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Abstract: The thermal equilibrium state of a bipolar, isothermic quantum fluid confined
to a bounded domaife c IR? d = 1,2 ord = 3 is entirely described by the particle
densities, p, minimizing the energy

52/ |v\/ﬁ\2+62/ |v\/ﬁ\2+/al(n)+/02(p) + %2 [Ivvin-p-cit

where Gy, are strictly convex real valued functions \°AV = n — p — C, with
J(n—p—C) = [V =0.Itis shown that this variational problem has a unique
minimizer in

{(n,p) e LX) x LYQ) : n,p > 0, \/ﬁ,\/ﬁeHl(Q),/n:N,/p:P}

and some regularity results are proven. The semi-classicaldimit O is carried out
recovering the minimizer of the limiting functional. The subsequent zero space charge
limit A — O leads to extensions of the classical boundary conditions. Due to the lack of
regularity the asymptotics — 0 can not be settled on Sobolev embedding arguments.
The limit is carried out by means of a compactness-by-convexity principle.

1. Introduction

Quantum hydrodynamic models (QHDSs) give a fairly accurate account of the macro-
scopic behavior of ultra small semiconductor devices in terms of only macroscopic
guantities such as particle densities, current densities and electric fields.

Within semiconductor device modeling QHDs are located between microscopic
guantum models (Scbdinger-Poisson systems [16, 15], Bloch’s equation [3, 13] or
kinetic-type quantum transport equations [14]) and macroscopic semi-classical hydro-
dynamic models [14]. Presently the interplay between these different approaches is a
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field of intensive research. Actual research deal with the derivation of QHDs from mi-
croscopic quantum models (essentially based on Madelung’s transformation, see [6] for
a review) and investigations of the semi-classical limit> 0.

All quantum models of semiconductor devices investigated so faumimolar,
i.e. these models involvenly oneparticle type, namely electrons. Hence a consistency
problem arises. Whenever quantum effects are negligible, solutions of QHDs should
recover the qualitative behavior of solutions of semi-classical models. However most
of the established semi-classical approaches involve in a cruciaiwesparticle types,
namely electrons and holes. Therefore the analysis of unipolar QHDs has to be extended
to bipolar QHDs.

Unipolar QHDs reduce in thermal equilibrium to generic unipolar constitutive laws
[2]. The (scaled) bipolar extension of the constitutive laws reads

A
DOV + TV Ry — e2nv 2V =
n

—pVV +ToV Ry(p) — fﬁszM =0,
vP )

~MAV=n—-p-C,

/n:N, /p:P, /V:O

In (1) the functionsn,p, V' are unknown, where. = n(x) > 0 is the particle
density of electrons (negatively charged) in the conduction bamdp(x) > 0 is the
particle density of holes (positively charged) in the valence b&hd; V(z) is the
(negative) electrostatic potential amdanges ovef2, a bounded domain if¢, where
d = 1,2 ord = 3. ¢ is the scaled Planck’s constant afis the ratio of the effective
masses of electrons and holes. The device dependent paraffietBrgelectron and
hole reference temperature, respectively) and the minimal Debye |laragthassumed
to be constantR; » : [0, co) — [0, co) are the respective pressure functions. (Typically,
the pressure function is continuously differentiable and increasirigs) the doping
profile. It is assumed that the impurity atoms are fully ionized,Gle= Np — Ny,
whereNp = Np(z), Na = Na(x) > 0 are the space densities of donator and acceptor
atoms, respectivelyV is the total number of electrons in the conductivity band &nd
is the total number of holes in the valence band.P are related to the densities of
donator and acceptor atoms via

N:ni+/ND,P:ni+/NA,

wheren, > 0 is an intrinsic constant taking into account that the number of electrons
in the conduction band (as well as the number of holes in the valence band) is not only
determined by the doping but also by intrinsic thermal excitation processes. The relation
betweenN, P andC implies total charge neutrality. Hence Poisson’s equation has (at
least forn — p — C € L?()) exactly one solutioV satisfying [ V' = 0.

Since our main conclusions will not depend on the particular values of the positive
parameterd, T, £ we simply set

Ti=Tp=¢=1
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Equations (1) provide only a hecessary condition for the thermal equilibrium state.
Equations (1) do not take into account that the thermal equilibrium solution minimizes
the system’s total energi.,. If (1) has more than one solution — this happens in some
semi-classical settings [18] — the physically relevant solution of (1) is distinguished as
a minimizer of€. . One is therefore compelled to minimize

eatim= e [ vyl +et [1vyap+ [+ [ G

+7/\VV[V—7T—C]|

in
fe= {(VJT) © Ll(Q) x Ll(Q) tv,m > 0,V VT e HI(Q)7/V:Na/7T:P} )
whereG , is a primitive ofgy »(t) = de;,tz(t) and

—AZAV[V—W—C]:y—w—C,/V[u—w—C]ZO.

A straightforwardformal computation shows that the Euler-Lagrange equations of the
functional&,, are

Ay =/n(V + gi(n) — az)
A5 = JB(-V + g2(p) - 2)
—NAV=n—p-C 2)

/n:N, /pZP, /V=O,

whereas, a; € R are the Lagrange-multipliers associated with the constrgimts-
N, [ w = P. If the minimizer @, p) of £. in T'. satisfies (2andn, p > 0 one gets (1)
from (2) by simple algebraic manipulations and taking gradients.

The formulation of (1) as a variational problem provides a natural justification of
the normalizing conditiorf' V' = 0. For fixed ¢, 7) € I, the potentialV'[v — = — C]
minimizes the electric field energy [9]

2
FulW]= %/\VW\Z—/(V—W—C)W,
Q Q

where ranges in a sefy, such that infycr,, Fo[W] = Fo[VIy — 7 — C]]. To
make infyycr,,, Fei[W] as small as possible one has to choBgeas large as possible:

FWE{WeHl(Q):/W=O}.

