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Abstract: A three dimensional Winterbottom type construction in the regime of partial
wetting is derived in a scaling limit of a gas of microscopic Gaussian SOS droplets under
the fixed volume constraint. The proof is based on a coarse graining of the random
microscopic region “wetted” by the crystal, random walk representations of various
quantities related to free massless fields and a stability analysis of the torsional rigidity
problem.

1. Introduction

1.1. Macroscopic Winterbottom construction.The shape of a small crystal in the equi-
librium with its vapour is assumed, disregarding gravitation, to minimize the anisotropic
surface energy. The corresponding construction was obtained at the turn of the century
by Wulff [36], and much work since then was devoted to a rigorous mathematical treat-
ment and further generalizations of the underlying variational problem ([8, 15, 19, 33]
to mention a few) on one hand, and to extensions of the construction to other physical
situations of interest, e.g. to the case of a particle on a solid substrate [35], see [19] for
its mathematical counterpart.

From the purely statistical mechanical point of view, though, the problem of a rigor-
ous derivation of these optimal macroscopic shapes directly from the structure of local
microscopic interactions and an analysis of the corresponding Gibbs measures in an
appropriate scaling limit remained open and long pending until the late eighties, when,
almost simultaneously, it was solved for several two dimensional models. The simplest
one was the gas of generalized SOS droplets in 1 + 1 dimensions [9], which gave rise
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to a Winterbottom-like shape in the scaling limit. A two dimensional Wulff construc-
tion was derived in the context of the supercritical phase of Bernoulli bond percolation
in [1]. Finally, the 2D Ising model at very low temperatures was solved in the ground
breaking monograph [12], which accomplished the program initiated in early works on
phase separation [23, 24]. The approach of [12] was simplified in [27], using duality
methods with mastery, the latter article being of a fundamental interest in its own right.
Most of the results in [17 and 27] were formulated on the level of very precise local
limit theorems. Their weaker integral versions were pushed all the way up to the critical
temperature in [17, 18].

Further remarkable results on complete analyticity and phase separation were ob-
tained in [29 and 30].

All the above results, however, are two dimensional, the higher dimensional problems
being so far considered at least as much formidable as interesting. In this work we obtain
a three dimensional droplet shape in the scaling limit of a 2 + 1 Gaussian counterpart
of the model considered in [9]. To be more precise, we consider the free lattice field
(Xi)i∈SN

, in a square boxSN ⊂ Z2 of side length 2N . This is the centered Gaussian
random field whose covariance matrix is given by (−1)−1, where1 is the discrete
Laplacian onSN with Dirichlet boundary conditions. We interpret this field as two
dimensional random surface in the 2+1-dimensional spaceZ2 ×R. This random field is
then equipped with three additional ingredients which govern the relation between this
surface and the “wall”Z2 × {0}:

1. An attractive surface to wall interaction,

2. A hard wall condition, meaning that the surface has to stay on the positive side of the
wall,

3. A macroscopic restriction on the volume between the surface and the wall.

A formal description will be given in 1.3.

This is the microscopic model. The macroscopic picture is obtained by scaling the
lengths by a factor 1/N . The main aim of this paper is to prove a law of large numbers
for this macroscopic shape.

Our limit macroscopic shape is reminiscent of the one provided by the general
Winterbottom construction, and, because of the underlying Gaussian field, we call it a
harmonic crystal. Compared, for example, with the Ising model or even with the super-
critical Bernoulli bond percolation the model itself provides a rather poor approximation
to the phenomena of phase separation. In this respect our intrusion into three dimen-
sions, though, perhaps, being not without physical and mathematical appeal, is of a
quite restricted nature, and many of the core problems for higher dimensional interfaces
remain unsolved. An interesting aspect of our results and the method to prove them is
that in three dimensions a nontrivial coarse graining procedure becomes imperative for
the proof. This could be relevant for studying more complicated 3D models in the phase
separation regime. Indeed, probably one of the most formidable problems on the way
to a rigorous justification of a genuine Wulff construction directly from the microscopic
local interactions, e.g. in the context of the 3D Ising model, is to define a natural scaling,
which would substitute the 2D skeleton computations of [12 or 27].

A simplifying feature of the Gaussian interactions is the possibility to use random
walk representations to compute many quantities exactly. This is lost if we substitute the
quadratic interaction by a general convex one, whatever growth, smoothness and strict
convexity properties are assumed. Furthermore, the geometry of the anharmonic crystal
becomes more complicated as well – instead of a Poisson problem for the Laplacian
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one has to solve a semilinear elliptic equation. Besides the fact that the corresponding
solution in the latter case cannot be explicitly computed, one also loses the scaling rela-
tion enjoyed by the torsional rigidity in the Gaussian case. Recently, however, there has
been considerable progress in the study of anharmonic models with convex potentials
[16, 26]. In particular, it was shown that such models admit a useful random walk repre-
sentation, and, moreover, many computations for these random walks can be reduced to
the corresponding computations for the simple random walk using the Brascamp-Lieb
inequalities [8]. Based on these works, one can derive a droplet construction also in the
non Gaussian setting. The corresponding results are under way.

Finally, we would like to remark that the concentration results here are obtained in
theL1 norm. It would certainly be possible to upgrade them toL2 or even toLp. The
real issue, however, would be to obtain concentration in theL∞ norm. Apart from being
a stronger and geometrically nicer result, such an assertion would confirm a heuristic
belief that an intrinsic statistical stability of shapes is better than an impartial stability
of the isoperimetric problems involved (see a brief discussion about the corresponding
problem for the 3D Wulff problem in [12]). One result of this type was obtained for the
membrane problem in [4] and [32].

We conclude this subsection by giving a brief description of the Winterbottom con-
struction (cf. [35, 19]):

n

S

P

V

Fig. 1

Consider a small particleP placed on a solid foreign substrateS and in the equilib-
rium with its vapourV . (Fig. 1).

If the gravitation is disregarded, then the energy of the particle is given by

E(P ) =
∫

PV

τPV (ns) ds + |PS|(τf
PS − τf

V S),

whereτPV : S2 → R+ is the anisotropic particle-vapour surface tension, andτf
PS and

τf
PV are surface tensions of the particle-solid and vapour-solid flat interfaces respectively,

andPV , PS are the corresponding interfaces.ns is the normal vector to the particle-
vapour interface at the points and|PS| denotes the area of the particle-solid interface,
to which we will refer as to the “wetted” region.

The equilibrium shape of the particle is assumed to minimize the energyE(P ) at
a fixed volumev. The solution to this variational problem was formulated in [35] and
is, in fact, a version of the Wulff construction. The particle-vapour equilibrium Wulff
shapeKPV centered at the origin, is defined by

KPV =
⋂

n∈S2

{x ∈ R3 : (x, n) ≤ τPV (n)},

where (•, •) is the scalar product inR3. KS
PV is its intersection with the half space

H = {x ∈ R3 : (x, e3) ≥ τf
V S − τf

PS }, wheree3 = (0, 0, 1).



526 E. Bolthausen, D. Ioffe

If τf
V S − τf

PS ≥ τf
PV , whereτf

PV

1
= τPV (e3), we are in the situation of complete

wetting, i.e. the particle will spread out to form a thin layer separatingV from S.
Otherwise the equilibrium shape is obtained by an appropriate dilatation ofKS

PV in
order to adjust its volume. In the latter case there are still three possibilities:

Complete drying:τf
V S − τf

PS ≤ −τf
PV ,

Repelling wall: −τf
PV < τf

V S − τf
PS ≤ 0,

and
Attracting wall: 0< τf

V S − τf
PS < τf

PV .

In the first case the shapeKS
PV coincides with the “free” Wulff shapeKPV . In the case

of a repelling wallS the optimal shapeKS
PV is depicted in Fig. 2.
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Finally, in the case of an attracting wall, the optimal shapeKS
PV is presented in Fig. 3.
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Fig. 3

Note that in the latter case the optimalPV interface can be represented as a function
over the “wetted” regionPS. Our model tacitly assumes the attractiveness of the wall:

τf
PV > 1f

1
= τf

PV − τf
V S + τf

PS > 0, (1.1.1)
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i.e. our results pertain to this case only. Strict positivity of1f , which emerges in the
macroscopic limit for the model we consider here is discussed in Subsect. 8.2.

We proceed by specifying the exact expression for the energy in the harmonic case.

1.2. The macroscopic description of the harmonic crystal.For the Gaussian model we
consider here, the angle dependent surface tension is defined as follows (see [22] for
general definitions and related properties) :

Let ξ ∈ R2, and consider the Gaussian random field overSN
1
= NS(1) ∩ Z2 1

=
N [−1, 1]2 ∩ Z2 with the Hamiltonian

HN,ξ(x) =
1
2

∑
〈k,l〉

(xk − xl)
2, x ∈ RSN

with ξ-tilted boundary conditions on∂SN :

xk = (ξ, k),

for k ∈ ∂SN , where (•, •) is the scalar product inR2, and∂SN is the outer boundary
of SN , i.e. the set of points inZ2 \ SN which have a neighbor inSN . The sum in the
above definition of the Hamiltonian is over unordered pairs of nearest neighbor points
in SN ∪ ∂SN . Then the Gaussian surface tensionσG in the direction of the unit vector
n ∈ S2; n = 1√

1+ξ2
(ξ, 1), is defined by

σG(n) = − 1√
1 + |ξ|2 lim

N→∞
1
N2

log
ZN,ξ

ZN,0
,

where the partition functionZN,ξ is given by:

ZN,ξ =
∫

RSN

e−HN,ξ(x)dx.

In the Gaussian case one can easily computeσG,

σG(n) =
1
2

|ξ|2√
1 + |ξ|2 .

Consequently, the integrated Gaussian surface tension over an interface, parametrized
by a functionu = u(x) is given by the integral

1
2

∫
|∇u|2dx.

With this computation in mind we proceed to define the macroscopic model in more
precise terms. LetH1,2 be the usual Sobolev space of functions with one square integrable
weak derivative, andH1,2

0 be the ones with compact support. IfD is an open set, we
denote byH1,2

0 (D) theH1,2 functions which have a compact support inD. A nonnegative
functionu ∈ H1,2

0 is called a profile, and supp (u) (which is uniquely defined byu, up to
Lebesgue measure 0) the wetted region. Then the energy of the particle with the profile
u is given by

E(u) =
1
2

∫
D

|∇u|2 dx + 1f |supp (u)|, (1.2.1)
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where1f is assumed to be positive,1f > 0. We define theharmonic crystalof volume
v to be theH1,2

0 solution to the variational problem

E(u) 7→ min, given V (u)
1
=

∫
udx = v. (1.2.2)

Note that ifu solves (1.2.2), then so do all the shifts ofu; u(x + •), for anyx ∈ R2.
Below we will see that actually all the solutions of (1.2.2) are shifts of some function
hv(•).

In order to determinehv, we remark that the minimum in (1.2.2) equals

inf
a

(
inf

D open
|D|=a

inf
u∈H1,2

0 (D)
V (u)=v

1
2

∫
D

|∇u|2 dx + 1fa

)
, (1.2.3)

and thus, (1.2.2) is split into three minimization problems which we can all solve.
Indeed,

inf
u∈H1,2

0 (D)
V (u)=v

∫
D

|∇u|2 dx =
v2

χ(D)
, (1.2.4)

whereχ(D) is the torsional rigidity ofD [28], given by

χ(D) =
∫

D

uD(x) dx, (1.2.5)

where,uD is the solution of the Poisson equation

1uD = −1 inD,
uD|∂D = 0.

Moreover, the infimum in (1.2.4) is attained atuv
D

1
= (v/χ(D))uD. Next, it is well

known [28], that the maximal torsional rigidity over domains of a fixed areaa is the one
for the circleBa,

max
|D|=a

χ(D) = χ(Ba) =
a2

8π
. (1.2.6)

Substituting this into (1.2.3) we find that the optimal area ¯a = ā(v,1f ) is found by
minimizing the convex function

4πv2

a2
+ 1fa

and the optimal profilehv is given by

hv(x) =
2v
ā

(
1 − π|x|2

ā

)
∨ 0, (1.2.7)

Obviously, any shift ofhv is also optimal, and these are all the solutions of (1.2.2).

1.3. The microscopic model and the result.The first result on the droplet shape in the
scaling limit of a Gaussian higher dimensional model is contained in a recent article [3],
based on results on entropic repulsion for Gaussian lattice fields. In this model however,
the wetted region played no role, more precisely, all the microscopic droplets under
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consideration were bound to wet the squareS(1) = [−1, 1]2 (actually in [3] all the
computations were done in the general case ofd > 1 dimensional cubes).

