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Abstract: We study the dependence of the dimensionh0(g, A) of the kernel of the
Atyiah-Singer Dirac operatorDg,A on a spinc-manifold M on the metricg and the
connectionA. The main result is that in the case of spin-structures the value ofh0(g) for
the generic metric is given by the absolute value of the index provided dimM ∈ {3, 4}. In
dimension 2 the mod-2 index theorems have to be taken into a account and we obtain an
extension of a classical result in the theory of Riemann surfaces. In the spinc-case we also
discuss upper bounds onh0(g, A) for generic metrics, and we obtain a complete result
in dimension 2. The much simpler dependence on the connectionA and applications to
Seiberg–Witten theory are also discussed.
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1. Introduction

Given a spin-(spinc-)manifoldM much effort has been invested in the study of the Dirac
operatorDg on spinors for particular metrics. Alternatively, metrics have been used as
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an auxiliary tool to derive topological information about the underlying spin-manifold.
Via the index formula, knowledge of dimKerDg may lead to topological obstructions.
Thus if for instance KerDg = {0} on a closed 4k-manifoldM then theÂ-genus ofM
vanishes. In particular, this is true if the metricg has positive scalar curvature [L].

Thus the dependence of dimKerDg on the metric has been studied from the very
beginning of the subject [L, Hi]. In general, one expects a spin-manifold to have arbi-
trarily many harmonic spinors for a suitable metric. The existence of harmonic spinors
for suitable metrics in dimensions 0, ±1 mod 8 is proved in [Hi,Th.4.5]. The same holds
in dimensions 3 mod 4 [B̈ar1, B̈ar2], and in fact the proof of loc.cit. can probably be ex-
tended to show that in dimensions 3 mod 4 there are indeed metrics withh0(g) arbitrarily
large [B̈arP].

However, it has been conjectured that for the generic metric (a term to be made
precise) the dimension of the space of harmonic spinors is equal to the absolute value
of the index [BG, K2, B̈ar1]. More precisely,

Problem. Is it true that for a given spinc-structure on a closed m-dimensional manifold
M with fixed connectionA on the canonical bundle we have

h0(g, A) := dimKerDg,A =
{ |IndexD+

g,A| , m even
0 , m odd

for the generic metricg onM?

It is the purpose of this article to study this problem. Note that the index of the Dirac
operator does not depend on the choice of metric and connection.

It is known that in dimensions 1 and 2 mod 8 the theorem is not true for spin-
manifolds in the form stated because by the mod 2-Index theoremsh0(g) andh+(g) :=
dimKerD+

g respectively are constant modulo 2 [AtSi] (see Remark 3.3 below). Thus in
these dimensions the problem must be rephrased as follows:

Problem. Is it true that for a given spinc-structure on a closed manifoldM of dimension
1, 2 mod 8 with fixed connectionA on the canonical bundleL the functionsh0(g, A)
andh+(g, A) respectively are constant on a generic set of metrics and are either 0 or 1
on this set?

The corresponding problem for variations of complex Kählerian structures has also
been formulated [Hi,p.24] and has been conclusively answered in [K2] by exhibiting a
counterexample.

Some of the motivation for studying the dependence of the Dirac on the metric comes
from Seiberg–Witten theory. Here, it would be desirable to have a priori knowledge about
dimKerD+

g,A for a suitable metric. However, this is not possible because the connection
A is part of a solution of the Seiberg–Witten equations. We shall discuss this issue below
in Sect. 9.

The point of view adopted in this paper is the following: The Dirac operator will
be viewed as a mapD.,A : M → B(H1(Σ), H0(Σ)), i.e. as a map from the space of
metrics to the space of bounded linear operators between suitable Sobolev spaces. The
Dirac operatorDg,A is a Fredholm operator. Note that the space of Fredholm opera-
tors F := F (H1(Σ), H0(Σ)) is stratified by the setsFn,k := {f ∈ F , dimKer(f ) =
n, dimCoker(f ) = k}. Each such set is a locally closed analytic submanifold of the
Banach spaceB(H1(Σ), H0(Σ)) of bounded linear maps [Kos]. As the Dirac operator
is a formally self-adjoint operator,Dg,A ∈ Fn,n for n = h0(g, A). We shall show that
unlessg is subject to certain restrictions, the Fréchet derivativeDDg atg has image not
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tangential toFn,n. Thus we may slightly perturbg to get a metricg′ with Dg′ ∈ Fn′,n′ ,
whereh0(g′, A) = n′ < n. If however ImDDg is tangential toFn,n (in which case
we call g critical) this argument fails. The property ofg being critical is a geometric
condition which can be expressed in terms of a simple formula the analysis of which
yields severe restrictions on the geometry of the Riemannian manifold (M, g).

As there are signifiant differences between the situation in dimension 2 in comparison
to the situation in dimensions 3 or 4 we state the results separately for each dimension:

Theorem 1.1. Let M be a closed oriented 2-dimensional manifold. For a fixed spinc-
structure and a fixed connectionA on the canonical bundlePU1 with c1(PU1) 6= 0 the
generic metric satisfies dimKerDg,A = | 1

2c1(PU1)|.
If a given spin-structure is twisted by a connectionB on the trivial bundle, thought of

as a 1-formB ∈ i�1(M ), such thatB is closed and defines an element inH1(M, 2πiZ),
the generic metric satisfies dimKerDg = 0 or 2 depending only on the spin-structure.
For otherB the generic metric has no nontrivial harmonic spinors.

This theorem provides a complete answer to the problem. The theorem can be reformu-
lated in the language of the theory of Riemann surfaces, compare Theorem 7.1 below.

Theorem 1.2. LetM be a closed oriented 3-manifold.

(i) For a fixed spin-structure the generic metric has no nontrivial harmonic spinors.

(ii) For a fixed spinc-structure and a fixed connectionA on the canonical bundle the
dimension of the space of harmonic spinors is at most 2 for a generic metric.

Theorem 1.3. LetM be an oriented closed 4-manifold.

(i) For a fixed spin-structure there are no nontrivial harmonic spinors of negative
(positive) chirality for the generic metric if IndexD+

g ≥ 0 (≤ 0).

(ii) For Spinc-structures, the same conclusion as in (i) holds if IndexD+
g,A 6∈ {0, ±1}.

(iii) If IndexD+
g,A = ±1 thenh+ + h− ≤ 3 for the generic metric.

(iv) If IndexD+
g,A = 0 thenh+ = h− ≤ 2 for the generic metric.

In the spinc-case we may not only vary the metric but also the connection on the canonical
bundle. One obtains the following:

Theorem 1.4. Let (M, g) be a Riemannian spinc-manifold with fixed spinc-structure.

(i) If dimM = 2or 4 then for the generic connection on the canonical bundle there are
no nontrivial negative (positive) harmonic spinor provided IndexD+

g,A ≥ 0 (≤ 0).

(ii) If dimM = 1 or 3 there are no nontrivial harmonic spinors for the generic connec-
tion.

(iii) The same conclusions hold if both metric and connection are varied.

This result has been proved independently N.Anghel [Ang,Th.1.5], and the four-
dimensional case is contained in [Mor,Lem.6.9.3].

It is natural to consider not only variations of the 0-eigenvalue but of other eigenval-
ues, too. In fact, we shall formulate the more general results for arbitrary eigenvalues.
The main difference in the discussion of zero- and nonzero eigenvalues stems from the
fact that only the dimension of the 0-eigenspace is a conformal invariant whereas the
dimension of the other eigenspaces varies with the metric in a conformal class. Thus in
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the discussion of the 0-eigenvalue (in dimensions> 2) the main difficulty will be to fix
a suitable metric in the given conformal class. As the results for nonzero eigenvalues
seem to be of lesser importance we refer the reader to Sect. 8 for a statement of results.

This paper is organized as follows: We shall first discuss the dependence of the Dirac
operator on both the metric on the base-manifold and the connection on the canonical
bundle. Our discussion is essentially an extension of the corresponding discussion in
[BG], but we prefer to alter their definitions in order to better take into account conformal
rescaling.

We shall then define and discuss the term “generic" before describing formulas which
describe a first-order obstruction to the existence of deformations of the metric and/or
the connection on the canonical bundle which reduce the dimension of the space of
harmonic spinors. In fact, we shall prove the obstruction formula for all eigenvalues, not
only for the 0-eigenvalue.

Restricting the discussion to harmonic spinors, the aim is then to show that in di-
mensions 2 to 4 this obstruction is indeed only a first-order obstruction, i.e. that unless
the metric and/or connection is minimal there are deformations which do indeed reduce
the dimension of the space of harmonic spinors.

As an immediate application we first prove the rather simple Theorem 1.4 and we
make preliminary remarks on dimensions 3 and 4. Then we discuss the case dimM = 2
where the main feature is Serre-duality whereas conformal invariance plays no role.
As indicated above, Theorem 1.1 has a translation into the language of the theory of
Riemann surfaces. This translation is carried out in Sect. 7.

In dimensions 3 and 4 conformal invariance is the key-feature and most effort has to
be put into the conformal fixing of the metric. It might be tempting to choose the metric
within the conformal class such that the scalar-curvature is constant, but that approach
seems to lead nowhere. Instead, we will locally rescale the metric such that harmonic
spinors will have constant length.

We shall then consider nonzero eigenvalues. Here, the main feature is the appearance
of Killing spinors which allows us to prove that for the generic metric in dimension 2
or 3 there are noλ-eigenspinors for a fixed numberλ 6= 0.

Finally, we shall briefly discuss the Seiberg–Witten moduli spaces. The upshot of the
discussion is the observation that for any connectionA on the canonical bundle which
comes from a solution to the Seiberg–Witten equations with parameter a metricg, the
pair (g, A) in general is non-generic in our sense if IndexD+

g,A ≤ 0.
In an appendix we prove a result for analytic families of elliptic operators which is

implicit in the literature but for which no general statement and proof seems to be known.
We make use of the theorem in our discussion of generic metrics and connections.

2. The Dependence ofDg,A on the Metric and Connection

This section contains an exposition of the results of Bourguignon and Gauduchon [BG]
with the aim of extending their discussion to variations of the Dirac operator with
respect to variations of connections on twisting bundles. In addition, we shall redefine
the identification of spinor bundles for different metrics so as to take into account the
L2-Hilbert space structure induced on the spinor bundles by the corresponding volume
forms.

2.1. Preliminaries.First, let us briefly review the terminology which we shall employ.
For a thorough exposition see for example [LM]. Given anm-dimensional Riemannian
manifold (M, g) we shall byPSO(M ) denote the bundle of orthonormal frames.
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The manifoldM is spin, if and only if there is a 2-fold connected cover ofPSO(M )
such that on each fibre the covering map reduces to the standard two-fold coverρ :
Spinm → SOm. Such a covering is a principalSpinm bundle and we denote this
bundle byPSpin(M, g).

Similarly, M is spinc, if and only if there is aS1-bundleP and a connected double
cover of the fibre productPSO(M ) ×M P which on each fibre is the two-fold covering
map ρ̃ : Spinc

m → SOm × S1. Such a cover is a principalSpinc
m-bundle which we

shall denote byPSpinc (M, g, P ). We shall refer toP as the canonical bundle of the
Spinc-structure.

If m is even letΣm be the irreducible module for the Clifford-algebraClm, and
if m is odd letΣm be the irreducible module forClm on which the volume element
i[(m+1)/2]e1 . . . em acts as +Id. Given a spin- or spinc-structure, we form the spinor
bundlesΣg := PSpin(M, g)×rep Σm andΣg := PSpinc (M, g, P )×rep Σm respectively
(whererep denotes the representation ofSpinm andSpinc

m respectively which come
from the standard embeddingSpinm ⊂ Spinc

m ⊂ Clm). Note that in even dimensions
Σ splits into the±-eigenbundles for the (fibrewise) action of the volume element.

In the spin-case the Atiyah–Singer Dirac operatorDg acting on sections ofΣ is
defined by

Dg : C∞(Σ)
∇̃g

−→ �1(M ) ⊗ C∞(Σ)
∼=−→ C∞(TM ) ⊗ C∞(Σ) −→ C∞(Σ) ,

where the last arrow is Clifford-multiplication, and where∇̃g denotes the connection
onΣ induced by the Levi–Civit̀a-connection onPSO(M, g). In the spinc-case, given a
connection on the canonical bundleP , we get an induced connectioñ∇g,A on Σ and
thus the Atiyah–Singer Dirac operatorDg,A acting on sections ofΣ.

