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Abstract: Distribution functions for random variables that depend on a parameter are
computed asymptotically for ensembles of positive Hermitian matrices. The inverse
Fourier transform of the distribution is shown to be a Fredholm determinant of a certain
operator that is an analogue of a Wiener-Hopf operator. The asymptotic formula shows
that, up to the terms of ordero(1), the distributions are Gaussian.

1. Introduction

In the theory of random matrices one is led naturally to consider the probability distribu-
tion on the set of eigenvalues of the matrices. ForN ×N random Hermitian matrices one
can show that under reasonable assumptions, the probability density that the eigenvalues
λ1, . . . , λN lie in the intervals

(x1, x1 + dx1), . . . , (xN , xN + dxN )

is given by the formula

PN (x1, . . . , xN ) =
1

N !
detK(xi, xj) |Ni,j=1 , (1)

where

KN (x, y) =
N−1∑
i=0

φi(x)φi(y), (2)

andφi is obtained by orthonormalizing the sequence
{

xie−x2/2
}

overR.

? Supported in part by NSF Grant DMS-9623278.



328 E. L. Basor

For N × N positive Hermitian matrices the probability density has the same form
except thatφi is replaced by the functions obtained by orthonormalizing the sequence{
xν/2e−x/2xi

}
overR+. We will not describe here exactly how these particular densities

arise but instead refer the reader to [8].
We can define a random variable on the space of eigenvalues by considering

f (x1, . . . , xN ) wheref is any symmetric function of thexi’s. A particular case of
interest is a random variable of the form

∑N
i=1 f (xi), wheref is a function of a real

variable. Such a random variable is generally called a linear statistic.
In previous work [8, 3, 1, 6], the variance of the random variable was computed in

the largeN limit. More precisely, the functionf and the kernelKN (x, y) were suitably
rescaled so that the limit asN → ∞ of the variance could be computed. The precise
details of this are in the next section.

Our goal in this paper is to compute the distribution function for a class of the linear
statistics that depend on a parameterα. We now describe the sections of the paper and
main results. In the next section we outline the random matrix theory and show how
the distribution functions can be computed using Fredholm determinants. In Sect. 3 we
replace the functionf (x) in the linear statistic byfα(x) = f (x/α). For random variables
of this type we show that the inverse Fourier transform of the distribution functionφ̌(k)
has an asymptotic expansion of the form

φ̌(k) ∼ eak2+bk (3)

asα → ∞. This of course implies that the actual distribution is asymptotically Gaussian.
Herea andb depend onf andα. This is proved for both the Hermitian matrices and
positive Hermitian matrices. In the latter case withν = −1/2, a very simple proof is
given in Sect. 3. Forν > −1/2, a completely different proof is obtained in Sect. 4.

Most of the results are obtained by using simple operator theory identities in the
theory of Wiener-Hopf operators. The central idea is that the various quantities which
yield information about random variables can all be computed in terms of traces or
determinants of integral operators. Some of the computations lead directly to a familiar
problem in the theory of Wiener-Hopf operators, while others require modifications and
generalizations of these results.

2. Preliminaries

In this section we show how to compute the mean, variance, and inverse Fourier transform
of the distribution of the random variable. Computations for the mean and variance
have been given before in many places. However, we reproduce all of these here for
completeness sake and also to highlight the use of operator theory ideas.

We begin by consideringPN for N × N random Hermitian matrices. We want to
consider large matrices and thus we letN → ∞, but this leads to a trivial result unless
we rescaleKN in a particular way. We replaceKN (x, y) with

1√
2N

KN

(
x√
2N

,
y√
2N

)
. (4)

RescalingKN is equivalent to rescaling the mean spacing of the eigenvalues. (See [12]
for details.)

From the theory of Hermite polynomials it is easy to see that asN → ∞,
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1√
2N

KN

(
x√
2N

,
y√
2N

)
→ sin(x − y)

π(x − y)
. (5)

This last function is known as the sine kernel. Now consider a random variable of the
form

N∑
i=1

f (xi

√
2N ),

where in all that followsf is a continuous real-valued function belonging toL1(R) and
which vanishes at±∞. The appearance of the

√
2N should not be surprising here since

the above rescaling spreads out the eigenvalues and hence should be reflected in the
random variable. The meanµN is∫

· · ·
∫ N∑

i=1

f (xi

√
2N )PN (x1, . . . , xN )dx1 · · · dxN . (6)

Now the functionPN has the important property [8]

N !
(N − n)!

∫
· · ·

∫
PN (x1, . . . , xn, xn+1, . . . , xN )dxn+1 · · · dxN

= detK(xi, xj) |ni,j=1 . (7)

Thus, (6) is easily seen to be∫ ∞

−∞
f (x

√
2N )KN (x, x) dx (8)

which, after changingx to x/
√

2N , becomes∫ ∞

−∞
f (x)

1√
2N

KN

(
x√
2N

,
y√
2N

)
dx.

Thus, asN → ∞,

µN → µ =
∫ ∞

−∞
f (x)K(x, x) dx, (9)

whereK(x, y) is the sine kernel.
A very similar computation for the variance varNf , again using (7), yields

varf := lim
N→∞

varNf = −
∫ ∫

f (x)f (y)K2(x, y) dx dy +
∫

f2(x)K(x, x) dx. (10)

Both the mean and the variance can be interpreted as traces of certain Wiener-Hopf
operators. To see this, consider the operatorA(f ) onL2(−1, 1) with kernel

1
2π

∫ ∞

−∞
f (t)e−it(x−y) dt. (11)

This operator can easily be seen to be the productFMfF−1P , wherePg = χ(−1,1)g,
Mfg = fg andF is the Fourier transform. A moment’s thought shows thatµ = tr{A(f )}
and varf = tr{A(f2) − (A(f ))2}.
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A more difficult, yet also straightforward problem, is to find an expression for the
distribution function of a random variable of this type. A fundamental formula from
probability theory shows that if we call the probability distribution functionφN , then

φ̌N (k) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
e
ik

∑N

j=1
f (xj

√
2N )

PN (x1, . . . , xN )dx1 · · · dxN . (12)

Thus,

φ̌N (k) =
∫ ∞

−∞
· · ·

∫ ∞

−∞

N∏
j=1

eikf (xj

√
2N )PN (x1, . . . , xN ) dx1 · · · dxN

=
∫ ∞

−∞
· · ·

∫ ∞

−∞

N∏
j=1

((eikf (xj

√
2N ) − 1) + 1)PN (x1, . . . , xN ) dx1 · · · dxN

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
{1 +

N∑
j=1

(eikf (xj

√
2N ) − 1)

+
N∑

j<l

(eikf (xj

√
2N ) − 1)(eikf (xl

√
2N ) − 1) + . . .}

×PN (x1, . . . , xN ) dx1 · · · dxN

= 1 +
1
1!

∫ ∞

−∞
(eikf (x

√
2N ) − 1)KN (x, x) dx

+
1
2!

∫ ∞

−∞

∫ ∞

−∞
(eikf (x1

√
2N ) − 1)(eikf (x2

√
2N ) − 1)

det(KN (xj , xl)) |1≤j,l≤2 dx1 dx2

+ · · · +
1

N !