In order to obtain the limit shapes given by (1.2.7) one has to consider a “gas of
droplets” with varying microscopic wetted regions as, for example, the one studied
in [9] in the case of 1+1-dimensional models. To set up notations, letSN = NS(1)∩Z2

and�N = RSN . Our random fieldX(•) ∈ �N represents then the heights of droplets
at lattice pointsk ∈ SN and we assume that all the mass of the particle is confined to
the boxSN , i.e.X(•) ≡ 0 onZ2 \ SN . We define

P̂N (X(•) ∈ dx) =
1

ẐN

exp

{
−1

2

∑
|k−l|=1

(xk − xl)
2

}
×

∏
k∈SN

(e−Jdxk + δ0(dxk))
∏

k∈Z2\SN

δ0(dxk), (1.3.1)

where| • | denotes theL1-norm onZ2. Theδ0(dxk) part is responsible for the attraction
between the surface and the wall. If it is absent, we have the purely Gaussian model which
had been the starting point of [3]. Our model becomes more transparent, if we rewrite it
in a different form after opening all the brackets on the right-hand side of (1.3.1):

P̂N (X(•) ∈ dx) =
1

ẐN

∑
A⊆SN

e−J|A| exp

{
1
2
〈1dx, x〉

}
×

∏
k∈A

dxk

∏
k∈Z2\A

δ0(dxk),

where|A| is the cardinality ofA,1d is the lattice Laplacian and〈•, •〉 is the scalar product
in RZ2

. Indeed, the expression above gives the joint distribution of the microscopic
wetted regionA ⊆ SN and the microscopic droplet profilesX(•) overA. Our scaled
microscopic profileξN ∈ L1(R2) is given by

ξN (x) =
1
N

∑
k∈Z2

X(k)1{‖k−Nx‖<1/2}, (1.3.2)

where‖(x1, x2)‖ 1
= max(|x1|, |x2|). Thus,ξN is just a scaled plaquette reconstruction of

the microscopic particle profile overR2 from the fieldX(•). Note that

supp(ξN ) ⊆ S(1).

Finally, define the volumeVN of the gas of droplets as

VN
1
=

∑
k∈SN

X(k) = N3
∫

S(1)
ξN (x) dx.

We are going to prove a result about convergence to the optimal harmonic shape under
the hard wall condition

X(• ) ∈ �+
1
= {x(•) ∈ RZ2

: x(k) ≥ 0 ∀ k ∈ Z2}.
Define:

P̂N,+ = P̂N ( • | �+),
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Theorem A. For eachJ ∈ R define

1f,N = 1f,N (J) = J +
1

|SN | log
ẐN,+

ZN
,

whereẐN,+
1
= ẐN P̂N (�+), ẐN is the normalizing constant in(1.3.1)and

ZN
1
=

∫
�N

exp(1/2〈1Nx, x〉) dx, (1.3.3)

1N being the lattice Laplacian with zero boundary conditions onSN . Then the limit

1f = lim
N→∞

1f,N (1.3.4)

exists and is a nondecreasing convex nonnegative function ofJ . Moreover,

1f (J) > 0 (1.3.5)

for J large enough.
Assume now thatJ is such that (1.3.5)holds, and letv > 0 be fixed (and small

enough to enableBā ⊂ S(1)) and lethv(•) be given by(1.2.7)with a = ā(v,1f ). Then
there exists a sequenceνN , limN→∞ νN = 0, such that

P̂N,+

(
min
x∈R2

‖hv(x + •) − ξN (•)‖L1(R2) > νN

∣∣∣VN ≥ N3v
)

≤ νN . (1.3.6)

The theorem above implies a sharp concentration of microscopic profiles around
the optimal harmonic crystal shape (1.2.7) under the measures (1.3.1) and the hard wall
condition�+.

Remark 1.3.1.In contrast with the situation in [3], the boxSN is playing here a very
minor rôle and could be replaced by any regionNV ∩Z2,V ⊂ R2, whereV satisfies the
condition that some translate ofBā is contained inV , and still the same limiting shape
would appear. It is in fact true, although we don’t need this, that a thermodynamic limit
P̂∞ of P̂N asN → ∞ exists and defines a random field onZ2 (see [11]). Of course, we
cannot start witĥP∞ as then, due to translation invariance, the droplet does not “know”
where to emerge, but it should be obvious that the only rôle of the finite boxSN is to
keep the droplet confined.

In the next section we sketch the scheme of the proof and describe the principal results and
estimates involved. Subsequent sections are devoted to rigorous proofs of these results:
Sect. 3 deals with the coarse graining, Sect. 4 with the estimates on various partition
functions, Sect. 5 with the stability of the related torsional rigidity problem, Sect. 6 with
the concentration estimates over fixed wetted regions, Sect. 7 with the approximation of
relevant macroscopic quantities by their mesoscopic counterparts, and, finally, Sect. 8
contains the proof of the main Theorem A.

Remark 1.3.2.In what follows we shall use two types of constants: fixed constants
related to coarse graining or symbols likeπ, and two varying constantsc andδ. The
exact values of the latter constants are of no importance for us, except that they should
belong to (0,∞). Moreover, they will always enter the estimates below in such a way,
that if a certain estimate is true with (c, δ), it will also be true with (c′, δ′), wherec′ ≥ c
andδ′ ≤ δ. Thus, whenever we writec (δ) we actually mean the maximum (minimum)
of the corresponding constant over all the estimates involved. Luckily, we get by with
only a finite number of them, so, all the results remain valid under this convention.
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2. Outline of the Proof

2.1. Strategy. ForA ⊆ SN let 1A denote the lattice Laplacian with zero boundary
conditions onA. Define

PA(X(•) ∈ dx) =
1
ZA

exp

(
1
2
〈1Ax, x〉

) ∏
k∈A

dxk

∏
k∈Z2\A

δ0(dxk), (2.1.1)

where the partition functionZA is given by

ZA =
∫

RA

exp

(
1
2
〈1Ax, x〉

)
dx. (2.1.2)

ThenP̂N,+ is a convex combination;

P̂N,+(•) =
∑

A⊆SN

e−J|A| ZA

ẐN,+

PA(• ; �+). (2.1.3)

Under eachPA the volumeVN has a Gaussian distribution, and it is not difficult to
compute that

PA(VN ≥ N3v) = exp

(
−N2 v2

2χN (A)
(1 + o(1))

)
, (2.1.4)

whereχN (A) is the approximate torsional rigidity ofA, given by

χN (A) =
1
N2

∑
k∈A

uA,N (k), (2.1.5)

whereuA,N ∈ RA solves

N21AuA,N = −1 inA. (2.1.6)

One might naively think that the main contribution toP̂N (VN ≥ N3v) in the representa-
tion (2.1.3) comes from thoseA-s which are close in shape to some optimal microscopic
wetted regionAopt, which minimizes

J |A| − logZA +N2 v2

χN (A)
. (2.1.7)

This, however, is not the case. It turns out that microscopically the wetted region under
P̂N,+ is given by an almost optimal shape, which supports most of the droplet volume
and a non negligible “noisy” shallow region. One already sees the problem, when re-
marking that the logarithm of the number of terms in the right-hand side of (2.1.3) is
of the same order of magnitude as (2.1.7). In other words, on the microscopic scale the
entropy competes with probabilistic weights. Note also that the macroscopic quantity
1f in (1.3.4) is not produced in (2.1.7).

As usual, in order to cancel the entropy and to generate all the relevant macroscopic
quantities, one has to introduce an intermediate (mesoscopic) scale. We describe this
scale in the next subsection, it enables us to restrict attention to mesoscopic wetted
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regionsB ⊆ SN , which are composed of blocks of the sizeN b, b ∈ (0, 1). We then
decomposêPN,+ according to the value of the mesoscopic wetted regionM;

P̂N,+(•) =
∑

B⊆SN

mesoscopic

P̂N,+(• ; M = B)

In its turn, due to our basic expansion (2.1.3) ofP̂N,+ in microscopic wetted regions,

P̂N,+(• ; M = B) =
∑

A⊆SN

e−J|A| ZA

ẐN,+

PA(• ; M = B ; �+). (2.1.8)

It happens that the essential contribution to the above sum comes only from those
microscopicA ⊆ SN , which coverB sufficiently well. A precise formulation of the
latter statement is given in Subsect. 2.2. Thus, given a mesoscopicB ⊆ SN , the sum on
the right-hand side of (2.1.8) is effectively only overA-s, satisfyingB ⊆ A. In order
to make estimates on such a sum one should be able to decouple bothZA and ẐN,+
over the boundary ofB. The corresponding estimates on various partition functions are
stated in Subsect. 2.3. Roughly all this leads to the representation ofP̂N,+ as

P̂N,+(•) ≈
∑

B⊆SN

mesoscopic

e−J|B| ZB

ẐB,+

PB(• ; �+), (2.1.9)

whereẐB,+ is defined analogously tôZN,+, with B playing the role ofSN . Note that

there are onlyO(ecN2(1−b)
) terms in the right-hand side of (2.1.10). Thus the mesoscopic

wetted regions should concentrate around minimizers of

Ev
N,f (B)

1
= J

|B|
N2

+
1
N2

log
ẐB,+

ZB
+

1
2

v2

χN (B)
. (2.1.10)

Provided thatEv
N,f (B) is a good approximation to

1f
|B|
N2

+
1
2

v2

χ(B)

and that the shape of the infimum in (1.2.3) is stable, one obtains a concentration of
the mesoscopic wetted regions around the shifts of macroscopic optimalBā, and the
problem is reduced to concentration estimates on

PB,+(• |VN ≥ N3v)

for almost optimalB. The latter task can be accomplished by means of Gaussian com-
putations, which however yield concentration around

uv
B,N

1
=

v

χN (B)
uB,N

instead ofhv. Thus, the last step should be to estimate theL1(R2) deviation ofuv
B,N

from hv for almost optimalB.
To summarize we have the following tasks to perform:
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1. Coarse graining, i.e. introduction of an intermediate mesoscopic scale and derivation
of the corresponding control estimates,

2. Estimates on the partition functionsZA andẐB,+,

3. Stability estimates on the torsional rigidity,

4. Concentration estimates onPB,+(•|VN ≥ N3v) for B close toBā,

5. Approximation ofχ by χN and ofhv by uv
B,N .

We proceed by stating all the relevant results along these lines. The proofs are
relegated to subsequent sections.

2.2. Coarse graining. Our coarse graining procedure is based on ideas introduced by
Donsker and Varadhan in their treatment of the Wiener sausage. There are two scales
involved:

1. The coarse graining scaleM = N b; b ∈ (0, 1),
and

2. The cutting levelH = Nγ , γ ∈ (0, 1).

The choice ofb andγ is specified in Subsect. 3.1 below, but we always assume for
notational convenience that 2M+1 divides 2N+1, but this is, of course, of no importance.
Recall thatS(1) = [−1, 1]2 andSN = NS(1)∩Z2. We define the smoothing kernel0M ,
supported inSM , as follows:

LetDk = { i ∈ Z2 : ‖i‖ = k } 1
= ∂Sk and setDk(i) = i +Dk denote the boundary

of thek-squareSk(i) centered ati, and let{ηn}n∈N denote the simple random walk on
Z2. For anyi ∈ Z2 andj ∈ Dk(i) define

γk(i, j) = PRW
i (ητDk (i) = j), (2.2.1)

wherePRW
i is the law ofη• starting ati, andτDk(i) is the first hitting time ofDk(i) by

η•. Then we define

0M (i, j) =
2

M (M + 1)

M∑
k=1

kγk(i, j). (2.2.2)

Note that0M (i, •) is a probability measure onSM (i). Also,γk and0M are shift invariant;
γk(i, j) = γk(i − j) and0M (i, j) = 0M (i − j). The smoothened fieldXM ∈ RZ2

is
defined by

XM (i) =
∑

j

0M (i− j)X(j), i ∈ Z2. (2.2.3)

Note thatXM ≡ 0 outsideSN+M underP̂N . Define the coarse grained lattice

Z2
M = (2M + 1)Z2.

The next step is to splitZ2 into the blocks of the sizeM :

Z2 =
⋃

i∈Z2
M

SM (i).

Our coarse grained field̃XM (•) is defined to be constant on each of these blocks, namely
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X̃M (j) =
∑

i∈Z2
M

XM (i)1{‖j−i‖≤M}. (2.2.4)

Obviously, the support of̃XM is contained inSN .
We shall call a finite union ofM -blocksSM (i); i ∈ Z2

M , a mesoscopic region.
Remark that the number of mesoscopic subsets ofSN equals

2(2N+1)2
/

(2M+1)2 ≤ 2(N
/

M )2

= exp
(
N2(1−b) log 2

)
.

Given our cutting levelH = Nγ , we define themesoscopic wetted region

M = M(X̃M ) = { i ∈ Z2 : X̃M ≥ H} ⊆ SN .