Due to the assumed total charge neutrafity is well defined onl'y, and attains its
unique minimizer inCy,. The normalizing conditiorf, W = 0 eliminates physically
irrelevant additive constants. It is readily seen gt — m — C satisfies homogeneous
Neumann conditions.
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Remark 1.a) Replacing formally the termgn by W1, /p by W2, n by |W1|2 andp by
|W,|2 Egs. (2) can be written as an scaled, stationary, nonlineai8icigrer-Poisson
system.

762A\IJ1 +VV +V 9y (|\IJ1|2) =¥

—SZA‘PZ — VW, +; g (|\I/2|2) = oWy
—N2AV = W2 — |W,2 - C

/|\I/1|2=N, /|\I/2|2=P7 /V=0.

Inthis formulationxy, ap are energy eigenvalues. The corresponding variational problem
is to minimize the functional

EX(We, W) = 62/|V‘I’1|2+52/|V‘~1’2|2+/G1(|‘1"1|2)+/G2(|‘1’2\2

)\2
v 5 [ IOV - e - )
in the set
re= {(wl, W) € Y@ @) x HY@ 0): [ |wp =N, [ waf = P} .

It is not very difficult to check that the minimizer &, equals up to a physically
irrelevant constant phase factqy#, ,/p).

b) The normalizing conditiorf V' = 0 implies thatl” satisfies homogeneous Neumann
boundary conditions. This means that no external voltage is present. In voltage-driven
applications however the thermal equilibrium state is influenced by external electric
potentials. In this case Dirichlet (or mixed Dirichlet-Neumann) boundary dat& for

are prescribed. In [17] the analysis of a unipolar QHD with these boundary data is
carried out. The extension to bipolar models of the investigations in [17] as well as the
modifications of the results of Subsect. 2.2 and 2.3 are rather straightforward and can
be left to the reader. Essential for the treatment of the electric energy are the estimates

VI Lo VI < K f]] 22,

whereAV[f] = f. Such estimates hold for reasonable Dirichlet (or mixed Dirichlet-
Neumann) boundary data fof.

Equations (1) involve the dimensionless parameteps Due to the presence of
guantum effects is of not negligible order of magnitude for ultra small semiconductor
devices. For "standard" devices however quantum effects play no major role. In these
settings one has

2N«

and one is therefore compelled to study the consecutive limitsO and\ — 0.

The smallness of? is a high temperature effect as well as due to the smallness of
Planck’s constant. The terms involvia§represent corrections to an otherwise classical
model. Carrying out the limit — 0 means to go back from quantum mechanics to
classical physics.
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Itis the aim of this paper to analyze the variational problem of minimigingn I,
to give a rigorous derivation of the associated Euler-Lagrange equations (2), to prove
that the minimizer o, in I'. solves (1), to carry out the semi-classical limit> 0
and to justify the employment of semi-classical boundary conditions whenever quantum
effects are negligible and the scaled minimal Debye length is small.

All subsequentinvestigations are based on (mild) assumptions given at the beginning
of Sect. 2. Subsections 2.1, 2.2, 2.3 are concerned with the statements of the results.
The proofs are given in Subsects. 3.1, 3.2, 3.3. The core of the analysis of the semi-
classical limite — O (subsection 3.2) are properties of the functiofigl obtained
from &, by setting formallye = 0. This functional,, possesses a unique minimizer
in a setl’, with T’y D I',,I', # I'.. Although the comparison functions of, are
less regular than those &f, the minimizer of€, ) in ', is actually an element df..

This regularity result allows in connection withindependent estimates to pass to the
limit ¢ — 0 strongly in H%(R2). Subsection 3.3 is concerned with the justification of
semi-classical boundary conditions for QHDs. The minimize€gf in T', does not
recover the usual semi-classical boundary conditions [12, 14]. This is not to be expected
because the semi-classical boundary conditions are derived from the zero space charge
assumptiom = 0. Setting\ = 0 in &, gives a functionak,, to be minimized in a
setloo C o, oo # Is. Eoo POSSESSES A UNIqUE Minimizer.(p.) in ', satisfying

the semi-classical boundary conditions. However the investigation-ef 0 requires

some effort. The main difficulty to pass to the limit— O is the lack of regularity of

(ne, pe). In fact the limiting densities., p. are in generahot continuous while for all

A > 0 the minimizers of,, belong toC(2). Hence compactness arguments based on
embeddings off1(2) in someLP-space (as used to perform the semi-classical limit)
are not applicable. However a compactness-by-convexity principle (Lemma 3) allows
to carry out the limit\ — 0.

2. Statement of the Results

The subsequent investigations are based on the following assumptions:

a) Q C IR*,d=1,2 ord = 3 is a bounded domain wiii2 € Co.
b) There exists d > 0 only depending o® such that

IVIAll= < K|l z2-
c) C € L™(Q).

d)N—P:/C,N>/C+,P>/c—.

e) g1.2 € C(0,00) N L} ([0, 00)) is strictly increasing,

loc

(A)

lim gl"z(t) =oo and g12 = lim gl,Z(t) S [—OO, OO)
t—oo —_— t—0+

Remark 2.a) Assumptior(A)b) is essentially a requirement on the smoothnegXbf
For instance it is well known, see e.g. [5], that #s2 € C*° the estimate

VI e < K| £l
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holds. This estimate implies in dimensiods< 3 assumption b), because due to
0Q € C%! the embeddindgZ?(2) — Cz(R) is continuous [1].

b) The assumptiongA)e) are satisfied for functiong, » deduced from the most fre-
quently employed pressure functions of the faRin(t) = t¢, a € [1, 00).

