schmidt reduction of
the eigenvalue problemBV − λV = 0. To this end we defineP1V = 1

π

∫ π

0 V φ0dξ φ0

which is the orthogonal projection inL2(Tπ) onto span{φ0}, and write the eigenvalue
problem as

P1[B(ε, κ, σ) − λI][α0φ0 + V2] = 0,
(I − P1)[B(ε, κ, σ) − λI][α0φ0 + V2] = 0, whereP1V2 = 0.

SinceBκ(σ) is invertible on (I − P1)L2(Tπ), the second equation can be solved for
V2 = V(ε, κ, σ, λ)α0 yielding the expansion

V(ε, κ, σ, λ) = 3̃a2

4

(
1

µ2+ε−λφ2(ξ) + 1
µ−2+ε−λφ−2(ξ)

)
+ O(ã4),



Stability of Rolls in the Swift–Hohenberg Equation 843

whereµm is defined in (4.2) and the error termO(ã4) is uniform in bounded sets for
(σ, λ), e.g.,|σ| ≤ 3 and|λ| ≤ 1. Inserting the result in the first equation we obtain the
reduced spectral problemb0(ε, κ, σ, λ)α0φ0 = 0 with

b0(ε, κ, σ, λ) = µ0 + ε − λ − 3
π

∫ π

0 U2
ε,κ(φ0 + V) φ0dξ

= µ0 + ε − λ − 3a2
1

2 − 9̃a4

16

(
1

µ2+ε−λ + 1
µ−2+ε−λ

)
+ O(ã6).

The small eigenvalueλ is determined by solvingb0(ε, κ, σ, λ) = 0. To discuss the
sign ofλ it is convenient to use polar coordinates

σ = (σ1, σ2) =
√

1 + r ( 1
k sinγ, cosγ),

where the regionC1 corresponds toγ ∈ [0, π/2 −
√

δ] and|r| ≤ δ. We obtain

λ = λ0(ε, κ, r, γ) = ε − 3
2
a2

1 − r2 +
9

128
ã4 1 + sin2 γ

cos4 γ
+ O(ã4(ã + |r|)). (4.3)

For ε > 2κ2 + O(|κ|3) we always haveλ ≤ 0, while for smallerε there is a band of
unstableσ of width O(

√
ε) around the circle|σ| = 1.

RegionC2. We are now in the situation ofσ ≈ σ∗ = (1, 0), whereBκ(σ) has the critical
eigenfunctionsφ0 ≡ 1 andφ−2(ξ) = e−i2ξ. In fact, this is the realm of classical sideband
instability as discussed in [Mie95]. There, the analysis was done in a space of functions
which are 2π–periodic inξ such that our regionC2 corresponds toσ ≈ 0 there (asσ1
is taken modulo 1). There the instability result of Theorem 3.2 was already derived, yet
for our stability proof we have to repeat and improve upon these calculations.

To be compatible with the calculations in [Mie95] we use the basis functionsU1(ξ) =
e−iξ cosξ andU2(ξ) = e−iξ sinξ and set̂σ = σ − σ∗ = (σ1 − 1, σ2). Letting P2V =
2
π

∫ π

0 V U1dξU1+ 2
π

∫ π

0 V U2dξU2 andV = β1U1+β2U2+V1 with P2V1 = 0, the equation
(I −P2)[B(. . .)−λI]V = 0 can be solved uniquely forV1 = V(ε, κ, σ, λ)β = O(ã2|β|),
for all sufficiently small (ε, κ, σ̂, λ). Again the estimate follows easily from the fact that
the coupling only occurs through the term−3U2

ε,κV .
Inserting this expansion intoP2[B(. . .) − λI]V = 0 leads to the reduced eigenvalue

problem. It is given by a 2× 2–matrix, which depends nonlinearly onλ:

m(ε, κ, σ, λ)β = P[B(ε, κ, σ) − λI][β1U1 + β2U2 + V(ε, κ, σ, λ)β],

whereP : V 7→ 2
π (

∫ π

0 V U1dξ,
∫ π

0 V U2dξ) ∈ C2. This gives

m(ε, κ, σ, λ) =

(
ρ + c(ε, κ) − λ iν

−iν ρ − λ

)
+ ã4

(
O(|σ̂|2+|λ|) O(|σ̂1|)