The mesoscopicM -scale above leads to an “entropic reduction” in the representation
of P̂N given in (2.1.3). In fact, this representation has just too many summands to be
immediately useful. The small heights cutoff given byH is necessary to get rid of the
“shallow” part of the wetted region and, simultaneously, to produce the macroscopic
quantity1f . It happens that as far as questions of concentrations are considered, one
can restrict attention to mesoscopic profiles:

Theorem 2.2.1.For all N and allA ⊆ SN ,

PA

(∑
i∈Z2

|X(i) − X̃M (i)| ≥ N3−δ

)
≤ exp

(
−1
c
N2+δ

)
. (2.2.5)

Consequently, ifξN,M is the scaled plaquette reconstruction from̃XM , i.e.

ξN,M (x) =
1
N

∑
k∈Z2

X̃M (k)1{‖k−Nx‖<1/2},

then

P̂N (‖ξN − ξN,M‖L1(R2) ≥ N−δ) ≤ exp

(
−1
c
N2+δ

)
. (2.2.6)

This super exponential estimate lies at the heart of our coarse graining approach.
We need also another super exponential estimate, which we call the volume filling

lemma. It asserts that a mesoscopic wetted regionB cannot be effectively produced by
PA in the decomposition (2.1.3) of̂PN,+, unlessB is sufficiently well covered byA.

Lemma 2.2.2. For all N andA,B ⊆ SN ,

PA(M(X̃M ) = B) ≤ exp

(
−1
c
N2+δ

)
(2.2.7)

as soon as|B \A| ≥ N2−δ.

2.3. Estimates on partition functions.LetA ⊆ SN . We use the following notations:

∂A =
{
k ∈ A : ∃l ∈ Z2 \A with ‖k − l‖ = 1

}
, (2.3.1)

At =
{
k ∈ A : min

l∈Z2\A
‖l − k‖ ≥ t

}
. (2.3.2)
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Lemma 2.3.1. a) There exist constantsq, r > 0, such that for anyA b Z2,

q|A| − rmax
t

|∂At| ≤ logZA ≤ q|A|. (2.3.3)

b) There exists a constantq̂ > 0, for anyt > 0, a constantc = c(t) > 0, such that
for any mesoscopic wetted regionB b Z2, satisfying|B| ≥ tN2,

q̂ − cN−b logN ≤ log ẐB

|B| ≤ q̂. (2.3.4)

c) For any mesoscopic regionB ⊆ SN and any setsA ⊆ SN \B andC ⊆ B,

0 ≤ 1
N2

log
ZA∨C

ZAZC
≤ cN−b logN. (2.3.5)

d) For any setsB,A andC as above

− cN−δ ≤ 1
N2

log
PA∨C

(
�+

)
PA

(
�+

)
PC

(
�+

) ≤ cN−δ. (2.3.6)

Remark 2.3.2.The condition of|B| ≥ tN2 is not essential, but it simplifies the proof
of (2.3.4). Ift > 0 is chosen small enough, the restriction to mesoscopic regions satisfy-
ing |B| ≥ tN2 will be seen to be harmless, as regions where this fails have a negligible
contribution in (2.1.9) for the events we are interested in. The notion oft > 0 being
small enough is quantified in Subsect. 8.1 (See the proof of Proposition 8.1.2 ).

2.4. Stability results for the torsional rigidity.LetD ⊆ R2 be a bounded domain with
a piecewiseC2 boundary,uD the solution of the Poisson equation

1uD = −1 inD,
u|R2\D ≡ 0,

and let levµuD be the level sets ofuD,

levµuD = {x ∈ D : uD(x) ≥ µ }.
Definea(µ) = |levµuD|. Then,a(µ) is a strictly decreasing continuous function and let
µ = µ(a) : [0, |D|] → R+, be the inverse ofa(•). Finally, set

Da = levµ(a)uD and lD(a) = |∂Da|.

Note, that|Da| = a andlD(a) ≥ |∂Ba| 1
= s(a), where as in Subsect. 1.2Ba is the circle

of the areaa.

Theorem 2.4.1.

χ(D) ≤
∫ |D|

0

a2

lD(a)2
da, (2.4.1)

and

max
B:|B|=|D|

χ(B) − χ(D) = χ(B|D|) − χ(D) ≥ 1
4π

∫ |D|

0
a

(
1 − s(a)

lD(a)

)
da. (2.4.2)
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The right-hand side of (2.4.2) is a measure of deviation ofD from the shape of the
circleB|D|, and the claim itself asserts that the torsional rigidity is stable with respect
to this measure. From the representation

χ(D) =
1
2

∫
D

EBM
x τD dx,

whereτD is the first exit time fromD of the two dimensional Brownian motion, it is
clear theχ(•) cannot be stable with respect to the Hausdorff distance, indeed adding a
thin long hair does not change substantially both the area and the torsional rigidity. We
shall see, however, that Theorem 2.4.1 above already implies stability with respect to
another “natural” measure of deviation – the area of symmetric difference,

d1(D) = inf
x∈Rd

|D1(x +B|D|)|. (2.4.3)

An even more important consequence for us here is the stability with respect to the
inradius ofD: Let D be simply connected and let% = %(D) be the inradius (i.e. the
radius of the largest inscribed circle) ofD. Note that

max
|B|=|D|

%(B) = %(B|D|) =

√
|D|
π
.

Lemma 2.4.2.

%(B|D|)2 − %(D)2 =
|D|
π

− %(D)2 ≤ c 3

√
χ(B|D|) − χ(D). (2.4.4)

As a consequence we obtain the following result on theL1(R2) stability of the crystal
shape: Let

Ev
f (D) =

v2

2χ(D)
+ 1f |D|

anduv
D =

√
v/χ(D)uD, i.e.uv

D is the shape of the minimal energy harmonic drop of
the volumev bound to wetD. Then,

Lemma 2.4.3. LetD ⊆ S(1) with a piecewise smooth boundary∂D, and letv be a
fixed number;v > 0 Then,

inf
x∈R2

‖uv
D − hv(• + x)‖L1(R) ≤ c 6

√
Ev

f (D) − Ev
f (Bā), (2.4.5)

wherehv is the harmonic crystal shape defined in(1.2.7).

Remark 2.4.4.The power 1/6 in (2.4.5) is by no means optimal, but is adequate for our
purpose. Note that in Lemma 2.4.3 the regionD is not required to be simply connected.

2.5. Concentration ofPB(• |VN ≥ N3v). Let A ⊆ SN , anduA,N is the solution of
the approximate Poisson equation (2.1.6) onA. Defineūv

A,N : S(1) → R as

ūv
A,N (x) =

v

χN (A)

∑
k∈SN

uA,N (k)1{‖k−Nx‖<1/2}. (2.5.1)

Then the following estimate on the concentration of the scaled profileξN (•), defined
in (1.3.2), around ¯uv

A,N is valid:
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Lemma 2.5.1. For eachA ⊆ SN anda ∈ R+,

PA

(‖ξN − ūv
A,N‖L1(R2) ≥ a |VN ≥ N3v

) ≤ exp

(
−a2

c
N2

)
.

2.6. Approximation by discrete quantities.For a mesoscopic regionB ⊆ SN we define
B̄ ⊆ S(1) by

B̄ =
1
N

⋃
k∈B

(
k +

1
2
S(1)

)
. (2.6.1)

Lemma 2.6.1.
|χN (B) − χ(B̄)| ≤ cN−b, (2.6.2)

uniformly inN and mesoscopicB ⊆ SN .

This, combined with the estimates on the partition functions stated in Lemma 2.3.1,
leads to the following approximation result:

Lemma 2.6.2. For anyt > 0 there existδ = δ(t) > 0 andc = c(t) > 0, such that any
mesoscopicB ⊆ SN , satisfying|B| ≥ tN2 andχN (B) ≥ t, also satisfies

|Ev
f (B̄) − Ev

N,f (B)| ≤ cN−δ, (2.6.3)

whereEN,f (B) is given by (2.1.10), and, as before,Ev
f (B̄)

1
= 1f |B̄| + 1

2v
2/χ(B̄).

Finally, we get the following stability estimate for mesoscopic wetted regionsB:

Lemma 2.6.3. For any mesoscopicB ⊆ SN ,

inf
x

‖ūv
B,N − hv(x + •)‖L1(R1) ≤ c 6

√
|Ev

N,f (B) − Ev
f (Bā)|, (2.6.4)

whereūv
B,N is the approximated profile defined in(2.5.1), andhv, ā are respectively the

optimal profile and the area of the optimal wetted region, which were defined inSubsect.
1.2.

3. Coarse Graining

3.1. Scaling parameters.We start by fixing a small (sayb ≤ 0.1) but positive value of
b. The exact condition on the “smallness” ofbwill be made precise at the end of Subsect.
3.2. We chooseγ satisfying

γ + 2b < 1 < 1 + 2δ < γ + 4b.

The first inequality enables to make the following reduction, which paves the way to the
proof of Theorem A in Subsect. 8.1:

Let i ∈ Z2
M and assume that̃XM (i) ≤ Nγ , that is assume thatSM (i)∩M(X̃M ) = ∅.

Then, for eachγ′ ∈ (γ + 2b, 1),

{i /∈ M(X̃M )} ∩ �+ =⇒ {X(k) ≤ cNγ′ ∀ k ∈ SM (i)}.
This implication is explained in Subsect. 8.1. Finally, the inequality 1 + 2δ < γ + 4b is
used to prove the volume filling estimate of Subsect. 3.3.
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3.2. Proof of Theorem 2.2.1.

Proposition 3.2.1. For all A ⊆ SN and for anyt ∈ R+, the following estimate holds:

PA

( ∑
k∈SN

|X(k) − X̃M (k)| ≥ tN3

)
≤ exp

(
cN2 − 1

c
N2+8bt2

)
. (3.2.1)

Remark 3.2.2.The claim of Theorem 2.2.1 follows from the proposition above, if we
taket = N−δ for δ small enough.

Proof. We follow [13], to estimate

PA

( ∑
k∈SN

|X(k) − X̃M (k)| ≥ tN3

)
≤ 2(2N+1)2 max

σ∈{−1,1}SN

PA(YM (σ) ≥ N3t),

(3.2.2)
where

YM (σ)
1
=

∑
k∈SN

σ(k)(X(k) − X̃M (k)).

Now, YM (σ) is zero mean Gaussian under eachPA with the varianceV (A, σ)
1
=

EA(YM (σ))2 given by

V (A, σ) =
∑

k,k′∈Z2
M

∑
i∈SM (k)

i′∈SM (k′)

σiσi′ λ̄A(i, i′), (3.2.3)

whereλ̄A(•, •) is given by

λ̄A(i, i′)
1
= GA(i, i′) −

∑
j

0M (k − j)GA(j, i′)

−
∑
j′

0M (k′ − j′)GA(i, j′)

+
∑
j,j′

0M (k − j)0M (k′ − j′)GA(j, j′).

GA above stays for the Green function of the simple random walk onA with zero
boundary conditions, and the smoothing kernel0M was defined in (2.2.2).

Pick nowa ∈ (0, 1),a > b, (the exact value is to be specified later), and setL = Na.
In order to split the right-hand side in (3.2.3) define

∂LA = { k ∈ A : min
l∈Ac

‖k − l‖ ≤ L }.

We introduce, then, the following families of pairs of subindices (k, k′) ∈ Z2
M × Z2

M :

A1 = { (k, k′) : ‖k − k′‖ ≥ 2L + 1 and{k, k′} ∩ (A \ ∂LA) 6= ∅ },

A2 = { (k, k′) : ‖k − k′‖ ≤ 2L },

A3 = { (k, k′) : {k, k′} ⊆ Ac ∪ ∂LA }.
Setting
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9(k, k′)
1
= max

σ∈{−1,1}SN

∣∣∣∣ ∑
i∈SM (k)

∑
i′∈SM (k′)

σiσiλ̄A(i, i′)
∣∣∣∣,

we obtain:

V (A, σ) ≤
∑
A1

9A(k, k′) +
∑
A2

9A(k, k′) +
∑
A3

9A(k, k′). (3.2.4)

Estimate on
∑

A1
. Assume thatk ∈ A \ ∂LA and‖k− k′‖ > 2L + 1. This means that

SL(k) ⊆ A \ SL(k′). Consequently, for eachl ∈ SL(k′), the function

i 7→ GA(i, l)

is harmonic onSL(k). Therefore, fori ∈ SM (k) andi′ ∈ SM (k′),

λ̄A(i, i′) = [GA(i, i′) −GA(k, i′)] +
∑

j′∈SN (k′)

0M (k′ − j′)[GA(k, j′) −GA(i, j′)].

