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Abstract: A three dimensional Winterbottom type construction in the regime of partial
wetting is derived in a scaling limit of a gas of microscopic Gaussian SOS droplets under
the fixed volume constraint. The proof is based on a coarse graining of the random
microscopic region “wetted” by the crystal, random walk representations of various
quantities related to free massless fields and a stability analysis of the torsional rigidity
problem.

1. Introduction

1.1. Macroscopic Winterbottom constructiofihe shape of a small crystal in the equi-
librium with its vapour is assumed, disregarding gravitation, to minimize the anisotropic
surface energy. The corresponding construction was obtained at the turn of the century
by Wulff [36], and much work since then was devoted to a rigorous mathematical treat-
ment and further generalizations of the underlying variational problem ([8, 15, 19, 33]
to mention a few) on one hand, and to extensions of the construction to other physical
situations of interest, e.g. to the case of a particle on a solid substrate [35], see [19] for
its mathematical counterpatrt.

From the purely statistical mechanical point of view, though, the problem of a rigor-
ous derivation of these optimal macroscopic shapes directly from the structure of local
microscopic interactions and an analysis of the corresponding Gibbs measures in an
appropriate scaling limit remained open and long pending until the late eighties, when,
almost simultaneously, it was solved for several two dimensional models. The simplest
one was the gas of generalized SOS droplets in 1 + 1 dimensions [9], which gave rise
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to a Winterbottom-like shape in the scaling limit. A two dimensional Wulff construc-
tion was derived in the context of the supercritical phase of Bernoulli bond percolation
in [1]. Finally, the 2D Ising model at very low temperatures was solved in the ground
breaking monograph [12], which accomplished the program initiated in early works on
phase separation [23, 24]. The approach of [12] was simplified in [27], using duality
methods with mastery, the latter article being of a fundamental interest in its own right.
Most of the results in [17 and 27] were formulated on the level of very precise local
limit theorems. Their weaker integral versions were pushed all the way up to the critical
temperature in [17, 18].

Further remarkable results on complete analyticity and phase separation were ob-
tained in [29 and 30].

Allthe above results, however, are two dimensional, the higher dimensional problems
being so far considered at least as much formidable as interesting. In this work we obtain
a three dimensional droplet shape in the scaling limit of a 2 + 1 Gaussian counterpart
of the model considered in [9]. To be more precise, we consider the free lattice field
(Xi)iesy, in asquare bo¥y C Z2 of side length V. This is the centered Gaussian
random field whose covariance matrix is given byA)~%, where A is the discrete
Laplacian onSy with Dirichlet boundary conditions. We interpret this field as two
dimensional random surface in the 2 + 1-dimensional s@dceR. This random field is
then equipped with three additional ingredients which govern the relation between this
surface and the “wallZ? x {0}:

1. An attractive surface to wall interaction,

2. Ahard wall condition, meaning that the surface has to stay on the positive side of the
wall,

3. A macroscopic restriction on the volume between the surface and the wall.
A formal description will be given in 1.3.

This is the microscopic model. The macroscopic picture is obtained by scaling the
lengths by a factor AN. The main aim of this paper is to prove a law of large numbers
for this macroscopic shape.

Our limit macroscopic shape is reminiscent of the one provided by the general
Winterbottom construction, and, because of the underlying Gaussian field, we call it a
harmonic crystal. Compared, for example, with the Ising model or even with the super-
critical Bernoulli bond percolation the model itself provides a rather poor approximation
to the phenomena of phase separation. In this respect our intrusion into three dimen-
sions, though, perhaps, being not without physical and mathematical appeal, is of a
quite restricted nature, and many of the core problems for higher dimensional interfaces
remain unsolved. An interesting aspect of our results and the method to prove them is
that in three dimensions a nontrivial coarse graining procedure becomes imperative for
the proof. This could be relevant for studying more complicated 3D models in the phase
separation regime. Indeed, probably one of the most formidable problems on the way
to arigorous justification of a genuine Wulff construction directly from the microscopic
local interactions, e.g. in the context of the 3D Ising model, is to define a natural scaling,
which would substitute the 2D skeleton computations of [12 or 27].

A simplifying feature of the Gaussian interactions is the possibility to use random
walk representations to compute many quantities exactly. This is lost if we substitute the
guadratic interaction by a general convex one, whatever growth, smoothness and strict
convexity properties are assumed. Furthermore, the geometry of the anharmonic crystal
becomes more complicated as well — instead of a Poisson problem for the Laplacian
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one has to solve a semilinear elliptic equation. Besides the fact that the corresponding
solution in the latter case cannot be explicitly computed, one also loses the scaling rela-
tion enjoyed by the torsional rigidity in the Gaussian case. Recently, however, there has
been considerable progress in the study of anharmonic models with convex potentials
[16, 26]. In particular, it was shown that such models admit a useful random walk repre-
sentation, and, moreover, many computations for these random walks can be reduced to
the corresponding computations for the simple random walk using the Brascamp-Lieb
inequalities [8]. Based on these works, one can derive a droplet construction also in the
non Gaussian setting. The corresponding results are under way.

Finally, we would like to remark that the concentration results here are obtained in
the L; norm. It would certainly be possible to upgrade thendgoor even toL,. The
real issue, however, would be to obtain concentration ifthenorm. Apart from being
a stronger and geometrically nicer result, such an assertion would confirm a heuristic
belief that an intrinsic statistical stability of shapes is better than an impartial stability
of the isoperimetric problems involved (see a brief discussion about the corresponding
problem for the 3D Wulff problem in [12]). One result of this type was obtained for the
membrane problem in [4] and [32].

We conclude this subsection by giving a brief description of the Winterbottom con-
struction (cf. [35, 19]):

n
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Fig. 1

Consider a small particl® placed on a solid foreign substreieand in the equilib-
rium with its vapourV'. (Fig. 1).
If the gravitation is disregarded, then the energy of the particle is given by

B(P) = /P ev(n) ds +PS|(rfs — i),

whererpy © S? — R, is the anisotropic particle-vapour surface tension,qigdand

T};V are surface tensions of the particle-solid and vapour-solid flat interfaces respectively,

and PV, PS are the corresponding interfaces. is the normal vector to the particle-
vapour interface at the pointand|P.S| denotes the area of the particle-solid interface,
to which we will refer as to the “wetted” region.

The equilibrium shape of the particle is assumed to minimize the eré¢gy at
a fixed volumev. The solution to this variational problem was formulated in [35] and
is, in fact, a version of the Wulff construction. The particle-vapour equilibrium Wulff
shapek py centered at the origin, is defined by

Kpy = n {z €R® . (2,n) < 7pv(n)},
nes?

where ¢, ) is the scalar product ilR3. K2, is its intersection with the half space
H={zcR3: (v,e3) > T{;S - T£S }, wherees = (0,0, 1).
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It 7 — 1o > 71, whererl,, 2 7py(es), we are in the situation of complete

wetting, i.e. the particle will spread out to form a thin layer separatingfom S.
Otherwise the equilibrium shape is obtained by an appropriate dilatatidﬁf,gf in
order to adjust its volume. In the latter case there are still three possibilities:

Complete drying:ri, s — mhhg < —72,

Repellingwall: —7},, < g — 154 <0,
and

Attracting wall:  0< 7i,g — 5o < Thy -

In the first case the shag€;,, coincides with the “free” Wulff shap& py . In the case
of a repelling wallS the optimal shapé(;?,v is depicted in Fig. 2.

S
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Tps — Tvs

Fig. 2

Finally, in the case of an attracting wall, the optimal shafg, is presented in Fig. 3.

K3y
NI

f f
Tvs — Tps

Fig. 3

Note that in the latter case the optinfal’ interface can be represented as a function
over the “wetted” regior?S. Our model tacitly assumes the attractiveness of the wall:

thy > ApSrhy — gt ths >0, (1.1.1)
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i.e. our results pertain to this case only. Strict positivity/of, which emerges in the
macroscopic limit for the model we consider here is discussed in Subsect. 8.2.
We proceed by specifying the exact expression for the energy in the harmonic case.

1.2. The macroscopic description of the harmonic crystadr the Gaussian model we
consider here, the angle dependent surface tension is defined as follows (see [22] for
general definitions and related properties) :

Let ¢ € R?, and consider the Gaussian random field o¥gr = NS(1) N Z? &
N[-1, 1)? N Z? with the Hamiltonian

1
Hye(2) = 5 > @k — m)?, xR
(ol

with ¢-tilted boundary conditions ofiS
T = (57 k)a

for k € 0Sy, where ¢, o) is the scalar product iR?, anddSy is the outer boundary
of Sy, i.e. the set of points iZ? \ Sn which have a neighbor i§y. The sum in the
above definition of the Hamiltonian is over unordered pairs of nearest neighbor points
in Sy U dSx. Then the Gaussian surface tensignin the direction of the unit vector

neS*n= \/11@(5, 1), is defined by

= ——  |lim —lo
UG(n) /1+|£|2 N —o0 N2 gZN’O,

where the partition functio y ¢ is given by:

Znge = / e Hne@) gy,
; e
In the Gaussian case one can easily compute

_ 1 JeP
oa(n) = ET|§|2

Consequently, the integrated Gaussian surface tension over an interface, parametrized
by a functionu = u(x) is given by the integral

1
> / |Vul|?dz.

With this computation in mind we proceed to define the macroscopic model in more
precise terms. Le’-2 be the usual Sobolev space of functions with one square integrable

weak derivative, ancHé’2 be the ones with compact support./)fis an open set, we
denote b)Hé’Z(D) the H'2 functions which have a compact supporfinA nonnegative

functionu € Hé’z is called a profile, and supp) (which is uniquely defined by, up to
Lebesgue measure 0) the wetted region. Then the energy of the particle with the profile
u is given by

1
E(u) = > /D |Vul? dz + A ¢|supp )], (1.2.1)
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whereA ; is assumed to be positiva,; > 0. We define théarmonic crystabf volume
v to be theH " solution to the variational problem

E(u) — min, given V(u)2 / uda = v. (1.2.2)

Note that ifu solves (1.2.2), then so do all the shiftswgfu(z + o), for anyz € R2.
Below we will see that actually all the solutions of (1.2.2) are shifts of some function
hy (o).

In order to determiné,,, we remark that the minimum in (1.2.2) equals

. . _ 1
mf( inf inf f/ |Vu|2dx+Afa), (1.2.3)
a \ D Tgen weH(D) 2 Jp
- V(u)=v

and thus, (1.2.2) is split into three minimization problems which we can all solve.
Indeed,

,UZ

inf / Vu|? dz = , (1.2.4)
u€Hy*(D) D| | x(D)
V(u)=v

wherex(D) is the torsional rigidity ofD [28], given by

X(D)=/Du[)(at)dnc7 (1.2.5)

where,up is the solution of the Poisson equation

Aup =—1 inD,
uD|aD =0.

