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Abstract: Given a finite dimensionalC∗-Hopf algebraH and its dualĤ we construct
the infinite crossed productA = . . . >/H>/ Ĥ>/H>/ . . . and study its superselection
sectors in the framework of algebraic quantum field theory.A is the observable algebra
of a generalized quantum spin chain withH-order andĤ-disorder symmetries, where
by a duality transformation the role of order and disorder may also appear interchanged.
If H = CG is a group algebra thenA becomes an ordinaryG-spin model. We classify all
DHR-sectors ofA – relative to some Haag dual vacuum representation – and prove that
their symmetry is described by the Drinfeld doubleD(H). To achieve this we construct
localized coactionsρ : A → A⊗D(H) and use a certain compressibility property to
prove that they areuniversal amplimorphismsonA. In this way the doubleD(H) can
be recovered from the observable algebraA as auniversal cosymmetry.
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1. Introduction and Summary of Results

Quantum chains considered as models of 1+1-dimensional quantum field theory exhibit
many interesting features that are either impossible or unknown in higher (2+1 or 3+1)
dimensions. These features include integrability on the one hand and the emergence
of braid group statistics and quantum symmetry on the other hand. In this paper we
study the second class of phenomena by looking at Hopf spin models as a general class
of quantum chains where the quantum symmetry and braid statistics of superselection
sectors turns out to be described by Drinfeld’s “quantum double”D(H) of the underlying
Hopf algebraH.

Quantum chains on which a quantum group acts are well known for some time;
for example the XXZ-chain with the action ofsl(2)q [P,PS] or the lattice Kac–Moody
algebras of [AFSV,AFS,Fa,FG]. For a recent paper on the general action of quantum
groups on ultralocal quantum chains see [FNW]. However the discovery that – at least
for non-integer statistical dimensions – quantum symmetries are described by truncated
quasi-Hopf algebras [MS1-2,S] presents new difficulties to this approach. In fact, in such
a scenario the “field algebras” are non-associative and do not obey commutation rela-
tions withc-number coefficients, both properties being tacitly assumed in any “decent”
quantum chain.

In continuum theories quantum double symmetries have also been realized in orbifold
models [DPR] and in integrable models (see [BL] for a review). For a recent axiomatic
approach within the scheme of algebraic quantum field theory see [M]. In contrast with
our approach, in these papers the fields transforming non-trivially under an “order”
symmetryH are already assumed to be given in the theory from the beginning, and the
task reduces to constructing the disorder fields transforming under the dualĤ.

Here we stress the point of view that an unbiased approach to reveal the quantum
symmetry of a model must be based only on the knowledge of the quantum group
invariant operators (the “observables”) that obey local commutation relations. This is
the approach of algebraic quantum field theory (AQFT) [H]. The importance of the
algebraic method, in particular the DHR theory of superselection sectors [DHR], in low
dimensional QFT has been realized by many authors (see [FRS,BMT,FröGab,F,R] and
many others).

The implementation of the DHR theory to quantum chains has been carried out at
first for the case ofG-spin models in [SzV]. These models have an order-disorder type of
quantum symmetry given by the doubleD(G) of a finite groupG which generalizes the
Z(2)× Z(2) symmetry of the lattice Ising model. Since the disorder part of the double
(i.e. the function algebraC(G)) is always Abelian,G-spin models cannot be selfdual in
the Kramers-Wannier sense, unless the group is Abelian. Non-Abelian Kramers-Wannier
duality can therefore be expected only in a larger class of models.

Here we shall investigate the following generalization ofG-spin models. On each
lattice site there is a copy of a finite dimensionalC∗-Hopf algebraH and on each link
there is a copy of its dual̂H. Non-trivial commutation relations are postulated only
between neighbor links and sites whereH andĤ act on each other in the “natural way”,
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so as the link-site and the site-link algebras to form the crossed productsW(Ĥ) ≡ Ĥ>/H
andW(H) ≡ H>/ Ĥ (“Weyl algebras” in the terminology of [N]). The two-sided infinite
crossed product. . . >/H>/ Ĥ>/H>/ Ĥ>/ . . . defines the observable algebraA of the
Hopf spin model. Its superselection sectors (more precisely those that correspond to
charges localized within a finite intervalI, the so called DHR sectors) can be created by
localized amplimorphismsµ:A → A⊗EndV with V denoting some finite dimensional
Hilbert space. The category of localized amplimorphismsAmpA plays the same role in
locally finite dimensional theories as the categoryEndA of localized endomorphisms
in continuum theories. The symmetry of the superselection sectors can be revealed by
finding the “quantum group”G, the representation category of which is equivalent to
AmpA. In our model we find thatG is the Drinfeld double (also called the quantum
double)D(H) of H.

Finding all endomorphisms or all amplimorphisms of a given observable algebra
A can be a very difficult problem in general. In the Hopf spin modelA possesses a
property we callcomplete compressibility, which allows us to do so. Namely ifµ is
an amplimorphism creating some charge on an arbitrary large but finite interval then
there exists an amplimorphismν creating the same charge (i.e.ν is equivalent toµ,
written ν ∼ µ) but within an intervalI of length 2 (i.e.I consists of a neighbouring
site–link pair). Therefore the problem of findingall DHR-sectors of the Hopf spin model
is reduced to a finite dimensional problem, namely to find all amplimorphisms localized
within an interval of length 2. In this way we have proven that all DHR-sectors ofA can
be classified by representations of the Drinfeld double.