∫ ∞

−∞
· · ·

∫ ∞

−∞

N∏
j=1

(eikf (xj

√
2N ) − 1)PN (x1, . . . , xN ) dx1 · · · dxN .

In each integral we rescale to obtain

φ̌N (k) = 1 +
1
1!

∫ ∞

−∞
K ′(x1, x1) dx1 +

1
2!

∫ ∞

−∞

∫ ∞

−∞
K ′(x1, x2) dx1 dx2

+ · · · +
1

N !

∫ ∞

−∞
· · ·

∫ ∞

−∞
K ′(x1, . . . , xN ) dx1 · · · dxN , (13)

where

K ′(x1, . . . , xn) = det

(
(eikf (xj ) − 1)KN (

xj√
2N

,
xl√
2N

)
1√
2N

)
1≤j,l≤n

. (14)

Letting N → ∞ we see this is the formula for the Fredholm determinant det(I + K),
whereK has kernel

K(x, y) = (eikf (x) − 1)
sin(x − y)
π(x − y)

. (15)

As before we can express this last quantity in terms of the operatorA(σ)
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φ̌(k) = lim
N→∞

φ̌N (k) = det(I + A(σ)), (16)

whereσ(x) = eikf (x) − 1.
The preceding computations can all be carried out in the case of positive Hermitian

matrices. In this case we replaceKN (x, y) with

1
4N

KN (
x

4N
,

y

4N
)

and from the theory of Laguerre polynomials we see that asN → ∞,

1
4N

KN (
x

4N
,

y

4N
) → Jν(

√
x)

√
yJν

′(
√

y) − √
xJν

′(
√

x)Jν(
√

y)

2(x − y)
, (17)

whereJν is the Bessel function of orderν. The details of this are found in [13]. The
rescaling here forces the eigenvalue density to be bounded near zero and is called “scaling
at the hard edge.” The kernel (17) is known as the Bessel kernel.

We can again write the mean, the variance, and the Fourier transform of the distri-
bution in terms of operators. This time the relevant operatorB(f ) is defined onL2(0, 1)
with kernel given by

K(x, y) =
∫ ∞

0
t
√

xyf (t)Jν(tx)Jν(ty) dt. (18)

If we begin with the linear statistic (the
√

x is merely for convenience, and we again
assume thatf is continuous, inL1(R+) and vanishes at +∞)

N∑
i=1

f (
√

xi4N ), (19)

then nearly identical computations show that

µ = trB(f ),

varf = tr{B(f2) − (B(f ))2},

φ̌(k) = det(I + B(σ)),

whereσ = eikf (x) − 1. We summarize these results in the following:

Theorem 1. (a) Given a random variable of the form
∑N

i=1 f (xi

√
2N ) defined on the

space of eigenvalues ofN × N Hermitian matrices with probability distribution given
in (1), we have

µ := limN→∞ µN = tr (A(f )),
varf := limN→∞ varNf = tr{A(f2) − (A(f ))2},

φ̌(k) := limN→∞ φ̌N (k) = det(I + A(σ)),

whereσ(x) = eikf (x) − 1.
(b) Given a random variable of the form

∑N
i=1 f (

√
xi4N ) defined on the space of

eigenvalues of positiveN × N Hermitian matrices, we have

µ := limN→∞ µN = tr (B(f )),
varf := limN→∞ varNf = tr{B(f2) − (B(f ))2},

φ̌(k) := limN→∞ φ̌N (k) = det(I + B(σ)),

whereσ(x) = eikf (x) − 1.
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When linear statistics are considered [3, 10], one is often concerned with a statistic
of the form

∑N
i=1 f (xi/α), whereα is a real parameter approaching infinity. This is the

case, for example, in the study of disordered conductors where largeα corresponds to
a high density metallic regime. The above formulas still hold, of course, but now they
depend on the parameter. We will call the operators that depend on the parameterα by
Aα(f ) andBα(f ), respectively. In the next sections we will compute the mean, variance,
and distribution function asymptotically asα → ∞.

3. The Mean, Variance, and Distribution Function asα → ∞

For random Hermitian matrices, computing the various limits are applications of the
continuous analogues of the Strong Szegö Limit Theorem. For then,Aα(f ) is just the
classical Wiener-Hopf operator defined on the interval (−α, α), and all of the quantities
are known asymptotically asα → ∞. We provide the answers here for completeness.

Theorem 2. Assume thatf ∈ L1(R) is continuous, and vanishes at±∞ and that in
addition its Fourier transformf̂ satisfies∫ ∞

−∞
|x||f̂ (x)|2 dx < ∞.

Then

µ =
α

2π

∫ ∞

−∞
f (x) dx,

varf = 2
∫ ∞

0
xf̂ (x)f̂ (−x) dx + o(1)

and

φ̌(k) ∼ exp

{
α

2π

∫ ∞

−∞
ikf (x) dx − k2

∫ ∞

0
xf̂ (x)f̂ (−x) dx

}
.

The Bessel case is significantly more complicated. There is no corresponding Szegö
type theorem. We begin by computing the mean. The operatorBα(σ) has kernel∫ ∞

0

√
xytf (t/α)Jν(tx)Jν(ty) dt.

Thus the meanµ is given by

µ =
∫ 1

0

∫ ∞

0
xtf (t/α)J2

ν(tx) dt dx

= α2
∫ ∞

0

∫ 1

0
xtf (t)J2

ν(αtx) dx dt

= α2
∫ ∞

0
f (t)

∫ 1

0
xtJ2

ν(αtx) dx dt. (20)

Now ∫ 1

0
xJ2

ν(αtx) dx =
1
2

{
J2

ν(αt) − Jν+1(αt)Jν−1(αt)
}
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and

Jν−1(αt) = −Jν+1(αt) +
2ν

αt
Jν(αt).

Therefore the integral (20) becomes

α

∫ ∞

0
f (t)

αt

2

{
J2

ν(αt) + J2
ν+1(αt) − 2ν

αt
Jν+1(αt)Jν(αt)

}
dt

or

α

∫ ∞

0
f (t)

αt

2

{
J2

ν(αt) + J2
ν+1(αt)

}
dt − αν

∫ ∞

0
f (t)Jν+1(αt)Jν(αt) dt. (21)

The first integral equals

α

π

∫ ∞

0
f (t) dt + o(1), (22)

which can be easily seen by using the asymptotic properties of Bessel functions. The
second integral is asymptotically

ν

2
f (0) +o(1).

This uses the identity
∫ ∞

0 Jν+1(x)Jν(x) dx = 1
2 .

Thus we have

µ =
α

π

∫ ∞

0
f (t) dt − ν

2
f (0) +o(1). (23)

For the variance we refer to [1] where the calculation was already done. There it was
shown that

varf ∼ 1
π2

∫ ∞

−∞
|M (f )(2iy)|2y tanh(πy)dy. (24)

We note however, that this can also be written as

varf ∼ 1
π2

∫ ∞

0
x(C(f )2) dx, (25)

whereC(f )(x) =
∫ ∞

0 f (y) cos(xy)dy denotes the cosine transform off . This is an
exercise involving the properties of the Mellin transform, and we leave it to the reader.

