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Abstract: Distribution functions for random variables that depend on a parameter are

computed asymptotically for ensembles of positive Hermitian matrices. The inverse

Fourier transform of the distribution is shown to be a Fredholm determinant of a certain

operator that is an analogue of a Wiener-Hopf operator. The asymptotic formula shows
that, up to the terms of orde(1), the distributions are Gaussian.

1. Introduction

In the theory of random matrices one is led naturally to consider the probability distribu-
tion on the set of eigenvalues of the matrices. H¥ot N random Hermitian matrices one

can show that under reasonable assumptions, the probability density that the eigenvalues
A1, ..., Ay liein the intervals

(r1, 21 +dx1),..., (N, 2N +doN)

is given by the formula
i,5=1"

1
Pr(a,... an) = o deth (e, 2)) |} @

where
N-1
Kn(,y) =) 6i(2)$:(v), @)
=0
ando; is obtained by orthonormalizing the sequel{oée—“z/z} overR.
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For N x N positive Hermitian matrices the probability density has the same form
except thatp; is replaced by the functions obtained by orthonormalizing the sequence
{a¥/?e~*/221} overR*. We will not describe here exactly how these particular densities
arise but instead refer the reader to [8].

We can define a random variable on the space of eigenvalues by considering
f(x1,...,zN) Where f is any symmetric function of the;’s. A particular case of
interest is a random variable of the forfrjﬁl f(x;), wheref is a function of a real
variable. Such a random variable is generally called a linear statistic.

In previous work [8, 3, 1, 6], the variance of the random variable was computed in
the largeN limit. More precisely, the functiorf and the kerneK y (z, y) were suitably
rescaled so that the limit @& — oo of the variance could be computed. The precise
details of this are in the next section.

Our goal in this paper is to compute the distribution function for a class of the linear
statistics that depend on a parameteWe now describe the sections of the paper and
main results. In the next section we outline the random matrix theory and show how
the distribution functions can be computed using Fredholm determinants. In Sect. 3 we
replace the functiorf(x) in the linear statistic by, (x) = f(x/«). For random variables
of this type we show that the inverse Fourier transform of the distribution funé(lb)w
has an asymptotic expansion of the form

k) ~ ek HOR 3)

asa — oo. This of course implies that the actual distribution is asymptotically Gaussian.
Herea andb depend onf anda. This is proved for both the Hermitian matrices and
positive Hermitian matrices. In the latter case wittr —1/2, a very simple proof is
given in Sect. 3. For > —1/2, a completely different proof is obtained in Sect. 4.

Most of the results are obtained by using simple operator theory identities in the
theory of Wiener-Hopf operators. The central idea is that the various quantities which
yield information about random variables can all be computed in terms of traces or
determinants of integral operators. Some of the computations lead directly to a familiar
problem in the theory of Wiener-Hopf operators, while others require modifications and
generalizations of these results.

2. Preliminaries

In this section we show how to compute the mean, variance, and inverse Fourier transform
of the distribution of the random variable. Computations for the mean and variance
have been given before in many places. However, we reproduce all of these here for
completeness sake and also to highlight the use of operator theory ideas.

We begin by considering’y for N x N random Hermitian matrices. We want to
consider large matrices and thus wellet— oo, but this leads to a trivial result unless
we rescale i in a particular way. We replack y (x, y) with

1 % ( z Yy ) @)
VN M\VaeN'VaN )
RescalingK is equivalent to rescaling the mean spacing of the eigenvalues. (See [12]

for details.)
From the theory of Hermite polynomials it is easy to see thdVas oo,
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1 ( x Yy ) i sin(@ — v) 5)

oy N\ an VN ) T e =)

This last function is known as the sine kernel. Now consider a random variable of the
form

N
Y f@iV2N),
=1
where in all that followsf is a continuous real-valued function belongingtqR) and
which vanishes at-co. The appearance of thé2N should not be surprising here since

the above rescaling spreads out the eigenvalues and hence should be reflected in the
random variable. The meary is

/ / Z f@iV2N)Py(z1,. .., on)dey- - doy. (6)

Now the functionPy has the important property [8]

N!
m/"'/PN(I‘l,...7$n7l'n+]_,...,Jj]\/‘)dﬂﬁ,”l"'d.fCN

= detK (i, z;) [ =1 - )

Thus, (6) is easily seen to be

/ - f(@V2N)K n (z, z) da (8)
which, after changing: to x/\/ﬁ, becomes
Yy
[0t (G o) o
Thus, asN — oo, .
= = / f@)K (@, 2) da. ©

whereK (z, y) is the sine kernel.
A very similar computation for the variance vaf, again using (7), yields

varf = lim varyf = — / / F@)f)K%(x,y)de dy + / fA(x)K (x, z)dz. (10)

Both the mean and the variance can be interpreted as traces of certain Wiener-Hopf
operators. To see this, consider the operaitQf) on L,(—1, 1) with kernel

% | [ N f(H)e™ == gy (11)

This operator can easily be seen to be the produtt ; 7P, wherePg = x(_11)9,
Mg = fgandFisthe Fourier transform. Amoment’s thought shows thattr { A(f)}

and varf = tr {A(f?) — (A(f))*}.
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A more difficult, yet also straightforward problem, is to find an expression for the
distribution function of a random variable of this type. A fundamental formula from
probability theory shows that if we call the probability distribution functign, then

o o0 oo N )
In(k) = / / XTIV o an)den - dey. (12)

Thus,

QBN(k):/ / H M@V Py 2y, ay) day - day

— 00 o0 ]_1

= /OO / H((elkf(zJ V2N) _ 1)+ 1Pn(z1,...,xN)dr1 - -dxy

0o
:/ . / 1+Z(elkf(%\/7) ]_)
—00 —o00 j=1

N
+Z(eikf(mjx/ﬁ) — )R @V )4 -}
i<l
XPN(.%‘]_,. . .,l‘N)d.Tl"'de

1/~
=1+ F/ (e @V2N) _ VK (x, 7) d

%/oo /oo (eikf(mlx/ZW) _ 1)(eikf(wz\/2W) _ 1)

det(I(N(xjv xl)) |1§j71§2 dxq dxo

N
1 [~ o0 o
+ﬁ/ / H(elkf(m;\/ﬁ)—1)PN(x1,...,a:N)dx1...de
—00 —o0 oy

In each integral we rescale to obtain

on(k) = 1+*/ K'(z1, 21) dxy + — / / K'(x1, x2) dz1 dap

+'~'+%/ / K(Z‘l,.. ,en)dry - day, (13)
where
K'(x1,...,2,) = det ((elkf @) 1)Ky (— il = ) . (14
V \/ V 1<5,l<n