O(|σ̂1|) O(|σ̂|2+|λ|)

)
, (4.4)

with ρ = (µ1 +µ−1)/2 andν = (µ1 −µ−1)/2 from (3.10) andc(ε, κ) = −3ã2/2+O(ã4).
Of course,m is Hermitian and each entry is even inσ2. Two additional facts in

this expansion are nontrivial. Firstly, the symmetriesR1 andR2 in (4.1) show that the
diagonal elements are even in̂σ1 = σ1−1 while m12 = −m21 is odd inσ̂1. Secondly,

m(ε, κ, σ∗, 0) takes the form
(

c(ε,κ)
0

0
0

)
, where the lower diagonal element vanishes as

it corresponds to the eigenvalueλ = 0 associated to the translational mode∂ξUε,κ =
−ã sinξ + O(ã3) (compare to Lemma 5.3 in [Mi97b]).
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In fact, we need a more refined expansion which follows from determining the term
of orderã2 in V:

m11(ε, κ, σ, λ) = ρ + ε − λ − 9
4a2

1 − 3
2a1a3 + η+ + O(ã6),

m12(ε, κ, σ, λ) = −m21(ε, κ, σ, λ) = i
[
ν + η− + O(ã6)

]
,

m22(ε, κ, σ, λ) = ρ + ε − λ − 3
4a2

1 + 3
2a1a3 + η+ + O(ã6),

(4.5)

whereη± = 9
32ã

4
[
(µ2 + ε − λ)−1 ± (µ−4 + ε − λ)−1

]
.

In order to study which wave vectors are stable we have to findλ from

3(ε, κ, σ, λ) = detm(ε, κ, σ, λ) = 0.

Applying Weierstraß’ preparation theorem (see [ChH82], Ch. 2.6) we have

3(ε, κ, σ, λ) = 30(ε, κ, σ, λ)
[
λ2 + n1(ε, κ, σ)λ + n0(ε, κ, σ)

]
,

where30, n1, andn0 are analytical functions with30(0, 0, 0, 0) = 1 and

n1 = −2ρ − c + O(ε2|σ̂|2) andn0 = ρ(ρ + c) − ν2 + O
(
ε2|σ̂|2(

√
ε + |σ̂|2)]

)
.

On the one hand, we know thatm is Hermitian implying that both eigenvalues are
real. Hence, without calculation we always haven2

1 ≥ 4n0. On the other hand, these
two eigenvalues have negative real part if and only ifn0 ≥ 0 andn1 ≥ 0. Since
n1(0, 0, σ∗) > 0 and sincen1 can only change sign whenn0 < 0, we conclude that it
suffices to consider the conditionn0 ≥ 0 when we are only interested in the question
whetherUε,κ is stable or not. However, for the subsequent calculation ofSε,κ we need
to consider both conditionsn1 ≥ 0 andn0 ≥ 0. Sincen0 is a positive multiple of
the determinant ofm(ε, κ, σ, 0) the stability condition is detm(ε, κ, σ, 0) ≥ 0 for all
σ ∈ C1 ∪ C2.

From (4.5) we obtain the following expansion forσ ≈ σ∗.

Lemma 4.1. Let s = (σ1−1)2, t = σ2
2, andM (ε, κ, σ) = detm(ε, κ, σ, 0). Then, we

have

M = µ0,1t + µ1,0s + µ0,2t
2 + µ1,1st + µ0,3t

3 + µ2,0s
2 + µ1,2st

2 + µ0,4t
4 + O((s+t2)5/2),

where
µ0,1(ε, κ) = c(ε, κ)

[
− 2κ − (ε − κ2)2/256 +O(ε5/2)

]
,

µ1,0(ε, κ) = 8(ε − 3κ2) + 4κ(5ε − 13κ2) + O(ε2),
µ0,2(ε, κ) = 2(ε + κ2) + O(ε2),
µ1,1(ε, κ) = −16κ + 4(ε − 7κ2) + O(ε3/2),
µ0,3(ε, κ) = 4κ + (ε − κ2)2/128 +O(ε5/2),
µ2,0(ε, κ) = 16 + 48κ + 2(ε + 25κ2) + O(ε3/2),
µ1,2(ε, κ) = −8 − 4κ + 4κ2 + O(ε3/2),
µ0,4(ε, κ) = 1 +O(ε3/2).