To compute the distribution function, we first turn our attention to the case where
ν = −1/2. Our operatorBα(σ) has kernel

2
π

∫ ∞

0
σ(t/α) cosxt cosytdt

=
1
π

∫ ∞

0
σ(t/α)(cos((x − y)t) + cos((x + y)t)) dt

=
α

π
(C(σ)((x − y)α) + C(σ)((x + y)α)).

This is unitarily equivalent to the operator onL2(0, α) with kernel
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1
π

(C(σ)(x − y) + C(σ)(x + y)). (26)

The operator with kernel1π (C(σ)(x−y)) is the finite Wiener-Hopf operator, usually
denoted asWα(σ), and the operator with kernel1

π (C(σ)(x + y)) is the Hankel operator
Hα(σ). (The only difference between this definition of a finite Wiener-Hopf operator
and the one given earlier forAα is the difference in the domain. The two are unitarily
equivalent.) If we consider the operators onL2(0, ∞) in what follows, we will denote
them byW (σ) andH(σ) respectively. Also, whenever it is necessary to consider the
extension ofσ to the entire real axis, it will always be the even extension.

Thus the problem of finding the distribution function asymptotically becomes the
same as computing the Fredholm determinant det(I +Bα(σ)) = det(I +Wα(σ)+Hα(σ))
asymptotically. To do this we need some basic facts about Wiener-Hopf operators and
we collect them in the following theorem. These are well-known and can all be found
in [4].

Theorem 3. a) Supposeφ andψ are even bounded functions inL1(R). Then

W (φ)H(ψ) + H(φ)W (ψ) = H(φψ)

and

W (φ)W (ψ) = W (φψ) − H(φ)H(ψ).

b) Supposeφ andψ are bounded functions inL1(R). If the Fourier transformφ̂(x)
vanishes forx negative, thenW (ψ)W (φ) = W (φψ) and if φ̂(x) vanishes forx positive,

thenW (φ)W (ψ) = W (φψ).

We defineW (σ) andH(σ) with σ = 1 + f andf in L1 by W (σ) = I + W (f ) and
H(σ) = H(f ). Both of these definitions are natural when thought of in a distributional
setting, and the above theorem holds with these definitions as well.

The next theorem is of primary importance in the computations that follow.

Theorem 4. Supposeφ = 1+f, φ−1 = 1+g, wheref andg are bounded even functions.
Then the inverse ofW (φ) + H(φ) is W (φ−1) + H(φ−1).

Proof. Using Theorem 3 parts a) and b) we have,

(W (φ) + H(φ))(W (φ−1) + H(φ−1))

= W (φ)W (φ−1) + H(φ)W (φ−1) + W (φ)H(φ−1) + H(φ)H(φ−1)

= I − H(φ)H(φ−1) + H(φφ−1) + H(φ)H(φ−1)

= I + H(1) = I.

The same computation holds for (W (φ−1) + H(φ−1))(W (φ) + H(φ)), and so we have
shown that these operators are inverses of each other.�

It is well known from the theory of Wiener-Hopf operators that under appropriate con-
ditions det(I + Wα(σ)) has the asymptotic expansionG(σ)αE(σ), where

G(σ) = exp
1

2π

∫ ∞

−∞
log(1 +σ(ξ))dξ
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and E(σ) = det(W (φ)W (φ−1)) with φ = 1 + σ. This is simply another version of
Theorem 2. With additional assumptions onφ, it is very easy to adapt this proof to the
Bessel caseν = −1/2 to show that

det(I + Wα(σ) + Hα(σ)) ∼ G(σ)αE′(σ) (27)

andE′(σ) = det((W (φ) +H(φ))W (φ−1)). Thus to compute the distribution, we need to
know the form of the above determinant. This is contained in the next theorem.

Theorem 5. Supposeσ = eikf − 1, wheref is even, continuous, piecewiseC2 and
vanishes at infinity. Suppose also thatf ∈ L1 and the function

ξ → (1 + ξ2)(|f ′′(ξ)| + |f ′(ξ)|2) ∈ L2.

Then asα → ∞, we have

det(I+Wα(σ)+Hα(σ)) ∼ exp{α

π

∫ ∞

0
ikf (x) dx+

ik

4
f (0)− k2

2π2

∫ ∞

0
x|C(f )(x)|2 dx}.

(28)

Proof. The conditions onσ ensure that the above integrals converge, and that the
operatorsH(φ) and H(f ) are trace class. The reader is referred to [2] for details.
These assumptions also guarantee that (27) holds. It is also easy to see thatG(φ) =
exp{α

π

∫ ∞
0 ikf (x) dx}. To complete the proof we need a concrete representation for

det((W (φ) + H(φ))W (φ−1)). Define

h(k) = log det((W (φ) + H(φ))W (φ−1)),

whereφ = eikf . Let h(k) = log det((W (φ) + H(φ))W (φ−1)). We need to show the
second derivative ofh is constant ink. A standard formula [5] yields

h′(k) = tr((W (φ−1))−1(W (φ) + H(φ))−1 × d(W (φ) + H(φ))W (φ−1)
dk

)

= tr((W (φ−1))−1(W (φ) + H(φ))−1)

×{(W (φ) + H(φ))W (φ−1(−if )) + W (φif )W (φ−1) + H(φif )W (φ−1)}
= tr{(W (φ−1))−1W (φ−1(−if )) + (W (φ−1))−1W (φ−1)W (φif )W (φ−1)

+(W (φ−1))−1W (φ−1)H(φif )W (φ−1) + (W (φ−1))−1H(φ−1)W (φif )W (φ−1)

+(W (φ−1))−1H(φ−1)H(φif )W (φ−1)}.

This uses Theorem 4. Simplifying further and using the fact thatH(φ−1) is trace class
we have

h′(k) = tr{(W (φ−1))−1W (φ−1(−if )) + W (φif )W (φ−1)

+H(φif )W (φ−1) + H(φ−1)W (φif ) + H(φ−1)H(φif )}.

Now apply Theorem 3, part a) and the fact that tr(AB) = tr(BA) to find

h′′(k) = tr{(W (φ−1))−1W ((φ−1)(if )2)

−(W (φ−1))−1W (φ−1(−if ))(W (φ−1))−1W (φ−1(−if ))}.
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The conditions onφ guarantee that the functionφ has a factorizationφ = (g− +1)(g+ +1)
such that the Fourier transforms ofg+ andg− vanish for positive and negative real values
respectively. Then using Theorem 3, part b), it is easy to see that we can write

W (φ) = W (g− + 1)W (g+ + 1), W (φ−1)−1 = W (g+ + 1)W (g− + 1).

A repeated application of these identities allows us to writeh′′(k) = trH(if )H(if ),
andh′′(k) is independent ofk. Thus at this point we haveh(k) = ak2 + bk + c, where
2a = −tr((H(f ))2. A direct computation shows thata = − 1

2π2

∫ ∞
0 x|C(f )(x)|2 dx. To

computeb, notice thath′(0) is trH(if ) = i
2π

∫ ∞
0 C(f (x)) dx. Also h(0) = tr log(I) = 0.

Thus the last theorem holds. �

4. The General Case

In this section we show that under certain conditions, the distribution function for general
ν has the same form as in the case ofν = −1/2. The only difference is in the mean
which was computed in the last section. The attack on the problem is entirely different
here. Instead of computing determinants asymptotically, we compute the traces of the
operators (Bα(σ))n and then piece together the answers to get an answer for the trace
of log(I + Bα(σ)) and from that to the desired determinant.