2.2. The Identification.In order to compare the Dirac operator on a fixed manifoldM
with fixed spin-(spinc) structure for different metrics (and connections on the canonical
bundle) we need a canonical way of identifying the spinor bundlesΣg and Σh for
different metricsg andh. We shall briefly review how this is done [BG].

Consider for the moment a realm-dimensional vector spaceV . Given two metrics
g, h ∈ Sym(V ∗ ⊗ V ∗) there is a unique positive endomorphismH of V such that
h(., .) = g(H., .). Let b := H−1/2. If E is a g-orthonormal frame thenb(E) is a h-
orthonormal frame. Thusb defines a smoothSOm-equivariant map of the manifold of
g-orthonormal framesP (g) to the manifold ofh-orthonormal framesP (h).

Let gt := (1 − t)g + th, and letbt : P (g) → P (gt) be the associated map. Let
π : P̃ (gt) → P (gt) be the connected 2-fold covering which (after a choice of basepoint)
we may identify with the connected 2-fold coveringρ : Spinm → SOm. GivenE ∈
P (g) chooseẼ ∈ P̃ (g) such thatπ(Ẽ) = E. Then the path (t, bt) ⊂

⋃
t∈[0,1] P (gt)

lifts uniquely to a pathβt in
⋃

t∈[0,1] P̃ (gt) such thatβ0(Ẽ) = Ẽ. Clearly, we have
βt(E.q) = βt(E).q for q ∈ Spinm.

We thus get aSpinm-equivariant mapβh,g = β1 : P̃ (g) → P̃ (h). Of course, in
the preceding discussion we may replace the pathgt of metrics by any smooth path of
metrics connectingg andh. The resulting mapβ1 is independent of the path chosen
because the space of metrics is contractible.

Note that because of the invariant description we may extendbh,g andβh,g to bundles
to obtainSOm- resp.Spinm-equivariant smooth bundle mapsbh,g : PSO(M, g) →
PSO(M, h) andβh,g : PSpin(M, g) → PSpin(M, h) (providedM is spin), such that
βh,g coversbh,g. Of course, we haveβh,g = β−1

g,h.
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Similarly, if M is spinc, fix a spinc-structure with canonical bundleP . TheSOm ×
S1-equivariant bundle mapbh,g × Id lifts to a Spinc

m-equivariant bundle mapβh,g :
PSpinc (M, g, P ) → PSpinc (M, h, P ).

The mapβh,g extends to an isometryβh,g : Σg → Σh of Hermitian bundles. For
any pair (g, A) and (h, B) of metrics and connections onP denote by∇̃g,A and∇̃h,B

respectively the connections induced onΣg resp.Σh by the Levi–Civit̀a-connections
onTM andA resp.B onP . Thenβ−1

h,g ◦ ∇̃h,B ◦ βh,g is a connection onΣg, and in fact

it is the connection induced by the pair (b−1
h,g ◦ ∇̃h,B ◦ bh,g, B).

Note thatg is b−1
h,g ◦ ∇h,B ◦ bh,g-parallel but thatb−1

h,g ◦ ∇h,B ◦ bh,g is usually not
torsion-free. Also note that we have the following identity:

βh,g(X.s) = bh,g(X).βh,g(s) .

It may now be tempting to useβh,g to pull back the Dirac operator on sections ofΣh

to a differential operator on sections ofΣg [BG]. However, even thoughβh,g induces
an isometry of Hermitian bundles it does not induce an isometry of Hilbert spaces
L2(Σg, dvolg) andL2(Σh, dvolh), where dvolg and dvolh denote the volume forms.
Instead, let a positive functionfh,g be defined by dvolh = f2

h,gdvolg and set

β̂h,g :=
1

fh,g
βh,g .

This β̂h,g induces an isometry of Hilbert spacesL2(Σg, dvolg) andL2(Σh, dvolh). The
pull-back

D̄h,B := β̂−1
h,g ◦ Dh,B ◦ β̂h,g

then has the same properties (symmetry, self-adjoint closure etc.) asDh,B . We have

D̄h,B = fh,gβ
−1
h,g ◦ Dh,B ◦ f−1

h,gβh,g

= β−1
h,g ◦ Dh,B ◦ βh,g − f−1

h,gbg,h(gradhfh,g) ,

wherebh,g(gradhfh,g) operates via Clifford multiplication. For any smooth functionf
we haveg(bg,h(gradhf ), .) = g(bh,g(gradgf ), .). We thus obtain

D̄h,B = β−1
h,g ◦ Dh,B ◦ βh,g − f−1

h,gbh,g(gradgfh,g) .

2.3. Computing the derivative of the Dirac Operator.We shall have to compute the
derivative ofD̄h,B with respect toh andB. First, note that the second summand does
not depend onB. We shall compute this term first:

Pick k ∈ C∞Sym(T ∗M ⊗ T ∗M ) and let gt := g + tk for small t. Then
bgt,g = (Id + tK)−

1
2 whereK ∈ C∞Symg(TM ) is defined byg(K., .) = k(., .). Thus

d
dt

∣∣
t=0

bgt,g = − 1
2K. Now dvolgt

=
√

det(I + tK)dvolg. Hencefgt,g = (det(I + tK))1/4

and d
dt

∣∣
t=0

fgt,g = 1
4Trgk. Note thatfg,g ≡ 1 and thus

d

dt

∣∣∣∣
t=0

(
1

fgt,g
bgt,g(gradgfgt,g)

)
=

1
4

gradg(Trgk) .

To deal with the first summand we shall write it in terms of a local frame: If
{e1, . . . , em} is a localg-orthonormal frame on some open contractible setU ⊂ M
one may compute
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β−1
h,g ◦ Dh,B ◦ βh,g =

m∑
i=1

ei.∇̃g,A
bh,g(ei) +

m∑
i=1

ei.
(
β−1

h,g ◦ ∇̃h,B
bh,g(ei) ◦ βh,g − ∇̃g,A

bh,g(ei)

)
,

see [BG]. We may think ofΣg overU as coming from a spin-structure tensor product
PSpin(U, g). Given a Hermitian connectionA on U × C write A as A = d + φA,
φA ∈ i�1(U ). Let ∇̃g be the connection onPSpin(U, g) ×ρ Σm induced by the Levi–
Cività-connection. Theñ∇g,A = ∇̃g + 1

2φA overU . It is then immediate that

d

dt

∣∣∣∣
t=0

D̄g,A+ta =
1
2
a, a ∈ i�1(M ) ,

wherea acts via Clifford multiplication.
Finally, we are left with computingd

dt

∣∣
t=0

β−1
gt,g ◦ Dgt,A ◦ βgt,g for gt := g + tk. This

has been done in [BG], where the following formula is obtained:

d

dt

∣∣∣∣
t=0

β−1
gt,g ◦ Dgt,A ◦ βgt,g = −1

2

∑
i

ei∇̃g,A
K(ei) +

1
4

(d(Trgk) − divgk)

Note that in comparison to [BG] we prefer to use the opposite sign convention for the
divergence operator.

We obtain the following formula which is an immediate consequence of the preceding
discussion:

Proposition 2.4. The derivative ofD̄g,A at (g, A) in the direction(k, a), k ∈ C∞Sym
(T ∗M ⊗ T ∗M ) anda ∈ i�1(M ), is given by

(DD̄)(g,A)(k, a) = −1
2

∑
i

ei∇̃g,A
K(ei) − 1

4
divgk +

1
2
a ,

where in the last two terms the 1-forms act via Clifford-multiplication.

Remark 2.5.More generally, ifE is a complex vector bundle with connection∇E we
may compute the Fréchet derivative of̄Dg,A,∇E on the twisted spinor bundleΣg ⊗ E.
The same computation as above then yields:

(DD̄)(g,A,∇E )(k, a, 8) = −1
2

∑
i

ei∇̃g,A,∇E

K(ei) − 1
4

divgk +
1
2
a +

∑
i

ei. ⊗ 8(ei) ,

where8 ∈ �1(M ) ⊗ End(E).

Remark 2.6.It should be remarked that the conformal invariance of the dimension of
the space of harmonic spinors is not only a feature of the Atiyah–Singer operator but is a
quite general phenomenon. More precisely, letM be a spinc-manifold with fixed spinc-
structure, a metricg and a connectionA on the canonical bundle. Letρ : Clm → End(W )
be any hermitian representation and form the bundleΣ = Pspinc (M, g, PU1) ×ρ W , and
let E be any complex vector bundle with connection. Then the dimension of the space
of harmonic spinors of the twisted Dirac operator onΣ ⊗ E is a conformal invariant.
The proof (which involves computations similar to the ones above) proceeds precisely
as in [Hi;BFGK,Th.13;Hij1,Prop.4.3.1]. In fact, ifh = e2fg set β̄h,g := e− m−1

2 fβh,g.
ThenDh,A,E = e−f β̄h,g ◦ Dg,A,E ◦ β̄−1

h,g.
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3. Generic Metrics and Connections

Definition. Let E → M be a smooth (real or complex) vector bundle over the closed
manifoldM , and letE ⊂ C∞(E) be aC0-open subset of smooth sections ofE. We shall
call a subsetE ′ ⊂ E Ck-generic inE if E ′ is C∞-dense andCk-open inE .

Note that ifE ′ is Ck-generic inE then it is alsoCl-generic for anyl > k.
In our applications,E ′ = M ⊂ C∞Sym(T ∗M ⊗ T ∗M ), E ′ = M × A andE ′ = A

according to context, whereMdenotes the set of smooth metrics onM andA = i�1(M ).
In the sequel consider the Dirac operator defined on a bundleΣ obtained from

PSpin(M, g) and PSpinc (M, g, PU1) respectively by a hermitian representationρ :
Clm → End(W ). Let Mλ

min ⊂ M (alternatively (M × A)λmin ⊂ M × A, or
Mλ

min(A) = M × {A}, or indeedAλ
min(g) = {g} × A) denote the set of metrics

(of metrics and connections on the canonical bundle, of metrics, of connections on the
canonical bundle) for which dimKer(Dg,A − λ) is minimal among all possible choices
(in the third case we assume the connection to be fixed, in the fourth case we assume a
metricg to be fixed).

Proposition 3.1. The setsMλ
min ⊂ M, (M × A)λmin ⊂ M × A, andMλ

min(A) ⊂
M × {A} areC1-generic. The setAλ

min(g) ⊂ A is C0-generic.

Proof. SupposeM is spin. We shall argue the first case: Fix a connection∇ onΣ. Then
Dg = S1 ◦ ∇ + S2, whereS1 ∈ C∞Hom(�1(M ) ⊗ Σ, Σ) andS2 ∈ C∞End(Σ). Then

‖Dgs‖L2 ≤ max|S1|.‖∇s‖L2 + max|S2|.‖s‖L2 ≤ const.(max|S1| + max|S2|)‖s‖H1 .

S1 andS2 depend only ong and its first derivatives. Thusg 7→ Dg ∈ B(H1(Σ), H0(Σ))
is continuous in theC1-topology onM. If dimKerDg is minimal then so is dimKerDg′

for Dg′ in a neighbourhood ofDg in the norm topology onB(H1(Σ), H0(Σ)). This
shows thatMλ

min is C1-open.
Let g ∈ Mλ

min andh ∈ M. Setgt := (1 − t)g + th. The family of operators̄Dgt

is self-adjoint and analytic int in the sense of the appendix. Proposition 11.4 of this
appendix shows that for all but finitely manyt ∈ [0, 1] we havegt ∈ Mλ

min. It follows
thatMλ

min is C∞-dense inM.
The case (M × A)λmin ⊂ M × A is argued similarly. In the caseAλ

min(g) ⊂ A
note that withDg,A = S1 ◦ ∇ + S2 the sectionsS1 andS2 depend continuously onA.
The argument now proceeds as before. �

Example 3.2.SupposeM is spin. IfM has a metricg of positive scalar curvature, then by
the preceding proposition we know that for each metrich in theC1-generic setMλ

min of
metrics onM there are no harmonic spinors, because the Dirac-operator for the metric
g has none by [L;LM,Cor.8.9]. Thus because for simply connected closed manifolds
of dimensionm ≥ 5 the existence of positive scalar curvature metrics is equivalent
to the vanishing of certain topological obstructions [GL, Sto] we find a rich class of
spin-manifolds for which the answer to the problem in the introduction is affirmative.