Letting N — oo we see this is the formula for the Fredholm determinantidetk),
whereK has kernel

K(z,y) = (€@ — 1)M. (15)
m(z — y)
As before we can express this last quantity in terms of the opedgtor
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o(k) = AJim dn (k) = det(l + A(0)), (16)

whereo(z) = e#f(®) — 1,
The preceding computations can all be carried out in the case of positive Hermitian
matrices. In this case we repla&éy (x, y) with
1 r oy
K 2
an Gy o)

and from the theory of Laguerre polynomials we see thdVas oo,

iK (i i) - Jy(\/f)\/ﬂju/(\/@) - \/‘EJV/(\/E)JV(\/:I?)
4N “NYAN 4N 2@ — ) ’
whereJ, is the Bessel function of order. The details of this are found in [13]. The
rescaling here forces the eigenvalue density to be bounded near zero and is called “scaling
at the hard edge.” The kernel (17) is known as the Bessel kernel.
We can again write the mean, the variance, and the Fourier transform of the distri-
bution in terms of operators. This time the relevant oper&i{g) is defined on’,(0, 1)
with kernel given by

(17)

K(a,y) = /0 RO )] (b . (18)

If we begin with the linear statistic (thg’z is merely for convenience, and we again
assume thaf is continuous, inL;(R*) and vanishes atob)

N
> f(VxiAN), (19)
=1

then nearly identical computations show that

p=tr B(f),
var f = tr{B(f?) — (B(f))*},
$(k) = det( + B(0)),
whereo = ¢*f(*) — 1, We summarize these results in the following:
Theorem 1. (a) Given a random variable of the forﬁgl f(xz;v/2N) defined on the
space of eigenvalues &f x N Hermitian matrices with probability distribution given
in (1), we have
pi= limy oo pun =tr(A(f)),
var f := limy .o vary f = tr {A(f?) — (A(f))%},
P(k) = limy 00 o (k) = det + A(0)),
whereo(z) = e?#f(*) — 1,
(b) Given a random variable of the fo@:gl f(/x;4N) defined on the space of
eigenvalues of positivy x N Hermitian matrices, we have
1% I|mN~>oc N :tr(B(f)),
var f := limy o vary f = tr { B(f?) — (B(f))*},
o(k) = limpy_ o on(k) = det + B(0)),

whereo(z) = etk/(@) — 1,
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When linear statistics are considered [3, 10], one is often concerned with a statistic
of the formzfl’l f(x;/a), wherea is a real parameter approaching infinity. This is the
case, for example, in the study of disordered conductors wheredacgeresponds to
a high density metallic regime. The above formulas still hold, of course, but now they
depend on the parameter. We will call the operators that depend on the pararbgter
Ay (f)andB,(f), respectively. In the next sections we will compute the mean, variance,
and distribution function asymptotically as— oo.

3. The Mean, Variance, and Distribution Function asac — oo

For random Hermitian matrices, computing the various limits are applications of the
continuous analogues of the Strong Szégnit Theorem. For thend,, (f) is just the
classical Wiener-Hopf operator defined on the interval{«), and all of the quantities

are known asymptotically as — oo. We provide the answers here for completeness.

Theorem 2. Assume thaf € L1(R) is continuous, and vanishes #to and that in
addition its Fourier transforny satisfies

/ T el f@)Pde < .

Then
pege [ @
varf = 2 / T f(2)f(~z)dz + o(1)
0
and

qvﬁ(k)wexp{;/ ikf(x)dx—kz/o xf(x)f(—x)dx}.

The Bessel case is significantly more complicated. There is no correspondiny Szeg
type theorem. We begin by computing the mean. The opefatés) has kernel

| v/ it

Thus the meap is given by

1 poo
204,
1 /0 /0 atf(t/a)J5(tx) dt dx

0o 1
2 JZ drd
e /0 /0 ztf(t)J(atz) dz dt

0o 1
2 2 : 20
@ /0 f(t)/o xtJo(atx) dx di (20)

Now L
/ zJ¥(atx)dx = % {T2(at) = Jya(at)J,_1(at)}
0
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and
2v
Jy—a(at) = =Jpalat) + aJu(at)-

Therefore the integral (20) becomes
a/ooo f(t)%t {Jf(at) + Jfﬂ(at) - Zle(at)J,,(at)} dt
or
a/wﬂﬂg{ﬁ@0+ﬁdm”dﬁww/mfwﬁﬂwﬂﬁwﬂﬁ. (21)
JO 0

The first integral equals

o / Tty dt + o), (22)
™ Jo

which can be easily seen by using the asymptotic properties of Bessel functions. The
second integral is asymptotically

gﬂm+dn

This uses the identity,~ J,.+1(z)J, (z) dz = 3.
Thus we have

p=t /0 FO)dt — % 7(0) +o(1). (23)

For the variance we refer to [1] where the calculation was already done. There it was
shown that

1 [ .
varf ~ = [ M7 @ig) Py tanhy)dy (24)
We note however, that this can also be written as
mﬁmgi/ z(C(f)?) dx, (25)
0

whereC(f)(x) = fo°° f(y) cosfry)dy denotes the cosine transform 6f This is an
exercise involving the properties of the Mellin transform, and we leave it to the reader.

To compute the distribution function, we first turn our attention to the case where
v =—1/2. Our operatoB3, (o) has kernel

2 o0
— / o(t/«) cosxt cosytdt
T Jo

=2 | ott/a)cos( ~ 1) + cos(e + )0y
0
= 2(CO)(e - 1)a) + CO( + 1)o)).