Similarly, for eachl ∈ SM (k′), the function

i 7→ GA(i, l) −GA(k, l)

is again harmonic onSL(k) and equals zero ati = k. Also, by Theorem 1.6.6 in [20],

GA(i, l) ≤ GSN
(0, 0) ≤ c logN. (3.2.5)

Consequently, using Theorem 1.7.1. a) of [20], we infer that there exists a constant
c > 0, such that

max
(k,k′)∈A1

max
i∈SM (k)

i′∈SM (k′)

|λ̄A(i, i′)| ≤ c
M

L
logN.

Therefore, ∑
A1

9A(k, k′) ≤ cN4N b−a logN (3.2.6)

for somec > 0.

Estimate on
∑

A2
. From (3.2.5) and a trivial estimate

|A2| ≤ N2+2a−4b,

it follows that ∑
A2

9A(k, k′) ≤ cN2+2a logN. (3.2.7)

Estimate on
∑

A3
. Note, first of all, that∑

i∈SM (k)

∑
i′∈SM (k′)

σ(i)σ(i′)λ̄A(i, i′) =
∑
i,i′

GA(i, i′)0̄M (σ)(i, i′),

where
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0̄M (σ)(i, i) = σ(i)σ(i′) − σ(i)0M (k, i′)
∑

l′∈SM (k′)

σ(l) − σ(i′)0M (k − i)
∑

l∈SM (k)

σ(l)

+ 0M (k − i)0M (k′ − i′)
∑

l∈SM (k)

σ(l)
∑

l′∈SM (k′)

σ(l′).

However, due to our definition of the kernel0M (•) and by the well known results
on the exit distribution of the simple random walk (see e.g. Lemma 1.7.4 in [20]), there

exists a constantc > 1, such that
1

cM2
≤ 0M (l) ≤ c

M2
for all l ∈ SM . As a result, all

|0̄M | are, independently ofM andσ, bounded above by some finite constantc > 0, and∑
A3

9A(k, k′) ≤ c
∑

i,j∈∂LA

GA(i, j). (3.2.8)

Thus, it remains to estimate the right-hand side of (3.2.8).
Let τA be the exit time of a simple random walk (RW) fromA. Define the following

sequence of stopping times:

τ1 = inf{n ≥ 0 : ηn ∈ ∂LA,n < τA },
and form ≥ 1,

τm+1 = inf{n ≥ L2 + τm : ηn ∈ ∂LA,n < τA }
(with the usual convention inf{∅} = ∞). Then, for eachi ∈ ∂LA,

∑
j∈∂LA

GA(i, j) = ERW
i

τA∑
n=0

1∂LA(ηn) ≤ L2
∞∑

m=1

PRW
i (τm < ∞).

Now, for eachi ∈ ∂LA,

PRW
i (τA > L2) ≤ 1 − min

‖k‖≤L
PRW

0 (τ{k} ≤ L2).

But,
PRW

0 (τ{k} ≤ L2) ≥ %/ logL ∀ k : ‖k‖ ≤ L (3.2.9)

for some% > 0. In fact, we have by the last exit decomposition

PRW
0 (τ{k} ≤ L2) ≥

L2∑
m=1

PRW
0 (ξm = k) PRW

0 (τ{0} > L2).

From the standard local central limit theorem, we havePRW
0 (ξm = k) ≥ c/L2, if

L2/2 ≤ k ≤ L2, andm has the same parity ask. Therefore

L2∑
m=1

PRW
0 (ξk = k) ≥ c > 0.

On the other hand, it is known thatPRW
0 (τ{0} > L2) ∼ π/2 logL (see [31], Sect. 16,

Theorem E.1). Therefore, (3.2.9) follows. Consequently,

PRW
i (τm < ∞) ≤ (1 − %/ logL)m,
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and ∑
A3

9A(k, k′) ≤ cN2+2a logN. (3.2.10)

Combining (3.2.6), (3.2.7) and (3.2.10), we obtain that there existsc > 0, such that
∀A ⊆ SN ,

max
σ∈{−1,1}SN

V (A, σ) ≤ c(N2+2a logN + N4+b−a). (3.2.11)

Therefore withb ∈ (0, 1) fixed the optimala to yield the best possible estimate along
these lines is given by 2 + 2a = 4 + b− a < 4. For our purposes, however, it would be
sufficient to remark that for a choice ofb ∈ (0, 1) small enough, (3.2.11) implies that

max
σ∈{−1,1}SN

V (A, σ) ≤ cN4−8b.

In a view of (3.2.2) this leads to the claim of the proposition.

3.3. Volume filling estimate. The volume filling lemma (Lemma 2.2.2) is a direct
consequence of (3.2.1). Indeed if|B \A| ≥ N2−δ, thenPA-a.s. on{M(X̃M ) = B},∑

k∈SN

|X(k) − X̃M (k)| ≥ N2−δ+γ .

Therefore, by virtue of (3.2.1), for any suchA,

PA

(M(X̃M ) = B
) ≤ exp

(
cN2 − 1

c
N2(γ+4b−δ)

)
.

Thus, (2.2.7) follows, as soon as

γ + 4b − δ > 1 + δ,

which is one of the two scaling conditions, specified in Subsect. 3.1.

4. Estimates on Partition Functions

4.1. Random walk representation.Recall that forA b Z2, we have definedZA as

ZA =
∫

RA

exp

(
1
2
〈1Ax, x〉

) ∏
k∈A

dxk,

where1A is the discrete Dirichlet Laplacian onA ⊆ Z2;

1A = 4(PA − I),

whereI is the identity operator, andPA the transition matrix of the simple random walk,
killed at exiting fromA. Let λA

k ; k = 1, . . . , |A|, be the eigenvalues of−1A, andµA
k ;

k = 1, . . . , |A|, the corresponding eigenvalues ofPA;

λA
k = 4(1− µA

k ).

Then,
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logZA =
|A|
2

log 2π − 1
2

|A|∑
k=1

logλA
k =

|A|
2

log
π

2
− 1

2

|A|∑
k=1

log(1− µA
k ). (4.1.1)

We follow [14] in our approach to the right-hand side of (4.1.1): Note, first of all, that

|A|∑
k=1

log(1− µA
k ) = −

∞∑
n=1

1
n

|A|∑
k=1

(µA
k )n = −

∞∑
n=1

1
n

Tr(Pn
A).

Furthermore, since obviously Tr(Pn
A) = 0 for any oddn, we obtain:

|A|∑
k=1

log(1− µA
k ) = −

∞∑
n=1

1
2n

Tr(P 2n
A ). (4.1.2)

To investigate the right-hand side of (4.1.2) we use the following random walk
representation:

Tr(P 2n
A ) =

∑
k∈A

PRW
k (η2n = k; τA > 2n),

and, consequently,

−
|A|∑
k=1

log(1− µA
k ) =

∑
k∈A

∞∑
n=1

1
2n

PRW
k (η2n = k, τA > 2n), (4.1.3)

whereτA is the first exit time fromA.

4.2. Estimates ofZA. It is easy to see what the volume term of (4.1.3) is. LetT1, T2, . . .
be the hitting times of 0⊂ Z2 by our random walk. Set

q = ERW
0

∞∑
k=1

1
Tk

=
∞∑
n=1

1
2n

PRW
0 (η2n = 0). (4.2.1)

Then, as it follows from (4.1.3),

−
|A|∑
k=1

log(1− µA
k ) ≤ q|A|. (4.2.2)

Remark 4.2.1.Note that the right-hand side of (4.2.1) is summable, since by the local
CLT (see e.g. [20], Theorem 1.2.1),PRW

0 (η2n = 0) ∼ 1/n.

Proposition 4.2.2. Define

r =
∞∑
n=1

1
2n

ERW
0

(
max

1≤m≤2n
|ηm|

)
1{η2n=0}. (4.2.3)

Then,r < ∞, and for eachA b Z2,

−
|A|∑
k=1

log(1− µA
k ) ≥ q|A| − rmax

t
|∂At|, (4.2.4)

whereAt was defined in Subsect. 2.3.
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Proof. Consider

g(n)
1
= ERW

0

(
max

1≤m≤2n
|ηm| | η2n = 0

)
.

We claim that
g(n) ≤ c

√
n (4.2.5)

for somec > 0. Since, as mentioned before,PRW
0 (η2n = 0) ∼ 1/n, thenth term in the

sum on the right-hand side of (4.2.3) is, thereby, of ordern−3/2, andr < ∞ as claimed.
To show (4.2.5) setYn = max

1≤m≤2n
|ηm|. Then, for eachK ∈ Z+,

g(n) = ERW
0 (Yn | η2n = 0) ≤ K +

∑
k≥K

PRW
0 (Yn ≥ k | η2n = 0). (4.2.6)

However,

PRW
0 (Y ≥ k | η2n = 0) =

1
PRW

0 (η2n = 0)
ERW

0 1{τSk≤2n}1{η2n=0}, (4.2.7)

whereτSk
is the exit time from the boxSk. Decomposing the expectation in the right-

hand side of (4.2.7) we obtain

ERW
0 1{τSk

≤2n}1{η2n=0} =
2n∑

m=1

ERW
0 1{τSk=m}PRW

ηm
(η2n−m = 0).

By the local CLT,∀ y : ‖y‖ = k ∈ [K, 2n],

PRW
y (η2n−m = 0) ≤ (1 + o(1))

2
π(2n−m)

exp

(
− k2

2n−m

)
.

Therefore, optimizing in the right-hand side above and substituting the result into (4.2.7),
we obtain that

PRW
0 (Y ≥ k | η2n = 0) ≤ c

n

k2
PRW

0 (Yn ≥ k)

for somec > 0. Thus, choosingK =
√
n, we infer from (4.2.6) that

g(n) ≤ √
n + c

∑
k≥√

n

PRW
0 (Yn ≥ k) ≤ √

n + cERW
0 Yn.

Finally, ERW
0 Yn is of order

√
n by the usual submartingale argument.

We turn now to the proof of (4.2.4): By (4.1.3),

−
|A|∑
k=1

log(1− µA
k ) = q|A| −

∑
k∈A

∞∑
n=1

1
2n

PRW
k (η2n = k, τA ≤ 2n). (4.2.8)

Recall that fort ∈ N we definedAt = { k ∈ A : min
l∈Z2\A

‖l−k‖ ≥ t }. Now, if k ∈ ∂At,

∞∑
n=1

1
2n

PRW
k (η2n = k, τA ≤ 2n) ≤

∞∑
n=1

1
2n

PRW
0 (η2n = 0;τSt ≤ 2n).

Therefore,
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∑
k∈A

∞∑
n=1

1
2n

PRW
k (η2n = k, τA ≤ 2n)

≤ max
t

|∂At|
∞∑
t=1

∞∑
n=1

1
2n

PRW
0 (η2n = 0, τSt

≤ 2n). (4.2.9)

However,
∞∑
t=1

PRW
0 (η2n = 0;τSt

≤ 2n) = ERW
0 Yn1{η2n=0},

where, as before,Yn = max
1≤m≤2n

‖ηm‖. Consequently, the right-hand side of (4.2.9) equals

rmax
t

|∂At|, and, substituting the latter estimate into (4.2.8), we arrive at the claim of

the proposition.
Our next task is to prove the decoupling estimate (2.3.5). LetA, B, C be as in the

conditions of Lemma 2.3.1 c), i.e.B ⊆ SN is a mesoscopic region,A ⊆ SN \ B and
C ⊆ B. Then it follows from (4.1.1) and the representation (4.1.3),

0 ≤ 2 log
ZA∨C

ZAZC
=

∑
k∈A

∞∑
n=1

1
2n

PRW
k (η2n = k; τA ≤ 2n < τA∨C)

+
∑
k∈C

∞∑
n=1

1
2n

PRW
k (η2n = k, τC ≤ 2n < τA∨C). (4.2.10)

The contribution to the right-hand side of (4.2.10) comes only from those random
walks, which start inA (respectivelyC), and in 2n steps visitC (respectivelyA) without
leavingA ∨ C. Any such random walk has to cross∂BC

1
=∂B ∩ C. Consequently

2 log
ZA∨C

ZAZC
≤

∑
k∈∂BC

∞∑
n=1

PRW
k (η2n = k, τA∨C > 2n)

≤ |∂BC| max
k∈∂BC

∞∑
n=1

PRW
k (η2n = k; τSN

> 2n)

= |∂BC| max
k∈∂BC

GSN
(k, k),

whereGSN
is the Green’s function of the simple random walk, killed upon an exist

from SN . However, by Theorem 1.6.6 of [20], max
k∈SN

GSN
(k, k) ≤ c logN for some

c > 0. Also, by the very definition of the mesoscopic region,|∂BC| ≤ |∂B| ≤ cN2−b.
Therefore,

1
2

log
ZA∨C

ZAZC
≤ c logN |∂BC| ≤ cN2−b logN

as was asserted in (2.3.5).

