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Abstract: We study the dependence of the dimensid(y, A) of the kernel of the
Atyiah-Singer Dirac operatoP, 4 on a spifi-manifold M on the metricg and the
connectionA. The main result is that in the case of spin-structures the valb®(gf for

the generic metric is given by the absolute value of the index providettdin{ 3, 4}. In
dimension 2 the mod-2 index theorems have to be taken into a account and we obtain an
extension of a classical resultin the theory of Riemann surfaces. In tHfecsgsa we also
discuss upper bounds @9(g, A) for generic metrics, and we obtain a complete result

in dimension 2. The much simpler dependence on the connedtaord applications to
Seiberg-Witten theory are also discussed.
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1. Introduction

Given a spin-(spift)manifold A/ much effort has been invested in the study of the Dirac
operatorD, on spinors for particular metrics. Alternatively, metrics have been used as
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an auxiliary tool to derive topological information about the underlying spin-manifold.
Via the index formula, knowledge of dimKBy, may lead to topological obstructions.

Thus if for instance KeP, = {0} on a closed A-manifold M then theA-genus ofM/
vanishes. In particular, this is true if the metgibias positive scalar curvature [L].

Thus the dependence of dimKgy on the metric has been studied from the very
beginning of the subject [L, Hi]. In general, one expects a spin-manifold to have arbi-
trarily many harmonic spinors for a suitable metric. The existence of harmonic spinors
for suitable metrics in dimensions®1 mod 8 is proved in [Hi,Th.4.5]. The same holds
in dimensions 3 mod 4 [&1, Bar2], and in fact the proof of loc.cit. can probably be ex-
tended to show that in dimensions 3 mod 4 there are indeed metrics{¢drarbitrarily
large [BarP].

However, it has been conjectured that for the generic metric (a term to be made
precise) the dimension of the space of harmonic spinors is equal to the absolute value
of the index [BG, K2, Brl]. More precisely,

Problem. Is it true that for a given spfistructure on a closed m-dimensional manifold
M with fixed connectiom4 on the canonical bundle we have

.
h2(g, A) = dimKerD, 4 = { |'”deOXDg,A| ,m even

,m odd

for the generic metrig on M?

Itis the purpose of this article to study this problem. Note that the index of the Dirac
operator does not depend on the choice of metric and connection.

It is known that in dimensions 1 and 2 mod 8 the theorem is not true for spin-
manifolds in the form stated because by the mod 2-Index theak€mpandh*(g) :=
dimKerD; respectively are constant modulo 2 [AtSi] (see Remark 3.3 below). Thus in
these dimensions the problem must be rephrased as follows:

Problem. Is it true that for a given spiastructure on a closed manifold of dimension

1,2 mod 8 with fixed connectionl on the canonical bundl& the functionsh®(g, A)
andh*(g, A) respectively are constant on a generic set of metrics and are either 0 or 1
on this set?

The corresponding problem for variations of compledhierian structures has also
been formulated [Hi,p.24] and has been conclusively answered in [K2] by exhibiting a
counterexample.

Some of the motivation for studying the dependence of the Dirac on the metric comes
from Seiberg—Witten theory. Here, it would be desirable to have a priori knowledge about
dimKerD; , for a suitable metric. However, this is not possible because the connection
A is part of a solution of the Seiberg—Witten equations. We shall discuss this issue below
in Sect. 9.

The point of view adopted in this paper is the following: The Dirac operator will
be viewed as amap_4 : M — B(HY(X), H(X)), i.e. as a map from the space of
metrics to the space of bounded linear operators between suitable Sobolev spaces. The
Dirac operatorD, 4 is a Fredholm operator. Note that the space of Fredholm opera-
tors F = F(HY(X), HO(Y)) is stratified by the sets, . = {f € F,dimKer(f) =
n,dimCoker(f) = k}. Each such set is a locally closed analytic submanifold of the
Banach spacB8(H*(X), H°(X)) of bounded linear maps [Kos]. As the Dirac operator
is a formally self-adjoint operatoR, 4 € F,, ., for n = h%(g, A). We shall show that
unlessy is subject to certain restrictions, theehet derivativeD D, at g has image not



Generic Metrics and Connections on Spin- and Spitanifolds 409

tangential taF,, ,,. Thus we may slightly perturfto get a metrigy’ with D, € F,,/ ./,
whereh%(g’, A) = n’ < n. If however ImDD, is tangential ta%,, ,, (in which case
we call g critical) this argument fails. The property gfbeing critical is a geometric
condition which can be expressed in terms of a simple formula the analysis of which
yields severe restrictions on the geometry of the Riemannian mani¥old)

Asthere are signifiant differences between the situation in dimension 2 in comparison
to the situation in dimensions 3 or 4 we state the results separately for each dimension:

Theorem 1.1. Let M be a closed oriented 2-dimensional manifold. For a fixed %spin
structure and a fixed connectiof on the canonical bundl€y;, with c1(Py,) #7 0 the
generic metric satisfies dimKBy, 4 = |3c1(Py,)|.

If a given spin-structure is twisted by a connecti®on the trivial bundle, thought of
as a 1-formB € iQY(M), such thatB is closed and defines an elemenHh()M, 27iZ),
the generic metric satisfies dimky = 0 or 2 depending only on the spin-structure.
For other B the generic metric has no nontrivial harmonic spinors.

This theorem provides a complete answer to the problem. The theorem can be reformu-
lated in the language of the theory of Riemann surfaces, compare Theorem 7.1 below.

Theorem 1.2. Let M be a closed oriented 3-manifold.

(i) For a fixed spin-structure the generic metric has no nontrivial harmonic spinors.

(i) For a fixed spiri-structure and a fixed connectiat on the canonical bundle the
dimension of the space of harmonic spinors is at most 2 for a generic metric.

Theorem 1.3. Let M be an oriented closed 4-manifold.

(i) For a fixed spin-structure there are no nontrivial harmonic spinors of negative
(positive) chirality for the generic metric if Indéx > 0 (< 0).

(ii) For Spin°-structures, the same conclusion as in (i) holds if Iﬂdg)/g ¢ {0, +1}.

(iii) If IndexDy 4 = £1thenh™ + 1~ < 3for the generic metric.

(iv) If IndexD; 4 = Othenh™ = h~ < 2for the generic metric.

In the spiri-case we may not only vary the metric but also the connection on the canonical
bundle. One obtains the following:

Theorem 1.4. Let (MM, g) be a Riemannian spiamanifold with fixed spifistructure.

(i) IfdimM = 2or4then for the generic connection on the canonical bundle there are
no nontrivial negative (positive) harmonic spinor provided Irﬁggg >0(<0).

(i) IfdimM = 1or 3there are no nontrivial harmonic spinors for the generic connec-
tion.

(iii) The same conclusions hold if both metric and connection are varied.

This result has been proved independently N.Anghel [Ang,Th.1.5], and the four-
dimensional case is contained in [Mor,Lem.6.9.3].

Itis natural to consider not only variations of the 0-eigenvalue but of other eigenval-
ues, too. In fact, we shall formulate the more general results for arbitrary eigenvalues.
The main difference in the discussion of zero- and nonzero eigenvalues stems from the
fact that only the dimension of the 0-eigenspace is a conformal invariant whereas the
dimension of the other eigenspaces varies with the metric in a conformal class. Thus in



410 S. Maier

the discussion of the 0-eigenvalue (in dimension®) the main difficulty will be to fix
a suitable metric in the given conformal class. As the results for nonzero eigenvalues
seem to be of lesser importance we refer the reader to Sect. 8 for a statement of results.

This paper is organized as follows: We shall first discuss the dependence of the Dirac
operator on both the metric on the base-manifold and the connection on the canonical
bundle. Our discussion is essentially an extension of the corresponding discussion in
[BG], but we prefer to alter their definitions in order to better take into account conformal
rescaling.

We shallthen define and discuss the term “generic" before describing formulas which
describe a first-order obstruction to the existence of deformations of the metric and/or
the connection on the canonical bundle which reduce the dimension of the space of
harmonic spinors. In fact, we shall prove the obstruction formula for all eigenvalues, not
only for the O-eigenvalue.

Restricting the discussion to harmonic spinors, the aim is then to show that in di-
mensions 2 to 4 this obstruction is indeed only a first-order obstruction, i.e. that unless
the metric and/or connection is minimal there are deformations which do indeed reduce
the dimension of the space of harmonic spinors.

As an immediate application we first prove the rather simple Theorem 1.4 and we
make preliminary remarks on dimensions 3 and 4. Then we discuss the cage=in
where the main feature is Serre-duality whereas conformal invariance plays no role.
As indicated above, Theorem 1.1 has a translation into the language of the theory of
Riemann surfaces. This translation is carried out in Sect. 7.

In dimensions 3 and 4 conformal invariance is the key-feature and most effort has to
be put into the conformal fixing of the metric. It might be tempting to choose the metric
within the conformal class such that the scalar-curvature is constant, but that approach
seems to lead nowhere. Instead, we will locally rescale the metric such that harmonic
spinors will have constant length.

We shall then consider nonzero eigenvalues. Here, the main feature is the appearance
of Killing spinors which allows us to prove that for the generic metric in dimension 2
or 3 there are no-eigenspinors for a fixed numbar= 0.

Finally, we shall briefly discuss the Seiberg—Witten moduli spaces. The upshot of the
discussion is the observation that for any connectloon the canonical bundle which
comes from a solution to the Seiberg—Witten equations with parameter a et
pair (g, A) in general is non-generic in our sense if |nmg>,<A <0.

In an appendix we prove a result for analytic families of elliptic operators which is
implicitin the literature but for which no general statement and proof seems to be known.
We make use of the theorem in our discussion of generic metrics and connections.

2. The Dependence oD, 4 on the Metric and Connection

This section contains an exposition of the results of Bourguignon and Gauduchon [BG]
with the aim of extending their discussion to variations of the Dirac operator with
respect to variations of connections on twisting bundles. In addition, we shall redefine
the identification of spinor bundles for different metrics so as to take into account the
L?-Hilbert space structure induced on the spinor bundles by the corresponding volume
forms.

2.1. Preliminaries.First, let us briefly review the terminology which we shall employ.
For a thorough exposition see for example [LM]. Givenasdimensional Riemannian
manifold (M, g) we shall byPso (M) denote the bundle of orthonormal frames.
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The manifold)M is spin, if and only if there is a 2-fold connected coveaf, (M)
such that on each fibre the covering map reduces to the standard two-foldpcover
Spin,, — SO,,. Such a covering is a princip8pin,,, bundle and we denote this
bundle byPs;, (M, g).

Similarly, M is spirf, if and only if there is a*-bundle P and a connected double
cover of the fibre produdPso (M) x s P which on each fibre is the two-fold covering
mapg : Spiné, — SO,, x St. Such a cover is a principapin¢,-bundle which we
shall denote byPsy;,(M, g, P). We shall refer taP as the canonical bundle of the
Spirf-structure.