This is unitarily equivalent to the operator @n(0, «) with kernel
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%(C (@)@ —y) + C(o)( +y)). (26)

The operator with kerne}(C(a)(:Jc — 1)) is the finite Wiener-Hopf operator, usually

denoted a$V,(c), and the operator with kernérl(O(o—)(x +y)) is the Hankel operator
H, (o). (The only difference between this definition of a finite Wiener-Hopf operator
and the one given earlier fot,, is the difference in the domain. The two are unitarily
equivalent.) If we consider the operators bs(0, o) in what follows, we will denote
them byW (o) and H (o) respectively. Also, whenever it is necessary to consider the
extension ob to the entire real axis, it will always be the even extension.

Thus the problem of finding the distribution function asymptotically becomes the
same as computing the Fredholm determinantldeif . (o)) = det( + W, (o) + H, (o))
asymptotically. To do this we need some basic facts about Wiener-Hopf operators and
we collect them in the following theorem. These are well-known and can all be found
in [4].

Theorem 3. a) Suppose and+ are even bounded functionsIn(R). Then

W(Q)H () + H(9)W (¥) = H(¢Y)

and

W(QW (@) = W(py) — H(¢)H ().

b) Suppose and+ are bounded functions ifi;(R). If the Fourier transform{b(x)
vanishes for: negative, thedV (v)) W (¢) = W (o) and if o(x) vanishes for: positive,
thenW (@)W (v) = W (o).
We definelV (o) and H(o) with o = 1+ f and f in L1 by W(o) = I + W(f) and
H(o) = H(f). Both of these definitions are natural when thought of in a distributional

setting, and the above theorem holds with these definitions as well.
The next theorem is of primary importance in the computations that follow.

Theorem 4. Suppose® = 1+f, ¢~1 = 1+g, wheref andg are bounded even functions.
Then the inverse dV (¢) + H(¢) is W (¢~ 1Y) + H(p™1).

Proof. Using Theorem 3 parts a) and b) we have,

(W(g) + H@)(W(p~ ) + H(p™Y)
=W(E@EW(e™ ) + H@W (¢~ + W(g)H (¢~ ) + H($)H(6 ™)
=1 —H(@H(¢™ )+ H(pp™ )+ H(¢)H (¢~
=I+HQ)=1.

The same computation holds fdi/{(¢ 1) + H(¢~1)(W () + H(¢)), and so we have
shown that these operators are inverses of each other]

It is well known from the theory of Wiener-Hopf operators that under appropriate con-
ditions det{ + W, (o)) has the asymptotic expansi6f{c)* FE (o), where

G(o) = exp% /

o0

log(1 +o(£))d¢
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and E(o) = det@V(¢)W (¢~ 1)) with ¢ = 1 + 0. This is simply another version of
Theorem 2. With additional assumptions onit is very easy to adapt this proof to the
Bessel case = —1/2 to show that

det( + Wa(0) + Ha(0)) ~ G(0)*E'(0) (27)

andE' (o) = det((W (¢) + H(¢))W (¢~1)). Thus to compute the distribution, we need to
know the form of the above determinant. This is contained in the next theorem.

Theorem 5. Supposer = ¢*f — 1, where f is even, continuous, piecewié& and
vanishes at infinity. Suppose also tifat L; and the function

&= @+ + (P € La.

Then asy — oo, we have

oo - 2 oo
det([+1V.(o)+ (o)) ~ expf /0 k@) dr+ Y 0 /0 £ C(f)@)P dz}.

(28)
Proof. The conditions ons ensure that the above integrals converge, and that the
operatorsH (¢) and H(f) are trace class. The reader is referred to [2] for detalils.

These assumptions also guarantee that (27) holds. It is also easy to sééq¢that
exp{ & f0°° ik f(z) dz}. To complete the proof we need a concrete representation for

det((V(¢) + H(¢)W (¢~ 1)). Define
h(k) = log det((V (¢) + H(@)W (6™ H)),

where¢ = e’*f. Let h(k) = logdet((V (¢) + H(¢))W (¢_1)). We need to show the
second derivative df is constant irk. A standard formula [5] yields

-1
B (k) = (W (6~ )XW (6) + H(g)) L x LV O+ IZ liqb))W(cé )\

=tr(W( 1) "2 (W(g) + H(¢) ™Y
<{(W(¢) + H@)W (¢~ H(—if)) + W(gi )W (o) + H(pi fYW (™)}
=tr{(W(o 1) TW(p~H=if) + W (¢~ D) " W(p YW (i )W (™)
+W (o™ D)W (e HH(¢i YW (™) + (W (o™ D) H(¢ YW (i Y)W (67
+(W (™1 "H(p HH(¢i )W (¢~}

This uses Theorem 4. Simplifying further and using the fact thé@t 1) is trace class
we have

(k) = tr{(W (o) T W(e~H(—if)) + W(pi Y)W (p™)
+H (i fYW (¢~ 1) + H(¢ YW (¢if) + H(¢~ Y H(¢if)}.
Now apply Theorem 3, part a) and the fact thatit) = tr(B A) to find

R (k) = tr{(W (o~ )W (e~ Hif)?)
~(W(e™ )W =MWV (@) W (e~ (—if)}-
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The conditions o guarantee that the functigrhas a factorizatiosp = (g +1)(g+ +1)
such that the Fourier transformsg@fandg_ vanish for positive and negative real values
respectively. Then using Theorem 3, part b), it is easy to see that we can write

W(§) = W(g— + L)W (g+ + 1), W(6™ ) = W(ge + W (g +1).

A repeated application of these identities allows us to wWiiték) = trH (i f)H (i f),
andh’ (k) is independent ok. Thus at this point we havie(k) = ak? + bk + ¢, where
2a = —tr((H(f))?. A direct computation shows that= —5%, [ z|C(f)(z)[* dz. To
computeb, notice that/(0) is trH (i f) = 5= [~ C(f(x)) dz. Also h(0) = trlog(l) = 0.
Thus the last theorem holds. O

4. The General Case

In this section we show that under certain conditions, the distribution function for general
v has the same form as in the casevof —1/2. The only difference is in the mean
which was computed in the last section. The attack on the problem is entirely different
here. Instead of computing determinants asymptotically, we compute the traces of the
operators B, (c))™ and then piece together the answers to get an answer for the trace
of log(I + B, (o)) and from that to the desired determinant.