Remark 3.3.As stated in the introduction, the problem in its original form does not
hold in dimensions 1, 2 mod 8. To see this letK3 be aK3-surface with the opposite
orientation and defineM := K3#(S1 × S3). ThenM has signatureσ(M ) = 16. Let
Y1 := M ×M ×S1 andY2 := M ×M ×F , whereF is a closed 2-manifold of genus≥ 2.
Choose any spin-structure onM and take the spin-structure onS1 which does not extend
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to the disc, and then furnishY1 with the product spin-structure. By multiplicativity of
the spin-number we see thath0(g) ≡ 1 mod 2 [AtSi,Th.3.1]. Similarly, by Remark 3 of
[At,p.60] we see thatY2 has a spin-structure withh0(g) ≡ 1 mod 2.

Convention.We shall refer to metrics inMλ
min as eitherminimalor generic. Similarly,

we shall call metrics inMλ
min(A) respectively connections inAλ

min(g) minimal or
generic, and pairs in (M × A)λmin are referred to as either minimal or generic, too.

4. The Obstruction Formula

Let M be closed spinc-manifold and fix a metricg and a connectionA on the canonical
bundle. The formula of the first section shows thatD̄ : M → DO1 as map from the
Fréchet space of smooth metrics to the Fréchet space of differential operators of order
1 is at leastC1. Thus so isD̄ : M → B(H1(Σ), H0(Σ)), whereH1(Σ) is the Sobolev
space of order 1 andH0(Σ) = L2(Σ).

LetF denote the set of Fredholm operators inB(H1(Σ), H0(Σ)), and letFn,k denote
the stratumFn,k := {f ∈ F , dimKer(f ) = n, dimCoker(f ) = k}. By [Kos] eachFn,k

is a locally closed analytic submanifold ofB and the fibre of the analytic normal bundle
of Fn,k atf is given by Hom(Ker(f ), Coker(f )).

SupposeD̄g,A − λ ∈ Fn,n for a fixedλ ∈ R (recall that becausēDg,A − λ is
formally self-adjoint we have Ker(̄Dg,A − λ) = Coker(D̄g,A − λ) ⊂ C∞(Σ)). If there
is (k, a) ∈ Sym(T ∗M ⊗ T ∗M ) × i�1(M ) such that (DD̄)g,A(k, a) is not tangential
to Fn,n then for smallt the operatorD̄gt,At − λ will not be in Fn,n. Here, as before,
gt = g + tk andAt = A + ta. By upper semicontinuity of the dimension of the kernel of
D̄gt,At

for some sufficiently smallt we haveD̄gt,At
∈ Fn′,n′ with n′ < n.

Note that if we rescale the metric by a constant factorµ2, µ > 0, we haveD̄µ2g,A =
1
µDg,A. Thus for no eigenvalueλ 6= 0 can the image of the differentialDD̄g,A atD̄g,A−λ

be tangential toFn,n for variations of the metric unless we restrict to such variations
which preserve the total volume. Hence

Convention.For brevity’s sake we shall call a pair (g, A) critical at the eigenvalueλ if
the image ofD(D̄−λ)g,A restricted to elements (k, a) ∈ Sym(T ∗M ⊗T ∗M )×i�1(M )
with

∫
Trgk dvolg = 0 is tangential toFn,n. Similarly, we call a metric (connection)

critical at the eigenvalueλ if for a fixed connection (metric) the image ofD(D̄ − λ)g,A

is tangential toFn,n, where the derivative is computed with respect to variations in the
metric (connection) only.

A good criterion with which to decide whether ImDD̄g,A is tangential toFn,n is the
following:

Proposition 4.1. The pair(g, A) is critical at the eigenvalueλ if and only if

(i) 〈X.91, 92〉 = 0 ,

(ii) 〈X.∇̃g,A
X 91, 92〉 + 〈91, X.∇̃g,A

X 92〉 = 2λ
m 〈91, 92〉g(X, X) ,

(iii) 〈91, 92〉 = const ifλ 6= 0 ,

for all X ∈ C∞(TM ) and9i ∈ Ker(Dg,A − λ).
In case we vary the connection only, the condition forA being critical is equivalent

to (i), and if we vary the metric only, (ii) and (iii) are equivalent to the metric being
critical.
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Proof. The image ofDD̄g,A is tangential toFn,n atDg,A if and only if(
DD̄g,A(k, a)91, 92

)
L2 = 0

for all 9i ∈ Ker(Dg,A − λ) and (k, a) ∈ Sym(T ∗M ⊗ T ∗M ) × i�1(M ) with∫
Trgk dvolg = 0.

DefineQg,A
91,92

(X, Y ) := 1
2〈X.∇̃g,A

Y 91, 92〉 + 1
2〈Y.∇̃g,A

X 91, 92〉. Then

〈
∑

i

ei.∇̃g,A
Kei

91, 92〉 =
∑
i,j

k(ei, ej)Qg,A
91,92

(ei, ej) = 〈k, Qg,A
91,92

〉 ,

where the term on the right-hand side means the usual pointwiseC-bilinear product of
C-valued symmetric bilinear forms. With this notation the condition that the image of
DDg,A be tangential toFn,n is equivalent to:

0 =
∫

M

(
−1

2
〈k, Qg,A

91,92
〉 − 1

4
〈(divgk).91, 92〉 +

1
2
〈a.91, 92〉

)
dvolg

for all λ-eigenspinors91 and92.
If we setk = 0 then we immediately obtain the first condition of the proposition.

This also implies that the integral over the third term vanishes identically.
We may repeat the above argument with91 and92 interchanged. Denote bȳQg,A

92,91

the complex conjugate ofQg,A
92,91

. Then adding the corresponding equations we get

0 =
∫

M

〈k, Qg,A
91,92

+ Q̄g,A
92,91

〉dvolg (4.1.1)

for all k ∈ C∞Sym(T ∗M ⊗T ∗M ) with
∫

Trgk dvolg = 0. This implies that the section
in the bundle of symmetric bilinear formsQg,A

91,92
+ Q̄g,A

92,91
is equal to its trace part

and that its trace is constant. Forλ 6= 0 the latter condition is equivalent to (iii) of the
proposition, whereas the former is just (ii).

Now let Z :=
∑

〈ei.91, 92〉ei with respect to a localg-orthonormal frame.Z is
globally defined, and computing at a pointx ∈ M , where we may assume the local
g-orthonormal frame to satisfy∇gei|x = 0 we find:

LZg(X, X) = 2g(∇g
XZ, X)|x

= 2X〈ei.91, 92〉|x g(ei, X)|x
= 2〈X.∇̃g,A

X 91, 92〉|x − 2〈91, X.∇̃g,A
X 92〉|x

= 2Qg,A
91,92

(X, X)|x − 2Q̄g,A
92,91

(X, X)|x .

Adding (ii) (multiplied by a factor of 2) to the last equation yields

(ii)’
1
4
LZg(X, X) = 〈X.∇̃g,A

X 91, 92〉 +
λ

m
〈91, 92〉g(X, X) ,

which is of course equivalent to (ii). To prove that (i), (ii) and (iii) imply that ImDD̄g,A

is tangential toFn,n, observe that (L.g)∗(k) = −2
∑

(divgk)(ei)ei [Be,1.60]. Thus (ii)’
implies

−1
2

∫
M

〈k, Qg,A
91,92

〉dvolg = −1
8

∫
M

〈k, LZg〉dvolg +
λ

2m

∫
〈91, 92〉Trgk dvolg
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=
1
4

∫
M

〈divgk.91, 92〉dvolg .

The last equality is clear forλ = 0. In caseλ 6= 0 recall that〈91, 92〉 is constant and∫
Trgk dvolg = 0. But this equation precisely states that (g, A) is critical. Inspection of

the proof shows that if we restrict to variations of the metric, (ii) and (iii) are equivalent
to the metric being critical. And in case we vary only the connection, the property ofA
being critical is equivalent to (i) only. �

The following is an immediate corollary of the definitions and the preceding proposition:

Corollary 4.2. For generic metrics conditions (ii) and (iii) of the proposition are satis-
fied. For generic connections (i) is satisfied. For generic pairs of metrics and connections
(i), (ii) and (iii) are satisfied.

Remark 4.3.Note that an eigenvalueλ which admits a Killing spinor, i.e. a spinor9
which satisfies∇̃X9 = − λ

mX.9, is a critical eigenvalue for variations of the metric
which preserve the total volume [BG,Prop.28]. In Proposition 9.1 below we shall prove
a partial converse to this.

Remark 4.4.Consider only the eigenvalue 0: It is clear from Remark 2.6 above that (i)
is conformally invariant. Some straightforward but tedious computation shows that the
vanishing ofQg,A

91,92
+Q̄g,A

92,91
is a conformally invariant statement, too. More precisely, if

h = e2fg we haveDh,A,E = e−f β̄h,g ◦Dg,A,E ◦β̄−1
h,g by Remark 2.6 above. Furthermore,

∇̃h,A
X = βh,g{∇̃g,A

X + 1
4(X.∇f.+∇f.X.)}β−1

h,g [LM,p.134]. We may computeQh,A

β̄91,β̄92
+

Q̄h,A

β̄92,β̄91
, where we writeβ := βh,g andβ̄ := β̄h,g to simplify notation:

Qh,A

β̄91,β̄92
= 〈X.∇̃h,A

X β̄91, β̄92〉
= e− m−3

2 f 〈X.(β−1∇̃h,A
X )β̄91, 92〉

= e(2−m)f

{
Qg,A

91,92
+

1
4
〈(X.X.∇f − X.∇f.X).91, 92〉

−m − 1
2

(Xf )〈X.91, 92〉
}

= e(2−m)f
{

Qg,A
91,92

− m

2
(Xf )〈X.91, 92〉

}
.

Adding this to the corresponding result for̄Qh,A

β̄92,β̄91
yields:

Qh,A

β̄91,β̄92
+ Q̄h,A

β̄92,β̄91
= e(2−m)f

(
Qg,A

91,92
+ Q̄g,A

92,91

)
.

This shows that (ii) is a conformally invariant equation.
Note that ifm = 2 the formQ := Qg,A

91,92
+ Q̄g,A

92,91
is independent of the choice of

metric in a given conformal class. It depends only on the connectionA (and thus on the
holomorphic structure on the line bundleΣ+) and the choice of harmonic spinors. To
better understand the meaning of this consider the case of flat connectionsA only. Let
q(X, Y ) := Re〈X.∇̃g

Y 9+, 9−〉 + Re〈9+, X.∇̃g
Y 9−〉. Note that Trgq = 0 and thusq is

anti-J-invariant, i.e.q(J., J.) = −q(., .), whereJ denotes the complex structure induced
by the metricg. As 32,0(M, J) is trivial, q is in fact a symmetric form. Note that we
recoverQ from q by the identityQ = q − iqJ with qJ (., .) := q(J., .).
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Fix p ∈ M and choose an ON-frame{e1, e2} aroundp and a vector fieldX with
∇e1|p = ∇X|p = 0. Compute at the pointp:

divgq =
∑

i

eiq(ei, X)

=
∑

i

ei

(
Re〈X.∇̃g

ei
9+, 9−〉 + Re〈9+, X.∇̃g

ei
9−〉

)
= Re〈X.∇̃ei

∇̃ei9+, 9−〉 + Re〈9+, X.∇̃ei
∇̃ei9−〉

= −Re〈X.∇̃∗∇̃9+, 9−〉 − Re〈9+, X.∇̃∗∇̃9−〉 .

Using the Weitzenb̈ock formulaD2
g = ∇̃∗∇̃ + s/4 we see that divgq = 0. The condition

that a symmetric bilinear form be trace-free is invariant under conformal changes. In
dimension 2 the property of a symmetric bilinear form being divergence-free is a con-
formally invariant property, too. Thus we see thatq defines an element in the tangent
spaceT[g]T to Teichm̈uller spaceT at the point defined by the conformal class [g] of
g, see for example [Tr]. The image of the map which assigns to each pair (9+, 9−) of
harmonic spinors the formq(X, Y ) := Re〈X.∇̃g

Y 9+, 9−〉 + Re〈9+, X.∇̃g
Y 9−〉 is thus

the subspace of the tangent spaceT[g]T which contains those infinitesimal deformations
which reduce the dimension of the space of harmonic spinors. Conformal invariance of
q thus reflects the fact that spin-geometry on 2-manifolds is essentially equivalent to the
study of holomorphic square roots of the canonical bundleK = �1,0(M ) on Riemann
surfaces. For this point of view see Sect. 7 below.