Moreover, the infimum in (1.2.4) is attained @, £ (v/x(D))up. Next, it is well
known [28], that the maximal torsional rigidity over domains of a fixed arisahe one

for the circleB,,
2

maxx(D) = X(B.) = o (1.2.6)

Substituting this into (1.2.3) we find that the optimal ate& a(v, Ay) is found by
minimizing the convex function
470
a2
and the optimal profilé., is given by

+Ara

2
ho(z) = 22 <1 ”f') VO, (1.2.7)
a a
Obviously, any shift of,, is also optimal, and these are all the solutions of (1.2.2).

1.3. The microscopic model and the resuithe first result on the droplet shape in the
scaling limit of a Gaussian higher dimensional model is contained in a recent article [3],
based on results on entropic repulsion for Gaussian lattice fields. In this model however,
the wetted region played no role, more precisely, all the microscopic droplets under
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consideration were bound to wet the squéf@) = [-1, 1] (actually in [3] all the
computations were done in the general casé of1 dimensional cubes).

In order to obtain the limit shapes given by (1.2.7) one has to consider a “gas of
droplets” with varying microscopic wetted regions as, for example, the one studied
in [9]in the case of 1+ 1-dimensional models. To set up notation§plet N S(1)NZ?
andQy = RV, Our random fieldX () € Q represents then the heights of droplets
at lattice pointsk € Sy and we assume that all the mass of the particle is confined to
the boxSy, i.e. X(e) = 0 onZ?\ Sy. We define

Br(X(o) € dr) = Zlexp{—; 3 (o —m>2}
N

|k—1]=1

x [ (€7dax +do(dxr)) [ doldwr), (1.3.2)
keSy keZ?\Sn

where| o | denotes thé.*-norm onZ?2. Thedo(dzy) part is responsible for the attraction
between the surface and the wall. Ifitis absent, we have the purely Gaussian model which
had been the starting point of [3]. Our model becomes more transparent, if we rewrite it
in a different form after opening all the brackets on the right-hand side of (1.3.1):

]?DN(X(O) €dzx) = Zi Z e 714l exp{;(Adx,@}

N acsy

XHd.rk H 5o(d.rk-)7

k€A kEeZ2\ A

where| A| is the cardinality of4, A4 is the lattice Laplacian an@, ) is the scalar product

in RZ". Indeed, the expression above gives the joint distribution of the microscopic
wetted regiond C Sy and the microscopic droplet profilés(e) over A. Our scaled
microscopic profil& y € LY(R?) is given by

1
En(@) = 5 Y XV L-no)<1/2), (1.32)
kez?

where||(z1, 22)|| 2 max(z1/, |z2|). Thus £y is just a scaled plaquette reconstruction of
the microscopic particle profile ové&? from the field X (e). Note that

supp€n) < S(1).
Finally, define the volum& of the gas of droplets as
e Y Xk = N3/ En(a) de.
keSn 5@)

We are going to prove a result about convergence to the optimal harmonic shape under
the hard wall condition

X(o) € Q2 2 {z(e) e RY : 2(k) > 0V k € Z2}.

Define: N N
IP)]\/',+ = PN( 4 | Q"‘)a
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Theorem A. For eachJ € R define
1 2N+
A = Arn(J) = J+ ——lo —,
f,N 7N () EN g 7

whereZw = ENI@N(QQ, ZN is the normalizing constant if1.3.1)and

Zy 2 /Q exp(1/2(Anz, z)) da, (1.3.3)
A being the lattice Laplacian with zero boundary conditionsSop Then the limit
A'f = N|Im Af,N (134)

exists and is a nondecreasing convex nonnegative functidnidbreover,
Ap(J) >0 (1.3.5)

for J large enough.

Assume now thaf is such that (1.3.5)holds, and lety > 0 be fixed (and small
enough to enabl®; C S(1)) and leth,(e) be given by(1.2.7)witha = a(v, Ay). Then
there exists a sequeneg, lim y_. ., vy = 0, such that

@N+(min ho(z + o) — Ex(®)]| prqeey > VN’VN > N%) <un. (1.3.6)
T \zeR2

The theorem above implies a sharp concentration of microscopic profiles around
the optimal harmonic crystal shape (1.2.7) under the measures (1.3.1) and the hard wall
condition€2,.

Remark 1.3.1In contrast with the situation in [3], the ba%y is playing here a very
minor dle and could be replaced by any regi¥iv NZ2, V C R?, wherel satisfies the
condition that some translate 8% is contained i/, and still the same limiting shape
would appear. Itis in fact true, although we don't need this, that a thermodynamic limit
1300 of J3N asN — oo exists and defines a random field Bh(see [11]). Of course, we
cannot start witH3OO as then, due to translation invariance, the droplet does not “know”
where to emerge, but it should be obvious that the odlg of the finite boxSy is to

keep the droplet confined.

Inthe next section we sketch the scheme of the proof and describe the principal results and
estimates involved. Subsequent sections are devoted to rigorous proofs of these results:
Sect. 3 deals with the coarse graining, Sect. 4 with the estimates on various partition
functions, Sect. 5 with the stability of the related torsional rigidity problem, Sect. 6 with
the concentration estimates over fixed wetted regions, Sect. 7 with the approximation of
relevant macroscopic quantities by their mesoscopic counterparts, and, finally, Sect. 8
contains the proof of the main Theorem A.

Remark 1.3.2In what follows we shall use two types of constants: fixed constants
related to coarse graining or symbols likeand two varying constantsandd. The

exact values of the latter constants are of no importance for us, except that they should
belong to (Qoc). Moreover, they will always enter the estimates below in such a way,
that if a certain estimate is true with, §), it will also be true with ¢, ¢"), wherec’ > ¢

andé’ < ¢. Thus, whenever we write(d) we actually mean the maximum (minimum)

of the corresponding constant over all the estimates involved. Luckily, we get by with
only a finite number of them, so, all the results remain valid under this convention.
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2. Outline of the Proof

2.1. Strategy. For A C Sy let A4 denote the lattice Laplacian with zero boundary
conditions onA. Define

P4(X (o) € dz) = i exp( (Aqz,x ) [Idze ] dotdas), (2.1.1)

keA kEZ2\ A

where the partition functior 4 is given by

1
Za Z/ exp( (Aaz, :c>> dx. (2.1.2)
RA
Then]IADN,+ is a convex combination;
Pys(9)= Y e -7141 24 ZA Pu(e; Q). (2.1.3)
ACSn ZN +

Under eachP4 the volumeVy has a Gaussian distribution, and it is not difficult to
compute that

’U
X (A)

wherey y(A4) is the approximate torsional rigidity of, given by

Pa(Vy > N3) = exp(— 1+ 0(1))> (2.1.4)

xn(A) = % > uan(k), (2.1.5)

keA
whereus x € R4 solves
N?Ajuan = -1 inA. (2.1.6)

One might naively think that the main contributioﬁﬁQ(VN > N3v)inthe representa-
tion (2.1.3) comes from thosé-s which are close in shape to some optimal microscopic
wetted regiondqy, which minimizes

UZ
xn(A)

J|A| —logZ4 + N? (2.1.7)

This, however, is not the case. It turns out that microscopically the wetted region under

P + is given by an almost optimal shape, which supports most of the droplet volume
and a non negligible “noisy” shallow region. One already sees the problem, when re-
marking that the logarithm of the number of terms in the right-hand side of (2.1.3) is
of the same order of magnitude as (2.1.7). In other words, on the microscopic scale the
entropy competes with probabilistic weights. Note also that the macroscopic quantity
Ay in (1.3.4) is not produced in (2.1.7).

As usual, in order to cancel the entropy and to generate all the relevant macroscopic
guantities, one has to introduce an intermediate (mesoscopic) scale. We describe this
scale in the next subsection, it enables us to restrict attention to mesoscopic wetted
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regionsB C Sy, which are composed of blocks of the six&, b € (0,1). We then
decompos@® + according to the value of the mesoscopic wetted region

Pys(e) = Y. Pyi(e; M=D)
BCSn
mesoscopic

In its turn, due to our basic expansion (2.1.3)%\,{+ in microscopic wetted regions,

Pys(o; M=B) = > e*J\A\AziAPA(.; M=B; Q). (2.1.8)
ACSN ZN,+

It happens that the essential contribution to the above sum comes only from those
microscopicA C Sy, which coverB sufficiently well. A precise formulation of the
latter statement is given in Subsect. 2.2. Thus, given a mesosBopi$ v, the sum on

the right-hand side of (2.1.8) is effectively only ovérs, satisfyingB C A. In order

to make estimates on such a sum one should be able to decoupl& bathd 2N7+

over the boundary aB. The corresponding estimates on various partition functions are

stated in Subsect. 2.3. Roughly all this leads to the representaﬂ@mpfas

. z
Pys(o)r > e IPIZEPpe; @), (2.1.9)
BCSy ' ZB7+
mesoscopic

whereZg,+ is defined analogously tEN,+, with B playing the role ofSy . Note that

there are onl;@(eCNz(lfb)) terms in the right-hand side of (2.1.10). Thus the mesoscopic
wetted regions should concentrate around minimizers of

|BI

1, Z 1 o2
B j(B) 2 J 5 + 15100 2% + !

Zp  2xn(B)
Provided thaty; ((B) is a good approximation to

(2.1.10)

Bl 1 ?
2t 5
N 2 x(B)

and that the shape of the infimum in (1.2.3) is stable, one obtains a concentration of
the mesoscopic wetted regions around the shifts of macroscopic ogfimaind the
problem is reduced to concentration estimates on

Pp+(e|Vy > N3)

for almost optimalB. The latter task can be accomplished by means of Gaussian com-
putations, which however yield concentration around

uy 2 v u
BN — ——nUBN
xn~(B)

instead ofh,,. Thus, the last step should be to estimate #h¢R?) deviation ofup v
from h,, for almost optimalB.
To summarize we have the following tasks to perform:
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1. Coarse graining, i.e. introduction of an intermediate mesoscopic scale and derivation
of the corresponding control estimates,

. Estimates on the partition functiois and?Bi,

. Stability estimates on the torsional rigidity,

. Concentration estimates & +(o|Vy > N3y) for B close toBg,
. Approximation ofy by x y and ofh,, by uj .

a b~ WwN

We proceed by stating all the relevant results along these lines. The proofs are
relegated to subsequent sections.

