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Abstract: Given a finite dimensional™-Hopf algebra/f and its dualdf we construct

the infinite crossed producd = ... < H><H>=H> ... and study its superselection
sectors in the framework of algebraic quantum field thedris the observable algebra

of a generalized quantum spin chain wihorder andH -disorder symmetries, where

by a duality transformation the role of order and disorder may also appear interchanged.
If H = CG isagroup algebra theA becomes an ordinaxy-spin model. We classify all
DHR-sectors of4 — relative to some Haag dual vacuum representation — and prove that
their symmetry is described by the Drinfeld douBléH). To achieve this we construct
localized coactionsp : A — A ® D(H) and use a certain compressibility property to
prove that they areniversal amplimorphismsn A. In this way the doubl®(H) can

be recovered from the observable algeHdras auniversal cosymmetry
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1. Introduction and Summary of Results

Quantum chains considered as models of 1+ 1-dimensional quantum field theory exhibit
many interesting features that are either impossible or unknown in higher (2+1 or 3+1)
dimensions. These features include integrability on the one hand and the emergence
of braid group statistics and quantum symmetry on the other hand. In this paper we
study the second class of phenomena by looking at Hopf spin models as a general class
of quantum chains where the quantum symmetry and braid statistics of superselection
sectors turns out to be described by Drinfeld’s “quantum douB(€7) of the underlying

Hopf algebraH .

Quantum chains on which a quantum group acts are well known for some time;
for example the XXZ-chain with the action ef(2), [P,PS] or the lattice Kac—-Moody
algebras of [AFSV,AFS,Fa,FG]. For a recent paper on the general action of quantum
groups on ultralocal quantum chains see [FNW]. However the discovery that — at least
for non-integer statistical dimensions — quantum symmetries are described by truncated
quasi-Hopf algebras [MS1-2,S] presents new difficulties to this approach. In fact, in such
a scenario the “field algebras” are non-associative and do not obey commutation rela-
tions withc-number coefficients, both properties being tacitly assumed in any “decent”
guantum chain.

In continuum theories quantum double symmetries have also beenrealized in orbifold
models [DPR] and in integrable models (see [BL] for a review). For a recent axiomatic
approach within the scheme of algebraic quantum field theory see [M]. In contrast with
our approach, in these papers the fields transforming non-trivially under an “order”
symmetryH are already assumed to be given in the theory from the beginning, and the
task reduces to constructing the disorder fields transforming under théfdual

Here we stress the point of view that an unbiased approach to reveal the quantum
symmetry of a model must be based only on the knowledge of the quantum group
invariant operators (the “observables”) that obey local commutation relations. This is
the approach of algebraic quantum field theory (AQFT) [H]. The importance of the
algebraic method, in particular the DHR theory of superselection sectors [DHR], in low
dimensional QFT has been realized by many authors (see [FRS,BdGabrF R] and
many others).

The implementation of the DHR theory to quantum chains has been carried out at
first for the case of/-spin models in [SzV]. These models have an order-disorder type of
guantum symmetry given by the douli¥G) of a finite groupG which generalizes the
Z(2) x Z(2) symmetry of the lattice Ising model. Since the disorder part of the double
(i.e. the function algebré(Q)) is always Abelian(G-spin models cannot be selfdual in
the Kramers-Wannier sense, unless the group is Abelian. Non-Abelian Kramers-Wannier
duality can therefore be expected only in a larger class of models.

Here we shall investigate the following generalizatiorGbpin models. On each
lattice site there is a copy of a finite dimensionai-Hopf algebraf and on each link
there is a copy of its dual{. Non-trivial commutation relations are postulated only
between neighbor links and sites whé&feand H act on each other in the “natural way”,
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so as the link-site and the site-link algebras to form the crossed prOdi(ﬁs) = H=H
andW(H) = H=H (“Weyl algebras” in the terminology of [N]). The two-sided infinite
crossed product. . ~H=H=H=H> ... defines the observable algehraof the

Hopf spin model. Its superselection sectors (more precisely those that correspond to
charges localized within a finite intervalthe so called DHR sectors) can be created by
localized amplimorphismg: A — A®EndV with V denoting some finite dimensional
Hilbert space. The category of localized amplimorphigmngp A plays the same role in
locally finite dimensional theories as the categind A of localized endomorphisms

in continuum theories. The symmetry of the superselection sectors can be revealed by
finding the “quantum groupy, the representation category of which is equivalent to
Amp A. In our model we find thag is the Drinfeld double (also called the quantum
double)D(H) of H.

Finding all endomorphisms or all amplimorphisms of a given observable algebra
A can be a very difficult problem in general. In the Hopf spin madgbossesses a
property we callcomplete compressibilityvhich allows us to do so. Namely jf is
an amplimorphism creating some charge on an arbitrary large but finite interval then
there exists an amplimorphismcreating the same charge (i:¢is equivalent tou,
written v ~ ) but within an intervall of length 2 (i.e.l consists of a neighbouring
site—link pair). Therefore the problem of findiati DHR-sectors of the Hopf spin model
is reduced to a finite dimensional problem, namely to find all amplimorphisms localized
within an interval of length 2. In this way we have proven that all DHR-sectaxs cdn
be classified by representations of the Drinfeld double.

An important role in this reconstruction is played by the so-calletversalam-
plimorphisms inAmp A. These are amplimorphisms A — A ® G, whereg is an
appropriate (in our approach finite dimensional) “quantum symmétiyalgebra such
that for any other amplimorphismin Amp A there exists a representatigp of G such
thaty, ~ (id4 ® B8,) o p. Moreover, the correspondenge— (3, has to be one-to-one
on equivalence classes. We prove that complete compressibility implies that universal
amplimorphisms can be chosen to providmactionsof G on A, i.e. there exists a
coassociative unital coprodust: G — G ® G and a counit : G — C such that

(p®idg)op = (idg @ A) o p, (1.1a)
(idg®e)op = idy. (1.1b)

Moreover,A ande are uniguely determined by ThusG becomes &'*-Hopf algebra
which we call auniversal cosymmetrgf .A. G will in fact be quasitriangular wittR-
matrix determined by the statistics operatopof

G(p, p) = :ILA ®P12R7 (12)

whereR € G ® G and P*? is the usual permutation. The antipodeof G can be
recovered by studying conjugate objeetnd intertwinerg x p — id 4. In this type of
models the statistical dimensiods of the irreducible componengs of p are integers:
they coincide with the dimensions of the corresponding irreducible representation
of G. The statistics phases can be obtained from the universal balancing element
S(R2)R; € Centelg evaluated in the representatioRs. For the Hopf spin model this
scenario can be verified and calculated explicitly gt D(H).

We emphasize that being a universal cosymmegtis/uniquely determined as@*-
algebra together with a distinguished 1-dimensional representafidre dimensions of
irreps ofG coincide with the statistical dimensions of the associated sect@rsof= d,.,
the latter being integer valued. This has to be contrasted with the approaches based on
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truncated (quasi) Hopf algebras [MS2,S,FGV], whererth's are only constrained by
an inequality involving the fusion matrices. In this sense our construction parallels the
Doplicher-Roberts approach [DR1,2], whefavould be a group algebra.

However, it is important to note that givékmp A ~ Repg as braided rigid”*-
tensor categories does not fix the coproductdonniquely, even not in the case of
group algebras. More precisely, the quasitriangular Hopf algebra struct@ream be
recovered only up to a twisting by a 2-cocycleulE G ® G is a 2-cocycle, i.e. a unitary
satisfying

(u®l) - (A®id)(u) = A®w) - (id @ A)(u), (1.3a)
(e®id)(u) = (d ®@e)(u) = 1, (1.3b)
then the twisted quasitriangular Hopf algebra with data
A = Aduo A,
g =e,
S/ = AdqoS q .= ulS(uz),

R/

u°? Ru*

is as good for a (co-)symmetry as the original one. In fact, we prove in Sect. 3.5 that
(up to transformations by € Aut (G, €)) any universal coactiorp(, A’) is equivalent

to afixed one, A) by anisometric intertwinel/ € A ® G satisfying awisted cocycle
condition

Up(A) = p/(A)U, Ac A, (1.4a)
U1 -(pRidg)(U) = L®wu)-(ida @ A)U), (1.4b)
(da®e)U) = 1, (1.4c)

implying the identities (1.3) fow. In the Hopf spin model we also have the reverse
statement, i.e. for all 2-cocycleghere is a unitary/ € A ® G and a universal coaction

o' satisfying (1.4) and therefore (1.1) with’ instead ofA. We point out that (1.4)

is a generalization of the usual notion of cocycle equivalence for coactions where one
requiresy = 1 ® 1[Ta,NaTa,BaSk,E]. To our knowledge, in the DR-approach [DR1,2]
this possibility of twisting has not been considered, since there it would seem “unnatural”
to deviate from the standard coproduct on a group algebra.

This paper is an extended version of the first part of [NSz1]. In a forthcoming paper
we will show [NSz3] that any universal coactipion. A gives rise to a family of complete
irreducible field algebra extensiots > .4 and that all field algebra extensions 4f
arise in this way. Moreover, equivalence classes of complete irreducible field algebra
extensions are in one-to-one correspondence with cohomology classes of 2-cocycles
u € G®G. The Hopf algebrg will act as a global gauge symmetry on &lk such that
A C Fis precisely thgj-invariant subalgebra. Inequivalent field algebras will be shown
to be related by Klein transformations involving symmetry operafii¥), X € G.

The above type of reconstruction of the quasitriangular Hopf algélisaa special
case of the generalized Tannaka-Krein theorem [U,Maj2]. Namely, any faithful functor
F:C — Vec from strict monoidal braided rigid'*-categories to the category of finite
dimensional vector spaces factorizesias f o @ to the forgetful functorf and to an
equivalenceb of C with the representation categdRep G of a quasitriangula®™-Hopf
algebrag. In our caseC is the categoryAmp A of amplimorphisms of the observable
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algebraA. The functorF’ to the vector spaces is given naturally by associating to the
amplimorphismu: A — A ® EndV the vector spac¥ . Although the vector spacés

cannot be seen by only looking at the abstract categomp .4, they are “inherently”
determined by the amplimorphisms and therefore by the observable algebra itself. In this
respect using amplimorphisms one goes somewhat beyond the Tannaka-Krein theorem
and approaches a Doplicher-Roberts [DR] type of reconstruction.

We now describe the plan of this paper.

In Sect. 2.1 we define our model using abstract relations as well as concrete real-
izations on Hilbert spaces associated to finite lattice intervals. We also discuss duality
transformations and the appearance of the Drinfeld double as an order-disorder symme-
try. In Sect. 2.2 we present the notion ofjaantum Gibbs systeon A and use this to
prove (algebraic) Haag duality of our model.

In Sect. 3we start with reviewing the category of amplimorphiémp Ain Sect. 3.1
and introducdocalized cosymmetrigs: A — A ® G as special kinds of amplimor-
phisms in Sect. 3.2. In Sect. 3.3 we specializeffective cosymmetriesd show that
Amp A ~ Repg providedg is alsouniversal In Sect. 3.4 we introduce and investigate
the notion ofcomplete compressibilityp guarantee the existence of universal cosym-
metries. In Sect. 3.5 we prove that universal cosymmetries are unique up to (twisted)
cocycle equivalences. In Sect. 3.6 we discuss two notions of translation covariance for
localized cosymmetries and relate these to the existencecoharently translation
covariantstructure inAmp A as introduced for the case of endomorphisms in [DR1].

In Sect. 4 we apply the general theory to our Hopf spin model. In Sect. 4.1 we
construct localized and strictly translation covariant effective coacfignsd — A ®
D(H) of the Drinfeld double for any intervdl of length two and in Sect. 4.2 we prove
that all these coactions are actually universahimp .A.

Remarks added after submission.

1. Tolimitthe size of this paper and faciliate publication some proofs have been shortened
or omitted. The interested reader may wish to consult the original preprint [NSz2] for
the detalils.

2. Meanwhile (i.e. 9 months after releasing our first preprint), the notion of a localized
coaction has also beentaken upin a paper by Alekseev, Fadd@elcRand Schomerus
[AFFS] without referring to our work. In fact, the lattice current algebra studied by
[AFFS] (which is an extension of [AFSV,AFS,FG]) has meanwhile been realized by
one of us [Ni] to be isomorphic to our Hopf spin chain, provided we also require our
Hopf algebraH to be quasi-triangular as in [AFFS]. In this way it has been shown in
[Ni] that the coaction proposed by [AFFS] is ill-defined and should be replaced by our
constructiort.

2. The Structure of the Observable Algebra

In this section we describe a canonical method by means of which one associates an
observable algebra on the 1-dimensional lattice to any finite dimensio6gHopf
algebraH. Although a good deal of our construction works for infinite dimensional
Hopf algebras as well, we restrict the discussion here to the finite dimensional case.
If H = CG for some finite grougs then our construction reproduces the observable
algebra of the7-spin model of [SzV].

1 There is now a revised version [AFFS (v2, May 97)], where the authors have acknowledged our results
and corrected their errors
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In Sect. 2.1 we provide faithful-representations of the local observable algebras
A(I) associated to finite intervals by placing a Hilbert spac@f.,c,, ~ H on each
lattice site. In this way the algebra ) appear as the invariant operators under a global
H-symmetry o cypen ® - .. @ Heven- Similarly, we may represent the local algebras
by putting Hilbert space®(,.s ~ H on each lattice link, such that([) is given by the
invariant operators under a glob&-symmetry OMHopgd ® ... Q@ Hodd-

This is a generalization of duality transformations to Hopf spin chains. We point out
that similarly as in [SzV] both symmetries combine to give the Drinfeld doGH|#)
as —what will later be shown to be — thaiversal (co-)symmetryf our model.