An important role in this reconstruction is played by the so-calleduniversalam-
plimorphisms inAmpA. These are amplimorphismsρ:A → A ⊗ G, whereG is an
appropriate (in our approach finite dimensional) “quantum symmetry”C∗-algebra such
that for any other amplimorphismµ in AmpA there exists a representationβµ of G such
thatµ ∼ (idA ⊗ βµ) ◦ ρ. Moreover, the correspondenceµ ↔ βµ has to be one-to-one
on equivalence classes. We prove that complete compressibility implies that universal
amplimorphismsρ can be chosen to providecoactionsof G onA, i.e. there exists a
coassociative unital coproduct1 : G → G ⊗ G and a counitε : G → C such that

(ρ⊗ idG) ◦ ρ = (idA ⊗1) ◦ ρ, (1.1a)

(idA ⊗ ε) ◦ ρ = idA. (1.1b)

Moreover,1 andε are uniquely determined byρ. ThusG becomes aC∗-Hopf algebra
which we call auniversal cosymmetryof A. G will in fact be quasitriangular withR-
matrix determined by the statistics operator ofρ

ε(ρ, ρ) = 11A ⊗ P 12R, (1.2)

whereR ∈ G ⊗ G andP 12 is the usual permutation. The antipodeS of G can be
recovered by studying conjugate objects ¯ρ and intertwinersρ× ρ̄→ idA. In this type of
models the statistical dimensionsdr of the irreducible componentsρr of ρ are integers:
they coincide with the dimensions of the corresponding irreducible representationDr

of G. The statistics phases can be obtained from the universal balancing elements =
S(R2)R1 ∈ CenterG evaluated in the representationsDr. For the Hopf spin model this
scenario can be verified and calculated explicitly withG = D(H).

We emphasize that being a universal cosymmetryG is uniquely determined as aC∗-
algebra together with a distinguished 1-dimensional representationε. The dimensions of
irreps ofG coincide with the statistical dimensions of the associated sectors ofA,nr = dr,
the latter being integer valued. This has to be contrasted with the approaches based on
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truncated (quasi) Hopf algebras [MS2,S,FGV], where thenr ’s are only constrained by
an inequality involving the fusion matrices. In this sense our construction parallels the
Doplicher-Roberts approach [DR1,2], whereG would be a group algebra.

However, it is important to note that givenAmpA ∼ RepG as braided rigidC∗-
tensor categories does not fix the coproduct onG uniquely, even not in the case of
group algebras. More precisely, the quasitriangular Hopf algebra structure onG can be
recovered only up to a twisting by a 2-cocycle: Ifu ∈ G⊗G is a 2-cocycle, i.e. a unitary
satisfying

(u⊗ 1) · (1⊗ id )(u) = (1⊗ u) · (id ⊗1)(u) , (1.3a)

(ε⊗ id )(u) = (id ⊗ ε)(u) = 1, (1.3b)

then the twisted quasitriangular Hopf algebra with data

1′ = Adu ◦1,

ε′ = ε,

S′ = Ad q ◦ S q := u1S(u2),

R′ = uopRu∗

is as good for a (co-)symmetry as the original one. In fact, we prove in Sect. 3.5 that
(up to transformations byσ ∈ Aut (G, ε)) any universal coaction (ρ′,1′) is equivalent
to a fixed one (ρ,1) by an isometric intertwinerU ∈ A⊗G satisfying atwisted cocycle
condition

Uρ(A) = ρ′(A)U, A ∈ A, (1.4a)

(U ⊗ 1) · (ρ⊗ idG)(U ) = (11⊗ u) · (idA ⊗1)(U ) , (1.4b)

(idA ⊗ ε)(U ) = 11, (1.4c)

implying the identities (1.3) foru. In the Hopf spin model we also have the reverse
statement, i.e. for all 2-cocyclesu there is a unitaryU ∈ A⊗G and a universal coaction
ρ′ satisfying (1.4) and therefore (1.1) with1′ instead of1. We point out that (1.4)
is a generalization of the usual notion of cocycle equivalence for coactions where one
requiresu = 1⊗ 1 [Ta,NaTa,BaSk,E]. To our knowledge, in the DR-approach [DR1,2]
this possibility of twisting has not been considered, since there it would seem “unnatural”
to deviate from the standard coproduct on a group algebra.

This paper is an extended version of the first part of [NSz1]. In a forthcoming paper
we will show [NSz3] that any universal coactionρ onA gives rise to a family of complete
irreducible field algebra extensionsF ⊃ A and that all field algebra extensions ofA
arise in this way. Moreover, equivalence classes of complete irreducible field algebra
extensions are in one-to-one correspondence with cohomology classes of 2-cocycles
u ∈ G⊗G. The Hopf algebraG will act as a global gauge symmetry on allF ’s such that
A ⊂ F is precisely theG-invariant subalgebra. Inequivalent field algebras will be shown
to be related by Klein transformations involving symmetry operatorsQ(X), X ∈ G.