2.2. Coarse graining. Our coarse graining procedure is based on ideas introduced by
Donsker and Varadhan in their treatment of the Wiener sausage. There are two scales
involved:

1. The coarse graining scalé = N?; b € (0, 1),
and
2. The cutting leveH = N7, v € (0, 1).
The choice ofb and~ is specified in Subsect. 3.1 below, but we always assume for
notational convenience that2+1 divides 2V+1, but this is, of course, of no importance.

Recall thatS(1) = [-1, 1] andSy = N.S(1)NZ?. We define the smoothing kerrigl,,
supported inS,,, as follows:

LetDy ={i€Z?: || =k} £ 9, and setDy (i) = i + Dy, denote the boundary
of the k-squareSy (i) centered at, and let{n,, }.cny denote the simple random walk on
72. For anyi € Z? andj € Dy (i) define

71@(17]) = Plﬁw(n'er(i) = .])7 (221)

whereP/W is the law ofp, starting ati, andrp, ;) is the first hitting time ofDy (i) by
7e. Then we define

M
M0 = 3 > () (22.2)

Note that "5, (¢, ®) is a probability measure o, (z). Also,~, andl™y, are shiftinvariant;
Ye(i,5) = (@ — j) andTa (3, j) = Tas(@ — j). The smoothened field ', € RZ is
defined by

Xu(i) =) Tl — HXQG), i€z (2.2.3)
J

Note thatX,, = 0 outsideSy+s under13N. Define the coarse grained lattice
73, = (2M + 1)Z2.

The next step is to spliE? into the blocks of the siza/:

72= ) SumG).

P72
€LY,

Our coarse grained field (o) is defined to be constant on each of these blocks, namely
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Xn(@) = Y Xar@)Lyj-i<an- (2.2.4)

;72
1€LY,

Obviously, the support ak ) is contained inSy.
We shall call a finite union oft/-blocks Sy(i); i € Z3,, a mesoscopic region
Remark that the number of mesoscopic subsefs\oéquals

SN+1Y /@M1y < 2(N/M)2 = exp( N21-D) |og 2.
Given our cutting leveH = N7, we define thenesoscopic wetted region
M = M()ZM) = {iEZZ . X]w > H} C Sn.

The mesoscopid/-scale above leads to an “entropic reduction” in the representation

of I@N given in (2.1.3). In fact, this representation has just too many summands to be
immediately useful. The small heights cutoff given Hyis necessary to get rid of the
“shallow” part of the wetted region and, simultaneously, to produce the macroscopic
quantity A . It happens that as far as questions of concentrations are considered, one
can restrict attention to mesoscopic profiles:

Theorem 2.2.1.Forall N and allA C Sy,
Pa (Z | X () — Xps(3)] > N”) < exp(—lNM). (2.2.5)
i€Z2 ¢

Consequently, i v,/ is the scaled plagquette reconstruction frd?m, i.e.

1 -

Enm(T) = N Z Xn(R)Lgk—Na|<1/2}5
kez?

then

~ 1
Prllén — vl > V) <ep(-TN2). @26

This super exponential estimate lies at the heart of our coarse graining approach.
We need also another super exponential estimate, which we call the volume filling
lemma. It asserts that a mesoscopic wetted regiaannot be effectively produced by

P4 in the decomposition (2.1.3) tﬁ*fN,+, unlessB is sufficiently well covered bw.

Lemma 2.2.2.Forall N andA, B C Sy,
P4(M(Xy) = B) < exp(—1N2+5> (2.2.7)
&

as soon asB \ A| > N279,
2.3. Estimates on patrtition functionsLet A C Sy . We use the following notations:
9A = {k;eA : 3l € 72\ A with ||l-c—lH:l}, (2.3.1)

= : i — > to. 3.
Ay {keA min, k||7t} (2.3.2)
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Lemma 2.3.1. a) There exist constantsr > 0, such that for anyd e Z?,

qlA| —rmax|04;| < logZa < g|A|. (2.3.3)

b) There exists a constaft> 0, for anyt > 0, a constant: = ¢(¢t) > 0, such that
for any mesoscopic wetted regiéhe Z?, satisfying| B| > tN?,

IogZB i
Bl ~

g — cNPlogN < (2.3.4)

c¢) For any mesoscopic regiaB C Sy and any setst C Sy \ BandC C B,

Zave

1
< =1 < ¢N~’logN. 2.3.
O_NzogZAZC_c og (2.3.5)
d) For any setsB3, A andC as above
P Q4
_ NP < Log ave(@) eN~9. (2.3.6)

= N9 (2 )Po(r)

Remark 2.3.2 The condition off B| > ¢tN? is not essential, but it simplifies the proof

of (2.3.4). Ift > 0is chosen small enough, the restriction to mesoscopic regions satisfy-
ing | B| > tN2 will be seen to be harmless, as regions where this fails have a negligible
contribution in (2.1.9) for the events we are interested in. The notian>of0 being
small enough is quantified in Subsect. 8.1 (See the proof of Proposition 8.1.2).

2.4. Stability results for the torsional rigidity.Let D C R? be a bounded domain with
a piecewiseC? boundaryup the solution of the Poisson equation

Aup = —1in D,
U|R2\D = 0,

and let ley,up be the level sets aip,
levyup ={z €D : up(x) > p}.

Definea(u) = |lev,up|. Then,a(u) is a strictly decreasing continuous function and let
w=p(a) : [0,|D]] — R, be the inverse aod(e). Finally, set

D, =levyup and Ip(a)=|0D,]|.

Note, thal D, | = a andip(a) > |0B,| £ s(a), where as in Subsect. 12, is the circle
of the areau.
Theorem 2.4.1.
Dl 42
D) < — — da, 24.1
W< [ s (24.)

and

s(a)
Ip(a)

1 Pl
max x(B) — x(D) = x(B|p|) — x(D) > I/ a(l — ) da. (2.4.2)
T Jo

B:|B|=|D|
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The right-hand side of (2.4.2) is a measure of deviatiodfom the shape of the
circle B|p|, and the claim itself asserts that the torsional rigidity is stable with respect
to this measure. From the representation

1 /
=3 [ BV
D

whererp is the first exit time fromD of the two dimensional Brownian motion, it is
clear they(e) cannot be stable with respect to the Hausdorff distance, indeed adding a
thin long hair does not change substantially both the area and the torsional rigidity. We
shall see, however, that Theorem 2.4.1 above already implies stability with respect to
another “natural” measure of deviation — the area of symmetric difference,

da(D) = inf [DA(z+Bip))|- (2.4.3)
z€RC

An even more important consequence for us here is the stability with respect to the
inradius of D: Let D be simply connected and let= o(D) be the inradius (i.e. the
radius of the largest inscribed circle) bf. Note that

D]

max o(B) = o(B|p|) =/ —-
|B|=|D| T

Lemma 2.4.2.

oBo) ~ oDP =2 (0P < cpfx(Bo) (D). (244)

As a consequence we obtain the following result onth@R?) stability of the crystal
shape: Let
1}2

+ A¢|D
(D) 71D|

andu’, = y/v/x(D)up, i.e.uY, is the shape of the minimal energy harmonic drop of
the volumev bound to wetD. Then,

EY(D) =

Lemma 2.4.3. Let D C S(1) with a piecewise smooth boundamp, and letv be a
fixed numberp > 0 Then,

infJjuy = ho(e+ )| agmy < ¢{/ E{(D) - E§(Ba), (2.4.5)
whereh,, is the harmonic crystal shape defined (h.2.7)

Remark 2.4.4The power 16 in (2.4.5) is by no means optimal, but is adequate for our
purpose. Note that in Lemma 2.4.3 the regioims not required to be simply connected.

2.5. Concentration oPz(e | Viy > N3). LetA C Sy, anduy4 y is the solution of
the approximate Poisson equation (2.1.6)befineu? y @ S(1) — Ras

v
xn(4)

Then the following estimate on the concentration of the scaled pifi(e), defined
in (1.3.2), around:?  is valid:

> uan(B)1(r-naf<1/2)- (2.5.1)
keSN

EZ,N(JT) =
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Lemma 2.5.1. For eachA C Sy anda € R4,
2
Pa(llén — w nloies = a|Vy > N%) < exp<—aN2>~
’ c

2.6. Approximation by discrete quantitiedzor a mesoscopic regidd C Sy we define
B C S(1) by

~ 1 1
B= U (k + 2S(1)>. (2.6.1)
keB
Lemma 2.6.1. B
Ixn(B) = x(B)| < eN 7, (2.6.2)

uniformly in N and mesoscopi& C Sy.

This, combined with the estimates on the partition functions stated in Lemma 2.3.1,
leads to the following approximation result;

Lemma 2.6.2. For anyt > O there exist = §(¢) > Oandc = ¢(t) > O, such that any
mesoscopi® C Sy, satisfying| B| > tN? andxn(B) > t, also satisfies

|E3(B) — B} ;(B)| < eN™°, (2.6.3)
whereEy, ;(B) is given by (2.1.10) and, as beforeE}(B) 2 As|B|+ 302/x(B).
Finally, we get the following stability estimate for mesoscopic wetted regitins

Lemma 2.6.3. For any mesoscopif C Sy,

inf [|u v — holz + o)l| iy < C\‘/\E”fv,f(B) — EY(Ba), (2.6.4)

whereuy,  is the approximated profile defined (8.5.1, andh,,, a are respectively the
optimal profile and the area of the optimal wetted region, which were defirfedbrect.
12

3. Coarse Graining

3.1. Scaling parameters.We start by fixing a small (saly< 0.1) but positive value of
b. The exact condition on the “smallness’tofill be made precise at the end of Subsect.
3.2. We choose satisfying

Y+ 2 <1< 1+25 < y+4b

The first inequality enables to make the following reduction, which paves the way to the
proof of Theorem A in Subsect. 8.1:

Leti € Z3, and assume tha (i) < N7, thatis assume that, (i) N M (X ) = 0.
Then, for each/ € (v + 2b,1),

{i ¢ M(X2)} N Qs = {X(k) <N VE € Sy(i)}.

This implication is explained in Subsect. 8.1. Finally, the inequality 16+2~ +4bis
used to prove the volume filling estimate of Subsect. 3.3.
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3.2. Proof of Theorem 2.2.1.
Proposition 3.2.1. For all A C Sy and for anyt € R, the following estimate holds:

IP’A< § X (k) — X(k)| > tN3) < exp(cN2 - 1N2+8bt2>. (3.2.1)
&
keSN

Remark 3.2.2The claim of Theorem 2.2.1 follows from the proposition above, if we
taket = N =9 for 6 small enough.