Remark 4.5.Define a gauge-transformation to be a smooth mapu : M → U1. Such a
u acts on (g, A) by the ruleu.(g, A) := (g, u(A) = A + 2udu−1). It is immediate that
∇̃g,u(A) = u ◦ ∇̃g,A ◦ u−1. It follows thatDg,u(A) = u ◦ Dg,A ◦ u−1, which in particular
implies that∇̃g,u(A) and∇̃g,A have the same spectrum, and it is also immediate that if
(i), (ii) and (iii) of the proposition hold for (g, A) and someλ in the spectrum of̃∇g,A,
then they also hold for (g, u(A)). Thus the condition thatλ be critical is invariant under
gauge-transformations.

Remark 4.6.Let M be even dimensional. The complex volume elementi
m
2 e1 . . . em ∈

Clm(TM ) acts onΣ and splits it into the±-eigenbundlesΣ+
g andΣ−

g . Dg,A intertwines
Σ+

g andΣ−
g . It is clear thatβh,g respects this splitting, i.e.βh,g : Σ±

g → Σ±
h . Thus

we may considerDh,B = D+
h,B + D−

h,B as operator onΣ±
g . We may thus ask under

what conditions on (g, A) is ImDD+
g,A tangential toFn,k(H1(Σ+

g ), H0(Σ−
g )). Because

KerDg,A = KerD+
g,A ⊕ CokerD+

g,A we do not get any new information. In fact, what
one would get if one proceeded as in the above proof are equations (i) and (ii) with91
replaced by9+ and92 replaced by9−. But these equations are contained in the above
proposition, and conversely if these equations are known for9+ and9− we retrieve (i)
and (ii) above because these equations are symmetric in9+ and9−.

Remark 4.7.Equations (ii) and (iii) are essentially contained in [BG]: If the analytic
functionsλ1(t), . . . , λn(t) (pairwise different) withλi(0) = λare eigenvalues forDgt

−λ,
where the dimension of theλ-eigenspace isn then the equationsddt

∣∣
t=0

λi = 0 are implied
by (ii) replacing harmonic spinors by eigenspinors with eigenvalueλ for Dg [BG,Th.24].
Conversely, the proof of [BG,Th.24] may easily be modified to prove that ifd

dt

∣∣
t=0

λi = 0
for all i then the metricg is critical at the eigenvalueλ. Thus the bifurcation-theoretic
approach of [BG] is equivalent to our approach.
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5. Partial Proofs

In this section we will prove Theorem 1.4 and the statements of Theorems 1.2 and 1.3
concerning spinc-manifolds.

The following proof is essentially the proof of [Hij2] which however is applied rather
differently in this reference.

Proof of Theorem 1.4.Consider dimensions 2 and 4 first. By Proposition 4.1 we know
that for a fixed metric the image ofD+

g,A is tangential to someFn,k with n, k > 0 if
and only if〈X.9+, 9−〉 = 0 for all harmonic spinors9+ and9−. Suppose that neither
spinor vanishes. Then by the unique continuation principle [BW] there is an open dense
subset ofM on which neither vanishes. In dimension 2 the complex fibre dimension
of Σ± is 1 and in dimension 4 it is 2. Thus there is always a vector fieldX such that
〈X.9+, 9−〉 6= 0. This shows that unless here are no nontrivial harmonic spinors of either
positive or negative type we may deform the connection so as to reduce the dimension of
the space of harmonic spinors. In dimensions 1 and 3 one may argue similarly: In these
dimensions the complex fibre dimensions ofΣ are 1 and 2 respectively. Thus given a
nontrivial harmonic spinor9 we may always find a vector fieldX with 〈X.9, 9〉 6= 0.
Thus unless there are no nontrivial harmonic spinors we may deform the connection so
as to reduce the dimension of the space of harmonic spinors.�

In dimensions≥ 5 it might happen that for a given metric and connectionTpM.Hp ∩
Hp = {0} for everyp ∈ M , whereH 6= {0} is the space of harmonic spinors and
Hp is the subspace in the fibreΣp spanned by harmonic spinors. In this case (i) of
Proposition 4.1 is satisfied but we have no means of deforming the connection so as to
reduce the dimension ofH.

Also note that we are not able to extend our arguments to dimensions 7 and 8 as in
[Hij2] because in dimensions 7 and 8 there is in general no parallel real structure on the
spinor bundleΣ for a given spinc-structure.

The following lemma contains parts of the statements of Theorems 1.2 and 1.3
concerning spinc-manifolds:

Lemma 5.1. Let M be a closed oriented 3- or 4-manifold with fixed spinc-struture
and fixed metricg and connectionA on the canonical bundle. Suppose there are non-
trivial harmonic spinors (of both chiralities in dimension 4) and that condition (ii) of
Proposition 4.1 is satisfied. Then

(i) All nontrivial harmonic spinors vanish on the same setN and on any connected set
in the complement ofN we have|91|/|92| = const for nontrivial harmonic spinors
9i.

(ii) If dimM = 3 the dimension of the space of harmonic spinors is at most 2.

(iii) If dimM = 4 and IndexDg,A 6= 0, a generic metric hash+ + h− ≤ 3 and
IndexDg,A ∈ {±1} unless either ofh± is zero.

(iv) If dimM = 4 and IndexDg,A = 0 thenh+ = h− ≤ 2 for the generic metric.

Proof. Consider first the 4-dimensional case: Suppose ImD+
g,A is tangential toFn,k,

n, k ≥ 1 such that there are linearly independent harmonic spinors91
+, 92

+, and let9−
be a nontrivial negative harmonic spinor. Then by Proposition 4.1,

〈X.∇̃g
X9i

+, 9−〉 + 〈9i
+, X.∇̃g

X9−〉 = 0
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for i ∈ {1, 2}. Suppose for the moment that there is an open connected setU ⊂ M
on which91

+ does not vanish and where92
+ = f91

+ for a smooth functionf . Plugging
into the equation yields (Xf )〈X.91

+, 9−〉 = 0. At a fixed pointp ∈ U we may choose a
basis{X1, . . . , X4} for TpM such that〈Xk.91

+, 9−〉 6= 0. Thusdf |p = 0, and hencef
is constant onU . By the unique continuation principle92

+ is a constant multiple of91
+

in contradiction to the assumption. Thus the set of pointsp at which91
+|p and92

+|p are
linearly independent is open and dense. Fix a connected open subsetU such that neither
91

+|p and92
+|p vanish or are linearly dependent at any pointp in U and such that9−

vanishes nowhere onU .
Given another harmonic spinor9′

+ we may write9′
+ = f19

1
+ + f29

2
+ (wherefi ∈

C∞(M, C)) overU . Replacing9i
+ in the equation by9′

+ we obtain

(Xf1)〈X.91
+, 9−〉 + (Xf2)〈X.92

+, 9−〉 = 0 .

Let Fi ⊂ TU be the subbundle Ker(X ∈ TU |p → 〈X.9i
+, 9−〉|p). Both Fi have 2-

dimensional real fibres andF1 ∩ F2 = {0}. By the previous equation, a sectionX1 ∈
C∞(F2) satisfiesX1f2 = 0, and a sectionX2 ∈ C∞(F1) satisfiesX2f1 = 0.

Fix a pointp ∈ U and 0 6= X2 ∈ F2|p with X2f2|p = 0, and chooseX1 ∈ F1|p.
SetX = X1 + X2 and plug into the above equation. Then 0 = (X1f1)〈X2.9

1
+, 9−〉.

By fibrewise linear independence of91
+ and92

+ onU we findX1f1|p = 0. Hencef1 is
constant on each component ofU , and similarlyf2 is constant on each component, too.
By the unique continuation principle9′

+ is a linear combination of91
+ and92

+.
Thus ifh+, h− ≥ 2 we find (by applying the above argument to positive and negative

harmonic spinors)h+ = h− = 2. Thus if IndexDg,A 6= 0 and bothh+ andh− are positive
we find that eitherh+ or h− are≤ 1, andh+ andh− differ by one.

In dimension 3 it suffices to note that ifh ≥ 2 then two linearly independent harmonic
spinors91 and92 have91|p and92|p linearly independent forp in some open dense set.
This is proved as the corresponding statement in dimension 4. Then arguing as before
we see thath ≤ 2.

If the spinc-structure is in fact a spin-structure we have a quaternion-structure on
the spinor-bundle. Thus a critical metric onM which has both positive and negative
harmonic spinors satisfiesh+ = h− = 2. �

6. Dimension 2

In order to prove Theorem 1.1 we find it convenient to view the Picard-torus of a smooth
line bundleL on a Riemann surface (M, g, J) in terms of connections onL. We shall
always assume thatM carries a metric which induces the given complex structure.

Given a line bundleL over a Riemann surface (M, J) and a partial connection∇0,1

onL, this partial connection induces a holomorphic structure onL. This follows from the
usual integrability theorems [Do,Th.2.1.53] because�2,0 ⊕ �0,2 = {0}. When we want
to emphasize thatL is considered as a holomorphic bundle with the structure induced
by ∇0,1 we write (L, ∇0,1).

Given an isomorphismf of L (which we think of as a smooth mapf : M 7→
C∗) we may pull back a given partial connection∇0,1 alongf to obtain the partial
connectionf ◦ ∇0,1 ◦ f−1 = ∇0,1 + f (∂̄f−1). Then (L, ∇0,1) and (L, ∇0,1 + f (∂̄f−1))
are holomorphically equivalent. And if (L, ∇0,1) and (L, ∇0,1 + φ), φ ∈ �0,1(M ), are
holomorphically equivalent then there is a smooth functionf : M → C∗ such that
f ◦ ∇0,1 ◦ f−1 = ∇0,1 + f (∂̄f−1) = ∇0,1 + φ. Thusφ = f (∂̄f−1).
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Note that the additive group{f (∂̄f−1) : f ∈ C∞(M, C∗)} splits as∂̄(C∞(M, C))⊕
H0,1(M, 2πiZ), by writingf = ueh with u : M → S1 a harmonic map andh : M → C.
HereH0,1(M, 2πiZ) is the projection ofH1(M, 2πiZ) ⊂ H1(M, C) into the (0, 1)-
component.

Note that any holomorphic structure onL is defined by∇0,1 for a suitable connection.
Thus the moduli-space of holomorphic structures onL is the quotient

�0,1/(∂̄(C∞(M, C)) ⊕ H0,1(M, 2πiZ)) = H0,1(M, C)/H0,1(M, 2πiZ) .

This quotient is a complex torus, called the Picard torus ofL.
Now fix a Hermitian metrich on L. For any holomorphic structure there is a con-

nection which induces the given holomorphic structure and preservesh, i.e.∇h = 0.
Given two h-preserving connections∇1 and ∇2 on (L, h) which induce the

same holomorphic structure onL, we have∇0,1
2 − ∇0,1

1 = φ ∈ ∂̄(C∞(M, C)) ⊕
H0,1(M, 2πiZ). Because∇2 − ∇1 ∈ i�1(M, R), we find that∇2 − ∇1 = φ − φ̄.

We now return to spin-structures onM : Let K = �1,0(M ) be the canonical bun-
dle of (M, J). Spin-strucures onM correspond to holomorphic square-roots ofK by
[Hi,Th.2.2]. Fix some such square-root. Given a metric onM which induces the given
complex structure,K andL inherit hermitian metrics. Let̃∇ be the hermitian con-
nection onL, and∇ the hermitian connection onK. Note that∇̃ ⊗ ∇̃ = ∇. As all
square-roots ofK are isomorphic as unitary bundles we may think of them as being
of the form (L, ∇̃ + ω) with ω ∈ i�1(M, R). Taking the square we get a connection
∇′ := ∇̃ ⊗ ∇̃ + 2ω onK = L ⊗ L. Observe now:

Lemma 6.1. ∇′ induces the same holomorphic structure onK as does∇ if and only
if 2ω0,1 ∈ ∂̄(C∞(M, C)) ⊕ H0,1(M, 2πiZ), that is if and only if the cohomology class
[ω0,1] is contained in the lattice obtained by projecting1

2H1(M, 2πiZ) intoH0,1(M, C).