4.3. Estimates on̂ZB . The partition functionẐ• obviously possesses the following
superadditive property:

B ∩B′ = ∅ ⇒ log ẐB∨B′ ≥ log ẐB + logẐB′ . (4.3.1)
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Because of the results of the previous subsection, one can supplement (4.3.1) with an
appropriate lower bound:

ẐB∨B′ =
∑
A⊆B

∑
C⊆B′

e−J(|A|+|C|)ZA∨C ≤ exp(c|∂B′| logN )ẐBẐC , (4.3.2)

where,
|∂BB

′| = |{ k ∈ B′ : ∃ l ∈ B with ‖k − l‖ = 1}| ≤ cN2−b.

For eachk ∈ Z+, defineQ(k) = 1
|Sk| log ẐSk

. Then,{Q(2mk)}∞
m=1 is an increasing

sequence, and, by (4.3.2),

Q(2mk) ≤ Q(2m+1k) ≤ Q(2mk) +
c

2mk
log 2mk.

Thus, if we define,
q̂ = lim

m→∞Q(2mk), (4.3.3)

then, fork < N ,

Q(k) ≤ q̂ ≤ c
logN
k

+Q(k).

Of course, we have to justify the tacit assumption that ˆq in (4.3.3) doesn’t depend on the
basek chosen, but this again follows from (4.3.2), since for allk, l ∈ Z+,

Q(k) ≤ Q(kl) ≤ Q(k) + c
logk
k

,

and, in a completely symmetric way,

Q(l) ≤ Q(kl) ≤ Q(l) + c
log l
l
.

In particular, forM = N b,

Q(M ) ≤ q̂ ≤ Q(M ) + cN−b logN. (4.3.4)

Therefore, for a mesoscopic regionB =
∨

k∈B⊆Z2
M
SM (k),∑

k∈B
log ẐSM (k) ≤ log ẐB ≤

∑
k∈B

log ẐSM (k) + cN2(1−b) logN.

Since logẐSM (k) = (2N b+1)2Q(M ), |B| = (2N b+1)2|B|, and also due to our assumption
|B| ≥ tN2, we conclude that for somec = c(t) > 0,

Q(M ) ≤ 1
|B| log ẐB ≤ Q(M ) + cN−b logN,

and (2.3.4) now follows from (4.3.4).

4.4. The hard wall condition. If D ⊂ SN , we denote by∂+D the outer boundary of
D, i.e. the points which are not inD but have a neighbor point inD. If x ∈ (R+)∂

+D,
we writePD,x for the law of the free field onRD with boundary conditionx on ∂+D.
With this notation, we havePD,0 = PD, where the latter is restricted to configurations
onD. We will need some properties of FKG type.
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Lemma 4.4.1. a) For all x ∈ (R+)∂
+D, we have

PD,x(�+) ≥ PD(�+).

b) LetD1 ⊂ D2 andf : RD1 → R be bounded, measurable and increasing in all
arguments. Then

ED1(f (X) | �+) ≤ ED2(f (X) | �+).

Proof. a) Lethx be the solution of the discrete Dirichlet problem inD, with boundary
conditionx on ∂+D. If X(i), i ∈ D, is distributed according toPD, thenX(i) + hx(i)
is distributed according toPD,x. Ashx ≥ 0, the statement follows.

b) If A ⊂ SN , let �A
+ be the event{X(i) ≥ 0, i ∈ A}. It was proved in [10],

Lemma 3.1 that forA ⊂ B the law PB( • | �A
+ ) on RB is associated, i.e. for any

bounded measurable functionsf1, f2 : RB → R which are increasing in all arguments,
one has

EB(f1f2 | �A
+ ) ≥ EB(f1 | �A

+ )EB(f2 | �+
A).

(See the proof of Lemma 3.1 of [10].) We apply this toB , D2 andA , (D1∪∂+D1)∩
D2. SettingP+

B,A ≡ PB( • | �A
+ ), we obtain for anyt > 0 ,

E+
B,A(f (X) |X(i) ≤ t, i ∈ ∂+D1 ∩D2) ≤ E+

B,A(f (X)).

Letting t ↓ 0, the l.h.s. converges toED1(f (X) | �+), and so we have

ED1(f (X) | �+) ≤ ED2(f (X) | �+
A).

Using the fact thatf and 1�D2\A
+

are increasing, the r.h.s. is

≤ ED2(f (X) | �+),

which proves the claim. �

Lemma 4.4.2. Let ε > 0. Then there existsNε ∈ N such that forN ≥ Nε and all
D ⊂ SN , we have

PD(�+) ≤ 2PD

(
�+,max

i
Xi ≤ Nε

)
.

Proof.

PD(�+) = PD

(
�+,max

i
Xi ≤ Nε

)
+ PD

(
max

i
Xi > Nε | �+

)
PD(�+). (4.4.1)

By Lemma 4.4.1b), we have

PD

(
max

i
Xi > Nε | �+

)
≤ PSN

(
max
i∈SN

Xi > Nε | �+

)
≤ PSN

(
max
i∈SN

Xi > Nε
)
/PSN

(�+). (4.4.2)

The numerator is estimated in a rough way by

PSN

(
max
i∈SN

Xi > Nε
)

≤ 5N2 max
i

PSN
(Xi > Nε) ≤ 5N2 exp

(
−c N

2ε

logN

)
,

as the maximal variance ofXi underPSN
is of order logN . PSN

(�+) is of order
exp(−c(logN )2) ([5]). �
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Let nowA,C,B be as in the statement of Lemma 2.3.1, i.e.B is a mesoscopic region,
andC ⊂ B, A ⊂ SN \ B. Let ∂−B be the set of points inB which are at distance 1
from ∂B, i.e. those points inB which can be joined by two bonds of the lattice with
Bc but not with one. LetD− , ∂−B ∩ C,D , ∂B ∩ C,D+ , ∂+B ∩ A. We denote
by Y +, Y −, Y the restriction of a configurationX to D+, D−, andD respectively. If
y+ ∈ RD+

, y− ∈ RD−
, y ∈ RD, we denote byf (y+, y− | y) the conditional density of

thePA∨C-law of (Y +, Y −) givenY = y.

Lemma 4.4.3. If ε > 0, then there existsc > 0 such that

| logf (y+, y− | y) − logf (y+, y− | 0)| ≤ c|D|N2ε,

for 0 ≤ y, y+, y− ≤ Nε. Here we write0 ≤ y ≤ Nε if all the components ofy satisfy
this condition.

Proof. With an abuse of notation, we writef (y+, y−) for the density of (Y +, Y −) under
PA∨C , f (y) for the density ofY , andf (y | y+, y−) for the conditional density ofY given
(Y +, Y −). Writing

f (y+, y− | y) =
f (y | y+, y−)f (y+, y−)

f (y)
,

we see that it suffices to prove

| logf (y | y+, y−) − logf (0 | y+, y−)| ≤ c|D|N2ε, (4.4.3)

and
| logf (y) − logf (0)| ≤ c|D|N2ε, (4.4.4)

uniformly in 0 ≤ y, y+, y− ≤ Nε. For some positive functionϕ : RD+∪D− → R, we
have

f (y | y+, y−)

= ϕ(y+,y−) exp

{
−1

2

∑
i∈D

j∈D+,|i−j|=1

(y(i)−y+(j))2 − 1
2

∑
i∈D

j∈D−,|i−j|=1

(y(i)−y−(j))2

}
.

Using this, (4.4.3) clearly follows. To prove (4.4.4), we introducef̄ (y) as the density of

PA∨C{Y ∈ •, |Y +| ≤ 2Nε, |Y −| ≤ 2Nε}.
Clearly

f (y) = f̄ (y) + f (y) PA∨C

(
max

i∈D+∪D−
|X(i)| > 2Nε |Y = y

)
. (4.4.5)

By a similar argument as in the proof of Lemma 4.4.2, we have

lim
N→∞

PA∨C

(
max

i∈D+∪D−
|X(i)| > 2Nε |Y = y

)
= 0,

uniformly inA,C ⊂ SN , and|y| ≤ Nε. Using this, we get from (4.4.5):

f̄ (y) ≤ f (y) ≤ 2f̄ (y), (4.4.6)

uniformly inA,C ⊂ SN , |y| ≤ Nε, providedN is large enough. Now
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f̄ (y) =
∫

{y+,|y+|≤2Nε}

∫
{y− : |y−|≤2Nε}

f (y | y+, y−) PA∨C(Y +, Y −)−1 (dy+, dy−).

By an obvious slight modification of the argument leading to (4.4.3), this proves (4.4.4).
�

Proof of Lemma 2.3.1d) For two expressionsϕ(A,C,N ), ψ(A,C,N ) > 0, where
C ⊂ B,A ⊂ SN \B,B mesoscopic, we writeϕ ∼ ψ if

| logϕ(A,C,N ) − logψ(A,C,N )| ≤ c|D|N2ε,

for anyε, uniformly inA,B, C, if N is large enough. Let

C ′ , C \ (D ∨D−), A′ , A \D+.

If y+ ∈ RD+
, y− ∈ RD−

, we writeỹ(y+, y−) for the boundary condition on∂+(A′ ∨C ′)
which isy+ onD+, y− onD− and 0 otherwise.

Using Lemma 4.4.2, we get

PA∨C(�+) ∼ PA∨C(�+ andY, Y +, Y − ≤ Nε)

=
∫

{0≤y≤Nε}
PA∨CY

−1(dy)
∫

{0≤y+,y−≤Nε}
dy+ dy−f (y+, y− | y) P

A′∨C′,ỹ(�+)

∼
∫

{0≤y≤Nε}
PA∨CY

−1(dy)
∫

{0≤y+,y−≤Nε}
dy+ dy−f (y+, y− | 0)P

A′∨C′,ỹ(�+)

= PA∨C(0 ≤ Y ≤ Nε) P(A∨C)\D(�+, 0 ≤ Y +, Y − ≤ Nε)

∼ P(A∨C)\D(�+)

= PA(�+) PC′ (�+),

where we have used Lemma 4.4.3 and Lemma 4.4.2. Applying that toA = ∅, we get

PC(�+) ∼ PC′ (�+),

and therefore
PA∨C(�+) ∼ PA(�+) PC(�+). �

5. Stability Results for the Torsional Rigidity

5.1. Main estimate.We use the notations introduced in Subsect. 2.4. SinceuD is analytic
in the interior ofD, ∇uD = 0 at most at finitely many points insideD, and0µ

1
=∂levµuD

is an analytic curve for all, except finitely manyµ ∈ [0,maxuD]. Following [2],

a′(µ) = −
∫

0µ

ds

|∇uD| = −|0µ| 1
|0µ|

∫
0µ

ds

|∇uD| ,

where we use|0µ| to denote the length of0µ. Therefore, by Jensen’s inequality,

a′(µ) ≤ −|0µ|
(

1
|0µ|

∫
0µ

|∇uD| ds
)−1

= −|0µ|2
a(µ)

.
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Consequently,

µ′(a) =
1

a′(µ)

∣∣∣∣
µ=µ(a)

≥ − a

l2D(a)
≥ − 1

4π
,

for all but at most finite number ofa ∈ [0, |D|]. Now note that

χ(D) =
∫

D

uD(x) dx =
∫ |D|

0
µ(a) da

= −
∫ |D|

0
aµ′(a) da ≤

∫ |D|

0

a2

l2D(a)
da, (5.1.1)

and (2.4.1) follows.
An explicit calculation reveals that

χ(B|D|) =
∫ |D|

0

a2

s(a)2
da =

|D|2
8π

. (5.1.2)

Subtracting (5.1.1) from (5.1.2) (recalls(a) = 2
√
πa), we obtain

χ(B|D|) − χ(D) ≥
∫ |D|

0
a2

(
1

s(a)2
− 1
l2D(a)

)
da ≥ 1

4π

∫ |D|

0
a

(
1 − s(a)

lD(a)

)
da,

(5.1.3)
and the proof of Theorem 2.4.1 is, thereby, concluded.

5.2. Stability of the inradius.LetD ⊆ S(1) be a simply connected (but not necessarily
connected) domain with a piecewise smooth boundary. Since for eacha ∈ [0, |D|], the
inradius%(Da) of Da satisfies%(Da) ≤ %(D), the Bonnensen inequality (see e.g [25],
(4.7)) implies that

lD(a)2 − s(a)2 ≥ π2

(√
a

π
− %(D)

)2

for eacha ∈ [π%(D)2, |D|]. Therefore,

lD(a)
s(a)

≥
(

1 +
π

4a

(√
a

π
− %(D)

)2)1/2

,

and, consequently,

1 − s(a)
lD(a)

≥ 1 −
(

1 +
1
4a

(
√
a− √

π%(D))2

)−1/2

.

