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Abstract: The thermal equilibrium state of a bipolar, isothermic quantum fluid confined
to a bounded domain� ⊂ IRd, d = 1, 2 or d = 3 is entirely described by the particle
densitiesn, p, minimizing the energy

ε2
∫

|∇√
n|2 + ε2

∫
|∇√

p|2 +
∫

G1(n) +
∫

G2(p) +
λ2

2

∫
|∇V [n − p − C]|2,

whereG1,2 are strictly convex real valued functions,−λ21V = n − p − C, with∫
(n − p − C) =

∫
V = 0. It is shown that this variational problem has a unique

minimizer in{
(n, p) ∈ L1(�) × L1(�) : n, p ≥ 0,

√
n,

√
p ∈ H1(�),

∫
n = N,

∫
p = P

}
and some regularity results are proven. The semi-classical limitε → 0 is carried out
recovering the minimizer of the limiting functional. The subsequent zero space charge
limit λ → 0 leads to extensions of the classical boundary conditions. Due to the lack of
regularity the asymptoticsλ → 0 can not be settled on Sobolev embedding arguments.
The limit is carried out by means of a compactness-by-convexity principle.

1. Introduction

Quantum hydrodynamic models (QHDs) give a fairly accurate account of the macro-
scopic behavior of ultra small semiconductor devices in terms of only macroscopic
quantities such as particle densities, current densities and electric fields.

Within semiconductor device modeling QHDs are located between microscopic
quantum models (Schrödinger-Poisson systems [16, 15], Bloch’s equation [3, 13] or
kinetic-type quantum transport equations [14]) and macroscopic semi-classical hydro-
dynamic models [14]. Presently the interplay between these different approaches is a
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field of intensive research. Actual research deal with the derivation of QHDs from mi-
croscopic quantum models (essentially based on Madelung’s transformation, see [6] for
a review) and investigations of the semi-classical limit~ → 0.

All quantum models of semiconductor devices investigated so far areunipolar,
i.e. these models involveonly oneparticle type, namely electrons. Hence a consistency
problem arises. Whenever quantum effects are negligible, solutions of QHDs should
recover the qualitative behavior of solutions of semi-classical models. However most
of the established semi-classical approaches involve in a crucial waytwoparticle types,
namely electrons and holes. Therefore the analysis of unipolar QHDs has to be extended
to bipolar QHDs.

Unipolar QHDs reduce in thermal equilibrium to generic unipolar constitutive laws
[2]. The (scaled) bipolar extension of the constitutive laws reads

n∇V + T1∇R1(n) − ε2n∇1
√

n√
n

= 0,

−p∇V + T2∇R2(p) − ξε2p∇1
√

p√
p

= 0,

−λ21V = n − p − C,∫
n = N,

∫
p = P,

∫
V = 0

(1)

In (1) the functionsn, p, V are unknown, wheren = n(x) ≥ 0 is the particle
density of electrons (negatively charged) in the conduction band,p = p(x) ≥ 0 is the
particle density of holes (positively charged) in the valence band,V = V (x) is the
(negative) electrostatic potential andx ranges over�, a bounded domain inIRd, where
d = 1, 2 or d = 3. ε is the scaled Planck’s constant andξ is the ratio of the effective
masses of electrons and holes. The device dependent parametersT1, T2 (electron and
hole reference temperature, respectively) and the minimal Debye lengthλ are assumed
to be constant.R1,2 : [0, ∞) → [0, ∞) are the respective pressure functions. (Typically,
the pressure function is continuously differentiable and increasing.)C is the doping
profile. It is assumed that the impurity atoms are fully ionized, i.e.C = ND − NA,
whereND = ND(x), NA = NA(x) ≥ 0 are the space densities of donator and acceptor
atoms, respectively.N is the total number of electrons in the conductivity band andP
is the total number of holes in the valence band.N, P are related to the densities of
donator and acceptor atoms via

N = ni +
∫

ND, P = ni +
∫

NA,

whereni > 0 is an intrinsic constant taking into account that the number of electrons
in the conduction band (as well as the number of holes in the valence band) is not only
determined by the doping but also by intrinsic thermal excitation processes. The relation
betweenN, P andC implies total charge neutrality. Hence Poisson’s equation has (at
least forn − p − C ∈ L2(�)) exactly one solutionV satisfying

∫
V = 0.

Since our main conclusions will not depend on the particular values of the positive
parametersT1, T2, ξ we simply set

T1 = T2 = ξ = 1.
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Equations (1) provide only a necessary condition for the thermal equilibrium state.
Equations (1) do not take into account that the thermal equilibrium solution minimizes
the system’s total energyEελ. If (1) has more than one solution – this happens in some
semi-classical settings [18] – the physically relevant solution of (1) is distinguished as
a minimizer ofEελ. One is therefore compelled to minimize

Eελ(ν, π) = ε2
∫

|∇√
ν|2 + ε2

∫
|∇√

π|2 +
∫

G1(ν) +
∫

G2(π)

+
λ2

2

∫
|∇V [ν − π − C]|2

in

0ε ≡
{

(ν, π) ∈ L1(�) × L1(�) : ν, π ≥ 0,
√

ν,
√

π ∈ H1(�),
∫

ν = N,

∫
π = P

}
,

whereG1,2 is a primitive ofg1,2(t) ≡ 1
t

d R1,2(t)
d t

and

−λ21V [ν − π − C] = ν − π − C,

∫
V [ν − π − C] = 0.

A straightforwardformal computation shows that the Euler-Lagrange equations of the
functionalEελ are 

ε21
√

n =
√

n(V + g1(n) − α1)

ε21
√

p =
√

p(−V + g2(p) − α2)

−λ21V = n − p − C∫
n = N,

∫
p = P ,

∫
V = 0,

(2)

whereα1, α2 ∈ IR are the Lagrange-multipliers associated with the constraints
∫

ν =
N,

∫
π = P . If the minimizer (n, p) of Eελ in 0ε satisfies (2)andn, p > 0 one gets (1)

from (2) by simple algebraic manipulations and taking gradients.
The formulation of (1) as a variational problem provides a natural justification of

the normalizing condition
∫

V = 0. For fixed (ν, π) ∈ 0ε the potentialV [ν − π − C]
minimizes the electric field energy [9]

Fel[W ] =
λ2

2

∫
�

|∇W |2 −
∫
�

(ν − π − C)W,

whereW ranges in a set0W such that infW∈0W
Fel[W ] = Fel[V [ν − π − C]]. To

make infW∈0W
Fel[W ] as small as possible one has to choose0W as large as possible:

0W ≡
{

W ∈ H1(�) :
∫

W = 0

}
.

Due to the assumed total charge neutralityFel is well defined on0W and attains its
unique minimizer in0W . The normalizing condition

∫
�

W = 0 eliminates physically
irrelevant additive constants. It is readily seen thatV [ν −π −C] satisfies homogeneous
Neumann conditions.
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Remark 1.a) Replacing formally the terms
√

n by 91,
√

p by 92, n by |91|2 andp by
|92|2 Eqs. (2) can be written as an scaled, stationary, nonlinear Schrödinger-Poisson
system. 