2.1. Existence and uniqueness of a minimiZére main result of this subsection is

Theorem 1. AssuméA). Thenforallk, A > Othe functionak., has aunique minimizer
(n,p) in T« which solves the associated Euler-Lagrange equations (2) as well as (1).
Furthermore,

— n,p, V satisfy homogeneous Neumann boundary conditions,

forall t € (0,1), the functions/n, \/p, n, p, V belong taC5 ()N C ()N HY(),
n, p are strictly positive irR2, i.e.n(z), p(x) > 0 for all = e Q,

— if g1 = —o0, then there exists a constafit > 1 such thatl/K <n < K.

— if i = —o0o, then there exists a constafit > 1 suchthatl/K < p < K.

2.2. The semi-classical limit — 0. KeepingA > 0 fixed and givere € (0, c0) let
(ne, pe) be the unique minimizer . in ' and letV. = V[n. — p. — C]. By setting
¢ = 0 and formal manipulations Egs. (1) become

noVVs + VRi(n,) =0,
—po V'V, + VRy(ps) =0,
— XAV, =ne — po — ) 3)

/no N, /pO = P, /V
the energy functional. , becomes
2
e = [ G+ [Gam+ G [19VIy—n - It

i.e.\/v, /T € HY(R) is not required anymore arft}, should be minimized in

FO:{(y,w)eLl(Q)xLl(Q): v,m>0, /V:N, /w:P}.

The limite = 0 of the Euler-Lagrange equations (2) is less straightforward. In contrast
to the quantum case the appearance of “vacuum-sets” (subs@tsvbkren, or p,
vanishes) is possible. Hence by a simple canceling the differential operators in (2) some
information is lost on vacuum-sets. A rigorous analysis shows that the Euler-Lagrange
equations become in the limit= 0 variationalinequalities

0 = Vo +g1(no) — ao if n, >0,
0 <V, +g1(no) — a1 if no =0,
0 = =V, + ga(po) — 2o if po >0,
0 -V, + o) — Qi2o if p, =0,
> 92(p ) 2 p (4)
—N2AV, = po — C,
/no:N,/po=P /VO=O,
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whereay,, az, € R. Some more information about,, p, is available by introducing
the generalized inversg » of g1 »:

his: IR — [0, 00)
0 if t S 91,2
t — o

g1a()if t > g12.

Lemma 1. AssuméA) and let\ > 0. Then the functionaf, has a unique minimizer
(no, po) in T, solving the associated variational inequalities (4). Furthermore,

— forall ¢t € (0, 1), the electric potential’, belongs ton(;Z(Q) N Cp(Q) N HY(RQ),
— No,Po € Cp(R), no < sup, C + P/meas?), p, < —infg C' + N/meas{?),

— forall t € (0,1), g1(no) € CHE({no > 0}) N HY({no > 0}),

forall t € (0,1), g2(po) € Cygo({po > O} N H({po > O}),

— if g1 = —o0, then there exists & > 1such thatl/K <n, < K,

— if ; = —o0, then there exists & > 1such thatl/K < p, < K,

—no = ha(a — Vo), po = ha (a2 +Vs) and the electric potential, solves the
semi-linear elliptic equation

—N2AV, = hy (10 — Vo) — ho (2o + Vo) = C /vozo.

The following convergence result ofi{, p., V.) to (n.,p., Vo) ase — 0 requires

V1o, \/Ps € HY(R). Sufficient conditions fok/ns, \/ps € H*(2) can be most easily
formulated in terms ok » andgs » [19]:

Corollary 1. AssuméA) and letA > 0. Then,/n., \/p, belong toH(Q) if g hj, =
1, 2 satisfy one of the following conditions:

a) \/h; € CEN(R).
b) g; = —oo andh; € CPo(IR).

loc

c) gj € C},.(0,00), gj = =0 andd-‘jl—jt(t) > 0fort € (0, 00).
Remark 3.In applicationsys »(¢) usually equals to log) for smallt so b) applies.

Theorem 2. AssumgA) and /1o, /po € H*(S2). Then

— V. — V, strongly in () and strongly inL>°(Q) ase — 0,
— ne — no andp. — p, stronglyinL™(2), r € [1, oo) and weak* inL>°(2) ase — 0,
— V/ne — \/no and/p. — \/p, strongly inH(Q) ase — 0,

— if g1 = —oc then there exists an* > 0 and aK > 1 which is independent of
e € (0,¢*) such thatl/K < n.,n, < K andn. — n, strongly in () as
e —0,

— if g = —oo then there exists an* > 0 and a K > 1 which is independent of

€ E(O,s*) suchthatl/K < p.,p, < K andp. — p, strongly inH(Q2) ase — 0.

2.3. The limitA — 0. Throughout this section letif, p)) be the unique minimizer of
Eox In T, and letVy, = V[ny — py — C]. Equations (3) are known as semi-classical
hydrodynamic semiconductor device model in thermal equilibrium. For this model the
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definition of the built-in potential is based on the zero space charge assumption which
means thal is set to zero in Poisson’s equation [12].
To analyze the limit\ — 0 set formally\ = 0 in (3):

n.VVe + VRy(n.) =0,
—pVVe+VRy(pe) =0,
O:nc_pc_cv (5)