Observe that dimH1(M, R) = rankH1(M, Z) = 2 genus(M ). We thus retrieve the well
known fact that there are 22genus(M ) spin-structures onM .

Armed with these preliminary remarks we can now embark upon a proof of Theo-
rem 1.1. The following lemma is the analogue of Lemma 5.1 for dimensions 3 and 4
above.

Lemma 6.2. Let M be a closed 2-dimensional manifold and fix a spinc-structure, a
metricg onM and a connectionA on the auxiliary bundlePU1, and letDg,A : Σ+ → Σ−
be the Atiyah–Singer Dirac operator. Suppose that atg, ImDD+

g,A is tangential toFn,k,
n, k > 0. Then eitherc1(PU1) = 0 and dimKerD+

g,A = dimKerD−
g,A ≤ 1, or c1(PU1) 6= 0

and there are no harmonic spinors of either positive or negative chirality. In the first
case, given two nontrivial harmonic spinors9+ and9− of positive and negative chirality
respectively, we have|9+| = λ|9−| for someλ > 0. In this case9+ and9− vanish on
the same finite set of points.

Proof. Pick two harmonic spinors9+ and9−. Then by Proposition 4.1,

〈X.∇̃g
X9+, 9−〉 + 〈9+, X.∇̃g

X9−〉 = 0 .

Suppose that neither spinor vanishes identically. By the unique continuation principle
[BW] we may choose an open connected subsetU ⊂ M , where neither9+ nor 9−
vanish. Note that the fibre dimension of eachΣ± is 1. Let 9′

+ be another harmonic
spinor, and overU write 9′

+ = f9+ for somef ∈ C∞(U, C). Replace9+ in the
previous equation by9′

+ to obtain (Xf )〈X.9+, 9−〉 = 0. As this holds for every vector
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field overU we see thatf is constant onU . By the unique continuation principle9′
+

is a constant multiple of9+, and hence dimKerD+
g,A = 1. Repeating the argument with

9− shows that dimKerD−
g,A = 1, too, and thus IndexD+

g,A = 1
2c1(PU1) = 0.

Let X be a vector field onU with |X| = 1. Then there is the identity|9−|29+ =
X.9−〈9+, X.9−〉. Then

|9−|2 X|9+|2 = |9−|2〈∇̃X9+, 9+〉 + |9−|2〈9+, ∇̃X9+〉
= 〈∇̃X9+, X.9−〉〈X.9−, 9+〉 + 〈X.9−, ∇̃X9+〉〈9+, X.9−〉
= 〈9+, X.∇̃X9−〉〈X.9−, 9+〉 + 〈X.∇̃X9−, 9+〉〈9+, X.9−〉
= 2Re

(
〈9+, X.∇̃X9−〉〈9+, X.9−〉

)
.

Note that the last expression is symmetric in9+ and9−. Thus we obtain the equation
|9−|2 X|9+|2 = |9+|2 X|9−|2. Given a pointp in M with 9+|p 6= 0 we conclude that
|9+| = λ|9−| in a neighbourhood ofp. Because9− does not vanish on a dense open
set by the unique continuation principle [BW] it follows thatλ > 0. Thus if9+|p = 0 at
somep ∈ M then also9−|p = 0. By symmetry,9+ and9− vanish on the same set, and
because9+ is a holomorphic section ofΣ+ with respect to the holomorphic structure
induced by∇̃0,1 [Hi], we have|9 + | = λ|9−| for someλ > 0 on all ofM . �

Lemma 6.3. LetM be a closed 2-manifold. Letg be a metric onM anda ∈ i�1(M ),
and fix a spin-structure onM . Denote the positive spinor bundle byL and let∇̃ be
the connection onL induced byg. Let Dg,A be the Dirac operator obtained from the
connection∇̃+a. Suppose that ImDDg,A is tangential toFn,n for n > 0. Then(L, ∇̃+a)
is a holomorphic square-root ofK and thus a spin-structure, possibly different fromL.
There is a smooth functionf : M → S1 with a = df/2f . The forma is closed and
defines an element[a] ∈ H1(M, 2πiZ).

Proof. Let K denote the canonical bundle, and letL be the square root ofK defined by
the spin-structure. Given a metric onM there is an antilinear isomorphismh : K̄ ⊗L →
L given on smooth sectionsv andw of either bundle by〈v, h(w)〉 =

∫
vw [At]. Let φ

be a local section ofK of unit length over some open setU ⊂ M , and letφ̄ be the
corresponding section of̄K. Let σ be a section ofL with σ ⊗ σ = σ2 = φ. Then
necessarily|σ| = 1. Forf ∈ C∞(U, C):

〈σ, h(fφ̄ ∧ σ)〉L2 =
∫

f φ̄ ∧ φ = i

∫
f dvolg .

Using a Dirac-sequence forf we find thath(φ̄∧σ) = iσ. Now pick any pointp ∈ U and
choose ag-orthonormal frame{e1, e2} in a neighbourhood ofp such that∇e1|p = 0.
Thus∇σ|p = 0 and∇φ̄|p = 0. It is immediate that∇h|p = 0. As p was arbitrary
it follows that h is parallel, andh is unitary with respect to the hermitian metrics on
both bundles. Pull back the connection∇̂ + a on K̄ ⊗ L to L alongh. We compute
h ◦ (∇̂ + a) ◦ h−1 = ∇̃ − a, becauseh is parallel and antilinear anda ∈ i�1(M ). Let
X be a smooth vector field and denote byJ the complex structure onM induced by the
metric. Compute:

∇̃0,1
X − a0,1(X) =

1
2

(
∇̂X − a(X) + i∇̂JX − ia(JX)

)
=

1
2
h ◦

(
∇̂X + a(X) − i∇̂JX − ia(JX)

)
◦ h−1
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= h ◦
(
∇̂1,0 + a1,0

)
◦ h−1 .

Let 10,1
a be the Laplace-operator onL ⊕ (�0,1(M ) ⊗ L) associated with the operator

∇̂0,1 + a0,1, and let similarly11,0
a be the Laplace-operator associated with the operator

∇̂1,0 + a1,0. Let 9− be a section ofK̄ ⊗ L. Then by [Hi]9− is harmonic if and only if
10,1

a 9− = 0. This is equivalent to demanding11,0
a 9− = 0, because11,0

a = 10,1
a . The

latter condition translates into (∇̂1,0 +a1,0)9− = 0. By the previous computation we see
that9− is harmonic if and only ifh(9−) is a holomorphic section ofL with respect to
the holomorphic structure induced by∇̃ − a.

Now suppose the metric onM is critical and there are harmonic spinors9+ and
9−. By the previous lemma we may assume that|9+| = |h(9−)|. Let P be the finite
set of points where both sections vanish, and choose a functionf ∈ C∞(M \ P ) such
that h(9−) = f9+. Harmonicity of9+ is equivalent to (̃∇0,1 + a0,1)9+ = 0, which
together with (̃∇0,1 − a0,1)h(9−) = 0 implies∂̄f − 2fa0,1 = 0 by substitution. Thus
a0,1 = ∂̄f/2f . Because|f | = 1 we haveb := df/2f ∈ i�1(M ). As a ∈ i�1(M ), too,
botha andb satisfya1,0 = −a0,1 andb1,0 = −b0,1 which impliesa = b = df/2f . By
continuity we see thata is a closed form. Pick anyp ∈ P and a neighbourhoodD of
p, which we may assume diffeomorphic to a disc. Therea = idh for some smooth real
valued functionh onD. Cutting out a radial line ofD yields a contractible setD′, where
we may assumef = eig for some smooth real valued functiong. Thus onD′ we have
dh = 1

2dg. Thusg = 2h + const onD′. It follows thatf may be smoothly continued into
p.

In total we have found a functionf ∈ C∞(M, C) with |f | = 1 such thata0,1 =
∂̄f/2f . But by Lemma 6.1 of this section and the discussion preceding it this implies
that (L, ∇̃0,1 + a0,1) is a holomorphic square-root ofK. �

We may now proceed to prove the main theorem of this section:

Proof of Theorem 1.1.By Lemma 6.2 of this section we see that all there remains to do
is to study the case of twisted spin-structures. Letg be a metric onM anda ∈ i�1(M ),
and fix a spin-structure onM . Denote the positive spinor bundle byL and let∇̃ be
the connection onL induced byg. Let Dg,A be the Dirac operator obtained from the
connection∇̃ + a. If a is closed and represents a class inH1(M, 2πiZ) then (L, ∇̃ + a)
is again a square root ofK, for an arbitrary metricg.

Suppose there is a metricg with nontrivial harmonic spinors of both chiralities
which is critical. By Lemma 6.2 we haveh+ = h− = 1, and Lemma 6.3 implies that
(L, ∇̃ + a) is in fact another spin-structure anda = df/2f for some smooth function
f : M → S1. Hencea defines an element inH1(M, 2πiZ). Thus unless the twisted
spin-structure is a spin structure itself, no metric can be critical and hence any metric
with nontrivial harmonic spinors may be deformed to one without. In the spin-case the
valueh+ = dimKerD+

g mod 2 is independent of the choice of metric and depends only
on the spin-structure [At, Mum, ACGH]. As a critical metric hash+ ∈ {0, 1}, we see
that metrics withh+ > 1 cannot be critical and can thus be perturbed to a new metric
with less harmonic spinors. Thus if dimKerD+

g = 0 mod 2 the generic metric will have
dimKerD+

g = 0. In the other case dimKerD+
g = 1 for the generic metric. �

Remark 6.4.The initiated will have noticed thath : K̄ ⊗ L → L is essentially the
Serre-duality map, possibly up to sign. In fact, if∗̄L denotes the complex conjugate of
the Hodge-∗-operator with coefficients inL [W, p. 166] we have a map
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K̄ ⊗ L
∗̄L−→ K ⊗ L−1 ∼= L .

We find ∗̄(φ̄ ⊗ σ) = −iφ, and thus the above map is identified as the following map:

φ̄ ⊗ σ
∗̄L7−→ −iφ ⊗ 〈., σ〉 = −iσ ⊗ σ ⊗ 〈., σ〉

∼=7−→ −iσ. Henceh is the negative of the
Serre-duality map.

Remark 6.5.We should mention that there are spin-structures onM for which there are
always harmonic spinors. In fact, their number can be computed and it turns out to be
2g−1(2g − 1) [At,Th.3] whereg = genus(M ).

7. Applications to Riemann Surfaces

Theorem 1.1 is really a theorem in the theory of Riemann surfaces, their moduli and the
moduli of holomorphic line bundles.

Let Lc denote the positive spinor bundle for a fixed spin-structure on a Riemann
surface. Here, the indexc is the parameter of the complex structures on the underlying
closed 2-manifoldM . LetF be a Hermitian line bundle with connectionA with respect
to which the Hermitian metric is parallel. Then given a complexc onM , the connection
induces a holomorphic structure onF . Denote this holomorphic bundle byFA,c.

We may now restate Theorem 1.1 as follows: Ifc1(F ) 6= 0 then for a dense open subset
of Teichm̈uller spaceh0(Lc ⊗ FA,c) = 0 in casec1(F ) < 0, andh0(Lc ⊗ FA,c) = c1(F )
in casec1(F ) > 0. If c1(F ) = 0, writeA = d + a, a ∈ i�1(M ), with respect to some
trivialization of F . Then unlessa ∈ H1(M, 2πiZ), h0(Lc ⊗ FA,c) = 0 for genericc.
Otherwise,Lc ⊗ FA,c is a holomorphic square root ofKc and for the generic complex
structureh0(Lc ⊗FA,c) = 0 or 1 depending only on the spin-structure. Thus in particular
we have the following extension of the classical results of [At, Mum]:

Theorem 7.1. The functionh0 : c ∈ T (M ) 7→ h0(Lc) is constant on a generic (i.e.
dense and open) subsetC of Teichm̈uller spaceT (M ). OnC the image ofh0 is contained
in {0, 1}, and the actual value depends only on which spin-structure is chosen.