(4.6)

This expansion is suitable to discuss the set of unstable wave vectors in region
C2 ⊂ [1 − 2δ, 1] × [0,

√
δ]. While instability is easily obtained from the signs ofµ1,0

andµ0,1, it will be a rather delicate task to prove the stability result.

Proof of Theorem 3.2.The expansion detm = µ0,1t + µ1,0s + O(s2 + t2) immediately
leads to instability if eitherµ0,1 or µ1,0 in (4.6) is negative. Thus, definingKZ andEE
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viaµ1,0(EE(κ), k) = 0 andµ0,1(ε, KZ(ε)) = 0, the instability result follows by choosing
suitably smallσ1 or σ2, respectively.

To establish stability we need to concludeSε,κ = ∅ for those (ε, κ) satisfying (3.4).
In that region we haveε ≤ 2ã2 ≤ 3ε such that the error terms in (4.6) can be expressed
in terms of powers of̃a. At first we note that the intersection ofSε,κ with C1 is empty
sinceε ≥ EE(κ) = 3κ2 + O(|κ|3) clearly impliesε ≥ E1(κ) = 2κ2 + O(|κ|3). Thus, it
remains to consider regionC2. As argued before of Lemma 4.1 it suffices to show that
detm(ε, κ, σ, 0) ≥ 0 in a neighborhood ofσ∗ which is independent of (ε, κ).

Before employing Lemma 4.1 we recall the expansion (4.4) which gives

M (ε, κ, σ) = ρ(ρ + c) − ν2 + O
(
ã4[ãs + t2 + s2]

)
. (4.7)

We defineM̂ (ε, κ, σ) =
∑

2j+l≤4 µj,l(ε, κ)sjtl and find

R(ε, κ, σ)
def
= M (ε, κ, σ) − M̂ (ε, κ, σ) = O(ã4(s + t2)5/2).

Our aim is to use positivity of̂M in order to show 2|R| ≤ M̂ in a neighborhood ofσ∗.
This estimate is subtle, sincêM is degenerate forε = 0, namelyM̂ (0, 0, σ) = (4s− t2)2.

For estimatinĝM from below we use

µ1,2 ≥ −2
√

µ2,0µ0,4 and − µ1,1
√

µ0,4 ≤ µ0,3
√

µ2,0.

Both inequalities hold (after cancellation of the leading order terms) for sufficiently
small (ε, κ) satisfying the stability criterion (3.4). Whence,

M̂ (ε, κ, σ) ≥ µ0,1t + µ1,0s + µ∗t2 +
(√

µ0,4t
2 − √

µ2,0s − µ1,1

2
√

µ2,0
t
)2

,

where
µ∗(ε, κ) = µ0,2 − µ2

1,1/(4µ2,0) = 2(ε − κ2) + O(ã3) ≥ ã2

for sufficiently small̃a.
For all smalls, t ≥ 0 we obtainM̂ ≥ µ0,1t+µ1,0s+ ã2t2. Additionally, fors ≥ t we

have
√

µ2,0 s−√
µ0,4 t2− µ1,1

2
√

µ2,0
t ≥ s, implyingM̂ ≥ µ0,1t+µ1,0s+ ã2t2 +s2. Together

with the previous estimate, this giveŝM (ε, κ, σ) ≥ µ0,1t + µ1,0s + ã2

2 (s2 +t2). Since
R = O(ã4|σ̂|5) we conclude that for all small (ε, κ) which satisfy the stability criterion
we have

M (ε, κ, σ) ≥ µ0,1σ
2
1 + µ1,0σ

2
2 +

ã2

4
|σ̂|4 for all σ ∈ C2. (4.8)

This proves Theorem 3.2. �
In the unstable case it is desirable to describe the setSε,κ of unstable wave vectors

σ. The analyses forC1 andC2 provides us with a lot of information. To formulate the
results correctly it is useful to consider the full set of wave vectors, namely (σ1, σ2) ∈
T ∗ = T2 × R, whereT2 = R/2Z. Recall that the identification ofσ1 with σ1 + m, where
m ∈ 2Z, is due to the fact thatB(ε, κ, (σ1 + m, σ2)) is unitary equivalent toB(ε, κ, σ).
The critical setS0 = { σ ∈ [0, 2) × R : |σ| = 1 or |(σ1 − 2, σ2)| = 1} considered as a
set in the cylinderT ∗ consists of onlyonecircle which is wrapped around the cylinder
once, touching itself inσ∗.