/nc:M /pc:P, /vczo

The functionak,, becomes formally

£l = [ Ga)+ [ Gatr)
to be minimized in
FOO:{(V,ﬂ)eLl(Q)xLl(Q):1/,7r20, /V:N, /W:P, y—w—c:o}.
The associated Euler-Lagrange equations are

v = gilne) + g2(pe) if nepe >0 (6)
0 < g]_(TLC) + QZ(Pc) if NePe = 0,

wherey € R.
The solvability of this minimization problem is the content of

Lemma 2. AssumdA). Thené,, has a unique minimizdn., p.) in 'y, and

= N, Pe € LOO(Q)1

N, pe Satisfy (6),

meas{n. = 0} N {p. =0}) =0,

— n.p. does not vanish identically a@, i.e. [ n.p. > 0,

- {n.=0} ={p. =C~}and{p. =0} = {n. = C*},

— if g1 = —oo then there exists & > 1such thatl/K < n. < K,
— if g1 = —oo then there exists & > 1suchthatl/K < p. < K,

— g1(nc), g2(pc) € L=(R),
— defining

_ 1 _
p1= measg) (’Y meas{n. = 0}) + /{nc>0} g1(ne) — /{nc:o} gz(?%)) ,

B2 = v — f31, and setting

C

{51 — gi(nc)ifn, >0
g2(pc) — B2 ifn. =0

the quintuple31, B2, ne, pe, Ve) is a solution of (5).
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The main problemwhen passing to the lithit- 0 is that the limit solutioni.., p.) is
less regular than the minimizers,, py € H*(2). Hence there are no uniforf*(Q)-
estimates on/ny, /px. Available estimates conceriGi(n,) and [ Ga(py) so the
subsequent Lemma and its Corollary are fundamental.

Lemma 3. (Compactness-by-Convexity) l@tc R¢, d € N, be a bounded domain
and letG : [0, c0) — R be strictly convex and continuous. Ferc N let f,,, f € LY(R)
with f,,, f > 0a.e. onQ2. Assume thali f,.||.: — ||f||z: @asn — oo and suppose that
there exists & < (0, 1) such that

[ewn=im [a)=im_[cor+a-nr)=rer

Thenf, — f strongly inL}(2) asn — oo.

Corollary 2. LetQ andG asinLemma3.Fon € Nlet f,, f € LY(Q)with f,,, f >0
a.e. onQ and assume thaf, — f weakly inL(Q) as well as

[ow=m [ct)=1<x.

asn — oo. Thenf,, — f strongly inL}(Q) asn — oc.

Remark 4.a) In Lemma 3 it is assumed thétis constant. By obvious modifications
this assumption can be a bit weakened to require that there exists a sequgneev(
with 9,, € (0,1) and lim,_,, ¥, = ¢ € (0, 1) such that

[ow=m_[ct)=m_[Gw.f+@a-vam)=Ler

Setting® = inf {¥,, : n € N}, © = sup{¥,, : n € N}, bothin Lemma 3 and Corollary
2 the assumptiot’ € C([0, o0)), G strictly convex, can be replaced by

Vk>1 V9€[0,0] : Jc>0 :
Vu,ve[%,k], u<v : YGW)+ (L —-I9NGw —u)— Gv—-(1—Pu) > C u.

b) There are many sufficient conditions known which allow to pass from weak
convergence (or convergence in the sense of distributions) to sfrbegnvergence,

see e.g. Brzis [4] and the references given there. In Lemma 3 however no convergence
of the sequencégf,,) is assumed.

The main result of this subsection is
Theorem 3. AssumédA). Then

— Ny — Ne, Px — Pe, Va — Ve strongly in L™ (), r € [1, c0) and weak* inL>°(2)

as\ — 0,

HV)\HHl = O(l//\) as\ — 0,

— if g1 = —oo then there exists &* > 0 and a constanf{ > 1 which is independent
of A € (0, A*) such thatl/ K < ny,n. < K,

— if go = —oo then there exists &* > 0 and a constanf{ > 1 which is independent
of A € (0, \*) such thatl/K < py,p. < K.
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Remark 5.a) Convergence in thB>(£2)-norm can in general not be expected because
nx, Px, Va € C(R) for all A > 0 while for not continuou§’ one has:., p., V.. ¢ C(2).
b) If g1 2(t) = log(t), see [12], then the functions., p., V. are given by

ne=(C/2)+\/(C/2p + o2

pe=—(C/2)+\/(C/2P + 42

V. =5 log ((0/2)+\/(C/2)—2+52> _ @)
= log <—(C/2) + \/(0/2)72“52) 5,

where §? = ¢%*% s uniquely determined b)/ ((0/2) +,/(C/2) +52> =N, or

equivalently by/ (—(C/Z) +4/(C/2)72 + 52) = P. Equations (7) recover the classical

expressions for the thermal equilibrium distributions ofmf p., V.., see [12]. The
parametes? (as well as3y, 3,) is uniquely determined by andP.

3. Proofs

3.1. Proofs of Subsection 2.1.

Proof of Theorem IT'he proof extends a similar argumentation of [17] to bipolar models.
Some modifications are however necessary to handle the opétgfbwhose corre-
sponding operator in [17] is positive. For the sake of simplicity assumethay, = g.
Step 1.Fori € (1,00],t € [0,00) let g;(t) = min{it,max{—i, g(t)}} and G;(t) =

flf gi(0) do. We shall minimize

Ef(r,s)= 82/|V7‘|2+52/|V5|2+/G,- ((r")?) +/Gi ((s?)

+ %2 / IVVIE? - (572 - €

= {(7‘, s) € HY(Q) x HY(Q) : / (r*)? =N, / (s")? = P} ,

wherer™, s* are the positive parts of s. The aim of the subsequent analysis is to carry
out the limiti — oo. Variousi-independent positive constants are denote&by

Lemma 4. AssumdA). Then, for alli € (1, oo], the functionalE’} possesses a unique
minimizer(R;, S;) in T andR;, S; > 0.