To begin we need to show thatfitB.(c)) makes sense for a class of analytic
functionsf. Just as we can associate the Wiener-Hopf operator with the Fourier transform
and a multiplication operator, we can also write

B,(c) = PHM,H,

whereH is the Hankel transform ang is the projection ori,(0, 1). Since the Hankel
transform is unitary orl.,(0, o) ([11]), the operator norn B, (o)|| is less than the
infinity norm ||o ||~ of 0. Thus (B, (o)) is defined forf analytic on a disk centered
at the origin with radiug|o || +d,d > 0. The operatoB, (o) is also trace class far
in Ly by Mercer’'s Theorem ([5] Ch.lll) as ig(B,(0)) for f satisfying the above and
f(1)=0.

We need some lemmas that will prove to be useful. These may be known already,
but we include them for completeness.

Lemma6. Suppose-1<p<1l 0< A\d<Lu<Op+p+d<O0andd<it<l.
Then

/ SP(L+ )1 — s| 1M1 —ts| 71 ds
0

< Amax(1— |7 [1— ¢ 7 max¢ Y P, (29)
whereA is some constant independent of

Proof. We have
/ SP(L+ )1 — s| T 1 —ts| 71 ds
0

1
:t*“é/ sP(L+s)|1—s| 7M1/t — 5|71 ds
0
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1/t
+t_1+5/ sP(L+s)H|1— 5|11/t — 5|71 ds
1

+t_1+‘s/ sP(L+s)H|1— 5|71 1/t — 5|71 ds.
1/¢

We consider each of the above integrals. In eaths a possibly different constant
independent of but can depend on the other parameters. First,

1
/ SP(L+s)[1— s| Y1/t — 5|71 ds
0

1
< |1/t71\’1+5/ sP(L+s)H|1— 5|~ ds
0

< A|t o 1|71+6t176.

Next,
1/t
/ P(L+ )L — s| TA1/t — 5|1 ds
1
1/t
< Amax(],fp)/ 11— 5|71/t — 5|7 10ds
1
= Amax(1tP)|1/t — 1|71
= A maX(l tfp)tf)\75+l|1 o t|71+)\+6
< Amax(Lt Pyt A0 — 7
Finally,

/ SP(L+s)H|1— 5|71/t — 5|71 ds.
1/t

<|1- 1/trm/ SPHIL/t — 5|71 ds
1/t

<|1— 12/t YA Pmro4
- A|t _ 1|_l+)\t_p_#_5_)\+l.

Putting this together we have that the original integral is bounded by
Amax(1— 7" |1 — ¢t Yymax(1 PN, O
Lemma 7. Suppose-1<p <1l 0< A d<lu<Opt+tu+td<Oandt> 1 Then

/ sP(L+s)H|1—s| "1 1—ts| 71 ds < Amax(1—t| 71, |1—¢/ ") max(1 t~P),
0

(30)
whereA is some constant independent of

Proof. The proof of this is almost identical to the previous lemma, and we leave the
details to the reader.
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Lemma 8. Supposéz| < 1,Rec > 0,Re (¢ —b) > 0,andRe ¢ —a — b) < 0. Then
the hypergeometric functiofi(a, b, ¢, x) satisfies the estimate

[F(a,b,c,2)| < AJL—z[feEe)
with A independent af.

Proof. The hypergeometric function satisfies the idenfitf, b, ¢, z) = (1 — z)°~*~°
F(c — a,c—b,c,x). Using Euler’s integral formula foF', we have
I'(c)

1
FOre-p J, A0y e @)

F(c—a,c—b,c,x) =

The lastintegralis bounded by tRe €~b=D(1)Re @+b—c=1) gy o LREC=IIIRe a+b—0))
We next find an integral expression for the traceff (o))" . We proceed informally
at first and later state things rigorously. Using (18) we can write this trace as

/ / / / Hslng(xl/o‘)J (wi5:)J(xi5541) ds1 ... dspday ... dxy,

wheresi+, = s1. Let & be the Mellin transform of, wherec > 0. Then the above
becomes

(Zm) : /Oo/ / / / 112[{51 ) a3 )

XA dsy L dspdxy .. dXndz ... d2,.

Now use the formula

/OO =, (ax)J, (bx)dx
0

_ (ab)'T(v + 152) F(y+1—A el g dab )
2Ma +b)2 =M (L +1)I(1/2 + 5)

2 bl 21 1(a+b)27

whereF(a, b; c; z) is the hypergeometric functigify, n times in the integral to get the

expression
ctioco ctioco
z1t..tzy,
el L L
SIEE) 2D+ 1= 2 /2)F (v + 1= 2,/2, v+ §; 20 + 1; 2ot
L 25 0L+ )T (2 /2)(si + si42)2 %2

Xdsy...dspdz1...dz,
Next we make the change of variables

— o/
S1 = 851

Sp = 5/28&
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and the integral becomes

e ol </><>E><§§

4s,, ...
><Si1+...+znfl(l +5 ... 80)" 2u+Zn—2F(y +1-2,/2, y+ > 2v+1; ﬁ)

n—1

U(Zl)F(V+ 1- 21/2) 2tz 2 1 otz —2
N K3 n 1+ 1 v Z‘L
< T(L+)0(z/2) i (1 +sis)

1 4s;
XF(+1—2/2v+ 220 +1; — 0

2 m)}dsn ...dsidzy ... dzp
T

Write the inside integral as

51

1 e’} 0o
n ..dl—/ / / ...dsn...dsl
0 JO 0
1 e} o]
+// / ...dS, ...ds].
0 Jo 0

Thelastintegral inthe above sum, inserted inthe main integral, is the samBagit).
After reversing the order of integration t; . . . ds,,, the first two terms combine to
yield limits of integration

L s

and then the first integration can be done. The result is that

)

”’52 e

tr (Ba(0))" = tr Ba(o™) + C(0),

whereC(o) is given by the expression

ctioco ctioco S &(ZI)ZF(V +1— 21/2)
(271'2)" / / (/2) H T+ ) (z;/2)