If m is even letY,, be the irreducible module for the Clifford-algebtd,,,, and
if m is odd letX,,, be the irreducible module fdti,, on which the volume element
illtm*1)/2e, . e,, acts as ¥d. Given a spin- or spifistructure, we form the spinor
bundles¥, := Pgpin(M, g) Xyep Xm @andXy := Pgpine(M, g, P) X rep X, respectively
(whererep denotes the representation$yin.,,, andSpin¢, respectively which come
from the standard embeddiitpin,, C Spint, C Cl,,). Note that in even dimensions
X7 splits into thet+--eigenbundles for the (fibrewise) action of the volume element.

In the spin-case the Atiyah—Singer Dirac operalpracting on sections of' is
defined by

D, : C(£) T QM M) © C(5) = CX(TM) @ C2(E) — C(5),

where the last arrow is Clifford-multiplication, and wheve denotes the connection
on X induced by the Levi—Civéi-connection orPso (M, g). In the spiri-case, given a
connection on the canonical bundie we get an induced connectidr?>4 on X and
thus the Atiyah—Singer Dirac operatby,_4 acting on sections ak.

2.2. The IdentificationIn order to compare the Dirac operator on a fixed manifald
with fixed spin-(spifi) structure for different metrics (and connections on the canonical
bundle) we need a canonical way of identifying the spinor bundlgsand X, for
different metricsy andh. We shall briefly review how this is done [BG].

Consider for the moment a real-dimensional vector spadé. Given two metrics
g,h € Sym({* ® V*) there is a unique positive endomorphidihof V' such that
h(.,.) = g(H.,.). Letb := H-Y2 If E is a g-orthonormal frame thei(E) is a h-
orthonormal frame. Thuk defines a smootlO,,,-equivariant map of the manifold of
g-orthonormal frame#’(¢) to the manifold ofh-orthonormal frame#(h).

Let g, := (1 —t)g + th, and letb, : P(g) — P(g:) be the associated map. Let
7 P(g:) — P(g:) be the connected 2-fold covering which (after a choice of basepoint)
we may identify with the connected 2-fold coveripg Spin,, — SO,,. GivenE €
P(g) chooseFE € P(g) such thatw(E) = E. Then the patht(b;) C Ute[o,l] P(g:)

lifts uniquely to a path; in U4 P(g:) such thatgo(E) = E. Clearly, we have
Bi(E.q) = Bi(E).q for g € Spiny,. . .

We thus get &Spin,,-equivariant mags, , = 61 : P(g) — P(h). Of course, in
the preceding discussion we may replace the patif metrics by any smooth path of
metrics connecting and h. The resulting ma; is independent of the path chosen
because the space of metrics is contractible.

Note that because of the invariant description we may extgpénds;, , to bundles
to obtain SO,,- resp.Spin,,-equivariant smooth bundle maps, : Pso(M,g) —
Pso(M,h) and By, 4 : Pspin(M, g) — Pspin(M, ) (providedM is spin), such that
0.4 COVersh, . Of course, we havg), , = 3.
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Similarly, if M is spirf, fix a spirf-structure with canonical bundie. The SO,,, x
S-equivariant bundle map, , x Id lifts to a Sping,-equivariant bundle mag, , :
Pspine(M, g, P) — Pspinc(M, h, P).

The mapg), , extends to an isometrs, , : ¥, — X of Hermitian bundles. For
any pair g, A) and (2, B) of metrics and connections dn denote byv/9-4 and VB
respectively the connections induced b resp. X, by the Levi-Civifi-connections
onTM andAresp.BonP. Thenﬁ,j’; o V"B o 3, . is a connection of,, and in fact

it is the connection induced by the pabg@ oVMBoby,, B).
Note thatg is b;; o V"B o by, ,-parallel but tha‘b;i7 o V"B o by, , is usually not
torsion-free. Also note that we have the following identity:

ﬁh,g(X'S) = bh,g(X)-ﬁh,g(S) .

It may now be tempting to usé), , to pull back the Dirac operator on sectionsXf

to a differential operator on sections bf, [BG]. However, even though;, , induces

an isometry of Hermitian bundles it does not induce an isometry of Hilbert spaces
L*(%,,dvol,) and L?(%}, dvol,), where dvo} and dvo}, denote the volume forms.
Instead, let a positive functiofy, , be defined by dvgl = f,fv ,dvol; and set

Ju

This Bh,g induces an isometry of Hilbert spacE(X,, dvol,) andL?(X},, dvol,). The
pull-back

~ 1
ﬁh,g = ﬁh,g .
sg

| 5
Dh,B = B, 5 © DB o Phyg

then has the same properties (Ssymmetry, self-adjoint closure e®;) gsWe have

5h,3 = fh,gﬂ};; oDp,po f};;/@h’g
= Byt 0 i © Bhg — fi bgn(grad, frg),

whereby, 4(grad, f1, 4) operates via Clifford multiplication. For any smooth functifn
we havey (b, r(grad, f),.) = g(bn,¢(grad, f), .). We thus obtain

Dhp = Bt 0 Dhp o Brg— [robng@rad, fug).

2.3. Computing the derivative of the Dirac Operatdie shall have to compute the
derivative ofD;, p with respect tah and B. First, note that the second summand does
not depend orB. We shall compute this term first:

Pick k € C*~Sym{I™M ® T*M) and letg, := g + tk for small t. Then
bg,.g = (Id + tK)*% whereK € C*°Sym, (I'M) is defined byg(X.,.) = k(.,.). Thus
4| _obg..g = —3K. Now dvol,, = /det(l +iK)dvol,. Hencef,, , = (det(l +¢K))*/*
and &| _ fy,. = §Trsk. Note thatf, , = 1 and thus

d

1 1
—b ra = —grad (Tr k).
G (st s, ) = Jarad (e

To deal with the first summand we shall write it in terms of a local frame: If
{e1,...,en} is a localg-orthonormal frame on some open contractible $etCc M
one may compute
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m m

-1 _ ~ g, A 1 _&h,B =g A
BrgoPrpofug =) eViZ )+ e (ﬂmg © Vi oten © Png = Vgh,g(eo) !

i=1 i=1

see [BG]. We may think of’; overU as coming from a spin-structure tensor product
Pspin(U, g). Given a Hermitian connectiod on U x C write A asA = d + ¢4,

b4 € iQYU). Let V9 be the connection ORspin (U, g) X, Xy, induced by the Levi—
Civita-connection. TheR94 = V9 + 14, overU. Itis then immediate that

d
Dg,A+ta =

— }a, a € iQYM),
dt | 4=

2

wherea acts via Clifford multiplication.
Finally, we are left with computing:|,_,5;.%, 0 Dy, 4 © By, 4 for g, := g +tk. This
has been done in [BG], where the folIowmg formula is obtained:

d 1 .
i, © Pova © By = Z eV + 3(A(Trgk) — divyk)
Note that in comparison to [BG] we prefer to use the opposite sign convention for the
divergence operator.

We obtain the following formula which is animmediate consequence of the preceding
discussion:

Proposition 2.4. The derivative oﬁg,A at (g, A) in the direction(k, a), k € C>*°Sym
(T*M @ T*M) anda € iQY(M), is given by

1. 1
(DD)g.4)(k, a) = ~3 Z eV = Zdivek + Sa,

where in the last two terms the 1-forms act via Clifford-multiplication.

Remark 2.5.More generally, ifE is a complex vector bundle with connecti®f we
may compute the [echet derivative oD, 4 v= on the twisted spinor bundlE, ® E.
The same computation as above then yields:

— 1 1
— AVE ;
(D'D)(gy‘,&vE)(k, a, Cb) = — E VSII((e Zdlvgk + ECL + Ei €. ® d>(el) R

where® € QY(M) @ End(E).

Remark 2.6.It should be remarked that the conformal invariance of the dimension of
the space of harmonic spinors is not only a feature of the Atiyah—Singer operator but is a
quite general phenomenon. More preciselylEbe a spifi-manifold with fixed spifi-
structure, a metrig and a connectioA on the canonical bundle. Lgt: Cl,,, — End(V)

be any hermitian representation and form the buddke P.;,-(M, g, Py,) x, W, and

let £ be any complex vector bundle with connection. Then the dimension of the space
of harmonic spinors of the twisted Dirac operatorBr® F is a conformal invariant.

The proof (which involves computations similar to the ones above) proceeds precisely

as in [Hi;BFGK,Th.13;Hij1,Prop.4.3.1]. In fact, i = ¢2/g setf3, , := e~ "7
ThenDy az =e /fBhgoDyapo ﬁf;i}
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3. Generic Metrics and Connections

Definition. Let £ — M be a smooth (real or complex) vector bundle over the closed
manifold)M, and let€ ¢ C>°(E) be aC®-open subset of smooth sectiongofVe shall
call a subset’ c £ C*-genericing if £ is C*°-dense and’*-open in&.

Note that if€’ is C*-generic in€ then it is alsoC!-generic for any > k.

In our applicationsg’ = M c C°Sym({I™*M @ T*M), &' =M x Aand&’ = A
according to context, wheret denotes the set of smooth metricsrand A = iQ*(M).

In the sequel consider the Dirac operator defined on a bubdébtained from
Pspin(M, g) and Pgspine(M, g, Py,) respectively by a hermitian representatipn:
Cl,, — End@). Let M) . C M (alternatively (M x A)). C M x A, or
M. (A) = M x {A}, or indeedA),,.(9) = {g} x A) denote the set of metrics
(of metrics and connections on the canonical bundle, of metrics, of connections on the
canonical bundle) for which dimKel(, 4 — ) is minimal among all possible choices
(in the third case we assume the connection to be fixed, in the fourth case we assume a
metric g to be fixed).
Proposition 3.1. The setsM) . c M, (M x A)}. c M x A, and M} . (A) C

M x {A} are C*-generic. Tﬁnénsett;\nm(g) cA isng’g-generic. "
Proof. SupposéV/ is spin. We shall argue the first case: Fix a connectian X'. Then
D, = S10V + S5, whereS; € C*Hom(Q!(M) ® X, X) andS, € C*End(~). Then

IDysll2 < MaXSal.[|Vs|| 2 + maxSal.J|sl| 2 < const(ma | +maxSa)ls/le .

Sy andS, depend only oy and its first derivatives. Thus— D, € B(H(X), H%(X))
is continuous in th€'*-topology onM. If dimKerD,, is minimal then so is dimKep,,
for D, in a neighbourhood oD, in the norm topology oB(H(X), HO(X)). This
shows thatM), ., is C*-open. _

Letg € M), andh € M. Setg, := (1 — t)g + th. The family of operator®,,
is self-adjoint and analytic in in the sense of the appendix. Proposition 11.4 of this
appendix shows that for all but finitely many [0, 1] we haveg; € M2 . . It follows
that M., is C>°-dense inM.