Proof of Lemma 4The existence of a minimizef;, S;) € I'* follows from standard
theory, see e.g. [7, 11]. One easily checks tht,5]) € T'* (cutting mapsH(2)
into HX(R), see e.g. [10]) ands} (R, S;) < E;(R;,S;), where equality holds iff

R; = S; = 0. ThereforeR;, S; > 0. Assume thatR;, S;) and (&, S*) are distinct
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non-negative minimizers df; in I'*. Then a straightforward calculation shows that for
all ¥ € (0,1) the pair Ry, Sy),

Ry = \/I(R:)?+ (1 - 9)(RY? > 0,
Sg = /0(S;)2+ (1 —9)(SH2 >0

belongs ta™ with E (Ry, Sy) < 9E; (R;, S;) + (1 — ¥)E; (R, S*) which contradicts
the assumed minimality o} (R;, S;) and Ef (R, SY) in T, O

Step 2.Similar to [17] it can be easily seen that for alk (1, oo) (the casé = oo has to
be excluded here because of the possible lack of differentiabilify; @) at¢ = 0) the
pair (R;, S;) satisfies the respective Euler-Lagrange equations

e?AR; = R; (Vi+ gi(R?) — 1),

e2AS; = S; (=Vi+ gi(S?) — cvi2)

LNAV, = R2-S2-C, ®

/szN,/szP,/v;:

where it is taken into account th&;, S; > 0. The space of test functions of (8) is
H(R). HenceR;, S; satisfy homogeneous Neumann boundary conditions.

Step 3.The limiti — oo is prepared by deriving-independent estimates dt, .S;.
Here some modifications of the proof of [17] are necessary. Due to the fadtthiat
uniformly (with respect ta) bounded from below anfiR;|| 2, ||.S;||z2 < K, one gets
|1 R: |l 2, ||S:i ]| 2 < K which gives||R;|| s, [|Si]l s < K. Due to assumptiofA)b),c)

it follows ||V;|| .~ < K. Combining these estimates we ?étR,z Vi ,/Ri Vil < K
and we can proceed along the lines of Sect. 3.3 of [17] to establish the estimates
/ngi (R?) ,/Sizgi (5?7) < K and|ava|, |aia < K.

Lemma 5. AssumdA). Then0 < R;, S; < K.
[R

Proof of Lemma 5Givena > 1 we use’T as test function in the first equation
T

of (8). This gives

/|V[R —a]* |2 /[Ri_ar (Vi+g¢ (Rf)—ail):o

such that previous estimates imply

(K —gi ( /[R —a]* >5a/‘V[RR2 >0,

and due to lim_. o, g;(t) = co we haveR; < K. S; < K follows in analogy. O

Step 4.The estimates derived so far allow to choose a sequeRgce|);c v such that
R; — R, S; — S weakly in () and weak* inL>(£2) asi — oc. It remains to show
that the pair R, S) is actually the minimizer of£?_ in I'* solving the corresponding
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Euler-Lagrange equations. It can be seen as in [17] fhaf] is the minimizer ofE_ in

I'" . To pass to the limit in the Euler-Lagrange equations (8) we distinguish between two
cases. lfg = —oc it follows from the maximum principle and previous estimates that
K < R;, S;, see [17] for the details. I € IR, then the map — /tg(t) is continuous

on [0, o0). In both cases we can pass to the lifit- oo in the weak formulation of

(8) with arbitrary test functions ifi/*(R2). This settles the boundary conditions and the
limiting equations. The regularity aR, S follows from the fact that\ R, AS are both

in L>°(2). If ¢ = —oo then the lower estimate faR, S follows from R;, S; > K, if

g € IR, the strict positivity ofR, S follows from Harnack’s inequality.

Identifying n with R? andp with S? settles the proof of Theorem 1. O

3.2. Proofs of Subsection 2.2.

Proof of Lemma 1Lemma 1 modifies a result in [18] where mixed Dirichlet-Neumann
boundary conditions are concerned. For the sake of a smoother presentation assume
g9 =91= g2

Step 1.Fori € (1, 0], t € [0, 00) let

t— (/i) +g(1/i),0 < t < (/i)

gi(t) = g(t) (@A) <t<i,

and setG;(t) = flt gi(0) do. g; is strictly monotone increasing. Let

h; 1 IR — [0, 00)
. 0 ift<g(1/d)—(1/d)
- {g,»l(t) if ¢ > g(1/i) — (/) ~

It is readily seen that foi € (1, c0) the functionG; is strictly convex and belongs to
C[0, 00). Furthermore?;(t) = O(t?) ast — oo. We shall minimize the functional

2
Earlv,m) E/Gl(V)+/G2(7T)+%/|VV[V—7r—C]|2
in the set
FO:{(u,w)eLl(Q)xLl(Q):u,WEO,/y:N,/ﬂ:P},

wherethe lastterm @f! , is setto o whenever the problemA\?AV = v—n—C, [V =

0 admits no solution iEH(R2). (v, 7 belong only toL(<2).) It follows from standard
theory that€?, possesses for alle (1, c0) a unique minimizer:;, p;) € I's. The case

1 = oo has to be excluded here because of the possible lack of coercivity of the functional
& in LY(RQ) (or any otherL"(R2) space as well). Furthermore the standard theory also
provides that«;, p;) solves the corresponding variational inequalities



Thermal Equilibrium Solution of Generic Bipolar Quantum Hydrodynamic Model 81

0 = Vi+gi(n;) —aan if n; >0,
0 < Vi+gi(ny) — asn if n; =0,
0 = -Vi+gip:) — iz if p; >0,
0 < —Vi+gips) — oy if p; =0,
—NAV; = n; —pi — C,
/ni:N,/pi:P, /Vi:Q

This system can be written as a single semi-linear equation in terms of the electrostatic
potentialV;:

XAV, = hy (i — Vi) — hi (@ + V) — C /vg:o,

where

ni =hi (i1 —Vi) , pi=hi(a+Vi). (10)
It follows by the strict monotonicity of; via the maximum principle that; € L°°(2)
with V; <V <V, whereV;, V; satisfy the inequalities

hi(OLil — E) — hi(aiz +E) S SUpC, hi(ail — Vi) — hi(aiz +Vz) Z |gf C. (11)
Q

Furthermore, the normalizing conditioffsh; (i1 — V;) = N and [ h; (2 + Vi) = P
imply

{ hi(air — V;) < N' = N/measQ) < hi(an — Vi),
12)

hi(aiz + Vi) < P’ = P/measQ) < hi(wiz + V;).