In the theory of Riemann surfaces spin-structures are often called Theta-characteris-
tics. Note that if (M, c) is hyperelliptic thenh0(Lc) = [(g + 1)/2] for at least one square
root ofK [BaS,Th.3,Th.4]. Thus for genus(M ) ≥ 3 the generic setC of the proposition
is not all of Teichm̈uller-space for at least one square-root ofK.

Remark 7.2.One may ask what kind of subset the setD(L) := { c ∈ T (M )| h0(Lc) >
1} is. First, by [Gro,Th.3.1 & Rem.3.2.2] there is a smooth analytic spaceV and
an analytic submersionπ : V → T (M ) such thatπ−1(c) = (M, c), i.e. M fur-
nished with the complex structurec. Using Grauert’s upper-semicontinuity theorem
[Gra,Satz 3;GR,5.10.4] we find thatD(L) is an analytic subset ofT (M ). I.e.D(L) is a
locally finite union of irreducible analytic subsets ofT (M ). Compare also [Far].

Remark 7.3.An obvious question is whether the setsD(L) := { c ∈ T (M )| h0(Lc) >
1} do depend on the square rootL of K. First, note that for genus(M ) < 3 the value
of h0(Lc) is independent of the complex structurec andh0(Lc) ∈ {0, 1} [Hi,Prop.2.3].
Thus D(L) = ∅ for genus(M ) < 3. Thus consider the case genus(M ) ≥ 3: By
[BaS,Th.3,Th.4], on any hyperelliptic surface (M, c) there is always a square-rootL
of K for which h0(Lc) = 0 and a square rootL′

c for which h0(L′
c) = [(g + 1)/2]. This

shows that the setsD(L) do indeed depend upon the spin-structure chosen. Needless to
say, we may take the unionD :=

⋃
L2=K D(L) to find an analytic subset such that on the

complement the functionc 7→ h0(Lc) ∈ {0, 1} is constant for every square root ofK.
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Remark 7.4.Theorem 1.4 may be read as follows: For generic holomorphic structures
h on a line bundleF over a fixed Riemann surface,h0(Fh) = c1(F ) + 1 − genus(M )
if c1(F ) ≥ genus(M ) − 1, andh0(Fh) = 0 if c1(F ) < genus(M ) − 1. Here, a generic
set is a dense open subset of the Picard torus forF . This is of course a basic result
of Brill–Noether theory [Gu,p.51]. The fact thath0(Fh) ≥ c1(F ) + 1 − genus(M ) for
everyh is a trivial consequence of the Riemann–Roch theorem. Brill–Noether theory
also shows that the set of holomorphic structures for whichh0(Lh) is greater than the
minimal value is a union of analytic subsets.

8. Dimensions 3 and 4

In this section we will prove the statement on spin-manifolds in Theorem 1.3 first and
then indicate the necessary changes in dimension 3.Thus assume for the time being that
M is a closed spin-4-manifold with a fixed spin-structure and a metric which is critical
and has both nontrivial positive and negative harmonic spinors(if g was not critical
we could deform the metric so as to reduce the dimension of the space of harmonic
spinors). The aim is to show that (M, g) is conformally flat. We shall even show that
in this situation (M, g) is conformally equivalent to a flat torus, see Proposition 8.12
below. This shows that only in this particular situation a metric may be critical without
being minimal. Otherwise critical metrics are precisely the minimal metrics.

Fix two nontrivial harmonic spinors9+ and9−. The proof of Theorem 1.3 will
extend over a rather long list of lemmas.

Lemma 8.1. On each connected set on which9+ does not vanish there isλ > 0
with |9+| = λ|9−|. In particular,9+ and9− vanish on the same set. Moreover, linear
combinations of9+ andJ9+ (respectively9− andJ9−) are the only positive (negative)
harmonic spinors onM , i.e.h+ = h− = 2.

Proof. The last statement is proved above in Lemma 5.1. LetX be a vector field
on some open connected with|X| = 1. Then |9−|29+ = 〈9+, X.9−〉X.9− +
〈9+, X.J9−〉X.J9−. With this we may compute

|9−|2X|9+|2 = 2Re〈9+, X∇̃X9−〉〈X.9−, 9+〉
+2Re〈9+, X∇̃XJ9−〉〈X.J9−, 9+〉 .

By (ii) of Proposition 4.1 this is symmetric in9+ and9−, and arguing as before in the
proof of Lemma 6.2 we may deduce the lemma. �

Fix a connected open setU on which neither9+ nor 9− vanish. We may assume that
|9+| = |9−| by the preceding lemma. We may fix an ON-frame by the rule:

e1.9+ = 9− e2.9+ = i9− e3.9+ = J9− e4.9+ = −iJ9−

(to see that this is oriented computee1e2e3e49+ = −9+). In the sequel we shall always
let X andY be vector fields onU with |X| = |Y | = 1 andX ⊥ Y such that they map
9+ to a harmonic spinor under Clifford multiplication.

Lemma 8.2. LetωX (ei, ej) := 〈∇ei
X, ej〉 − 〈∇ej

X, ei〉. Then the following holds:

div(X)9+ + 2∇̃X9+ − ωX9+ = 0 ,

whereωX9+ :=
∑

i<j ωX (ei, ej)eiej9+.
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Proof. By definition ofX, X.9+ is harmonic. Thus:

0 =
∑

i

ei∇̃ei
(X.9+)

=
∑

i

ei(∇ei
X)9+ + eiX∇̃ei

9+

=
∑
i,k

〈∇ei
X, ek〉eiek9+ − 2∇̃X9+

= −
∑

i

〈∇ei
X, ei〉9+ − 2∇̃X9+ +

∑
i<k

ωX (ei, ek)eiek9+

= −div(X)9+ − 2∇̃X9+ + ωX9+ .

Of course, the particular choice of ON-frame plays no role here.�

Lemma 8.3. Let X be as above andZ any smooth vector field which is everywhere
orthogonal toX. Then

2Re〈∇̃Z9+, ZX9+〉 + 〈∇ZX, Z〉|9+|2 = 0 .

Proof. We may assume that|Z| = 1. Equation (ii) of Proposition 4.1 yields

0 = 〈Z∇̃Z9+, X9−〉 + 〈9+, Z∇̃Z(X9+)〉
= −〈∇̃Z9+, ZX9−〉 + 〈9+, Z(∇ZX)9+〉 + 〈9+, ZX∇̃Z9+〉

= −2Re〈∇̃Z9+, ZX9−〉 − 〈∇ZX, Z〉|9+|2 + 〈9+, ZW9+〉 ,

whereW := ∇ZX − 〈∇ZX, Z〉Z is orthogonal to bothZ andX. Thus

Re〈9+, ZW9+〉 = −Re〈9+, ZW9+〉 ,

and hence〈9+, ZW9+〉 is imaginary-valued. The lemma now follows. �

It is useful to observe that〈9+, eiej9+〉 is always imaginary-valued ifi 6= j. This follows
as in the preceding proof.

Lemma 8.4. ∇eiej is a multiple ofei in each fibre providedi 6= j.

Proof. Let i < j. By Lemma 8.2:

div(ei)〈9+, eiej9+〉 + 2〈∇̃ei9+, eiej9+〉 − 〈ωei9+, eiej9+〉 = 0 .

Taking real parts we obtain:

2Re〈∇̃ei9+, eiej9+〉 − Re〈ωei
9+, eiej9+〉 = 0 .

Now Re〈ωei9+, eiej9+〉 = ωei (ei, ej)|9+|2±ωei (ek, el)|9+|2, wherek < l are different
fromi, j, and the sign is taken to be + ifek, el, ei, ej is oriented and−otherwise. Plugging
in the definition ofωei we obtain

2Re〈∇̃ei
9+, eiej9+〉 − 〈∇ei

ei, ej〉|9+|2 ±
(
〈∇ek

ei, el〉 − 〈∇el
ei, ek〉

)
|9+|2 = 0 .

By the preceding lemma the sum of first two terms vanishes. Thus
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〈∇ek
ei, el〉 − 〈∇el

ei, ek〉 = −〈ei, [ek, el]〉 = 0

for arbitrary choices ofk, l andi 6= k andi 6= l. By the Koszul formula [O’N,3.11]

2〈∇ei
ej , ek〉 = −〈ei, [ej , ek]〉 + 〈ej , [ek, ei]〉 + 〈ek, [ei, ej ]〉

we see that∇ei
ej ⊥ ek for i 6= j andk different from bothi, j. The lemma follows.

�
Lemma 8.5. The value of〈∇ek

ei, ek〉 is independent of the choice ofk 6= i.

Proof. To this end letj 6= k andj 6= i and compute

0 = 〈ej∇̃ek
9+, ei9+〉 + 〈9+, ej∇̃ek

(ei9+)〉

+〈ek∇̃ej 9+, ei9+〉 + 〈9+, ek∇̃ej
(ei9+)〉

= 2Re〈∇̃ek
9+, eiej9+〉 + 2Re〈∇̃ej

9+, eiek9+〉

+
(
〈∇ek

ei, ek〉 − 〈∇ej
ei, ej〉

)
〈9+, ejek9+〉 ,

where we have used the preceding lemma. The first two terms are real-valued and the
last term is imaginary-valued. Thus(

〈∇ek
ei, ek〉 − 〈∇ej ei, ej〉

)
〈9+, ejek9+〉 = 0 .

If ejek9+ ∈ {±i9+} then〈∇ek
ei, ek〉 = 〈∇ej

ei, ej〉. Otherwise replace the first9+ in
each bracket byJ9+ and compute:

0 = 〈ej∇̃ek
J9+, ei9+〉 + 〈J9+, ej∇̃ek

(ei9+)〉

+〈ek∇̃ej J9+, ei9+〉 + 〈J9+, ek∇̃ej (ei9+)〉

=
(
〈∇ek

ei, ek〉 − 〈∇ej ei, ej〉
)
〈J9+, ejek9+〉 ,

and if nowejek9+ ∈ {±J9+, ±iJ9+}, then again〈∇ek
ei, ek〉 = 〈∇ej

ei, ej〉. �
Lemma 8.6. If |9+| is constant onU then theei and all harmonic spinors are parallel
overU .

Proof. If |9+| is constant onU , 〈∇̃9+, 9+〉 is imaginary-valued. Thus 0 = div(ei)|9+|2
by Lemma 8.2. Hence div(ei) = 0. But

div(ei) =
∑
k 6=i

〈∇ek
ei, ek〉 ,

and by the preceding lemma we see that〈∇ek
ei, ek〉 = 0 for all i, k, and thus by

Lemma 8.4 eachei is parallel onU . Lemma 8.2 then implies that9± are parallel.
�
Lemma 8.7. (M, g) is conformally flat.

Proof. Givenp ∈ M with 9+|p 6= 0 choose a smooth functionf with f = 1
3 ln |9+|2 in

a neighbourhood ofp. Let g′ := e2fg. By Remark 2.6 the spinor̄βg′,g9+ has constant
norm in a neighbourhood ofp. Thusg′ is flat in a neighbourhood ofp by the last lemma.
Thus the Weyl-tensor forg vanishes on the set of points where9+ does not vanish.
But this set in dense inM , and hence the Weyl-tensor forg vanishes identically, which
means that (M, g) is conformally flat. �



428 S. Maier

Remark 8.8.In dimension 5 the situation is considerably more complicated: There are
5-dimensional non-conformally flat Riemannian spin-manifolds the nontrivial spinors
of which are all parallel [BFGK, p.150]. Thus this metric is critical but not minimal.

Proof of Theorem 1.3.Note that we may perturbg by aC1-small deformation to get a
metric withh+(g) ≤ 2 and nonvanishing Weyl-tensorW (g). Hence this metric cannot
be critical by the preceding discussion, and we may thus find a small perturbation ofg
to get a new metric without harmonic spinors. �

Proof of Theorem 1.2.We now indicate the changes in the above proof necessary to prove
the corresponding result in dimension 3. Thus let (M, g) be an oriented Riemannian 3-
Manifold with fixed spin-structure such that there is a nontrivial harmonic spinor9 for
the metricg which is critical in the sense of the remark following Proposition 4.1. Define
a local ON-frame{e1, e2, e3} such that

e19 = i9 e29 = iJ9 e39 = J9.

