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Abstract: Let f be a diffeomorphism of a manifold/, andp; a (generalized) SRB
state for f. If suppy is a hyperbolic compact set we show that the nfap- p;

is differentiable in a suitable functional setup, and we compute the derivative. When
suppp;y is an attractor, the derivative is given by

5p1(®) = 3 pylgrad@ o ), X)
n=0

whereX is the vector fields f o f~1. This formula can be extended to time dependent
situations and also, at least formally, to nonuniformly hyperbolic situations.

The above results will find their use in the study of the Onsager reciprocity relations
and the fluctuation-dissipation formula of nonequilibrium statistical mechanics.

0. Introduction

In a recent paper [7], G.Gallavotti has outlined a new proof of Onsager’s reciprocity
relations, based on the study of the SRB meaguifer a hyperbolic dynamical system
(M, f). To give a rigorous and general version of Gallavotti's argument, one has to
study the dependencé — p;, and in particular compute the derivative. In fact, one
may argue that these problems are at the core of nonequilibrium statistical mechanics;
they are the subject of the present paper. We do not make here the assumption of [7] that
we are close to a Hamiltonian situation (whgrbas a smooth invariant measure); our
analysis will thus be valid “far from equilibrium”. In what follows we concentrate on
the mathematics, and leave the application to nonequilibrium statistical mechanics for
other occasions.

Let K be a mixing Axiom A attractor for the diffeomorphisgh In a suitable func-
tional setup we shall show that the SRB stajeon K depends differentiably ofi. A
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variationd f of f corresponds to a vector field = §f o £, and we shall obtain the
formula

Sps(®) = pr((grad@ o *), X))
k=0

This formula is relatively easy to guess, but its proof requires some care. Instead of the
Axiom A attractor case we shall in fact deal with the more general situation wkiere
is a hyperbolic set with local product structure, andthe corresponding generalized
SRB state (Sects. 1, 2 and 3). In Sect. 4 we shall see how the definition of attractor and
of SRB state can be extended to a general bounded time dependent perturbafions of
Finally, in Sect. 5 we shall discuss a formula for the formal derivative of the SRB state
pr with respect tof, without uniform hyperbolicity assumption.

The rest of this introduction is a brief summary of facts concerning hyperbolic sets.
For more details see Smale [20], Shub [16], Ruelle [14], and references quoted there.

Hyperbolicity. Let K be a compact invariant set for the diffeomorphigrof a finite-
dimensional manifold/, we assumg to be of clasC”, with » > 1. We choose some
Riemann metric or/. Suppose thdl'x M (the tangent bundle restricted f6) has a
continuous” f-invariant splittingl'x M =V~ @& V* and that there are constaqts> 1,

6 > 1 such that

m%?(H(Tzf”F”Wi(x))H <Co#™ for n>0.
xre

Then K is called a hyperbolic (compact invariant) set farWe callV— = V* and
V* = V* the stable and unstable subbundles respectively.

Local stable manifold¥~(x) = V*(z) and unstable manifoldg*(z) = V“(x) are
defined by

VE@)={ye M: d(fT"y, ff"z) < R for n >0}

TheV*(z) areC™ manifolds, respectively tangentto* (z), andz — V*(z) is contin-
uousK — CT. Furthermore, there a@ > 1,6’ > 1 such that ify, = € V*(x),

d(fTy, fTh2) < C'0"d(y, z) for n>0.

Expansiveness,dider continuity of hyperbolic splitting, Axiom A attractors§he map
f restricted to the hyperbolic invariant skt is anexpansive homeomorphisifhis
means thatl(f*z, f*y) < e forall k € Z, impliesz = y.

If » > 1, the stable and unstable subbundi&s are Holder continuousi.e., the
sectionse — V*(z) of the Grassmannian ovéf areC* for somea > 0.

We say that the compact hyperbolieinvariant setk is transitiveif K contains a
dense orbit f¥a),cz. We say thafl{ is anAxiom A attractorif K is transitive and has
an open neighborhodd such that

ﬁnzofnU =K.