Step 2.We carry out the limiti — oo by derivingi-independent estimates. Various
i-independent positive constants are denote&bit follows from (10),(11),

(12) and the non negativity of;, p; thatn; < sup, C+P’, p; < —info C+N’. Hence
||[AV;]| L < K which gives by(A)b) the estimatéV;|| .~ < K. Itfollows from (9) that
1, o2 < K. To establish lower estimates far; assume that limint., ., a;1 = —co.
Passing if necessary to a subsequence we have due to (12),

N’ < h(ai + K).

Choose: large enough such that;; + K < g¢;(N’) = g(N’). Then, ifa;1 + K >
g(1/%) — (1/4) the contradiction

N’ < hi(in + K) = g; Man+ K) =g Han + K), ie.g(N') < aip + K

follows. If howevera;; + K < g(1/i) — (1/4), thenN’ < h;(a;1 + K) = 0, which is

a contradiction. This proves that liminf., a;1 € IR and a similar argumentation for

2 settles|al-1|, |Oél'2| < K.

Step 3:The estimates of Step 2 ensure that - possibly after passing to a subsequence -
iMoo 51 = 1o, iMoo aiip = oo @s well as

n; —MnNo , Di— Po Weak*inL>(Q), asi— oco.
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HenceV; — V, weak* in L>(Q) and strongly inH(R), asi — oo, whereV, =
VIno — po — C1. Passing if necessary to a subsequence gives

V; — V, almost everywhere i, asi — oo.

We proceed by a case distinction.

a) If g = —oo then by means aj;(n;) > a;1 — V; > — K, the estimatey; > K follows.
Henceg;(n;) = g(n;) as well asn; = h(a;r — V;) for all sufficiently largei and by
continuity of h we haven; — n, = h(a, — V,) almost everywhere i® asi — oo
which gives via||n;|| L~ < K,

n; — N = h(ag, — V) strongly inL™(2) , r € [1,00), asi — oo.

b) If g € IR thenh; — h uniformly on compact subsets @t asi — oo which gives
via ||aj1 — V;||r~ < K and convergence almost everywherewf — V;,

n; — No = h(a, — Vo) strongly InL"(R2) , » € [1,00), asi — oc.
In analogy we get in both cases
Di — Po = h(ag, +V5) strongly inL"(Q2) , r € [1,00), asi — oo.

Step 4.It remains to prove thati,, p,) is the minimizer of, in I',. (By strict convexity
of &, there is at most one minimizer.) As shown in Step 3 the triple k., V5 ) satisfies
the variational inequalities (4). Now it is an easy exercise to verify foraft) € T,

Eox(no + IV —no), po + V(1 — po)) — Eor(no, po) >

im ; 20

The convexity ofE,, implies that (., p,) is @ minimizer of€, in I',. The regularity
results stated in Lemma 1 follow from standard theory [8]. O

Proof of Theorem 2The proof is divided into two steps. In the first step strong con-
vergence ofn.,p. in HY(Q) ase — 0 is proven. Then uniforni.>°-estimates are

established.
Step 1.Variouse-independent positive constants are denoted&byVe note that

Ear(nesp) = Eurlrnep) =22 [ [Vyi+22 [ 19y 2 0
forall e > 0. Due to,/n., /po € H(Q), foralle > 0,
Er(1e,p) < Erlnerpe) =2 [ (VYT +22 [ [Vl + Eunis o)
as well asf,x (1o, po) < Eon(ne, p.). Combining these estimates we get foralt 0,
[1vvies [1vvme< [19vas [9me

and due tol| /7|2 = N, | /Fzlzz = P this implies||y/acll e, [|yFella: < K.
Passing to a subnet one has

Ve — /e 5 /De — /D= weakly in HY(Q), ase — 0.
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The compactness of the embeddifig(Q) — L8(Q) gives
ne — Ny , pe — po Strongly inL3(Q), ase — 0.
This convergence implies b{b) that
V. — V, strongly inL>(Q), HY(Q), ase — 0,
whereV, = V[n, — p. — C]. To proven, = n., p« = po hote that

go)\(noapo) S lim "31: go)\(navps) S lim ”(;]f 5a>\(na,Pa) S lim Supga)\(nsaps)

e—0

<lim igf Ecr(no, Po) = Eor(no, Po)-

Hencef, (10, po) = Iim0 Ex(ne, p.). Onthe other hand by the weakly sequenti&()-
continuity of the functionat, ,,

go)\(n*vp*) S IlT "{)ﬁ go)\(nsapa) S limoge)\(nmpe) = go)\(novpo)v

SO (4, px) IS Minimizer ofE&, in T',. (Obviously, (., p.) € T's.) By uniqueness of the
minimizer of &, in T, one has, = n,, px = po-