The above type of reconstruction of the quasitriangular Hopf algebraG is a special
case of the generalized Tannaka-Krein theorem [U,Maj2]. Namely, any faithful functor
F : C → V ec from strict monoidal braided rigidC∗-categories to the category of finite
dimensional vector spaces factorizes asF = f ◦8 to the forgetful functorf and to an
equivalence8 of C with the representation categoryRepG of a quasitriangularC∗-Hopf
algebraG. In our caseC is the categoryAmpA of amplimorphisms of the observable
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algebraA. The functorF to the vector spaces is given naturally by associating to the
amplimorphismµ:A → A⊗ EndV the vector spaceV . Although the vector spacesV
cannot be seen by only looking at the abstract categoryAmpA, they are “inherently”
determined by the amplimorphisms and therefore by the observable algebra itself. In this
respect using amplimorphisms one goes somewhat beyond the Tannaka-Krein theorem
and approaches a Doplicher-Roberts [DR] type of reconstruction.

We now describe the plan of this paper.
In Sect. 2.1 we define our model using abstract relations as well as concrete real-

izations on Hilbert spaces associated to finite lattice intervals. We also discuss duality
transformations and the appearance of the Drinfeld double as an order-disorder symme-
try. In Sect. 2.2 we present the notion of aquantum Gibbs systemonA and use this to
prove (algebraic) Haag duality of our model.

In Sect. 3 we start with reviewing the category of amplimorphismsAmpA in Sect. 3.1
and introducelocalized cosymmetriesρ : A → A ⊗ G as special kinds of amplimor-
phisms in Sect. 3.2. In Sect. 3.3 we specialize toeffective cosymmetriesand show that
AmpA ∼ RepG providedG is alsouniversal. In Sect. 3.4 we introduce and investigate
the notion ofcomplete compressibilityto guarantee the existence of universal cosym-
metries. In Sect. 3.5 we prove that universal cosymmetries are unique up to (twisted)
cocycle equivalences. In Sect. 3.6 we discuss two notions of translation covariance for
localized cosymmetries and relate these to the existence of acoherently translation
covariantstructure inAmpA as introduced for the case of endomorphisms in [DR1].

In Sect. 4 we apply the general theory to our Hopf spin model. In Sect. 4.1 we
construct localized and strictly translation covariant effective coactionsρI : A → A⊗
D(H) of the Drinfeld double for any intervalI of length two and in Sect. 4.2 we prove
that all these coactions are actually universal inAmpA.

Remarks added after submission.
1. To limit the size of this paper and faciliate publication some proofs have been shortened
or omitted. The interested reader may wish to consult the original preprint [NSz2] for
the details.
2. Meanwhile (i.e. 9 months after releasing our first preprint), the notion of a localized
coaction has also been taken up in a paper by Alekseev, Faddeev, Fröhlich and Schomerus
[AFFS] without referring to our work. In fact, the lattice current algebra studied by
[AFFS] (which is an extension of [AFSV,AFS,FG]) has meanwhile been realized by
one of us [Ni] to be isomorphic to our Hopf spin chain, provided we also require our
Hopf algebraH to be quasi-triangular as in [AFFS]. In this way it has been shown in
[Ni] that the coaction proposed by [AFFS] is ill-defined and should be replaced by our
construction.1

2. The Structure of the Observable Algebra

In this section we describe a canonical method by means of which one associates an
observable algebraA on the 1-dimensional lattice to any finite dimensionalC∗-Hopf
algebraH. Although a good deal of our construction works for infinite dimensional
Hopf algebras as well, we restrict the discussion here to the finite dimensional case.
If H = CG for some finite groupG then our construction reproduces the observable
algebra of theG-spin model of [SzV].

1 There is now a revised version [AFFS (v2, May 97)], where the authors have acknowledged our results
and corrected their errors
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In Sect. 2.1 we provide faithful∗-representations of the local observable algebras
A(I) associated to finite intervalsI by placing a Hilbert spaceHeven ∼ Ĥ on each
lattice site. In this way the algebrasA(I) appear as the invariant operators under a global
H-symmetry onHeven ⊗ . . . ⊗Heven. Similarly, we may represent the local algebras
by putting Hilbert spacesHodd ∼ H on each lattice link, such thatA(I) is given by the
invariant operators under a globalĤ-symmetry onHodd ⊗ . . .⊗Hodd.

This is a generalization of duality transformations to Hopf spin chains. We point out
that similarly as in [SzV] both symmetries combine to give the Drinfeld doubleD(H)
as – what will later be shown to be – theuniversal (co-)symmetryof our model.

In Sect. 2.2 we view the Hopf spin chain in the more general setting of algebraic
quantum field theory (AQFT) as a local net. We then introduce the notion of aQuantum
Gibbs systemas a family of conditional expectationsηI : A → A(I)′ ∩ A with certain
consistency relations, which allow to prove that our model satisfies a lattice version of
(algebraic) Haag duality.