It follows that the local unstable manifolds*(x) of points of K lie in K (this is also
true for the global unstable manifold§2, f*V*(x)). One can then show that thfe
periodic points are dense . The local stable manifoldg®(z) of points of K fill a
neighborhood (say/) of K. Consider a continuous map: S; — 5S> along theV;
between two smooth transverse sectiShsnd.S; (for instance two pieces of unstable



Differentiation of SRB States 229

manifolds). One can show thatis Holder continuous, and absolutely continuous (for
the Riemann volume elements 8f, .S,) with Holder continuous Jacobian.

Local product structure, shadowingVe say that the compact hyperbafignvariant set
K has local product structure B can be chosen in the definition bft (x) such that,
forallz,y € K,

V()N V' (y) C K.

In particular, an Axiom A attractor has local product structure. For si@alve may
assume that th&*(x) are nearly flat, so tha?—(z) N V*(y) consists of at most one
point. One can check that the map, ) — [z,y], where [z, ] is the only point in
V~(z) N V*(y), defines a product structure in a neighborhood of each poiht. of
Aremarkable feature of hyperbolic sets with local product structure igths¢udo-
orbits are well approximated by true orbits. We say tha){c(x, x,] iS ad-pseudoorbit
for fif d(fxr, xx+1) < 0 for every finitek € [ko, k1 — 1], whereko, k1 may be finite or
+00. The pseudoorbita(,) is e-shadowed by the orbitf¢z) if d(f*z, ;) < e for all
k € [ko, k1]. Bowen has proved the followinghadowing lemma:

Let K be a hyperbolic set with local product structure ffirFor everye > 0 there
is ¢ > 0 such that every-pseudoorbit inK is e-shadowed by an orbit i .

This is a very efficient tool in the study of hyperbolic systems; it was for instance
used by Bowen [3] to prove the existence of Markov partitions (first introduced by Sinai
[17], [18]) in general and natural fashion. For a discussion of Markov partitions and
symbolic dynamics we must however refer to the original papers.

1. Stuctural Stability Results

The spacesg, B, A. From now on we take integer> 1, and lety be a hyperbolic set
for fo of classC”. Then, the stable and unstable subbuniijgsareC for somea > 0.
The C* mapsKy — M form a Banach manifoldM. The maps close to the inclusion
map K — M are described by a chart 8#f which we may take to be the ope+ball

B around 0 in a Banach spate Using the exponential mapM — M, we may take
for 5 the space of* sections ofl ', M . Finally, we shall denote byl the space o’
diffeomorphisms sufficiently close tfy in a fixed neighborhoo@’ of Ky in M.

Proposition 1.1. Letr > 2.
(a) The mapd x M — M defined by(f,j) — fojo fy tisC™ ™
(b) The tangent maf toj — f o jo fy *is given by
(7;6)(x) = (Tj(foflw)f)(S(fo_lJJ)
whered € T; M.

To prove (a), it will suffice to show thatf(j) — f o j is C"~1. Furthermore the
problem is locali.e,, it suffices to considerandf o j nearxg € Ko. The mapf — foj
isC“ (in fact linear, using suitable local charts). Differentiatingmesf o j with respect
to j introduces thé-th derivative off, which isC”~*, and composed witli this gives
aC® function ifr — k > 1. Therefore f, j) — f o j is C"~! as announced.
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(b) follows directly from the definitions. [

For the next proposition, remember thatis a sufficiently smalheighborhood of

Jfo.
Proposition 1.2. Letr > 2.

(&) The inclusion mags, — M is a hyperbolic fixed point of the mapt — M
defined byj — foojo fy .

(b) For f € A, the mapM — M defined byj — fojo f(;l has a unique fixed point
J(f) close toKy — M. This fixed point is hyperbolic and is@* homeomorphism
Ko — K = j(f)Ko.

(c) The mapf — j(f)isC™': A — M, and the tangent mapf — §; is given by

05 = (L= Tip) H6f o [~ o ()

Clearly Ko — M is a fixed point ofj — foojo fo_l. The corresponding tangent map
is7o : B — Bgiven by

(Tod)(x) = (Ty—1, fo)d(fy 1)

(see Proposition 1.(b)). We have to show that this is a hyperbolic linear virpits
spectrum is disjoint from the unit circle. Here we use the fact that the splittifig ¥/
into stable and unstable subbundle€’s, giving a decompositiol8 = B* & B* such
that7o|B* andTO‘1|B“ have spectral radius 1. This proves (a).