=1
X/Oo /ool (mln(l, o ..,3276))21+ Az
0 0 Z]_+Z2+-~-+ZTL
1 4s,,
—2v+z,—2 :
><(1+5n...52) * F(V+1iz”/2’y+§’zy m)

- v+1+z; z 1 7
LD @) X P L= /2 v G204 L))
=2 7

XdSy, ...dsodzy .. .dzy,

We next write this integral as
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1 »c+i00 ~ct+i00 0 oo
- / / G(z7)/ / H(z;; 8:)dsp ... dsadzy ... dzy,.
(2772)71 c—1i00 c—1i00 0 0

The idea from here on out is to evaluate this integral asymptotically using complex
analysis. This will be done in several stages and by breaking the integral into several
parts. To begin we first consider the interior integration

o0 o0
/ / H(z;; s))ds2...ds,.
0 0

Consider this as anintegral ov@{U R,, whereR; is a union of disjoint sets?; = UJL,U;
such that orl/;, s; is bounded away from 1 and whef® is the complement of?;.
O

Lemma 9. Suppose that2rv — 1 < 0. The integral ofH (z;; s;) overU;, is bounded and
the z; variables can be changed in such a way so that the integrated function is analytic
in a particular z variable to the left of the imaginary axis.

Proof. For convenience let = 2 (although the proof is the same for afj)yand let
2t 2z, = zl with the other variables remaining the same. Suppose that Re

fori=3,...,n and that: > 0. Suppose also that Re = b with |b| < ¢. We now refer

to z1 asz. Our goal is to show that this integral is bounded and that as a functioisof
analytic to the left of the imaginary axis. By repeated application of Lemma 8, we can
say that the integral is bounded by a constant times

/ /OO /oo
|so—1|>B Jo 0

> H(l +Si)72uflsgn—i)c‘l _ Si|c71
=3

1— (min(1, %’ L, —L o))t

82...8n

21tz 2,

X 5521 +52) "L — 5P ML — 5. 807t

Xdsy...ds,.

This is valid as long asi2+ 1 > 0 and Re;; — 1/2 < 0, which is the case here if we
assume that is small enough. Next, we estimate

1-— (mln(l, 1 - 1 ))21+...+zn

s27 7 82...8n

21ttt 2,

by using the fact thatl — 2| < max|z|zRe*'| In |, where the max is taken over the
values on a line connecting 0 angx between 0 and 1. Thuld, — 2%| < K|z|zRex ¢

for some positive chosen shortly. Inserting this in the integral we have that the integral
is bounded by a constant times
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) Ty )¢ \—bte
/|82—1|23/0 /0 ;{max(l (52...85)(s2...5)""")}

~ H(l +Si)—2y—1sgnfi)c‘1 _ Silc_l
=3

ngfz‘:(l +52)_2”_1\1 — sz|b_1\1 —55... sn|°_1d52 ...ds,,.

The reason for both terms in the “max” part of the integral isklzatuld be either positive
or negative. Now let’s begin with the, integration. Then the first interior integral has
the form

o0
SP(L+s,) 21— 5,1 — 5. .. 5, sy

The value forp is either+a, wherea = |b — ¢| < ¢. The next step is to apply Lemmas
6 and 7. We us@ = § = ¢ andp as above. The result is that this integral is bounded by
a constant times

|[1—s2... sn,1|c_1 x max(1,(s2...80-1)"%(82...8,-1) " P(s2...8,-1)"P).

We collect powers and use the lemmas twice with respect te,the integration and
powers ofp = +(2¢). At the next integration step the powerspof +3c and so on until
we arrive at thes, integration. Here we will have

/ s’2’|1752|q|1+52\*21’71d$2,
|s2—1|>B

wherep andq are appropriate powers. These integrals satisfy all the conditions necessary
for the lemmas as long asandb are small enough. We will have at mos$t ibtegrals

in this process. Hence the integral &f over U; is analytic in the z variable in a strip
|Rez| < ¢ by the application of Morera’s Theorem and Fubini’'s Theorem. [

We remark here that this proof also is easily modified to show that the interchange of
integrals done at the beginning of the section are valid and the expresgigns the
one of interest.

Lemma 10. Suppose that has[v] + 2 derivatives all inL; and that—2v — 1 < 0.
Then the integral

c+ioo ctio0

G(z) / . H(z;; 8:)dsz...dspdzy ... dzy,

is O(a~?), wheres > 0.
Proof. Note that the condition in the hypothesis implies that
ctoo
[ e <o (32)

We first replace the inside integral with a sum of integrals @efFor each of these
we change variables as in the last lemma. We can then perform the integration over the
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z variable by moving it to a line to the left of the imaginary axis. Thus we have that each
of these integrals is bounded by a constant times

0‘7}) /b+ioo ctico /C”oo ﬁ G(z)T(v+1—2;/2)
('/T)nzb b—ioco c—100 o c—100 F(l +V)F(ZZ/2)

=2

oz =3, 2T w+1—(z =3, . 2)/2)
PA+ING -5, 2. 2)/2)

This last integral is bounded by a product of integrals all of the form

[ e |””;é/‘2;/ 2 4.,

and these in turn are bounded by (32) using the basic asymptotics properties of the
Gamma function. 0O

dzdzy . ..dz,.

—100

We now turn our attention to the regidty. To begin we make another change of
variables,

1
—=1-4, (33)

52

1
T =1y sl 34
5253 82 = 53 (34)
(35)
1 =1—s)—85—...— 5. (36)

S2...8y "

Under the change of variables, the regi@nis transformed to a regioR3 which can
be assumed to be a symmetric region containing the origin, and where the sum

lso+...+s;|<a<1

(we drop the “primes” again) for some Notice that the exact form aR®; was unnec-
essary in the previous computation. Thus the integral &g6s transformed to

/”./I(zi;si)dsz...dsn,
R3

1-(Q—-max(Qsz,...,52+...+s5,))*"*n
21t+... .tz

where
I(z; ) =

><|52\2271 .. |Sn|z"_171|$2 +...+ sn|2"71

Xf(827"'78n7zl7"'7zn)7

where the functiory is smooth in thes variables.
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The following lemmas will help keep track of the contribution of tRgintegral.
Lemma 11. SupposdRez; =¢,0 < ¢ < 1, for ¢ > 3. Then the integral

/.../\52|Z”l|53lzz’l---\snlz”’l’llsﬁ...sn
R3

can be thought of as an analytic function in thevariable that can be extended to a
strip containing the imaginary axis.