To begin we need to show that trf (Bα(σ)) makes sense for a class of analytic
functionsf . Just as we can associate the Wiener-Hopf operator with the Fourier transform
and a multiplication operator, we can also write

Bα(σ) = PHMσH,

whereH is the Hankel transform andP is the projection onL2(0, 1). Since the Hankel
transform is unitary onL2(0, ∞) ([11]), the operator norm||Bα(σ)|| is less than the
infinity norm ||σ||∞ of σ. Thusf (Bα(σ)) is defined forf analytic on a disk centered
at the origin with radius||σ||∞ + δ, δ > 0. The operatorBα(σ) is also trace class forσ
in L1 by Mercer’s Theorem ([5] Ch.III) as isf (Bα(σ)) for f satisfying the above and
f (1) = 0.

We need some lemmas that will prove to be useful. These may be known already,
but we include them for completeness.

Lemma 6. Suppose−1 < p < 1, 0 < λ, δ < 1, µ < 0, p + µ + δ < 0 and0 < t < 1.
Then ∫ ∞

0
sp(1 + s)µ|1 − s|−1+λ|1 − ts|−1+δ ds

≤ A max(|1 − t|−1+λ, |1 − t|−1+δ) max(t−λ, t−p−λ), (29)

whereA is some constant independent oft.

Proof. We have ∫ ∞

0
sp(1 + s)µ|1 − s|−1+λ|1 − ts|−1+δ ds

= t−1+δ

∫ 1

0
sp(1 + s)µ|1 − s|−1+λ|1/t − s|−1+δ ds
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+t−1+δ

∫ 1/t

1
sp(1 + s)µ|1 − s|−1+λ|1/t − s|−1+δ ds

+t−1+δ

∫ ∞

1/t

sp(1 + s)µ|1 − s|−1+λ|1/t − s|−1+δ ds.

We consider each of the above integrals. In each,A is a possibly different constant
independent oft but can depend on the other parameters. First,∫ 1

0
sp(1 + s)µ|1 − s|−1+λ|1/t − s|−1+δ ds

≤ |1/t − 1|−1+δ

∫ 1

0
sp(1 + s)µ|1 − s|−1+λds

≤ A|t − 1|−1+δt1−δ.

Next, ∫ 1/t

1
sp(1 + s)µ|1 − s|−1+λ|1/t − s|−1+δ ds

≤ A max(1, t−p)
∫ 1/t

1
|1 − s|−1+λ|1/t − s|−1+δds

= A max(1, t−p)|1/t − 1|−1+λ+δ

= A max(1, t−p)t−λ−δ+1|1 − t|−1+λ+δ

≤ A max(1, t−p)t−λ−δ+1|1 − t|−1+λ.

Finally, ∫ ∞

1/t

sp(1 + s)µ|1 − s|−1+λ|1/t − s|−1+δ ds.

≤ |1 − 1/t|−1+λ

∫ ∞

1/t

sp+µ|1/t − s|−1+δ ds

≤ |1 − 1/t|−1+λt−p−µ−δA

= A|t − 1|−1+λt−p−µ−δ−λ+1.

Putting this together we have that the original integral is bounded by

A max(|1 − t|−1+λ, |1 − t|−1+δ) max(1, t−λ, t−p−λ). �

Lemma 7. Suppose−1 < p < 1, 0 < λ, δ < 1, µ < 0, p + µ + λ < 0 andt > 1. Then∫ ∞

0
sp(1+s)µ|1−s|−1+λ|1−ts|−1+δ ds ≤ A max(|1−t|−1+λ, |1−t|−1+δ) max(1, t−p),

(30)
whereA is some constant independent oft.

Proof. The proof of this is almost identical to the previous lemma, and we leave the
details to the reader.
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Lemma 8. Suppose|x| < 1, Rec > 0, Re (c − b) > 0, andRe (c − a − b) < 0. Then
the hypergeometric functionF (a, b, c, x) satisfies the estimate

|F (a, b, c, x)| ≤ A|1 − x|Re (c−a−b)

with A independent ofx.

Proof. The hypergeometric function satisfies the identityF (a, b, c, x) = (1 − x)c−a−b

F (c − a, c − b, c, x). Using Euler’s integral formula forF , we have

F (c − a, c − b, c, x) =
0(c)

0(b)0(c − b)

∫ 1

0
tc−b−1(1 − t)b−1(1 − tx)−c+a dx. (31)

The last integral is bounded by
∫ 1

0 tRe (c−b−1)(1−t)Re (a+b−c−1)dxor 0(Re (c−b))0(Re (a+b−c))
0(Rea) .

We next find an integral expression for the trace of (Bα(σ))n. We proceed informally
at first and later state things rigorously. Using (18) we can write this trace as∫ ∞

0
. . .

∫ ∞

0

∫ 1

0
. . .

∫ 1

0

n∏
i=1

sixiσ(xi/α)Jν(xisi)Jν(xisi+1) ds1 . . . dsndx1 . . . dxn,

wheres1+n = s1. Let σ̂ be the Mellin transform ofσ, wherec > 0. Then the above
becomes

1
(2πi)n

∫ c+i∞

c−i∞
. . .

∫ c+i∞

c−i∞

∫ ∞

0
. . .

∫ ∞

0

∫ 1

0
. . .

∫ 1

0

n∏
i=1

{six
1−zi
i Jν(xisi)Jν(xisi+1)σ̂(zi)}

×αz1+...zn ds1 . . . dsndx1 . . . dxndz1 . . . dzn.

Now use the formula ∫ ∞

0
x−λJν(ax)Jν(bx)dx

=
(ab)ν0(ν + 1−λ

2 )

2λ(a + b)2ν−λ+10(1 +ν)0(1/2 + λ
2 )

F (ν +
1 − λ

2
, ν +

1
2

; 2ν + 1;
4ab

(a + b)2
),

whereF (a, b; c; z) is the hypergeometric function2F1, n times in the integral to get the
expression

1
(2πi)n

∫ c+i∞

c−i∞
. . .

∫ c+i∞

c−i∞

∫ 1

0
. . .

∫ 1

0
αz1+...+zn

×
n∏

i=1

σ̂(zi)
s2ν+1

i 0(ν + 1− zi/2)F (ν + 1− zi/2, ν + 1
2; 2ν + 1; 4sisi+1

(si+si+1)2 )

2zi−10(1 +ν)0(zi/2)(si + si+1)2ν−zi+2

×ds1 . . . dsndz1 . . . dzn.

Next we make the change of variables

s1 = s′
1

s2 = s′
2s

′
1

...

sn = s′
n . . . s′

1,
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and the integral becomes

1
(2πi)n

∫ c+i∞

c−i∞
. . .

∫ c+i∞

c−i∞

∫ 1

0

∫ 1
s1

0
. . .