Proof. We follow [13], to estimate

IF’A( Z | X (k) — X (k)| > tN3> < 2N max  Pa(Yar(o) > N3),
keSN oe{-1LN
(3.2.2)
where _
Yar(0) 2 Y o(k)(X (k) — Xar (k).

keSN

Now, Yj/(o) is zero mean Gaussian under edth with the varianceV' (A, o) £
E (Y (0))? given by

Vdo)= Y Y cioedali i), (3.2.3)
kk'€z?, €S (k)
i'eSn(k’)

whereXA(o, e) is given by
M, i') 2 Galin i) = > Taslk = §)Gali, 1)
J
— > Tult —1)Gali, 5
J’
+ Y Tulk = HTuE = )GaG, §)-

7.3

G 4 above stays for the Green function of the simple random walld avith zero
boundary conditions, and the smoothing kefiigl was defined in (2.2.2).

Pick nowa € (0,1),a > b, (the exact value is to be specified later), andsetN®.
In order to split the right-hand side in (3.2.3) define

OrA={keA: min|k—i| <L}
We introduce, then, the following families of pairs of subindidesk() € 73, x Z3,:
Ap = {(k, k) : |k — K| > 2L +1and{k,k'} N (A\ 0L A) 70},
Az ={(k,K) k=K <2L},

As ={ (k. k') : {k,k'} C A°UOLA}.
Setting
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W(k, k) £ max
06{—1,1}5N

Z JiUiXA(ivil)

1€Sn (k) i €Snr (k')

b

we obtain:

V(A,0) <Y Walk, k) +> Walk, k) + > Walk, k). (3.2.4)

Aj A2 As

Estimate or) _ ,,. Assume that € A\ 9, A and||k — k'[| > 2L + 1. This means that
Sp(k) C A\ S(k'). Consequently, for eadhe S, (k'), the function

i +— Gal(i,l)
is harmonic onSy (k). Therefore, fori € Sy, (k) andi’ € Sy (k'),
Ma(i,i) = [Galiyi) = Galk, N+ Y Tk = G alk,§') — Gali, 5.
J'€SN(K)
Similarly, for eachl € Sy, ('), the function
i— Gai, 1) — Ga(k,1)

is again harmonic o8 (k) and equals zero at= k. Also, by Theorem 1.6.6 in [20],

Ga(i,1) < Gs,(0,0) < clog N. (3.2.5)

Consequently, using Theorem 1.7.1. a) of [20], we infer that there exists a constant
¢ > 0, such that
max  max_ |Aa(i,i')| < c% log N
(hE)eAr €Sy N =0 g
i'€Sn (k")
Therefore,
> Wa(k, k) < cN*N""*log N (3.2.6)
Aq

for somec > 0.

Estimate ord_ ,,. From (3.2.5) and a trivial estimate

|A2‘ § N2+2a_4b,

it follows that
> Wa(k, k') < cN***logN. (3.2.7)
Az

Estimate ord_ , . Note, first of all, that

> > oo)Aalii') =Y Gali )T u(o) (G, 1),

1€Sn (k)i €S (k) 4,1’

where
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Tar(0)(i,i) = 0(@o(@’) — o@Pu(k, i) Y o) —o(@ulk—0) Y ()

eSS (k) leSn(k)

+ Tulk =Py =) Y- o) Y o).

leSn (k) l'eSn (k")

However, due to our definition of the kernij,(e) and by the well known results
on the exit distribution of the simple random walk (see e.g. Lemma 1.7.4 in [20]), there

. 1
exists a constant > 1, such thatm <T'py < % foralll € Sy;. As aresult, all
|1:M| are, independently df/ ando, bounded above by some finite constant 0, and

Sk )< Y Galig). (32:8)

As i,jEDL A

Thus, it remains to estimate the right-hand side of (3.2.8).
Let T4 be the exit time of a simple random walk (RW) frofn Define the following
sequence of stopping times:

mn=inf{n>0:n,€dAn<7al,
and form > 1,
Tma1 = iNf{n > L2471, :n, € 0LAn < TA}
(with the usual convention iff)} = oo). Then, for each € 9 A,
Y GaGg) =B i 1o, a(mm) < LZiPZRW(Tm < 9).
JEOLA n=0 m=1
Now, for eachi € 01, A,

P (14 > L% <1— min PFY(ryy < LP).

Ikl <L
But,
P&V () < L?) > o/logL Vi ||k|| < L (3.2.9)
for somep > 0. In fact, we have by the last exit decomposition
LZ
P&V (i < L2) > leézw(&n = k)P (10 > L?).
m=1

From the standard local central limit theorem, we h&e" (¢, = k) > ¢/L?, if
L?/2 < k < L?, andm has the same parity &s Therefore

L2

ZP?W(& =k)>c>0.

m=1

On the other hand, it is known thB§" (r(o; > L?) ~ m/2logL (see [31], Sect. 16,
Theorem E.1). Therefore, (3.2.9) follows. Consequently,

IP’?W(Tm <o00)<(1-—p/logL)™,
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and
> Wa(k k') < cN***logN. (3.2.10)
As

Combining (3.2.6), (3.2.7) and (3.2.10), we obtain that there exists0, such that
VAC Sy,
max V(A4,0) < ¢(N*®logN + N**~9), (3.2.11)
oce{-11}°~

Therefore withb € (0, 1) fixed the optimak to yield the best possible estimate along
these lines is given by 2 2= 4 +b — a < 4. For our purposes, however, it would be
sufficient to remark that for a choice bic (0, 1) small enough, (3.2.11) implies that

max V(A,o) < N8,
oe{-11}°N

In a view of (3.2.2) this leads to the claim of the proposition.

3.3. Volume filling estimate. The volume filling lemma (Lemma 2.2.2) is a direct
consequence of (3.2.1). Indeedif \ A| > N?~9, thenP4-a.s. on{ M (X ;) = B},

> X (k) — Xp(k)| > N2
keSN

Therefore, by virtue of (3.2.1), for any such
Pa(M(Xy)=B) < exp(cN2 1 N2(7+4b—6)>.
&

Thus, (2.2.7) follows, as soon as
v+ 44— 6§ > 1+,

which is one of the two scaling conditions, specified in Subsect. 3.1.

4. Estimates on Partition Functions

4.1. Random walk representationRecall that forA € Z?, we have defined 4 as
1
Za= / exp §<A’w’$> H dzxy,
RA keA
whereA 4 is the discrete Dirichlet Laplacian oh C Z2;
Aag=4(Ps 1),

wherel is the identity operator, anB,4 the transition matrix of the simple random walk,
killed at exiting fromA. Let \{'; k = 1,...,|A|, be the eigenvalues 6fA 4, andy;
k=1,...,]4|, the corresponding eigenvalues/ef;

M= 4 ).
Then,
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\AI

A L A
= log = — fZIog(l ). (4.1.1)

log Za = = log 2r — Zlog/\A- ]

We follow [14] in our approach to the right-hand side of (4.1.1): Note, first of all, that

|A| 00 |A| 00

> logtu— i) == 32 > )" = -3 Sme)

k=1 n=1
Furthermore, since obviously () = O for any odd», we obtain:

1Al

Zlog(l iy = — Zz—Tr( . (4.1.2)

n=1

To investigate the right-hand side of (4.1.2) we use the following random walk
representation:

Ti(P3") = > P (n2n = ki7a > 2n),

keA
and, consequently,
|A]
DL (ETEDY Z —PRW(nzn =k, 74 > 2n), (4.1.3)
k=1 keA n=1

wherer4 is the first exit time fromA.

4.2. Estimates of 4. Itis easy to see what the volume term of (4.1.3) is. Lgfl>, . . .
be the hitting times of @ Z? by our random walk. Set

N |
a=E" ) =) 5B (120 = 0) (4.2.1)
k=1 n=1

Then, as it follows from (4.1.3),

|Al

— > log(1— pil) < qlA. (4.2.2)
k=1

Remark 4.2.1 Note that the right-hand side of (4.2.1) is summable, since by the local
CLT (see e.g. [20], Theorem 1.2.BFY (17, = 0) ~ 1/n.

Proposition 4.2.2. Define

— - 1 RW
r = z:; %EO (Km% | )l{mn_o}. (4.2.3)
Then,r < oo, and for eachd e 72,
[A]
= > _log(L— ut) > gl Al — rmax|dA|, (4.2.4)
k=1

whereA; was defined in Subsect. 2.3.
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Proof. Consider

A LmRW
a(n) SEGY (| max (1|72, = 0).

We claim that
g(n) < cv/n (4.2.5)
for somec > 0. Since, as mentioned befoﬂ%"w(ngn =0)~ 1/n, then™ term in the

sum on the right-hand side of (4.2.3) is, thereby, of orde¥'?, andr < oo as claimed.
To show (4.2.5) seY,, = 1<m3);(1 |7m|- Then, for eachk € Z.,

g(n) =BV (Vo | 1120 = 0) < K + Y~ PEW (Y, > k|, = 0). (4.2.6)
E>K

However,

1

RW — — RW
Po (Y > k|m2n =0) = W_O) 1{7—Sk<2'n} {n2n,=0}» (4.2.7)

whererg, is the exit time from the bo¥,. Decomposing the expectation in the right-
hand side of (4.2.7) we obtain

2n
EG™ L, <201 Lmuz0r = D B Lprg, o’ (2n—m = O).

m=1
By the local CLTVy : ||y|| = &k € [K, 2n],

2 K

7(2n — m) \"2nm)
Therefore, optimizing in the right-hand side above and substituting the resultinto (4.2.7),
we obtain that

P (o = 0) < (1 +0(1))

HD(IJ%VV(Y'>]€|77271_0)<C P(IJ?W(Y;LZ]{)

L2
for somec > 0. Thus, choosind( = \/n, we infer from (4.2.6) that
gn) <vn+e Y PEV(Y, > k) < v+ cEFVY,.
k>v/n

Finally, EF'Y'Y,, is of order/n by the usual submartingale argument.
We turn now to the proof of (4.2.4): By (4.1.3),

| Al
— > log(1— i) =qlA[ = > Z PRW(nzn =k,7a<2n).  (4.2.8)
k=1 keA n=1

Recall that for € Nwe defined4d; = {k € A : l nZ12i<1A||l—k|| >t }. Now, ifk € 04,
€

=1 = 1
g ZPEW(T]ZTL =k, 74 <2n) < E 2— (772" =0;7s, < 2n).
n=1 n=1

Therefore,
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— 1
S %Pﬁw(vm =k,Ta < 2n)

keA n=1

oo oo 1
<max|9Ay| Y D 5 PG (n2n = 0,75, < 20). (4.2.9)

t=1 n=1
However,
Z PEY (2, = 0;7s, < 2n) =EFV Y, 14,20
t=1
where, as beford;, = l<m%>§ |7 |- Consequently, the right-hand side of (4.2.9) equals

r mtax|8At|, and, subs_titu_ting the latter estimate into (4.2.8), we arrive at the claim of

the proposition.