At this point we stop pushing for precise constants, and simply observe that due to a
trivial estimate;∀α ≥ 0, 1 − (1 +α)−1/2 ≥ α/2(1 +α),

1 − s(a)
lD(a)

≥ 1
c

(a− π%(D)2),

for all a ∈ [π%(D)2, |D|] andc large enough. Substituting this into (5.1.3), and perform-
ing the integration over the intervala ∈ [π%(D)2, |D|], we infer that,

χ(B|D|) − χ(D) ≥ 1
c

(|D| − π%(D)2)3, (5.2.1)

and the claim of Lemma 2.4.2 follows.
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Remark 5.2.1.As mentioned in the introduction, our stability estimate (5.2.1) readily
implies stability in terms of the area of the symmetric difference functiond1(•), intro-
duced in (2.4.3). Indeed, for a simply connectedD,

d1(D) ≤ 2(|D| − π%(D)2) ≤ c 3

√
(χ(B|D|) − χ(D)). (5.2.2)

We shall see in Subsect. 5.4 that such an estimate can be easily extended to the case of
not simply connected domains as well.

5.3. Stability of crystal shapes.Let D ⊆ S(1) be as in the previous subsection, and
assume without loss of generality that the largest inscribed circle ofD is centered at the
origin, i.e. that

Bπ%(D)2 ⊆ D.

We are going to estimate‖uv
D − hv‖L1(R2). Lethr

v(•) denote the shape of the harmonic
droplet of the volumev, which is bound to wet the circle of radiusr, centered at the
origin (see (1.2.6) and (1.2.7),

hr
v(x) =

2v
πr2

(r2 − |x|2) ∨ 0.

Setr(D) =
√

|D|
π . Then, for anyα > 0,

‖uv
D − hv‖L1(R2) ≤ ‖uv

D − h%(D)
αv ‖L1 + ‖hr(D)

v − h%(D)
αv ‖L1

+ ‖hv − hr(D)
v ‖L1. (5.3.1)

We chooseα = χ(Bπ%(D)2)/χ(D), so that

h%(D)
αv =

v

χ(D)
uBπ%(D)2

.

Then, using monotonicity in domain of the solution of the Poisson equation with Dirichlet
boundary condition,

‖uv
D − h%(D)

αv ‖L1 = v

(
1 − χ(Bπ%(D)2)

χ(D)

)
(5.3.2)

and

‖hr(D)
v − h%(D)

αv ‖L1 = v

(
1 − χ(Bπ%(D)2)

χ(B|D|)

)
.

On the other hand, a straightforward computation reveals that

‖hr(D)
v − hv‖L1 =

v

2π
| |D| − ā|
|D| + ā

. (5.3.3)

To facilitate notations set1(D) = Ev
f (D) − Ev

f (Bā). Then,

1(D) ≥ max{Ev
f (D) − Ev

f (B|D|) , Ev
f (B|D|) − Ev

f (Bā)}.
SinceEv

f (B|D|) can be computed exactly, we infer that for somec > 0,
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Ev
f (B|D|) − Ev

f (Bā) ≥ 1
c

(|D| − ā)2,

or, substituting the above estimate into (5.3.3),

‖hr(D)
v − hv‖L1 ≤ c

√
1(D). (5.3.4)

On the other hand,

1(D) ≥ Ev
f (D) − Ev

f (B|D|) =
v2(χ(B|D|) − χ(D))

2χ(B|D|)χ(D)
≥ (πv)2

8
(χ(B|D|) − χ(D)),

(5.3.5)
the last inequality follows from (1.2.6 and the fact thatD ⊆ S(1) (and hence, by (1.2.6),
bothχ(B|D|)) andχ(D) are bounded above by 2/π).

By (5.2.1) this means that one can choosec = c(v), such that

|D| − π%(D)2 ≤ c(v) 3
√

1(D).

Consequently, we can use (1.2.6) to derive,

χ(D) − χ(Bπ%(D)2) ≤ χ(B|D|) − χ(Bπ%(D)2) =
|D|2 − (π%(D)2)2

8π

≤ 1
π

(|D| − π%(D)2) ≤ c 3
√

1(D).

Substituting the latter inequalities into (5.3.2) and (5.3.3), we finally obtain

‖uv
D − h%(D)

αv ‖L1 ≤ c

χ(D)
3
√

1(D) (5.3.6)

and

‖h
√

|D|/π
v − hv‖L1 ≤ c

|D|2
3
√

1(D) (5.3.7)

Since for anyk > 0,Ev
f (D) ≤ k ⇒ χ(D) ≥ v2/2k, (5.3.1) and (5.3.4)–(5.3.7) imply

that there existsc > 0, such that

min
x∈S(1)

‖uv
D − hv(• + x)‖L1 ≤ c 3

√
1(D), (5.3.8)

uniformly in simply connected domainsD ⊆ S(1).

5.4. Estimates for general domainsD ⊆ S(1). It remains to prove Lemma 2.4.3 in
the case whenD ⊆ S(1) is not necessarily simply connected. For such a domainD
let {Da}a∈[0,|D|] be the rearrangement of the level sets ofuD, defined in Subsect. 2.4.
Recall that

1(D) ≥ Ev
f (D) − Ev

f (B|D|) =
v2

2

(
1

χ(D)
− 1
χ(B|D|)

)
.

Since we are interested only in the case of1(D) being small, we may assume thatχ(D)
is bounded away from zero uniformly in all domainsD in question. Then, by virtue of
(2.4.2),
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1(D) ≥ 1
c

∫ |D|

0
a

(
1 − s(a)

lD(a)

)
da.

Settinga∗ = max{a : lD(a) ≤ s(a)+
√

1(D)}∨|D|/2, we therefore obtain (modifying
the constantc according to the convention of Remark 1.3.2):√

1(D) ≥ |D| − a∗

c
=

|D \D∗|
c

,

whereD∗ 1
= Da∗ . SinceD∗ is a level set ofuD, and using the estimate onµ′ derived at

the beginning of Subsect. 5.1, we conclude that

max
x∈D\D∗

uD(x) ≤ 1
4π

|D \D∗|.

Consequently,

‖uD − uD∗‖L1 = χ(D) − χ(D∗) ≤ c
√

1(D)
and

1(D∗) ≤ c
√

1(D).
(5.4.1)

Thus everything boils down to the following problem:
GivenD ⊆ S(1) with a piecewise smooth boundary∂D satisfying

|∂D| ≤ s(|D|) + 1(D),

prove that:
inf

x∈S(1)
‖uv

D − hv(x + •)‖L1 ≤ c 3
√

1(D). (5.4.2)

Again, since we are interested only in the case of1(D) being small, it can be assumed
from the beginning that|D| ≥ ā/2. First of all, notice, that ifD contains two disjoint
components,D = D1 ∨D2, then

χ(D) = χ(D1) + χ(D2) ≤ χ(B|D|)
( |D1|2 + |D2|2

|D|2
)

= χ(B|D|)
(

1 − 2|D1||D2|
|D|2

)
,

and, consequently,

Ev
f (D) ≥ 1f |D| +

v2

2χ(B|D|)

(
1 − 2|D1||D2|

|D|2
)−1

≥ Ev
f (B|D|) +

v2

2π
2|D1||D2|

|D|2 .

Therefore,
2|D1||D2|

|D|2 ≤ 2π
v2

1(D),

or, min{|D1|, |D2|} ≤ c1(D). Thus, in order to prove (2.5.1), one can restrict attention
to the case whereD is connected.

So assume thatD satisfies (5), is connected, but possibly not simply connected,
i.e. thatD = G \ R̄, whereG ⊆ S(1) is connected and simply connected, andR ⊂ G
is open; both domains having piecewise smooth boundaries. Since,|D| ≤ |G| and
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|∂D| = |∂G| + |∂R|, we immediately infer that|∂R| ≤ 1(D), and, consequently, that
|R| ≤ 1(D)2/4π. Furthermore,

χ(D) ≤ χ(G) ≤ χ(B|D|+|R|) =
(|D| + |R|)2

8π
≤ χ(D) + c1(D), (5.4.3)

where the last inequality follows by the estimate on|R| above and by (5.3.5) of the
previous subsection. Equation (5.4.3) and the above estimate on|R| = |G \D| already
contain all the information we need to prove (5.4.2). Indeed, we readily obtain that

1(G) ≤ c1(D) and ‖uG − uD‖L1 = χ(G) − χ(D) ≤ c1(D),

and it remains, thereby, to apply (5.3.8) to the functionuv
G over the simply connected

domainG.

6. Concentration UnderPB

( • | VN ≥ N3v
)

6.1. Gaussian concentration estimates.We give a proof of Lemma 2.5.1. Using the
representation of the approximate torsional rigidity

N4χN (A) =
∑

i

Ei(τAc ),

whereEi is the expectation of an ordinary symmetric random walk onZ2 starting ati,
andτAc is the first hitting time ofAc, we see that

χN (A) ≤ χN (SN ),

and obviously (see also Lemma 2.6.1

lim
N→∞

χN (SN ) = χ(S(1))< ∞.

Therefore, we have
K := sup

N
sup

A⊂SN

χN (A) < ∞. (6.1.1)

Now, we have
varPA

(VN ) = N4χN (A). (6.1.2)

We write

PA(‖ξN − ūv
A,N‖1 ≥ a |VN ≥ N3v)

≤
∫ v+a/2

v

PA(‖ξN − uv
A,N‖1 ≥ a |VN = N3x) PA

(
VN

N3
∈ dx

∣∣∣∣ VN ≥ N3v

)
+PA

(
VN ≥ N3

(
v +

a

2

) ∣∣∣∣ VN ≥ N3v

)
. (6.1.3)

Using (6.1.1) and (6.1.2), we get

PA

(
VN ≥ N3

(
v +

a

2

) ∣∣∣∣ VN ≥ N3v

)
≤ exp

{
−N2(v + a

2 )2

2χN (A)
− N2v2

2χN (A)

}
≤ exp

(
−N2a2

8K

)
.
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Using this, (6.1.3), and the obvious fact that

‖uv
A,N − ux

A,N‖1 ≤ |x− v|,
it suffices to prove

sup
x∈[v,v+ a

2 ]
PA

(
‖ξN − ūx

A,N‖1 ≥ a

2

∣∣∣∣ VN = N3x

)
≤ e− a2N2

c . (6.1.4)

The random field (X(i))i∈A under the conditioned lawPA( |VN = N3v) is Gaussian
with mean

EA(X(i) |VN = N3x) = NxuA,N (i)

and covariances

covA(X(i), X(j) |VN = N3x) = gA(i, j) − uA,N (i)uA,N (j)
χN (A)

,

wheregA(i, j) , EA(X(i)X(j)). Remark that

uA,N (i) =
1
N2

∑
j∈A

gA(i, j),

and asχN (A) =
∑

i∈A uA,N (i)/N2, we see that

σ2
A ,

∑
i,j∈A

|covA(X(i), X(j) |VN = N3x)| ≤ 2N4χN (A) ≤ 2N4χN (SN ). (6.1.5)

We apply now one of the standard isoperimetric inequalities for Gaussian measures (see
e.g. [21], (4.4)). First remark that

µ , EA

(∑
j∈A

|X(j) − xNuA,N (j)|
∣∣∣∣ VN = N3x

)

≤
∑
j∈A

√
gA(j, j) ≤ cN2

√
logN ≤ aN3−δ

4

if N is large enough. Therefore, using (4.4) of [21], we get

PA

(
‖ξN − ūx

A,N‖1 ≥ a

2

∣∣∣∣ VN = N3x

)
= PA

(∑
j∈A

|X(j) − xNuA,N | ≥ aN3

2

∣∣∣∣ VN = N3x

)

≤ PA

(∑
j∈A

|X(j) − xNuA,N (j)| ≥ µ +
aN3

4

∣∣∣∣ VN = N3x

)

≤ exp

(
−a2N6

32σ2

)
, (6.1.6)

where
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σ2 = sup

{
varA

(∑
j∈A

X(j)g(j)

∣∣∣∣ VN = N3v

)
: |g(j)| ≤ 1 for all j

}
≤ σ2

A.

Using (6.1.5), we see that the r.h.s. of (6.1.6) is bounded by exp(−a2N2/64χN (SN )).
As

sup
N
χN (SN ) < ∞,

we have proved Lemma 2.5.1.