−ε2191 + V 91 + 91 g1
(|91|2

)
= α191

−ε2192 − V 92 + 92 g2
(|92|2

)
= α292

−λ21V = |91|2 − |92|2 − C∫
|91|2 = N,

∫
|92|2 = P ,

∫
V = 0.

In this formulationα1, α2 are energy eigenvalues. The corresponding variational problem
is to minimize the functional

E∗
ελ(91, 92) = ε2

∫
|∇91|2 + ε2

∫
|∇92|2 +

∫
G1(|91|2) +

∫
G2(|92|2

+
λ2

2

∫
|∇V [|91|2 − |92|2 − C]|2

in the set

0∗
ε =

{
(91, 92) ∈ H1(�; CI) × H1(�; CI) :

∫
|91|2 = N,

∫
|92|2 = P

}
.

It is not very difficult to check that the minimizer ofE∗
ελ equals up to a physically

irrelevant constant phase factor (
√

n,
√

p).
b) The normalizing condition

∫
V = 0 implies thatV satisfies homogeneous Neumann

boundary conditions. This means that no external voltage is present. In voltage-driven
applications however the thermal equilibrium state is influenced by external electric
potentials. In this case Dirichlet (or mixed Dirichlet-Neumann) boundary data forV
are prescribed. In [17] the analysis of a unipolar QHD with these boundary data is
carried out. The extension to bipolar models of the investigations in [17] as well as the
modifications of the results of Subsect. 2.2 and 2.3 are rather straightforward and can
be left to the reader. Essential for the treatment of the electric energy are the estimates

‖V [f ]‖L∞ , ‖V [f ]‖H1 ≤ K‖f‖L2,

where1V [f ] = f . Such estimates hold for reasonable Dirichlet (or mixed Dirichlet-
Neumann) boundary data forV .

Equations (1) involve the dimensionless parametersε, λ. Due to the presence of
quantum effectsε is of not negligible order of magnitude for ultra small semiconductor
devices. For "standard" devices however quantum effects play no major role. In these
settings one has

ε2 � λ2 � 1,

and one is therefore compelled to study the consecutive limitsε → 0 andλ → 0.
The smallness ofε2 is a high temperature effect as well as due to the smallness of

Planck’s constant. The terms involvingε2 represent corrections to an otherwise classical
model. Carrying out the limitε → 0 means to go back from quantum mechanics to
classical physics.
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It is the aim of this paper to analyze the variational problem of minimizingEελ in 0ε,
to give a rigorous derivation of the associated Euler-Lagrange equations (2), to prove
that the minimizer ofEελ in 0ε solves (1), to carry out the semi-classical limitε → 0
and to justify the employment of semi-classical boundary conditions whenever quantum
effects are negligible and the scaled minimal Debye length is small.

All subsequent investigations are based on (mild) assumptions given at the beginning
of Sect. 2. Subsections 2.1, 2.2, 2.3 are concerned with the statements of the results.
The proofs are given in Subsects. 3.1, 3.2, 3.3. The core of the analysis of the semi-
classical limitε → 0 (subsection 3.2) are properties of the functionalE◦λ obtained
from Eελ by setting formallyε = 0. This functionalE◦λ possesses a unique minimizer
in a set0◦ with 0◦ ⊃ 0ε, 0◦ 6= 0ε. Although the comparison functions of0◦ are
less regular than those of0ε, the minimizer ofE◦λ in 0◦ is actually an element of0ε.
This regularity result allows in connection withε-independent estimates to pass to the
limit ε → 0 strongly inH1(�). Subsection 3.3 is concerned with the justification of
semi-classical boundary conditions for QHDs. The minimizer ofE◦λ in 0◦ does not
recover the usual semi-classical boundary conditions [12, 14]. This is not to be expected
because the semi-classical boundary conditions are derived from the zero space charge
assumptionλ = 0. Settingλ = 0 in E◦λ gives a functionalE◦◦ to be minimized in a
set0◦◦ ⊂ 0◦, 0◦◦ 6= 0◦. E◦◦ possesses a unique minimizer (nc, pc) in 0◦◦ satisfying
the semi-classical boundary conditions. However the investigation ofλ → 0 requires
some effort. The main difficulty to pass to the limitλ → 0 is the lack of regularity of
(nc, pc). In fact the limiting densitiesnc, pc are in generalnot continuous while for all
λ > 0 the minimizers ofE◦λ belong toC(�). Hence compactness arguments based on
embeddings ofH1(�) in someLp-space (as used to perform the semi-classical limit)
are not applicable. However a compactness-by-convexity principle (Lemma 3) allows
to carry out the limitλ → 0.

2. Statement of the Results

The subsequent investigations are based on the following assumptions:

(A)



a) � ⊂ IRd, d = 1, 2 or d = 3 is a bounded domain with∂� ∈ C0,1.

b) There exists aK > 0 only depending on� such that

‖V [f ]‖L∞ ≤ K‖f‖L2.

c) C ∈ L∞(�).

d) N − P =
∫

C , N >

∫
C+ , P >

∫
C−.

e) g1,2 ∈ C(0, ∞) ∩ L1
loc([0, ∞)) is strictly increasing,

lim
t→∞ g1,2(t) = ∞ and g1,2 ≡ lim

t→0+
g1,2(t) ∈ [−∞, ∞).

Remark 2.a) Assumption(A)b) is essentially a requirement on the smoothness of∂�.
For instance it is well known, see e.g. [5], that for∂� ∈ C∞ the estimate

‖V [f ]‖H2 ≤ K‖f‖L2
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holds. This estimate implies in dimensionsd ≤ 3 assumption b), because due to
∂� ∈ C0,1 the embeddingH2(�) → CB(�) is continuous [1].
b) The assumptions(A)e) are satisfied for functionsg1,2 deduced from the most fre-
quently employed pressure functions of the formR1,2(t) = ta, a ∈ [1, ∞).

2.1. Existence and uniqueness of a minimizer.The main result of this subsection is

Theorem 1. Assume(A). Then for allε, λ > 0 the functionalEελ has a unique minimizer
(n, p) in 0ε which solves the associated Euler-Lagrange equations (2) as well as (1).
Furthermore,

– n, p, V satisfy homogeneous Neumann boundary conditions,
– for all t ∈ (0, 1), the functions

√
n,

√
p, n, p, V belong toC1,t

loc(�)∩CB(�)∩H1(�),
– n, p are strictly positive in�, i.e.n(x), p(x) > 0 for all x ∈ �,
– if g1 = −∞, then there exists a constantK > 1 such that1/K ≤ n ≤ K.
– if g2 = −∞, then there exists a constantK > 1 such that1/K ≤ p ≤ K.