Our next task is to prove the decoupling estimate (2.3.5).A,e8, C be as in the
conditions of Lemma 2.3.1 ¢), i.&8 C Sy is a mesoscopic regiosd C Sy \ B and
C C B. Then it follows from (4.1.1) and the representation (4.1.3),

Z
0< 2 Iog AVO = Z Z ?PRW(nzn =k;ta <2n < Tave)
ke A n=1

1
3y Z 5 P (20 = k70 < 20 < Tavc). (4.2.10)
keC n=1

The contribution to the right-hand side of (4.2.10) comes only from those random
walks, which startim (respectivel\C), and in 2» steps VISI'C (respectively4) without
leavingA v C. Any such random walk has to cro&gC’ 0B N C. Consequently

2l0g 224C. < > > P (non = ki mave > 2n)
ZaZc k€dpC n=1
< RW = .-
J%O\Jgﬁg%h (2 = ki 75, > 2n)

|aBC‘ krenaaB)é GSN(k7 k)a

whereGyg,, is the Green'’s function of the simple random walk, killed upon an exist
from Sx. However, by Theorem 1.6.6 of [20)1, szﬂSN(k,k:) < clog N for some
€SN

¢ > 0. Also, by the very definition of the mesoscopic regigh C| < |0B| < eN27°,
Therefore,
1

—Iog <c|0gN|BBC| < e¢N?PlogN

as was asserted in (2.3.5).

4.3. Estimates oﬁB. The partition functionZ, obviously possesses the following
superadditive property:

BNB'=0=logZpyp >109Zp +log Zp. (4.3.1)
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Because of the results of the previous subsection, one can supplement (4.3.1) with an
appropriate lower bound:

Zpvp =y Y e UMDz, 0 < expldB'|log N) Zp Zc, (4.3.2)
ACBCCB’

where,

|0pB'|=|{ke€ B : 3l € Bwith |k —1|| =1} < cN?7?,
For eachk € Z., defineQ(k) = ﬁ log Zs, . Then,{Q(2™k)}2°_, is an increasing
sequence, and, by (4.3.2),

c

Q27E) < Q™M) < Q27k) + 5 log 2.
Thus, if we define,
g= lim Q2mk), (4.3.3)
then, fork < N, |
A ogN
QU < 4 < 0= + Q.

Of course, we have to justify the tacit assumption thiat(2.3.3) doesn’t depend on the
basek chosen, but this again follows from (4.3.2), since forkall € Z.,

logk
QU < QU < QU + =2,
and, in a completely symmetric way,
log!
QU) < QUHT) < QW)+ =7
In particular, forM = N?,
QM) <G < QM) +cN"logN. (4.3.4)

Therefore, for a mesoscopic regidh= VkeBgZZM Swm(k),

> 109 Zs, 4 <109 Z5 < > 109 Zs,, 1y + N2 log N.
keB keB

SincelogZs,, ) = (2N*+1)2Q(M), | B| = (2N°+1)2|B|, and also due to our assumption
|B| > tN2, we conclude that for some= ¢(t) > 0,
1

ansﬁﬁm@SanwNﬂwN,

and (2.3.4) now follows from (4.3.4).

4.4. The hard wall condition. If D C Sy, we denote by)* D the outer boundary of
D, i.e. the points which are not if» but have a neighbor point if). If z € (R*)?"?,
we writePp , for the law of the free field ofR” with boundary condition: on 9* D.
With this notation, we hav®p o = Pp, where the latter is restricted to configurations
on D. We will need some properties of FKG type.
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Lemma 4.4.1. a) For all z € (R")?'2, we have
Pp 2(2+) > Pp(24).

b) LetD; ¢ D, andf : RP* — R be bounded, measurable and increasing in all
arguments. Then

Ep,(f(X)[Q+) < Ep,(f(X) ] £4).

Proof. a) Leth, be the solution of the discrete Dirichlet problemiiy with boundary
conditionz on&* D. If X (i), € D, is distributed according tBp, thenX (i) + h, (i)
is distributed according tBp ... As h, > 0, the statement follows.

b) If A C Sy, let Q2 be the evenf{ X (i) > 0,i € A}. It was proved in [10],
Lemma 3.1 that forA c B the lawPg(e | Q%) on R? is associated, i.e. for any
bounded measurable functiofis f» : R® — R which are increasing in all arguments,
one has

Es(fif2| Q) > Ep(fi| @NDEp(f2| Q%)

(See the proof of Lemma 3.1 of [10].) We apply thigo® D, andA £ (D;Ud*D1)N
Dy. SettingP}, , = Pp(e | Q1), we obtain for any > 0,

Ep 4(f(X)| X () < t,i € 0"D1N Dy) < Ef 4(f(X)).
Lettingt | O, the .h.s. converges fop, (f(X) | 2+), and so we have
Ep,(f(X)[€:) < Ep,(f(X) | Q4)-

Using the fact thaf and Igpaa are increasing, the r.h.s. is

< Ep,(f(X) | Q4),
which proves the claim. O

Lemma 4.4.2.Lete > 0. Then there exist&/. € N such that forNV > N, and all
D C Sy, we have

Pp(Q4) < 2Pp (Q+,m?xXZ- < Ns).
Proof.
Pp(Q:) = Pp (sz maxX; < Nf) +Pp (miaxXi > N°| Q+)PD(Q+). (4.4.1)
By Lemma 4.4.1b), we have
Pp (miaxXi > N° | sz+) < Pg, (E%Xi > N° | Q+)
< Pg, (Z@&(X,; > Nf) JPs (.. (4.4.2)
The numerator is estimated in a rough way by

2¢e
P (maxXi Nf) < 5BN?maxPs, (X; > N°) < 5N2exp| —c—— |,
Sy i€Sn o - i sv(Xi > N7) < P clogN

as the maximal variance of; underPg,, is of order logN. Ps, (R2+) is of order
exp(~c(log N)?) ([5]). O
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LetnowA, C, B be asinthe statement of Lemma 2.3.1,Bés a mesoscopic region,
andC C B, A C Sy \ B. Let9~ B be the set of points i which are at distance 1
from 0B, i.e. those points iB which can be joined by two bonds of the lattice with
B¢ but not with one. LeD~ 2 9-BNC, D 29BN C, D' 2 9" BN A. We denote
by Y*, Y, Y the restriction of a configuratioX to D*, D~, and D respectively. If

yt € RP" y~ € RP™, y € RP, we denote byf(y*, 4~ | y) the conditional density of
theP 4y c-law of (Y*,Y ) givenY = y.

Lemma 4.4.3. If £ > 0, then there exists > 0 such that
llog f(y*,y~ |y) —log f(y*,y™ |0)| < c|D|N*,

for0 < y,y*,y~ < N¢. Here we writeD < y < N¢ if all the components af satisfy
this condition.

Proof. With an abuse of notation, we writy ", y~) for the density of Y *, Y ~) under
Pave, f(y) for the density of, andf(y | y*, y~) for the conditional density df” given

(Y*,Y ). Writing
fWly y )y y)

f@hy ly) =

f) ’
we see that it suffices to prove
llog f(y|y*,y™) —log f(O|y*,y7)| < c|D|NZ, (4.4.3)
and
|log f(y) — log f(0)] < ¢|D|N*, (4.4.4)

uniformly in 0 < y,y*,y~ < N°. For some positive functiop : R?"“P~ — R, we
have

fly'y™)
=so(yty—)exp{—; S wO-vor-: Y (y(z’)—y—m)z}.
1€D 1€D
jeD" Ji—j|=1 jeD™,li—j|=1

Using this, (4.4.3) clearly follows. To prove (4.4.4), we introdlf_aﬁg) as the density of
Payc{Y € 0,|YT| <2N° |Y | < 2N°}.

Clearly

1) = Fo) + F@) Pave (_max XG> 2N°|Y =y). (4.4.5)
eD*uD

By a similar argument as in the proof of Lemma 4.4.2, we have

lim IE”AVC( max |X(i)| > 2N°|Y = y) =0,
N—oo D*UD—

i€
uniformly in A, C C Sn, and|y| < N¢. Using this, we get from (4.4.5):
fW) < @) < 2f(), (4.4.6)

uniformly in A,C C S, |y| < N¢, providedN is large enough. Now



548 E. Bolthausen, D. loffe

fly) = F@ly g ) Pave (YY) (dy*, dy”).

{y* ly*|<2N<} /{y HyT|<2Ne}

By an obvious slight modification of the argument leading to (4.4.3), this proves (4.4.4).
([l

Proof of Lemma 2.3.4) For two expressiong(A, C, N), ¥(A,C, N) > 0, where
C C B, A C Sy \ B, B mesoscopic, we write ~ ¢ if

llog(A, C, N) —log (A, C, N)| < ¢[D|N?,
for anye, uniformly in A, B, C, if N is large enough. Let
C'’2Cc\(DvD"), A LA\D".
If y* € RP", 4y~ € RP™, we writej(y*, y~) for the boundary condition ofi* (A’ vV C”)
which isy* on D*, y~ on D~ and 0 otherwise.

Using Lemma 4.4.2, we get

Pavc(R2+) ~ Pave(R+ andY, Y, Y™ < N°9)

= / PaveY Hdy) dy* dy” "y [P 400 5(24)
{0<y<N<} {0<y*,y—<N¢}

~ [ Pavey iy dy* dy~ "y~ [O)P 00 ()
{0<y<Ne} {0<y*,y—<N°¢}

= Pavc(0 <Y < N°)Pavey p(Q+,0<YH Y™ < N9)

~ Pravenn(S2+)
=Pa(Q24+) Por (R24),

where we have used Lemma 4.4.3 and Lemma 4.4.2. Applying thatt@, we get
Pc () ~ Por(Q),

and therefore
Pave(§) ~ Pa(Q4)Pe(R+). O

5. Stability Results for the Torsional Rigidity
5.1. Main estimate.We use the notations introduced in Subsect. 2.4. Sipds analytic

inthe interior of D, Vup = 0 at most at finitely many points inside, andl" ,=0lev,up
is an analytic curve for all, except finitely mapye [0, maxup]. Following [2],

ds 1 ds
a'(u):—/ —  =—|I 7/ _
v Wunl - T L )

where we us¢l',,| to denote the length df,. Therefore, by Jensen’s inequality,

1 P
a'(u) < —|T, (/ Vu ds) =,
Tl J, Ve a(n)
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Consequently,

e
a’ (1) p=pla) 2(a) = 4r’

for all but at most finite number af € [0, | D|]. Now note that

|D|
/DuD(a:)d:v=/o uw(a) da

|D] , IDI 2
—/0 au(a)dag/o %da, (5.1.1)

x(D)

and (2.4.1) follows.
An explicit calculation reveals that

D] 2 2
x(B|p|) = /o S(C;)Z da = % (5.1.2)

Subtracting (5.1.1) from (5.1.2) (recalla) = 2\/7a), we obtain

| D] 1 1 1 [Pl s(a)
=20 [ (=)= g ) (1 ) 4
(5.1.3)

and the proof of Theorem 2.4.1 is, thereby, concluded.