In Sect. 2.2 we view the Hopf spin chain in the more general setting of algebraic
qguantum field theory (AQFT) as a local net. We then introduce the notiofQoistum
Gibbs systemas a family of conditional expectations : A — A(I)’ N A with certain
consistency relations, which allow to prove that our model satisfies a lattice version of
(algebraic) Haag duality.

2.1. Local Observables and Order-Disorder Symmeti@msidefZ, the set of integers,

asthe set of cells of the 1-dimensional lattice: even integers represent lattice sites, the odd
ones represent links. Léf = (H, A, ¢, S, ) be a finite dimensional’*-Hopf algebra

(see Appendix A). We denote by the dual ofH which is then also &*-Hopf algebra.

We denote the structural maps Afby the same symbola, ¢, S. Elements ofd will

be typically denoted as, b, . .., while those ofH by ®, 1, . ... The canonical pairing
betweenH and H is denoted byu € H,p € H — (a,¢) = (p,a) € C. We also

identify H = H and emphasize thaf andﬁyvill always appear on an equal footing.
There are natural left and right actionsifon H (and vice versa) denoted by Sweedler’s
arrows:

a— »=pia, v) (2.1a)

¢ — a={pa), 1)@ (2.1b)
Here we have used the short cut notatidi(g) = a(1) ® ap) and A(p) = ¢y ® @)
implying a summation convention i @ H andH © H, respectively. For a summary
of definitions on Hopf algebras and more details on our notation see Appendix A.

We associate to each even integéazopy.Ay; of the C*-algebraH and to each

odd integer 2+ 1 a copy.Ay;+; of H. We denote the elements db; by Ay (a), a € H,
and the elements oflo;+1 by Azi1(), 1 € H. The quasilocal algebrd,,.. is defined
to be the unital *-algebra with generatofs;(a) and A;+1(v), a € H, 9 € H iez
and commutation relations

AB=BA, Ac A, BeAj |i—j|>2, (2.2a)
Azir1(p)A2i(a) = Azi(aw){a@), ea)) A2i+1(9@), (2.2b)
Azi(a)Azi—1(p) = Azi—1(e@)(P@), aw) A2i(ae)- (2.2¢)

Equation (2.2b) can be inverted to give

Azi(a) Azis1(p) = Azi(a@) Azi+1(9) A2:(S(a))a))
= Azi(a)A2i(S(a@m){(S(a@), @) Azir1(e@) A2i(aw) (2.3)
= (S(a), pa))Azi+1(p@) A2i(a)

2 Note that on finite dimension&™*-Hopf algebras the antipode is involutivé? = .S, [W].
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and similarly for (2.2¢). Using Eg. (A.3) this formula can also be used to check that the
relations (2.2b,c) respect the *-involution oh),.. We denote4,, ,, C A, the unital
*-subalgebra generated by;, n < i < m. Form < n we also put4,, ,, = C1.
The above relations define what can be called a two-sided iterated crossed product,
ie.
-An—l,m+1 = -An—il.l>< An,mx]-Am+1a

whereA,,+; acts onA,, ,,, from the left via

Am+l(a) > An,m = Am+l(a(1))-/4n,mAnL+l(S(a(2))) (24)
and.A,,_1 acts onA,, ,,, from the right via
Apm < Ap_a(a) = An—1(S(a@))An,mAn—1(ae), (2.5)

and where for alh < m these two actions commute.
We now provide a *-representation g, ,,, on finite dimensional Hilbert spaces
H.,m proving that the algebrad,, ,,, are in fact finite dimensiondl™-algebras and that
they arise as the invariant subalgebra%ﬂ,nm under a globaH-symmetry. Leth € H
be the unique normalized Haar measurefbri.e. h2 = h* = h andh — p=p«—h=
(h,p)eforall p € H. We introduce the Hilbertspade¢ = L2(H, k) to be theC- vector
spaceﬁ with scalar product

(ply) = (h, ™). (2.6)

Elements ofH are denoted ais)), ) € H. Following the notation of [N] we introduce
the following operators in En#

Q) = i),

Q™ (V) = ve),

PH@)) =a — ), @7)
P (@) = | — a),

wherea € H andy, ¢ € H. Using the facts that on finite dimensioiti-Hopf algebras
h is tracial,S(h) = h and.S? = id [W] one easily checks that

Q(9)" = Q% (¥"), 2.8)
P:I:(a)* — P:i:(a*) .
Moreover Q= (H) = Q¥(H) and PX(H) = PF(H), where the prime denotes the
commutant |n End{. We also recall the well known fact (see [N] for a review) that
Q°(H) v P°'(H) = EndH for any choice o, o’ € {+, —}.

We now place a cop¥t,, ~ H at each even lattice site,c 2Z, and forn < m and
n,m € 27 we put

Him = Hn @ Hps2 @ ... @ Hyp,. (2.9)

We also use the obvious notatio$ (a) and P (y) to denote the operators acting on
the tensor factot{,, v € 2Z. Let nowR,, ,,, be the global right action off onH,, ,,,
given by

7n n

Ry.m(a) = H P i(aaey) , a € H, (2.10)
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and putL,, ,, := Ry, o S . We then have

Proposition 2.1. Letn, m € 2Z, n < m, and letr,, ,,, : A, ., — EndH,, ,, be given
by

'/Tn,m(AZi(a)) = PzJ;(a)»
7Tn,m(A2i+l(<P)) = Qz_i(s(<ﬂ(l)))QJ2ri+2(‘p(2))-

Thenm,,,, defines a faithful *-representation of,, ,,, on H,, ., and m,, ;,(Ay.m) =
Ln,m,(H)/-

(2.11)

Proof. We proceed by induction over = *>=. For v = 0 the claim follows from
Tnn(Ann) = Pa(H) = P, (H)'. Forv > 1 we use the Takesaki duality theorem for
double cross products [Ta,NaTa] saying tbdt ,+2 ~ A, n ® ENdH ~ A, ., @
Am+1,m+2, Where the isomorphism is given by (see Eqg. (A.10) of Appendix A)

T Ay 2 — A @ EndH,
TA) = A®1,
T(An(a)) = Amla@) ® P~ (S(aw)), (2.12)
T(Ana@®)) = 1@ Q*(v),
T (Am+2(a)) = 1© P*(a),

whered € A, ,—1, a € H andy € H. Hence, by induction hypothesis, 7,+2 =

(7, m ® id) o T defines a faithful *-representation of,, ,,,+2 and 7, m+2(An me2) =

(R, m(H)®1)'. We now identifyH = H.,,+» and constructa unita@ € End(Hn,m+2)

such thatr,, ,,+> = Ad Uo T, m+2 ANAR,, r40(H) = (AJ(Rn,m(H) ® 1)(7* which proves
our claim. To this end we use the unitary ¥l : H,,, @ Hpm+2 — Hpm @ Hons2 given

by

Ulp @ ¥) = pS[¥a) @ ),
U e @) = ot ® Y),

and putl =1, ® ... ® 1,,_» ® U. Now U obviously commutes wit)*, () and with
P..,(H), proving

(2.13)

Ad Uo 7AT7L,m+2|-An,m—l = 7Tn,m+2|-/4n,m—la

AdU o 7"I-nfn’L+2|-Arn+2 = 7rn,m+2|-Am+2~

Next, one straightforwardly check§Q? ,,()U~! = Qm (Sx))@r+2(x(2) and
UP;L(a'(l))P7;+2(S(a(2)))U_l = P,J;L(a), prOViAng that AdU o 7}n,m+2|-/4m,m+l

Tnm+2| Am,me1 and thereforer,, iz = AdU o 7 map. Finally UP, (a)U~! =
P (a@) P, .o(a@) which provesR,, m+2 = AdU o (R, ym @ 1pm+2). O

We remark at this point that iterated application of the Takesaki duality theorem
immediately impliesA; ; ~ (End H)®” wheneverj = i + 2v + 1 and therefore the

3 Up to a change of left-right conventioris is a version of the pentagon operator (also called Takesaki
operator or multiplicative unitary), see, e.g. [BS].
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importantsplit propertyof A (see Subsect. 2.2). We also remark that we could equally
well interchange the role aff andH to define faithful *-representations, ,,, of A, ,,

for n,m € 2Z + 1, where nowHy;+1 = L?(H,w), w € H being the Haar measure on
H. In this waym,, ., (Ay.m) for n,m € 2Z + 1 would appear as the invariant algebra
under a globaH-symmetry.

Hence, depending on how we represent them, our local observable algebras seem to
be the invariant algebras under either a gloHasymmetry or a gIobaFI—symmetry.

It is the purpose of this work to show that in the thermodynamic limit both symmetries
can be reconstructed from the category of “physical representatiops{icd. fulfilling

an analogue of the Doplicher-Haag-Roberts selection criterion relative to some Haag
dual vacuum representation). In a sense to be explained télawd 2 then reappear
ascosymmetriesf .A. Generalizing and improving the methods and results of [SzV]
we will in fact prove thatd and H combine to yield théDrinfeld doubleD(H) (see
Appendix B for a review of definitions) as thumiversal cosymmetnyf A.

This should be understood as a generalization of the “order-disorder” symmetries in
G-spin quantum chains, which are well known to appear for finite abelian gteapsl
which have been generalized to finite nonabelian graapy [SzV]. The relation with
our present formalism is obtained by lettiig= CG be the group algebra. We then get
H = Fun(G), the abelian algebra @-valued functions o6, andH = L3(G, h), where
h=|G|~1%, g € CG is the Haar measure dif. HenceH,, ,, ¥ L3(G“7"), m,n €
27, andmy, ,, acts oy € H,, ,,, by

(ﬂ—'nm(AZZ(a))w)(gnv vy G2y oeny gm) = 1/J(gn, -y 924, .., gm)7
(T, m(A2s2 (D)) (Gns -+-Gm) = PG5 G2642)8(Gns o5 Gm)-

These operators are immediately realized to be invariant under the @ledpih rotation

(Lo (@) (Gns s 9m) = V(@ gy s 0™ gm), a € G,

which would then be called the “order symmetry”.
In this representation a “disorder-symmetry” can be defined as an acjignof
H = Fun(G),

(L (@YENGns o5 Gm) = (GG V(G s Gom),

and it has been shown in [SzV] th&, ,, andin,m together generate a representation of
the Drinfeld doubléD(G). Note thatin the limit4, m) — (—oo, co) all local observables
are also invariant under (i.e. commute with) ,,,(H). The generalization oL, ,,, to
arbitrary finite dimensional’*-Hopf algebras is given by

Lemma2.2. Letn,m € 2Z, m > n+ 2, and Ietimm CH — End(H, ) be the
*-representation given by

Lonm(9) = Q1 (0@)Qm (S(p@))- (2.14)

ThenL,, ,,,(H) andin_,m(ﬁ) generate a faithful *-representation of the Drinfeld double
D(H) onHyp .
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Proof. SinceL,, ,, andimm define faithful *-representations éf andH, respectively,
we are left to show (see Eq. (B.1c)):

L m(a@){a@), @) Ln,m(@@) = Lnm(@@){@@), aw) Ln,m(ae)

foralla € H andyp € H.Form=n+2thisis a straightforward calculation using the
“Weyl algebra relations” [N]

P~ (a)Q" () = Q" (¢@) P~ (a@){aw), v)),
P (a)Q (p) =Q ()P (a@m)(a@), »a)),

and the identities\ o S = (S ® S) o A,, andS? = id. Form > n + 4 we proceed by
induction and define the unitary

V. iHn—2®Hn = Hn—2® Hm,

Vip @) :=[S(¥w) @ Ye)e)-

ThenV @, ,(p) = Q,.(p)VandV P _,(a) =P, _,(aw)P,_.(aw)V forally H
anda € H. Hence

Ad ‘7 9] (Ln,m—Z ® lm) = Ln,ma
Ad ‘7 o (ixmmfz ® 1m) = -z/nA,ma

whereV =1, ® -~ ® 1,,,_4 ® V, which proves the claim by induction. O

We remark that interchanging even and odd lattice sites in Lemma 2.2 we similarly
obtain a representation Gif(ﬁ). Now recall that for abelian grougs there is a well
known duality transformation which consists of interchanging the rol# ¢f CG and
H = CG by simultaneously also interchanging the role of even and odd lattice sites
and of order and disorder symmetries, respectively. For nonabelian geotips dual
algebraH is no longer a group algebra and at first sight the good use or even the notion
of a duality transformation seems to be lost. It is the advantage of our more general
Hopf algebraic framework to restore this apparent asymmetry and treat Bodind
H,ona completely equal footing. In particular we also point out that as algebras the
Drinfeld doublesD(H) andD(ﬂ) coincide (itis only the coproduct which changes into
its opposite, see Appendix B). Hence, from an algebraic point of view there is no intrinsic
difference between “order” and “disorder” (co-)symmetries. Distinguishing one from
the other only makes sense with respect to a particular choice of the representations
given in Lemma 2.2 on the Hilbert spaces associated with even or odd lattice sites,
respectively.

2.2. A as a Haag Dual Net.The local commutation relations (2.3) of the observables
suggests that our Hopf spin model can be viewed in the more general setting of algebraic
guantum field theory (AQFT) as a local net. More precisely we will use an implemen-
tation of AQFT appropriate to study lattice models in which the local algebras are finite
dimensional. Although we borrow the language and philosophy of AQFT, the concrete
mathematical notions we need on the lattice are quite different from the analogue notions
one uses in QFT on Minkowski space.
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Let Z denote the set of closed finite subintervaldRo#ith endpoints inZ + % A
net of finite dimensional’*-algebras, or shortly aetis a correspondenceé — A(I)
associating to each intervale 7 a finite dimensional*-algebraA(7) together with
unital inclusions s ;: A(I) — A(J), wheneved C J, suchthatforall C J C K one
hasig,j oty =tk 1. Forl = () we putA(®) = C1.