Using Proposition 1(a), Proposition 2(a), and the implicit function theorem, we see
thatj — fojo fo‘1 has a unique fixed point(f) close toKy — M. By continuity,
this fixed point is hyperbolicig., 7;(y) is a hyperbolic linear map). By expansiveness
of fo on Ky, j(f) cannot collapse different orbits, and is thus injective. This proves (b).

[We have here followed Hirsch and Pugh [8] in establishing the persistence of the
hyperbolic sefk].

The implicit function theorem also yields that— j(f) is C™~1, and by differenti-
atingj o fo = f o j we get

0jofo=0foj+Tfodj,
hence
(L= Tip)dj=8fojofgt=8fof toj,
hence
85 = (L= Tp) "6 f o 1o i(f)),
proving (c). O
Proposition 1.3. Letr > 3. We denote byt : M — M the Grassmannian Gf' M,

and Ietf : ZTI: M be induced by f. Also letM denote the Banach manifold 6
maps:Ky — M, for some suitably smali > 0 (we takeg < «).

() The map4 x M — M defined by(f,7) — fojo f;tisC"2

(b) The canonical liftingko — V4" is a hyperbolic fixed point of the ma//ﬁ - M
defined byj — foojo fot.
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(c) For f € A, the map/\7 — M defined by — fojo fo‘1 has a unique fixed point
J(f) close toKy — Vj*. Furthermorer o j(f) = j(f). 3(f)z = V*(§(f)z), and
f=3fisC™2% A — M.

(a) is proved like Proposition 1.1(a), taking into account the fact fh'atof class
r—1

Fr.om the hyperbolic splitting’x, M = Vg @ V3* (for T'f), one also obtains a
hyperbolic splittingZy. M = Vg & Vg* (for T'f). In fact

Vg = (Tn|Typ M)~ Vg

and
Vg ={¢: n& € V§ and¢ is the tangent space W' atw¢}.

Note thatx +— ]73(95) is continuous because — V{(x) is continuousk — C".
Therefore, the spIittingN/os < 170“ is againC”? for someg > 0, and (b) follows.

Using (a), (b), and the implicit function theorem, we see that f ojo fo‘l has a
unique fixed poiny(f) close toKo — V*. Sincer o f= f om, we have

moj(f)y=mofoi(f)ofot=Ffomoi(f)ofot

which shows thatr o 7(f) = j(f). SinceK = H(HKgis f—invariant and close t&/7,
we haveK = V* ie, J(f)x = V“(jg)a:). Finally, the implicit function theorem also
shows thatf — j(f) is C"~2: A — M, concluding the proof of (c). O

2. Generalized SRB Measures: Smooth Dependence ¢n

We assume from now on théf, has local product structure, and thfgtK, is mixing
(for instancef, satisfies Smale’s Axiom A, an#ly is a mixing basic set). Then also
K = Ky = j(f)Ko has local product stucture fgt and f| K" is mixing.

If f € A, the (generalized) SRB meastingith respect tof on K is the unique
equilibrium state for-log.J¥, i.e, the uniquef-invariant probability measure = py

on K making
hy(p) — p(log J§) )

maximum. Heré:¢(p) is theentropyof p, and.J} is theunstable Jacobiaftherefore,
p(log J}) is the sum of the positive Lyapunov exponents hr\We do not make the

usual assumption thdt is an attractdt. The maximum of (1) isP(log J}) < 0[the
value 0 is obtained if and only K is an attractor, see [5]].

Let 5(f) : K — Kj be the inverse of(f) considered as a mdgy — K, and define
g = J(f)*ps. Then,puy is the unique equilibrium state with respectfipon Ky for

—log J¥ o j(f)- [This follows fromj(f) o fo = f o (/)]

1 SRB mesures were introduced by Sinai [19] for Anosov diffeomorphisms and extended to Axiom A
attractors for diffeomorphisms (Ruelle [12]) and flows (Bowen and Ruelle [5]). For the general situation
where uniform hyperbolicity is not required see Ledrappier and Young [10]. In this section and the next we
consider another generalization where we assume uniform hyperbolicity, but not attractivity. The uniqueness
of p maximizing (1) is because IQg}j is Holder continuous, andl| K mixing (see Bowen [4], or Ruelle [13]).