2.1. Local Observables and Order-Disorder Symmetries.ConsiderZ, the set of integers,
as the set of cells of the 1-dimensional lattice: even integers represent lattice sites, the odd
ones represent links. LetH = (H,1, ε, S, ∗) be a finite dimensionalC∗-Hopf algebra
(see Appendix A). We denote bŷH the dual ofH which is then also aC∗-Hopf algebra.
We denote the structural maps ofĤ by the same symbols1, ε, S. Elements ofH will
be typically denoted asa, b, . . ., while those ofĤ by ϕ,ψ, . . .. The canonical pairing
betweenH andĤ is denoted bya ∈ H,ϕ ∈ Ĥ 7→ 〈a, ϕ〉 ≡ 〈ϕ, a〉 ∈ C. We also

identify ˆ̂H = H and emphasize thatH andĤ will always appear on an equal footing.
There are natural left and right actions ofH onĤ (and vice versa) denoted by Sweedler’s
arrows:

a→ ϕ = ϕ(1)〈a, ϕ(2)〉, (2.1a)

ϕ← a = 〈ϕ(1), a〉ϕ(2). (2.1b)

Here we have used the short cut notations1(a) = a(1) ⊗ a(2) and1(ϕ) = ϕ(1) ⊗ ϕ(2)

implying a summation convention inH ⊗H andĤ ⊗ Ĥ, respectively. For a summary
of definitions on Hopf algebras and more details on our notation see Appendix A.

We associate to each even integer 2i a copyA2i of theC∗-algebraH and to each
odd integer 2i+ 1 a copyA2i+1 of Ĥ. We denote the elements ofA2i byA2i(a), a ∈ H,
and the elements ofA2i+1 byA2i+1(ψ), ψ ∈ Ĥ. The quasilocal algebraAloc is defined
to be the unital *-algebra with generatorsA2i(a) andA2i+1(ψ), a ∈ H, ψ ∈ Ĥ, i ∈ Z
and commutation relations

AB =BA, A ∈ Ai, B ∈ Aj , |i− j| ≥ 2, (2.2a)

A2i+1(ϕ)A2i(a) =A2i(a(1))〈a(2), ϕ(1)〉A2i+1(ϕ(2)), (2.2b)

A2i(a)A2i−1(ϕ) =A2i−1(ϕ(1))〈ϕ(2), a(1)〉A2i(a(2)). (2.2c)

Equation (2.2b) can be inverted to give2

A2i(a)A2i+1(ϕ) =A2i(a(3))A2i+1(ϕ)A2i(S(a(2))a(1))

=A2i(a(4))A2i(S(a(3)))〈S(a(2)), ϕ(1)〉A2i+1(ϕ(2))A2i(a(1))

= 〈S(a(2)), ϕ(1)〉A2i+1(ϕ(2))A2i(a(1))
(2.3)

2 Note that on finite dimensionalC∗-Hopf algebras the antipode is involutive,S2 = S, [W].
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and similarly for (2.2c). Using Eq. (A.3) this formula can also be used to check that the
relations (2.2b,c) respect the *-involution onAloc. We denoteAn,m ⊂ Aloc the unital
*-subalgebra generated byAi, n ≤ i ≤ m. Form < n we also putAn,m = C1.

The above relations define what can be called a two-sided iterated crossed product,
i.e.

An−1,m+1 = An−1.<An,m>/Am+1,

whereAm+1 acts onAn,m from the left via

Am+1(a) . An,m = Am+1(a(1))An,mAm+1(S(a(2))) (2.4)

andAn−1 acts onAn,m from the right via

An,m / An−1(a) = An−1(S(a(1)))An,mAn−1(a(2)), (2.5)

and where for alln ≤ m these two actions commute.
We now provide a *-representation ofAn,m on finite dimensional Hilbert spaces

Hn,m proving that the algebrasAn,m are in fact finite dimensionalC∗-algebras and that
they arise as the invariant subalgebras inHn,m under a globalH-symmetry. Leth ∈ H
be the unique normalized Haar measure onĤ, i.e.h2 = h∗ = h andh→ ϕ = ϕ← h =
〈h, ϕ〉ε for all ϕ ∈ Ĥ. We introduce the HilbertspaceH = L2(Ĥ, h) to be theC- vector
spaceĤ with scalar product

〈ϕ|ψ〉 := 〈h, ϕ∗ψ〉. (2.6)

Elements ofH are denoted as|ψ〉, ψ ∈ Ĥ. Following the notation of [N] we introduce
the following operators in EndH

Q+(ϕ)|ψ〉 := |ϕψ〉,
Q−(ϕ)|ψ〉 := |ψϕ〉,
P +(a)|ψ〉 := |a→ ψ〉,
P−(a)|ψ〉 := |ψ ← a〉,

(2.7)

wherea ∈ H andϕ,ψ ∈ Ĥ. Using the facts that on finite dimensionalC∗-Hopf algebras
h is tracial,S(h) = h andS2 = id [W] one easily checks that

Q±(ϕ)∗ =Q±(ϕ∗),

P±(a)∗ = P±(a∗)
(2.8)

MoreoverQ±(Ĥ)′ = Q∓(Ĥ) andP±(H)′ = P∓(H), where the prime denotes the
commutant in EndH. We also recall the well known fact (see [N] for a review) that
Qσ(Ĥ) ∨ P σ′

(H) = EndH for any choice ofσ, σ′ ∈ {+,−}.
We now place a copyHn ' H at each even lattice site,n ∈ 2Z, and forn ≤ m and

n,m ∈ 2Z we put
Hn,m := Hn ⊗Hn+2⊗ ...⊗Hm. (2.9)

We also use the obvious notationsQ±
ν (a) andP±

ν (ϕ) to denote the operators acting on
the tensor factorHν , ν ∈ 2Z. Let nowRn,m be the global right action ofH onHn,m

given by

Rn,m(a) =

m−n
2∏

i=0

P−
n+2i(a(1+i)) , a ∈ H, (2.10)
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and putLn,m := Rn,m ◦ S . We then have

Proposition 2.1. Letn,m ∈ 2Z, n ≤ m, and letπn,m : An,m → EndHn,m be given
by

πn,m(A2i(a)) = P +
2i(a),

πn,m(A2i+1(ϕ)) =Q−
2i(S(ϕ(1)))Q

+
2i+2(ϕ(2)).