We have the following results.
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Fig. 4.3.The regionsR1 to R6 for the real SHE

Theorem 4.2. There exists anε0 > 0 such that for all(ε, κ) with 0 ≤ ε ≤ ε0 and
κ2 ≤ ε the setSε,κ ⊂ T ∗ of unstable wave vectors for the roll solutionu = Uε,κ has
the following properties.

(a) σ∗ = (1, 0) 6∈ Sε,κ, andσ ∈ Sε,κ implies(σ1, −σ2), (2 − σ1, σ2) ∈ Sε,κ.

(b) dist(Sε,κ, S0) = O(
√

ε) for ε → 0.

(c) There is a curveε = E1(κ) with the expansion

E1(κ) = 2κ2 + 11
96κ

4 + O(|κ|5),

such that forε = E1(κ) the boundary ofSε,κ has a pair of double points on the line
σ1 = 0 nearσ2 = ±1.

(d) For κ̂ ∈ (−1/
√

2, 1/
√

2) there exists a constantC such that the estimate

S
ε,̂κ

√
ε

⊂ [−C
√

ε, C
√

ε] × [−Cε1/4, Cε1/4]

holds.

Part (c) is obtained by studying the behavior ofλ in regionC1, where formula (4.3)
holds. The curveE1 is obtained by solvingλ0(ε, κ, r, 0) = 0 and∂rλ0(ε, κ, r, 0) = 0,
that is, we search for a double zero inσ2 =

√
1 + r on the symmetry lineσ1 = 0 (γ = 0).

The curvesε = EE(κ), ε = E1(κ), andκ = KZ(ε) divide the regionε ≥ κ2 into six
regionsR1 to R6, see Fig. 4.1. In each of these regions the shape of the set of unstable
wave vectorsSε,κ can be derived from the above analysis. The curves separatingRj and
Rj+1 stand for a topological change in the structure ofSε,k.

In R4 the rollsUε,κ are stable, i.e.,Sε,κ = ∅. In R3 andR5 the setSε,κ consists of
two simply connected components such that the boundary is a figure 8 with the double
point inσ∗. In R2 the setSε,κ is homeomorphic to a pointed disc, namely a disc–shaped
region where the interior pointσ∗ is taken away. Schematic drawings of the boundary
of Sε,k are given in Fig. 4.2 for each of the regionsRj .

We now mention a few differences between the stability analyses for the rollsUε,κ

in the real SHE (3.1) and the rollsAε,κ for the complex SHE (3.5). For this purpose we
define the factorization mapping

J :

{
R2 → T ∗ = T2 × R,

(σ1, σ2) 7→ (σ1 mod 2, σ2).

Thus, we can compareSε,κ with SA
ε,κ = JSC

ε,κ, which means that we have to interpret
the results from Sect. 3 takingσ1 modulo 2.
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Fig. 4.4.The setSε,κ of unstable wave vectors forUε,κ with (ε, κ) ∈ Rj .

As a first result we find, due to (4.7) and̃a = 0, thatSε,±
√

ε = SA
ε,±

√
ε

which is
explicitly given in (3.13). However, the number of unstable modes in the complex case
is twice the number in the real case, e.g., forσ ≈ σ∗ the complex case has the four
unstable modes

(1
0

)
,

(0
1

)
,

(1
i

)
e2iξ, and

( 1
−i

)
e−2iξ, whereas the real case has only two

unstable modes, namelyφ0 andφ2.
We easily find the counterpart of the curveE1. It means that the topological structure

of SA
ε,κ changes since the boundary meets itself at points near (0, ±1). For the complex

SHE this occurs when the boundary ofSC
ε,κ touchesσ1 = 2. Usings̃ = (1 +κ)(σ1 − 1)2

we simply have to insert̃s = 1 +κ into (3.12) (ii) (with< 0 replaced by = 0) and solve
for a double zero inµ, givingEA

1 (κ) = 2κ2 + κ4

16 − κ5

8 +O(|κ|6). The difference between
the real and the complex SHE is that the boundary ofSA

EA
1 (κ),κ touches itself on the line

σ1 = 0 whereas the boundary ofSE1(κ),κ has a double point. Moreover, for smallerε
the boundary ofSε,κ is smooth close toσ = (0, ±1), whereas in the complex case the
boundary ofSA

ε,κ has corners on the lineσ1 = 0 which follows from the expansions
(3.14) whereβ+,− are nonzero.