2.2. The semi-classical limitε → 0. Keepingλ > 0 fixed and givenε ∈ (0, ∞) let
(nε, pε) be the unique minimizer ofEελ in 0ε and letVε = V [nε − pε − C]. By setting
ε = 0 and formal manipulations Eqs. (1) become

n◦∇V◦ + ∇R1(n◦) = 0,

−p◦∇V◦ + ∇R2(p◦) = 0,

−λ21V◦ = n◦ − p◦ − C,∫
n◦ = N,

∫
p◦ = P,

∫
V◦ = 0,

, (3)

the energy functionalEελ becomes

E◦λ(ν, π) =
∫

G1(ν) +
∫

G2(π) +
λ2

2

∫
|∇V [ν − π − C]|2,

i.e.
√

ν,
√

π ∈ H1(�) is not required anymore andE◦λ should be minimized in

0◦ =

{
(ν, π) ∈ L1(�) × L1(�) : ν, π ≥ 0 ,

∫
ν = N,

∫
π = P

}
.

The limit ε = 0 of the Euler-Lagrange equations (2) is less straightforward. In contrast
to the quantum case the appearance of “vacuum-sets” (subsets of� wheren◦ or p◦
vanishes) is possible. Hence by a simple canceling the differential operators in (2) some
information is lost on vacuum-sets. A rigorous analysis shows that the Euler-Lagrange
equations become in the limitε = 0 variationalinequalities

0 = V◦ + g1(n◦) − α1◦ if n◦ > 0,
0 ≤ V◦ + g1(n◦) − α1◦ if n◦ = 0,

0 = −V◦ + g2(p◦) − α2◦ if p◦ > 0,
0 ≤ −V◦ + g2(p◦) − α2◦ if p◦ = 0,

−λ21V◦ = n◦ − p◦ − C,∫
n◦ = N,

∫
p◦ = P,

∫
V◦ = 0,

(4)
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whereα1◦, α2◦ ∈ IR. Some more information aboutn◦, p◦ is available by introducing
the generalized inverseh1,2 of g1,2:

h1,2 : IR → [0, ∞)

t 7→
 0 if t ≤ g1,2

g−1
1,2(t) if t > g1,2.

Lemma 1. Assume(A) and letλ > 0. Then the functionalE◦λ has a unique minimizer
(n◦, p◦) in 0◦ solving the associated variational inequalities (4). Furthermore,

– for all t ∈ (0, 1), the electric potentialV◦ belongs toC1,t
loc(�) ∩ CB(�) ∩ H1(�),

– n◦, p◦ ∈ CB(�), n◦ ≤ sup� C + P/meas(�), p◦ ≤ − inf � C + N/meas(�),
– for all t ∈ (0, 1), g1(n◦) ∈ C1,t

loc({n◦ > 0}) ∩ H1({n◦ > 0}),
– for all t ∈ (0, 1), g2(p◦) ∈ C1,t

loc({p◦ > 0}) ∩ H1({p◦ > 0}),
– if g1 = −∞, then there exists aK > 1 such that1/K ≤ n◦ ≤ K,
– if g2 = −∞, then there exists aK > 1 such that1/K ≤ p◦ ≤ K,
– n◦ = h1 (α1◦ − V◦) , p◦ = h2 (α2◦ + V◦) and the electric potentialV◦ solves the

semi-linear elliptic equation

−λ21V◦ = h1 (α1◦ − V◦) − h2 (α2◦ + V◦) − C ,

∫
V◦ = 0.

The following convergence result of (nε, pε, Vε) to (n◦, p◦, V◦) as ε → 0 requires√
n◦,

√
p◦ ∈ H1(�). Sufficient conditions for

√
n◦,

√
p◦ ∈ H1(�) can be most easily

formulated in terms ofh1,2 andg1,2 [19]:

Corollary 1. Assume(A) and letλ > 0. Then
√

n◦,
√

p◦ belong toH1(�) if gj , hj , j =
1, 2 satisfy one of the following conditions:

a)
√

hj ∈ C0,1
loc(IR).

b) gj = −∞ andhj ∈ C0,1
loc(IR).

c) gj ∈ C1
loc(0, ∞), gj = −∞ and d gj (t)

d t > 0 for t ∈ (0, ∞).

Remark 3.In applicationsg1,2(t) usually equals to log(t) for smallt so b) applies.

Theorem 2. Assume(A) and
√

n◦,
√

p◦ ∈ H1(�). Then

– Vε → V◦ strongly inH1(�) and strongly inL∞(�) asε → 0,
– nε → n◦ andpε → p◦ strongly inLr(�), r ∈ [1, ∞) and weak* inL∞(�) asε → 0,
–

√
nε → √

n◦ and
√

pε → √
p◦ strongly inH1(�) asε → 0,

– if g1 = −∞ then there exists anε∗ > 0 and aK > 1 which is independent of
ε ∈ (0, ε∗) such that1/K ≤ nε, n◦ ≤ K and nε → n◦ strongly in H1(�) as
ε → 0,

– if g2 = −∞ then there exists anε∗ > 0 and aK > 1 which is independent of
ε ∈ (0, ε∗) such that1/K ≤ pε, p◦ ≤ K andpε → p◦ strongly inH1(�) asε → 0.

2.3. The limitλ → 0. Throughout this section let (nλ, pλ) be the unique minimizer of
E◦λ in 0◦ and letVλ = V [nλ − pλ − C]. Equations (3) are known as semi-classical
hydrodynamic semiconductor device model in thermal equilibrium. For this model the
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definition of the built-in potential is based on the zero space charge assumption which
means thatλ is set to zero in Poisson’s equation [12].

To analyze the limitλ → 0 set formallyλ = 0 in (3):

nc∇Vc + ∇R1(nc) = 0,

−pc∇Vc + ∇R2(pc) = 0,

0 = nc − pc − C,∫
nc = N,

∫
pc = P,

∫
Vc = 0

(5)

The functionalE◦λ becomes formally

E◦◦(ν, π) =
∫

G1(ν) +
∫

G2(π)

to be minimized in

0◦◦ =

{
(ν, π) ∈ L1(�) × L1(�) : ν, π ≥ 0,

∫
ν = N,

∫
π = P, ν − π − C = 0

}
.

The associated Euler-Lagrange equations are{
γ = g1(nc) + g2(pc) if ncpc > 0
γ ≤ g1(nc) + g2(pc) if ncpc = 0,

(6)

whereγ ∈ IR.
The solvability of this minimization problem is the content of

Lemma 2. Assume(A). ThenE◦◦ has a unique minimizer(nc, pc) in 0◦◦ and

– nc, pc ∈ L∞(�),
– nc, pc satisfy (6),
– meas({nc = 0} ∩ {pc = 0}) = 0,
– ncpc does not vanish identically on�, i.e.

∫
ncpc > 0,

– {nc = 0} = {pc = C−} and{pc = 0} = {nc = C+},
– if g1 = −∞ then there exists aK > 1 such that1/K ≤ nc ≤ K,
– if g1 = −∞ then there exists aK > 1 such that1/K ≤ pc ≤ K,
– g1(nc), g2(pc) ∈ L∞(�),
– defining

β1 ≡ 1
meas(�)

(
γ meas({nc = 0}) +

∫
{nc>0}

g1(nc) −
∫

{nc=0}
g2(pc)

)
,

β2 ≡ γ − β1, and setting

Vc ≡
{

β1 − g1(nc) if nc > 0

g2(pc) − β2 if nc = 0

the quintuple(β1, β2, nc, pc, Vc) is a solution of (5).
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The main problem when passing to the limitλ → 0 is that the limit solution (nc, pc) is
less regular than the minimizersnλ, pλ ∈ H1(�). Hence there are no uniformH1(�)-
estimates on

√
nλ,

√
pλ. Available estimates concern

∫
G1(nλ) and

∫
G2(pλ) so the

subsequent Lemma and its Corollary are fundamental.