(2.11)

Thenπn,m defines a faithful *-representation ofAn,m onHn,m and πn,m(An,m) =
Ln,m(H)′.

Proof. We proceed by induction overν = m−n
2 . For ν = 0 the claim follows from

πn,n(An,n) = P +
n(H) = P−

n (H)′. For ν ≥ 1 we use the Takesaki duality theorem for
double cross products [Ta,NaTa] saying thatAn,m+2 ' An,m ⊗ EndH ' An,m ⊗
Am+1,m+2, where the isomorphism is given by (see Eq. (A.10) of Appendix A)

T : An,m+2→An,m ⊗ EndH,
T (A) = A⊗ 1,

T (Am(a)) = Am(a(1))⊗ P−(S(a(2))),

T (Am+1(ψ)) = 1⊗Q+(ψ),

T (Am+2(a)) = 1⊗ P +(a),

(2.12)

whereA ∈ An,m−1, a ∈ H andψ ∈ Ĥ. Hence, by induction hypothesis ˆπn,m+2 :=
(πn,m ⊗ id) ◦ T defines a faithful *-representation ofAn,m+2 andπ̂n,m+2(An,m+2) =
(Rn,m(H)⊗1)′. We now identifyH ≡ Hm+2 and construct a unitarŷU ∈ End(Hn,m+2)
such thatπn,m+2 = Ad Û ◦ π̂n,m+2 andRn,m+2(H) = Û (Rn,m(H)⊗1)Û∗ which proves
our claim. To this end we use the unitary map3 U : Hm⊗Hm+2→ Hm⊗Hm+2 given
by

U |ϕ⊗ ψ〉 := |ϕS(ψ(1))⊗ ψ(2)〉,
U−1|ϕ⊗ ψ〉 = |ϕψ(1)⊗ ψ(2)〉,

(2.13)

and putÛ = 1n ⊗ ...⊗ 1m−2⊗ U . Now Û obviously commutes withQ+
m(Ĥ) and with

P +
m+2(H), proving

Ad Û ◦ π̂n,m+2|An,m−1 = πn,m+2|An,m−1,

Ad Û ◦ π̂n,m+2|Am+2 = πn,m+2|Am+2.

Next, one straightforwardly checksUQ+
m+2(χ)U−1 = Q−

m(S(χ(1)))Q+
m+2(χ(2)) and

UP +
m(a(1))P

−
m+2(S(a(2)))U−1 = P +

m(a), proving that Ad Û ◦ π̂n,m+2|Am,m+1 =
πn,m+2|Am,m+1 and thereforeπn,m+2 = Ad Û ◦ π̂n,m+2. Finally UP−

m (a)U−1 =
P−

m (a(1))P
−
m+2(a(2)) which provesRn,m+2 = Ad Û ◦ (Rn,m ⊗ 1m+2). �

We remark at this point that iterated application of the Takesaki duality theorem
immediately impliesAi,j ' (End H)⊗ν wheneverj = i + 2ν + 1 and therefore the

3 Up to a change of left-right conventionsU is a version of the pentagon operator (also called Takesaki
operator or multiplicative unitary), see, e.g. [BS].
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importantsplit propertyof A (see Subsect. 2.2). We also remark that we could equally
well interchange the role ofH andĤ to define faithful *-representationsπn,m ofAn,m

for n,m ∈ 2Z + 1, where nowH2i+1 = L2(H,ω), ω ∈ Ĥ being the Haar measure on
H. In this wayπn,m(An,m) for n,m ∈ 2Z + 1 would appear as the invariant algebra
under a globalĤ-symmetry.

Hence, depending on how we represent them, our local observable algebras seem to
be the invariant algebras under either a globalH-symmetry or a globalĤ-symmetry.
It is the purpose of this work to show that in the thermodynamic limit both symmetries
can be reconstructed from the category of “physical representations” ofA (i.e. fulfilling
an analogue of the Doplicher-Haag-Roberts selection criterion relative to some Haag
dual vacuum representation). In a sense to be explained belowH andĤ then reappear
ascosymmetriesof A. Generalizing and improving the methods and results of [SzV]
we will in fact prove thatH andĤ combine to yield theDrinfeld doubleD(H) (see
Appendix B for a review of definitions) as theuniversal cosymmetryof A.

This should be understood as a generalization of the “order-disorder” symmetries in
G-spin quantum chains, which are well known to appear for finite abelian groupsG and
which have been generalized to finite nonabelian groupsG by [SzV]. The relation with
our present formalism is obtained by lettingH = CG be the group algebra. We then get
Ĥ = Fun(G), the abelian algebra ofC-valued functions onG, andH = L2(G, h), where
h = |G|−1Σg g ∈ CG is the Haar measure on̂H. HenceHn,m

∼= L2(G
m−n

2 ), m, n ∈
2Z, andπn,m acts onψ ∈ Hn,m by

(πn,m(A2i(a))ψ)(gn, ..., g2i, ..., gm) = ψ(gn, ..., g2ia, ..., gm),

(πn,m(A2i+1(ϕ))ψ)(gn, ...gm) = ϕ(g−1
2i g2i+2)ψ(gn, ..., gm).