2WhenK is not an attractorp » serves to describe diffusion away froi under f. This is the content
of Proposition 3.1 in Ruelle [15]. See also Bowen and Ruelle [5], Young [21], Lopes and Markarian [11] (for
a special case: open billiard described by a Cantor set), Eckmann and Ruelle [6] Sect. IV E. The work by
Kaplan, Yorke, Kantz, Grassberger, Gaspard, and Nicolis should also be mentioned here.
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Proposition 2.1. Letr > 3. We assume thdt has local product structure with respect
to f, and thatf| K is mixing.

(@) The mapf — J§ o j(f)is C"~% A — CP(Ko).
(b) The mapf + pf|CP(Kop) is CT~2: A — CP(Ko)*.

Letwu be the dimension of the unstable subspaces. We notd thaf(f) is the norm
of (T'f)"* evaluated aj(¥), and thatf — T'f isC*: A — C"~1. Since, by Proposition
1.3(c).f — J(f)isC™"% A — M, we see thaf — Jf o j(f)isC™2 A — CP(Ky),
proving (a).

We shall now use the fact that, fifis the set offy-invariant probability measures on
Ky, then thepressure

A — P(A) = max[h s, (u) + p(A)]
pel

is aC* function onC?(Ky). Furthermore, the derivative éf at A (which is an element
of the dualC?(Kp)*) is the restriction taC% (ko) of the equilibrium statg:* for A.
[For these results, see [13]]. Therefore the map- u4|CP(Ko) is C*: CP(Ko) —
CP(Ko)*. Applying this to A = —log J} o j(f), andu® = iy, we see (using (a)) that
[ up|CP(Ko)is C™~2: A — OB(Ko)*, proving (b). O

Proposition 2.2. Letr > 3. The mapf — p¢|C™~1(M) (wherep; is the SRB state for
fisC™=2 A — T Y(M)*.

We use the fact that; = j(f)*us, so that

pr|CTTHM) = £(f)* (s | CP (K0)),

where the bounded operatfyf) : C"~1(M) — CP(Ky) is defined by/(f)® = ®oj(f)
and/{(f)* is its adjoint. Differentiation of.; proceeds according to Proposition 2.1(b).
The function? : A — L(C™~Y(M), CP(Ky)) isr — 2 times continuously differentiable
(as seen by direct computation because i€ C™~1, its firstr — 2 derivatives are still
C*, which by composition with &? function gives aC® function). The same holds
therefore for

0 A— L(CP(Ko)*, C"~H(M)").

We may now differentiaté( f)*(u ;| C” (Ko)), and we find that the derivatives up to order
r—2areinC™~Y(M)*. O

Remark 2.3.0ne can probably improve Proposition 2.2 to the statement fthat
pf|CT=2*(M)is C"=2: A — C"=2*(M)* whene > 0.
3. Generalized SRB Measures: Differentiation with Respect t¢f

Forr > 3, we have just seen thdit— p; = j(f)*us is C*: A — C?(M)*. We may
thus differentiate this map, or equivalently compute the tangentima(sp) to

= pp(®) = pp(Poj(f))
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for ® € C?(M). The linear functionad f — §p¢(®) corresponds to a linear functional
X + 6pp(®), whereX =4f o f~1is aC"~1 vector field onM. We shall evaluate
X +— 0p¢(P) in two steps.