The shape ofSε,κ inside the regionC2 is in fact similar toSA
ε,κ. This follows from

(4.7) and the scaling (ε, κ, σ) = (a4, a2κ̂, (a2σ̂1, aσ̂2)) giving

M (a4, a2κ̂, (a2σ̂1, aσ̂2)) = a83̂(κ̂, σ̂) + O(a10).

Because of (4.7) the limit function̂3 is the same for the real and the complex SHE and
thus determines for eacĥκ ∈ [−1, 1] the shape ofS

a4,a2κ̂
andSC

a4,a2κ̂
to lowest order.

Remark.Instead of working in the spaceL2(Tπ) we could also have usedL2(T2π) by
ignoring the difference in the minimal periods ofUε,κ andU2

ε,κ. We would encounter a

completely similar analysis with wave vectorsσ lying in T̃ ∗ = T1 ×R. In fact, the above
results can easily be transferred to that case by using the mappingJ2 : T ∗ → T̃ ∗; σ 7→
(σ1 mod 1, σ2). The critical set̃S0 = J2S0 is still one circle, but now it is wrapped around
the cylinder twice such that additional intersections atσ = (1/2, ±

√
3/2) appear. Thus,

the setsS̃ε,κ = J2Sε,κ will undergo an additional topological change along a curveε =
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E2(κ) which lies slightly above the curveε = E1(κ). When the boundary ofSε,κ touches
the lines|σ1−1| = 1/2 this corresponds to a touching of the boundary ofS̃ε,κ with itself.
Employing (4.3) withγ = π/6 yields the expansionE2(κ) = 2κ2 + 77κ4/288 +O(|κ|5).

A. Elliptic Operators

Let A be a differential operator of order 2m given in the form

(A(∂x)u)(x, z) =
∑

|p|+|q|≤2m

ap,q(x, z)(Dp
xDq

zu)(x, z) for (x, z) ∈ Q (A.1)

together withm–dimensional boundary operatorB = (B1, . . . , Bm) with

(Blu)(x, z) =
∑

|q|≤2m−1

bl,q(x, z)(Dq
zu)(x, z), for l = 1, . . . , m, (A.2)

where (x, z) ∈ ∂Q = Rd × ∂Σ. We assume that∂Σ is of classC2m and thatA is
uniformly strongly elliptic onQ and (A, B) satisfies the complementing condition for
each (x, z) ∈ ∂Q, see [ReR92], Ch. 8.4, for the definitions. For simplicity, we do not
allow for tangential derivatives in the boundary operatorsBl. Additionally, we assume
that all coefficient matricesap,q(x, z), bp,q(x, z) ∈ Rn×n are bounded together with
their first 2m derivatives. (Our main interest lies in the case of periodic coefficients,
where uniformity and boundedness are trivial.)

We define theL2–based operator̂A : D(Â) ⊂ L2(Q) → L2(Q) via

D(Â)
def
= { u ∈ H2m(Q) : Bu = 0 on∂Q }, Âu = A(∂x)u, (A.3)

and similarly theL2
lu–based operator̃A : D(Ã) ⊂ L2

lu(Q) → L2
lu(Q) via

D(Ã)
def
= { u ∈ H2m

lu (Q) : Bu = 0 on∂Q }, Ãu = A(∂x)u. (A.4)

We simply writeA : D(A) ⊂ X → X in order to denote both cases simultaneously.
Moreover,Xk denotesHk(Q) orHk

lu(Q), respectively. The associated norms are written
as‖u‖k and‖u‖k,lu, where the subscriptk = 0 is dropped. The general theory of elliptic
operators (see [ReR92], Thm. 8.31) provides the a–priori regularity estimate

‖u‖X2m ≤ C(‖Au‖X + ‖u‖X ) for all u ∈ D(A), (A.5)

whereC is independent ofu.
In order to relate the casesu ∈ L2(Q) andu ∈ L2

lu(Q) with each other, we use the
weight functionw(x) = cosh(|x|) onRd and the scalarα to define the operators

Aα,yu = w(· − y)−αA(∂x)[w(· − y)αu] = A(∂x + α tanh(|x−y|)
|x−y| (x − y))u .