The inclusions ; r will be suppressed and fdr C J we will simply write A(I) C
A(J). If A is any (possibly infinite) subset @& we write A(A) for the C*-inductive

limit of A(I)-swithl C A:
A(A) =V A A,
Especially letd = A(R). As a dense subalgebra dfwe denote
Aioe =Urez A(I).

The choice of the lattic& + % (in place ofZ , say) is merely a matter of notational
convenience. In the case of our Hopf spin model we put

A(I) = Viernz Ai

andA(I) =C1lif INZ = 0.

Next, for A C Rlet A’ = {x € R|dist(z, A) > 1} which is the analogue of the
“spacelike complement” of (for A = () put A’ = R). The net{.A(])} is calledlocal if
I c J implies A(I) c A(J), VI,J € Z, where forB C A we denote3’ = B' N A
the commutant oB in A. For A C R we also denote

A =R\ A,
A=A
) (2.15)
IntA:=A°,

OA = A\IntA = ANA°

The net{.A(I)} is calledsplitif for all I € Z there exists & € Z such that/ D I and
A(J) is simple. The net is called additive, (1) vV A(J) = Al U J)forall I,J C Z,
whereM v N denotes th€'*-subalgebra afl generated by the subalgebfds N C A.
The net is said to satisfy the intersection property({#) N .A(J) = A N J) for all
I1,Jel.

The local observable algebrég ()} of the Hopf spin model defined in Subsect. 2.1
provide an example of a local additive split net with intersection property. What is not
so obvious is that this net satisfiagebraic Haag duality

Definition 2.3. The net{.A(I)} is said to satisfy (algebraic) Haag duality if
A(I'Y = A(I) VIeZ

To prove Haag duality for our model it is useful to introduce a non-commutative analogue
of a family of local Gibbs measures in classical statistical lattice models.

Definition 2.4. A quantum Gibbs systemon the nef{ A(I)} is a family of conditional
expectations); : A — A(I) such that for alll, J € 7 the following conditions hold:
i) mronmy=np, if JCl,
iy nr(AWN) c AI'NJ), if I¢J
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We will now show that the existence of a quantum Gibbs systefi4(d)} is already
sufficient to prove Haag duality. Since we think that our methods might also be useful in
higher dimensional models, we will keep our arguments quite general. First we introduce
awedgeW as the union

W =Upl,,

wherel,, C I,+1 is an unbounded increasing sequencé wwith the so-calledvedge
propertysaying that for all7 € 7 the sequencég/, N J eventually becomes constant.
PuttingWW’ = n,,I;, we now have the following

Proposition 2.5. Assume that the nétd(7)} admits a quantum Gibbs system
nr : A — A(I). ThenA satisfies
i) Wedge duality, i.eA(W) = AW’) for all wedges W.

ii) The intersection property for wedge complements A@V' N A) = A(W')NA(A)
for all wedgesV and intervals or wedgeA.

iil) Haag duality for intervals, i.e A(I') = A(I) VI € Z.

Proof. i) By locality we haveA(W’) ¢ A(W)'.Nowletl,, C I,+1 € ZandW =U,]I,.
We define

nw = lim g, .
n

We show that the limit exists or and defines a conditional expectatigyp : A —
AWV . First the limit exists pointwise ad(.J) for eachJ € Z, since there existgy > 0
such thatl,,, ¢ J and

w'nJj=I1,nJ=1I, NJ

no

for all n > ng. Hence, by Definition 2.4i), we get for all > ng andA € A(J),
11, (A) = 01y 0 n1,,, (A) = 01, (A),

sinceny, (4) € A(I;,, N J) = A(I;, N J) C A(I,)". Thusn;, (A) eventually becomes
constant for allA € A(J) and allJ € Z and we get

nw(AWJ) Cc AW’ ' NnJ) VJ el

Hencenyy exists on4,,. andis positive and bounded by 1 sincejll have this property.
Thusny may be extended to all o4 yielding

mw (A) C AW).
A simple Z-argument shows that the extension still satisfies

nw (A) = lim oy, (A) VA € A.

Sincel,, C W we getA(W)' C A(I,,) and henceyy (A) = Aforall A € A(WY)'. This
provesA(W) c A(W') and therefored(W)' = A(W’) = nu (A).
i) By the above arguments we have

nw(A(A)) C AW’ N A) for all A € Z,

and sinceyyy is a conditional expectation ontd(W') = A(W)’ we getny (A) = A for
all A e AW')n A(A) implying A(W') N A(A) C A(W’' N A). The inverse inclusion
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again follows from locality. Continuity afyy allows to push this argument from intervals
A to wedgesA.
i) Let I € 7 and letWW; andW; be two wedges such thét = W, U WJ. Then
AWV AW)) C A(I'), and henced(I') c A(W])NAW>) = AW{NW>) = A(I),
where we have used wedge duality and the intersection property for wedge complements.
O

We remark that in Proposition 2.5i) we may plit= R to conclude thatd has trivial
center,

A = AR")=AW)=C1.

We now provide a quantum Gibbs system on our Hopf spin model by defining for
anyl e ZandA e A,

ny

1
n(4) =Y = > et Aele, (2.16)

o a,b=1

wherer runs through the simple components. ~ Mat(n,) of A(I) ande? is a
system of matrix units in/,.. One immediately checks that : A — A(I)’ defines a
conditional expectation. Moreovey (A(J)) C A(I) N A(J U I). We now prove

Lemma 2.6. The family(n;)rez provides a quantum Gibbs system on the Hopf spin
model.

Proof. By continuity it is enough to prove property i) of Definition 2.2 @ip,.. Hence
let J C I be two intervals and ledl € A(A), A € Z, where without losd U J C

A. Pick a faithful tracetr, on A(A) and define the Hilbert-Schmidt scalar product
(A|B) :=trp(A*B), A, B € A(A). We clearly haver, (Bn;(A)) = tra(BA) for all

I CA,Be A(I)YNnA(A)andA € A(A). Hence, forl C A the restriction; | A(A) is

an orthogonal projection ontd(A) N A(I)" with respect tq-|-). SinceJ C I implies
A(I) c A(J) we conclude

nr|A(A) =0y o nsA(A).

To prove property ii) lef ¢ J (implying I #0). For A(J)=C -1 orA(l) =C - 1 the
statement is trivial, hence assumd¢> 1 and.A(J) = A; ; for some; < j € Z. Using
property i) the claim ii) is now equivalent to

i—1(Ai j) = Aisrj,
n 1( ,j) +1,5 (2-17)

nj+1(Aij) = Aij-1,
where forl = [i — ,i + 3] we write ; = 7,. Using additivity we have4; ; =
AV A1 = A j—1V Aj and hence (2.17) is equivalent to

ni(Ai+1) =C-1, VieZ. (2.18)

Let us prove (2.18) foi =even. (For odd-s the proof is quite analogous.) Chodse
matrix unitse® of the algebrad. Forr = ¢, the trivial representation (counit) éf, we
haveae. = e.a = e(a)e., hencee. = h is just the integral i (see Appendix A). We
now use the following well known lemma [W] (for more details see also [NSz2])
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Lemma 2.7. LetB = (id ® S)(A(h)) € H ® H. Then for finite dimensional™-Hopf
algebrasH we have

B=(Said)am) =Y ni T et g b, (2.19)
T r a,b

From Eq. (2.19) one recognizes thgievaluated om,; 1, is nothing but the adjoint
action of the integrah on the dual Hopf algebr&l. Consider the case of;_;:

A =Y 5 3 A A (A
T r a,b
= Ai(h@)Ai—1(©)Ai(S(h2))
=Ai—1(h — @) = Lp|h).

The case 0f4;+1 can be handled similarly. O

Summarizing: The local ntA(7)} of the Hopf spin model is an additive split net
satisfying Haag duality and wedge duality. Furthermore the global observable algebra
A is simple, because the split property implies tHas an UHF algebra and every UHF
algebra is simple [Mul].

We finally remark without proof that the inclusion towel; ; C A; j+1, § > ¢
(or Ai—1; D Aij, i < j) together with the family of conditional expectation
i1 - Ai; — A1 (et @ Asj — Asr ;) precisely arises by the basic Jones con-
struction [J] from the conditonal expectations.; : .A; — C - 1. In particular, putting
e2; = Agi(h) andepis1 = Apis1(w), Whereh = h* = h?2 € H andw = w* = w? € H are
the normalized integrals, we find the Temperley-Lieb-Jones algebra

e2=ef =e¢,
eiej = eje, |i—jl =2, (2.20)
€;€;+1€; = (dlm H)il €;.

3. Amplimorphisms and Cosymmetries

In this section we pick up the methods of [SzV] to reformulate the DHR-theory of
superselection sectors for locally finite dimensional quantum chains using the category
of amplimorphism&Amp A.

In Sect. 3.1 we shortly review the notions and results of [SzV] and introduce the
important concept ofompressibilitysaying that up to equivalence all amplimorphisms
can be localized in a common finite intervalin Sect. 3.2 we consider the special class
of amplimorphisms given by localized coactions of some Hopf algélma.A. We call
such coactionsosymmetries

Sections 3.3 and 3.4 investigate some general conditions under which universal
cosymmetries exist on a given ndt Here an amplimorphism is calleduniversal
if it is a sum of pairwise inequivalent and irreducible amplimorphisms, one from each
equivalence class ilmp A. In Sect. 3.3 we look at propertieseffective cosymmetries
and use these to show that a universal amplimorphism becomes a cosymmetry (with
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respect to suitable coproduct @f) if and only if the intertwiner spacep(x p|p) is
“scalar”, i.e. contained inl} ® Hom(V,,V, ® V,). With this result we can prove
in Sect. 3.4 that universal cosymmetries always exist in models whicboanpletely
compressibleWe show that Haag dual split nets (like the Hopf spin chain) are completely
compressible iff they are compressible. Compressibility of the Hopf spin chain will then
be stated in Theorem 3.12. It will be proven later in Sect. 4.2, where we show that all
amplimorphisms of this model are in fact compressible into any interval of length two.
In Sect. 3.5 we investigate the questionuofiquenes®f universal cosymmetries.
We prove that (up to automorphisms@funiversal coactions are alwagscycle equiv-
alent where we use a more general definition of this terminology as compared to the
mathematics literature (e.g. [Ta,NaTa]). In particular this means that the coproduct of a
universal cosymmetrg on A is only determined up to cocycle equivalence.
In Sect. 3.6 we discuss two notions of translation covariance for universal coactions
and relate these to the existence obherently translation covariastructure iltAmp A.

3.1. The categorieAmp .4 andRep.A. In this subsectiod.A(I)} denotes a split net

of finite dimensionalC*-algebras which satisfies algebraic Haag duality. Furthermore
we assume that the nettimnslation covariant That is the net is equipped with a *-
automorphisnx € Aut.A4 such that

a(AD) = A(I+2) TeT. (3.1)

At first we recall some notions introduced in [SzV]. Amplimorphismof A is an
injective C*-algebra map
wA— A®End, (3.2)

whereV is some finite dimensional Hilbert spacefl) = 1 ® 1y theny is called
unital. Here we will restrict ourselves to unital amplimorphisms since the localized
amplimorphisms in a split net are all equivalent to unital ones (see Thm. 4.13in [SzV]).
An amplimorphism is calledlocalizedwithin I € 7 if

wA)=A® 1y A e A(I9),

wherel¢ := R\ I. For simplicity, from now on by an amplimorphism we will always
mean a localized unital amplimorphism.
The space ointertwinersfromv: A — AQ EndW to u: A — AQ EndV is

(ulv) = {T € A®Hom(W, V)| w(A)T = Tu(A), Ac A}. (3.3)

Two amplimorphismg, andv are calledequivalent 1« ~ v, if there exists an isomor-
phismU € (u|v), thatis an intertwinet/ satisfyingU*U = 1@ 1y andUU* = 1®1y.
Let 1. be localized within/. Theny is calledtransportableif for all integer a there
exists av localized within/ + 2¢ and such that ~ p. p is calledtranslation covariant
if (e ®idy)opoa® ~ pforall a € Z. Clearly, translation covariance implies
transportability.

LetAmp A denote the category with objects given by the localized unital amplimor-
phismsu and with arrows fronw to 1 given by the intertwiner§’ € (u|v). This category
has the followingmonoidal product

(w, v) = pxv=wEidgnguy)ov: A— AR EndV @ EndW,
Ty € (pa|ra), Tz € (p2lvz) = Ta x T3 = (T1 @ 1v,) (11 @ id Hom(w,,v5))(12), (3.4)
€ (p1 X pzlvr X v2)
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with the monoidal unit being the trivial amplimorphism jd The monoidal produck
is a bifunctor therefore we havéy( x T5)(S1 x Sz) = 1151 x T».S>, for all intertwiners
for which the products are defined, and 1, = 1,,, where 1, := 1®id v is the unit
arrow at the object: : A — A ® EndV.
Amp A containgdirect sumsg: @ v of any two objects: g ® v)(A) := u(A4) & v(A4)
defines a direct sum for any orthogonal direct skire V.
Amp A hassubobjectsIf P € (u|p) is a Hermitian projection then there exists an
objectr and an injectiorS € (u|v) such thatSS* = P andS*S = 1,. The existence
of subobijects is a trivial statement in the category of all, possibly non-unital, amplimor-
phisms because can be chosen to be(A) = Pu(A) in that case. In the category
Amp A this is a non-trivial theorem which can be proven [SzV] provided the net is split.
An amplimorphismy is calledirreducible if the only (non-zero) subobject qf is .
Equivalently,y is irreducible if («|) = C1,. Since the selfintertwiner space|() of
any localized amplimorphism is finite dimensional (use Haag duality to show that any
T € (n]p) belongs toA(Int I) ® EndV, wherel is the interval wherg is localized, see
also Lemma 3.8 below), the categakynp A is fully reducible That is any object is a
finite direct sum of irreducible objects. The categdmp A is calledrigid if for any
objecty there exists an objeptand intertwiners”, € (x u|id4), C, € (ux 7 ]id4)
satisfying
(€, x 1)L x C) =1y,
(1/7 X C#)(Cﬂ X 1ﬁ) = 1/7,

Two full subcategoriesAmp ;.4 and Amp ,.A of Amp A are calledequivalent
Amp ;A ~ Amp ,A, if any object inAmp ;A is equivalent to an object iAmp ,.A
and vice versa. Fof € 7 we denoteAmp (A, I) € Amp A the full subcategory of
amplimorphisms localized ih. We say thatAmp A is compressibldinto 1) if there
existsI € 7 such thatAmp A ~ Amp (A, I). Clearly, if Amp A is compressible
into I then it is compressible intd + 2a, Ya € Z. This follows, since the transla-
tion automorphismx € Aut.A induces an autofunctez on Amp A given on objects
by p — p® = (@ ®id) o p o a~! and on intertwiners by’ — (o ® id)(T). Hence
a(Amp (A, I)) = Amp (A, I +2). Moreover, we have

(3.5)

Lemma 3.1. LetAmp A be compressible intb € 7 and letJ D I +2afor somes € Z.
Then all amplimorphisms iAmp (A, J) are transportable.