First step: Computingou )(® o j(f)). By assumption we have the hyperbolic splitting
Tk M =VspVuforT foverK.LetF = F(f)be asection (not necessarily continuous)
of (V*)*,suchthaf F,|| = 1forallz € K.(We use the norm defined from the Riemann
metric; since {*)"* is 1-dimensionalF;, is unique up to a factat1.) We have

(Txf)/\qu = )\(x)foa

(A@)] = Jf (). )

Let now Vst c T*M be the subbundle orthogonal ¥&. There is a unique section
F* = F*(f) of the 1-dimensional bundI&+)"* suchthat{ F¥, F,) = 1forallx € K.
We have

(T3 )" Fiy = N2)Fy

and
)\(1‘) = <Ff*w (Tlf)Aqu>

Remember thaf — z = j(f)xo, andF,(f), F;(f) depend differentiably orf. We
may thus estimatéJ} in terms ofé f by straightforward first order calculus. [The fact
thatj(f) : Ko — K is in general not smooth plays no role here.] It is convenient to
embed) isometrically inRY with the Euclidean metric (for suitably larg€). Then
x+T, M may be viewed as an affine subspacB&f, and a local chart af/ is provided
by orthogonal projection on+7, M. Let|x —y| < €/10. In ane-neighborhood of, the
manifoldsM , z+T, M, andy+T,, M areO(e?)-close, and the projectiodd — z+T,, M,
ory+T,M preserve distances up to ordérThis means that for first order calculations
we may considef/ as a piece of Euclidean space negjor similarly nearfx), and
identify 7', M with T, M.

In view of the above considerations we may write, to first ordexfin

OM(z) = M@)[¢(@) — o(f2)] + (Ff,, [6(Tu )1 ),

where
(b(:l?) = <F;75Fw> = _<6F;>Faz>

Note that the arbitrary-1 factor encountered earlier disappears in the definitiaf{:of,
and thatp(-) is a continuous function.

We have
8(Tof) = To(8f) = [Tr2(6f o f~HUT: 1),
hence
ST )N = (L +Tpa(0f o f7N — UW(T )™,
hence

OA(z) — A@)[o(z) — o(f2)]
= N@)(Ffps [+ Tra(6f 0 f7) = UFpa) = Ma)[divt X](f2), 3)
where div' X is thedivergence ofX = 6f o f~1 in the unstable directiodefined as
follows. The orthogonal projectiond — x + T, M replaces the vector field by a

functionX’ : x+T,M — T, M. Restriction ofX’ to z + V*(z), and projection parallel
to V#(x) gives a functionX” : x + V¥(z) — V*(z). Using an orthonormal basis of
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Vi(x), weletéy, . .., &, be the corresponding coordinatesiV (z), andXy', ..., X!/
the corresponding componentsXf'. Itis now readily checked that (3) holds if we write

!
divt X = Z — X,
— 08

[Note that with our choice of coordinates, the metric tensor may be considered as constant
nearz; otherwise the expression for diwould be more complicated.]
From (2), and (3) we obtain

OA(x)
@)

= [=divi X](f5( o) + o(f5(f)zo) — ¢(i(f)x0)

o[—logJ§ o j(f)]xo =

or
6[—log J¥ o j(f)] = [—div* X] o j(f) o fo + coboundary

where the coboundary tergio fo — 1) does not change the equilibrium state.
Write ¥ = [—div*X] o j(f) so that¥ € CP(Ky). Taking alsod € C?(Ky), we
have
G @) =D Tpp((@ o f5). ¥) = (@) pp(W)].
kez

[See [13] Chapter 5, Exercise 5, and use a Markov partition to apply this result to the
present situation.] Finally (witb € C?(M)),

@)@ 0 j(1) = [ps((® o ). (—div' X)) — p(®). ps(—div* X)].

kez
Second step: Computing:(6(® o j(f))). Using Proposition 1.2(c) we have

5(® 0 j(zo = (T(p)ae P, 55 ()x0) = (Tj(ao®, (L — Tip) (6 0 £~ 0 j(f))wo),

where
(LY 0 J(Nx0 = (T, Y 0 §(F) 0 fo o

Write againz = j(f)zo, X = 6f o f~1, and letX () = X*(x) + X“(z) with X*(z) €
Vi(zx), X*(x) € V*(x). We have then

(Tj]ff)(y o j(f))xo = (Tfkafk)(Y o f M)

and
6(® o j(f)zo

= (To®, Y Tty (X° 0 j(fzo) — (To®, > T, 5 (X" 0 j(f)xo)
n=0 n=1
= (1@, Y (Tpnaf)X(f"0) = (To®, > (Tpnaf )X ("))
n=0 n=1