Lemma 8.2 holds, and becausee1e2e39 = −9 we obtain

div(X)9 + 2∇̃X9 − ωX (e1, e2)e39 + ωX (e1, e3)e29 − ωX (e2, e3)e19 = 0

This equation immediately implies

2Re〈∇̃ek
9, ek9〉 ± ωek

(ei, ej)|9|2 = 0 ,

wherei < j are both different fromk, and the sign depends onk. Note that by (ii) of
Proposition 4.1,

Re〈∇̃ek
9, ek9〉 = −Re〈ek∇̃ek

9, 9〉 = Re〈9, ek∇̃ek
9〉 = −Re〈ek9, ∇̃ek

9〉 ,

and hence Re〈∇̃ek
9, ek9〉 = 0. Thus we findωek

(ei, ej) = 0. Hence〈ek, [ei, ej ]〉 = 0,
and as before we conclude that∇ei

ej is a multiple ofei. Lemmata 8.5 to 8.7 remain
valid (where we have to replace9+ by 9, of course). In the proof of Lemma 8.7 we
have to replace the Weyl-tensor by the anti-symmetrisation of the Schouten-tensor. We
can now argue as before to conclude the proof of Theorem 1.2.�

Remark 8.9.In dimension 5 the situation is more complicated: There are 5-dimensional
non-conformally flat Riemannian spin-manifolds the nontrivial harmonic spinors of
which are all parallel [BFGK,p.150]. Thus these metrics are critical but not minimal
and we cannot reproduce the above arguments. Of course, one might try to prove that 5-
dimensional closed spin-manifolds with critical but not minimal metric must be isometric
to the examples of [BFGK,p.150].

A little more work will yield all the conformal closed oriented 3-manifolds and
spin-4-manifolds which admit a critical metric. We first need the following lemma:

Lemma 8.10. Let U ′ ⊂ U ⊂ Rn, n ≥ 3, be open and connected, and denote byg the
Euclidean metric onRn. Let f : U ′ → R be a function such thate2fg is flat. Thenf
can be uniquely continued to a functionφ onU with the possible exception of one point
such thate2φg is a flat metric onU .
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Proof. By possibly shrinkingU ′ we may find an open setV ′ ⊂ Rn and an isometry
σ′ : (V ′, g) → (U ′, e2fg).σ′ extends uniquely to a global conformal diffeomorphismσ :
Sn → Sn [KuPi2,p.12]. LetV := σ−1U − {∞}, where we identifyRn with the sphere
minus the North pole∞via stereographic projection. Thusσ : (V, g) → (U−{σ(∞)}, g)
is a conformal diffeomorphism, and thus there is a functionφ : U − {σ(∞)} → R such
that (σ−1)∗g = e2φg andφ = f on U ′. This was under the assumption of a possibly
shrunkU ′, in order to prove the lemma it thus suffices to show thatφ is unique.

Given now two extensionsφ1 andφ2 of f (defined on all ofU with the possible
exception of a point for eachφi) such thate2φig is flat, choose a connected open set
V ⊂ U on which bothφi are defined such that there are open setsVi ⊂ Rn and
isometriesσi : (Vi, g) → (V, e2φig). If φ1 = φ2 on a connected open subsetV0 of V ,
the mapσ−1

2 ◦ σ1 : (σ−1
1 V0, g) → (σ−1

2 V0, g) is an isometry. Thenσ−1
2 ◦ σ1 extends

uniquely to an isometry ofRn, in particularσ−1
2 ◦ σ1|σ−1

1 V is an isometry. It follows
thatφ1 = φ2 on all ofV . By connectedness ofU − {σ(∞)} the result follows. �

Lemma 8.11. The set of points on which9+ (respectively9 in dimension 3) vanishes
is discrete.

Proof. Let U be a connected open subset ofM which (after possibly conformally
rescaling the metricg first) is isometric to some open subset of Euclidean space. Let
U ′ ⊂ U an open connected subset on which9+ (respectively9) does not vanish. Let
f := 1

3 ln |9+|2 : U ′ → R. Thene2fg is a flat metric onU ′. By the preceding lemma,f
may be continued to a function to all ofU with the possible exception of a single point.
Thus9+ cannot vanish onU minus that point. �

We can now prove the following proposition:

Proposition 8.12. Let(M, g) be a closed Riemannian spin-manifold of either dimension
3 or 4 with fixed spin-structure with harmonic spinors (of both chiralities in dimension
4) such that the metricg is critical for the eigenvalue 0. ThenM is a torus andg is
conformally equivalent to a flat metric.

Proof. Let M̃ be the universal cover ofM andF the discrete set of points on which9+
(9 in the case of dimension 3) vanishes, and letF̃ be its preimage inM̃ . A standard
monodromy argument shows that there is a local isometryδ : M̃ \F̃ :→ Rn,n = dimM ,
whereM̃ \ F̃ is furnished with the metric obtained by pulling back the flat metrice2fg
from M \ F with f being defined as in the previous lemma. This map uniquely extends
to a conformal mapδ : M̃ → Sn [KuPi2]. It follows that the holonomy0 ⊂ Conf (Sn)
of M fixes∞. By Theorem C of [Kam], (M, g) is conformally covered by eitherSn,
Sn−1 × S1 or a torusTn with the natural conformal structures, and the conformal
class ofg contains a metric of positive scalar curvature in the first two cases and a flat
metric in the third. Thus by the standard Weitzenböck formula [L], harmonic spinors can
occur only whenM is covered by the torus. Replacingg by a conformally equivalent
flat metric shows that9+ and9− (respectively9) are parallel. ThusΣ± (respectively
Σ) is trivialized by parallel sections, and thus so isTM , and hence (M, g) has trivial
holonomy. By [Wo,Cor.3.4.6] we conclude that (M, g) is a flat torus. �

Remark 8.13.Observe the following fact: Given a metric which is not critical (for the
eigenvalue 0), the quadratic formQ = Qg,A

91,92
+ Q̄g,A

92,91
(in dimension 4) does not vanish

identically for any choice of harmonic spinors9±. Otherwise, the above arguments
go through to show that (M, g) is conformally flat and is in fact a torus with the flat
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conformal structure as we shall see in a moment. In particular the metric would be
critical. We may thus assume thatQ does not vanish identically.

Fix some open subsetU ⊂ M . If Q|U did vanish identically we could again conclude
that (U, g|U ) is conformally flat. By a slight perturbation ofg within U we may assume
that this is not the case and thatQ does not vanish identically onU .

Let φ ≥ 0 be a smooth function supported inU such thatφQ does not vanish
identically. By Equation 4.1.1 the quadratic form Re(φQ) defines a deformation direction
along which dimKerDg decreases.

The same arguments go through in dimensions 2 and 3, and inspection of the proof
of Theorem 1.4 shows that we may argue similarly for deformations of connections on
the canonical bundle. Thus in total we have:

Proposition 8.14. Let dimM = 2,3 or 4 andU an open set ofM . Given a metricg
which is not minimal we may find a minimal metricg′ which isC1-close tog and is
equal tog outsideU .

Let dimM = 1, . . . , 4. Given a connectionA on the canonical bundle which is not
minimal we may find a minimal connectionA′ which isC0-close toA and is equal toA
outsideU .

This extends an observation of [Hi,p.45].

9. Critical Eigenvalues 6= 0

In this section we shall prove a partial converse to [BG,Prop.29] which asserts that
eigenvalues which admit a Killing spinor are critical for all variations of the metric
which preserve the total volume.

Proposition 9.1. LetM be a closed oriented 2- or 3-manifold with a fixed spin-structure.
If for some metricg onM some eigenvalueλ 6= 0 is critical for variations of the metric
which preserve the total volume, then(M, g) is covered by the round sphere (up to
rescaling by a constant factor). In dimension 2,(M, g) is isometric to the round sphere.

Corollary 9.2. Let M be a closed oriented 2- or 3-manifold with fixed spin-structure.
Fix λ 6= 0. The set of metrics with given total volume for whichλ is not an eigenvalue of
Dg is C1-generic.

Proof of the Proposition.Let 9 be a nontrivial eigenspinor for the eigenvalueλ. By
Proposition 4.1 the norm of9 is constant and we may assume it to be = 1. Let

ω(X, Y ) := Re〈X.∇̃g
Y 9, 9〉 − λ

m
g(X, Y )

for arbitrary vector fieldsX andY . By (ii) of Proposition 4.1ω is a 2-form. ByT ⊂ Σ
denote the image ofTM under Clifford multiplication with9, i.e T = TM.9. Let
H be the orthogonal complement ofR9 ⊕ T with respect to the metric Re〈., .〉. Set
∇̃H9 := prH∇̃9, where prH denotes orthogonal projection ontoH. For a local ON-
frame{e1, . . . , em}

∇̃g
ei

9 =
∑
i6=j

ω(ei, ej)ej .9 − λ

m
ei.9 + ∇̃H

ei
9 .

Multiply this with ei and sum overi to obtain
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0 = 2
∑
i<j

ω(ei, ej)ei.ej .9 +
∑

i

ei.∇̃H
ei

9 .

Consider the casem = 2: Thene1e2.9 is a local section ofH. Now the previous formula
reads

0 = 2ω(e1, e2)e1.e2.9 + Re〈∇̃H
e2

9, e1e2.9〉e1.9 − Re〈∇̃H
e1

9, e1e2.9〉e2.9 .

Thus all coefficients vanish and hence∇̃g
X9 = −λ

2 X.9.
Now considerm = 3: HereH = {0} because the real fibre dimension ofΣ is 4.

Usinge1e2e3.9 = −9 we obtain

0 = ω(e1, e2)e3.9 + ω(e2, e3)e1.9 + ω(e3, e1)e2.9

and thusω = 0, whence∇̃g
X9 = −λ

3 X.9.
Thus if m = 2 or 3 then9 is a Killing-spinor. The proposition now follows from

[BFGK,Th.8,p.31] because in dimensions 2 and 3 Einstein metrics of constant scalar
curvature are in fact constant curvature metrics. �

Remark 9.3.In dimension 3, one might be tempted into believing thatM must in fact
be the sphere. This, however, is not the case: IdentifyS3 ∼= SU2 and letE = (e1, e2, e3)
be a left-invariant ON-frame onSU2, where theei satisfy the relations

[ei, ej ] = 2µek, µ ∈ R∗

for cyclic permutations (i, j, k) of (1, 2, 3). Then∇ei
ej = µek. Let 0 be a discrete

subgroup ofSU2 andM := 0 \ SU2 the quotient. The metric onSU2 andE descend to
M . View E as a sectionE : M → PSOM . Lift E to a sectionẼ of theSpin3-bundle
PSpinM associated with the trivial spin-structure. Fixv ∈ C2 and let9 be the section
given by

9(m) = [Ẽ(m), v] ∈ (PSpinM × C2)/SU2 = PSpin(M ) ×rep C2 ,

whereSU2 = Spin3 acts viau.(g, v) := (gu, u−1v). Then

∇̃9 =
1
2

∑
i<j

ωjieiej9, ωji = 〈∇ei, ej〉 = µe∗
k .

Recalling thate1e2e3.9 = −9 it is now immediate that9 is a Killing spinor.

10. A Remark on Seiberg–Witten Moduli Spaces

One motivation for studying generic metrics and connections on spinc-manifolds comes
from Seiberg–Witten theory. LetM be a closed oriented 4-manifold withb+ ≥ 1, and
fix a spinc-structure onM with canonical bundleL. For a given metricg on M and a
self-dual 2-formη the Seiberg–Witten equations are equations for a connectionA onL
and a section9 of Σ+:

Dg,A9 = 0 ,

ρ(F +
A) = σ(9, 9) + ρ(iη) ,
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whereF +
A is the self-dual part of the curvature. The mapρ : i�+(M ) → End0(Σ+)

is given by Clifford multiplication and the bilinear mapσ : Σ+ ⊗ Σ+ → End0(Σ+) is
defined as follows:

σ(91, 92) := 91 ⊗ 9∗
2 − 1

2
Tr(91 ⊗ 9∗

2)Id .

For (g, η) in a dense open subsetD ⊂ M × �+(M ) the space of solutions is a smooth
manifold which contains only irreducible solutions, i.e. solutions (9, A) with 9 6≡ 0.