The case M x A)). C M x Ais argued similarly. In the casd) . (9) C A
note that withD, 4 = S, o V + .5, the sectionsS; and.S> depend continuously oA.
The argument now proceeds as before. [

Example 3.2.Supposé// is spin. If M has a metrig of positive scalar curvature, then by
the preceding proposition we know that for each metiicthe C1-generic set?), . . of
metrics onM there are no harmonic spinors, because the Dirac-operator for the metric
g has none by [L;LM,Cor.8.9]. Thus because for simply connected closed manifolds
of dimensionm > 5 the existence of positive scalar curvature metrics is equivalent
to the vanishing of certain topological obstructions [GL, Sto] we find a rich class of
spin-manifolds for which the answer to the problem in the introduction is affirmative.

Remark 3.3.As stated in the introduction, the problem in its original form does not
hold in dimensions 12 mod 8. To see this lIek'3 be aK 3-surface with the opposite
orientation and defind/ := K3#(S* x S%). ThenM has signature-(M) = 16. Let

Y1 := M x M x StandY, := M x M x F,whereF is a closed 2-manifold of genus 2.
Choose any spin-structure afi and take the spin-structure 68 which does not extend
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to the disc, and then furnisty with the product spin-structure. By multiplicativity of
the spin-number we see thdt(g) = 1 mod 2 [AtSi, Th.3.1]. Similarly, by Remark 3 of
[At,p.60] we see thaY, has a spin-structure with’(¢g) = 1 mod 2.

Convention.We shall refer to metrics i1, ,,, as eitheminimalor generic Similarly,
we shall call metrics inM?,. (A) respectively connections i . (g) minimal or

generic, and pairs inN x A) are referred to as either minimal or generic, too.

min

4. The Obstruction Formula

Let M be closed spifrmanifold and fix a metrig and a connectiorl on the canonical
bundle. The formula of the first section shows tat M — DO, as map from the
Fréchet space of smooth metrics to théd¢het space of differential operators of order
1is at leastC!. Thus soisD : M — B(HY(X), HO(X)), whereH(Y) is the Sobolev
space of order 1 ant°(X) = L3(X).

LetF denote the set of Fredholm operatorsigt*(X), H°(X)), and letF,, ., denote
the stratum?,, ;, := {f € F,dimKer(f) = n,dimCoker(f) = k}. By [Kos] eachF,,
is a locally closed analytic submanifold Bfand the fibre of the analytic normal bundle
of F,, i at f is given by Hom(Kerf), Coker(f)).

SupposeD A— X e F,, forafixed\ € R (recall that becaus@ A — Ais
formally self- adjomt we have Kefl, 4 — A) = Coker(Dy 4 — \) C COO(Z)) If there
is (k,a) € Sym(@I™*M ® T*M) x iQY(M) such that DD)gy a(k,a) is not tangential
to 7, » then for smallt the operatoD,, 4, — A will not be in 7, ,,. Here, as before,
gt g +tk andA; = A +ta. By upper semicontinuity of the dimension of the kernel of

Dy, 4, for some sufficiently small we haveD,, 4, € F, v Withn' < n.
Note that if we rescale the metric by a constant fapfom > 0, we haveD,
Dy, 4. Thusfor no eigenvaluk 7 0 can the image of the dlfferentllé)ng,A ath7A A

be tangential taF,, ,, for variations of the metric unless we restrict to such variations
which preserve the total volume. Hence

Convention.For brevity's sake we shall call a paif,(4) critical at the eigenvalua if

the image ofD(D — \)4, 4 restricted to element#(a) € SymI™ M @1 M) x iQY(M)

with [ Trykdvol, = O is tangential taF,, ,,. Similarly, we call a metric (connection)
critical at the eigenvalug if for a fixed connection (metric) the image 6D — A)4 a4

is tangential ta%,, ,,, where the derivative is computed with respect to variations in the
metric (connection) only.

A good criterion with which to decide whether IﬁﬁgﬁA is tangential taF,, ,, is the
following:

Proposition 4.1. The pair(g, A) is critical at the eigenvalua if and only if
() (X.Wy,¥2) =0,
(II) <X.€g{4\l—’1, \I—’2> <‘~IJ1, X. Vg A\IJ2> %(‘-I—’j_, \y2>g(X X)
(i) (W, W) =constifA 70,
forall X € C>*(T'M)andW¥; € Ker(Dy 4 — A).
In case we vary the connection only, the condition4dveing critical is equivalent

to (i), and if we vary the metric only, (ii) and (iii) are equivalent to the metric being
critical.
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Proof. The image ofDﬁg,A is tangential taF,, ,, atD, 4 if and only if
(DDy, Ak, a)¥1, W) ,, = 0

for all W; € Ker(D,a — \) and §,a) € SymI*M ® T*M) x iQY(M) with
J Tryk dvol, = 0.
Define@y (X, Y) = LX.V§H Wy, o) + (VU5 Wy, ). Then

(Zei-@ﬁéfi%,‘l’z Zk(eweJ)le \pz(eiyej) < Q\pl q;2>

i,

where the term on the right-hand side means the usual poinfivisénear product of
C-valued symmetric bilinear forms. With this notation the condition that the image of
DD, 4 be tangential to&-, ,, is equivalent to:

1 . 1
0= /M < =(k qul \1;2> - Z<(dlvgk).\111, W) + E<a.\I-’1, ‘112>> dvol,

for all A-eigenspinorsl; andW,.

If we setk = 0 then we immediately obtain the first condition of the proposition.
This also implies that the integral over the third term vanishes identically.

We may repeat the above argument withand ¥, interchanged. Denote t@

the complex conjugate @?% v,- Then adding the corresponding equations we get

/ (k, Q% v Qq,2 \I,1>dvolg (4.1.1)

forall k € C°°Sym(™* M @ T*M) with [ Tr,k dvol, = 0. This implies that the section

in the bundle of symmetric bilinear forr‘r@q,1 v, Qq,z v, IS equal to its trace part
and that its trace is constant. For# 0 the latter condition is equivalent to (iii) of the
proposition, whereas the former is just (ii).

Now let Z := > (e;. W1, Wp)e; with respect to a locag-orthonormal frameZ is
globally defined, and computing at a pointe M, where we may assume the local
g-orthonormal frame to satisfy9¢;|, = 0 we find:

Lz9(X, X) = 29(V%Z, X)l.
= 2X<€1 \1117\112>|m g(ezaX”I
= 2(X. VA0, \112>\T — 2<‘1117X VD),

_ZQ\PJ_ \PZ(X X)‘a \Ilz \lll(X X)|L

Adding (ii) (multiplied by a factor of 2) to the last equation yields
I =g A A
(i) 7Lzg(X, X) = XV, W2) + (W1, ¥2)g(X, X)),

which is of course equivalent to (ii). To prove that (i), (ii) and (iii) imply thatll)ﬁg,A
is tangential taF,, ,,, observe thatf{.g)*(k) = —2 > (div,k)(e;)e; [Be,1.60]. Thus (i)’
implies

1 1 A
2/ (k, QY Wz)dvolg =-3 /M<k,LZg>dvolg + o /(\Dl, W) Tr,k dvol,
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= %/j\{(divgk.\lll, Wy)dvol, .

The last equality is clear fak = 0. In case\ # 0 recall that(\W;, W,) is constant and

J Tryk dvol, = 0. But this equation precisely states that4) is critical. Inspection of

the proof shows that if we restrict to variations of the metric, (ii) and (iii) are equivalent
to the metric being critical. And in case we vary only the connection, the property of
being critical is equivalent to (i) only. [

The following is animmediate corollary of the definitions and the preceding proposition:

Corollary 4.2. For generic metrics conditions (ii) and (iii) of the proposition are satis-
fied. For generic connections (i) is satisfied. For generic pairs of metrics and connections
(), (i) and (iii) are satisfied.

Remark 4.3.Note that an elgenvaluk which admits a Killing spinor, i.e. a spinc¥
which satisfiesV x ¥ = _EX W, is a critical eigenvalue for variations of the metric
which preserve the total volume [BG,Prop.28]. In Proposition 9.1 below we shall prove
a partial converse to this.

Remark 4.4.Consider only the eigenvalue O: It is clear from Remark 2.6 above that (i)
is conformally invariant. Some straightforward but tedious computation shows that the

vanishing oiQ{;’ \l,2+ {’,,’ZA\I, is a conformally invariant statement, too. More precisely, if

h=e? gwehaveD, 4 p =e~ 8, 4°Dy A Eoﬂh ! by Remark 2.6 above. Furthermore,
Vi = B AV + L X V4V £X )G, 5[LM,p.134]. We maycomputé)ﬁq/

hA
BY2, B

ﬂ‘l’z
where we write3 := Gy 4 andﬁ ﬁh ¢ to simplify notation:
= <X-@’)L5Aﬂ_‘1/1,5_‘1’2>
= e T (X5 A0, W)
1
_ ) {Q\m b 3 (XXVS = X VLX), 0)

A
Qé\h,ﬁ%

—mT_l(X Xy, \112)}

= em/f {Q\pl L2 %(Xfo"‘pl’ \I"2>} :

Adding this to the corresponding result f@gw B yields:

h,A _ YA~ 2-m)f g,A
s, * @, e, T € vy, w, T sz v ) -

This shows that (ii) is a conformally invariant equat|0n

Note that ifm = 2 the formQ = QgA +QY q, is independent of the choice of
metric in a given conformal class. It depends onIy on the connedgtiand thus on the
holomorphic structure on the line bundig") and the choice of harmonic spinors. To
better understand the meaning of this consider the case of flat connedtamly. Let
¢(X,Y) = Re(X.V{ W, W_) + Re(W,, X.V{ W_). Note that Tpg = 0 and thus; is
anti-J-invariant, i.eq(J., J.) = —q(., .), whereJ denotes the complex structure induced
by the metricg. As A2°(M, J) is trivial, ¢ is in fact a symmetric form. Note that we
recoverQ from ¢ by the identityQ = ¢ — iqg” with ¢”(_,.) := ¢(J., ).
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Fix p € M and choose an ON-framie;, e, } aroundp and a vector fieldX with
Veil, = VX|, = 0. Compute at the point

diveg =) eiqlei, X)
= Zei Re(X.VI W,, W_) + Re(W,, X.VI W_))

_Re<XV Vo, Wi, W) + Re(Ws, XV, V,, W_)
= _Re(X.V*VW, W_) — Re(W,, X.V*VU_) .