5.2. Stability of the inradius.Let D C S(1) be a simply connected (but not necessarily
connected) domain with a piecewise smooth boundary. Since foreeadh, | D|], the
inradiuso(D,) of D, satisfieso(D,) < o(D), the Bonnensen inequality (see e.g [25],

(4.7)) implies that ,
p(a)? — s(a)? > (\/; - Q(D))

for eacha € [ro(D)?,|D|]. Therefore,

Ip(a) s a 2\ /2
> - Z

G = (1w -a) )

s(a) 1 -2
e (1 " (- ﬁg(D»Z) .

At this point we stop pushing for precise constants, and simply observe that due to a
trivial estimate¥a > 0, 1 — (1 +a) Y2 > a/2(1 +a),
s(a 1
W > L mod),
Ip(a) ~ ¢

forall a € [7o(D)?,|D|] andclarge enough. Substituting this into (5.1.3), and perform-
ing the integration over the intervalc [7o(D)?, |D|], we infer that,

and, consequently,

X(Bio) ~ X(D) > (D] ~ mo(DYY’ (5:2.1)

and the claim of Lemma 2.4.2 follows.
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Remark 5.2.1 As mentioned in the introduction, our stability estimate (5.2.1) readily
implies stability in terms of the area of the symmetric difference funafiofs), intro-
duced in (2.4.3). Indeed, for a simply connecfed

da(D) < 2(D| ~ mo(D)?) < ¢/ («(Byp)) — x(D)). (5.2.2)

We shall see in Subsect. 5.4 that such an estimate can be easily extended to the case of
not simply connected domains as well.

5.3. Stability of crystal shapes.Let D C S(1) be as in the previous subsection, and
assume without loss of generality that the largest inscribed cirdisfcentered at the
origin, i.e. that

Bropy € D.

We are going to estimat@u}, — h,|| 1 r2). Let h; (o) denote the shape of the harmonic
droplet of the volumey, which is bound to wet the circle of radius centered at the
origin (see (1.2.6) and (1.2.7),

2v
hy(z) = 77,2(7"2 - ‘$|2) V0.

Setr(D) = ‘%. Then, for anyn > 0,
luhy = ol @y < llupy — B + [|A;P) — A 1
+ [lhy = R 1. (5.3.1)
We chooser = x(B ,py)/x(D), so that

o(D) =
v x(D) UB. e

Then, using monotonicity in domain of the solution of the Poisson equation with Dirichlet
boundary condition,

v X(Bﬂ' 2)
Jup — HEP s = o1 XE02)) (532)
and ( )
B 2
WP — g2 = v (1 _ X ra0p) )
| [ 22 N
On the other hand, a straightforward computation reveals that
D) _ _ v [IDI—d]
(12 hyl| 2 or |Dl*a (5.3.3)

To facilitate notations set(D) = E%(D) — E}(Bg). Then,
A(D) > max{E}(D) — E{(B\p|) , E7(B|p|) — E}(Ba)}.

SinceE}(B)|p|) can be computed exactly, we infer that for some 0,
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1
E{(Bp)) — E}(Bz) > =(ID| - a)’,
C
or, substituting the above estimate into (5.3.3),

[h5PY = hy |2 < e/ A(D). (5.3.4)
On the other hand,

°(x(B — (D 2
- (;(;(BDDT)X(g) L 2 (Wg) (x(Bp)) — x(D)),
(5.3.5)

the last inequality follows from (1.2.6 and the fact thatC S(1) (and hence, by (1.2.6),
bothx(B,p|)) andx (D) are bounded above by'2).
By (5.2.1) this means that one can choesec(v), such that

|D| = mo(DY? < c(v)v/AD).

Consequently, we can use (1.2.6) to derive,

A(D) = E¥(D) — E¥(B|p)) =

|D? — (mo(D)?)?

X(D) — xX(Broy2) < X(Bip|) — X(Brony) = 8

~(D| - 7oDY) < c3/AD).

Substituting the latter inequalities into (5.3.2) and (5.3.3), we finally obtain

IN

ul — heD < —S _3/AD 5.3.6
|| D av ||L = X(D) ( ) ( )

and
YT | < ﬁe/A(D) (5.3.7)

Since for anyk > 0, E4(D) < k = x(D) > v?/2k, (5.3.1) and (5.3.4)—(5.3.7) imply
that there exists > 0, such that

min |[u}, — hy(e +z)||11 < e/ A(D), (5.3.8)

zeS(1)

uniformly in simply connected domain3 C S(1).

5.4. Estimates for general domaiis C S(1). It remains to prove Lemma 2.4.3in
the case wherD C S(1) is not necessarily simply connected. For such a domhain
let {D,}.cpo, pjj b€ the rearrangement of the level sets.pf defined in Subsect. 2.4.
Recall that

2 1 1
A(D) = Ej(D) - E}(Bp|) = Uz<x(D) - x(BD)>'

Since we are interested only in the cas&\¢D) being small, we may assume thgiD)
is bounded away from zero uniformly in all domaibsin question. Then, by virtue of
(2.4.2),
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1 [Pl s(a)
A(D) > E/o a(l— lD(a))da'
Settinga* = maxX{a : Ip(a) < s(a)++/A(D)}V|D|/2, we therefore obtain (modifying

the constant according to the convention of Remark 1.3.2):

Ny s [Pl=a _ [DADT
A(D) Z c - ’

c

whereD* £ D,-. SinceD* is a level set of.p, and using the estimate @i derived at
the beginning of Subsect. 5.1, we conclude that

1
max < —|D\ D*|.
z€D\D* up(e) < 47r| \ D

Consequently,

r = X(D) = x(D*) < e/A(D)
and (5.4.1)

A(D*) < e/AD).

Thus everything boils down to the following problem:
Given D C 5(1) with a piecewise smooth bounda?y) satisfying

[0D] < s(ID]) + A(D),

lup —up-

prove that:

irg(l) [uh — ho(x + @)|| 2 < e/ A(D). (5.4.2)
S

Again, since we are interested only in the cas& D) being small, it can be assumed
from the beginning thatD| > a/2. First of all, notice, that ifD contains two disjoint
componentspD = D; V D,, then

D12+ D22
WD) = (D) +x(D) < x(BDo('DL'
2|D4||Dy|
= x(B 1 - SHre
x( D|)< DE )
and, consequently,
EYD) > Af|D|+ v2 (1 ADiID| - > BB )+L2M
S = S (B [DP? = BT or DR
Therefore,
2‘D1HD2| 27T
— = < —A(D
\D\Z — ’U2 ( )a

or, min{|Dy|, | D2|} < cA(D). Thus, in order to prove (2.5.1), one can restrict attention
to the case wher® is connected.

So assume thab satisfies (5), is connected, but possibly not simply connected,
i.e. thatD = G \ R, whereG C S(1) is connected and simply connected, d@d- G
is open; both domains having piecewise smooth boundaries. SiBtes |G| and
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|0D| = |0G| + |OR|, we immediately infer thaoR| < A(D), and, consequently, that
|R| < A(D)?/4r. Furthermore,

(1D +|R])?

AD) < X(G) < X(Biopim) = o

where the last inequality follows by the estimate |@} above and by (5.3.5) of the
previous subsection. Equation (5.4.3) and the above estimafe|en|G \ D| already
contain all the information we need to prove (5.4.2). Indeed, we readily obtain that

A(G) < c¢A(D) and [lug — upllr: = x(G) — x(D) < cA(D),

< x(D) + cA(D), (5.4.3)

and it remains, thereby, to apply (5.3.8) to the functignover the simply connected
domainG.

6. Concentration UnderPg (e | Viy > N3v)

6.1. Gaussian concentration estimatesWe give a proof of Lemma 2.5.1. Using the
representation of the approximate torsional rigidity

NN (4) =) Ei(rac),
7
whereE; is the expectation of an ordinary symmetric random wallZdrstarting ati,
andr 4. is the first hitting time ofA¢, we see that

xn(A) < xn(Sw),
and obviously (see also Lemma 2.6.1

Jim X (Sn) = x(S(1)) < oo

Therefore, we have

K :=sup sup xn(4) < co. (6.1.1)
N ACSN~
Now, we have
vare, (Vi) = N*xn (A). (6.1.2)

We write

Pa(llén — ul vl > a|Vy > No)

vta/2 3 VN
< [ Palley — a2 o)V = N9 Ra (1 € do

Vy > N%)

+Pa (VN > N3 (v + ;) ’ Vy > N%). (6.1.3)
Using (6.1.1) and (6.1.2), we get

IP’A(VN > N3(v+;> ‘ Vn > N%)

p{ NZ(U + %)2 NZUZ } ( N2a2)
< expl — — <expl ——— ).
2xn(A) 2xn(A) 8K
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Using this, (6.1.3), and the obvious fact that
luls,n = uwi,wlla <l — ol
it suffices to prove

a?N

Vy = N3x> < e (6.1.4)

NI e

sup m(nsN AN

z€[v,v+5]

The random field X (i));c 4 under the conditioned la® 4( |V = N3v) is Gaussian
with mean
EA(X(i)| Vi = N32) = Noua n (i)

and covariances

ua N()ua ()

COVA(X (@), X () | Viv = N°2) = ga(i, ) = === =,

whereg 4 (i, j) 2 E4(X ()X (4)). Remark that

. 1 .
ua,N(i) = N2 Z 9a(i, j),
JjEA
and asyy(A) =", 4 ua,n(9)/N?, we see that
o4 2 Y Jcova(X (i), X(j) | Vv = N3)| < 2N*yn(4) < 2N*xn(Sw). (6.1.5)
i,jEA

We apply now one of the standard isoperimetric inequalities for Gaussian measures (see
e.g. [21], (4.4)). First remark that

pEEy (Z [ X() — 2Nua,n ()| ' VN = NBOC)

jeEA
aN3-9
< Y V9al.d) < eN*logN < ==
JjeEA

if N islarge enough. Therefore, using (4.4) of [21], we get

NI 2

m(néN AN

Vy = N%)
N3
=Py4 (Z |X(j) — xNuan| > “7 ‘ Vi = N%)
jeEA

. . aN?
<Pa (Z |X () — aNuan()| = p+ e VN :N3l’>
jEA

IN

a?N®
exp(—w>, (6.1.6)

where
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o= sup{varA (Z Xg() ‘ Vi = N%) : g(j)| < 1for allj} <o?.