Proof. Let {p, : A — A ® EndV,.} be a complete list of pairwise inequivalent irre-
ducible amplimorhisms idmp (A, I) and putp = @,p,.* Thenp: A - A® G, G :=
@,-EndV,., isuniversalin Amp A, i.e. everyu € Amp A is equivalent to (idy ® 5) o p
for somes € RepG. Moreover,p® € Amp (A, I + 2) is also universal and therefore
p® = AdW o (id ® o) o p for some unitanyiV € A ® G and somer € Autg. Let
now.J D ITandp = AdU o (idg ® B) o p € Amp (A, J). Then, by Haag duality,
U e A(IntJ) ® EndV,, sinceU must commute with4(J°) ® 1. With o € Autg
defined as above pyt = AdU o (id4 ® ) o p € Amp (A, J), wherej3 := Bo o~ L.
Then/i® = (a®id) o fio o™t € Amp (A, J + 2) satifies

i =AdU o (ida @ B) o p=Ad0U*)op,

wherell = (o ®id)(U)(id4 ® 3)(W) € A® EndV, is unitary. Thus: is transportable
into J + 2 and analogously intd — 2 and therefore intd + 2a, a € 2Z. (]

41f cal A(I) is finite dimensional, this sum is finite.
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We remark that even ijfi was localized inJo C I, its transported version may in
general only be expected to be smeared over all-ofa.

Next, we recall that the full subcategoiynp " A of transportable amplimorphisms
is abraided categoryThe braiding structure is provided by thtatistics operators

e(u,v) € (v x plux v) (3.6)
defined by
e(p,v) =(U" @ )(L® P)(ueid)U), (3.7)

whereP : EndV, ® EndV,, — EndV,, ® EndV,, denotes the permutation and where
U is any isomorphism fromr to somev"such that the localization region ofiés to the
left from that of:. The statistics operator satisfies

naturality: 6(/1,1, /1,2) (T]_ X Tz) = (Tz X T]_) 6(1/1, 1/2)7 (38a)
0 1,0) = (60 ) x 1,)(Ly x (11, 1)
pentagons{ 126 1) (380)

The relevance of the categotynp A to the representation theory of the observable
algebraAd can be summarized in the following theorem taken over from [SzV].

Theorem 3.1. Let g be a faithful irreducible representation of on a Hilbert space
Ho that satisfies Haag duality (here the second prime denotes the commutqfidh:

mo(A(I) = mo(A(1))  T€T, (3.9)

and letRep.A be the category of representationsof A that satisfy the following
selection criterion (analogue of the DHR-criterion):

dleZ, neN: 7T|.A(I’) ’Zn'ﬂ'o‘A([/), (310)

where~ denotes unitary equivalence. ThRep.A is isomorphic toAmp A. If we add
the condition thatrg is a-covariant and denote bgep® A the full subcategory iRep.A
of a-covariant representations théRep® A is isomorphic to the catego&mp A of
a-covariant amplimorphisms.

In generalAmp * A c Amp " A ¢ Amp A. In the Hopf spin model we shall see in
Sect. 4 thabmp *.A = Amp A and thatAmp A is equivalent tdRepD(H).

3.2. Localized Cosymmetriedzor simplicity we assume from now on thamp A
contains only finitely many equivalence classes of irreducible objects. For the Hopf
spin model this will follow from compressibility, see Theorem 3.12 in Sect. 3.4. Let
{u} be a list of irreducible amplimorphisms #mp A containing exactly one from
each equivalence class . Then an objeist calleduniversalif it is equivalent to®, ..
Define theC*-algebrag by

g = @T End‘/??

then every universal object is a unit@t-algebra morphism: A — A ® G. We denote
by e,. the minimal central projections . There is a distinguished 1-dimensional block
r =g, i.e. EndV, ¥ C associated with the identity morphismyd= p. as a subobject
of p. We also denote: G — C the associated 1-dimensional representatiof.dote
that by constructiol is uniquely determined up to isomorphisms leavéagnvariant.
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We also remark that if is the counit with respect to some coprodictG — G ® G
thene, is the two-sidedntegralin G, sinceze. = e.x = e(z)e. forall z € G.
Universality of p implies that any amplimorphism is equivalent todd ® 8,,) o p
for some representatigf), of G. In particular, there must exist-aalgebra morphism
A, G — G®gsuchthap x pis equivalentto (idv A ) o p °. As a characteristic feature
of a Hopf algebra symmetry we now investigate the question whether there exists an
appropriate choice gf such thap x p = (id 4 ® A) o p for somecoassociative coproduct
A:G — G®G.If pcan be chosen in such a way then we arrive to the very useful notion
of a comodule algebra action.

Definition 3.2. Let G be aC*-bialgebra with coproductA and counite. A localized
comodule algebra action @ on A is a localized amplimorphism: A — A ® G that
is also a coaction o4 with respect to the coalgebr@, A, ¢). In other words:p is a
linear map satisfying the axioms:

p(A)p(B) = p(AB), (3.11a)
p()=1®1, (3.11b)

p(A") = p(A)*, (3.11c)
pxp=(p®id)op = (id @ A)op, (3.11d)
(ida®e)op=ida, (3.11e)

A el : pA)=A®1 Ac AU). (3.110)

The coactiom is said to be universal if it is — as an amplimorpimis- a universal object
of Amp A.

For brevity by a coaction we will from now on mean a localized comodule algebra action
in the sense of Definition 3.2. Jil admits a coaction off, €, A) then we also cal§f a
localized cosymmetiyf A. Examples of universal localized cosymmetries for the Hopf
spin chain will be given in Sect. 4.

Next, we recall that every coactign A — A ® G uniquely determines an action
of the dualG on A, also denoted by, as follows (for simplicity assumé to be finite
dimensional ):

pe 1 A—A e g,
pe(A) = (ida @ E)(p(A)).

The following axioms for a localized action of the biaIge@ran theC*-algebraA are
easily verified

(3.12)

pe(AB) = pe(A)pe (B), (3.133)

pe(L) =£(§)1, (3.13b)

pe(A) = pe. (A7), (3.13¢)

Pg © Py = Pen,s (3.13d)

pe =ida, (3.13¢)

AT €T : pe(A)=E(©)A, VA e AUI°. (3.130)

5 This argument fails in locally infinite theories where one may hdyé) =~ A(I) ® Mat (n), Vn € N,
in which case the dimensions divj are not an invariant of the equivalence clasggs [
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Heres"= 1 € G denotes the counit of. Converseley, ip, satisfies (3.13) then

A p(A) =) pp(A)RY* € A®G

defines a coaction, wherg;,} and {Y*} denote a pair of dual bases 6fand g,
respectively. In (3.13c) we used the notatfor- £, for the antilinear involutive algebra
automorphism defined b{t. a) = ({|a*). If G (and therefore als@) has an antipode
S, then¢* := S(&,) = S—1(€), defines a«-structure org.

One can also check that f¢f|a) := D*!(a), the representation matrix of the unitary
irrepr of G, the matrixp¢ (A) determines an ordinary matrix amplimorphigm A —
A® M, . Whether such @, is irreducible is not guaranteed in general, so we will call
it a componenbf p.

3.3. Effective Cosymmetrie$o investigate the conditions under which the components
of a given coaction are pairwise inequivalent and irreducible we introduce the following

Definition 3.3. Letp : A — A ® EndV, be an amplimorphism and let have trivial
center. A unital *-subalgebrg C EndV/, is calledeffectivefor p, if p(4) C A® G and
(or)ps) = 0,sC(La®1y. ), wherer, s run through a complete set of pairwise inequivalent
representations of and wherep,. = (id ® r) o p. A coactionp : A — A® G is called
effective, ifG is effective fop (with respect to some unital inclusighC EndV,).

To see whether an effective C EndV, exists for a given amplimorphism, we
now introduceAmp ,A as the full subcategroy &mp A generated by objects which
are equivalent to direct sums of the irreduciljle®curring inp as a subobject. We also
put Amp ZA C Amp , A as the full subcategory consisting of objeptssuch that all
intertwiners in {i|p) are “scalar”, i.e.

(1]p) € 14 ® Hom (V,, V).

Note that the amplimorphispitself belongs taAmp 7 Aiff (p[p) = p(A) = 1a®C,, for
some unitak-subalgebr&, C EndV,, which also impliesd ® (C,, N EndV},)) C p(A).
We now have

Proposition 3.4. Let.A have trivial center and lgs : A — A®EndV, be an amplimor-
phism. For a unitak-subalgebrag C EndV, the following conditions are equivalent:

i) G is effective fop .

i) (plp) =1la®C,andG =C,NENV, .

i) p(A) C A® G andRep(G) = Amp ;(A), where the isomorphism is given on
objects by — (id ® ) o p and on intertwiners by — 14 ® t.

Proof. DenoteV,. the representation spaces of a complete set of pairwise inequivalent
irreducible representationsof G. Decomposing/,, into irreducible subspaces under

the action ofg we get an isomorphism = ©,u,. : ©,(V, ® C») — V, obeying
u*Gu=®,.(EndV, ® 1N;»),
u*(G' N End Vy)u =&, (ly, ® Mat(Ny)),
(La @ u)p(A)(La ® u) =&, (pr(A) ® Ins) , VAE A,
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Whe_reN; € N are nonvanishing multiplicities. Hences,-(ps) = 6,sC(1a ® 1y.) is
equivalent to

(La @ u™)(p|p)(1a ® u) = &r(1a ® 1y, ® Mat(Ny)),
proving the equivalence4) ii) (see [NSz2] for more details).
The implication iii) = i) being trivial we are left to show i)+ii}= iii). To this
end we first note that under the condition ji)e Amp 2/1 implies (u|p,) C 14 ®

Hom (V;., V,,), Vr. Moreover,u € Amp 2A being equivalent to a direct sum pf’s we
must have a family of isometries, : V, ® CcNe — Vi, WhereN[; € N, are possibly

vanishing multiplicities and where}w; = 6, (if N; 7 0), Xrw,wy = 1y, and
A (La @ wy) = (La @ wy)(pr(A) @ 1nr), A€ A
Hence we get = (id ® ,) o p, where,, € Repg is given by
Bu(9) = Zrw(r(g) ® Inr)wy.

Next, to show thati € Repg is uniquely determined by = (id ® 5) o p € Amp S(A)
we define .
Gp = {lw®idg)(p(A)|w e A} C G,

where A is the dual ofA. Clearly the restrictiorB|G, is uniquely determined by.
Moreover
14®(G, N EndV,)=(1a® EndV,) N p(A)".

Since, by assumption iip(A)’ = (p|p) = 14 ® (¢’ ® End V,) we conclude
G,NEndV,=G"NEndV,,

and therefore the algebraic closure@f coincides withG. Hence, being an algebra
homomorphisng is uniquely determined by its restrictighG, and therefore bys.

Finally, by decomposing’ and ~ into their irreducible subrepresentations it is
straightforward to check [NSz2] that under the assumptidni® (8|v) = ((id ® §) o
plid®~)op)forall 8,v € Rep G, which in particular impliesid ® 3) o p € Amp SA
forall 3 € Rep G (put~y = id). O

We are now in the position to give a rather complete characterization of effective
cosymmetries.

Theorem 3.5. Letp : A — A®EndV, beanamplimorphism and assugie- EndV,
to be effective fop (implying the center afd to be trivial). Let furthermore : G — C
be a distinguished one-dimensional representation suchgthat (id ® €) o p = id 4.
Then the following conditions A)-C) are equivalent

A) Amp 7(A) closes under the monoidal product.
B) p x p € Amp 7(A).

C) There exists a coassociative coproddcton (G, ) such that(p, A) provides an
effective coaction G, €) on A.

Moreover, under these conditions we have

i) A isuniquely determined by
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i) Amp ,(A) is rigid iff G admits an antipode.
iif) Amp ,(A) is braided, iff there exists a quasitriangular eleméht g @ G.
iv) Amp ,(A) ~ Rep(9) as strict monoidal, (rigid, braided) categories.

Proof. The implicationA) = B) is obvious, since € Amp 7(.A) by Proposition 3.4ii).
To proveB) = C)letA : G — End (V, ® V,) such thap x p = (id ® A) o p. ThenA
uniquely exists by Proposition 3.4iii). Moreovey ® G’ @ G' C (p x p|p x p) which
again by Proposition 3.4iii) implie§’ ® G’ C A(G)’ and therefore\(G) C G ® G. The
identity p. = id 4 implies the counit propertyidg ®<)o A = (e®idg)o A = idg and the
identity px (o x p) = (px p) x pimplies the coassociativitydg @ A)o A = (A®idg)oA.
Here we have again used that ahy Repg is uniquely determined byid 4 ® () o p.
To proveC) = A) we noteAmp 7(A) = RepgG by Proposition 3.4iii) and recall that
RepgG becomes monoidal for any bialgebi@ A, ¢).