7. Approximation by Discrete Quantities

7.1. Estimates on discrete rigidities. Recall that the discrete rigidityχN (A) of a
lattice domainA b Z2 was defined in (2.1.5). We follow [34] to take advantage of the
variational characterization ofχN :

1
χN (A)

= N4 inf
u≥0 in A

u=0 onZ2\A

∑
〈k,l〉(u(k) − u(l))2

(
∑

k u(k))2
, (7.1.1)

where the sum in the numerator is over all unoriented pairs of nearest neighbours inZ2.
Note, by the way, that for a domainD b R2 with a piecewiseC2 boundary, the

torsional rigidityχ(D) is given by a similar formula,

1
χ(D)

= inf
u>0 onD
u=0 onDc

∫
D

|∇u|2 dx
(
∫

D
u dx)2

. (7.1.2)

Proposition 7.1.1. LetD b R2 have a piecewiseC2 boundary, and assume that a finite
A ⊂ Z2 is such that

min{ ‖x− k‖ : x ∈ ND, k ∈ Z2 \A } ≥ 1/2. (7.1.3)

Then,
χ(D) ≤ χN (A). (7.1.4)

Proof. The proof follows Sect. 2 of [34], where a similar inequality for the membrane
problem was established. We adopt it here for the sake of completeness.

Let u ∈ H1
0(D). For each (α, β) ∈ 1

2S(1)
1
= 1

2[−1, 1]2, define

Vα,β(k) = u

(
k + (α, β)

N

)
.

Because of the condition (7.1.3),Vα,β ≡ 0 onZ2 \ A. Moreover ifu ≥ 0 onD, then
Vα,β ≥ 0 as well. By (7.1.1),∀ (α, β),(∑

k

Vα,β(k)

)2

≤ N4χN (A)
∑
〈k,l〉

(Vα,β(k) − Vα,β(l))2.

However, by Jensen’s inequality
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∫
1
2 S(1)

(∑
k

Vα,β(k)

)2

dα dβ ≥ N2
(∫

D

u(x) dx
)2
,

and ∫
1
2 S(1)

(∑
〈k,l〉

(Vα,β(k) − Vα,β(l))2

)
dα dβ ≤ 1

N2

∫
D

|∇u|2 dx.

The claim follows now by (7.1.2).

The estimate (7.1.4) controls the approximation from above by discrete rigidities. A
possibility to control it below as well is provided by the following

Proposition 7.1.2. LetA be a finite subset ofZ2 and define

A2 =
{
k ∈ Z2 : min

l∈A
‖k − 2l‖ ≤ 1

}
.

Then,
χN (A) ≤ χ2N (A2). (7.1.5)

Proof. Given a functionu : Z2 → R+, such thatu|Z2\A ≡ 0 andu is not identically
zero, let us definẽu : Z2 → R+ via

ũ(k) =
1

|A(k)|
∑

m∈A(k)

u(m), (7.1.6)

whereA(k) = {m ∈ Z2 : ‖k − 2m‖ < 1}. Then, by the direct substitution of (7.1.6),∑
k∈Z2

ũ(k) = 4
∑

m∈Z2

u(m),

and ∑
〈k,l〉

(ũ(k) − ũ(l))2 ≤
∑

〈m,n〉
(u(m) − u(n))2.

Since by the very constructioñu ≡ 0 outsideA2, (7.1.5) follows from the variational
characterization (7.1.1).

We are in a position now to prove Lemma 2.6.1. LetB ⊆ SN be a mesoscopic
region, and definēB ⊆ S(1) as in (2.6.1),

B̄ =
1
N

⋃
k∈B

(k + (1/2)S(1)).

By Propositions 7.1.1 and 7.1.2,

χ(B̄−,N ) ≤ χN (B) ≤ lim
m→∞χ2mN (B2m ),

whereB̄−,N
1
= {x ∈ B̄ : min

y∈∂B̄
‖x − y‖ > 3/N }, andB2m = (. . . (B2)2)2 . . .)2 (m

times). Using results of [6] and the monotonicity ofχ in a domain, we conclude that

χN (B) ≤ χ(B̄+,N ),
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whereB̄+,N
1
= {x ∈ R2 : min

y∈B̄
‖x − y‖ ≤ 3/N }. Consequently, for anyB ⊆ SN

mesoscopic,
|χN (B) − χ(B̄)| ≤ χ(B̄+,N ) − χ(B̄−,N ), (7.1.7)

and it remains to estimate the right-hand side of (7.1.7) uniformly inB ⊆ SN .
Let uB,+ anduB,− be the solutions of the Poisson equation onB̄+,N and B̄−,N

respectively. Set
aN = max

x∈B̄+,N \B̄−,N

uB,+(x). (7.1.8)

Then,

χ(B̄+,N ) − χ(B̄−,N ) =
∫

B̄+,N

uB,+(x) dx−
∫

B̄−,N

uB,−(x) dx

≤ aN |B̄+,N | ≤ 4aN . (7.1.9)

Indeed, forx ∈ B̄−,N ,

uB,+(x) = uB,−(x) +
∫

∂B̄−,N

uB,+(ξ)%(x, dξ),

where%(x, •) is the exit distribution (harmonic measure) on∂B̄−,N for the Brownian
motion starting atx.

In order to estimateaN in (7.1.8), letGN = 3S(1) \N b−1S(1), and letuGN
be the

solution of the Poisson equation with Dirichlet boundary conditions on∂GN . Set

a′
N = max

‖x‖≤Nb−1+9/N
uGN

(x).

By the monotonicity considerations one infers thata′
N ≥ aN for all mesoscopicB̄ ⊆

S(1). In order to estimatea′
N define a new domain

G̃N = N b−1(2S(1) \ S(1)) ⊆ GN .

ThenuGN
is majorized by the solution of the Poisson equation onG̃N subject to the

boundary conditions 0 on∂(N b−1S(1)) andmN on∂(2N b−1S(1)), where

mN = max
‖x‖=2Nb−1

uGN
(x). (7.1.10)

Then, of course,mN ≤ c independently ofN . Since the blowup of̃GN by the factor
N1−b is simply the square annulus 2S(1)\S(1), we can use Brownian scaling to conclude
that

a′
N ≤ cN−b,

and the claim of Lemma 2.6.1 follows.
Let us turn to the proof of Lemma 2.6.2. By Lemma 2.3.1, for each boxSM (k) =

(k +N bS(1)) ∩ Z2,

q|SM | ≥ logZSM (k) ≥ q|SM | − 8rN b.

Consequently, for a mesoscopicB =
⋃

k∈B⊆Z2
M
SM (k),
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q|B| ≥ logZB ≥
∑
k∈B

logZSM (k) ≥ q|B| − 8rN2−b.

On the other hand, by the estimates (2.3.5) and (2.3.6),

− cN−δ ≤ 1
N2

log
ẐB∨B′,+

ẐB,+ẐB′,+
≤ cN−δ, (7.1.11)

for any two disjoint mesoscopic regionsB andB′. Consequently, a rerun of the subad-
ditivity argument of Subsect. 4.3 reveals that the limit

q̂+
1
= lim

N→∞
1
N2

log ẐN,+

exists, and, moreover, any mesoscopicB with |B| ≥ tN2 satisfies∣∣∣∣ q̂+ − 1
|B| log ẐB,+

∣∣∣∣ ≤ cN−δ. (7.1.12)

Since by the definition1f = J + q̂+ − q, we conclude that any mesoscopic region
B ⊆ SN with |B| ≥ tN2 satisfies,

1
N2

∣∣∣∣1f |B| − log
ZB

ẐB,+

− J |B|
∣∣∣∣ ≤ cN−δ.

But, by the assumption,χN (B) ≥ t, so the latter inequality combined with Lemma 2.6.1
implies the desired estimate (2.6.3).

7.2. Approximation near the optimal shape.Let us assume that

1N (B)
1
= |Ev

N,f (B) − Ev
f (Bā)|

is small enough. Such an assumption clearly imposes restrictions onχN (B) from below,
and all the results from the previous subsections apply. The proof of Lemma 2.6.3
follows closely the scheme developed in Sect. 5, and we shall use some of the notations
introduced therein. In particular, we can restrict our attention to the case of simply
connected domains. So, let

B̄ =
1
N

⋃
k∈B

(
k +

1
2
S(1)

)
be connected and simply connected. Also let ¯% = %(B̄) be the inradius ofB̄, and, to
facilitate the notations, let us assume thatBπ%̄2 is the corresponding incircle. Note that
due to the results of the previous subsection and the stability estimate (5.2.1), we may
assume that

%̄ ≥ 1
2

√
ā

π
> 0. (7.2.1)

Finally, letBN
a be the discretization ofBa,

BN
a

1
= NBa ∩ Z2,
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and define
hr

v,N = ūv
BN

πr2 ,N .

Setα = χN (BN
π%̄2)/χN (B). Then,

‖ūv
B,N − hv‖L1 ≤ ‖ūv

B,N − h%̄
αv,N‖L1 + ‖h%̄

αv,N − h%̄
αv‖L1 + ‖h%̄

αv − hv‖L1. (7.2.2)

Since,BN
π%̄2 ⊆ B, the first term on the right-hand side of (7.2.2) equals (1−

χN (BN
π%̄2)/χN (B))v. However, in a view of Lemma 2.6.1 and (7.2.1),

χN (B) − χN (BN
π%̄2) ≤ 2(χ(B̄) − χ(Bπ%2)).

Proceeding as at the end of Subsect. 5.3, and using (2.6.3), we obtain that

χ(B̄) − χ(Bπ%̄2) ≤ c 3
√

1N (B).

By (7.2.1) bothχN (B) andχN (BN
π%̄2) are bounded below by a positive constant which

does not depend onB and%̄. Consequently, there existsc > 0, such that

‖ūv
B,N − hρ̄

αv,N‖L1 ≤ c 3
√

1N (B). (7.2.3)

For the second term on the right-hand side of (7.2.2) we can simply use results on
discretization errors [6]] for the Poisson equation on a regular domainBπ%̄2, which
assert that

‖h%̄
αv,N − h%̄

αv‖L1 ≤ c/N. (7.2.4)

Finally, the remaining term on the right-hand side of (7.2.2) can be estimated exactly as
it was done in Subsect. 5.3. Indeed, because of (7.2.1) and Lemma 2.6.2,

1(B̄) ≤ 21N (B),

and all the estimates of Subsect. 5.3 apply. Thus

‖h%̄
αv − hv‖L1 ≤ c 3

√
1N (B) (7.2.5)

for somec = c(v) > 0. Substituting (7.2.3)–(7.2.5) into (7.2.2), and following the pattern
laid down in Subsect. 5.4 to incorporate the not simply connected case, we arrive at the
conclusion of Lemma 2.6.3.

8. Proof of Theorem A

8.1. The proof. In order to facilitate notations let us define

ΞN = {X(•) : min
x∈D

‖ξN − hv(• + x)‖L1 ≥ νN},

where, as before,ξN is the plaquette reconstruction from the random fieldX(•), hv is
the optimal harmonic shape given by (1.2.7) and the sequence{νN}; lim νN = 0, is to
be appropriately selected in the course of the proof. Our derivation of the asserted rate of
convergence of̂PN,+( ΞN |VN ≥ N3v) to zero is based on the disjoint decomposition
of the eventΞN with respect to mesoscopic wetted regions:
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P̂N,+
(
ΞN |VN ≥ N3v

)
=

1

P̂N,+
(
VN ≥ N3v

) ∑
B⊆SN

mesoscopic

P̂N,+
(
ΞN ; E(v,B)

)
,

(8.1.1)

whereE(v,B)
1
= {VN ≥ N3v} ∩ {M(X̃M ) = B}.

The proof of the theorem comprises two estimates:

1. A lower bound on̂PN,+
(
VN ≥ N3v

)
and

2. Uniformly in mesoscopic regionsB ⊆ SN an upper bound on
P̂N,+

(
ΞN ; E(B, v)

)
.

Proposition 8.1.1.

P̂N,+
(
VN ≥ N3v

) ≥ exp
( −N2(mN,f + cN−δ)

)
, (8.1.2)

wheremN,f
1
= min{Ev

N,f (B) ; B ⊆ SN mesoscopic}.

Proposition 8.1.2. Let c > 0 andδ > 0 be fixed to satisfy (8.1.2) above. There exists a
sequence{νN}; lim

N→∞
νN = 0, such that for anyB ⊆ SN mesoscopic,

P̂N,+
(
ΞN ; E(B, v)

) ≤ exp
( −N2(mN,f + cN−δ) − cN2−b

)
. (8.1.3)

Since, as we have seen before, the number of all mesoscopic subregions ofSN is
bounded above by exp(N2(1−b)), the conclusion of Theorem A follows.

Proof of Proposition 8.1.1LetBN be an optimal mesoscopic region, i.e let

Ev
N,f (BN ) = mN,f .