∫ 1
s1...sn−1

0
(α/2)z1+...+zn2nσ̂(zn)

0(ν + 1− zn/2)
0(1 +ν)0(zn/2)

×sz1+...+zn−1
1 (1 + sn . . . s2)−2ν+zn−2F (ν + 1− zn/2, ν +

1
2

; 2ν + 1;
4sn . . . s2

(1 + sn . . . s2)2
)

×
n−1∏
i=1

{ σ̂(zi)0(ν + 1− zi/2)
0(1 +ν)0(zi/2)

s
2ν+1+zi+1+...zn−1

i+1 (1 + si+1)
−2ν+zi−2

×F (ν + 1− zi/2, ν +
1
2

; 2ν + 1;
4si+1

(1 + si+1)2
)}dsn . . . ds1dz1 . . . dzn.

Write the inside integral as∫ 1

0

∫ 1
s1

0
. . .

∫ 1
s1...sn−1

0
. . . dsn . . . d1 −

∫ 1

0

∫ ∞

0
. . .

∫ ∞

0
. . . dsn . . . ds1

+
∫ 1

0

∫ ∞

0
. . .

∫ ∞

0
. . . dsn . . . ds1.

The last integral in the above sum, inserted in the main integral, is the same as tr (Bα(σn)).
After reversing the order of integration tods1 . . . dsn, the first two terms combine to
yield limits of integration

−
∫ ∞

0

∫ ∞

0
. . .

∫ ∞

0

∫ 1

min(1, 1
s2

,..., 1
s2...sn

)
,

and then the first integration can be done. The result is that

tr (Bα(σ))n = trBα(σn) + C(σ),

whereC(σ) is given by the expression

−1
(2πi)n

∫ c+i∞

c−i∞
. . .

∫ c+i∞

c−i∞
(α/2)z1+...+zn

n∏
i=1

σ̂(zi)20(ν + 1− zi/2)
0(1 +ν)0(zi/2)

×
∫ ∞

0
. . .

∫ ∞

0

1 − (min(1, 1
s2

, . . . , 1
s2...sn

))z1+...+zn

z1 + z2 + . . . + zn

×(1 + sn . . . s2)−2ν+zn−2F (ν + 1− zn/2, ν +
1
2

; 2ν + 1;
4sn . . . s2

(1 + sn . . . s2)2
)

×{
n∏

i=2

s
2ν+1+zi+...zn−1

i (1 +si)
−2ν+zi−1−2 × F (ν + 1− zi−1/2, ν +

1
2

; 2ν + 1;
4si

(1 + si)2
)}

×dsn . . . ds2dz1 . . . dzn.

We next write this integral as



340 E. L. Basor

−1
(2πi)n

∫ c+i∞

c−i∞
. . .

∫ c+i∞

c−i∞
G(zi)

∫ ∞

0
. . .

∫ ∞

0
H(zi; si)dsn . . . ds2dz1 . . . dzn.

The idea from here on out is to evaluate this integral asymptotically using complex
analysis. This will be done in several stages and by breaking the integral into several
parts. To begin we first consider the interior integration∫ ∞

0
. . .

∫ ∞

0
H(zi; si)ds2 . . . dsn.

Consider this as an integral overR1∪R2, whereR1 is a union of disjoint sets,R1 = ∪n
i=2Ui

such that onUi, si is bounded away from 1 and whereR2 is the complement ofR1.
�

Lemma 9. Suppose that−2ν −1 < 0. The integral ofH(zi; si) overUi is bounded and
thezi variables can be changed in such a way so that the integrated function is analytic
in a particularz variable to the left of the imaginary axis.

Proof. For convenience leti = 2 (although the proof is the same for anyi) and let
z1 + . . . + zn = z

′
1 with the other variables remaining the same. Suppose that Rezi = c

for i = 3, . . . , n and thatc > 0. Suppose also that Rez
′
1 = b with |b| < c. We now refer

to z′
1 asz. Our goal is to show that this integral is bounded and that as a function ofz is

analytic to the left of the imaginary axis. By repeated application of Lemma 8, we can
say that the integral is bounded by a constant times

∫
|s2−1|≥B

∫ ∞

0
. . .

∫ ∞

0

∣∣∣∣∣1 − (min(1, 1
s2

, . . . , 1
s2...sn

))z1+...+zn

z1 + z2 + . . . + zn

∣∣∣∣∣
×

n∏
i=3

(1 + si)
−2ν−1s(n−i)c

i |1 − si|c−1

×sb−2c
2 (1 + s2)−2ν−1|1 − s2|b−1|1 − s2 . . . sn|c−1

×ds2 . . . dsn.

This is valid as long as 2ν + 1 > 0 and Rezi − 1/2 < 0, which is the case here if we
assume thatc is small enough. Next, we estimate∣∣∣∣∣1 − (min(1, 1

s2
, . . . , 1

s2...sn
))z1+...+zn

z1 + z2 + . . . + zn

∣∣∣∣∣
by using the fact that|1− xz| ≤ max|z|xRez′ | ln x|, where the max is taken over thez′
values on a line connecting 0 andz, x between 0 and 1. Thus,|1− xz| ≤ K|z|xRezx−ε

for some positiveε chosen shortly. Inserting this in the integral we have that the integral
is bounded by a constant times
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∫
|s2−1|≥B

∫ ∞

0
. . .

∫ ∞

0

n∑
j=2

{max(1, (s2 . . . sj)ε(s2 . . . sj)−b+ε)}

×
n∏

i=3

(1 + si)
−2ν−1s(n−i)c

i |1 − si|c−1

×sb−2c
2 (1 + s2)−2ν−1|1 − s2|b−1|1 − s2 . . . sn|c−1ds2 . . . dsn.

The reason for both terms in the “max” part of the integral is thatb could be either positive
or negative. Now let’s begin with thesn integration. Then the first interior integral has
the form ∫ ∞

0
sp

n(1 + sn)−2ν−1|1 − sn|c−1|1 − s2 . . . sn|−1+cdsn.

The value forp is either±a, wherea = |b − ε| < c. The next step is to apply Lemmas
6 and 7. We useλ = δ = c andp as above. The result is that this integral is bounded by
a constant times

|1 − s2 . . . sn−1|c−1 × max(1, (s2 . . . sn−1)−c, (s2 . . . sn−1)−c−p(s2 . . . sn−1)−p).

We collect powers and use the lemmas twice with respect to thesn−1 integration and
powers ofp = ±(2c). At the next integration step the powers ofp = ±3c and so on until
we arrive at thes2 integration. Here we will have∫

|s2−1|≥B

sp
2|1 − s2|q|1 + s2|−2ν−1ds2,

wherep andq are appropriate powers. These integrals satisfy all the conditions necessary
for the lemmas as long asc andb are small enough. We will have at most 2n integrals
in this process. Hence the integral ofH overUi is analytic in the z variable in a strip
|Rez| < c by the application of Morera’s Theorem and Fubini’s Theorem. �

We remark here that this proof also is easily modified to show that the interchange of
integrals done at the beginning of the section are valid and the expressionC(σ) is the
one of interest.

Lemma 10. Suppose thatσ has [ν] + 2 derivatives all inL1 and that−2ν − 1 < 0.
Then the integral∫ c+i∞

c−i∞
. . .

∫ c+i∞

c−i∞
G(zi)

∫
. . .

∫
R1

H(zi; si)ds2 . . . dsndz1 . . . dzn

is O(α−δ), whereδ > 0.