Next, part i) has already been pointed out above and part iv) follows since any
objectinAmp ,(A) is equivalent to an object iAmp ;(A) and thereforédmp ,(A) ~
Amp /(A) = Repg by Proposition 3.4iii). By the same argument, it is enough to prove
parts ii)+iii) with Amp ,(A) replaced byRepG. However, forRepg these statements
become standard (see e.g. [Maj2,U]) and we only give a short sketch of proofs here. So if
B € RepGandsS : G — G is the antipode then one defines the conjugate representation
3 :=pT o S, where3” is the transpose gf acting on the dual vector spab’g Since
on finite dimensional’*-Hopf algebragj the antipode is involutive$? = id g [W], the
left and right evaluation maps which maRepg rigid are given by the natural pairings
V,@®V@ — (CandV,g®Vﬁ — C, respectively. Conversely, I[BepG be rigid and identify
G = @,.EndV,., wherer labels the simple ideals — and therefore the (equivalence classes
of) irreducible representations —@f For X € EndV,. C G let S(X) € EndV;-be given
by

S(X)=1-® )1 @ X © 17)(C, @ 17).

We now use that forX € EndV, C G the coproduct may be written as(X) =
> pq Apg(X), whereA,, ((X) € EndV, ® EndVj, is given by

P(I

10 Q(X) Z tpq i X t;q*z’

Wheret;qyi elpxqlr),i=1,. ,N;q, is an orthonormal basis of intertwinersRepg.

Choosing a basis i, and using the rigidity properties (3.5) it is now not difficult to
verify the defining properties of the antipode
S(XapXe = X1)S(X2) = e(X)1.
To proveiii) letR € G ® G be quasitriangular and let 3 € RepG. Then
e(a, B) = 0q,3 0 (0 @ B)(R)

defines a braiding oRepgG, wheres,, g : Vo, ® Vg — V3 ®V, denotes the permutation.
Conversely, let(a, 8) € (8 x a|a x 8) be a braiding and denote

Rr,r/ =0p 0 6(7”7 7”/) € EndV, ® EndV,..

Putting R := &, , R, ,» and using the above formula for the coproduct it is again
straightforward to check that is quasitriangular, i.e.
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(A ®id)(R) = Ri3Rzs,
(id ® A)(R) = Ri3R1o.

This concludes the proof of Theorem 3.5. O

Corollary 3.6. Necessary for a localized effective coactignA) of (G, <) on a net
{A(I)} to be transportable is thaf be quasitriangular.

Proof. If pistransportable then any irreducible compongnis transportable and hence
Amp , A is braided, see Egs. (3.6-8) and [SzV]. [

3.4. Universal Cosymmetries and Complete Compressibilingorem 3.5 implies that
Amp A ~ Repg for a suitableC*-bialgebra ¢, ¢, A), provided we can find a universal
objectp = ®,.p, in Amp A, suchthap x p € Amp SA. In this case we calf auniversal
coactionon A andgG auniversal cosymmetmyf A. In other words, a localized coaction
p: A— A® Gisuniversal, if and only if it is effective and for anyc Amp A there
exists a representatigf), € RepgG such thaf: is equivalent todd ® 3,,) o p.

We note that a priori universal coactions need not exislorlowever, if they do,
then as an algebi@ is determined up to isomorphisms, i.e.

G~ ®,.EndV,,

wherep, : A — A ® EndV,. are the irreducible components @f Moreover, as will
be shown in Sect. 3.5, universal coactignsand hence the coprodugt on G - are
determined up to cocycle equivalence provided they exist.

In this subsection we investigate the questiomxitenceof universal coactiong
by analysing the conditiop x p € Amp ;A. To this end we introduce the-stable
subalgebrad, C A,

A, = {A e Al pA)=A®1}. (3.14)

Lemma 3.7. Letp = @,.p, be universal ilAmp A. If AL N A=C-14,thenpx p €
Amp A, i.e.pis a universal coaction.

Proof. For any two amplimorphismg; we obviously have
(p1lp2) C ((Ap N Ap,) N A) @ Hom (V2, V1),

Since A, C Apx,, the conditionA), N A = C - 1, implies that all intertwiners in
(p | p x p) are scalar and therefopex p € Amp ;A. O

Note that if p is localized inA then A(A°) C A,. Our strategy for constructing lo-
calized universal coactions iimp .4 will now be to find a suitable bounded region
A =U,I,, I, € Z, such thalAmp A is compressible inta\ and A(A°)Y N A=C - 1.

In this case we cal\mp .A completely compressiblBy Lemma 3.7 we are then only
left with constructing a universal object &mp (A, A). First we note

Lemma3.8. Fori = 1,2letp; € Amp (A,I),I € Z, and let the ne{ A(I)} satisfy
Haag duality. Them; (A(I)) C A(I)®EndV,, and(p1|p2) C A(IntI)@Hom(V,,, V,,).
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Proof. We use the general identity(A(I)) C p(A(I)’) and the locality property
A(I) > A(I') to conclude

p(A(D) € p(A(I)Y = A(I'Y ® EndV,, = A(I) ® EndV,,

where we have used(I’) C A(I¢) C A, inthe second line and Haag duality in the third
line. Sincel® = (Int I)’ we haveA((IntI)") C A, forall p € Amp (A, I) and therefore
A%,z. C A(IntI) by Haag duality, from which/|p2) € A(IntI) @ Hom (V,,,V,,)
follows. O

We remark that for additive Haag dual nets Lemma 3.8 implies Amap (A, I) is
uniquely determined byAmp (A(7), I), with arrows given by the set of intertwiners
localized in Intl.

Next, if the Haag dual ngtA(I)} is also split, then for any localized amplimorphism
p there existd € 7 such thatA([) is simple andp is localized inA(7). By Lemma
3.8, p restricts to an amplimorphism o#(7) and by simplicity of.A(I) this restriction
must be inner, i.ep(A) = U(A ® 1)U~ for some unitanyU € A(I) ® EndV,, and all
A € A(I). Hencep’ .= AdU 1o pis localized indI and we have

Corollary 3.9. Let{.A(I)} be a split net satisfying Haag duality. Then for any localized
amplimorphisnp there existd € Z such thatA([) is simple ang is compressible into
01. In particular Amp A is completely compressible if and only if it is compressible.

Proof. The second statement follows by noting thatf7) is simple thend((01)¢)' N
A = A(I) N A(I) = C1. Indeed, we haveXl)¢ = T U I’ and therefored((0I)) N A =
A N AI'Y = A(I) N A(). O

We now recall that in the special case of our Hopf Spin model the local algebras
A(I) are simple for all intervald of even length]I| = 2n, n € N,. The following
theorem then implies that in this modghp A is completely compressible and therefore
universal coactions do exist.

Theorem 3.12.If A is the observable algebra of the Hopf spin model themp A is
compressible into any interval of length two.

Theorem 3.12 will be proven in Sect. 4.2. In Sect. 4.1 we will completely analyse
Amp (A, I) for all |I| = 2 (i.e. A(I) = A; 41, ¢ € Z), showing that its universal
cosymmetry is given by the Drinfeld doubde= D(H). We also construct a universal
intertwiner fromAmp (A, I) to Amp (A, I — 1) and thereby prove thamp (A4, I) (and
thereforeAmp A) is not only transportable, but eveoherently translation covariant
(see Def. 3.17 below and [DR1, Sec.8]).

3.5. Cocycle Equivalence§iven two amplimorphismg, p’ € Amp (A, A) which are
both universal ilAmp (A, A) we may without loss consider both of them as mdps-
A® G, with a fixed«-algebrag = &,.End V,. and a fixed 1-dimensional representation
€ :G — End V. = C such thap. = id 4. However, even ip andp’ are both effective
coactions, they may lead to different coprodugtsand A’, on G, €). Coactions with
(G, ¢) fixed, but with varying coproducA\, will be denoted as a paip(A). In order
to compare such coactions we first identify coactionsA) and (', A’) whenever
pl=(id®c)opandA’ = (c ® 0) o A o o~ for some *-algebra automorphism
o 1 G — @G satisfyinge o o = €. In other words, given an effective coactign ) of
(G,e)on A, then up to atransformation laye Aut (G, ) any universal amplimorphism
in Amp ,(A) will be considered to be of the form
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P =AdUop,

whereU € A ® G is a unitary satisfyingifl ® €)(U) = 14. Decomposing = &®,.p,
andp’ = @,.p.. this impliesp, ~ p!. for all , i.e. we have fixed an ordering convention
among the irreducibles of coinciding dimensiond,. = dim V..

We now introduce the notion of cocycle equivalence for coactigna). First,
we recall that two coproductgy and A’, on (G, <) are calledcocycle equivalentif
A" = Adu o A, whereu € G ® G is a unitaryleft A-cocyclgi.e.v* = u~! and

A ® u)id ® A)u) = (u® 1)(A ® id)(u), (3.15a)
(id ® £)(u) = (¢ @ id)(u) = 1. (3.15b)

The most familiar case is the one whexé= A, the opposite coproduct, and where
u = R is quasitriangular. We call aright A-cocycle if u~ is a left A-cocycle. Note
that if u is a left A-cocycle themA’ := Adw o A is a coassociative coproduct of, €).
If in this caseS is an antipode for\ thenS’ = Ad g o S is an antipode fon\’, where
q = >, aS(b;) if uw =73, a; ®b;. Moreover,v is a left A’-cocycle iff vu is a left
A-cocycle. In particulary~! is a left A’-cocycle. Two leftA-cocyclesu, v are called
cohomologousif

v=(z '@z HuA() (3.16)

for some unitaryc € G obeyinge(x) = 1. A left A-cocycle cohomologous tb® 1 is
called a leftA-coboundaryWe now give the following

Definition 3.13. Let (p, A) and(p’, A’) be two coactions ofG, ) on A. Then a pair
(U, w) of unitariesU € A® G andu € G ® G is called acocycle equivalencdrom
(p. M) to (p', A') if

Up(A)=p (AU  Ac A, (3.17a)
uAX)=A'(X)u X eg, (3.17b)
Ux,U=(La®u)-(ids @ A)U), (3.17¢)

(id4 @ £)(U) = 14, (3.17d)

where we have used the notation
Ux, U=U(pRidg)(U) e A®G®G. (3.18)

The pair(U, ) is called acoboundary equivalencef in addition to (a—d)u is a left A-
coboundary. Ifu = 1 ® 1, then(p, A) and(p’, A’) are calledstrictly equivalent.

Note that Egs. (3.17 c,d) imply the left-cocycle conditions (3.15) far. We leave
it to the reader to check that the above definitions indeed provide equivalence relations
which are preserved under transformationssbyg Aut (G, ). We also remark that to
our knowledge in the literature the terminology “cocycle equivalence for coactions”
is restricted to the case = 1 ® 1 and henceA’ = A [Ta,NaTa]. (If in this case
U= (V"t® 1)p(V) for some unitaryy’ € A thenU would be called @-coboundary.)

We now have

Proposition 3.14. Let (p, A) be an effective coaction af = @,.FEnd V, on A.
Then up to transformations by € Aut(G,e) all universal coactiong(p’, A’) in
Amp ,(A) (Amp 2(,4)) are cocycle equivalent (coboundary equivalentjtoA).
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Proof. Let p’ = AdU o p whereU € A ® G is unitary and satisfiesd @ €)(U) = 14.
We then have two unitary intertwiners

(id@ A)U):px p—(idx A)op,
Ux,U:pxp—p xp=@deA)op.

Now G is also effective forp’ and therefore any intertwiner fromid ® A') o p’ to
(id® A) o p’ must be a scalar by Proposition 3.4iii (consideandA’ as representations
of G on®, (V. ® V5)). Hence there exists a unitayc G ® G such that

Ux,U=04®u)(id® A)U).

Consequentlyl(, u) provides a cocycle fop( A) and d®@ A’)op’ = (id®(Ad uoA))op’.
By Theorem 3.5i) we conclud&®’ = Ad uo A and therefored’, A’) is cocycle equivalent
to (o, A). Ifin additionp’ € Amp g(A) thenU =14 ® x for some unitary: € G. Hence
u=(r®x)A(z~')is a coboundary. O

3.6. Translation Covariance.n this section we study transformation properties of
universal coactions under the translation automorphistns4 — A, a € Z.

First note that if p, A) is a localized coaction od then (%, A) also is a localized
coaction, wher@® := (a ®id) o po a1

Definition 3.15. A coaction(p, A) is called translation covariant ifp, A) and(p®, A)
are cocycle equivalent. It is callegtrictly translation covariant if (p, A) and(p®, A)
are strictly equivalent.

If (p, A) is a universal coaction iAmp A4, then p*, A) is also universal. By Propo-
sition 3.14, p, A) and (“, A) must be cocycle equivalent up to a transformation by
o € Aut(G, ). Thus,pis translation covariant iff we can choose= idg. The following
lemma shows that this property is actually inherenAimp A, i.e. independent of the
choice ofp.

Lemma 3.16. Let(p, A) be a universal and (strictly) translation covariant coaction on
A. Then all universal coactions iAmp .4 are (strictly) translation covariant.