Then,

P̂N,+
(
VN ≥ N3v

) ≥
∑

A⊇BN

e−J|A| ZA

ẐN,+

PA

(
VN ≥ N3v ; �+

)
≥

∑
A⊇BN

e−J|A| ZA

ẐN,+

PA

(
VN ≥ N3v

)
PA

(
�+

)
, (8.1.4)

where the second inequality follows from the FKG properties ofPA. Moreover, for each
A ⊇ BN ,

PA

(
VN ≥ N3v

) ≥ PBN

(
VN ≥ N3v

)
,

and, by Lemma 2.3.1 d),

PA

(
�+

) ≥ PA\BN

(
�+

)
PBN

(
�+

)
e−cN2−δ

.

Finally, as it was remarked in Sect. 4,PBN

(
�+

) ≥ e−cN2−b

uniformly in mesoscopic
regionsB. Consequently,

PN,+
(
VN ≥ N3v

)
≥ e−J|BN |−cN2−δ

PBN

(
VN ≥ N3v

) ×
∑

D⊇Bc
N

e−J|D|ZBN ∨D

ẐN,+

PD

(
�+

)
.
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By (7.1.11), ∑
D⊇SN \BN

e−J|D| ZDPD

(
�+

)
= ẐBc

N
,+ ≥ ẐN,+

ẐBN ,+

e−cN2−δ

.

Since,VN is Gaussian underPBN
,

PBN

(
VN ≥ N3v

) ≥ exp

(
−N2 v2

2χN (BN )
− c logN

)
,

and the substitution of all the above reductions into (8.1.4) leads to

P̂N,+
(
VN ≥ N3v

)
≥ exp

(
−N2

(
J

|BN |
N2

+
1
N2

log
ẐBN ,+

ZBN

+
v2

2χN (BN )

)
− cN2−δ

)
.

Equation (8.1.2) follows now by the definition (2.1.10) ofEv
N,f and the optimal choice

of BN ; Ev
N,f (BN ) = mN,f

Proof of Proposition 8.1.2We split all the mesoscopic wetted regions into two families:

F1 = {B − mesoscopic :Ev
N,f (B) > mN,f + εN}

and
F2 = {B − mesoscopic :Ev

N,f (B) ≤ mN,f + εN},
where the sequence{εN} is to be specified later.

Estimates forB ∈ F1. From now on we pick a numberγ′;

γ + 2b < γ′ < 1,

which is possible due to the choice of the scaling parametersb andγ in Subsect. 3.1.
Now,

�+ ∩ { M(X̃M ) = B } =⇒ {X(k) ≤ Nγ′
, ∀ k /∈ B }. (8.1.5)

Indeed, by Lemma 1.7.4 in [20],0(M ) ≥ δ/M = δN−2b. Therefore,

{X(k) ≥ Nγ′} ⇒ {X̃M (k) ≥ δNγ′−2b} ⇒ {X̃M (k) � Nγ},
which contradicts the assumption{k /∈ M(X̃M )}.

Next notice that one can disregard mesoscopicB-s which are too small. For fix a
small positive numbert, and assume that|B| ≤ tN2. By (8.1.5),

�+ ∩ E(v,B) =⇒ {VB ≥ N3v − cN2+γ′ ≥ N3v(1 − cN−δ)},

whereVB
1
=

∑
k∈B X(k). However, for eachA ⊆ SN , VB is a zero mean Gaussian

underPA with the variance bounded above by∑
k,l∈B

GSN
(k, l) ≤ 2N2|B| ≤ 2tN4.

Therefore,
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P̂N

(E(v,B) ; �+
) ≤ exp

(
−v2N2

4t

)
.

Thus, fort small enough (8.1.3) is automatically satisfied.
With such a small positivet fixed we can proceed to consider only thoseB ∈ F1,

for which |B| ≥ tN2. We have:

P̂N,+
(
ΞN ; E(v,B)

) ≤ P̂N,+
( E(v,B)

)
=

∑
A

e−J|A| ZA

ẐN,+

PA

( M(X̃M ) = B ; VN ≥ N3v ; �+
)
. (8.1.6)

Due to the volume filling estimate (2.2.7), any substantial contribution to the sum above
can come only from thoseA-s, which satisfy|B \ A| ≤ cN2−δ. Also, in a view of
(8.1.5), we can further develop the right-hand side of (8.1.6) using:

PA

( M(X̃M ) = B ;VN ≥ N3v ; �+
)

≤ PA

(
X|A\B≤ Nγ′

; �
A\B
+ ; VB ≥ N3(v − cN−δ)

)
.

We want to condition on the values of spins at∂A\BB, which are known to stay below

Nγ′
, to decouple between events overA∩B andA \B. As in Subsect. 4.4 letPA∩B,x

denote the Gaussian measure onA∩B subject to boundary conditionsx onSN \(A∩B).
Clearly, for each numbera ∈ R,

max
x∈[0,Nγ′ ]A\B

PA∩B,x

(
VB ≥ a

) ≤ PA∩B

(
VN ≥ a− cN2+γ′ )

.

Therefore,

PA

( E(v,B) ; �+
) ≤ PA∩B

(
VN ≥ vN3(1 − cN−δ)

)
PA

(
�

A\B
+

)
.

Finally, as it becomes apparent from the proof of Lemma 2.3.1 d) in Subsect. 4.4,

PA

(
�

A\B
+

) ≤ ecN2−δ

PA\B

(
�+

)
,

and, of course,PA∩B

(
VN ≥ a

) ≤ PB

(
VN ≥ a

)
for each numbera ∈ R.

Proceeding as in the proof of Proposition 8.1.1 we, therefore, obtain:

P̂N,+
(
ΞN ; E(v,B)

) ≤ exp
( −N2Ev

N,f (B) + cN2−δ
)
. (8.1.7)

Since it was assumed, thatEv
N,f (B) ≥ mN,f + εN , we deduce from (8.1.2) and (8.1.7)

that

P̂N,+
(
ΞN ; E(v,B)

) ≤ exp
( −N2(εN − cN−δ)

)
P̂N,+

(
VN ≥ N3v

)
.

Then, the choiceεN = cN−δ + cN−b does the job.

Estimates forB ∈ F2 So letB ⊆ SN be such, that

Ev
N,f (B) ≤ mN,f + εN . (8.1.8)

This, of course, imposes a restriction on|B| from below; for example|B| ≥ N2ā/2 for
N large enough. We proceed exactly as in theF1 case to conclude, that uniformly in
B-s satisfying (8.1.8) and inA ⊆ SN ; |B \A| ≤ cN2−δ,
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PA

(
ΞN ; E(v,B); �+

)
≤ ecN2−δ

PA\B

(
�+

)
max

x∈[0,Nγ′ ]SN \(A∩B)
PA∩B,x

(
ΞN ;VN ≥ N3v(1 − cN−δ)

)
.

If, Ev
N,f (A ∩B) ≥ mN,f + εN , then the corresponding term in the expansion

P̂N,+
(
ΞN ; E(v,B)

)
=

∑
A

e−J|A| ZA

ẐN,+

PA

(
ΞN ; E(v,B) ; �+

)
can be treated as in theF1 case. Thus, it remains to consider only thoseA-s, for which

Ev
N,f (A ∩B) < mN,f + εN . (8.1.9)

Only at this stage the eventΞN at last comes into play. Notice that for such an almost
optimalA∩B the profileūv

A∩B,N is already very close to the profile ¯uv
B,N , and hence,

by the approximation and stability results of Sects. 5 and 7, to some shift ofhv itself.
More precisely,

‖ūv
B,N − ūv

A∩B,N‖L1

≤
∥∥∥∥ūv

B,N − χN (A ∩B)
χN (B)

ūv
A∩B,N

∥∥∥∥
L1

+

∥∥∥∥(
1 − χN (A ∩B)

χN (B)

)
ūv

A∩B,N

∥∥∥∥
L1

.

However, sinceχN (A∩B) ≤ χN (B), and the integral of a positive function ¯uv
D,N is v

regardless of the regionD ⊆ SN , one infers that

‖ūv
B,N − ūv

N,A∩B‖L1 ≤ 2v

(
1 − χN (A ∩B)

χN (B)

)
.

On the other hand, the fact that|B \A| ≤ cN2−δ in conjunction with the random walk
representation of Sect. 4 and withthe inequalities (8.1.8) and (8.1.9) implies that

|Ev
N,f (B) − EN,f (A ∩B)| ≤ 2εN ,

and thatχN (B) ≥ v2/4mN,f . Consequently,

‖ūv
A∩B,N − ūv

B,N‖L1 ≤ cεN ,

and, by virtue of the stability result (2.6.4),

min
x∈S(1)

‖ūv
A∩B,N − hv(• + x)‖L1 ≤ c 6

√
εN . (8.1.10)

Thus, it remains to give an estimate on

PA∩B,x

(‖ξN − ūA∩B,N‖L1 ≥ νN ; VN ≥ N3v(1 − cN−δ)
)
,

uniformly inA,B and boundary conditionsx ∈ [0, Nγ′
]SN \(A∩B), and then to choose

the sequence{νN} in accordance with all the restrictions imposed by different estimates
involved. In fact we can reduce the bounds for differentx-s to a single estimate atx ≡ 0.
Indeed, fix anx ∈ [0, Nγ′

]SN \(A∩B) and define ¯ux to be the plaquette reconstruction
of the solution to the (discrete ) harmonic equation onA∩B with boundary conditions
x. Then, underPA∩B,x, the fieldX̃(•)

1
=X(•) − ūx(•) is Gaussian with zero boundary

conditions onSN \ (A∩B). Therefore, since by the maximum principle 0≤ ūx ≤ Nγ′
,
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PA∩B,x

(‖ξN − ūA∩B,N‖L1 ≥ νN ; VN ≥ N3v(1 − cN−δ)
)

≤ PA∩B

(‖ξN − ūA∩B,N‖L1 ≥ νN −Nγ′−1 ; VN ≥ N3v(1 − cN−δ) −Nγ′−1
)
.

Combining the latter estimate with (8.1.10), we see that the sequence{νN} should
satisfy

Nγ′−1 ∨ c 6
√
εN � νN � 1. (8.1.11)

However, once the choice of{νN} complies with (8.1.11), we are entitled to use the
concentration estimates of Sect. 6 to assert that for eachB ∈ F2 and eachA ⊆ SN ,
such that|B \A| ≤ cN2−δ,

P̂N

(
ΞN ; E(v,B)

) ≤ exp

(
−N2(mN,f − cN−δ + εN ∧ ν2

N

c
)

)
.

Recall that we have already chosenεN = c(N−b +N−δ). Then,

νN = 12
√
εN ∨N (γ′−1)/2,

both satisfies the requirement (8.1.11) and leads to the desired estimate (8.1.3).

8.2. Positivity of1f . The fact that the limit in (1.3.4) is well defined was established
in the end of Subsect. 7.1.

One can rewrite1f,N as

1f,N = 1f,N (J) =
1

|SN | log
ẐN,+

e−J|SN |ZNPSN
(�+)

+
1

|SN | logPSN
(�+),

where
ẐN,+ = ẐN,+(J) =

∑
A⊆SN

e−J|A|ZAPA(�+).

However, by the results of [10],

lim
N→∞

1
|SN | logPSN

(�+) = 0.

Consequently,1f is nonnegative.
Differentiating1f,N with respect toJ , we obtain:

d

dJ
1f,N = 1 − 1

|SN | ÊN,+|D|, (8.2.1)

and
d2

d2J
1f,N =

1
|SN |VarN,+(|D|),

whereD is the random microscopic wetted region. SinceD ⊆ SN , 1f,N is nondecreas-
ing and convex. Moreover, (8.2.1) above clearly indicates that the question of whether
1f,N > 0 for all J ∈ R or not is essentially the question of the wetting transition in
our model. We do not attempt to solve it here - such a computation would involve a
rather delicate analysis of the entropic repulsion phenomena for two-dimensional Gaus-
sian fields with 0-boundary conditions, which would be closer in spirit to [5] than to
the problems we are addressing in this article. Instead we shall give a rather crude and
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straightforward proof of the positivity of1f for large enough values ofJ . Namely, we
claim that

1f (J) >
J − log

√
2 − q

2
, (8.2.2)

whereq is defined in (4.2.1). Indeed, by the results of Subsect. 4.2,

logZN ≤ |SN |
(

1
2

log
π

2
+ q

)
.

On the other hand, a trivial computation shows that for everyA ⊆ SN ,

ZAPA(�+) ≥
(∫ ∞

0
e− x2

2 dx

)|A|
= exp

{ |A|
2

log
π

4

}
.

In particular, for anyA ⊆ SN such that|A| = |SN |
2 ,

log
e−J|A|ZAPA(�+)

e−J|SN |ZN
≥ |SN |

2

(
J − log

√
2 − q

)
,

and (8.2.2) follows.
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