Mostly we omit the indexy. Applying this transformation to the boundary operators
has no effect; hence for allα ∈ R we obtain elliptic opertorsAα : D(A) ⊂ X → X.
Moreover, there is a constantC such that for allα ∈ [−1, 1] andy ∈ Rd we have the
estimate

‖(Aα,y − A)u‖X ≤ C1|α| ‖u‖X2m−1 for all u ∈ D(A). (A.6)
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Thus, if A is invertible fromX into D(A) ⊂ X2m, then for sufficiently small|α| the
operatorAα is also invertible and satisfiesA−1

α f = w−αA−1[wαf ]. This follows by
combining (A.5) and (A.6).

The weightw allows us to go fromL2
lu(Q) to L2(Q) or vice versa viau 7→ w−αu

by using the following simple characterizations.

Lemma A.1. Letα > 0 andw as above.

(a) Letw−αu ∈ L2(Q). Thenu ∈ L2
lu(�) if and only if there exists aC > 0 such that

‖w(· − y)−αu‖ ≤ C for all y ∈ Rd.

(b) There is a constantCα such that for allu ∈ L2
lu(Q)

‖u‖lu ≤ Cα sup{ ‖w(· − y)−αu‖ : y ∈ Rd } ≤ C2
α‖u‖lu.

(c) A functionu ∈ L2
lu(Q) lies in L2(Q) if and only if

∑
n∈Zd ‖χnu‖2

lu < ∞, where
the partition of unityχn, n ∈ Zd, is given byχn(x) = 1 for x ∈ [n, n + η) and 0
otherwise (hereη = (1, . . . , 1) ∈ Zd).

For a proof we refer to Lemma C.1 in [Mi97a]. We now obtain the first main result.

Theorem A.2. Let the elliptic operatorA(∂x) from (A.1) satisfy the assumptions from
above and let̂A andÃ be the operators defined in(A.3) and(A.4). Then,Â is invertible
if and only ifÃ is invertible and moreover, spec(Ã) = spec(Â).

Proof. We assume that̂A is invertible. Thus we know that there exists anα > 0 such that
Aα,y is invertible fromL2(Q) intoD(Â) for anyy ∈ Rd with a boundC2 not depending
ony. Forf ∈ L2

lu(Q) we knoww−αf ∈ L2(Q) such thatu = Ã−1f = wαA−1
α [w−αf ]

is well defined. Using Lemma A.1b) we obtain‖w−α(·−y)u‖2m ≤ C2‖w−α(·−y)f‖ ≤
C2Cα‖f‖lu. Thus, we have proved finiteness of the norm and the operatorÃ−1 maps
L2

lu(Q) into H̃2m
lu (Q).

We still have to establish the continuity of the translatesy 7→ Tyu. To this end we
use that the coefficients ofA(∂x) are uniformly continuous and define the operatorsAy

which is obtained by using the translated coefficientsTyapq. Then,‖(Ay − A)u‖lu ≤
γ(|y|)‖u‖2m,lu, whereγ(t) → 0 fort → 0. Obviously,Tyu satisfiesÃyTyu = Tyf if and
only Ãu = f . Hence, applying̃A−1 to the equalityÃ(u−Tyu)+(Ã−Ãy)Tyu = f −Tyf ,
we obtain the desired estimate‖u − Tyu‖2m,lu ≤ C[γ(|y|)‖u‖2m,lu + ‖f − Tyf‖lu].

For the opposite direction we now assume thatÃ : D(Ã) → L2
lu(Q) is invertible.