=3 (Tpna( @0 f7), X(f ")) = Y (Tpna(®@ 0 f77), X ().

n=0 n=1
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Using thefp-invariance ofu ¢, and writing gradb for the element of; M defined
by T,,® we have thus

1 (6(P 0 5(f)))
= / 1@zl (Thrao(® 0 1), X*G(N70)) — 3 (Tyea(® 0 F ), X (i()0))]
n=0 n=1

—Pf[z grad@ o f), X*) — > (grad@ o £ ), X*)].
n=1

n=0

Theorem 3.1. Let K be a compact invariant set for tie® diffeomorphisny of M. We
assume thaf( is hyperbolic with local product structure and thatK is mixing. We
denote by the generalized SRB state én

(a) The derivative of — py is given by
3f = dps = 6Wps +6@p;

and, ford € C?(M),

§Wpp(@)= D [ps((® o [AY=dV“X™) = ps(®)ps(—div“ X ™),
k=—o0

§@ps(@) =) prlgrad@ o ), X*) = Y plgrad@o f7"), X*),
k=0 k=1

whereX*, X* are the components of the vector figld= § f o f~* along the stable
and unstable subbundles of the hyperbolic decompositioh/ = V* & V™.

(b) If K is an attractor, we have ;(div*Y) = 0 for any smooth vector fielt", and
therefore

Sps(®) = pylgrad@ o f), X)

n=0

= psli(gradd) o /7, (Tf")X*) — (@ o f")div* X*].
n=0

The proof of (a) has been given above. For (b) we use a Markov partition and a
disintegration op s into measures carried by pieces of unstable manifolds. By a change
of variabler — y = f¥x for N large, and use of Gauss’s formula we see thédiv*Y’)
reduces to boundary terms, and since these cancel pajpwdir"Y) = 0. Therefore
pr(div*X™*) =0 and

pl(® o f)(—divi X™)] = ps(grad@ o f*), X“),
so that

Spp(®@) =Y prlgrad@o ), X* + X*),
n=0

as announced. O
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Remarks.
(a) In the attractor case the formula féw ;(P) contains a term

> plgradd, (Tf™)X*) o f7),

n=0

which converges exponentially becadsg is a contraction oiv#, and a term

>l (@vi X ) o )],

n=0

which converges exponentially because of the exponential decay of correlations for the
Gibbs statey.

(b) Let m be a probability measure absolutely continuous with respect to Riemann
volume onM, and with supportin the basin of the attractor Thenf*™m has the weak
limit p; whenn — co. We may write

SLCFmm)(@)] = bm(® o ") = / m(dr) 50 (")
. / m(dz){(gradd)(f" ), 5" z)

n—1
= [ midn)rade)s o), ST 8H( )

k=0

n—1
=Y / (") m)(dy)((@radd)(f*y), (T f*)6 £ (f~1y))
k=0

n—1
=3 / ((F"~*y m)(dy){(grad@ o F5))(), X ().
k=0

Whenn — oo we obtain formally

Sps(®) =Y ps(grad@ o f*), X),
k=0

as asserted in the theorem.
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4. Bounded Time Dependent Perturbations
Let B, C B? be the Banach space of sequencég)f.cz such that
(Xl = sngXkll < 00,

Then, with the notation of Sect. B? C B, (B* contains the opeaball of 3,.). Note
that 0c B? corresponds to — M)? and is a fixed point of the map

Uidrez — (f © ju—10 [ Dkez.

This map is differentiable, and its derivative at 0 is a hyperbolic linear operatdy,in
Therefore iff = (f;) € A%, the map

Grdrez = (fr 0 Je-10 f Drez
has a unique fixed poiftc B, yielding a diagram
fk fk+1

— Kp1 = Ky — Kpa —
T Jk—1 T Jk T Jk+1
-~ k L xk 4Lk =

where the vertical arrows are the componeitef j and K, = j, K. The diagram is

commutative becausg = fi o jx_1 o f~1. Using the expansiveness pfon K, one

checks that thg; are homeomorphisms. The diagram expresses structural stability at

the level of bounded time dependent perturbations of a hyperbolic dynamical system.
Because thg, are close to the identity, and thigclose tof, one can define (un)stable

bundlesti with the obvious properties, and (un)stable manifolkg’s(x), such that

3r VE (k) coincides with* () in a sufficiently small neighborhood of x. The proofs

of these facts go along standard lines, and we do not give them here. We shall now

outline how SRB states can be defined in the present situation where there is no time

stationarity. The proofs will only be sketched.