JEA

Using (6.1.5), we see that the r.h.s. of (6.1.6) is bounded by-@xi(?/64x n (Sn)).
As

supxn(Sn) < oo,
N

we have proved Lemma 2.5.1.

7. Approximation by Discrete Quantities

7.1. Estimates on discrete rigidities. Recall that the discrete rigidity 5 (A) of a
lattice domaind € Z? was defined in (2.1.5). We follow [34] to take advantage of the
variational characterization gfy:

1 4 ing > ey (k) — u(l))?

= N
(@A) oA (o uR)e
u=00nZ2\ A

(7.1.1)

where the sum in the numerator is over all unoriented pairs of nearest neighb@drs in
Note, by the way, that for a domai € R? with a piecewiseC? boundary, the
torsional rigidityx (D) is given by a similar formula,
— fD |VU|2 dx

D) uzbond ([ uda)

(7.1.2)

Proposition 7.1.1. Let D € R? have a piecewis€? boundary, and assume that a finite
A C Z?is such that

min{||lz — k| : 2 € ND,k € Z*\ A} > 1/2. (7.1.3)

Then,
x(D) < xn(A). (7.1.4)

Proof. The proof follows Sect. 2 of [34], where a similar inequality for the membrane
problem was established. We adopt it here for the sake of completeness.

Letu € HY(D). For each, 8) € 35(1) 2 1[—1, 1]2, define

Vo s(k) = u<""+§v‘3‘ﬂ))

Because of the condition (7.1.3), 3 = 0 onZ? \ A. Moreover ifu > 0 on D, then
Va3 > 0 as well. By (7.1.1)Y («, ),

2
(Z Va,ﬁ(k’)> < NXN(A) D (Ve pk) = Va ()%
k

(k1)

However, by Jensen’s inequality
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2

/%Su) (zk: Va’ﬁ(k))zda =N 2(/]3 u(@)dz )",
and

1
AS(l)(Z(Va’ﬁ(k) - Va,ﬁ(l))2> dOé dﬁ S ﬁ /\D |vu|2 dl’

(k)

The claim follows now by (7.1.2).

The estimate (7.1.4) controls the approximation from above by discrete rigidities. A
possibility to control it below as well is provided by the following

Proposition 7.1.2. Let A be a finite subset &2 and define
Ay = {k e 72 : min|lk —2I|| < 1}.
leA
Then,
xn (A4) < xan(A2). (7.1.5)

Proof. Given a functionu : Z? — R, such thatu|;>\ , = 0 andu is not identically
zero, let us defin@ : Z? — R, via

ﬂ(k):ﬁ > u(m), (7.1.6)

whereA(k) = {m € Z? : ||k — 2m|| < 1}. Then, by the direct substitution of (7.1.6),
D k) =4 u(m),
kez? meZ?

and
D (k) — wW)® < Y (u(m) — u(n))®.

(k,1) (m,n)

Since by the very constructiain = 0 outsideA,, (7.1.5) follows from the variational
characterization (7.1.1).

We are in a position now to prove Lemma 2.6.1. I®tC Sy be a mesoscopic
region, and defind® C S(1) asin (2.6.1),
— 1
B =~ |J&+@/250).

keB

By Propositions 7.1.1 and 7.1.2,
X(B-x) € Xn(B) <l xomn(Bam),

whereB_ y 2 {z € B : min [l — y| > 3/N}, and B = (.. (Ba))e. )2 (m
ye

times). Using results of [6] and the monotonicityypfn a domain, we conclude that

xn(B) < x(Bs.w),
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where B, v £ {z € R? : min||z — y|| < 3/N }. Consequently, for any3 C Sy
yeEB

mesoscopic, _ B _
X (B) = x(B)| < x(Bs,n) — X(B- n), (7.1.7)

and it remains to estimate the right-hand side of (7.1.7) uniformi i@ Sy. _
Let up+ andup — be the solutions of the Poisson equation®ny and B_
respectively. Set
any = _max  upg+(x). (7.1.8)
ZL’GB+,N\B_’N

Then,

\(Bon) = x(B_w) /B up o(x) di — /B up,(z)d

an|Bsn| < dan. (7.1.9)

IN

Indeed, forz € B_ y,

wp (@) = up,_(2) + /  upa(©ole, do).

9B_ n

wherep(x, o) is the exit distribution (harmonic measure) 8B_ y for the Brownian
motion starting at:.

In order to estimate y in (7.1.8), letG'x = 35(1) \ N*~15(1), and letus,, be the
solution of the Poisson equation with Dirichlet boundary condition8@Gr;. Set

I
= max UGy ().
) <Nv=1+g/N T

By the monotonicity considerations one infers thgt > ax for all mesoscopid3 C
S(1). In order to estimate’,, define a new domain

Gy = N'7H25(1)\ S(1)) € G-

Thenug, is majorized by the solution of the Poisson equatiorfim subject to the
boundary conditions 0 ofl(N*~1S(1)) andmy on 9(2N*~1S(1)), where

= max . 7.1.10
my = maX (@) (7.1.10)

Then, of coursemy < c independently ofV. Since the blowup o v by the factor
N1-?tissimply the square annulus2L)\ S(1), we can use Brownian scaling to conclude
that

ay < eN7P,

and the claim of Lemma 2.6.1 follows.
Let us turn to the proof of Lemma 2.6.2. By Lemma 2.3.1, for each$gxk) =
(k+ N°S()nzZ?,

q|San| > 109 Zs,, ) > q|Sar| — 8rN.

Consequently, for a mesoscoic= Ukegg% S (k),
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q|B| > logZp > > 109 Zs,, ) > q|B| — 8rN>~".
keB

On the other hand, by the estimates (2.3.5) and (2.3.6),

1 Zpyp
— N7 < log 22 < N7, (7.1.11)
N Zp+lp+

for any two disjoint mesoscopic regiofisand B’. Consequently, a rerun of the subad-
ditivity argument of Subsect. 4.3 reveals that the limit

A 1 ~
q+ — A}@m m |0g ZN’+
exists, and, moreover, any mesoscaBiwith | B| > ¢t N? satisfies

Gr — < eN7°. (7.1.12)

Since by the definitiom y = J + ¢+ — ¢, we conclude that any mesoscopic region
B C Sy with |B| > tN? satisfies,

N2

Z
Af|B| —log =2 — JB‘ <eN79.
ZB$+

But, by the assumption,y (B) > t, so the latter inequality combined with Lemma 2.6.1
implies the desired estimate (2.6.3).

7.2. Approximation near the optimal shapd.et us assume that

An(B) £ |E, 4(B) — EY(B3)|

is small enough. Such an assumption clearly imposes restrictiopg @B) from below,

and all the results from the previous subsections apply. The proof of Lemma 2.6.3
follows closely the scheme developed in Sect. 5, and we shall use some of the notations
introduced therein. In particular, we can restrict our attention to the case of simply
connected domains. So, let

_— 1
B= U (k+ 25(1))
keB

be connected and simply connected. Alsodet E(E) be the inradius of3, and, to
facilitate the notations, let us assume that: is the corresponding incircle. Note that
due to the results of the previous subsection and the stability estimate (5.2.1), we may

assume that
—_ 1 /a
0> \/7 > 0. (7.2.1)
2V

Finally, let BY be the discretization aB,,,

BN 2NB, N7
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and define
T [
v,N = UpN_ N

Seta = xn(B%)/xn(B). Then,
h 5 = Pollzr < 0 = by wllzs + 188, = B2, [l + (B2, = hollr. (7.2.2)

Since,BfrVQ_2 C B, the first term on the right-hand side of (7.2.2) equals—1
XN(B%Z)/XN(B))& However, in a view of Lemma 2.6.1 and (7.2.1),

XN (B) = xn(BY2) < 2(0¢(B) — X(Brg2))-

Proceeding as at the end of Subsect. 5.3, and using (2.6.3), we obtain that

X(B) = X(Brz) < c¥/An(B).

By (7.2.1) bothy x(B) andXN(Bfr\’E?) are bounded below by a positive constant which
does not depend oBR andg. Consequently, there exists> 0, such that

| n — hoy n i < e/ An(B). (7.2.3)

For the second term on the right-hand side of (7.2.2) we can simply use results on
discretization errors [6]] for the Poisson equation on a regular domBaja, which
assert that _ B

1P, v — Pl < ¢/N. (7.2.4)

Finally, the remaining term on the right-hand side of (7.2.2) can be estimated exactly as
it was done in Subsect. 5.3. Indeed, because of (7.2.1) and Lemma 2.6.2,

A(B) < 2Ax(B),
and all the estimates of Subsect. 5.3 apply. Thus

18, — hollr < ¢¥/AN(B) (7.2.5)

for somec = ¢(v) > 0. Substituting (7.2.3)—(7.2.5) into (7.2.2), and following the pattern
laid down in Subsect. 5.4 to incorporate the not simply connected case, we arrive at the
conclusion of Lemma 2.6.3.

8. Proof of Theorem A

8.1. The proof. In order to facilitate notations let us define
Ev = {X(0) : min ey — ho(e+ 2|z > vn

where, as beforé,y is the plaquette reconstruction from the random figI@®), 5, is

the optimal harmonic shape given by (1.2.7) and the sequigneg; lim vy =0, is to

be appropriately selected in the course of the proof. Our derivation of the asserted rate of
convergence oﬁ's’N7+( En |V > N%) to zero is based on the disjoint decomposition

of the event='y with respect to mesoscopic wetted regions:
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1

@N& EN\VNZN% = = @N.& EN;S(UaB) )
( )= S L Pl )
mesoscopic
(8.1.1)
where€(v, B) £ {Viy > N3} n {M(Xy) = B}.
The proof of the theorem comprises two estimates:
1. Alower bound orlAJ’N7+(VN > N3v)
and
2. Uniformly in mesoscopic region8 C Sy an upper bound on
PN’+( =N ;5(37 ’U))
Proposition 8.1.1.
Py+( V> N%) > exp( —N2%(mn s +cN70%), (8.1.2)

wherem . ¢ £ min{E}, ((B); B C Sy mesoscopik

Proposition 8.1.2. Letc > 0andd > 0 be fixed to satisfy (8.1.2) above. There exists a
sequencévy }; Nlim vy = 0, such that for anyB C Sy mesoscopic,

Py+( En; E(B,v)) < exp( —N%(my, s +cN %) — eN27?). (8.1.3)

Since, as we have seen before, the number of all mesoscopic subregi®nsof
bounded above by expP—?)), the conclusion of Theorem A follows.