These operators are immediately realized to be invariant under the globalG-spin rotation

(Ln,m(a)ψ)(gn, ..., gm) = ψ(a−1gn, ..., a
−1gm), a ∈ G,

which would then be called the “order symmetry”.
In this representation a “disorder-symmetry” can be defined as an actionL̂n,m of

Ĥ = Fun(G),

(L̂n,m(ϕ)ψ)(gn, ..., gm) := ϕ(gng
−1
m )ψ(gn, ..., gm),

and it has been shown in [SzV] thatLn,m andL̂n,m together generate a representation of
the Drinfeld doubleD(G). Note that in the limit (n,m)→ (−∞,∞) all local observables
are also invariant under (i.e. commute with)L̂n,m(Ĥ). The generalization of̂Ln,m to
arbitrary finite dimensionalC∗-Hopf algebras is given by

Lemma 2.2. Let n,m ∈ 2Z, m ≥ n + 2, and letL̂n,m : Ĥ → End(Hn,m) be the
*-representation given by

L̂n,m(ϕ) = Q+
n(ϕ(1))Q

−
m(S(ϕ(2))). (2.14)

ThenLn,m(H) andL̂n,m(Ĥ) generate a faithful *-representation of the Drinfeld double
D(H) onHn,m.
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Proof. SinceLn,m andL̂n,m define faithful *-representations ofH andĤ, respectively,
we are left to show (see Eq. (B.1c)):

Ln,m(a(1))〈a(2), ϕ(1)〉L̂n,m(ϕ(2)) = L̂n,m(ϕ(1))〈ϕ(2), a(1)〉Ln,m(a(2))

for all a ∈ H andϕ ∈ Ĥ. Form = n + 2 this is a straightforward calculation using the
“Weyl algebra relations” [N]

P−(a)Q+(ϕ) =Q+(ϕ(2))P
−(a(2))〈a(1), ϕ(1)〉,

P−(a)Q−(ϕ) =Q−(ϕ(2))P
−(a(1))〈a(2), ϕ(1)〉,

and the identities1 ◦ S = (S ⊗ S) ◦1op andS2 = id. Form ≥ n + 4 we proceed by
induction and define the unitary

V : Hm−2 ⊗Hm → Hm−2 ⊗Hm,

V |ϕ⊗ ψ〉 := |S(ψ(1))⊗ ψ(2)ϕ〉.

ThenV Q−
m−2(ϕ) = Q−

m(ϕ)V andV P−
m−2(a) = P−

m−2(a(1))P
−
m−2(a(2))V for all ψ ∈ Ĥ

anda ∈ H. Hence

Ad V̂ ◦ (Ln,m−2 ⊗ 1m) = Ln,m,

Ad V̂ ◦ (L̂n,m−2 ⊗ 1m) = L̂n,m,

whereV̂ = 1n ⊗ · · · ⊗ 1m−4 ⊗ V , which proves the claim by induction. �

We remark that interchanging even and odd lattice sites in Lemma 2.2 we similarly
obtain a representation ofD(Ĥ). Now recall that for abelian groupsG there is a well
known duality transformation which consists of interchanging the role ofH = CG and
Ĥ = CĜ by simultaneously also interchanging the role of even and odd lattice sites
and of order and disorder symmetries, respectively. For nonabelian groupsG the dual
algebraĤ is no longer a group algebra and at first sight the good use or even the notion
of a duality transformation seems to be lost. It is the advantage of our more general
Hopf algebraic framework to restore this apparent asymmetry and treat both,H and
Ĥ, on a completely equal footing. In particular we also point out that as algebras the
Drinfeld doublesD(H) andD(Ĥ) coincide (it is only the coproduct which changes into
its opposite, see Appendix B). Hence, from an algebraic point of view there is no intrinsic
difference between “order” and “disorder” (co-)symmetries. Distinguishing one from
the other only makes sense with respect to a particular choice of the representations
given in Lemma 2.2 on the Hilbert spaces associated with even or odd lattice sites,
respectively.

2.2. A as a Haag Dual Net.The local commutation relations (2.3) of the observables
suggests that our Hopf spin model can be viewed in the more general setting of algebraic
quantum field theory (AQFT) as a local net. More precisely we will use an implemen-
tation of AQFT appropriate to study lattice models in which the local algebras are finite
dimensional. Although we borrow the language and philosophy of AQFT, the concrete
mathematical notions we need on the lattice are quite different from the analogue notions
one uses in QFT on Minkowski space.
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Let I denote the set of closed finite subintervals ofR with endpoints inZ + 1
2. A

net of finite dimensionalC∗-algebras, or shortly anet is a correspondenceI 7→ A(I)
associating to each intervalI ∈ I a finite dimensionalC∗-algebraA(I) together with
unital inclusionsιJ,I :A(I)→ A(J), wheneverI ⊂ J , such that for allI ⊂ J ⊂ K one
hasιK,J ◦ ιJ,I = ιK,I . ForI = ∅ we putA(∅) = C1.