Proof. By the remark after Definition 3.15 (strict) translation covariance is preserved
under transformations by € Aut(G,¢). Let now (W,w) be a cocycle equiva-
lence fromp to p* and let (/;u) be a cocycle equivalence from to p’. Then

(o ® idg)(UYWU L, uwu~1) is a cocycle equivalence fropi to p'®. O

In [NSz3] we will show (see also [NSz1]) that strict translation covariance of a
universal coactiop is necessary and sufficient for the existence of a lift of the translation
automorphisnm on A to an automorphisra dn the field algebref, > A constructed
from p, such thato"commutes with the globaf-gauge symmetry acting ofi,. In
continuum theories with a global gauge symmetry under a compact group there is a
related result [DR1, Thm 8.4] stating that such a lift exists if and only if the category of
translation covariant localized endomorphismsia$ coherently translation covariant

We now show thatin our formalism these conditions actually coincide, i.e. auniversal
coaction p, A) on A is strictly translation covariant if and only mp 4 is coherently
translation covariant. Here we follow [DR1, Sec.8] (see also [DHR4, Sec.2]) and define



184 F. Nill, K. Szlachanyi

Definition 3.17. We say thaAmp A istranslation covariant if for any amplimorphism
1 on Athere exists an assignméhts a — W, (a) € A® EndV,, satisfying properties
i)-iv) below. If also v) holds, theAmp A is calledcoherently translation covariant:

i)y Wala) € (" | ), (3.19)
i) W(a+b) = (@ @id)(W, (b)) W,(a), (3.20)
i) Wu(a)* = Wy(a) ™ = (@* @ id)(W,(—a)), (3.21)
iv) W ()T = (a* @id)(T)W,(a), VT € (1|v), (3.22)
v) Wxw(a) = (Wu(a) @ L)(p @id ,)(W, (). (3.23)

In the language of categories (coherent) translation covariarfeepfd means that
the group of autofunctoks®, a € Z, onAmp.A is naturally (and coherently) isomorphic
to the identity functor.

To illuminate these axioms lety : A — L(Hop) be a faithful Haag dual “vacuum”
representation and 18t 5 « — Up(a) € L(Hp) be a unitary representation implement-
ing the translationa?, i.e.

Ad Up(a) o mp = mg 0 o . (3.24)

Then giveriﬁfu(a)_satisfying i)-iii) above the “charged” representatign= (mo®id ,)o
1 is also translation covariant, i.e.

AdU,(a)om, =m,0a”, (3.25)
where the representatidhs ¢ — U,(a) € L(Ho) ® EndV, is given by
Uy(a) = (mo @ id )(W,.(a)")(Uo(a) ® 1,,). (3.26)

Conversely, iU, (a) is a representation & satisfying (3.25) then we may defifg, (a)
satisfying i)-iii) of Definition 3.17 by

(mo ® id)(Wyu(a)) = (Uo(a) ® 1,)U,u(a)". (3.27)
Note that by faithfulness and Haag dualitymfthis is well defined, since ji is localized
inI € Zand ifJ € Z contains/ andI — a then the r.h.s. of (3.27) commutes with
mo(A(J")) ® 1, and therefore is inrp(A(J)) ® EndV,,. In this case property iv) of
Definition 3.17 is equivalent to

(mo @ id )(T)Uu(a) = Up(a)(mo ®@id )(T), VT € (v|n) (3.28)
and property v) is equivalent to

Upxv(@) = (my @1d)(Wy(a)*)(Up(a) ® 1) (3.29)

Proposition 3.18. Let p be a universal coaction dfj, A, ) on . A. Thenp is (strictly)
translation covariant if and only ihmp A is (coherently) translation covariant.
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Proof. Let (IW, w) be a cocycle equivalence from,(A) to (0*, A) and definéZ > a —
W,(a) € A® G inductively by puttingiV,(0) =1® 1 and

Wy(a+1) = (a®id)(W,(a))W . (3.30)

Then (V,(a), w*) is a cocycle equivalence from,(A) to (p*", A), Ya € Z. Moreover,
Wy(a+b)=(a® @id)(W,(0)W,(a), (3.31)

Wy(a)* =Wy(a)™ = (a® @ id)(W,(—a)) (3.32)

as one easily verifies. For an amplimorphisne Amp A let now 3, € RepgG and let
T, € A® EndV,, be a unitary such that

pw=AdT,o(d ®pB.)op. (3.33)
We then define
Wy(a) = (o @id)(T,)(id ® ,Gﬂ)(W,J(a))T;1 . (3.34)

Sinceg,, is determined by: up to equivalence, Definition (3.34) &F,(a) is actually
independent of the particular choiceBf andg,,. Moreover,W,(a) clearly intertwines

pandu®” and Egs. (3.20/21) follow from Egs. (3.31/32). To prove (3.22) et (i1|v).
Then

T;lTT,, S ((Id.A ® ﬂ/t) op | (ldA ® 61/) © P) = ]I-.A & (B}L‘Bl/)
by the effectiveness gf. Therefore

T=T,12T,* (3.35)

for somet € (5,|6,), and (3.22) follows from (3.34/35).
If p is even strictly translation covariant then

(Wp(a) @ D(p @ id)(W,(a)) = (id ® A)(Wy(a)) . (3.36)

We show that this implies (3.23) for all objectsAmp 2A. By Proposition 3.4iii) the

amplimorphisms imp 2A are all of the formu = (id 4 ® 8,,) o p for somes,, € RepG
uniquely determined by. Hence, by (3.34)

W(a) = (ida ® 5,)(Wy(a)) -

Moreover, using the coaction propepty p = (id 4@ A)opwe getuxv = (id 4 @B xw)op
wheref,x, = (B, ® B,) o A. Hence

Wuxv(a) = (idA & ﬂuxu)(wp(a))
=(ida ® 8, ® By) o (ida @ A)(W,(a))
= (Wu(a) ® 1)(p ®id, ) (W, (a)), (3.37)

where we have used (3.36). This proves (3.23nmp 2,4. The extension tdmp A ~
Amp 9 A follows straightforwardly from (3.22).

Conversely, let nowvAmp A be translation covariant and identi§ywith the direct
sum of its irreducible representations,= @,.EndV,.. Thenp = @,p, is a special
amplimorphism andlV,(a) = &, W,.(a) € A®G is an equivalence fromto ", which
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must be a cocycle equivalence by Proposition 3.14. Heriséranslation covariant. If
moreoverAmp A is coherently translation covariant then by (3.18) and (3.23),

Woxp(a) = Wp(a) x, W,(a). (3.38)
On the other hand, similarly as in the proof of Proposition 3.4iii) Eq. (3.22) implies
Wiidaiy0p(@) = (id4 @ B)(W,(a)
for all B € Repg. Putting3 = A : G — G ® G this gives
Wpsep(@) = Wiid 0 Aro (@) = (id4 @ AY(W,(a)), (3.39)
and by (3.38/39p is strictly translation covariant. [

4. The Drinfeld Double as a Universal Cosymmetry

In this section we prove that the Drinfeld doul@®¢H) is a universal cosymmetry of the
Hopf spin chain. To this end we construct in Sect. 4.1 a family of “two-point” coactions
p1 - A(I) — A(I) ® D(H) for any intervall € 7 of length two. We then prove that
extends to a universal coactionAmp (A, I). We also explicitely provide the cocycle
equivalences fromp; to p;_1 and show thap; and p;_» are strictly equivalent and
therefore — being translates of each other — also strictly translation covariant. Moreover,
the statistics operatorgpr, py) are given in terms of the standard quasitriangular R-
matrix inD(H) ® D(H). Finally, for any left 2-cocycle, € D(H) ® D(H) we construct
aunitaryU € A®D(H) and a universal coactiop/( A’) on.A such that{, u) provides
a cocycle equivalence fromy to p’. The statistics operator fgr is given in terms of
the twisted R-matrix:°? Ru*.

In Sect. 4.2 we proceed with constructing “edge” amplimorphisgs. A(01) —
A ® D(H) for all intervals! of (nonzero) even length, which extend to universal ampi-
morphisms inAmp (A4, 9I). We then show that these edge amplimorphisms are all
equivalent to the previous two-point amplimorphisms. This proves complete compress-
ibility of the Hopf spin chain as stated in Theorem 3.12. Thus the daDl€) is the
universal cosymmetry of our model.

4.1. The Two-Point Amplimorphismdn this subsection we provide a universal and
strictly translation covariant coactign € Amp (A, I) of the Drinfeld doubleD(H) on
our Hopf spin chain4 for any intervall of length|I| = 2. Anticipating the proof of
Theorem 3.12 this proves thB{ H) is the universal cosymmetry of.

Areview of the DrinfeldD(H) double is given in Appendix B. Here we just note that
it is generated byd andﬁ]cop which are both contained as Hopf subalgebra® (),
Whereﬁcop is the Hopf algebrad with opposite coproduct. We denote the generators
of D(H) by D(a), a € H, andD(y), ¢ € H, respectively.

Theorem 4.1. On the Hopf spin chain defing : A(I) — A(I) @ D(H), |I| = 2, by’
p2i,2i+1(A2i(a) A2i+1(9)) = Azi(a@) A2i+1(p@) ® D(a@)D(pw), (4.1a)
p2i—1,2i(A2i—1(p) A2i(a)) = Azi—1(p@) A2i(a) ® D(p@e)D(aw). (4.1b)
Then:
6 Here we identifyl with I N Z.
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i) psi+1 Provides a coaction db(H) on A; ;+1 with respect to the natural coproducts
Ap (if 7 is even) orAZ (if ¢ is odd) onD(H).
i) p;+1 €Xxtends to a coaction ikmp (A, 1) which is universal ilAmp (A, I) .

Proof. i) Since interchanging even and odd sites amounts to interchﬂlhmyjﬁ and
sinceD(ﬁ) = D(H).op itis enough to prove all statements fogven. It is obvious that
the restriction®s; 2;+1|A2; andpa; 2:+1|A2i+1 define *-algebra homomorphisms. Hence,
to prove thapy; 2i+1 : Azi 2i+1 — A2 2i+1 ® D(H) is a well defined amplimorphism we
are left to check that the commutation relations (2.2) are respected, i.e.

p2i,2i+1(A2i+1(9)) p2i 2i+1(A2i (@) = p2i2i+1 (Azi(aw){ac), o) A2i+1(e(2)) -

Using Eq. (B.2) this is straightforward and is left to the reader. Using Egs. (B.3a,b) the
identities (id4 ® ep) © p2; 2041 = Id 4 @Nd 2; 2041 X p2; 2i+1) = (id @ Ap) 0 pg; 2i+1 Are
nearly trivial and are also left to the reader.

i) To show thatp; extends to an amplimorphism #mp (A, I) (still denoted by
pr) we have to check that together with the definitiotA) := A ® 1p), A € A(I°),
we get a well defined *-algebra homomorphigm: A — A ® D(H). Clearly, this
holds if and only ifp; ;+1].4; ;+1 commutes with the left adjoint action of;., and the
right adjoint action ofA;_1, respectively, o, ;+1, where these actions are defined on
B e A, i+ by

Asira(a) > B = Aziri(aq) BA2i+1(S(a@)),
B < Azi_1(p) = A2i—1(S(p(2))) BA2i—1((2))-

Now A,;+» commutes with4,; and.A,;_1 commutes withA4,;+; and

Azira(a) > Azir1(p) = Azivr(a — ), (4.2a)
Azi(a) < Azi—1(p) = Azi(a — ¢). (4.2b)

Hencep,; »;+1 commutes with these actions, since by coassociativity
Azi((a = ©)) @ D((a « ¢)@) = A2i(aq) — ) @ D(a),
Azir1((a — ©)2) @ D((a — ¢)) = Azi+1(a — ©(2)) @ D(@())-

Next we identifyD(H) = &,.EndV,. € EndV, wherer runs through a complete set of
pairwise inequivalent irreducible representation®¢f/) and wherd/ := ®,.V,.. Since
|I| = 2 impliesA(IntI) = C - 14 we conclude by Lemma 3.8,

p2i2i41(A) N(A®EndV) =1, ®C

for some unital *-subalgebid c EndV. Hence, by Proposition 3.4iQ(H) is effective
for py; 241 providedC = D(H) N EndV. To show this we now compute fare H and

peH,

[A2i41(S (@) A2:(S(aw) ® o] - paizivt (Azilae) Azis (o))
= A2i+1(S(¢3)))A2i(S(a@)a@) A2i+1(p@) @ D(aa)D(pw)
=14 ® D(a)D(y).

Hence A ® D(H) = (A ® lpm) V pai2i+1(A) and therefore
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1,4 ® (D(H) NEndV) = (A @ D(H)) N (A ® EndV)
= (A® Ipm)) N paiziva(A) N (A ® EndV)
=14®C,

which proves thatD(H) is effective for py; 2;+1. To prove thatp; is universal in
Amp (A, T) we now showAmp (A, I) € Amp Y (A). Hence leyu € Amp (A4,1), TN

Z = {2i,2i + 1}. Then p( Az 2i+1) C Azi2iv1 ® D(H) by Lemma 3.8 and the re-
striction u|.A2; 2;+1 commutes with the left adjoint action of;+2 and the right adjoint
action of Ay,_1, respectively, ondy; »;+1. This allows to construct a representation
By : D(H) — EndV, such thatu = (id ® 5,) o p2i 2;+1 and therefore, by Proposition
3.4iii), p € Amp SMM(A), as follows. First we use the above commutation properties
together withA4,, ,,, = A, e N AL > = Al ., N A,_1,, by Eq. (2.17) to conclude

w(Az;) C (A21,2i+1 n Alzﬁz) ® EndVM =Ax; ® EndV,“
1(Azi+1) C (A 2i+41 N A% _1) ® EndV, = A1 @ EndV,.