Using the Weitzenlick formulaD? = V*V + s/4 we see that diyy = 0. The condition

that a symmetric bilinear form be trace-free is invariant under conformal changes. In
dimension 2 the property of a symmetric bilinear form being divergence-free is a con-
formally invariant property, too. Thus we see tlhyadefines an element in the tangent
space€l, 7 to Teichnuller spacel at the point defined by the conformal clag$ ¢f

g, see for example [Tr]. The image of the map which assigns to eachypaid(_) of
harmonic spinors the form(X, Y) := Re(X.V{ W, W_) + Re(W,, X. V¢ W_) is thus

the subspace of the tangent spaggZ which contams those infinitesimal deformations
which reduce the dimension of the space of harmonic spinors. Conformal invariance of
q thus reflects the fact that spin-geometry on 2-manifolds is essentially equivalent to the
study of holomorphic square roots of the canonical buddle Q*°(A/) on Riemann
surfaces. For this point of view see Sect. 7 below.

Remark 4.5.Define a gauge-transformation to be a smooth map/ — U;. Such a

y acts on ¢, A) by the ruleu.(g, A) := (g,u(4) = A + 2udu*1) It is immediate that
Vo) = 40 V94 0y, Itfollows thatDy 4y = uo D, 4 o u~t, which in particular
implies thatV¢:4(4) andV94 have the same spectrum, and it is also immediate that if
(i), (i) and (iii) of the proposition hold ford, A) and some\ in the spectrum o¥/9-4,

then they also hold forg u(A)). Thus the condition that be critical is invariant under
gauge-transformations.

Remark 4.6.Let M be even dimensional. The complex volume elemiént; . . . e,, €
Cl,,(T' M) acts onY’ and splits it into thet-eigenbundles’; andX'". D, 4 intertwines

¥ and X . Itis clear that3, , respects this splitting, i.63, , : £ — X7 Thus

we may consideDy, 5 = Dj, p + D, 5 as operator orF. We may thus ask under
what conditions ong;, A) is ImDD; , tangential taF,, »(H*(¥;), H%(¥; )). Because
KerDy 4 = KerD} , @ CokeD} , we do not get any new |nformat|on In fact, what
one would get if one proceeded as in the above proof are equations (i) and (ilwith
replaced byv, andW, replaced by . But these equations are contained in the above
proposition, and conversely if these equations are knowdfaandW_ we retrieve (i)
and (ii) above because these equations are symmetdic andW _.

Remark 4.7.Equations (ii) and (iii) are essentially contained in [BG]: If the analytic
functions\1(2), . . . , A\, (t) (pairwise different) withy; (0) = A are eigenvalues fap,, — A,
where the dlmenS|on ofth>ee|genspace is then the equauon# | = Oareimplied

by (ii) replacing harmonic spinors by eigenspinors with agenvﬁli%ne D, [BG,Th.24].
Conversely, the proof of [BG,Th.24] may easily be modified to prove th§t||f A =0

for all 7 then the metrig; is critical at the eigenvalug. Thus the blfurcatlon theoret|c
approach of [BG] is equivalent to our approach.
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5. Partial Proofs

In this section we will prove Theorem 1.4 and the statements of Theorems 1.2 and 1.3
concerning spifrmanifolds.

The following proof is essentially the proof of [Hij2] which however is applied rather
differently in this reference.

Proof of Theorem 1.4Consider dimensions 2 and 4 first. By Proposition 4.1 we know
that for a fixed metric the image CD;_A is tangential to som¢,, ,, with n, k& > O if

and only if (X.W,, w_) = 0 for all harmonic spinor®, andW_. Suppose that neither
spinor vanishes. Then by the unique continuation principle [BW] there is an open dense
subset ofM on which neither vanishes. In dimension 2 the complex fibre dimension
of ¥+ is 1 and in dimension 4 it is 2. Thus there is always a vector fi¢lsuch that
(X.Wy, W_) #Z 0. This shows that unless here are no nontrivial harmonic spinors of either
positive or negative type we may deform the connection so as to reduce the dimension of
the space of harmonic spinors. In dimensions 1 and 3 one may argue similarly: In these
dimensions the complex fibre dimensionsXofare 1 and 2 respectively. Thus given a
nontrivial harmonic spinow we may always find a vector field with (X. ¥, &) # 0.

Thus unless there are no nontrivial harmonic spinors we may deform the connection so
as to reduce the dimension of the space of harmonic spinors]

In dimensions> 5 it might happen that for a given metric and connecfign/. 7, N

H, = {0} for everyp € M, whereH ¥ {0} is the space of harmonic spinors and

H,, is the subspace in the fibtg, spanned by harmonic spinors. In this case (i) of
Proposition 4.1 is satisfied but we have no means of deforming the connection so as to
reduce the dimension 6é{.

Also note that we are not able to extend our arguments to dimensions 7 and 8 as in
[Hij2] because in dimensions 7 and 8 there is in general no parallel real structure on the
spinor bundleX’ for a given spif-structure.

The following lemma contains parts of the statements of Theorems 1.2 and 1.3
concerning spifrmanifolds:

Lemma5.1. Let M be a closed oriented 3- or 4-manifold with fixed Spatruture
and fixed metrigy and connectiord on the canonical bundle. Suppose there are non-
trivial harmonic spinors (of both chiralities in dimension 4) and that condition (ii) of
Proposition 4.1 is satisfied. Then

(i) All nontrivial harmonic spinors vanish on the same aeand on any connected set
in the complement d¥ we havd W, |/|W;| = const for nontrivial harmonic spinors
;.

(i) IfdimM = 3the dimension of the space of harmonic spinors is at most 2.

(iii) If dmM = 4 and IndeD, 4 7 0, a generic metric hast* + h~ < 3 and
IndexD, 4 € {#1} unless either okh* is zero.

(iv) If dimM = 4and IndeD, 4 = 0thenh™ = h~ < 2 for the generic metric.

Proof. Consider first the 4-dimensional case: Suppos@jm is tangential ta%,, x,

n, k > 1 such that there are linearly independent harmonic spiibr@2, and letw_
be a nontrivial negative harmonic spinor. Then by Proposition 4.1,

XV, w )+ (Wi X.V%w ) =0
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for i € {1,2}. Suppose for the moment that there is an open connectdd set\M
on whichw! does not vanish and whew = fw! for a smooth functiory. Plugging
into the equation yieldsX f)(X.wl w_) = 0. At a fixed poinip € U we may choose a
basis{X4,..., X4} for T,M such that/ X,,. w1, w_) 0. Thusdf|, = 0, and henc¢
is constant ori/. By the unique continuation principk? is a constant multiple of!
in contradiction to the assumption. Thus the set of pqiraswhichlllﬂp andll/ﬂp are
linearly independent is open and dense. Fix a connected open subseh that neither
Wi, and¥?|, vanish or are linearly dependent at any pgirih U and such tha _
vanishes nowhere dfi.

Given another harmonic spindr, we may writeW, = fi\Wi + f,% (wheref; €
C>(M,C)) overU. Replacing?’. in the equation by¥’, we obtain

(X f)(X W, W) + (X fo)(X. W5, W) =0.

Let F; C TU be the subbundle KeK € TU|, — (X.¥., ¥_)|,). Both F; have 2-
dimensional real fibres anfy N F, = {0}. By the previous equation, a sectiéh €
C*>(F>) satisfiesX; f» = 0, and a sectioX, € C'*°(F}) satisfiesX,f; = 0.

Fix a pointp € U and 0% X, € F|, with Xf2|, = 0, and choos&; € Fi,.
SetX = X; + X, and plug into the above equation. Then O)ﬁlfl)(Xz.lI/i, w_).

By fibrewise linear independence ¥t and¥? on U we find X1 f1|, = 0. Hencefy is
constant on each componentléf and similarlyf, is constant on each component, too.
By the unique continuation principh/, is a linear combination ob! and¥?.

Thusifh*, h~ > 2 we find (by applying the above argument to positive and negative
harmonic spinors)* = h~ = 2. Thus if IndesD, 4 7 0 and botth" andh ™ are positive
we find that eitheh* or b~ are< 1, andh* andh ™~ differ by one.

Indimension 3 it suffices to note thatif> 2 thentwo linearly independent harmonic
spinors¥; and¥, havew, |, andW,|, linearly independent fgrin some open dense set.
This is proved as the corresponding statement in dimension 4. Then arguing as before
we see thab < 2.

If the spirf-structure is in fact a spin-structure we have a quaternion-structure on
the spinor-bundle. Thus a critical metric dd which has both positive and negative
harmonic spinors satisfiés = h~ = 2. O

6. Dimension 2

In order to prove Theorem 1.1 we find it convenient to view the Picard-torus of a smooth
line bundleL on a Riemann surfacé\{, g, J) in terms of connections oh. We shall
always assume that/ carries a metric which induces the given complex structure.
Given a line bundld. over a Riemann surfacé/, J) and a partial connectiot®*
on L, this partial connection induces a holomorphic structuré orhis follows from the
usual integrability theorems [Do, Th.2.1.53] beca®$€ @ Q%2 = {0}. When we want
to emphasize thal is considered as a holomorphic bundle with the structure induced
by V! we write (L, V%1).
Given an isomorphisny of L (which we think of as a smooth map : M —
C*) we may pull back a given partial connecti&f*! along f to obtain the partial
connectionf o Voo f~1 = Vol + f(9f~1). Then €, V%) and €, VO + f(Of 1)
are holomorphically equivalent. And if{ V%) and [, Vo' + ¢), ¢ € Q%(M), are
holomorphically equivalent then there is a smooth functfon M — C* such that
foVOlo f=V01+ f(Of ) = V¥ +¢. Thuso = f(Of ).
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Note that the additive grouff (0f~1) : f € C>°(M, C*)} splits a)(C>=(M, C))®
HOY(M, 2riZ), by writing f = ue™ withw : M — S*aharmonic map antd: M — C.
Here H%Y(M, 27iZ) is the projection ofd*(M, 27iZ) C H(M,C) into the (Q1)-
component.

Note that any holomorphic structure b1is defined byv%* for a suitable connection.
Thus the moduli-space of holomorphic structured.as the quotient

QO /(A(C™(M, C)) & H*N(M, 2miZ)) = H*Y(M, C)/HON(M, 2miZ) .

This quotient is a complex torus, called the Picard toruk.of

Now fix a Hermitian metrich on L. For any holomorphic structure there is a con-
nection which induces the given holomorphic structure and presénes Vi = 0.

Given two h-preserving connection¥/; and V2 on (L,h) which induce the
same holomorphic structure ab, we haveV — VOl = ¢ € IC™(M, ,0) ®
HO%Y(M, 27iZ). Becaus&/, — V; € iQ2Y(M, R) we f|nd thatV, — Vi =¢ — ¢.