Lemma 3. (Compactness-by-Convexity) Let� ⊂ IRd, d ∈ IN, be a bounded domain
and letG : [0, ∞) → IR be strictly convex and continuous. Forn ∈ IN letfn, f ∈ L1(�)
with fn, f ≥ 0 a.e. on�. Assume that||fn||L1 → ||f ||L1 asn → ∞ and suppose that
there exists aϑ ∈ (0, 1) such that∫

G(f ) = lim
n→∞

∫
G(fn) = lim

n→∞

∫
G(ϑf + (1− ϑ)fn) ≡ L ∈ IR.

Thenfn → f strongly inL1(�) asn → ∞.

Corollary 2. Let� andG as in Lemma 3. Forn ∈ IN let fn, f ∈ L1(�) with fn, f ≥ 0
a.e. on� and assume thatfn → f weakly inL1(�) as well as∫

G(f ) = lim
n→∞

∫
G(fn) ≡ L < ∞,

asn → ∞. Thenfn → f strongly inL1(�) asn → ∞.

Remark 4.a) In Lemma 3 it is assumed thatϑ is constant. By obvious modifications
this assumption can be a bit weakened to require that there exists a sequence (ϑn)n∈IN

with ϑn ∈ (0, 1) and limn→∞ ϑn = ϑ ∈ (0, 1) such that∫
G(f ) = lim

n→∞

∫
G(fn) = lim

n→∞

∫
G(ϑnf + (1− ϑn)fn) ≡ L ∈ IR.

SettingΘ = inf {ϑn : n ∈ IN} , Θ = sup{ϑn : n ∈ IN}, both in Lemma 3 and Corollary
2 the assumptionG ∈ C([0, ∞)), G strictly convex, can be replaced by

∀k > 1, ∀ϑ ∈ [Θ, Θ] : ∃c > 0 :

∀u, v ∈ [ 1
k , k], u ≤ v : ϑG(v) + (1− ϑ)G(v − u) − G(v − (1 − ϑ)u) ≥ C u.

b) There are many sufficient conditions known which allow to pass from weakL1-
convergence (or convergence in the sense of distributions) to strongL1-convergence,
see e.g. Bŕezis [4] and the references given there. In Lemma 3 however no convergence
of the sequence(fn) is assumed.

The main result of this subsection is

Theorem 3. Assume(A). Then

– nλ → nc, pλ → pc, Vλ → Vc strongly inLr(�), r ∈ [1, ∞) and weak* inL∞(�)
asλ → 0,

– ‖Vλ‖H1 = o(1/λ) asλ → 0,
– if g1 = −∞ then there exists aλ∗ > 0 and a constantK > 1 which is independent

of λ ∈ (0, λ∗) such that1/K ≤ nλ, nc ≤ K,
– if g2 = −∞ then there exists aλ∗ > 0 and a constantK > 1 which is independent

of λ ∈ (0, λ∗) such that1/K ≤ pλ, pc ≤ K.
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Remark 5.a) Convergence in theL∞(�)-norm can in general not be expected because
nλ, pλ, Vλ ∈ C(�) for all λ > 0 while for not continuousC one hasnc, pc, Vc 6∈ C(�).
b) If g1,2(t) = log(t), see [12], then the functionsnc, pc, Vc are given by

nc = (C/2) +
√

(C/2)2 + δ2

pc = −(C/2) +
√

(C/2)2 + δ2

Vc = β1 − log

(
(C/2) +

√
(C/2)2 + δ2

)
=

= log

(
−(C/2) +

√
(C/2)2 + δ2

)
− β2

(7)

whereδ2 = eβ1+β2 is uniquely determined by
∫ (

(C/2) +
√

(C/2)2 + δ2

)
= N , or

equivalently by
∫ (

−(C/2) +
√

(C/2)2 + δ2

)
= P . Equations (7) recover the classical

expressions for the thermal equilibrium distributions of ofnc, pc, Vc, see [12]. The
parameterδ2 (as well asβ1, β2) is uniquely determined byN andP .

3. Proofs

3.1. Proofs of Subsection 2.1.

Proof of Theorem 1.The proof extends a similar argumentation of [17] to bipolar models.
Some modifications are however necessary to handle the operatorV [f ] whose corre-
sponding operator in [17] is positive. For the sake of simplicity assume thatg1 = g2 = g.

Step 1.For i ∈ (1, ∞], t ∈ [0, ∞) let gi(t) ≡ min{it, max{−i, g(t)}} andGi(t) =∫ t

1 gi(σ) dσ. We shall minimize

E+
i (r, s) = ε2

∫
|∇r|2 + ε2

∫
|∇s|2 +

∫
Gi

(
(r+)2

)
+

∫
Gi

(
(s+)2

)
+

λ2

2

∫ ∣∣∇V [(r+)2 − (s+)2 − C]
∣∣2

in

0+ ≡
{

(r, s) ∈ H1(�) × H1(�) :
∫

(r+)2 = N,

∫
(s+)2 = P

}
,

wherer+, s+ are the positive parts ofr, s. The aim of the subsequent analysis is to carry
out the limiti → ∞. Variousi-independent positive constants are denoted byK.

Lemma 4. Assume(A). Then, for alli ∈ (1, ∞], the functionalE+
i possesses a unique

minimizer(Ri, Si) in 0+ andRi, Si ≥ 0.

Proof of Lemma 4.The existence of a minimizer (Ri, Si) ∈ 0+ follows from standard
theory, see e.g. [7, 11]. One easily checks that (R+

i , S
+
i ) ∈ 0+ (cutting mapsH1(�)

into H1(�), see e.g. [10]) andE+
i (R+

i , S
+
i ) ≤ E+

i (Ri, Si), where equality holds iff
R−

i = S−
i = 0. ThereforeRi, Si ≥ 0. Assume that (Ri, Si) and (R1, S1) are distinct
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non-negative minimizers ofE+
i in 0+. Then a straightforward calculation shows that for

all ϑ ∈ (0, 1) the pair (Rϑ, Sϑ),

Rϑ ≡
√

ϑ(Ri)2 + (1− ϑ)(R1)2 ≥ 0,

Sϑ ≡
√

ϑ(Si)2 + (1− ϑ)(S1)2 ≥ 0

belongs to0+ with E+
i (Rϑ, Sϑ) < ϑE+

i (Ri, Si) + (1− ϑ)E+
i (R1, S1) which contradicts

the assumed minimality ofE+
i (Ri, Si) andE+

i (R1, S1) in 0+. �
Step 2.Similar to [17] it can be easily seen that for alli ∈ (1, ∞) (the casei = ∞ has to
be excluded here because of the possible lack of differentiability ofGi(t) at t = 0) the
pair (Ri, Si) satisfies the respective Euler-Lagrange equations