2 lds, . ds,

Proof. First note that the following integral withandw real and between zero and one
satisfies

b
/ |.Z"Z_l|$+y‘w_ld.’li < A|y|z+w—l7
a

where the constant only depends on ttendw variable. A repeated application of this
estimate in the above integral yields a final integration of

b
/ ‘82|Rezl+(n72)cd82.
a

Thus, once again the analytic continuation argument holds.[]

Lemma 12. SupposdRez; =¢,0 < ¢ < 1, fori > 2andRez; = d. Then the integral
/.”/|32|Z1|53\22\84|Z3_1...|sn\z"‘1_l\82+...sn\z"_ldSZ...dsn
R3

can be thought of as an analytic function in thevariable that can be extended to a
strip containing the imaginary axis.

Proof. We begin the integration just as in the previous integral. After3 integrations
we arrive at an integral with an estimate of the form

b b
/ / |52|d|33|6|83 + 82\("_3)C_1d32d53.
a a

We can estimate this by looking at three integrals

b 1l
/ / |82‘d+(n72)c|s3‘c|53 + 1|(n73)671d53d82,
a J-1

b b/s2
/ / |82‘d+(n_2)c|83‘c|83 + 1|(n_3)c_1d83d82,
a 1
and

b -1

/ / |82|d+(n_2)c|83|0‘83+ 1‘(n_3)c_1d83d82.
a Ja/sz

We can say, for example, that the last integral is less than a constant times

b
/ |82|d_("_4)cd52,
a

and thus is finite for Re; in a strip about the imaginary axis. The other two integrals
are handled in the same manner. So by our standard argument the analytic extension is
defined. |
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Now let us return to our functiofi(z;; s;). We can write the expression

1-(1—max(Qsy,...,s0+...+8,))
2t .tz
as
max(Q sz, ...,s2+...s,)+(Max(Qsz,...,s0%...5))° X g(z1+...+2n,52,...5,),

where the last function is a bounded continuous function in the variables.

Lemma 13. The contribution of

-1 ctioco ctioco
/ G(z,)/ (max(Q sy, ..., s2+...5,))%
c R>

(27-(-1)77. —100 o c—100
><|52\Zl_1 oo |Sn Z"‘l_1|52 +o o+,
Xf(s2,. s 8ny 2150y 2)g(2a * oo+ 2, 82, 8p)

XdSy, ...dsxdzy . ..dzy,
is O(a™?).

Proof. We simply consider the set where say+ s, + ... + s; is the maximum of the
terms. We then expand the square so that we have a term of the fqrne then apply
the above lemmas after an appropriate re-ordering of the variables and the lemma holds.
The next step is to replace the functifim the expression faf(z;; s;) with the first
term of its Taylor expansion. This expansion gives an “extsalcombined with the
ones from the max(B., ...,s2 +... + s,)) term in the estimates which, as the above
lemmas show, is all we need to show that this part of the integral does not contribute in
the asymptotic expansion.
So we are finally at the one critical term that gives a contribution in the expansion.
This term is

-1 ctioo ctioco
. / / G(zi)/.../ max(Q sz, ..., 82+ ... +5y,)
(271—2)“ c—i00 c—1i00 Rs3

Zn—1

7 S A e PP N
x f(0,0,...,0,21,...,2,)dSp ... dsadzy . .. dy.
We can easily computg(0,0,...,0,z2,..., 2,) to see that it equals

L2722 + 1)(—2;/2 + 1/2)
H C(v+1/2)0(v+1— 2/2)

We can simplify further using the formula f6#(z;) and the duplication formula for the
Gamma function to arrive at

_ -1 erico erieo 21+tz, _—n) : o (z:)T(—2:/2+1/2)
CO= o |, [, @2 U7

—100 —100

><// max(Q sz, ...,s2+...+3sy,)
R3



Distribution Functions for Random Variables of Hermitian Matrices 345

X \52|Zlfl .. |57,,\Z"*171|52 +...+ sn\z"*ldsz ...ds,dzy...dz, + O(of‘g). (37)

Notice that this expression is now independent.dDur final steps are to compute
the contribution from the above integral and we, by the way, finally have an integral
which will yield a contribution. We begin with a well-known identity due to Mark Kac,
which was used originally to prove the continuous analogue of the Stron@ Szag
Theorem. It reads

n
Z Max(Q Gy, Aoy * Gopy v oy Gyt oot ap,) = Z Zaﬂ@(aal +... 4 as,),
o k=1

g

wherefd(z) = 1if x > 0 andf(x) = O otherwise and the sums are taken over all
permutations im variables.
Because of this identity we can rewrite the integral in (37) as

oL e e bt —nj2 T O (—2i/2 + 1/2)
2 @ A O e | b e

X/. . / 52|52|2171. .. \sn|2"*171|32+. . .+5n|z"71d52 o dspdzy. .. dz,.
R3ﬁ{sz+...+8]‘ >0}

(38)

It is straightforward to see how this identity can be used if the integrand is symmetric
in the variables. In our case, the integrand is not obviously symmetric in the variables,
but can always be made so by changing4variables. Thus we can apply the identity.