We now return to spin-structures dd: Let K = Q%°(A1) be the canonical bun-
dle of (M, J). Spin-strucures o/ correspond to holomorphic square-rootstofby
[Hi,Th.2.2]. Fix some such square-root. Given a metricddrwhich induces the given
complex structureX and L inherit hermitian metrics. Le¥/ be the hermitian con-
nection onL, andV the hermitian connection off. Note thatV @ V = V. As all
square-roots of{ are isomorphic as unitary bundles we may think of them as being
of the form (L, V +w) with w € iQY(M, R). Taking the square we get a connection
V' =V@V+2wonK = L ® L. Observe now:

Lemma 6.1. V’ induces the same holomorphic structure nas doesV if and only
if 2001 € 9(C>= (M, C)) @ HOY(M, 2riZ), that is if and only if the cohomology class
[w%1] is contained in the lattice obtained by projectifgl (M, 2riZ) into H%Y(M, C).

Observe that diff (M, R) = ranki*(M, Z) = 2 genus{/). We thus retrieve the well
known fact that there are2"*s(M) spin-structures of/.

Armed with these preliminary remarks we can now embark upon a proof of Theo-
rem 1.1. The following lemma is the analogue of Lemma 5.1 for dimensions 3 and 4
above.

Lemma 6.2. Let M be a closed 2-dimensional manifold and fix a §gtructure, a
metricg on M and a connectior on the auxiliary bundlé’;,,andletD, 4 : X" — X~
be the Atiyah—Singer Dirac operator. Suppose thaj,amDD* _4 Istangential taF,, x,

n,k > 0. Then eithees(Py,) = 0and dimKeD} , = dimKerD, , < 1, 0rc(F,) 70

and there are no harmonic spinors of elther posmve or negat|ve chirality. In the first
case, given two nontrivial harmonic spinobs andW _ of positive and negative chirality
respectively, we hav@, | = A\|W_| for some\ > 0. In this case¥, and¥_ vanish on

the same finite set of points.

Proof. Pick two harmonic spinord, andW_. Then by Proposition 4.1,
(X V%W, W) + (W, X.V% W) =0.

Suppose that neither spinor vanishes identically. By the unique continuation principle
[BW] we may choose an open connected suliset M, where neithel, nor W_
vanish. Note that the fibre dimension of eaEH is 1. Let W, be another harmonic
spinor, and ovel/ write ¥, = fW, for somef € C>(U,C). Replace¥, in the
previous equation by, to obtain (X f)(X.W,, W_) = 0. As this holds for every vector
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field overU we see thajf is constant or/. By the unique continuation principhé’,
is a constant multiple o¥., and hence dimKé?;A = 1. Repeating the argument with

W_ shows that dimKeP, , = 1, too, and thus IndeX} , = 3c1(Py,) = 0.

Let X be a vector field o/ with |X| = 1. Then there is the identityy_|*W, =
X W_(¥,, X.W_). Then

W2 X[ P = (9 2 W, W) + (W (0, T W)
(Vx W, XU WX W W)+ (XU VW) (W, X W)
<‘~IJ+, XVX‘II_><XW_, ‘-IJ+> + <XVX\IJ_, ‘-IJ+><\I'+, X\IJ_>

= zRe(<w+,XﬁXw,>m) .

Note that the last expression is symmetriclinandW_. Thus we obtain the equation
|W_|? X |, |2 = |W,|? X|¥_ % Given a poinfp in M with W,|, 7 0 we conclude that
|| = A\|W_]| in a neighbourhood af. Becausel_ does not vanish on a dense open
set by the unique continuation principle [BW] it follows that> 0. Thus if ¥, |, = 0 at
somep € M thenalsol_|, = 0. By symmetryW, andW¥_ vanish on the same set, and
becausel. is a holomorphic section of* with respect to the holomorphic structure
induced byV%! [Hi], we have|W¥ + | = \|W_| for some) > 0 on all of M. O

Lemma 6.3. Let M be a closed 2-manifold. Lgtbe a metric on\/ anda € z‘ngM),
and fix a spin-structure o/. Denote the positive spinor bundle liyand letV be
the connection ot induced byg. LetD, 4 be the Dirac operator obtained from the
connectionV +a. Suppose that Ii?D, 4 is tangential taF,, ,, forn > 0. Then(L, V+a)

is a holomorphic square-root df” and thus a spin-structure, possibly different frém
There is a smooth functiofi : M — S* with a = df /2f. The forma is closed and
defines an elemeft] € HY(M, 2miZ).

Proof. Let K denote the canonical bundle, andigbe the square root df defined by
the spin-structure. Given a metric 8 there is an antilinear isomorphisin K ® L —

L given on smooth sectionsandw of either bundle byv, h(w)) = [vw [At]. Let ¢

be a local section of of unit length over some open sEt C M, and lety be the
corresponding section dk. Let o be a section ofl with ¢ ® o = 02 = ¢. Then
necessarilyo| = 1. Forf € C>(U,C):

<o,h(f$Aa)>Lz=/f$A¢=i/f dvol, .

Using a Dirac-sequence fgrwe find thath(¢ A o) = io. Now pick any poinp € U and
choose g-orthonormal framées, ez} in a neighbourhood of such thatVe, |, = 0.
ThusVeol|, = 0 andV¢|, = 0. It is immediate thaVh|, = 0. As p was arbitrary

it follows that % is parallel, andh is unitary with respect to the hermitian metrics on
both bundles. Pull back the connecti®n+ a on K ® L to L alongh. We compute
ho(V+a)oh™t=YV — qa, becausé is parallel and antilinear and € iQ*()M). Let

X be a smooth vector field and denote.bthe complex structure ol induced by the
metric. Compute:

1

VI =@ (X) = 5 (Vx — a(X) +iV,x —ia(J X))
ho

(Vx +a(X) —iV;x —ia(JX)) o bt

NI N
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=ho (@1’0 + al’o) oh™t.

Let A%! be the Laplace-operator dn@ (R2%1(M) ® L) associated with the operator
Vo1 + 4% and let similarlyA® be the Laplace-operator associated with the operator
V10 4410, Let W_ be a section of¢ ® L. Then by [Hi] W_ is harmonic if and only if
A%My_ = 0. This is equivalent to demanding:®w_ = 0, because\® = A%, The
latter condition translates int&(lv0 +a50)W_ = 0. By the previous computation we see
thatw_ is harmonic if and only if.(W_) is a holomorphic section df with respect to
the holomorphic structure induced By — a
Now suppose the metric oM is critical and there are harmonic spinobs and

W _. By the previous lemma we may assume thiat| = |h(¥_)|. Let P be the finite
set of points where both sections vanish, and choose a funttid (M \ P) such
that h(W_) = [W,. Harmonicity of ¥, is equivalent to Y% + a®Y)w, = 0, which
together with ¥°% — a®H)A(W_) = 0 impliesdf — 2fa®! = 0 by substitution. Thus

a®l = 0f/2f. Becausdf| = 1 we haveb := df /2f € in(M). Asa € iQY(M), too,
botha andb satisfya®® = —a%1 andb® = —01 which impliesa = b = df /2f. By
continuity we see that is a closed form. Pick any € P and a neighbourhoof) of
p, which we may assume diffeomorphic to a disc. Thereidh for some smooth real
valued functior, on D. Cutting out a radial line ab yields a contractible sd?’, where
we may assumg = ¢'9 for some smooth real valued functign Thus onD’ we have
dh = %dg. Thusg = 2h + const onD’. It follows that f may be smoothly continued into
.

_ In total we have found a functiofi € C°°(M,C) with |f| = 1 such thau®! =
df/2f. But by Lemma 6.1 of this section and the discussion preceding it this implies
that (L, Vo1 + a®1) is a holomorphic square-root &f. [

We may now proceed to prove the main theorem of this section:

Proof of Theorem 1.1By Lemma 6.2 of this section we see that all there remains to do
is to study the case of twisted spin-structures.d e a metric on\/ anda € in(M),
and fix a spin-structure of/. Denote the positive spinor bundle liyand letV be
the connection o induced byg. Let D, 4 be the Dirac operator obtained from the
connectiorV + a. If a is closed and represents a clas$fif(M, 2miZ) then (L, V + a)
is again a square root @, for an arbitrary metrig.

Suppose there is a metricwith nontrivial harmonic spinors of both chiralities
which is critical. By Lemma 6.2 we have” = h~ = 1, and Lemma 6.3 implies that
(L, v+ a) is in fact another spin-structure and= df/2f for some smooth function
f : M — S'. Hencea defines an element iff*(M, 27iZ). Thus unless the twisted
spin-structure is a spin structure itself, no metric can be critical and hence any metric
with nontrivial harmonic spinors may be deformed to one without. In the spin-case the
valueh™ = dimKerD; mod 2 is independent of the choice of metric and depends only
on the spin-structure [At, Mum, ACGH]. As a critical metric has € {0, 1}, we see
that metrics withh* > 1 cannot be critical and can thus be perturbed to a new metric
with less harmonic spinors. Thus if dimKRf = 0 mod 2 the generic metric will have
dimKerD, = 0. In the other case dimK&y, = 1 for the generic metric. [

Remark 6.4.The initiated will have noticed that : K @ L — L is essentially the
Serre-duality map, possibly up to sign. In factyjf denotes the complex conjugate of
the Hodgex-operator with coefficients i, [W, p. 166] we have a map
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KoL L KoL t~L.
We find}($® o) = —i¢, and thus the above map is identified as the following map:

PR 0 —ipg® (o) = —ic @0 ® (.,0) — —ic. Henceh is the negative of the
Serre-duality map.

Remark 6.5.We should mention that there are spin-structures/for which there are
always harmonic spinors. In fact, their number can be computed and it turns out to be
2971(29 — 1) [At,Th.3] whereg = genus(/).

7. Applications to Riemann Surfaces

Theorem 1.1 is really a theorem in the theory of Riemann surfaces, their moduli and the
moduli of holomorphic line bundles.

Let L. denote the positive spinor bundle for a fixed spin-structure on a Riemann
surface. Here, the indexis the parameter of the complex structures on the underlying
closed 2-manifold\/. Let F' be a Hermitian line bundle with connectighwith respect
to which the Hermitian metric is parallel. Then given a compiex M, the connection
induces a holomorphic structure éh Denote this holomorphic bundle liyy ..

We may now restate Theorem 1.1 as follows; (fF') # 0 then for adense open subset
of Teichnililler spaceh’(L. ® Fa ) = 0in case1(F) < 0, andh®(L. ® Fa,.) = c1(F)
in casecy(F) > 0. If ¢3(F) = 0, write A = d + a, a € iQ*(M), with respect to some
trivialization of F. Then unless. € HY(M, 27iZ), h°(L. ® Fa..) = 0 for generice.
Otherwise,L. ® Fa4 . is a holomorphic square root éf. and for the generic complex
structureh®(L. ® F4 ) = 0 or 1 depending only on the spin-structure. Thus in particular
we have the following extension of the classical results of [At, Mum]:

Theorem 7.1. The functionk® : ¢ € T(M) — h°(L.) is constant on a generic (i.e.
dense and open) subgkof Teichniiller spaceZ (M). OnC the image of. is contained
in {0, 1}, and the actual value depends only on which spin-structure is chosen.