ε21Ri = Ri

(
Vi + gi(R2

i ) − αi1
)
,

ε21Si = Si

(−Vi + gi(S2
i ) − αi2

)
,

−λ21Vi = R2
i − S2

i − C,∫
R2

i = N,

∫
S2

i = P,

∫
Vi = 0,

(8)

where it is taken into account thatRi, Si ≥ 0. The space of test functions of (8) is
H1(�). HenceRi, Si satisfy homogeneous Neumann boundary conditions.
Step 3.The limit i → ∞ is prepared by derivingi-independent estimates onRi, Si.
Here some modifications of the proof of [17] are necessary. Due to the fact thatE+

i is
uniformly (with respect toi) bounded from below and‖Ri‖L2, ‖Si‖L2 ≤ K, one gets
‖Ri‖H1, ‖Si‖H1 ≤ K which gives‖Ri‖L6, ‖Si‖L6 ≤ K. Due to assumption(A)b),c)

it follows ‖Vi‖L∞ ≤ K. Combining these estimates we get
∫

R2
i |Vi| ,

∫
Ri |Vi| ≤ K

and we can proceed along the lines of Sect. 3.3 of [17] to establish the estimates∫
R2

igi

(
R2

i

)
,

∫
S2

i gi

(
S2

i

) ≤ K and|αi1|, |αi2| ≤ K.

Lemma 5. Assume(A). Then0 ≤ Ri, Si ≤ K.

Proof of Lemma 5.Givena > 1 we use
[Ri − a]+

Ri
as test function in the first equation

of (8). This gives

ε2a

∫ |∇[Ri − a]+|2
R2

i

+
∫

[Ri − a]+
(
Vi + gi

(
R2

i

) − αi1
)

= 0

such that previous estimates imply(
K − gi

(
a2

)) ∫
[Ri − a]+ ≥ εa

∫ |∇[Ri − a]+|2
R2

i

≥ 0,

and due to limt→∞ gi(t) = ∞ we haveRi ≤ K. Si ≤ K follows in analogy. �
Step 4.The estimates derived so far allow to choose a sequence (Ri, Si)i∈IN such that
Ri → R, Si → S weakly inH1(�) and weak* inL∞(�) asi → ∞. It remains to show
that the pair (R, S) is actually the minimizer ofE+

∞ in 0+ solving the corresponding
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Euler-Lagrange equations. It can be seen as in [17] that (R, S) is the minimizer ofE+
∞ in

0+ . To pass to the limit in the Euler-Lagrange equations (8) we distinguish between two
cases. Ifg = −∞ it follows from the maximum principle and previous estimates that
K ≤ Ri, Si, see [17] for the details. Ifg ∈ IR , then the mapt 7→ √

tg(t) is continuous
on [0, ∞). In both cases we can pass to the limiti → ∞ in the weak formulation of
(8) with arbitrary test functions inH1(�). This settles the boundary conditions and the
limiting equations. The regularity ofR, S follows from the fact that1R, 1S are both
in L∞(�). If g = −∞ then the lower estimate forR, S follows from Ri, Si ≥ K, if
g ∈ IR, the strict positivity ofR, S follows from Harnack’s inequality.

Identifyingn with R2 andp with S2 settles the proof of Theorem 1. �

3.2. Proofs of Subsection 2.2.

Proof of Lemma 1.Lemma 1 modifies a result in [18] where mixed Dirichlet-Neumann
boundary conditions are concerned. For the sake of a smoother presentation assume
g = g1 = g2.
Step 1.For i ∈ (1, ∞], t ∈ [0, ∞) let

gi(t) =

 t − (1/i) + g(1/i) , 0 ≤ t ≤ (1/i)
g(t) , (1/i) < t < i

t − i + g(i) , t ≥ i
,

and setGi(t) ≡ ∫ t

1 gi(σ) dσ. gi is strictly monotone increasing. Let

hi : IR → [0, ∞)

t 7→
{

0 if t ≤ g(1/i) − (1/i)
g−1

i (t) if t > g(1/i) − (1/i)
.

It is readily seen that fori ∈ (1, ∞) the functionGi is strictly convex and belongs to
C1[0, ∞). FurthermoreGi(t) = O(t2) ast → ∞. We shall minimize the functional

E i
◦λ(ν, π) ≡

∫
G1(ν) +

∫
G2(π) +

λ2

2

∫
|∇V [ν − π − C]|2

in the set

0◦ =

{
(ν, π) ∈ L1(�) × L1(�) : ν, π ≥ 0,

∫
ν = N,

∫
π = P

}
,

where the last term ofE i
◦λ is set to +∞ whenever the problem−λ21V = ν−π−C,

∫
V =

0 admits no solution inH1(�). (ν, π belong only toL1(�).) It follows from standard
theory thatE i

◦λ possesses for alli ∈ (1, ∞) a unique minimizer (ni, pi) ∈ 0◦. The case
i = ∞ has to be excluded here because of the possible lack of coercivity of the functional
E◦λ in L1(�) (or any otherLr(�) space as well). Furthermore the standard theory also
provides that (ni, pi) solves the corresponding variational inequalities



Thermal Equilibrium Solution of Generic Bipolar Quantum Hydrodynamic Model 81



0 = Vi + gi(ni) − αi1 if ni > 0,
0 ≤ Vi + gi(ni) − αi1 if ni = 0,

0 = −Vi + gi(pi) − αi2 if pi > 0,
0 ≤ −Vi + gi(pi) − αi2 if pi = 0,

−λ21Vi = ni − pi − C,∫
ni = N,

∫
pi = P,

∫
Vi = 0.

(9)

This system can be written as a single semi-linear equation in terms of the electrostatic
potentialVi:

−λ21Vi = hi (αi1 − Vi) − hi (αi2 + Vi) − C ,

∫
Vi = 0,

where
ni = hi (αi1 − Vi) , pi = hi (αi2 + Vi) . (10)

It follows by the strict monotonicity ofhi via the maximum principle thatVi ∈ L∞(�)
with Vi ≤ V ≤ Vi, whereVi, Vi satisfy the inequalities

hi(αi1 − Vi) − hi(αi2 + Vi) ≤ sup
�

C, hi(αi1 − Vi) − hi(αi2 + Vi) ≥ inf
�

C. (11)

Furthermore, the normalizing conditions
∫

hi (αi1 − Vi) = N and
∫

hi (αi2 + Vi) = P
imply {

hi(αi1 − Vi) ≤ N ′ ≡ N/meas(�) ≤ hi(αi1 − Vi),

hi(αi2 + Vi) ≤ P ′ ≡ P/meas(�) ≤ hi(αi2 + Vi).
(12)

Step 2.We carry out the limiti → ∞ by deriving i-independent estimates. Various
i-independent positive constants are denoted byK. It follows from (10),(11),
(12) and the non negativity ofni, pi thatni ≤ sup� C +P ′ , pi ≤ − inf � C +N ′. Hence
‖1Vi‖L∞ ≤ K which gives by(A)b) the estimate‖Vi‖L∞ ≤ K. It follows from (9) that
αi1, αi2 ≤ K. To establish lower estimates forαi1 assume that lim infi→∞ αi1 = −∞.
Passing if necessary to a subsequence we have due to (12),

N ′ ≤ h(αi1 + K).