Proof. Note that the condition in the hypothesis implies that∫ c+∞

c−i∞
|σ̂(z)||z|ν+1/2 < ∞. (32)

We first replace the inside integral with a sum of integrals overUi. For each of these
we change variables as in the last lemma. We can then perform the integration over the
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z variable by moving it to a line to the left of the imaginary axis. Thus we have that each
of these integrals is bounded by a constant times

αb

(π)n2b

∫ b+i∞

b−i∞

∫ c+i∞

c−i∞
. . .

∫ c+i∞

c−i∞

∣∣∣∣∣
n∏

i=2

σ̂(zi)0(ν + 1− zi/2)
0(1 +ν)0(zi/2)

∣∣∣∣∣
×

∣∣∣∣∣ σ̂(z − ∑
zj 6=z zj)0(ν + 1− (z − ∑

zj 6=z zj)/2)

0(1 +ν)0((z − ∑
zj 6=z zj)/2)

∣∣∣∣∣ dzdz2 . . . dzn.

This last integral is bounded by a product of integrals all of the form∫ c+i∞

c−i∞
|σ̂(z)|

∣∣∣∣0(ν + 1− z/2)
0(z/2)

∣∣∣∣ dz,

and these in turn are bounded by (32) using the basic asymptotics properties of the
Gamma function. �

We now turn our attention to the regionR2. To begin we make another change of
variables,

1
s2

= 1− s′
2, (33)

1
s2s3

= 1− s′
2 − s′

3, (34)

... (35)
1

s2 . . . sn
= 1− s′

2 − s′
3 − . . . − s′

n. (36)

Under the change of variables, the regionR2 is transformed to a regionR3 which can
be assumed to be a symmetric region containing the origin, and where the sum

|s2 + . . . + sj | ≤ a < 1

(we drop the “primes” again) for somea. Notice that the exact form ofR1 was unnec-
essary in the previous computation. Thus the integral overR2 is transformed to∫

. . .

∫
R3

I(zi; si)ds2 . . . dsn,

where

I(zi; si) =
1 − (1 − max(0, s2, . . . , s2 + . . . + sn))z1+...+zn

z1 + . . . + zn

×|s2|z2−1 . . . |sn|zn−1−1|s2 + . . . + sn|zn−1

×f (s2, . . . , sn, z1, . . . , zn),

where the functionf is smooth in thes variables.



Distribution Functions for Random Variables of Hermitian Matrices 343

The following lemmas will help keep track of the contribution of theR3 integral.

Lemma 11. SupposeRezi = c, 0 < c < 1, for i ≥ 3. Then the integral∫
. . .

∫
R3

|s2|z1+1|s3|z2−1 . . . |sn|zn−1−1|s2 + . . . sn|zn−1ds2 . . . dsn

can be thought of as an analytic function in thez1 variable that can be extended to a
strip containing the imaginary axis.

Proof. First note that the following integral withz andw real and between zero and one
satisfies ∫ b

a

|x|z−1|x + y|w−1dx ≤ A|y|z+w−1,

where the constant only depends on thez andw variable. A repeated application of this
estimate in the above integral yields a final integration of∫ b

a

|s2|Rez1+(n−2)cds2.

Thus, once again the analytic continuation argument holds.�
Lemma 12. SupposeRezi = c, 0 < c < 1, for i ≥ 2 andRez1 = d. Then the integral∫

. . .

∫
R3

|s2|z1|s3|z2|s4|z3−1 . . . |sn|zn−1−1|s2 + . . . sn|zn−1ds2 . . . dsn

can be thought of as an analytic function in thez1 variable that can be extended to a
strip containing the imaginary axis.

Proof. We begin the integration just as in the previous integral. Aftern− 3 integrations
we arrive at an integral with an estimate of the form∫ b

a

∫ b

a

|s2|d|s3|c|s3 + s2|(n−3)c−1ds2ds3.

We can estimate this by looking at three integrals∫ b

a

∫ 1

−1
|s2|d+(n−2)c|s3|c|s3 + 1|(n−3)c−1ds3ds2,∫ b

a

∫ b/s2

1
|s2|d+(n−2)c|s3|c|s3 + 1|(n−3)c−1ds3ds2,

and ∫ b

a

∫ −1

a/s2

|s2|d+(n−2)c|s3|c|s3 + 1|(n−3)c−1ds3ds2.

We can say, for example, that the last integral is less than a constant times∫ b

a

|s2|d−(n−4)cds2,

and thus is finite for Rez1 in a strip about the imaginary axis. The other two integrals
are handled in the same manner. So by our standard argument the analytic extension is
defined. �
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Now let us return to our functionI(zi; si). We can write the expression

1 − (1 − max(0, s2, . . . , s2 + . . . + sn))z1+...zn

z1 + . . . + zn

as

max(0, s2, . . . , s2 + . . . sn) + (max(0, s2, . . . , s2 + . . . sn))2 × g(z1 + . . . + zn, s2, . . . sn),

where the last function is a bounded continuous function in the variables.

Lemma 13. The contribution of

−1
(2πi)n

∫ c+i∞

c−i∞
. . .

∫ c+i∞

c−i∞
G(zi)

∫
. . .

∫
R2

(max(0, s2, . . . , s2 + . . . sn))2

×|s2|z1−1 . . . |sn|zn−1−1|s2 + . . . + sn|zn−1

×f (s2, . . . , sn, z1, . . . , zn)g(z1 + . . . + zn, s2, . . . sn)

×dsn . . . ds2dz1 . . . dzn

is O(α−δ).

Proof. We simply consider the set where says1 + s2 + . . . + sj is the maximum of the
terms. We then expand the square so that we have a term of the formsisk. We then apply
the above lemmas after an appropriate re-ordering of the variables and the lemma holds.

The next step is to replace the functionf in the expression forI(zi; si) with the first
term of its Taylor expansion. This expansion gives an “extra"si (combined with the
ones from the max(0, s2, . . . , s2 + . . . + sn)) term in the estimates which, as the above
lemmas show, is all we need to show that this part of the integral does not contribute in
the asymptotic expansion.

So we are finally at the one critical term that gives a contribution in the expansion.
This term is

−1
(2πi)n

∫ c+i∞

c−i∞
. . .

∫ c+i∞

c−i∞
G(zi)

∫
. . .

∫
R3

max(0, s2, . . . , s2 + . . . + sn)

×|s2|z1−1 . . . |sn|zn−1−1|s2 + . . . + sn|zn−1

×f (0, 0, . . . , 0, z1, . . . , zn)dsn . . . ds2dz1 . . . dn.

We can easily computef (0, 0, . . . , 0, z1, . . . , zn) to see that it equals

n∏
1

2−2ν−10(2ν + 1)0(−zi/2 + 1/2)
0(ν + 1/2)0(ν + 1− zi/2)

.

We can simplify further using the formula forG(zi) and the duplication formula for the
Gamma function to arrive at

C(σ) =
−1

(2πi)n

∫ c+i∞

c−i∞
. . .

∫ c+i∞

c−i∞
(α/2)z1+...+znπ−n/2

n∏
1

σ̂(zi)0(−zi/2 + 1/2)
0(zi/2)

×
∫

. . .