In the theory of Riemann surfaces spin-structures are often called Theta-characteris-
tics. Note that if {/, c) is hyperelliptic themh®(L.) = [(g + 1)/2] for at least one square
root of K [BaS,Th.3,Th.4]. Thus for genu&() > 3 the generic sel of the proposition
is not all of Teichniiller-space for at least one square-roofaf

Remark 7.2.0ne may ask what kind of subset the 8§t.) := {c € 7(M)| h°(L.) >

1} is. First, by [Gro,Th.3.1 & Rem.3.2.2] there is a smooth analytic sgacend
an analytic submersion : V. — 7(M) such thatr=(c) = (M,c), i.e. M fur-
nished with the complex structuke Using Grauert’s upper-semicontinuity theorem
[Gra,Satz 3;GR,5.10.4] we find th&X(L) is an analytic subset &f (M). l.e.D(L) is a
locally finite union of irreducible analytic subsets{M). Compare also [Far].

Remark 7.3.An obvious question is whether the s&§L) := { ¢ € T(M)| h%(L.) >

1} do depend on the square rdobf K. First, note that for genud() < 3 the value

of hO(L.) is independent of the complex structurandh®(L.) € {0, 1} [Hi,Prop.2.3].

Thus D(L) = ( for genus{/) < 3. Thus consider the case genu§( > 3: By
[BaS,Th.3,Th.4], on any hyperelliptic surfac®/(c) there is always a square-robt

of K for which h%(L.) = 0 and a square rodt’, for which h°(L.) = [(g + 1)/2]. This
shows that the sef®(L) do indeed depend upon the spin-structure chosen. Needless to
say, we may take the unidn := (J, ._, D(L) to find an analytic subset such that on the
complement the functioa— h9(L.) € {0, 1} is constant for every square root &f.
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Remark 7.4.Theorem 1.4 may be read as follows: For generic holomorphic structures
h on a line bundleX” over a fixed Riemann surfack?(F},) = c1(F) + 1 — genus(/)

if c1(F) > genus{/) — 1, andh®(F},) = 0 if c1(F) < genus{/) — 1. Here, a generic

set is a dense open subset of the Picard torugfofhis is of course a basic result

of Brill-Noether theory [Gu,p.51]. The fact thaP(F},,) > ci(F) + 1 — genus{/) for
everyh is a trivial consequence of the Riemann—Roch theorem. Brill-Noether theory
also shows that the set of holomorphic structures for whit{i,,) is greater than the
minimal value is a union of analytic subsets.

8. Dimensions 3 and 4

In this section we will prove the statement on spin-manifolds in Theorem 1.3 first and
then indicate the necessary changes in dimensidhis assume for the time being that
M is a closed spin-4-manifold with a fixed spin-structure and a metric which is critical
and has both nontrivial positive and negative harmonic spir{ifrg was not critical
we could deform the metric so as to reduce the dimension of the space of harmonic
spinors). The aim is to show that4, g) is conformally flat. We shall even show that
in this situation (/, g) is conformally equivalent to a flat torus, see Proposition 8.12
below. This shows that only in this particular situation a metric may be critical without
being minimal. Otherwise critical metrics are precisely the minimal metrics.

Fix two nontrivial harmonic spinord, and W_. The proof of Theorem 1.3 will
extend over a rather long list of lemmas.

Lemma 8.1. On each connected set on whigh does not vanish there i > 0
with |W,| = A\|W_|. In particular, ¥, and W_ vanish on the same set. Moreover, linear
combinations o, and.J W, (respectively_ andJW_) are the only positive (negative)
harmonic spinors o/, i.e.h* =h™ = 2.

Proof. The last statement is proved above in Lemma 5.1. Xebe a vector field
on some open connected witl| = 1. Then|¥_[2¥, = (W, X.W_ )X.W_ +
(Wy, X.JW_)X.JW_. With this we may compute

|W_ 12X |W, |2 = 2REW,, XV x W_)(X.W_, W,)
+2ReWy, XV x JU_)N(X.JW_, W),

By (ii) of Proposition 4.1 this is symmetric ifr. andW_, and arguing as before in the
proof of Lemma 6.2 we may deduce the lemma. O

Fix a connected open s&ton which neither, nor ¥_ vanish. We may assume that
|W,| = |W_| by the preceding lemma. We may fix an ON-frame by the rule:

61.\IJ+ = lpf 62.‘1’+ = l\pf 63.\II+ = J\yf 64.\I’+ = _ZJ\yf

(to see that this is oriented compute,ezes V. = —W,). In the sequel we shall always
let X andY be vector fields o/ with | X| = |Y| =1 andX L Y such that they map
W, to a harmonic spinor under Clifford multiplication.

Lemma 8.2. Letwx(e;, e5) := (Ve, X, ;) — (Ve,; X, e;). Then the following holds:
div(X)W, + 2V x Wy — wx W, =0,

wherew x W, = Zi<j wX(ei, 6j)€i€j\p+.
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Proof. By definition of X, X.W. is harmonic. Thus:

0=) eV (X.W)
=) eil(Ve, X)W + e, XV, Wy

= Z<v€iX’ €k>€i€]€\p+ - 26)(\[’4.
i,k

=- Z<VeiX, €)Wy — 2V x W, + Z wx (€, ex)eier Vs
i i<k

= —div(X)Ws — 2V x W, +wx U, .
Of course, the particular choice of ON-frame plays no role here.[

Lemma 8.3. Let X be as above and& any smooth vector field which is everywhere
orthogonal toX. Then

2REV y Vs, ZX W) + (V2 X, Z)|W,4[>= 0.
Proof. We may assume thaZ| = 1. Equation (ii) of Proposition 4.1 yields
0= (ZV W, XW_) + (W,, ZV z(X W)

= (VW ZXW_) + (W, Z(V 2 X)W + (W, ZXV 10,

= 2RV Wy, ZXW_) — (V2 X, Z)|W.|? + (Wy, ZW W),
whereW :=V ;X — (VzX, Z)Z is orthogonal to botl¥ and X . Thus

Re(W., ZWW,) = —Re(W,, ZWW.),

and hencéWw., ZWW.,) is imaginary-valued. The lemma now follows. O

Itis useful to observe that,, e;e; W, ) is always imaginary-valuedifZ j. This follows
as in the preceding proof.

Lemma 8.4. V., e; is a multiple ofe; in each fibre provided 7 ;.
Proof. Leti < j. By Lemma 8.2:
div(e:)(Ws, eje;Us) + 2(Ve, Wa, 6 W) — (we, W, e5e;W4) = 0.
Taking real parts we obtain;
2RV, Wy, eie;Ws) — Re(we, Wy, e;e, W) = 0.

NOW Re(we, W+, €;e,Wa) = we, (e:, ;)| Wa|2Ewe, (ex, €1)|W+|?, wherek < [ are different
froms, j, and the signis taken to be +if, ¢;, e;, e, is oriented and- otherwise. Plugging
in the definition ofw,, we obtain

2Re<€eiq'l+aeiejq/+> - <Veieiaej>|q/+|2 + (<vekei7el> - <vezeive/€>) ‘\p“"z =0.

By the preceding lemma the sum of first two terms vanishes. Thus
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<V€k6ia 6l> - <Vel67;, €k> = 7<6i7 [ek7 6l]> = O
for arbitrary choices ok, [ andi # k£ andi # [. By the Koszul formula [O'N,3.11]
2<v€¢€]7 ek‘> = —<€7‘,, [ejv €k]> + <€j, [ekv eL]> + <eka [ei7 e]]>

we see thaV.,e; L e fori 7 j andk different from bothi, j. The lemma follows.
O

Lemma 8.5. The value of V., e;, ;) is independent of the choice bf i.
Proof. To this end letj # k andj # ¢ and compute
0= (e; Ve, Wi, eWs) + (Wi, €5 Ve, (€, 94))
+<ek@ej W, e, W) + (W, ek@ej (eiWs))
= ZRQ@% Wy, eie;Wy) + ZRe(ﬁej W, eiep\Wy)
+((Vepeiren) — (Ve,ei,€5)) (Wa, ejepWs)

where we have used the preceding lemma. The first two terms are real-valued and the
last term is imaginary-valued. Thus

((Vep€isen) — (Ve,eir€5)) (Ws, e5e,Ws) = 0.
If ejer Wy € {£iW.} then(V, e, er) = (Ve, e, €5). Otherwise replace the firgt. in
each bracket by W, and compute:

0= (e; Ve, JWs, ;Ws) + (JWs, ;V,, (€:W4))
HerVe, JWa, e W) + (W, e, Ve, (€5 V)

= ((Vees ex) — (Veseire5)) (JWa, eje W),
and if nowe;e, s € {£JW4, +iJ W, }, then againVe, e;, ex) = (Ve, €i, €5). O
Lem?a 8.6. If | W] is constant orV then thee; and all harmonic spinors are parallel
overU.

Proof. If |W.| is constant o/, (VW,, W.) is imaginary-valued. Thus 0 = diu)| W, |2
by Lemma 8.2. Hence digf) = 0. But

div(e:) = > (Veyeirex),
ki

and by the preceding lemma we see tk®t., e;,ex) = O for all ¢, k, and thus by
Lemma 8.4 eacle; is parallel onU. Lemma 8.2 then implies thab, are parallel.
O

Lemma 8.7. (M, g) is conformally flat.

Proof. Givenp € M with W, |, # 0 choose a smooth functighwith f = 1 In|¥,|?in
a neighbourhood of. Let ¢’ := ¢/ g. By Remark 2.6 the spina#, , V. has constant
norm in a neighbourhood @f Thusg’ is flat in a neighbourhood gfby the last lemma.
Thus the Weyl-tensor fog vanishes on the set of points whebe does not vanish.
But this set in dense in/, and hence the Weyl-tensor fgivanishes identically, which
means thati/, g) is conformally flat. O
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Remark 8.8.In dimension 5 the situation is considerably more complicated: There are
5-dimensional non-conformally flat Riemannian spin-manifolds the nontrivial spinors
of which are all parallel [BFGK, p.150]. Thus this metric is critical but not minimal.