Choosei large enough such thatαi1 + K < gi(N ′) = g(N ′). Then, if αi1 + K >
g(1/i) − (1/i) the contradiction

N ′ ≤ hi(αi1 + K) = g−1
i (αi1 + K) = g−1(αi1 + K), i.e. g(N ′) ≤ αi1 + K

follows. If howeverαi1 + K ≤ g(1/i) − (1/i), thenN ′ ≤ hi(αi1 + K) = 0, which is
a contradiction. This proves that lim infi→∞ αi1 ∈ IR and a similar argumentation for
αi2 settles|αi1|, |αi2| ≤ K.
Step 3:The estimates of Step 2 ensure that - possibly after passing to a subsequence -
limi→∞ αi1 = α1◦ , limi→∞ αi2 = α2◦ as well as

ni → n◦ , pi → p◦ weak* in L∞(�), asi → ∞.
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HenceVi → V◦ weak* in L∞(�) and strongly inH1(�), as i → ∞, whereV◦ =
V [n◦ − p◦ − C]. Passing if necessary to a subsequence gives

Vi → V◦ almost everywhere in�, asi → ∞.

We proceed by a case distinction.
a) If g = −∞ then by means ofgi(ni) ≥ αi1 −Vi ≥ −K, the estimateni ≥ K follows.
Hencegi(ni) = g(ni) as well asni = h(αi1 − Vi) for all sufficiently largei and by
continuity ofh we haveni → n◦ = h(α1◦ − V◦) almost everywhere in� asi → ∞
which gives via‖ni‖L∞ ≤ K,

ni → n◦ = h(α1◦ − V ) strongly inLr(�) , r ∈ [1, ∞), asi → ∞.

b) If g ∈ IR thenhi → h uniformly on compact subsets ofIR asi → ∞ which gives
via ‖αi1 − Vi‖L∞ ≤ K and convergence almost everywhere ofαi1 − Vi,

ni → n◦ = h(α1◦ − V◦) strongly inLr(�) , r ∈ [1, ∞), asi → ∞.

In analogy we get in both cases

pi → p◦ = h(α2◦ + V◦) strongly inLr(�) , r ∈ [1, ∞), asi → ∞.

Step 4.It remains to prove that (n◦, p◦) is the minimizer ofE◦λ in 0◦. (By strict convexity
of E◦λ there is at most one minimizer.) As shown in Step 3 the triple (n◦, p◦, V◦) satisfies
the variational inequalities (4). Now it is an easy exercise to verify for all (ν, π) ∈ 0◦,

lim inf
ϑ→0

E◦λ(n◦ + ϑ(ν − n◦), p◦ + ϑ(π − p◦)) − E◦λ(n◦, p◦)
ϑ

≥ 0.

The convexity ofE◦λ implies that (n◦, p◦) is a minimizer ofE◦λ in 0◦. The regularity
results stated in Lemma 1 follow from standard theory [8]. �

Proof of Theorem 2.The proof is divided into two steps. In the first step strong con-
vergence ofnε, pε in H1(�) as ε → 0 is proven. Then uniformL∞-estimates are
established.
Step 1.Variousε-independent positive constants are denoted byK. We note that

Eελ(nε, pε) − E◦λ(nε, pε) = ε2
∫

|∇√
nε|2 + ε2

∫
|∇√

pε|2 ≥ 0

for all ε > 0. Due to
√

n◦,
√

p◦ ∈ H1(�), for all ε > 0,

Eελ(nε, pε) ≤ Eελ(n◦, p◦) = ε2
∫

|∇√
n◦|2 + ε2

∫
|∇√

p◦|2 + E◦λ(n◦, p◦),

as well asE◦λ(n◦, p◦) ≤ E◦λ(nε, pε). Combining these estimates we get for allε ≥ 0,∫
|∇√

nε|2 +
∫

|∇√
pε|2 ≤

∫
|∇√

n◦|2 +
∫

|∇√
p◦|2,

and due to‖√
nε‖L2 = N, ‖√

pε‖L2 = P this implies‖√
nε‖H1, ‖√

pε‖H1 ≤ K.
Passing to a subnet one has

√
nε → √

n∗ ,
√

pε → √
p∗ weakly inH1(�), asε → 0.



Thermal Equilibrium Solution of Generic Bipolar Quantum Hydrodynamic Model 83

The compactness of the embeddingH1(�) → L6(�) gives

nε → n∗ , pε → p∗ strongly inL3(�), asε → 0.

This convergence implies by (A)b) that

Vε → V∗ strongly inL∞(�), H1(�), asε → 0,

whereV∗ = V [n∗ − p∗ − C]. To proven∗ = n◦, p∗ = p◦ note that

E◦λ(n◦, p◦) ≤ lim inf
ε→0

E◦λ(nε, pε) ≤ lim inf
ε→0

Eελ(nε, pε) ≤ lim sup
ε→0

Eελ(nε, pε)

≤ lim inf
ε→0

Eελ(n◦, p◦) = E◦λ(n◦, p◦).

HenceE◦λ(n◦, p◦) = lim
ε→0

Eελ(nε, pε). On the other hand by the weakly sequentialL2(�)-

continuity of the functionalE◦λ,

E◦λ(n∗, p∗) ≤ lim inf
ε→0

E◦λ(nε, pε) ≤ lim
ε→0

Eελ(nε, pε) = E◦λ(n◦, p◦),

so (n∗, p∗) is minimizer ofE◦λ in 0◦. (Obviously, (n∗, p∗) ∈ 0◦.) By uniqueness of the
minimizer ofE◦λ in 0◦ one hasn∗ = n◦, p∗ = p◦.
Step 2.As shown in Step 1 we have‖Vε‖L∞ ≤ K. We observe by strong convergence
of

√
nε to

√
n◦ in L1(�) and

∫ √
n◦ > 0 that there exists anε∗ > 0 such that for all

ε ∈ (0, ε∗) the estimate
∫ √

nε ≥ K holds. Forε < ε∗ setmε ≡ N/
∫ √

nε. We observe
thatmε ≤ K for all ε < ε∗. This allows us to proceed as in the proof of Lemma 4 in
[17] to get the estimate