∫
R3

max(0, s2, . . . , s2 + . . . + sn)
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× |s2|z1−1 . . . |sn|zn−1−1|s2 + . . . + sn|zn−1ds2 . . . dsndz1 . . . dzn + O(α−δ). (37)

Notice that this expression is now independent ofν. Our final steps are to compute
the contribution from the above integral and we, by the way, finally have an integral
which will yield a contribution. We begin with a well-known identity due to Mark Kac,
which was used originally to prove the continuous analogue of the Strong Szegö Limit
Theorem. It reads∑

σ

max(0, aσ1, aσ1 + aσ2, . . . , aσ1 + . . . + aσn
) =

∑
σ

n∑
k=1

aσ1θ(aσ1 + . . . + aσk
),

whereθ(x) = 1 if x > 0 andθ(x) = 0 otherwise and the sums are taken over all
permutations inn variables.

Because of this identity we can rewrite the integral in (37) as

n∑
j=2

−1
(2πi)n

∫ c+i∞

c−i∞
. . .

∫ c+i∞

c−i∞
(α/2)z1+...+znπ−n/2

n∏
1

σ̂(zi)0(−zi/2 + 1/2)
0(zi/2)

×
∫

. . .

∫
R3∩{s2+...+sj>0}

s2|s2|z1−1. . . |sn|zn−1−1|s2+. . .+sn|zn−1ds2 . . . dsndz1. . . dzn.

(38)
It is straightforward to see how this identity can be used if the integrand is symmetric
in the variables. In our case, the integrand is not obviously symmetric in the variables,
but can always be made so by changing thez variables. Thus we can apply the identity.

We once again consider the inner integral and callz = z1 + . . . +zn leaving the other
variables as is, and show how this inner integral can be thought of as analytic inz in
a strip containing the imaginary axis. The difference is that in this case there will be a
pole atz = 0. �

Now we suppose thatj > 2. Forj = 2 the following computation is almost identical
and the conclusion is the same. Let us rewrite the inner integral in (38) as two integrals∫ b

0

∫
. . .

∫
B

s2|s2|z−z2−z3−...zn−1 . . . |sn|zn−1−1|s2 + . . . + sn|zn−1dsn . . . ds2

+
∫ 0

−b

∫
. . .

∫
B

s2|s2|z−z2−z3−...zn−1 . . . |sn|zn−1−1|s2 + . . . + sn|zn−1dsn . . . ds2,

whereB is somen − 2 dimensional set. In the first (the computations for the second
integral being almost identical) of these we make yet another change of variables:

s3 = s′
3s

′
2

...

sn = s′
ns′

2

to arrive at∫ b

0
sz−1

2

∫
. . .

∫
B/s2

|s3|z2−1 . . . |sn|zn−1−1|1 + s3 + . . . + sn|zn−1dsn . . . ds3ds2.
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The original setR3 was chosen to be symmetric and contain the origin. So here we chose
it to be something convenient, say a cubeC with size lengthl. With this choice we can
write B/s2 asC/s2 ∩ {s3 + . . . + sn + 1 > 0}. Next integrate by parts with respect to
thes2 variable. The result is that the above integral becomes:

sz
2k(s2) −

∫ b

0
sz

2d/ds2(k(s2))ds2,

where

k(s2) =
∫

. . .

∫
B/s2

|s3|z2−1 . . . |sn|zn−1−1|1 + s3 + . . . + sn|zn−1dsn . . . ds3.

The functionk(s2) has a derivative given by the formula

k′(s2) = −s−1
2

∫
D

f (s3, . . . , sn) (n · s−1
2 (s3, . . . , sn))dS,

whereD is the boundary of the setC/s2 which lies in the half-space defined by{s3 +
. . . + sn + 1 > 0}, the vectorn is the outward normal to the surface, the functionf is
simply the one given in the above integral restricted to the surface, anddS is surface
measure. We can estimate the derivative ofk(s2) on any boundary edge to be at most a
constant timess(n−2)c

2 for Rezi = c. Thus we have proved the following:

Lemma 14. The function ofz defined by∫ b

0

∫
. . .

∫
B

s2|s2|z−z2−z3−...zn−1 . . . |sn|zn−1−1|s2 + . . . + sn|zn−1dsn . . . ds2

+
∫ 0

−b

∫
. . .

∫
B

s2|s2|z−z2−z3−...zn−1 . . . |sn|zn−1−1|s2 + . . . + sn|zn−1dsn . . . ds2

is analytic in a strip containing the imaginary axis except at the pointz = 0. Further,
the contribution of this integral with thez integration moved to a line to the left of the
axis is given by the residue atz = 0 plusO(α−δ).

We note here that there are no other poles given our conditions onσ, (32) and the
formula forG(zi).

For j > 2, the above computation also shows exactly what the residue is, namely:∫
. . .

∫
Rn−2∩{s3+...+sj>−1}

|s3|z2−1 . . . |sn|zn−1−1|1 + s3 + . . . + sn|zn−1dsn . . . ds3

−
∫

. . .

∫
Rn−2∩{s3+...+sj>−1}

|s3|z2−1 . . . |sn|zn−1−1| − 1 + s3 + . . . + sn|zn−1dsn . . . ds3.

To find an explicit formula for this integral we start with the following formula that
can be easily proved using formulas for the Beta function.

For
0 < Rep, Req < 1, Re (p + q) < 1,
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−∞
|x|p−1|x + y|q−1dx = |y|p+q−1 20(p)0(q) cos(πp/2) cos(πq/2)

0(p + q) cos((p + q)π/2)
. (39)

Definet(p, q) to be
20(p)0(q) cos(πp/2) cos(πq/2)

0(p + q) cos((p + q)π/2)
.

The residue is then (B is the Beta function)

B(z2 + . . . + zj−1, zj + . . . + zn)
n−1∏
k=j

t(zk, zn + . . . + zk+1)
j−2∏
k=2

t(zk, zk+1 + . . . + zj−1).

We leave this as an exercise to the reader. Forj = 2 the residue can also be easily
computed using the definition oft(p, q) and it is seen to be

n−1∏
k=2

t(zk, zn + . . . + zk+1).

Combining all of the above results we are left with the following theorem.

Theorem 15. Supposeσ has[ν] + 2 continuous derivatives inL1. Then

tr (Bα(σ))n = trBα(σn) + C(σ),

where

C(σ) =
−1
π2

n−1∑
j=1

1
j

∫ ∞

0
xC(σj)(x)C(σn−j)(x)dx + o(1).

Proof. Recall we were computing the integral

n∑
j=2

−1
(2πi)n

∫ c+i∞

c−i∞
. . .

∫ c+i∞

c−i∞
(α/2)z1+...+znπ−n/2

n∏
1

σ̂(zi)0(zi/2 + 1/2)
0(zi/2)

×
∫

. . .

∫
R3∩{s2+...+sj>0}

s2|s2|z1−1 . . . |sn|zn−1−1|s2+. . .+sn|zn−1ds2 . . . dsndz1. . . . dzn.

(40)
For eachj we rename the variables and compute the residue as above. Forj > 2 the
residue is

−1
(2πi)n−1

∫ c+i∞

c−i∞
. . .