The inclusionsιJ,I will be suppressed and forI ⊂ J we will simply writeA(I) ⊂
A(J). If 3 is any (possibly infinite) subset ofR we writeA(3) for theC∗-inductive
limit of A(I)-s with I ⊂ 3:

A(3) := ∨I⊂3A(I).

Especially letA = A(R). As a dense subalgebra ofA we denote

Aloc = ∪I∈IA(I).

The choice of the latticeZ + 1
2 (in place ofZ , say) is merely a matter of notational

convenience. In the case of our Hopf spin model we put

A(I) = ∨i∈I∩Z Ai

andA(I) = C1 if I ∩ Z = ∅.
Next, for 3 ⊂ R let 3′ = {x ∈ R|dist(x,3) ≥ 1} which is the analogue of the

“spacelike complement” of3 (for 3 = ∅ put3′ = R). The net{A(I)} is calledlocal if
I ⊂ J ′ impliesA(I) ⊂ A(J)′, ∀I, J ∈ I, where forB ⊂ A we denoteB′ ≡ B′ ∩ A
the commutant ofB in A. For3 ⊂ R we also denote

3c := R \3,

3̄ := 3
′c,

Int 3 := 3c′
,

∂3 = 3̄ \ Int 3 = 3̄ ∩3c.

(2.15)

The net{A(I)} is calledsplit if for all I ∈ I there exists aJ ∈ I such thatJ ⊃ I and
A(J) is simple. The net is called additive, ifA(I) ∨ A(J) = A(I ∪ J) for all I, J ⊂ I,
whereM∨N denotes theC∗-subalgebra ofA generated by the subalgebrasM,N ⊂ A.
The net is said to satisfy the intersection property ifA(I) ∩ A(J) = A(I ∩ J) for all
I, J ∈ I.

The local observable algebras{A(I)} of the Hopf spin model defined in Subsect. 2.1
provide an example of a local additive split net with intersection property. What is not
so obvious is that this net satisfiesalgebraic Haag duality.

Definition 2.3. The net{A(I)} is said to satisfy (algebraic) Haag duality if

A(I ′)′ = A(I) ∀I ∈ I

.

To prove Haag duality for our model it is useful to introduce a non-commutative analogue
of a family of local Gibbs measures in classical statistical lattice models.

Definition 2.4. A quantum Gibbs systemon the net{A(I)} is a family of conditional
expectationsηI : A → A(I)′ such that for allI, J ∈ I the following conditions hold:
i) ηI ◦ ηJ = ηI , if J ⊂ I,
ii) ηI (A(J)) ⊂ A(I ′ ∩ J), if I 6⊂ J.
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We will now show that the existence of a quantum Gibbs system on{A(I)} is already
sufficient to prove Haag duality. Since we think that our methods might also be useful in
higher dimensional models, we will keep our arguments quite general. First we introduce
awedgeW as the union

W = ∪nIn,

whereIn ⊂ In+1 is an unbounded increasing sequence inI with the so-calledwedge
propertysaying that for allJ ∈ I the sequenceI ′

n ∩ J eventually becomes constant.
PuttingW ′ = ∩nI

′
n we now have the following

Proposition 2.5. Assume that the net{A(I)} admits a quantum Gibbs system
ηI : A → A(I)′. ThenA satisfies

i) Wedge duality, i.e.A(W )′ = A(W ′) for all wedges W.

ii) The intersection property for wedge complements, i.e.A(W ′∩3) = A(W ′)∩A(3)
for all wedgesW and intervals or wedges3.

iii) Haag duality for intervals, i.e.A(I ′)′ = A(I) ∀I ∈ I.

Proof. i) By locality we haveA(W ′) ⊂ A(W )′. Now letIn ⊂ In+1 ∈ I andW = ∪nIn.
We define

ηW := lim
n

ηIn
.

We show that the limit exists onA and defines a conditional expectationηW : A →
A(W )′. First the limit exists pointwise onA(J) for eachJ ∈ I, since there existsn0 > 0
such thatIn0 6⊂ J and

W ′ ∩ J = I ′
n ∩ J = I ′

n0
∩ J

for all n ≥ n0. Hence, by Definition 2.4i), we get for alln ≥ n0 andA ∈ A(J),

ηIn (A) = ηIn ◦ ηIn0
(A) = ηIn0

(A),

sinceηIn0
(A) ∈ A(I ′

n0
∩ J) = A(I ′

n ∩ J) ⊂ A(In)′. ThusηIn (A) eventually becomes
constant for allA ∈ A(J) and allJ ∈ I and we get

ηW (A(J)) ⊂ A(W ′ ∩ J) ∀J ∈ I.

HenceηW exists onAloc and is positive and bounded by 1 since allηIn have this property.
ThusηW may be extended to all ofA yielding

ηW (A) ⊂ A(W ′).

A simple 3ε-argument shows that the extension still satisfies

ηW (A) = lim
n
ηIn

(A) ∀A ∈ A.