Proof of Theorem 1.3Note that we may perturl by aC*-small deformation to get a
metric withh*(g) < 2 and nonvanishing Weyl-tens&¥ (g). Hence this metric cannot
be critical by the preceding discussion, and we may thus find a small perturbatjon of
to get a new metric without harmonic spinors. O

Proof of Theorem 1.2Me now indicate the changes in the above proof necessary to prove
the corresponding result in dimension 3. Thus It ¢) be an oriented Riemannian 3-
Manifold with fixed spin-structure such that there is a nontrivial harmonic spirior

the metricg which is critical in the sense of the remark following Proposition 4.1. Define
a local ON-frame{ey, ez, e3} such that

eV =1V eW=iJV e3W=JV.
Lemma 8.2 holds, and becausesesWV = —W we obtain
div(X)W + Z@X\If —wx(ey, ex)esV +wx(e1, e3)eaV — wx(ez, e3)er ¥ =0
This equation immediately implies
2REV,, U, ex W) + w,, (i, e =0,

wherei < j are both different fronk, and the sign depends @n Note that by (ii) of
Proposition 4.1,

Re(V,., W, e, W) = —Re(e,V,, ¥, ¥) = Re(W, ¢, V,, W) = —Re(e, ¥, V,, W),

and hence R@ekw,ekw) = 0. Thus we findo, (e;, e;) = 0. Hencelex, [e;, e;]) = 0,

and as before we conclude tHét, e; is a multiple ofe;. Lemmata 8.5 to 8.7 remain
valid (where we have to replace, by W, of course). In the proof of Lemma 8.7 we
have to replace the Weyl-tensor by the anti-symmetrisation of the Schouten-tensor. We
can now argue as before to conclude the proof of Theorem 1.2

Remark 8.9.In dimension 5 the situation is more complicated: There are 5-dimensional
non-conformally flat Riemannian spin-manifolds the nontrivial harmonic spinors of
which are all parallel [BFGK,p.150]. Thus these metrics are critical but not minimal
and we cannot reproduce the above arguments. Of course, one might try to prove that 5-
dimensional closed spin-manifolds with critical but not minimal metric must be isometric

to the examples of [BFGK,p.150].

A little more work will yield all the conformal closed oriented 3-manifolds and
spin-4-manifolds which admit a critical metric. We first need the following lemma:

Lemma 8.10. LetU’ ¢ U C R™, n > 3, be open and connected, and denoteltlye
Euclidean metric oiR™. Let f : U’ — R be a function such that*/ ¢ is flat. Thenf
can be uniquely continued to a functigron U with the possible exception of one point
such thaie?? ¢ is a flat metric orl/.
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Proof. By possibly shrinking/’ we may find an open séf’ ¢ R™ and an isometry
o (V',g) — (U, e*f g). o’ extends uniquely to a global conformal diffeomorphism
S"™ — S™ [KuPi2,p.12]. LetV := 0~1U — {00}, where we identifyR™ with the sphere
minus the North polec via stereographic projection. Thas (V, g) — (U—{o(>0)}, g)

is a conformal diffeomorphism, and thus there is a funciorU — {o(c0)} — R such
that 0~1)*g = e**g and¢ = f on U’. This was under the assumption of a possibly
shrunkU’, in order to prove the lemma it thus suffices to show thit unique.

Given now two extensiong; and ¢, of f (defined on all ofU with the possible
exception of a point for each;) such thate??: g is flat, choose a connected open set
V' C U on which bothg; are defined such that there are open 3&tsCc R™ and
isometriess; : (V;,g) — (V,e?%ig). If $1 = ¢» on a connected open subsétof V,
the mapo, * o 01 : (o7 Vo, 9) — (0, Vo, g) is an isometry. Thew, * o o; extends
uniquely to an isometry dR™, in particularag1 o al|o;1V is an isometry. It follows
thaty1 = ¢, on all of V. By connectedness &f — {o(c0)} the result follows. O

Lemma 8.11. The set of points on whicl, (respectively in dimension 3) vanishes
is discrete.

Proof. Let U be a connected open subset af which (after possibly conformally
rescaling the metrig first) is isometric to some open subset of Euclidean space. Let
U’ c U an open connected subset on whieh (respectivelyW) does not vanish. Let
f=3In|w,?: U’ — R. Thene?/ g is a flat metric orl/’. By the preceding lemmg,

may be continued to a function to all bfwith the possible exception of a single point.
ThusW, cannot vanish o/ minus that point. ]

We can now prove the following proposition:

Proposition 8.12. Let(M, g) be a closed Riemannian spin-manifold of either dimension
3 or 4 with fixed spin-structure with harmonic spinors (of both chiralities in dimension
4) such that the metrig is critical for the eigenvalue 0. Theh/ is a torus andg is
conformally equivalent to a flat metric.

Proof. Let M be the universal cover dff andF the discrete set of points on whidh

(¥ in the case of dimension 3) vanishes, andiebe its preimage in/. A standard
monodromy argument shows that there is a local |sonzﬁe1rM\F — R™, n=dimM,
whereM \ F'is furnished with the metric obtained by pulling back the flat mezt?’fq;

from M \ F with f being defined as in the previous lemma. This map uniquely extends
to a conformal map : M — S™ [KuPi2]. It follows that the holonomy' € Con f(S™)

of M fixesoo. By Theorem C of [Kam], §/, g) is conformally covered by eithe§™,

871 x St or a torusT™ with the natural conformal structures, and the conformal
class ofg contains a metric of positive scalar curvature in the first two cases and a flat
metric in the third. Thus by the standard Weitzéokformula [L], harmonic spinors can
occur only whenl/ is covered by the torus. Replacigdoy a conformally equivalent

flat metric shows tha¥, andW_ (respectivelyy) are parallel. Thus* (respectively

X)) is trivialized by parallel sections, and thus sdli8/, and hencel/, g) has trivial
holonomy. By [Wo,Cor.3.4.6] we conclude that/( g) is a flat torus. O

Remark 8.13.Observe the following fact: leen a metric which is not critical (for the
eigenvalue 0), the quadratic forgh= le v, T \,,2 v, (indimension 4) does not vanish
identically for any choice of harmonic spinotis; . Otherwise, the above arguments
go through to show thatl(, g) is conformally flat and is in fact a torus with the flat
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conformal structure as we shall see in a moment. In particular the metric would be
critical. We may thus assume th@tdoes not vanish identically.

Fix some opensubsgt C M. If Q|U did vanish identically we could again conclude
that (U, g|U) is conformally flat. By a slight perturbation gfwithin U we may assume
that this is not the case and ti@tdoes not vanish identically dif.

Let ¢ > 0 be a smooth function supported ih such thatyp@) does not vanish
identically. By Equation 4.1.1 the quadratic form R€)) defines a deformation direction
along which dimKeP, decreases.

The same arguments go through in dimensions 2 and 3, and inspection of the proof
of Theorem 1.4 shows that we may argue similarly for deformations of connections on
the canonical bundle. Thus in total we have:

Proposition 8.14. Let dimM = 2,3 or 4 andU an open set of\/. Given a metricg
which is not minimal we may find a minimal metticwhich is C*-close tog and is
equal tog outsidel .

LetdimM = 1,...,4. Given a connectiom on the canonical bundle which is not
minimal we may find a minimal connectigih which isC°-close toA and is equal tod
outsideU.

This extends an observation of [Hi,p.45].

9. Critical Eigenvalues¥ 0

In this section we shall prove a partial converse to [BG,Prop.29] which asserts that
eigenvalues which admit a Killing spinor are critical for all variations of the metric
which preserve the total volume.

Proposition 9.1. Let M be a closed oriented 2- or 3-manifold with a fixed spin-structure.
If for some metrigy on M some eigenvalug # Qs critical for variations of the metric
which preserve the total volume, théhl, g) is covered by the round sphere (up to
rescaling by a constant factor). In dimension(2/4, g) is isometric to the round sphere.

Corollary 9.2. Let M be a closed oriented 2- or 3-manifold with fixed spin-structure.
Fix A #Z 0. The set of metrics with given total volume for whicis not an eigenvalue of
D, is C*-generic.

Proof of the PropositionLet ¥ be a nontrivial eigenspinor for the eigenvalheBy
Proposition 4.1 the norm of is constant and we may assume it to be = 1. Let

w(X,Y) = ReX.VLW W) — %g(X, Y)

for arbitrary vector fieldsX andY'. By (ii) of Proposition 4.1v is a 2-form. ByT' C X
denote the image df' M under Clifford multiplication withW, i.e T" = TM.W. Let
H be the orthogonal complement B @ T" with respect to the metric Re.). Set
VHW = pr,; VW, where pg; denotes orthogonal projection onkb. For a local ON-
frame{es,...,em}

~ A -
VI w= Zw(ei, ej)e; W — Eei.\lf +V V.
7
Multiply this with e; and sum ovef to obtain
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0= 22 UJ(BIL', 6’]‘)6,'.6]'.\1’ + Z 8765‘-1/ .

1<J 7
Consider the case = 2: Theneje,. W is a local section off. Now the previous formula
reads
0 = 2u(ey, ep)er.ex. W + Re(@g\ll, er1e2.Whe W — Re(@f{ll!, e1e2.W)eo W .

Thus all coefficients vanish and herigé, w = —3X.0.
Now considerm = 3: HereH = {0} because the real fibre dimension Sfis 4.
Usingejezes. W = —W we obtain

0 =w(e1, ex)es. ¥ + w(ez, ez)er. W + w(es, e1)ex. W

and thusw = 0, whenceV% W = —3 X. .

Thus if m = 2 or 3 thenV¥ is a Killing-spinor. The proposition now follows from
[BFGK,Th.8,p.31] because in dimensions 2 and 3 Einstein metrics of constant scalar
curvature are in fact constant curvature metrics. [

Remark 9.3.In dimension 3, one might be tempted into believing thamust in fact
be the sphere. This, however, is not the case: Idestif§ SU, and letE = (e, ez, €3)
be a left-invariant ON-frame o08U,, where thee; satisfy the relations

[ei,ej]:2M6k7 MER*

for cyclic permutationsi(j, k) of (1,2,3). ThenV.e; = pe,. LetT be a discrete
subgroup ofSU, andM :=T'\ SU> the quotient. The metric 06U, andE descend to
M. View E as a sectiorEl : M — Pso M. Lift E to a section®' of the Spins-bundle

Ps,in M associated with the trivial spin-structure. kixe C2 and let¥ be the section
given by

W(m) = [E(m), v] € (PspinM x C?)/SUz = Pspin(M) % e C7,
whereSU, = Spinz acts viau.(g, v) := (gu,w"v). Then
. 1 §
VWV = > Zwﬂeiejllf, wj; = (Ve ej) = pey, .
1<J

Recalling thakiezes. W = —W it is now immediate tha is a Killing spinor.

10. A Remark on Seiberg-Witten Moduli Spaces

One motivation for studying generic metrics and connections origpanifolds comes
from Seiberg—Witten theory. Lél/ be a closed oriented 4-manifold with > 1, and
fix a spirf-structure onM with canonical bundld.. For a given metrigy on M and a
self-dual 2-forny) the Seiberg—Witten equations are equations for a connedtmmZ
and a sectiow of X*:

Dg7A‘If = O,
p(F1) = o(¥, W) + p(in),
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where F'} is the self-dual part of the curvature. The map iQ*(M) — Endy(X™)
is given by Clifford multiplication and the bilinear map: X, @ X1 — Enty(X™) is
defined as follows:

1
o(Wy, Wp) = ¥ @ W35 — éTr(\Ill ® W3)Id.