We once again consider the inner integral andeallz; +. . . + z,, leaving the other
variables as is, and show how this inner integral can be thought of as analytia in
a strip containing the imaginary axis. The difference is that in this case there will be a
pole atz = 0. a

Now we suppose thagt > 2. Forj = 2 the following computation is almost identical
and the conclusion is the same. Let us rewrite the inner integral in (38) as two integrals

b
/ / /52‘82|27227237”'Z"71...|Sn‘Z"7171|82+...+Sn|2"71d5n...d82
A .
B

0
+/ 82|82‘2_22_23_”'Z"—1...|Sn
W
B

where B is somen — 2 dimensional set. In the first (the computations for the second
integral being almost identical) of these we make yet another change of variables:

1o+ 4 s, P s, L dso,

53 = 8585
— o !
Sn = Sp,

to arrive at

b
/ 55_1/ /|83|22_1...|sn\z"—1_l|l +33+...+sn|z"_ldsn...d33dsz.
0

B/sz
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The original sef?3 was chosen to be symmetric and contain the origin. So here we chose
it to be something convenient, say a cubavith size length.. With this choice we can
write B/s; asC'/s; N {s3+...+ s, +1 > 0}. Next integrate by parts with respect to
the s, variable. The result is that the above integral becomes:

s3k(s2) — /Ob s5d/dsa(k(s2))dsz,
where
k(s2) = . o s s, Tl 453+ ..+ 5, sy, . . . dsa.
B/s2

The functionk(s,) has a derivative given by the formula
Fls2) = 5" [ Floaneo i) (005 Mmoo,
D

whereD is the boundary of the sét/s, which lies in the half-space defined Kys; +
...+s, +1> 0}, the vectom is the outward normal to the surface, the functjors
simply the one given in the above integral restricted to the surfaced.éns surface
measure. We can estimate the derivativé(@h) on any boundary edge to be at most a
constant times(zn’z)c for Rez; = c. Thus we have proved the following:

Lemma 14. The function of defined by

b
0
B

0
+/ /._./82\82|Z_22_Z3_'“Z”_1...|sn\z”*1_1|82+...+sn\2“_ldsn...d32
—b
B

is analytic in a strip containing the imaginary axis except at the peint 0. Further,
the contribution of this integral with the integration moved to a line to the left of the
axis is given by the residue at= 0 plusO(a~°).

2n=lds .. dsy

We note here that there are no other poles given our conditioas (82) and the
formula for G(z;).
Forj > 2, the above computation also shows exactly what the residue is, namely:

\33|Z2_1 .. |sn\z"—1_l\l +s3+ ...+ s, s, . .. dss

R =20 {sg+...+s;>—1}
— \33|Z2_1...|sn\z"—1_1\ —l+53+...+sn|'z"_1dsn...d53.

Rnfzm'{53+...+sj >—1}

To find an explicit formula for this integral we start with the following formula that
can be easily proved using formulas for the Beta function.
For
O0< Rep,Reg<1,Rep+q) <1,
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e 2I'(p)I'(q) cosfrp/2) cosfrq/2
[ty = s 2O DS 00k0/2) g
—o0 I'(p +q) cos(p + q)/2)

Definet(p, q) to be
2I'(p)I'(g) cosfrp/2) cosfrq/2)
F(p+g)cos(p+qr/2)

The residue is thenH is the Beta function)

n—1 j—2
B(Zg +.oootz,2 000 F Zn) H t(Zk, Zpt... Tt Zk-}.l) H t(Zk,Zk+1 +...F Zj_]_).
k=j k=2
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We leave this as an exercise to the reader. fer 2 the residue can also be easily

computed using the definition ofp, ¢) and it is seen to be

n—1
H t(Zk, Zn t...0F Zk+1).
k=2

Combining all of the above results we are left with the following theorem.
Theorem 15. Suppose has[v] + 2 continuous derivatives ifi;. Then
tr (Bo (o))" = tr Bo(o™) + C(0),
where

n—1 0o
C(o) = ;—;L Z ]} /o zC(07)(x)C (™) (z)dx + o(1).
§=1

Proof. Recall we were computing the integral

n

_1 c+ioo c+ioo Zl+~»-+znﬂ-7’n’/2 n Er(zq)F(zz/Z + 1/2)
>z ) /2 e

—100 c—100

X// 82|82|Z1_1...‘8n
R3N{sz+...+s;>0}

1l gor ts, P sy dspdzy. .. dzy,.

(40)
For eachj we rename the variables and compute the residue as abovg.*& the
residue is
1 /w /°° a2 H G(z)T(~2/2 +1/2)
(27”‘)“71 c—100 o c—100 2 F(ZZ/Z)
o(—z2— ... — z2)T((z2+ ... + 2,) /2 + 1/2)
Bzo+...+2zi_1,z;+...+ 2z,
T(—22— ... — 20)/2) (22 b 2n)
n—1 j—2
X H t(zg, 2n oo F 2Zpe1) H Wz, 2pe1 + ..+ 2zj1)d2o .. . d2y. (42)
k=j k=2

Notice that
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2 LT (r) cosp) cosg) cos()
P(p+q+r)cos(p+q+r)m/2)

Using this identity in (4) we have that the above integral is

c¥ioo c¥ioo n—3_—n/ L 0 ()T (z;) cos;m/2)T(—z; /2 + 1/2)
@y l/c / 2] [G/2)

t(pv Q)t(p + q, T) -

(=22 —...— zp)T((22%. . .+2,) /2 +1/2)
gRE===sIrE o) cosGo . _)7/2C0SE;+. . )2

dzp...dzy,.

(42)
From the duplication formula for the Gamma function, this can be simplified to

-1 ctioco ctioco n
- 22 [ 5(z)
Nr—1 / . / . 7
(27TZ) c—100 c—1i00 i=2

0(—zp— ... —zp)(z2 ...+ z)sin((z2 + ... + 2,)7m/2)
CoS(k2 +...+z;_1)m/2)cos(k; + ...+ 2,)m/2)
Now we change variables with

dzp...dzy,. (43)

zi—1=zt. otz 2, =zt ot 2y,

and the above integral becomes

c+ioco c+ioco j—2 n—1
(Zm)n @yt / / 2 2”71(}1 LCRES —a)zg&(zi)

sin((zj—1 + z,)7/2) "
Cosk;j_1m/2) cosk,m/2) 2
The convolution theorem for the Mellin transform shows that this can be reduced to the

integral
ctioo cti00 N
(27TZ) /c /c 2 T U] 2(2 1)Un_j (Z”L)

Sin((zj_1 + 2)7/2)
COoSg;j_1m/2) cosk,m/2)

X0 (2n—...—25)0(—zj_1—2zn)(Zj—1%2p) dz,. (44)

X 0(—zj—1 — zn)(zj—1 + 2n) dz;_1dzy,. (45)