Step 2.As shown in Step 1 we hayg/. ||~ < K.We observe by strong convergence
of \/nz to \/no in LY(Q) and [ \/n, > 0 that there exists asi* > 0 such that for all

e € (0,e*) the estimatg \/n. > K holds. Foe < £* setm. = N/ [ /n.. We observe
thatm. < K for all ¢ < &*. This allows us to proceed as in the proof of Lemma 4 in
[17] to get the estimatgf n.gi(n.)| < K foralle < e*. Using,/n. as test function in
the first equation of (2) we get

alEN:52/|an5|2+/n5v5+/n591(n5)7

and therefore by previous estimates.| < K for all ¢ < £*. Using the maximum
principle and the monotonicity af; in the first equation of (2) it follows that; =

sup, n. > O satisfies the inequality;(7;) < a1 — V., wherelV, = infg V.. Hence

ne < hi(aa: — Vo) < K forall e < ¢*, becausd| V.1~ < K. This settles by non-
negativity||n.|| L~ < K. If g1 = —oco we can again apply the maximum principle in the
first equation of (2) to get fon. = infgn. > 0 in analogy for alk < ¢* the estimate

ne > hi(ar. — V2) > K, whereV. = sup, V.. The L°°-estimates concerning, p,

follow in analogy. Finally the regularity results are consequences of standard theory [8].
O

3.3. Proofs of Subsection 2.3.

Proof of Lemma 2:We rewrite the minimization problem as follows. The functional

E(p) = / Gi(C* +p) + / GaC™ +p)

is to be minimized in

FE{peLl(Q):pZO,/p=N—/C+}.



84 A. Unterreiter

Due to(A)d) we have[ C* < N and thereford™ 7 {0}. As a strictly convex functional
£ possesses at most one minimizer. We introduce the function

g:Q x[0,00) = [—00, +0)
(,8) = g1(C*(x) +5) + g2(C~ () + 5).

Itis readily seen that for fixed € Q the functiong(z, .) is strictly monotone increasing
and continuous. Furthermore, for fixede Qwe have lim_ -, g(z, s) = co. This allows
to define for fixedr € Q the function

r(z,.): IR — [0, +00)
{ 0 iy <o)

lg(z, N1 () if v > g(z,0)

For fixedx € Q the functionr(z,.) is continuous and monotone increasing. Given
~ € IR we note that(x,y) € L>°(2) as well as

lim supr(z,7) =0 , lim inf r(z,v) = oo,
Y——00 peq y—00 zEQ

which gives

lim /r(x,v)zo , lim /7“(957’7):00-
y——00 Yoo

Furthermore the map — [ r(z,~) is continuous. Hence there exists'ac IR such
that[ r(z,7*) = N— [ C*.Setr*(z) = r(z,v*) andn, = g1(C*+r*), p. = g2(C~ +1*).
Then

gi(CT +77) + go(C™ +77) > 77,

where equality holds whenevet > 0. Sincer* does not vanish identically we have
by strict monotonicity ofy the estimate/* > ¢1(0) + g2(0), which proves meaéf. =
0} N {p. = 0}) = 0. If the functionn.p. vanishes identically o then byn,. = C* +r*
andp. = C~ +r* the identity C* + r*)(C~ + r*) = 0 will follow which gives due to
C*C~ =0 the contradictiom*(|C| + r*) = 0, i.e.r* = 0. We have

G +9(p— 1) —EG) _
7 >

for all p € T'. Hencer* is a minimizer of€ in I'. The remaining assertions of Lemma 2

follow by straightforward verifications. [

lim inf
9I—0

Proof of Lemma 3If ||f||zr =0 = lim || f.| 21, thenf, — O = f strongly in L}(Q)
and there is nothing to do. |lff || .. = K > 0, suppose by contradiction that there exists
ane € (0,8K) such thal| f,, — f||z+ > e for a subsequence Setg,, = f, — f. Then
fn—f =g —g,andf, +g, = f+g;. By non-negativity off,,, fand [ f, — [ f
asn — oo one gets lim [gr = lim [g,. On the other hand < [ |f, — f| =
Jagn+ [g, foralln e N. Hencenﬂryofg; > 5 and therefore[ g, > £ for a

subsequence. ChooseM. > O suchthat | f < %cand putQ. = {f < M.}
{r>Mc:}
which has nonzero measure:
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0<K775</f— [ =]

{f>M.} Q.

Ontheotherhand®& [ g, < [ f< 3c becauseof& f, = f+g:—g,,
{f>M.:} {f>M.}
and eithery; = 0 which impliesf > g.., org;, > 0 which gives 0 =g, < f. Butthen

O
86 In 9n = 9n -

Q {f>ME} QE

Now setd, = 5/(16 measQ.)) and define”,, = {g,, > 6.} N Q. which has non zero

measure:

Q\Ch
Since 0< f, = f+g; — g, andg; =00onC,,onehas < §. < g, < f < M.
almost everywhere o@,,. SetR. = {(u,v) € R?: 6. < u < v < M.} and define
F: R. —»R
(u,v) = (WGW) + (1 — NG — u) — Glv — (1 — Nu)) /u.

Since( is strictly convex and &< 6. < u < v < M., it follows that F' > 0 on R..
Furthermore’z is continuous and so I8 on the compact se®.. Hence there exists a
C. > Osuchthatt’ > C. onR..Butthen

S{ﬂG(f) +(1-9)G(fn) - GOf + (A= 9)fn)

> [9G(H+A=NG(f +g5 — g7) — GWOf+ (L =) f + (1= 99, — 92))

n

= [ FW,g5,f)gr > C- [ g7 >eC./16> 0,

n Cn

becausg,, = 0 onC,,. Hence we get the contradiction

L= lim /G(ﬂf+(1—19)fn)

n—oo

< —C./16 +n&rgcz9/G(f)+nlILmoo(l—19)/G(fn) = cC./16+L. O

Proof of Corollary 2.Sety,, = 2 Then by convexity
. 1 1
imsup [ & (574 56,) < 560+ im_ [ 61, =
while by weak lower semi-continuity, = [ G(f) < liminf [ G (3f + 3f.). Hence