For (g,7m) in a dense open subsBtC M x Q*(M) the space of solutions is a smooth
manifold which contains only irreducible solutions, i.e. solutiofis4) with W = 0.

One may ask whether the set consisting of pajrsdj, where A comes from a
solution of the Seiberg—Witten equations for a fixed pairj is disjoint from the set of
pairs (g, B) € M x.Aof metrics and connections for which the space of harmonic spinors
is larger than required by the index of the Dirac operator. Hgre)(are parameters
which we will choose irD, i.e. the corresponding Seiberg—Witten moduli space contains
irreducible solutions only and is smooth. By Theorem 1.4 we know that for a generic
pair (g, B) the dimension of the space of harmonic spinors is indeed equal to the absolute
value of the index. In particular, if the index is negative there are no nontrivial positive
harmonic spinors for the generic pair, B).

Now let the index be nonpositive, i®(L)? — o(M) < 0. Suppose there is a pair
(g,n) of parameters with at least one nontrivial solutidn @) to the Seiberg—Witten
equations such thay(A) is generic. Because the index is nonpositive Theorem 1.4
implies that¥ = 0, and henceyn) ¢ D.

Suppose we are given a spistructurec with c;(L)? — o (M) < 0. If the Seiberg—
Witten invariantSW, ,,(c) is nontrivial (for parameterg(n) € D) then for any nontrivial
solution @, A) of the Seiberg—Witten equations the pajr 4) is not generic by the
preceding argument. Thus if we could show that when&li&f, ,,(c) is nontrivial we
can find at least one solutiow( A) for which (g, A) is generic ther; (L)% — (M) > 0.

Problem. Is it true that if for a given spifistructurec the Seiberg—Witten invariant
SW, »(c) is nontrivial, the index of the Dirac operator is positive ch&L)? — o (M) > 0?

That this is not true in general will be shown in the following proposition. This propo-
sition may also be interpreted as saying that if the answer to the problem should be
affirmative forb* > 1 then there is no proof which relies on infinitesimal arguments, i.e
there is no proof which tries to argue that'&-small deformation of botly andn may

be found such thaty( A) is generic for some solutiod of the equations. For such an
argument would also apply to the cdse= 1.

Proposition 10.1. Let M be a geometrically ruled surface over the cufleThere is
a connected open sét € M x Q*(M) such that for(g, n) € U the moduli space of
solutions for the anti-canonical spirstructureccan contains no reducible solution and
SWy.n(ccan) 7 0. Furthermoreb® (A1) = 1 and the signature of the Dirac operator is
negative provided gen(S) > 1. In particular, if the connectionl comes from a solution
to the Seiberg—Witten equations for the parameters) then(g, A) is not contained in
the generic set.

Note that the anti-canonical spistructure has as canonical bundle K := Q°
[LM,App.D].

Proof. Because\! is Kahler andy, (M) = 0,b*(M) = 1. The set of pairsg(,n) € Uc
M x Q*(M) for which the Seiberg—Witten moduli space contains no reducible solution
is open. The dimension of the moduli space is 0. Edie a fibre. Then becaugéhas
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trivial normal bundleg;(M)|F = c1(F) andey(K)|F = ci(Kr) = —c1(F). Now F' is
CP?, thusey(F) = 2. It follows that

(61(M ) + 2c1(K)

[F] =41,

genusc)
;o)
Corollary 1.4 of [LL] now implies that there is one compondntc U such that
for (g,n) € U the Seiberg—Witten invariants satisBiV, ,(ccan) 7 0. Note that
the canonical bundle of the spistructurec is L = K = ©2°(M). Furthermore, by
[Beau,Prop.l11.21}1(K)? = 8(1 — genus()) and the signature af/ is ¢ = 0. Hence
the index of the Dirac operator ig)(K)? — o)/8 < 0 for genus(’) > 1. For a solution
(v, A) of the Seiberg—Witten equations for parameterg) € U the pair ¢, A) cannot
be in the generic set becaugez 0. O

11. Appendix: Analytic Families of Differential Operators

This section is technical in nature and serves to prove a very simple analyticity
theorem for differential operators. This theorem is a formalization of the proof of
[Ber,Lemme 3.15]. Equivalent statements have also been proven independently in
[Ang,Th.1.1,Th.1.2] with similar applications as in this paper.

In the sequel let? and F' always denote smootfi-vectorbundles over a closed
manifold M with dimM = m. On M a smooth measure shall be fixed once and for
all. Let o always denote a multiindex IN*. By I'(Z) we denote the space of (possibly
discontinuous) sections d@.

Definition. We say that, € I'(F) = I'(M, E) depends analytically op € Y C R™ if
for fixedp € M the mapy — s,(p) € £, is analytic in a uniform manner, i.e. for every
yo € Y there ares, € I'(F) and R > 0 with Br(yo) C Y and

1
Sy = Zasa(y—yo)“ ly —yo| < R.

[e3

If ¢ € I'(Hom(Z, E)) then the analyticity ok, implies the analyticity of(s,). The
definition is local in nature, i.e i3 U V> = M ands, is analytic over botlV; thens,,
is also analytic oveil/.

If M is compact the definition of analyticity &f, is equivalent to demanding that
the coordinate functions in any local trivialization be analytic in a uniform manner.
Thus for most arguments it suffices to consider functions which depend analytically on
a parameter.

Givens, € I'(M x C), wherey € Dg = {(z1,...,2,) € R”, |z;] < R}, and
Sa € I(M x C)with s, = > Ls,y* we have for fixeh € M and 0< R’ < R the
Cauchy integral formula:

— — 1 S(T’»Clw--aCn)
)= 5(.9) = /c G o — gyt

1 8(p7 Cl’ ctt Cn)

@min Jo ¢t gt

sa(p) = G- Gn,

whereC 1= Cy x ... x Cy, With C;(t) = R'e’™"i



434 S. Maier

For the moment we shall work in a fixed coordinate system on some open subset
U of M. Supposes,(p) = s(p,y) is differentiable in the-coordinate for each fixeg
and assume furthermore thBys : U x Y — Homg(T'U, C) is continuous jointly in
both variables. Suppose inductively that this holds fotZ2lls(p, y) with |a| < j and
1 < j < k. Then the Cauchy integral formula shows that [fgr < k, D] s(p,y) is
analytic iny, thes,, are inC* and

1
Dzs(pa y) = Z aDvsa ya .
Thus for fixede > 0 we may findy € N such that folly;| < R’ < R,

1 (e}
Isy@) = 37 Zrsayllo < e.

la|<q
If M is compact we thus have the following

Lemma 11.1. Lets, € I'(£) depend analyticaly oy € Y C R™ such thats is in
C*(M x Y, E). Givene > 0andyo € Y we may choos® > 0andq € N such that
Br(yo) C Y and

1
Isy@) = ey —w)ller <€y —yol <R

la|<q

Lemma 11.2. Let E' and F' be smooth complex vector bundles o¥vére, € C>(M x
Y, Hom(E, F)) be a section which depends analyticallywTheng, defines a contin-
uous linear map+*(F) — H*(F") which depends analytically oy whereH* denotes
the Sobolev space of orderc R.

Proof. Choose connectiongg andV i in E andF respectively and (hermitian) metrics
on both vector bundles. Then f6re C*°(F) andk € N:

k
[V5(y )| 12y < const]|y[|on (Z vlESHL?(E)) .

=0

Hence| ¢, S|| < const||py || cx [|S|l+x- Thuse, : H*(E) — H*(F) is continuous and

its operator norm is bounded by a constant multiplgdfi| -« . Fork € —N this follows

by duality, and fors € R, ¢,, is continuous with operator norm bounded by a constant
multiple of ||¢, ||+ for k € N with k£ > |s|, by the interpolation argument of [Fo,3.21].
By the previous lemma, givelh € N andy € U we may findR > 0 andq € N such
that

1
ly@) = D —daly —m0)*llcx <e  ly—wol <R

la|<q

for givene > 0. ThuleaKq %qﬁa(y — yo)* converges uniformly t®,, in the operator
norm. This proves the lemma. O
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Definition. Let D, : C>*(£) — C*(F') be a differential operator of ordeg on a
compact manifold\/ which depends upon a variablee U, whereU C R™ is open.
We say thaD,, depends analytically opif in every local trivialization of£’ and £ over
VoM

2
Dy= > Aayzo

lal<q
where the4,, ,, are analytic uniformly iny and are smooth jointly in both variables.

This definition clearly is independent of the particular trivializations chosen.

Proposition 11.3. An analytic differential operatoD,, : C*°(E) — C*°(F") of order
q extends to a bounded linear operatby, : H**(E) — H*(F) which is analytic iny.

Proof. We may think ofD, as a sectio,, of Hom(JE, F'), whereJ9E denotes the
¢™ jet-bundle ofE. This section clearly is analytic ip. If j, : C°(E) — C>®(JIE)
denotes the standard inclusion th&y = d, o j,. The mapd, extends to an ana-
lytic bounded linear mag<{*(J¢E) — H*(F) and j, extends to a bounded linear
mapHs*9(E) — H3(JIE). Thus their composition is an analytic bounded linear map
HEY(E) — HE(F). O

The following proposition is the upshot of the preceding discussion. This proposition
has also been proved in [Ang,Th.1.1] for perturbations of order smaller than the order
of D.

Proposition 11.4. Let D,, t € (a,b), be an analytic family of differential operators
of order ¢ acting on the smooth sections of a complex vectorbuAdteser M such
that D, is elliptic for eacht. Let p := min{dimKerD,), t € (a,b)}. Then the set
T :={t € (a,b), dimKerD;) > p} is discrete.

Proof. If s ¢ T then for allt in a neighbourhood o§, we havet ¢ T, by upper
semicontinuity. This in particular implies that the §éts closed. Fix ang € (a,b) in

the boundary of . Split H%(E) orthogonally ag< @ H, whereK := Ker(D,), and split
HO(E) orthogonally ag” @ D, whereC' := Coker(D,). We may decomposB; as

_(at b

Dt - (Ct dt)
with respect to this splitting, wheré, : H — D is invertible fort nears. Letk :
dimKerD, — p > 0. SetR(t) = b; o dt_l o ¢ — a; and note that dimKerfp,)
dimKer(D,) if and only if R(t) = 0 [Kos]. Because is in the boundary of"’, there
is a (¢ x k)-minor of R(t) with nonvanishing determinant for a set of points with
as an accumulation point. Biit(t) depends analytically oty and thus this minor has
nonvanishing determinant@at s in a neighbourhood of. Thus there is an open interval
(t1,t2) With a < t1 < s < t2 < bsuchthatfot € (¢1,t2) \ {s} we havet ¢ T'. ThusT
is discrete. O
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