∫ c+i∞

c−i∞
π−n/2

n∏
2

σ̂(zi)0(−zi/2 + 1/2)
0(zi/2)

× σ̂(−z2 − . . . − zn)0((z2 + . . . + zn)/2 + 1/2)
0((−z2 − . . . − zn)/2)

B(z2 + . . . + zj−1, zj + . . . + zn)

×
n−1∏
k=j

t(zk, zn + . . . + zk+1)
j−2∏
k=2

t(zk, zk+1 + . . . + zj−1)dz2 . . . dzn. (41)

Notice that
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t(p, q)t(p + q, r) = 22 0(p)0(q)0(r) cos(p) cos(q) cos(r)
0(p + q + r) cos((p + q + r)π/2)

.

Using this identity in (4) we have that the above integral is

−1
(2πi)n−1

∫ c+i∞

c−i∞
. . .

∫ c+i∞

c−i∞
2n−3π−n/2

n∏
i=2

σ̂(zi)0(zi) cos(ziπ/2)0(−zi/2 + 1/2)
0(zi/2)

× σ̂(−z2 −. . .− zn)0((z2+. . .+zn)/2 + 1/2)

0 (−z2−...−zn)
2 0(z2+. . .+zn) cos (z2 +. . .+ zj−1)π/2 cos (zj +. . .+zn)π/2

dz2 . . . dzn.

(42)
From the duplication formula for the Gamma function, this can be simplified to

−1
(2πi)n−1

∫ c+i∞

c−i∞
. . .

∫ c+i∞

c−i∞
2−2π−1

n∏
i=2

σ̂(zi)

× σ̂(−z2 − . . . − zn)(z2 + . . . + zn) sin((z2 + . . . + zn)π/2)
cos((z2 + . . . + zj−1)π/2) cos((zj + . . . + zn)π/2)

dz2 . . . dzn. (43)

Now we change variables with

zj−1 = z2 + . . . + zj−1, zn = zj + . . . + zn,

and the above integral becomes

−1
(2πi)n−1

∫ c+i∞

c−i∞
. . .

∫ c+i∞

c−i∞
2−2π−1(

j−2∏
i=2

σ̂(zi))σ̂(zj−1 − . . . − z2)
n−1∏
i=j

σ̂(zi)

×σ̂(zn−. . .−zj)σ̂(−zj−1−zn)(zj−1+zn)
sin((zj−1 + zn)π/2)

cos(zj−1π/2) cos(znπ/2)
dz2 . . . dzn. (44)

The convolution theorem for the Mellin transform shows that this can be reduced to the
integral

−1
(2πi)2

∫ c+i∞

c−i∞

∫ c+i∞

c−i∞
2−2π−1 ˆσj−2(zj−1) ˆσn−j(zn)

× σ̂(−zj−1 − zn)(zj−1 + zn)
sin((zj−1 + zn)π/2)

cos(zj−1π/2) cos(znπ/2)
dzj−1dzn. (45)

Notice this can also be written as

−1
(2πi)2

∫ c+i∞

c−i∞

∫ c+i∞

c−i∞
2−2π−1 ˆσj−2(zj−1) ˆσn−j+1(zn)

× σ̂(−zj−1 − zn)(zj−1 + zn)
sin(zj−1π/2)
cos(zj−1π/2)

dzj−1dzn (46)

− 1
(2πi)2

∫ c+i∞

c−i∞

∫ c+i∞

c−i∞
2−2π−1 ˆσj−2(zj−1) ˆσn−j+1(zn)

× σ̂(−zj−1 − zn)(zj−1 + zn)
sin(znπ/2)
cos(znπ/2)

dzj−1dzn. (47)
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Before we proceed further we need three formulas from the theory of Mellin trans-
forms. These are

the Mellin transform of
∫ ∞

x

φ(x)dx = z−18(z + 1),

where8 is the transform ofφ,

the Mellin transform of xφ′(x) = −z8(z),

where8 is the transform ofφ, and finally

2
π

∫ ∞

0
xC(φ)(x)C(ψ)(x)dx =

1
2πi

∫ c+∞

c−i∞
8(z)9(−z)z tan(zπ/2)dz.

These can be found in any standard table of transforms, although the third requires a
straightforward computation combined with the convolution theorem.

So now we apply the second formula along with convolution with respect to thezn

variable and we have for each 2< j < n,

1
8π2i

∫ c+i∞

c−i∞
σ̂j−2(zj−1) ̂xσn−j+1σ′(−zj−1)

sin(zj−1π/2)
cos(zj−1π/2)

dzj−1 (48)

+
1

8π2i

∫ c+i∞

c−i∞
σ̂n−j+1(zj−1) ̂xσj−2σ′(−zj−1)

sin(zj−1π/2)
cos(zj−1π/2)

dzj−1. (49)

Next apply the first formula after inserting a factor ofzj−1/zj−1 to write the above as

1
2π2

∫ ∞

0
xC(σj−2)(x)C(

∫ ∞

x

σn−j+1σ′)(x)dx (50)

+
1

2π2

∫ ∞

0
xC(σn−j+1)(x)C(

∫ ∞

x

σj−2σ′)(x)dx (51)

or −1
2π2

1
n − j + 2

∫ ∞

0
xC(σj−2)(x)C(σn−j+2)(x) dx (52)

+
−1
2π2

1
j − 1

∫ ∞

0
xC(σj−1)(x)C(σn−j+1)(x) dx. (53)

We can do thej = 2, j = n cases separately just as easily (the above formulas are not
even all required in that case) and putting the two cases together and reindexing when
necessary we arrive at the conclusion of the theorem.

Our final step is to extend this to functions other than powers. The standard uniformity
arguments used in the Wiener-Hopf theory apply here if we can show that

||tr f (Bα(σ)) − tr Bα(f (σ))||1 = O(1)

uniformly for σ replaced by 1− λ + λσ andλ in some complex neighborhood of [0, 1].
The details of this are found in [14]. The norm above is the trace norm. Given sufficient
analyticity conditions onf , it is only necessary to prove||Bα(σ1)Bα(σ2)−Bα(σ1σ2)||1 =
O(1), where theO(1) here depends on properites ofσi. A trace norm of a product can
always be estimated by the product of two Hilbert-Schmidt norms and in this case we
need to estimate the Hilbert Schmidt norm of the operator with kernel
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X(1,∞)(z)
∫ ∞

0
σi(t/α)

√
xztJν(xt)Jν(tz)dt.

Using integration by parts, and integration formulas for Bessel functions this is easily
estimated to be bounded. For analogous details see [14]. Thus for suitably definedf we
can extend our previous theorem to the more general case. Thef of interest is log(1+z).
This will satisfy the necessary analyticity conditions if we consider small enoughk. The
necessary conditions are collected in the following:

Theorem 16. Supposef is a real-valued function with[ν] + 2 derivatives all contained
in L1. Then for sufficiently smallk (sayk < ||σ||−1

∞ )

φ̌(k) ∼ exp

{
α

π

∫ ∞

0
ikf (x)dx − ikν

2
f (0) − k2

2π2

∫ ∞

0
xC(f )2(x)dx

}
.

Proof. The form of the answer follows from the computation of the mean given earlier
and from the fact that the constant term in the previous theorem is exactly half of the
answer in Szeg̈o’s Theorem. Thus the above answer for the log function must be half as
well. �
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