Now we define, fow € H ¢ D(H) andy € H  D(H),

Bu(D(a) := (A2:(S(aw) @ 1) u(Azi(az)), (4.32)
Bu(D(9) := (Azi+1((w) (A2i+1(S (@) © 1). (4.3b)

Using thaty commutes with the (left or right) adjont actions db;, 1 and Ay, re-
spectively, it is straight forward to check thgt(H) C A2 ® EndV,, commutes with

Az ® 1and8,(H) C Ag+1 ® EndV, commutes withAzs, @ 1. Hence, by Eq.
(2.18),6,|H and,|H take values il 4 ® EndV,, . Now, using (B1) of Appendix B
it is not difficult to show [NSz2] thaB,, indeed provides a-representation db(H) on

V... Thus, identifyingAy; = H C D(H), Ax+1=H C D(H) andg, = 14 ® 3, we
may invert (4.3) to get

1(A2i(a)) = Azi(aq) ® Bu(D(a)), (4.4a)
p(A2ix1(p)) = Az2i+1(0(2) @ Bu(D(p()))- (4.4b)

Thusy = (id ® §,,) o pr and therefore, € Amp 21(/{). This proves thap; is universal
in Amp (A, I). O

We now show that the coactiops .+, are all cocycle equivalent and strictly trans-

lation covariant. To this end Igth4} be a basis in with dual basis{3} in H and
define thecharge transporter§; € A; ® D(H) by

_ [Aiba)® DY)  i=even
L= {Ai(ﬂé‘) ® D(ba) i=odd - (4.5)

Also recall that the canonical quasitriangular R-matrisD(H) ® D(H) is given by
R =D(ba) @ D(6%).

We then have
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Proposition 4.2. The charge transporter§; are unitary intertwiners fronp; ;+1 to
Pi—1,i, 1.€.
Tipiiv1(A) = pi—1,:(A)T;, Ac A, (4.6)

and they satisfy the cocycle condition

Ti Xp, i Ti = (T @ 1) - (piiva @ d)(TG) =
_ { (1® R)-(id @ Ap)(T}) i =even 4.7)
T 1@A®@RP)-(d @ AF)T) i=odd

Proof. This is a lengthy but straightforward calculation, which we leave to the reader.
O

Iterating the identities (4.6/7) we get an infinite sequence of cocycle equivalences

(T2i+1,R°P)
iy

(T2i42,R)
... (p2i.2i41, AD) (P2ir12i42, AR) EZ (poisa2ies, Ap) . . .

Composing two such arrows we obtain a coboundary equivaléh¢a (242, R°P R)
becauseR’’R = (s ® s)Ap(s~1) according to [Dr], where € D(H) is the central uni-
tarys = Sp(R2) Ry = D(S(34))D(b,). Likewise (I%;T»;+1, RR°P) yields a coboundary
equivalence. Therefore, introducing

Uit = (1@ s VT € (pi—1i]pistiva), (4.8)

we obtain unitary charge transporters localized within + 1} that satisfiy therivial
cocycleconditions

Uzi—1,2i Xpp; 200 Uzi-1,2i = (!dA ® Ap)(Uzi—1,2i), (4.9)
Uzi—22i—1 Xpp_12 Uzi—22i—1 = (idg @ AD)(Uzi—2,2i—1)- '

Hence, summarizing the above results (and anticipating the result of Theorem 3.12)
we have shown

Corollary 4.3. The coactiong; ;+1 are all strictly translation covariant and universal
in Amp A.

Proof. Universality follows from Theorem 4.1ii) and Theorem 3.12 and strict translation
covariance (Definition 3.15) follows from (4.8/9), sing&1,i+2 = (a®id )op;_1 ;001
O

Proposition 4.2 also enables us to compute the statistics operatpr of

Theorem 4.4. Let p; be given as in Theorem 4.1 and p;, p;) be the associated
statistics operator (3.7). Then

€(pr,p1) =1® PRy, (4.10)
whereP : D(H) ® D(H) — D(H) ® D(H) denotes the permutation and
R , 1 =even
Ri 1= {RO,, AN (4.11)

Moreover, if(U, u) is a cocycle equivalence fro(p;, A‘D"”)) to (o', A') thene(o', p') =
1® PR/, whereR' = u,,Rju*.
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Proof. Puttingl NZ = {4, + 1} and using (3.7) and (4.8) we get

(L& P)e(pr, p1) = (Ui*—l,i)oz(pi,Hl ®idg)(Ui—1,:)
= (Ti*)OZ(Ti*)Ol(Ti Xpi,i+1 Ti) 5 (412)

where the superfix ¢D2 refers to the obvious inclusions.df D(H) into AQ D(H) ®
D(H), and where the second line follows sinces central and4; ;+1 ® idg)(T;-1) =
T22,. Now (4.10/11) follows from (4.7) and (4.12) by using?y = Ad R o Ap and the
identities

. 792701 j=even
(ida ® Ap)(T3) = {Tz()szc)z i =odd

which follow straightforwardly from (4.5).
Let now (U, u) be a cocycle equivalence from,(A) to (o', A"). Then by (3.8a) and
(3.17¢),

@@ P)e(p’,p) = (A @ P)U x, U)e(p, p)(U x, U)*
=A@ u?)(ida @ AP)UN)L® R)(ida ® A)U) L@ u”)
=1® (u’Ru*). O
We conclude this subsection by demonstrating that for any left 2-coeyel® (H)®

D(H) there exists a coactiop/( A’) which is cocycle equivalent tof, A©P). To this
end we first note that there existalgebra inclusions\; ;+1 : D(H) — A given by

A2; 2i+1(D(a)) := Azi(a),
A2 2i+1(D(9)) = Azi—1(p2) A2i+1(02)),

and analogously foA,;_1 2;. Moreover, the following identities are straightforwardly
checked:

pIoA1=(A1®id)oA({;p).

Foragiven2-cocycle € D(H)®D(H)we now putA’ = Ad qu(D"p), U = (A;®id)(uw)
andp’ = AdU o py, from which it is not difficult to see that{, u) provides a cocycle
equivalence fromg, A(DOP)) to (o, A').

4.2. Edge Amplimorphisms and Complete Compressibilibys subsection is devoted to
the construction of universal edge amplimorphisms and thereby to the proof of Theorem
3.12. As a preparation we first need

Proposition 4.5. Letj = i+2n+1, i € Z, n € No. Thenthere exist*-algebrainclusions

Lij i Aicr — Aij VAL
RijiAj— Aij NAL g,
such that for all4;_1(a) € A;_1 and all A;41(p) € Aji1,

i) Ai—1(a)Li;(S(a@) € Ai—1j NA;, (4.13)
i) Ri j(S(pa))Ajrlp@) € Aijs NAL, (4.14)
iii) Lij(a)Ri j(p) = Rij(p@){r@ > aw)Li.j(a@)- (4.15)
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Proof. We first use the left action (2.4) of;+1 on 4; ; and the right action (2.5) ofl;_
onA; ; to point out that the assertions (4.13) and (4.14) are equivalent, respectively, to

Aj 9 Ai—1(a) = L; j(S(a@)Ai j Li j(a@), (4.16a)
Aja(p) > A j = Ri j(0@)Ai i Ri (S(9@) (4.16Db)

forall A;_1(a) € Ai—1, Aj+1(p) € AjrrandA; ; € A; ;. Note that Egs. (4.16) say that
these actions are inner j#; ;, as they must be sincé; ; is simple forj — i = 2n + 1.
Given thatL; ; commutes with4,.1 ; and R; ; commutes with4, ;_; Egs. (4.16)
may also be rewritten as
Ai()Li j(a) = L; j(a@)Ai( < a@), (4.17a)
Ri j(9)A; () = Aj(pa) — DR j(¢)- (4.17b)

To construct the maps; ; andR;, j we now use the *-algebra isomorphism (2.12)
Tij: Aij — Aij2®EndH

(assume without losgl; = f{) and proceed by induction over € Ny. Forn = 0 we
have7; ;+1(Ai +1) = EndH, since

Ti,in1(Ai () = Q" (), (4.18a)
T, iv1(Aia (b)) = P* (1), (4.18b)
and we put
Lin(a) =T, 75 (P~ (S7H(@) , (4.19)
Riina(p) =T, 41 (Q7(S7H9)) - (4.19b)

ThenL; ;+1 andR; ;+1 define *-algebra inclusions and (4.15) follows straightforwardly
from the definitions (2.7). Moreover,; ;+1(a) commutes withA;,; = Ti;}l(P+(H))
andR; ;+1(¢) commutes with4; = Ti’;}l(Q*(fI)). Finally, using (4.18/19) and (2.7) we
getforj=i+1,
L; i+1(S(a@)Ai(¥) Li i+1(a@) = Ai(¥) «— a) = A;(¥) < A;—1(a),
R i+1(0) Ai1(D) Ri i+1(S (@) = Aira(e — b) = Asra() > Ai+1(D),

where the second equalities follow from (2.2), see also (4.2). This proves (4.16) and
therefore Proposition 4.5i)-iii) for = 0.
Assume now the claim holds fgr=i + 2n + 1 and put

Lijw2(a) =T34, (Lij(a) © 1), (4.20a)
Ri j+2(#) = T, i (Ri (@) ® Q7 (S Hew))-) (4.20D)

ThenL; ;+» andR; ;+» again define *-algebrainclusions and (4.15) immediately follows
from the induction hypothesis. Next, one can also use the induction hypothesis to show
[NSz2]

Lijv2(a) € A jr2 N Alsy jias (4.21)
Ri jra(0) € Aijr2 VA jug. (4.22)

Finally, one checks that (4.13) and (4.24%.17b) also hold fol; ;+» and R; ;+2, re-
spectively [NSz2]. O
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As a particular consequence of Proposition 4.5 we also need

Corollary 4.6. For all A;(a) € A; andAj+1(p) € Aj+1 we have

i) Aja(S(em))Rij(p@) = Rij(p@)Aj+1(S(pw)) € AijsaN AL, (4.23)
i) Ri j(©)Aj(a) = Aj(a@)Ri ;(p — a). (4.24)

Proof. By straight forward application of (4.14), see [NSz2]. O

Using Proposition 4.5 and Corollary 4.6 we are now in the position to prove Theorem
3.12 as a particular consequence of the following

Theorem 4.7. Letj =i+2n+1, n € No, i € Z, and let] = [i — 3, j + 5] € Z. Define
pi—1,j+1 - AOI) — Ai_1,;+1 ® D(H) by

pi—1,j+1(A;5+1(9)) = Ri j(p)S (@) Aj+1(e@) © D(p@), (4.25a)
pi-1,j+1(Ai—1(a)) := Ai_1(a@) Li j(S(a@)aw) @ D(ae). (4.25b)

Then

i) pi—1;+1 €Xxtends to a coactiop;_1 j+1 € Amp (A, 01), which is strictly equivalent
t0 pi—1,-
ii) The coactionp;_1 j+1 is universal inAmp (A, 91).

Proof. Assume without lossd; ~ H and define

T;; =Y Lij(bk) @ DE") € A; j @ D(H), (4.26a)
k

whereb;, € H is a basis with dual basg ¢ H. ThenT; ; is unitary,

Ty, =T = Z Li j(bx) @ D(S(EM)) (4.26h)
k
and we put
pi—1,j+1 = AdT; ;0 pi_1. (4.27)
To prove i) we first show
pi—1,j+1 € Amp (A, 1) (4.28)
and
pi—1,j+1lAQO) = pi_1j+1- (4.29)

To this end we use that; ;(a) € A; ; N Aj,, ; to conclude

Tij € (Ao i M ALy N Az o) ® D(H).

Now A((0I)°) = A_x,i—2 V A; ; V Ajs2 oo @nd sincep;_1 ; is localized onA,_1 ; the
claim (4.28) follows provided

(A @V T, ;= Tij pi-ri(Ai(p), Vo € H, (4.30)

which is straightforward to verify [NSz2]. To prove (4.29) we compute
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pi-1,j+1(Ajs1(P)Ti 5 =
=) Rij(@S(e@)Ajn(p@)Li;(br) @ Dipee") (4.31a)
k

=Y Rij(e@)Li (k) Ri j(S(p@) Ajsa(@) © Dpee®)
k

= Li j(b,) Ri (ST (br) — p@) Ri i (S(p@)) Ajralo@) @ D(p@s ")
ka,k2

=Y L j(b)Ri (e S (@) Aj+1(05) @ DipeS He@)E")
B

=3 Ly () Ajeal) ® D(EH)

k
=T j (Ajsa(p) @ 1) (4.31b)
=T j pi-1i(Aj+1()), (4.31c)

where in the second equation we have used (4.14) and in the third equation the inverse
of (4.15). Next we compute

T; j pi-1,i(Ai—1(a)) = T; ; [Ai-1(aq@) ® D(aw)]
=T, ;[Ai-1(a@)Li,;(S(a@)ag) @ D(aw)]
=[Ai—1(a@)Li,;(S(a@)) @ U T; ; [Li j(a@) © D(a)]
=[Ai—1(a@)Li ;(S(a@)aw) @ D(ag)] T;
= pi—1,j+1(Ai—1(a)) T; 5,

where in the third line we have used (4.13) and in the fourth line the identity
T;,5 [Li,j(aq) ® D(a@] = [Li,j(a@) ® D(aw)] T} ;. (4.32)

which follows straightforwardly from Eq. (B.2) in Appendix B. Thus we have proven
(4.29). To complete the proof of part i) we are left to show that; ;+1 provides a
coaction which is strictly equivalent {g_, ;. This follows provided

Tij %pivs Tij = (id @ AP ). (4.33)

To prove (4.33) we use thay ;(bx) liesin.4; ; and therefored;” 1 j+1 ®id )(T; ;) = T%
implying
Tij Xpiv: Tij = (Pie1,j+1 @ 1A )T ;) (T 5 © 1)
=TT
= (id @ AT ).