SRB statesWe first recall the definition of SRB measure in the case of a single diffeomor-
phismf. Suppose thak is a mixing Axiom A attractor forf, and letm(dz) = m(x) dx

be a probability measure absolutely continuous with respect to the Riemann volume
elementdz, and with support in the basin of attraction &f. Then, whem — oo,
f*™m tends to the SRB measupe One way to see that the limit exists (see [12]) is
to choose a Markov partition off{, f) formed of rectanglesy;, U;]. Displacing the
mass ofm(dx) by a bounded distance along stable manifolds, we obtain measures
on the pieced/; of unstable manifolds, where, is absolutely continuous with respect
to the Riemann volume element Gf. The weak limit of f/*"m remains the same if.

is replaced by the sum of the;, and this leads to a standard transfer operator study
and to the identification of the limjp. The SRB statey may be characterized in four
different ways:

() as limit of f*™m wherem is absolutely continuous with respectdo,

(i) as f-invariant measure absolutely continuous along unstable directions,
(iii) in terms of eigenfunctions of transfer operatafsand £*,

(iv) by a variational principle.
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In the situation of bounded time dependent perturbations as described above, we can
still define SRB states as collections), wherep,. is a probability measure oK, and
frpr—1 = pr. We may take as definition the property

(i*) for each &, py, = lim, o f5 -+ fi_,m.

To prove existence and uniqueness of the SRB states, and study their properties,
we may use the maps. and a Markov partition into rectangles;[ U;] for (K, f).
Note in particular that;, is a union of setgy[s, U;]. Choose nows; € .S; and let
m; - [Si, Uil — [si,U;] be the projection. Here is a second characterization of SRB
states:

(ii*) for each k, the conditional measuresy, ;; of p; with respect to the par-
tition (jx[s, U;]) are absolutely continuous with respect to the Riemann volume ele-
ment on unstable manifolds. Furthermore the densitigsof the measure@kmjkfl)*
(ox|7£[Si, Us]) with respect to the unstable volume element are continuous uniformly in

The second condition in (ii*) could be replaced by various other uniformity proper-
ties.
We write
Lypr—1= ¢k

to express that the densitigs;, are obtained from the densities;_1 by application of

a transfer operatat;, with coefficients constructed from unstable Jacobians, I the
collection of measures on thg[s;, U;] corresponding to the unstable volume elements,
and¢ = (¢;) is arbitrary, we have

(01, L1:6) = (0-1, D),
i.e. Lo = o,—1. Here is a third characterization of SRB states:

(ii*) Grmidn D (orl k[ Si, Uid) = ¢row, wheregy, is (up to normalization)
M, oo Lp--  Lr_nl

The L, acting on a space ofdider continuous functions, are closedpand there
is thus a con&’ containing the “principal” eigenvector &, and mapped inside itself
by all £;. From this one obtains thal; - - - £;_,, 1 converges to a limipy.

Adapting for instance the study in [12] to the time dependent situation, it is now easy
to prove existence and uniqueness of SRB states, and equival€rdiof), (ii*) . Note
that we have here a situation close to the study of Gibbs states and equilibrium states
by Bogenschtz and Gundlach [2], Khanin and Kifer [9], Baladi [1], where however
(fx)rez is distributed according to someergodic measurB. In that case, one obtains
only P-a.e. statements, but one gains equivalend@&pf(ii*), (iii*) with a variational
principle (iv*).

Causality. Note that the “attractorsk;, and the “SRB measure), depend only on
fr—n,n > 0.However, they, the (x5, *)*(ox|jx[S:, Ui]) and the densitieg;, depend
on all f; (because their definitions involve projection along stable manifolds).

Differentiation of the mag — po. We shall not embark in a general study of the
smoothness of the mdp— pg, although such a study should be possible. What is easy
is to vary a finite number of thé,, say those withk| < N, because_ y then remains
fixed, and we have
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po=fo .- finp-N-1
In particular, .