Proof of Proposition 8.1.1Let By be an optimal mesoscopic region, i.e let
E})\/‘,f(BN) = mn,f.
Then,
~ Z
Pys+(Vy > N%) > Y e/ 22p,(Vy > N Q))
ADBy ZN+

=Y e*JlAlAZ—APA(vN > N3 )P4 (), (8.1.4)
ADBy ZN+

where the second inequality follows from the FKG propertieB pfMoreover, for each
A2 By,
Pa(Vn > N3v) > P, (V> N),

and, by Lemma 2.3.1 d),
Pa(9:) 2 Paisy (9)Ppy (@),

Finally, as it was remarked in Sect. B, ( Q) > e=°N*"" uniformly in mesoscopic
regionsB. Consequently,

Py (Vv > N%)

Z e_J‘BNl_cNZ—EPBN(VN Z N3’U) X Z e_J‘D‘@HDD( Q+)
55 Zn+
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By (7.1.11),
—J|D| = ZN+ _ N2
Z e ZDIPD( Q+) = ZBj\‘,,+ > =——€ .
DOSn\Bn ZBy +

Since,Vy is Gaussian undétg,,,

2 v
2x~n(Bn)

and the substitution of all the above reductions into (8.1.4) leads to

Ppy (Vy > N%) > exp( -N —clogN>,

@Nﬁ'( VN Z Ngv)

BN‘ 1 Z\B + ’U2 —
> _N? | + Nt _ N2
- exp( (J Nz T NzoY Zpy  2xn(Bn) ¢

Equation (8.1.2) follows now by the definition (2.1.10)/8f; , and the optimal choice
of By; B ;(Bn)=mn,¢

Proof of Proposition 8.1.2We split all the mesoscopic wetted regions into two families:
F1 = {B —mesoscopic EY, ;(B) > my s +en}

and
F2 = {B —mesoscopic E}, ((B) < my s +en},

where the sequende v } is to be specified later.
Estimates foiB € F;. From now on we pick a number;
v+2h < 4 < 1

which is possible due to the choice of the scaling paramétansly in Subsect. 3.1.
Now,
QN{M(Xy) =B} = {X(k)<N',Vk¢ B} (8.1.5)

Indeed, by Lemma 1.7.4 in [20[}(M) > §/M = 6 N—2. Therefore,
{(X(k) > N} = {Xp(k) > 6N 2} = {Xp(k) > N,

which contradicts the assumptigh ¢ M(X )}
Next notice that one can disregard mesoscdpis which are too small. For fix a
small positive numbet, and assume thaB| < tN2. By (8.1.5),

Q. NEW, B) = {Vg > N3 — ¢N?"" > N3%(1— N9},

whereVg £ ZkeB X (k). However, for eactd C Sy, Vg is a zero mean Gaussian
underP 4 with the variance bounded above by

> Gsy(k,D) < 2N?|B| < 2tN*.
k,leB

Therefore,
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. 2772
Py(E(,B); Q) < exp(—vg )

Thus, fort small enough (8.1.3) is automatically satisfied.
With such a small positive fixed we can proceed to consider only thd3ec Fi,
for which |B| > tN?. We have:

@N,*-( EN ; 8(1}, B)) < @N,‘*( 5(’1}, B))
7 ~
=3 e T ZA P, (M(Xn) = B; Vv > N Qu). (8.1.6)
A IN
Due to the volume filling estimate (2.2.7), any substantial contribution to the sum above

can come only from thosd-s, which satisfy|B \ A| < ¢N?7?. Also, in a view of
(8.1.5), we can further develop the right-hand side of (8.1.6) using:

PA(M(XM) =B;Vy > N3v; Q)
SPA(X|A\B§ NP v > N3(v — eN79)).

We want to condition on the values of spinsiat z B, which are known to stay below

N, to decouple between events oven B andA \ B. As in Subsect. 4.4 & 45,
denote the Gaussian measuredonB subject to boundary conditionon Sy \ (AN B).
Clearly, for each number € R,

max  Panpa(Vs>a) < Panp( Vi >a—cN?).
z€[0,N7']A\B i

Therefore,
Pa(E@, B); Q) < Panp( Vi > vN3(1—cN7)Py( 7).
Finally, as it becomes apparent from the proof of Lemma 2.3.1 d) in Subsect. 4.4,
Pa( f\B) < ec]\[276]1@,4\3( Q).

and, of courseP 45 ( Vv > a) < Pp( Vi > a) for each numbes € R.
Proceeding as in the proof of Proposition 8.1.1 we, therefore, obtain:

Py+(En; E(v,B)) < exp( —N2E} ((B) + cN?7%). (8.1.7)

Since it was assumed, thal; ;(B) > mx s + en, we deduce from (8.1.2) and (8.1.7)
that

@N.&( =N g(U,B)) < exp( 7N2(€N — CNié))I/P\)N&(VN > N3v).
Then, the choicey = cN—% + ¢N~? does the job.
Estimates forlB € 7, SoletB C Sy be such, that
EX/,f(B) < MmN, + en. (818)

This, of course, imposes a restriction |d#| from below; for exampléB| > N2a/2 for
N large enough. We proceed exactly as in fiiecase to conclude, that uniformly in
B-s satisfying (8.1.8) and il C Sy; |B\ 4| < ¢N?79,
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]P)A (EN;g(U, B); Q+)

cN2—% = . 3 -5
< eV Pa\p(Q) o E a5 (Eni VN 2 NPu(1 - cN7)).

If, EX, (AN B) > mny, s +en, then the corresponding term in the expansion
~ Z
]PN,+( EN; 5(”73)) = Ze_JIA‘EiAPA( En; E,B); Q+)
N,+

can be treated as in tl#, case. Thus, it remains to consider only thasss, for which
EY ((ANB) < mpyy + en-. (8.1.9)

Only at this stage the evefty at last comes into play. Notice that for such an almost
optimal AN B the profileu?, 5 y is already very close to the profilg; , and hence,

by the approximation and stability results of Sects. 5 and 7, to some sliift itdelf.
More precisely,

HL_L%,N - @mB nllz

< |lup.n — . (B) AmBN

)uAmB N

H (1 xn(AN B)
xn~(B)

However, since(n (AN B) < xn(B), and the integral of a positive functiary, y is v
regardless of the regioP C Sy, one infers that

1

uh ny — UR <2u|l1l-=—F———
|| B,N N7AﬁB||L1 = ( XN(B)

On the other hand, the fact thd \ A| < ¢N?~? in conjunction with the random walk
representation of Sect. 4 and withthe inequalities (8.1.8) and (8.1.9) implies that

|EX ;(B) — En (AN B)| < 2ep,
and thaty x(B) > v?/4my ;. Consequently,

lvang N — up Nl < cen,

and, by virtue of the stability result (2.6.4),

wgg?l)”uAmB N — ho(e+ )| < cven. (8.1.10)

Thus, it remains to give an estimate on

Panse(lEn — wannlle = v Vv > N3(1 - CN*‘s)),

uniformly in A,B and boundary conditions € [0, N7']S~¥\(4NB)  and then to choose
the sequencévy } in accordance with all the restrictions imposed by different estimates
involved. In fact we can reduce the bounds for differeistto a single estimate at= 0.
Indeed, fix anz € [0, N7']5~¥\(ANB) and defineu” to be the plaquette reconstruction
of the solution to the (discrete ) harrrgomc equationdon B with boundary conditions

x. Then, undel 4 ., the field X (e)=X (o) — u”(e) is Gaussian with zero boundary

conditions oSy \ (AN B). Therefore, since by the maximum principle0u” < N7,
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Panpe (€8 — wane Nl > va; Vv > N3o(1 - CN*‘;))
<Panp(lén — anp vl > vy — NV 71 Vg > No(1— eN70) — N771).

Combining the latter estimate with (8.1.10), we see that the sequenck should
satisfy
NV tvedey < vy < 1. (8.1.11)

However, once the choice di/y} complies with (8.1.11), we are entitled to use the
concentration estimates of Sect. 6 to assert that for #aeh F, and eachd C Sy,
such thatB \ A| < cN?79,

~ 2
Py(En; EW,B)) < exp(Nz(mNJ —¢N S +exy A ”N)>.
C

Recall that we have already chosep= c¢(N "+ N—°). Then,

VN = % \/ N('Vlfl)/zv
both satisfies the requirement (8.1.11) and leads to the desired estimate (8.1.3).
8.2. Positivity ofA;. The fact that the limit in (1.3.4) is well defined was established

in the end of Subsect. 7.1.
One can rewrite\ ; y as

ZN+ 1
A = A J) = lo . + logPs, (2
f:N ny( ) ‘SN| geijlleZNIP)SN(Q+) |SN‘ g SN( +)7
where N .
Zn+ = Zna() = Y e/ ZuPa(Qs).
ACSn
However, by the results of [10],
lim iIo Ps,(R2:+) =0
N—oo |SN| g SN + *
ConsequentlyA ¢ is nonnegative.
Differentiating A ¢,y with respect to/, we obtain:
d 1 -
—A =1—- —En+|D 8.2.1
dJ fiN ‘SN| N7+| |7 ( )
and )
d 1
——A = —Var, D
d2J LN ‘SN| N,"'(‘ |)7

whereD is the random microscopic wetted region. Sifit€ Sy , Ay n is nondecreas-

ing and convex. Moreover, (8.2.1) above clearly indicates that the question of whether
Ay n > Oforall J € R ornot is essentially the question of the wetting transition in
our model. We do not attempt to solve it here - such a computation would involve a
rather delicate analysis of the entropic repulsion phenomena for two-dimensional Gaus-
sian fields with 0-boundary conditions, which would be closer in spirit to [5] than to
the problems we are addressing in this article. Instead we shall give a rather crude and
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straightforward proof of the positivity of ; for large enough values of. Namely, we
claim that
J—logv2—q
2 b
whereg is defined in (4.2.1). Indeed, by the results of Subsect. 4.2,

Ar(J) > (8.2.2)

1 T
logZy < |SN|(2|092 + Q>-

On the other hand, a trivial computation shows that for every Sy,

0o |Al
ZAPA(R+) > (/ e‘zzzdac> = exp{'AllogW}.
0 2 4

In particular, for any4 C Sy such thatA| = STNl
e MM Z,Pa(@s) _ |Swl
e~ JISNIZ N - 2

(J — logv2 — q),

and (8.2.2) follows.
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