L=lim,_ [ G(%f + %fn). On the other hand the wedK-convergence implies that
I fullr = [ fu — [ £ =|fllz2 @sn — co. The result follows from Lemma 3. [
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Proof of Theorem 3Various A-independent positive constants are denoted<bye

note that
Eoo(ne, pe) < Eoo(nn, Pr) < Eon(nn, pa) < Eonl(ne, Pe)s
which gives
Eoo(Ne, pe) < limsupEoo(nn, i) Iir/’\n irgf Eorn(nx, py)
—0 -
< lim Supgo/\(n)\ap)\) < lim Supgo)\(ncapc) = 500(7%7}%),
A—0 A—

and therefore
Eoo (nc y pc) = /l\lino go)\(n)\ s pA)>

as well as;%2 [IVWA]?2 < K. As ||ny||r=, ||pallL= < K, see Lemma 1, one has by
passing to a subnet, — n., pyx — p. weak*in L>°(Q) as well as\V,, — W, weakly
in HX(Q). It follows for all test functionsy € H(),

0= A|iLnO)\2/VV,\V90 = J\iino/(ﬂx —px— Oy,

which impliesny — py — C — 0 weakly in H(Q2) as\ — 0 and therefore,, p, €
I'.o. Thanks to weak sequential lower semi-continuityl#(<2) one has[ G; (n.) <
Iir;n ilgf [ Gi(ny), [Ga(ps) < IirP ilgf | G2(p,), and therefore

Eoo (N, px) < NIMSUPEso(nn, pa) < Eoolne, Pe)-
A—0

But (n., p.) is the unique minimizer of,, in I'v,. Hencen, = n., p. = p., and as a
consequence d.o (1, px) = Eoo(Ne, ) = lim0 Eox(nx, py) ONe gets

lim Az/|vvk|2:o,
A—0 2
as well as[ Gi(ny) — [ Gi(ne) . [ Ga(py) — [ Gao(p.), asA — 0. Now it follows
from Corollary 2 that
nx — Ne , px — pe  strongly inLY(2), as\ — 0,

and thereforer, — n., px — p. a.e. onQ for a subnef\. Due to convergence almost
everywhere and convergence weak*iff (2) we have

ny — Ne, Pr — pe  Strongly inL" () , r € [1,00), asA — 0.

The uniformL°-estimates om, px iImply g1(n,), g2(p») < K. Hence by integration
of (4) and V, = 0 we get upper estimates for the Lagrange multiplieis; a2y < K.
Due to convergence almost everywhere and due to the continujiy,afie have

g1(ny) + g2(px) — g1(ne) + g2(pe) > v a.e.on, asA — 0.

Hence there exists & € (0, o) such that for all\ € (0, \*) the estimategy;(n,) +
g2(px) > —K holds a.e. oR2. Hence, ifg; = —o0, then there exists & > 1 such that
1/K < ny, < K forall A < A* and an equivalent estimate follows fox whenever
lim, 0 g2(u) = —oc. To establish lower estimates fox,, a2, assume by contradiction
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that for a subnet lim_o @1y = —oco. Then on the sefn, > 0} - whose measure is
at leastN/(P’ + C) - the equalityV, = a3y — g1(n,) holds which gives/, — —oco
uniformly on{n, > 0}. Hence due tg' V, = 0 we havef{m:o} Vy — oo leading to
lim x—o Vi = co. We have due to (4) the inequalityyy, < —V, + g2(p,), and therefore
limy_oazy = —oo which settles in analogy, — +oo uniformly on {p, > 0}.
Hence by continuity of.y, py, V) we have{n, > 0} N {p, > 0} = (), and therefore
npx = 0 for all sufficiently small\. Due to convergence almost everywhere it follows
thatn.p. = 0, which contradicts Lemma 2. This and an equivalent investigationof
settles|aa |, |azn| < K, and we conclude from (4) that

a1y — g1(ny) < Vi < g2(pa) — az,
which gives||V, ||~ < K for all A < \* which settles by passing to a subnet
Vy— V. weak*inL>*°(Q), asiA—0

as well as[ V. = 0. Passing to another subnet we have, due to the uniform estimates on
a1y, a2y, the existence of1,, 52« € IR such thatvyy — (1, andagy — B2« asA — 0.

Due to strong convergence I(2) and due to Egorov’s, Theorem there exists for each

d > 0anQs C Q2 with meas \ Qs) < 6 such that

gi1(ny) — a1y — g1(ne) — B uniformly onQs, asi — 0.
Hence
Vi = g1(ny) — azn — Vi uniformly onQ; N {n > 0}, as\ — 0,

which settled/,, = V.. + 51, — 1 almost everywhere ofn. > 0}. A similar argumen-
tation givesV, = V. — f3,. + 32 almost everywhere ofp. > 0}. As shown in Lemma 2
the functionn.p. does not vanish identically a, which settles3;. — 51 = — 2. + Oz,
and thereforedy, =y — B1.. As{n. = 0} C {p. > 0}, see Lemma 2, we conclude via
[ Vi=[V.=0that

0 = (81« — f1) meas(n. > O} + (B2 — B2.) meas(n. = 0},

andtherefor@,. = 81 andB,. = (3,, and therefor®, = V,on{n. > 0}U{p. > 0} = Q.
Furthermore, as seen above, we have

Vy — V. almost everywhere ofin. > 0} U {p. > 0}, asA — 0.
This settles in connection with weak* convergencd. (),
Vi — V. stronglyinL"(2) r € [1,00), asA — 0,
and finishes the proof of Theorem 3. O
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