0po(®) =6(fg .- finyp-n-1)(P) =dp_N-1(Po foo...0f_N)

N
=Y pnaT(@0 foo...0 foni))df-pn 0 fon-10...0f_N)

n=0

N
:Z/p_zv_l(das) (grad, . (®ofoo...0f 1), (6f-nof ) (fon .. f-nT))
n=0

N
=Y (fr finp-n-1){grad@o foo...o fopu), X ),
n=0

whereX;, is the vector field f;, o f, *.
Finally, we have thus

0po(®) =D p-n(grad@ o foo ..o fone), X_n)

n=0

=" po(gradd, (T(fo o -0 fon)X*,) 0 (foo -0 fopea) %)

n=0

= pol®- (diviX™,) 0 (foo -0 fn) .

n=0
Note that this is formally identical with the result of Theorem 3.1(b) when we replace
pr by pandfj by f.

5. Formal Derivative of p¢ in the General Case

We assume that thg-invariant state satisfies the SRB condition, but here we do not
suppose uniform hyperbolicityi,€., suppp need not be a hyperbolic invariant set). Thus
we do not know howp will vary with f, but we have a good formal candidate for its
derivative,viz,,

5p(®) = plgrad@ o ), X),

n=0

where X = §f o f~1. If there are no vanishing Lyapunov exponents, a measurable
splitting T, M = V*(x) & V*(z) is definedp(dx)-a.e., and we may writ& (z) =
X8(x) + X¥(x) with X?3(x) € V3(z), X¥%(x) € V¥(x). Then

p{grad@, /), X) = p(grad@, "), X* + X*)
= p((grad®) o [, (T f™)X*) — p((® o f7)- div'X™)
with p(div* X*) = 0 just as in the uniformly hyperbolic case. Formally, we have thus
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op(®) =) pl(gradb) o [, (TF")X*) =Y p((P o f*)-div'X").

n=0 n=0

The convergence of the right-hand side depends on g )X * andp((®o f™)- div* X %)
tend to 0 whem — oc. In the time dependent case, the formula becomes

5po(®) =D p_n(grad@o foo ..o fpe), X ),
n=0

whereXy =0 f; o f,;l. In particular, if all f;, are equal tof and thepy, to p, we obtain

Opo(®) = D plarad@ o "), X_)

n=0

=Y pl(gradd) o f (TFM)X,)) = > p((® o f7)-divi X™,).
n=0 n=0
There are similar formulae for flows. Suppose for instance that the statsfies
the SRB condition for the flow/{*) corresponding to the vector fiell. Let X; be a
time dependent perturbation af, then the derivative gf at time 0O is given formally by

5p0(®) = /0 dt plgrad@ o f1), X ;)
- /O dt p{(grad®) o /1, (T f)X*,)

- /ooc dt p((® o f1)(diV"X™,)).

Note added in proof

It should be noted that the existence of @& hyberbolic splittingl'x M = V* & V* for

f does not imply that the hero section is a hyperbolic fixed pointfes T'f(u o F~1)
acting onC sections onf i M (I owe this remark to Liu Pei-Dong). Butitis not hard to
prove that the zero section is a hyperbolic fixd pointfor T'f(u o f~1) acting onc®’
sections ofl'x M for somea’ € (0, ). One should thus replaeeby «’ in Proposition
1.2, and similarly later, but this is of no consequence for our results.

Earlier references for the smooth dependence on parameters of the conjugacy in
structural stability are the following:

De la Llave, R., Marco, J. M. and Moriyon, R.: Canonical perturbation theory of
Anosov systems and regularity results for the Livsic cohomology equation. Ann. of
Math. 123 537-611 (1986)

Katok, A., Knieper, G., Pollicott, M., and Weiss, H.: Differentiability and analyticity
of topological entropy for Anosov and geodesic flows. Invent. M@8n581-597 (1989)

Contreras, G.: Regularity of topological and metric entropy of hyperbolic flows.
Math. Z.210, 97-111 (1992)

| am indebted to Rafael de la Llave and Viviane Baladi for pointing out these refer-
ences to me.
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