∣∣∫ nεg1(nε)
∣∣ ≤ K for all ε < ε∗. Using

√
nε as test function in

the first equation of (2) we get

α1εN = ε2
∫

|∇√
nε|2 +

∫
nεVε +

∫
nεg1(nε),

and therefore by previous estimates|α1ε| ≤ K for all ε < ε∗. Using the maximum
principle and the monotonicity ofg1 in the first equation of (2) it follows thatnε ≡
sup� nε > 0 satisfies the inequalityg1(nε) ≤ α1ε − Vε, whereVε ≡ inf � Vε. Hence
nε ≤ h1(α1ε − Vε) ≤ K for all ε < ε∗, because‖Vε‖L∞ ≤ K. This settles by non-
negativity‖nε‖L∞ ≤ K. If g1 = −∞ we can again apply the maximum principle in the
first equation of (2) to get fornε ≡ inf � nε > 0 in analogy for allε < ε∗ the estimate
nε ≥ h1(α1ε − Vε) ≥ K, whereVε ≡ sup� Vε. TheL∞-estimates concerningpε, p◦
follow in analogy. Finally the regularity results are consequences of standard theory [8].
�

3.3. Proofs of Subsection 2.3.

Proof of Lemma 2:.We rewrite the minimization problem as follows. The functional

E(ρ) ≡
∫

G1(C+ + ρ) +
∫

G2(C− + ρ)

is to be minimized in

0 ≡
{

ρ ∈ L1(�) : ρ ≥ 0,

∫
ρ = N −

∫
C+

}
.
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Due to(A)d) we have
∫

C+ < N and therefore0 6= {0}. As a strictly convex functional
E possesses at most one minimizer. We introduce the function

g : � × [0, ∞) → [−∞, +∞)

(x, s) 7→ g1(C+(x) + s) + g2(C−(x) + s).

It is readily seen that for fixedx ∈ � the functiong(x, .) is strictly monotone increasing
and continuous. Furthermore, for fixedx ∈ � we have lims→∞ g(x, s) = ∞. This allows
to define for fixedx ∈ � the function

r(x, .) : IR → [0, +∞)

γ 7→
{

0 if γ ≤ g(x, 0)

[g(x, .)]−1(γ) if γ > g(x, 0)

.

For fixedx ∈ � the functionr(x, .) is continuous and monotone increasing. Given
γ ∈ IR we note thatr(x, γ) ∈ L∞(�) as well as

lim
γ→−∞ sup

x∈�

r(x, γ) = 0 , lim
γ→∞ inf

x∈�
r(x, γ) = ∞,

which gives

lim
γ→−∞

∫
r(x, γ) = 0 , lim

γ→∞

∫
r(x, γ) = ∞.

Furthermore the mapγ 7→ ∫
r(x, γ) is continuous. Hence there exists aγ∗ ∈ IR such

that
∫

r(x, γ∗) = N−∫
C+. Setr∗(x) = r(x, γ∗) andnc = g1(C++r∗), pc = g2(C−+r∗).

Then
g1(C+ + r∗) + g2(C− + r∗) ≥ γ∗,

where equality holds wheneverr∗ > 0. Sincer∗ does not vanish identically we have
by strict monotonicity ofg the estimateγ∗ > g1(0) + g2(0), which proves meas({nc =
0} ∩ {pc = 0}) = 0. If the functionncpc vanishes identically on� then bync = C+ + r∗
andpc = C− + r∗ the identity (C+ + r∗)(C− + r∗) = 0 will follow which gives due to
C+C− = 0 the contradictionr∗(|C| + r∗) = 0, i.e.r∗ = 0. We have

lim inf
ϑ→0

E(r∗ + ϑ(ρ − r∗)) − E(r∗)
ϑ

≥ 0

for all ρ ∈ 0. Hencer∗ is a minimizer ofE in 0. The remaining assertions of Lemma 2
follow by straightforward verifications. �

Proof of Lemma 3.If ‖f‖L1 = 0 = lim
n→∞ ‖fn‖L1, thenfn → 0 = f strongly inL1(�)

and there is nothing to do. If‖f‖L1 ≡ K > 0, suppose by contradiction that there exists
anε ∈ (0, 8K) such that‖fn − f‖L1 > ε for a subsequencen. Setgn ≡ fn − f . Then
fn − f = g+

n − g−
n andfn + g−

n = f + g+
n. By non-negativity offn, f and

∫
fn → ∫

f
asn → ∞ one gets lim

n→∞
∫

g+
n = lim

n→∞
∫

g−
n . On the other handε <

∫ |fn − f | =∫
g+

n +
∫

g−
n for all n ∈ IN. Hence lim

n→∞
∫

g−
n ≥ ε

2 and therefore
∫

g−
n ≥ ε

4 for a

subsequencen. ChooseMε > 0 such that
∫

{f>Mε}
f < 1

8ε and put�ε ≡ {f ≤ Mε}
which has nonzero measure:
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0 < K − 1
8
ε <

∫
�

f −
∫

{f>Mε}

f =
∫
�ε

f.

On the other hand 0≤ ∫
{f>Mε}

g−
n ≤ ∫

{f>Mε}
f < 1

8ε, because of 0≤ fn = f +g+
n −g−

n ,

and eitherg+
n = 0 which impliesf ≥ g−

n , or g+
n > 0 which gives 0 =g−

n ≤ f . But then

1
8
ε <

∫
�

g−
n −

∫
{f>Mε}

g−
n =

∫
�ε

g−
n .

Now setδε ≡ ε/(16 meas(�ε)) and defineCn ≡ {g−
n ≥ δε} ∩ �ε which has non zero

measure:
1
8
ε <

∫
�ε

g−
n =

∫
�ε\Cn

g−
n +

∫
Cn

g−
n ≤ ε

16
+

∫
Cn

g−
n .

Since 0≤ fn = f + g+
n − g−

n andg+
n ≡ 0 onCn, one has 0< δε ≤ g−

n ≤ f ≤ Mε

almost everywhere onCn. SetRε ≡ {(u, v) ∈ IR2 : δε ≤ u ≤ v ≤ Mε} and define

F : Rε → IR
(u, v) 7→ (ϑG(v) + (1− ϑ)G(v − u) − G(v − (1 − ϑ)u)) /u.

SinceG is strictly convex and 0< δε ≤ u ≤ v ≤ Mε, it follows thatF > 0 onRε.
FurthermoreG is continuous and so isF on the compact setRε. Hence there exists a
Cε > 0 such thatF ≥ Cε on Rε. But then∫
�

ϑG(f ) + (1− ϑ)G(fn) − G(ϑf + (1− ϑ)fn)

≥ ∫
Cn

ϑG(f ) + (1− ϑ)G(f + g+
n − g−

n ) − G(ϑf + (1− ϑ)f + (1− ϑ)(g+
n − g−

n ))

=
∫

Cn

F (ϑ, g−
n , f )g−

n ≥ Cε

∫
Cn

g−
n ≥ εCε/16 > 0,

becauseg+
n ≡ 0 onCn. Hence we get the contradiction

L = lim
n→∞

∫
�

G(ϑf + (1− ϑ)fn)

≤ −εCε/16 + lim
n→∞ ϑ

∫
�

G(f ) + lim
n→∞(1 − ϑ)