Notice this can also be written as

ctioo ctioo ~
(Zm) / / 2720022y 1)om Iz
c—

Sin(Zj,]_F/Z)
cost; 17/2)

ctioco “ "
/ 2727T710j*2(zj_1)0"*j+1(zn)
—100

sin(z,m/2)
cosk,m/2)

X 0(=2j—1— 2n)(Zj—1+ 2n) dzj—1dzy (46)

1 ctico
- (27”)2 c—i00

X 0(=zj—1— 2n)(2j—1+ 2n) dzj—1dzy. (47)
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Before we proceed further we need three formulas from the theory of Mellin trans-
forms. These are

the Mellin transform of/ d(x)dx = 2710 (z + 1),

where® is the transform o,
the Mellin transform of z¢'(z) = —2®(2),

where® is the transform of, and finally

E/ 2C(9)(x)C(W)(x)dx = i D(2)¥(—z)ztankn/2)dz.
™ Jo 27” c—100
These can be found in any standard table of transforms, although the third requires a
straightforward computation combined with the convolution theorem.

So now we apply the second formula along with convolution with respect tg,the
variable and we have for each2j < n,

1 C+’ioc/,\ — Sln(Z_]_?T/Z)
— J=2(5; gt OGN E)
812 /C_iOO 0972(zj_1)zon o/ ( z,y—l)cos(zj_lw/z)dzj_l (48)
1 retico — 5 sin(z;_1m/2)
R n—j+1(, . G251 . Sl —17/4) ) .
812 /Ciioo oIz 1)z0? %0’ ( zj_l)cos%ilﬂ/z)dzj_l (49)
Next apply the first formula after inserting a factor:gf 1 /z;_1 to write the above as
iz / 2C(07?)(x)C( / o™ TG (z)da (50)
271— 0 -
* iz / 2C(o" ) (@)O( / 01720’ ) (w)d (51)
2m?2 Jo .
> 1 1 o0
- = j—2 n—j+2
212 — j +2 /0 2C(0? ) x)C (o )(z) dx (52)
-1 1 o0 .- i
o2 xC (0?7 ) (2)C ("7 ) z) dx. (53)
225 —1 J,

We candothg = 2, j = n cases separately just as easily (the above formulas are not
even all required in that case) and putting the two cases together and reindexing when
necessary we arrive at the conclusion of the theorem.

Our final stepisto extend this to functions other than powers. The standard uniformity
arguments used in the Wiener-Hopf theory apply here if we can show that

|Itr f(Ba(o)) — tr Ba(f(0))l|2 = O(1)

uniformly for o replaced by - A\ + Ao and) in some complex neighborhood of,[(J.

The details of this are found in [14]. The norm above is the trace norm. Given sufficient
analyticity conditions off, itis only necessary to proyEB, (01) Bo(02)— B (0102)||1 =

0O(1), where theD(1) here depends on properitesoef A trace norm of a product can
always be estimated by the product of two Hilbert-Schmidt norms and in this case we
need to estimate the Hilbert Schmidt norm of the operator with kernel
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X(1,00)(2) /OOO oi(t/a)VzztJ, (xt) ], (tz)dt.

Using integration by parts, and integration formulas for Bessel functions this is easily
estimated to be bounded. For analogous details see [14]. Thus for suitably ¢efired
can extend our previous theorem to the more general casg. dfrinterest is log(1 +).

This will satisfy the necessary analyticity conditions if we consider small enbughe
necessary conditions are collected in the following:

Theorem 16. Suppos¢ is a real-valued function witfv] + 2 derivatives all contained
in Ly. Then for sufficiently small (sayk < ||o]|2)

. [e%e] ' k kz [e%e]
Bk ~ exp{i /0 ik f(z)dx — % 10~ 5 /O 20( f)z(x)dx}.

Proof. The form of the answer follows from the computation of the mean given earlier

and from the fact that the constant term in the previous theorem is exactly half of the
answer in Sze@s Theorem. Thus the above answer for the log function must be half as
well. O

AcknowledgementThe author would like to thank both Craig Tracy and Harold Widom for many useful and
helpful conversations.

References

1. Basor, E. L., Tracy, C. A.: Variance calculations and the Bessel kernel. J. Stat7Bl1893)
2. Basor, E. L., Widom. H.: Toeplitz and Wiener-Hopf determinants with piecewise continuous symbols,
J. Funct. Anal50, 387—413 (1983)
3. Beenakker, C. W. J.: Universality in the random-matrix theory of quantum transport. Phys. Rev. Letts.
70, 1155-1158 (1993)
4. Bottcher, A., Silbermann, BAnalysis of Toeplitz OperatarBerlin: Springer, 1990
5. Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators18pol.
Translations of Mathematical Monographs, Providence; RIl: Amer. Math. Soc., 1969
6. Johannsson, K.: On Fluctuations of Eigenvalues of Random Hermitian Matrices. Preprint
7. Kac, M.: Toeplitz matrices, translation kernels, and a related problem in probability theory. Duke Math.
J.21, 501-509 (1954)
8. Mehta, M. L.: Random Matrices, San Diego: Academic Press, 1991
9. Sarnak, P.: Arithmetic quantum chaos. Preprint
10. Stone, A. D., Mello, P. A, Muttalib, K. A., and Pichard, J.-L.: Random theory and maximum entropy
models for disordered conductors.Mesoscopic Phenomena in Solidsls. B. L. Altshuler, P. A. Lee,
and R. A. Webb, Amsterdam: North-Holland, 1991, Ch. 9, pp. 369-448
11. Unterberger, A., Unterberger, J.: La Serie discret§ HE, R) et les operateurs pseudo-differentiels sur
une demi-droite. Ann. Scient. Ec Norm. Sdgserie, 17, 83-116 (1984)
12. Tracy, C. A., Widom, H.: Introduction to random matrices. In: Proc. 8th Scheveningen Conf., Springer
Lecture Notes in Physics, 1993
13. Tracy, C. A., Widom, H.: Level spacing distributions and the Bessel kernel. Commun. MatHBhys.
289-309 (1994)
14. Widom. H.: Szed's limit theorem: The higher-dimensional matrix case, J. Funct. A381182-198
(1980)

Communicated by J. L. Lebowitz