One may ask whether the set consisting of pairs (g, A), whereA comes from a
solution of the Seiberg–Witten equations for a fixed pair (g, η) is disjoint from the set of
pairs (g, B) ∈ M×Aof metrics and connections for which the space of harmonic spinors
is larger than required by the index of the Dirac operator. Here (g, η) are parameters
which we will choose inD, i.e. the corresponding Seiberg–Witten moduli space contains
irreducible solutions only and is smooth. By Theorem 1.4 we know that for a generic
pair (g, B) the dimension of the space of harmonic spinors is indeed equal to the absolute
value of the index. In particular, if the index is negative there are no nontrivial positive
harmonic spinors for the generic pair (g, B).

Now let the index be nonpositive, i.ec1(L)2 − σ(M ) ≤ 0. Suppose there is a pair
(g, η) of parameters with at least one nontrivial solution (9, A) to the Seiberg–Witten
equations such that (g, A) is generic. Because the index is nonpositive Theorem 1.4
implies that9 ≡ 0, and hence (g, η) 6∈ D.

Suppose we are given a spinc-structurec with c1(L)2 − σ(M ) ≤ 0. If the Seiberg–
Witten invariantSWg,η(c) is nontrivial (for parameters (g, η) ∈ D) then for any nontrivial
solution (9, A) of the Seiberg–Witten equations the pair (g, A) is not generic by the
preceding argument. Thus if we could show that wheneverSWg,η(c) is nontrivial we
can find at least one solution (9, A) for which (g, A) is generic thenc1(L)2−σ(M ) > 0.

Problem. Is it true that if for a given spinc-structurec the Seiberg–Witten invariant
SWg,η(c) is nontrivial, the index of the Dirac operator is positive, i.ec1(L)2−σ(M ) > 0?

That this is not true in general will be shown in the following proposition. This propo-
sition may also be interpreted as saying that if the answer to the problem should be
affirmative forb+ > 1 then there is no proof which relies on infinitesimal arguments, i.e
there is no proof which tries to argue that aC∞-small deformation of bothg andη may
be found such that (g, A) is generic for some solutionA of the equations. For such an
argument would also apply to the caseb+ = 1.

Proposition 10.1. Let M be a geometrically ruled surface over the curveC. There is
a connected open setU ∈ M × �+(M ) such that for(g, η) ∈ U the moduli space of
solutions for the anti-canonical spinc-structureccancontains no reducible solution and
SWg,η(ccan) 6= 0. Furthermoreb+(M ) = 1 and the signature of the Dirac operator is
negative provided genus(C) > 1. In particular, if the connectionA comes from a solution
to the Seiberg–Witten equations for the parameters(g, η) then(g, A) is not contained in
the generic set.

Note that the anti-canonical spinc-structure has as canonical bundleL = K := �2,0

[LM,App.D].

Proof. BecauseM is Kähler andpg(M ) = 0, b+(M ) = 1. The set of pairs (g, η) ∈ Û ⊂
M×�+(M ) for which the Seiberg–Witten moduli space contains no reducible solution
is open. The dimension of the moduli space is 0. LetF be a fibre. Then becauseF has
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trivial normal bundle,c1(M )|F = c1(F ) andc1(K)|F = c1(KF ) = −c1(F ). Now F is
CP 1, thusc1(F ) = 2. It follows that(

c1(M ) + 2c1(K)
2

[F ]

)genus(C)

= ±1 .

Corollary 1.4 of [LL] now implies that there is one componentU ⊂ Û such that
for (g, η) ∈ U the Seiberg–Witten invariants satisfySWg,η(ccan) 6= 0. Note that
the canonical bundle of the spinc-structurec is L = K = �2,0(M ). Furthermore, by
[Beau,Prop.III.21]c1(K)2 = 8(1− genus(C)) and the signature ofM is σ = 0. Hence
the index of the Dirac operator is (c1(K)2 − σ)/8 < 0 for genus(C) > 1. For a solution
(9, A) of the Seiberg–Witten equations for parameters (g, η) ∈ U the pair (g, A) cannot
be in the generic set because9 6≡ 0. �

11. Appendix: Analytic Families of Differential Operators

This section is technical in nature and serves to prove a very simple analyticity
theorem for differential operators. This theorem is a formalization of the proof of
[Ber,Lemme 3.15]. Equivalent statements have also been proven independently in
[Ang,Th.1.1,Th.1.2] with similar applications as in this paper.

In the sequel letE andF always denote smoothC-vectorbundles over a closed
manifold M with dimM = m. On M a smooth measure shall be fixed once and for
all. Let α always denote a multiindex inNk. By 0(E) we denote the space of (possibly
discontinuous) sections ofE.

Definition. We say thatsy ∈ 0(E) = 0(M, E) depends analytically ony ∈ Y ⊂ Rn if
for fixedp ∈ M the mapy 7→ sy(p) ∈ Ep is analytic in a uniform manner, i.e. for every
y0 ∈ Y there aresα ∈ 0(E) andR > 0 with BR(y0) ⊂ Y and

sy =
∑
α

1
α!

sα(y − y0)α |y − y0| < R .

If φ ∈ 0(Hom(E, E)) then the analyticity ofsy implies the analyticity ofφ(sy). The
definition is local in nature, i.e ifV1 ∪ V2 = M andsy is analytic over bothVi thensy

is also analytic overM .
If M is compact the definition of analyticity ofsy is equivalent to demanding that

the coordinate functions in any local trivialization be analytic in a uniform manner.
Thus for most arguments it suffices to consider functions which depend analytically on
a parameter.

Given sy ∈ 0(M × C), wherey ∈ DR := {(x1, . . . , xn) ∈ Rn, |xi| < R}, and
sα ∈ 0(M × C) with sy =

∑
α

1
α! sαyα we have for fixedp ∈ M and 0< R′ < R the

Cauchy integral formula:

sy(p) = s(p, y) =
1

(2πi)n

∫
C

s(p, ζ1, . . . , ζn)
(ζ1 − y1) · · · (ζn − yn)

dζ1 . . . ζn ,

sα(p) =
1

(2πi)n

∫
C

s(p, ζ1, . . . , ζn)

ζα1+1
1 · · · ζαn+1

n

dζ1 . . . ζn ,

whereC := C1 × . . . × Cn with Cj(t) = R′esπitj .
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For the moment we shall work in a fixed coordinate system on some open subset
U of M . Supposesy(p) = s(p, y) is differentiable in thep-coordinate for each fixedy
and assume furthermore thatD1s : U × Y → HomR(TU, C) is continuous jointly in
both variables. Suppose inductively that this holds for allDα

1 s(p, y) with |α| < j and
1 ≤ j ≤ k. Then the Cauchy integral formula shows that for|γ| ≤ k, Dγ

1 s(p, y) is
analytic iny, thesα are inCk and

Dγ
1 s(p, y) =

∑
α

1
α!

Dγsα yα .

Thus for fixedε > 0 we may findq ∈ N such that for|yi| < R′ < R,

‖sy(p) −
∑

|α|≤q

1
α!

sαyα‖Ck < ε .

If M is compact we thus have the following

Lemma 11.1. Let sy ∈ 0(E) depend analyticaly ony ∈ Y ⊂ Rn such thats is in
Ck(M × Y, E). Givenε > 0 andy0 ∈ Y we may chooseR > 0 andq ∈ N such that
BR(y0) ⊂ Y and

‖sy(p) −
∑

|α|≤q

1
α!

sα(y − y0)α‖Ck < ε |y − y0| < R.

Lemma 11.2. LetE andF be smooth complex vector bundles overM , φy ∈ C∞(M ×
Y, Hom(E, F )) be a section which depends analytically ony. Thenφy defines a contin-
uous linear mapHs(E) → Hs(F ) which depends analytically ony, whereHs denotes
the Sobolev space of orders ∈ R.

Proof. Choose connections∇E and∇F in E andF respectively and (hermitian) metrics
on both vector bundles. Then forS ∈ C∞(E) andk ∈ N:

‖∇k
E(φyS)‖L2(F ) ≤ const.‖φy‖Ck

(
k∑

l=0

‖∇l
ES‖L2(E)

)
.

Hence‖φyS‖ ≤ const.‖φy‖Ck‖S‖Hk . Thusφy : Hk(E) → Hk(F ) is continuous and
its operator norm is bounded by a constant multiple of‖φy‖Ck . Fork ∈ −N this follows
by duality, and fors ∈ R, φy is continuous with operator norm bounded by a constant
multiple of‖φy‖Ck for k ∈ N with k ≥ |s|, by the interpolation argument of [Fo,3.21].
By the previous lemma, givenk ∈ N andy0 ∈ U we may findR > 0 andq ∈ N such
that

‖φy(p) −
∑

|α|≤q

1
α!

φα(y − y0)α‖Ck < ε |y − y0| < R

for givenε > 0. Thus
∑

|α|≤q
1
α! φα(y − y0)α converges uniformly toφy in the operator

norm. This proves the lemma. �
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Definition. Let Dy : C∞(E) → C∞(F ) be a differential operator of orderq on a
compact manifoldM which depends upon a variabley ∈ U , whereU ⊂ Rn is open.
We say thatDy depends analytically ony if in every local trivialization ofE andF over
V ⊂ M

Dy =
∑

|α|≤q

Aα,y
∂

∂xα
,

where theAα,y are analytic uniformly iny and are smooth jointly in both variables.

This definition clearly is independent of the particular trivializations chosen.

Proposition 11.3. An analytic differential operatorDy : C∞(E) → C∞(F ) of order
q extends to a bounded linear operatorDy : Hs+q(E) → Hs(F ) which is analytic iny.

Proof. We may think ofDy as a sectiondy of Hom(JqE, F ), whereJqE denotes the
qth jet-bundle ofE. This section clearly is analytic iny. If jq : C∞(E) ↪→ C∞(JqE)
denotes the standard inclusion thenDy = dy ◦ jq. The mapdy extends to an ana-
lytic bounded linear mapHs(JqE) → Hs(F ) and jq extends to a bounded linear
mapHs+q(E) → Hs(JqE). Thus their composition is an analytic bounded linear map
Hs+q(E) → Hs(F ). �

The following proposition is the upshot of the preceding discussion. This proposition
has also been proved in [Ang,Th.1.1] for perturbations of order smaller than the order
of D.

Proposition 11.4. Let Dt, t ∈ (a, b), be an analytic family of differential operators
of order q acting on the smooth sections of a complex vectorbundleE over M such
that Dt is elliptic for eacht. Let µ := min{dimKer(Dt), t ∈ (a, b)}. Then the set
T := {t ∈ (a, b) , dimKer(Dt) > µ} is discrete.

Proof. If s 6∈ T then for all t in a neighbourhood ofs, we havet 6∈ T , by upper
semicontinuity. This in particular implies that the setT is closed. Fix anys ∈ (a, b) in
the boundary ofT . SplitHq(E) orthogonally asK ⊕H, whereK := Ker(Ds), and split
H0(E) orthogonally asC ⊕ D, whereC := Coker(Ds). We may decomposeDt as

Dt =
(

at bt

ct dt

)
with respect to this splitting, wheredt : H → D is invertible for t nears. Let k :=
dimKerDs − µ > 0. SetR(t) := bt ◦ d−1

t ◦ ct − at and note that dimKer(Dt) =
dimKer(Ds) if and only if R(t) = 0 [Kos]. Becauses is in the boundary ofT , there
is a (k × k)-minor of R(t) with nonvanishing determinant for a set of points withs
as an accumulation point. ButR(t) depends analytically ont, and thus this minor has
nonvanishing determinant att 6= s in a neighbourhood ofs. Thus there is an open interval
(t1, t2) with a < t1 < s < t2 < b such that fort ∈ (t1, t2) \ {s} we havet 6∈ T . ThusT
is discrete. �

Acknowledgement.I wish to thank D. Kotschick for introducing me to the problems discussed here. I also
appreciate the many useful discussions with C. Bär. Thanks are also due to M. Slupinski for an invitation to
the IRMA, Strasbourg. I am grateful to Th. Friedrich for useful comments and for pointing out an error in an
earlier version of this paper.



436 S. Maier

References

[ACGH] Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves. VolumeI ,
Berlin-Heidelberg-New York: Springer Grundlehren Band 267, 1985

[Ang] Anghel, N.: Generic vanishing for harmonic spinors of twisted Dirac operators. To appear in Proc.
Am. Math. Soc.

[At] Atiyah, M.: Riemann surfaces and spin structures. Ann. Scient.Éc. Norm. Sup., 4e série, tome4,
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Cartan, 13e anńee, 1960/61
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