There is aα > 0 such thatÃα,y is invertible with boundC3 for anyy ∈ Rd. We use the
partitionχn as in Lemma A.1(c) and define, for anyf ∈ L2(Q), the functionsfn = χnf

andun = Ã−1fn = w−α(·−n)A−1
−α,n[w(·−n)αfn]. Thus, we obtain for eachn, m ∈ Zd

the estimate

‖χmun‖2 =
∫

[m,m+η) w(· − n)−2α|A−1
−α,ngn|2dx

≤ sup{ w(x − n)−α : x ∈ [m, m + η) }
∫

Rd w(· − n)−α|A−1
−α,ngn|2dx

≤ Ce−α|n−m|‖A−1
−α,ngn‖2

lu,

wheregn(x) = w(x − n)αfn(x) satisfies‖gn‖lu ≤ C‖fn‖. Thus, we can define the
functionu via χmu =

∑
n∈Zd χmun, where the sum converges inL2. To show that this

u lies in fact inL2(Q) we employ Young’s inequality for convolutions applied to the
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sequences (‖χmu‖)m and (‖fn‖)n which satisfy the convolutional estimate‖χmu‖ ≤∑
n∈Zd Ce−α/2|n−m|‖fn‖. Thus, we obtain

‖u‖ =
( ∑

m

‖χmu‖2
)1/2

≤
∑
p∈Zd

Ce−α|p|/2
( ∑

n

‖fn‖2
)1/2

= C2‖f‖,

such thatu = Â−1f ∈ L2(Q), and the invertibility ofÂ is established.
Applying the result on the invertibility tõA − λI andÂ − λI we conclude that the

resolvent sets of̃A andÂ are equal. But this is the desired result on the spectra.�

The above result holds for general elliptic operators without any periodicity assump-
tion. We now return to operators where the Bloch decomposition is available. Every
function u ∈ L2(Q) can be decomposed into (U (σ, ·))σ∈T ∗ ∈ L2(T ∗, L2(Q/L)) via
the direct integralu = D(U ) =

∫
σ∈T ∗ eiσ·xU (σ, ·)dσ. Recall the notations from Sect. 2:

Q = Rd×Σ,T = Rd/L, andQ/L = T ×Σ. The integralD(U ) has to be understood in the
L2(Q)–sense, see [ReS78]. For example, for simple functionsU (σ, ·) =

∑N
j=1 χAj

(σ)Uj

with Aj ⊂ T ∗ andUj ∈ L2(Q/L) we have

u(x) = D(U )(x) =
N∑
j=1

vj(x)Uj(x) with vj(x) =
∫

σ∈Aj

eiσ·xdσ,

wherevj ∈ L2(Rd) ∩ L∞(Rd) andUj ∈ L2(Q/L) ⊂ L2
lu(Q) such thatvjUj ∈ L2(Q)

is well–defined.
The inverse ofD can be constructed by using the inverse of the classical Fourier

transform in thex–variable,

(Fu)(k, z)
def
=

1
(2π)d/2

∫
x∈Rd

e−ik·xu(x, z) dx.

Settingk = σ + ` with σ ∈ T ∗ and` ∈ L we immediately findu = D(U ) with

U (σ, x, z) =
1

(2π)d/2

∑
`∈L

ei`·x(Fu)(σ + `, z).

Using Parseval’s identity forU (σ, ·) we obtain the norm relation

‖u‖2 = ‖Fu‖2 =
∫

σ∈T ∗

∑
`∈L

∫
z∈Σ

|(Fu)(σ + `, z)|2dz dσ

=
(2π)d

vol(T )

∫
σ∈T ∗

‖U (σ, ·)‖2
L2(Q/L)dσ.

This shows thatD defines an isomorphism betweenL2(Q) andL2(T ∗, L2(Q/L)).
Additionally, we have the following characterization. A direct integralu = D(U )

lies inHk(Q) if and only if U (σ, ·) ∈ Hk(Q/L) for a.e.σ ∈ T ∗ and∫
σ∈T ∗

{
(1 + |σ|2k)‖U (σ, ·)‖2

L2(Q/L) + ‖U (σ, ·)‖2
Hk(Q/L)

}
dσ < ∞. (A.7)
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Assume now that an elliptic operatorA = A(∂x) and a boundary operatorB with the
properties from above are given such thatA has periodic coefficients with periodicity
latticeL. ApplyingA(∂x) to a Bloch wave leads to the definition of the Bloch operators
B(σ) : D(B) ⊂ L2(Q/L) → L2(Q/L) with

B(σ)U = e−iσ·xA(∂x)[eiσ·xU ] = A(iσ + ∂x)U, (A.8)

whereD(B) = { u ∈ H2m(Q/L) : Bu = 0} does not depend onσ since the boundary
operatorB does not contain tangential derivatives.