Thus we have proven part i) of Theorem 4.7.
To prove partii) first recall that; 1 ; is effective and thereforg; "1 j+1 = AAT; ; o
pi—1,; is effective. Let now: € Amp (A, 07) and defing:™ A;+1 — A ® EndV,, by

(Aj1(9)) = (Al Aj+1(S(PE)) Ri i (p@S H(pa)) © 1] (4.34a)

Thenp may be expressed in termsof ~
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1(A+1(9)) = 1(Aj1(0@)) [Ri i (S o) Aj+1(S(e@)) Ri i (0s) @ 1]
X[Ri ;(S(e@))Ajlem)Ri (pw) © 1] (4.34b)
= [1(Ajn(pE)) [Ri,j (0@)S(e@))Aj(ew) @ 11,

where in the second equation we have used (4.14). In Lemma 4.8 below we show that
there exists a *-representatioh) : H — EndV/, such that

[1(Aj+1()) = La ® Bu(e). (4.35)
Then (4.34b) implies
1(A;j+1(0)) = Ri j(e)S(e@))Ajr(p@) © Bulew)- (4.36)
Putting
Vij =Y Lij(bk) ® Bu(€"), (4.37)
k

and repeating the calculation from (4.31a) to (4.31b) with, ;.1 replaced by, T; ;
replaced by; ; andD(y) replaced by3,,(¢) we get

1(Aj()Vij = Vi j(Ajua(p) © 1). (4.38)
Moreover, similarly as foff; ; we have
Vij € (AL i 2N Alyy; N Alip ) © EndV,. (4.39)

By (4.38) and (4.39) Ad}"; o s localized onA; 1 ;. In particular

Vi mlA(@)Vi; = Vi (Ai(p) @ DVi; = Ale@) © Bule), (4.40)

which one proves in the same way as (4.30). Hence, by Theorem 4, Jejtends to a
representatiof,, : D(H) — EndV,, such that

AdV' op=(d® Bu) O Pi—1,i;

2]

and therefore
p=(id ® By) © pi—1,j+1- (4.41)

This proves thap;_1 ;+1 is universal inAmp (A, 0) and therefore part i) of Theorem
4.7. O

Since by Proposition 4.2 the coactiops.1;, ¢ € Z, are all (cocycle) equivalent
and since by Corollary 3.9 any amplimorphigne Amp A is compressible intd1 for
some intervall € 7 of even length, Theorem 4.7 implies thAatnp .4 is compressible
into anyinterval of length two. In particulahmp A is completely compressible. This
concludes the proof of Theorem 3.12.

We are left to prove the claim (4.35).

Lemma 4.8. Under the conditions of Theorem 4.7 jete Amp (A, 9I) and letj :
Ajr1 — Aij+1 ® EndV, be given by (4.34a). Then there exists a *-representation
B+ Ajs1 — EndV, such thati = 14 ® 3,.
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Proof. Sincedl c I we have by Lemma 3.8,
u(A@I)) C Ai717j+1 ® Enqu.
Using A+ C A(OI) N A;_,N A} ., we conclude

5]
/L(Aj) C (Ai—l,j+l & EndVH) N ,U«(.Ai_z)/ n ,U(Ai,j—l)/
= (Ai—1 41N A]_, N A1) ® EndV,
= (A7;7j+1 n A;,j—l) ® EndVM.
Let now
Alp) = (A (e@)A;j+1(S(e) @ 1]. (4.42)
Using thati|.A;+> = id @ 1one can show [NSz2} j+2(a) @ 1]\ () = Mp)[A4;+2(a)@1].
and therefore
M) € (A j+41N A;+2 N .A;;Jv_l) ®EndV, =(A4;;N ./427]-_1) ® EndV,,
Thus we get from (4.42) and (4.34a) ,
(©) = Me)Rij(e@S Hew) ® 1] € (A ; NA}; ) ®EndV,.  (4.43)
One can show [NSz2] that(¢) also commutes witt!; @ 1 and therefore
i(e) € (Aij N A ;) ® EndV, =14 ® EndV, (4.44)

by the simplicity ofA4; ;. Henceu{y) = 14 ® B.(y) for some linear map, : A1 —
EndV,, which one may in fact check [NSz2] to provideraepresentation ofd;.;.
U

A. Finite Dimensional C*-Hopf Algebras

There is an extended literature on Hopf algebra theory the nomenclature of which,
however, is by far not unanimous [BaSk,Dr,E,ES,Sw,W]. Therefore we summarize in
this appendix some standard notions in order to fix our conventions and notations.

A bialgebrais a unital algebrd together with unital algebra homomorphisms
A:B — B® B (comultiplication) and: B — C (counit) obeying

(A®id)o A=(d ® A)o A,
(e®id)oA=(d®e)o A =id.
We use Sweedler’s notatiah(z) = (1) ® x(2), where the right hand side is understood
asasund_; vy ® z(p € B @ B. For iterated coproducts we writg) ® z(2) ® x(3) 1=
Az) ® 22) = 2@ ® Az(z), etc. The linear duaB becomes also a bialgebra by
transposing all structural maps by means of the canonical pdiring: B x B — C.

A bialgebraB = H is called aHopf algebraif there exists amantipodeS: H — H,
i.e. a linear map satisfying

(mo(S®id)o A)(x) =(mo(id ® S) o A)(z) = 1le(zx), Vx € H, (A.1)

7 All linear spaces are understood over the figld
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wherem : H ® H — H denotes the multiplication. Using the above notation Eq.
(A1) takes the formS(z@)z@) = 2@)S(z@) = ()1, which in connection with the
coassociativity ofA is often applied in formulas involving iterated coproducts like, e.g.,
z@) ® r@)S(x@)rE) = 1) @ z). All other properties of the antipode, i.8(xy) =
S)S(x), AoS =(S®S)oA,, andec o S = ¢, as well as the uniqueness sfare

all consequences of the axiom (A.1) [Sw]. The dual bialgdﬁraf H is also a Hopf
algebra with the antipode defined by

(S(p),z) == (p,S(x)) € f{, reH. (A.2)

A x-Hopf algebra is a Hopf algebiid together with an antilinear involutioh H — H
suchthat{, «) is ax-algebra and\ andes arex-algebra maps. It follows th&t := xo Sox
is the antipode in the Hopf algebfé,, (i.e. with opposite muliplication) and therefore

S = S~1[Sw]. The dual of a-Hopf algebra is also a-Hopf algebra with*-operation
defined bypy* := S(p.), wherep — ¢, isthe antilinear involutive algebra automorphism
given by
(px, ) = (o, 3%) . (A.3)
Let .4 be ax-algebra and let/ be ax-Hopf algebra. A (Hopf module) left action of
HonAisalinear mapy: H ® A — A satisfying the following axioms: Fod, B € A,

r,y € H,
Yz © ’Yy(A) ’me(A)a
Va(AB) = Y, (A) Ve (B), (A.4)
Y (A)* =72, (A7),
where as above,. = S~1(z*). A right action of H is a left action ofH,,. Important
examples are the action &f on H and that off on H given by the Sweedler’s arrows:

V() =2 — ¢ = )T, P2) (A.53)
V(@) = 0 = z = xe){p, 2@)- (A.5b)
A left action is called inner if there exists a -algebra map H — A such that

%(A) = i(z@) Ai(S(z)). Left H-actionsy are in one-to-one correspondence with
right H-coaction(often denoted by the same symbel) 4 — A ® H defined by

’Y(A) =M, (A) & gi’ Ae Aa

where{b; } is a basis ind and{¢‘} is the dual basis it/ and where for simplicity we
assume from now oH to be finite dimensional. Conversely, we have= (id 4 ® x) o~.
The defining properties of a coaction are given in Egs. (3.11a-e).

Given a leftH -action (rightH -coaction)y one defines therossed productl> ., H
as theC-vector spaced @ H with x-algebra structure

(A®z)(B®y) = Ay, (B) ® 2@y, (A.6a)
(A® )" = (14 ® 2*)(A" @ 1p). (A.6b)

Animportantexample is the “Weyl aIgebrW(ﬁ) = H>=H, where the crossed product
is taken with respect to the natural left action (A.5a). We haud) =~ EndH, where
the isomorphism is given by (see [N] for a review)

w: Y@ Q)P (z). (A7)
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Here we have Aintroduce@*(;!z), v e H and P*(x), * € H as operators in End
defined or¢ € H by

Q (W)€ =g,
Pla) =z — ¢,

Any right H-coactiong : A — A ® H gives rise to a natural left/-action~ on
A 5ff
V(AR Y) = AR (x — ). (A.8)
The resulting double crossed produgt-¢ 3 )=, H containsW(H) = EndH as the
subalgebra given b4 ® ¢ ® © = Q*()P*(z), v € H, « € H. Moreover, by
the Takesaki duality theorem [Ta,NaTa] the double crossed prodlmt@(FAI)xer is
canonically isomorphic tod ® EndH. In fact, defining the representatidn: H —
EndH by

L(z)¢ =& — S7H2) = (o), S @), (A.9)

one easily verifies thaf : (A= H)>,H — A® EndH,
T(A® 1s © 1g) = (ids ® L)(B(A)), (A.10a)
TAARY ®2) =14 @ Q' ()P (2) (A.10b)

defines a-algebra mapT is surjective since is surjective and therefofiey ® EndH C
Im7 and

A®1gndg = Ao @ L(AnS(Aw))
=T(Ag ® 1z ® 1g)(1a ® L(S(Aw)))
elm7T

for all A € A. Here we have used the notatidiy) ® Ay = 5(A),
A ® Ag) ® A = (B®id 1)(B(4)) = (ida ® A)(B(A))

(including a summation convention) and the identity (ieh €) o 8 = id4, see Egs.
(3.11d,e). The inverse ¢f is given by

TlAaW)=14 @ w (W), (A.11a)
T YA ® 1gngs) = A © w H(L(S(A)) (A.11b)

for W € EndH andA € A.

A left(right) integralin H is an elemenk“(x®) € H satisfying

ox" =l xTe =l (A.12a)
for all ¢ € H or equivalently
X oa= (e, we e (A.12b)

for all z € H. Similarly one defines left(right) integrals i.

If H is finite dimensional and semisimple then sdﬁs{LaRa] and in this case they
are bothunimodular i.e. left and right integrals coincide and are all given as scalar
multiples of a unique one dimensional central projection
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e. =€ =e? = S(e.), (A.13)

€

which is then called thelaar integral
Fory, 1y € H andh = e. € H the Haar integral define the hermitian form

(plh) = (@™, h). (A.14)

Then(-|-) is nondegenerate [LaSw] and it is positive definite — i.e. the Haar intégral
provides a positive statéhe Haar “measure’) on H —ifand only if H is aC*-Hopf
algebra These are the “finite matrix pseudogroups” of [W]. They also sagfy id
andA(h) = Ayp(h) [W]. If H is a finite dimensional*-Hopf algebra then so i#,
sinceH > z — P*(z) € EndH defines a faithfuk-representation on the Hilbert space
H= Lz(ﬁl, h). Hence finite dimensional*-Hopf algebras always come in dual pairs.
Any such pair serves as a building block for our Hopf spin model.

B. The Drinfeld Double

Here we list the basic properties of the Drinfeld douBléH) (also called quantum
double) of a finite dimensional-Hopf algebraH [Dr,Maj1]. Although most of them
are well known in the literature, the presentation (B.1) by generators and relations given
below seems to be new, see also [Ni]. R

As ax-algebraD(H) is generated by element¥(a), a« € H andD(y), ¢ € H
subjected to the following relations:

D(a)D(b) = D(ab), (B.1a)

D(¢)D(¥) = D(py), (B.1b)

D(aq)) (a), v)) Ple@) = D(rw) (ve) aq) Dlae) (B.1c)
D(a)* =D(a”) , D(p)" = D(¢"). (B.1d)

The relation (B.1c) is equivalent to any one of the following two relations:

D(a)D(¢) = D(p2)D(a) (aq), v@) (S a@), eu), (B.2a)
D(¢)D(a) = D(a@)D(¢@) () a@) (S (@), aw)- (B.2b)

These imply that as a linear spabéH) ¥ H ® H and also that as &algebraD(H)
andD(FI) are isomorphic. This-algebra will be denoted bg.

The Hopf algebraic structure @(H) is given by the following coproduct, counit,
and antipode:

Ap(D(a)) = D(a@w) @ D(ap), Ap(D(p)) = Dlpw) @ D(ew), (B.3a)
ep(D(a)) =<(a), ep(D(p)) =e(p), (B.3b)
Sp(D(a)) = D(S(a)),  Sp(D(p)) = D(S(y)). (B.3c)

Itis straightforward to check that Egs. (B.3) provide Hopf algebra structure dR(H).
Moreover,D(ﬁ) = (D(H))cop (i.e. with opposite coproduct) by (B.3a).

If HandA areC*-Hopf algebras then so13(H). To see this one may use the faithful
x-representations dP(H) on the Hilbert space,, ,,, in Lemma 2.2. Alternatively, it
is not difficult to see that
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D(h)D(x) = DOOD(h) = hp (B.4)

provides the Haar integral iR(H) and that the positivity of the Haar states H and
x € H implies the positvity of the statep onD(H) .
The dualD(H) of D(H) has been studied by [PoWo]. As a coalgebra i iand

coincides with the coalgebﬂa(fl). The latter one, however, as an algebra differs from

5(?) in that the multiplication is replaced by the opposite multiplication.

The remarkable property of the double construction is that it always yields a
quasitriangular Hopf algebra [Dr]. By definition this means that there exists a uni-
tary R € D(H) ® D(H) satisfying the hexagonal identitigg"*R*? = (id ® A)(R),
RR? = (A ®id)(R), and the intertwining propertRA(z) = A°?()R, = € D(H),
whereA?: x — z) ® x(y).

If {b,} and{3“} denote bases df andH, respectively, that are dual to each other,
(B4,bp) = 04, then

R=Ri®Rp:=)  D(ba) @ D(3") (8.5)
A

is independent of the choice of the bases and satisfies the above identities.
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