∫
�

G(fn) = −εCε/16 +L. �

Proof of Corollary 2.Setϑn ≡ 1
2. Then by convexity

lim sup
n→∞

∫
G

(
1
2
f +

1
2
fn

)
≤ 1

2
G(f ) +

1
2

lim
n→∞

∫
G(fn) = L,

while by weak lower semi-continuityL =
∫

G(f ) ≤ lim inf
n→∞

∫
G

(
1
2f + 1

2fn

)
. Hence

L = limn→∞
∫

G( 1
2f + 1

2fn). On the other hand the weakL1-convergence implies that
‖fn‖L1 =

∫
fn −→ ∫

f = ‖f‖L1 asn → ∞. The result follows from Lemma 3. �
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Proof of Theorem 3.Variousλ-independent positive constants are denoted byK. We

note that
E◦◦(nc, pc) ≤ E◦◦(nλ, pλ) ≤ E◦λ(nλ, pλ) ≤ E◦λ(nc, pc),

which gives

E◦◦(nc, pc) ≤ lim sup
λ→0

E◦◦(nλ, pλ) lim inf
λ→0

E◦λ(nλ, pλ)

≤ lim sup
λ→0

E◦λ(nλ, pλ) ≤ lim sup
λ→0

E◦λ(nc, pc) = E◦◦(nc, pc),

and therefore
E◦◦(nc, pc) = lim

λ→0
E◦λ(nλ, pλ),

as well asλ2

2

∫ |∇Vλ|2 ≤ K. As ‖nλ‖L∞ , ‖pλ‖L∞ ≤ K, see Lemma 1, one has by
passing to a subnetnλ → n∗, pλ → p∗ weak* inL∞(�) as well asλVλ → W◦ weakly
in H1(�). It follows for all test functionsϕ ∈ H1(�),

0 = lim
λ→0

λ2
∫

∇Vλ∇ϕ = lim
λ→0

∫
(nλ − pλ − C)ϕ,

which impliesnλ − pλ − C → 0 weakly inH1(�) asλ → 0 and thereforen∗, p∗ ∈
0◦◦. Thanks to weak sequential lower semi-continuity inL2(�) one has

∫
G1 (n∗) ≤

lim inf
λ→0

∫
G1(nλ) ,

∫
G2 (p∗) ≤ lim inf

λ→0

∫
G2(pλ), and therefore

E◦◦(n∗, p∗) ≤ lim sup
λ→0

E◦◦(nλ, pλ) ≤ E◦◦(nc, pc).

But (nc, pc) is the unique minimizer ofE◦◦ in 0◦◦. Hencen∗ = nc, p∗ = pc, and as a
consequence ofE◦◦(n∗, p∗) = E◦◦(nc, pc) = lim

λ→0
E◦λ(nλ, pλ) one gets

lim
λ→0

λ2

2

∫
|∇Vλ|2 = 0,

as well as
∫

G1(nλ) → ∫
G1(nc) ,

∫
G2(pλ) → ∫

G2(pc), asλ → 0. Now it follows
from Corollary 2 that

nλ → nc , pλ → pc strongly inL1(�), asλ → 0,

and thereforenλ → nc, pλ → pc a.e. on� for a subnetλ. Due to convergence almost
everywhere and convergence weak* inL∞(�) we have

nλ → nc , pλ → pc strongly inLr(�) , r ∈ [1, ∞), asλ → 0.

The uniformL∞-estimates onnλ, pλ imply g1(nλ), g2(pλ) ≤ K. Hence by integration
of (4) and

∫
Vλ = 0 we get upper estimates for the Lagrange multipliers:α1λ, a2λ ≤ K.

Due to convergence almost everywhere and due to the continuity ofg1,2 we have

g1(nλ) + g2(pλ) → g1(nc) + g2(pc) ≥ γ a.e. on�, asλ → 0.

Hence there exists aλ∗ ∈ (0, ∞) such that for allλ ∈ (0, λ∗) the estimateg1(nλ) +
g2(pλ) ≥ −K holds a.e. on�. Hence, ifg1 = −∞, then there exists aK > 1 such that
1/K ≤ nλ ≤ K for all λ < λ∗ and an equivalent estimate follows forpλ whenever
limu→0 g2(u) = −∞. To establish lower estimates forα1λ, a2λ, assume by contradiction
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that for a subnet limλ→0 α1λ = −∞. Then on the set{nλ > 0} - whose measure is
at leastN/(P ′ + C) - the equalityVλ = α1λ − g1(nλ) holds which givesVλ → −∞
uniformly on{nλ > 0}. Hence due to

∫
Vλ = 0 we have

∫
{nλ=0} Vλ → ∞ leading to

limλ→0 Vλ = ∞. We have due to (4) the inequalityα2λ ≤ −Vλ + g2(pλ), and therefore
limλ→0 α2λ = −∞ which settles in analogyVλ → +∞ uniformly on {pλ > 0}.
Hence by continuity ofnλ, pλ, Vλ we have{nλ > 0} ∩ {pλ > 0} = ∅, and therefore
nλpλ = 0 for all sufficiently smallλ. Due to convergence almost everywhere it follows
thatncpc = 0, which contradicts Lemma 2. This and an equivalent investigation ofα2λ

settles|α1λ|, |α2λ| ≤ K, and we conclude from (4) that

α1λ − g1(nλ) ≤ Vλ ≤ g2(pλ) − α2λ,

which gives‖Vλ‖L∞ ≤ K for all λ ≤ λ∗ which settles by passing to a subnet

Vλ → V∗ weak* in L∞(�), asλ → 0

as well as
∫

V∗ = 0. Passing to another subnet we have, due to the uniform estimates on
α1λ, a2λ, the existence ofβ1∗, β2∗ ∈ IR such thatα1λ → β1∗ andα2λ → β2∗ asλ → 0.
Due to strong convergence inL1(�) and due to Egorov’s, Theorem there exists for each
δ > 0 an�δ ⊂ � with meas(� \ �δ) ≤ δ such that

g1(nλ) − α1λ → g1(nc) − β1∗ uniformly on�δ, asλ → 0.

Hence

Vλ = g1(nλ) − α1λ → V∗ uniformly on�δ ∩ {n > 0}, asλ → 0,

which settlesV∗ = Vc + β1∗ − β1 almost everywhere on{nc > 0}. A similar argumen-
tation givesV∗ = Vc − β2∗ +β2 almost everywhere on{pc > 0}. As shown in Lemma 2
the functionncpc does not vanish identically on�, which settlesβ1∗ − β1 = −β2∗ +β2,
and thereforeβ2∗ = γ − β1∗. As {nc = 0} ⊂ {pc > 0}, see Lemma 2, we conclude via∫

V∗ =
∫

Vc = 0 that

0 = (β1∗ − β1) meas({nc > 0} + (β2 − β2∗) meas({nc = 0},

and thereforeβ1∗ = β1 andβ2∗ = β2, and thereforeV∗ = Vc on{nc > 0}∪{pc > 0} = �.
Furthermore, as seen above, we have

Vλ → Vc almost everywhere on{nc > 0} ∪ {pc > 0}, asλ → 0.

This settles in connection with weak* convergence inL∞(�),

Vλ → Vc strongly inLr(�) r ∈ [1, ∞), asλ → 0,

and finishes the proof of Theorem 3. �
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