Inserting Bloch wavesu = eiσ·xU into the regularity estimate (A.5) we obtain the
a–priori estimate

(1+|σ|2m)‖U‖L2(Q/L) +‖U‖H2m(Q/L) ≤ C(‖B(µ, σ)U‖L2(Q/L) +‖U‖L2(Q/L)) (A.9)

for anyσ ∈ T ∗ andU ∈ D(B), whereC is independent ofσ andU .

Lemma A.3. Let Â : D(Â) ⊂ L2(Q) → L2(Q) be given as above withL–periodic
coefficients and associated Bloch operatorsB(σ). Then,Â has a bounded inversêA−1 :
L2(Q) → D(Â) if and only if all B(σ), σ ∈ T ∗, have a bounded inverseB(σ)−1 :
L2(Q/L) → D(B) with

b = sup{ ‖B(σ)−1‖L2(Q/L)→L2(Q/L) : σ ∈ T ∗ } < ∞.

If b < ∞ then‖A−1‖L2(Q)→L2(Q) = b andA−1 = DB(·)−1D−1.

Proof. Assume that̂A is invertible. By Theorem A.2 we know that alsõA is invertible on
L2

lu(Q). Since Bloch waves lie inL2
lu(Q) the inverse of the Bloch operators is given by

B(σ)−1F = e−iσ·xÃ−1[eiσ·xF ] and there is a constantC such that for allF ∈ L2(Q/L),

‖B(σ)−1F‖L2(Q/L) ≤ C‖B(σ)−1F‖L2
lu

(Q) = C‖e−iσ·xÃ−1[eiσ·xF ]‖L2
lu

(Q)

≤ C2‖eiσ·xF‖L2
lu

(Q) ≤ C3‖F‖L2(Q/L).

This proves the ‘only if’ part.
For the opposite assertion insertU = B(σ)−1F into (A.9) giving

(1 + |σ|2m)‖U‖L2(Q/L) + ‖U‖H2m(Q/L) ≤ C(1 + b)‖F‖L2(Q/L) (A.10)

withC(1+b) independent ofF andσ. Thus, we may defineK : f 7→ D[B(·)−1(D−1f )(·)]
as a bounded operator fromL2(Q) intoD(Â) ⊂ H2m(Q). The boundedness inH2m(Q)
is a consequence of (A.10) and the criterion (A.7). The fact thatK maps into the closed
subspaceD(Â) of H2m(Q) follows sinceB(σ)−1 maps intoD(B). Obviously,K is the
desired inverse of̂A and the ‘if’ part is proved.

The norm identity follows easily asB(σ)−1 as the operator fromL2(Q/L) into itself
depends continuously onσ. �

The main result of this appendix reads as follows.

Theorem A.4. LetA(∂x) be an elliptic operator onQ with L–periodic coefficients and
B a boundary operator on∂Q satisfying the conditions from above. Then, we have

spec(Ã) = spec(Â) = closure
( ⋃

σ∈T ∗
spec(B(σ))

)
, (A.11)

whereB(σ) are the associated Bloch operators, cf.(A.8).
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Proof. The first identity was already proved in Theorem A.2.
Denote byC the set on the right–hand side of (A.11) and takeλ0 6∈ spec(̂A). Then,

by Lemma A.3 we know thatB(σ) − λ0I, σ ∈ T ∗ is invertible with the inverse having
a uniform boundb. Hence, for eachσ ∈ T ∗ the set{ λ ∈ C : |λ − λ0| < 1/b } is in the
resolvent set ofB(σ) which impliesλ0 6∈ C. This provesC ⊂ spec(̂A).

Now takeλ1 6∈ C. Then, the functionq : σ 7→ ‖(B(σ) − λ1I)−1‖L2(Q/L)→L2(Q/L)
is well–defined and mapsT ∗ into (0, ∞). It is continuous, sinceB(σ) as the bounded
operator fromD(B) into L2(Q/L) is continuous inσ. Moreover,q decays like (1 +
|σ|2)−m for largeσ because of (A.9). Thus,b = sup{ q(σ) : σ ∈ T ∗ } is finite and
Lemma A.3 provides a bounded inverse ofÂ − λ1I. This shows spec(̂A) ⊂ C and the
theorem is proved. �
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