SinceIn ⊂W we getA(W )′ ⊂ A(In)′ and henceηW (A) = A for allA ∈ A(W )′. This
provesA(W )′ ⊂ A(W ′) and thereforeA(W )′ = A(W ′) = ηW (A).

ii) By the above arguments we have

ηW (A(3)) ⊂ A(W ′ ∩3) for all 3 ∈ I,

and sinceηW is a conditional expectation ontoA(W ′) = A(W )′ we getηW (A) = A for
all A ∈ A(W ′) ∩A(3) implyingA(W ′) ∩A(3) ⊂ A(W ′ ∩3). The inverse inclusion
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again follows from locality. Continuity ofηW allows to push this argument from intervals
3 to wedges3.

iii) Let I ∈ I and letW1 andW2 be two wedges such thatI ′ = W1 ∪W ′
2. Then

A(W1)∨A(W ′
2) ⊂ A(I ′), and henceA(I ′)′ ⊂ A(W ′

1)∩A(W2) = A(W ′
1∩W2) = A(I),

where we have used wedge duality and the intersection property for wedge complements.
�

We remark that in Proposition 2.5i) we may putW = R to conclude thatA has trivial
center,

A′ = A(R′) = A(∅) = C11 .

We now provide a quantum Gibbs system on our Hopf spin model by defining for
anyI ∈ I andA ∈ A ,

ηI (A) :=
∑

r

1
nr

nr∑
a,b=1

eab
r Ae

ba
r , (2.16)

wherer runs through the simple componentsMr ' Mat(nr) of A(I) and eab
r is a

system of matrix units inMr. One immediately checks thatηI : A → A(I)′ defines a
conditional expectation. MoreoverηI (A(J)) ⊂ A(I)′ ∩ A(J ∪ I). We now prove

Lemma 2.6. The family(ηI )I∈I provides a quantum Gibbs system on the Hopf spin
model.

Proof. By continuity it is enough to prove property i) of Definition 2.2 onAloc. Hence
let J ⊂ I be two intervals and letA ∈ A(3),3 ∈ I, where without lossI ∪ J ⊂
3. Pick a faithful tracetr3 on A(3) and define the Hilbert-Schmidt scalar product
〈A|B〉 := tr3(A∗B), A,B ∈ A(3). We clearly havetr3(BηI (A)) = tr3(BA) for all
I ⊂ 3, B ∈ A(I)′ ∩A(3) andA ∈ A(3). Hence, forI ⊂ 3 the restrictionηI |A(3) is
an orthogonal projection ontoA(3) ∩ A(I)′ with respect to〈·|·〉. SinceJ ⊂ I implies
A(I)′ ⊂ A(J)′ we conclude

ηI |A(3) = ηI ◦ ηJ |A(3).

To prove property ii) letI 6⊂ J (implying I 6= ∅). ForA(J) = C · 11 orA(I) = C · 11 the
statement is trivial, hence assume|I| ≥ 1 andA(J) = Ai,j for somei ≤ j ∈ Z. Using
property i) the claim ii) is now equivalent to

ηi−1(Ai,j) =Ai+1,j ,

ηj+1(Ai,j) =Ai,j−1,
(2.17)

where forI = [i − 1
2 , i + 1

2] we write ηI ≡ ηi. Using additivity we haveAi,j =
Ai ∨ Ai+1,j = Ai,j−1 ∨ Aj and hence (2.17) is equivalent to

ηi(Ai±1) = C · 1, ∀i ∈ Z. (2.18)

Let us prove (2.18) fori =even. (For oddi-s the proof is quite analogous.) ChooseC∗-
matrix unitseab

r of the algebraH. Forr = ε, the trivial representation (counit) ofH, we
haveaeε = eεa = ε(a)eε, henceeε ≡ h is just the integral inH (see Appendix A). We
now use the following well known lemma [W] (for more details see also [NSz2])
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Lemma 2.7. LetB := (id ⊗ S)(1(h)) ∈ H ⊗H. Then for finite dimensionalC∗-Hopf
algebrasH we have

B = (S ⊗ id )(1(h)) =
∑

r

1
nr

∑
a,b

eab
r ⊗ eba

r . (2.19)

From Eq. (2.19) one recognizes thatηi evaluated onAi±1 is nothing but the adjoint
action of the integralh on the dual Hopf algebrâH. Consider the case ofAi−1:

ηi(Ai−1(ϕ)) =
∑

r

1
nr

∑
a,b

Ai(e
ab
r )Ai−1(ϕ)Ai(e

ba
r )

=Ai(h(1))Ai−1(ϕ)Ai(S(h(2)))

=Ai−1(h→ ϕ) = 1〈ϕ|h〉.

The case ofAi+1 can be handled similarly. �

Summarizing: The local net{A(I)} of the Hopf spin model is an additive split net
satisfying Haag duality and wedge duality. Furthermore the global observable algebra
A is simple, because the split property implies thatA is an UHF algebra and every UHF
algebra is simple [Mu].

We finally remark without proof that the inclusion towerAi,j ⊂ Ai,j+1, j ≥ i
(or Ai−1,j ⊃ Ai,j , i ≤ j) together with the family of conditional expectation
ηj+1 : Ai,j → Ai,j−1 (ηi−1 : Ai,j → Ai+1,j) precisely arises by the basic Jones con-
struction [J] from the conditonal expectationsηi±1 : Ai → C · 1. In particular, putting
e2i = A2i(h) ande2i+1 = A2i+1(ω), whereh = h∗ = h2 ∈ H andω = ω∗ = ω2 ∈ Ĥ are
the normalized integrals, we find the Temperley-Lieb-Jones algebra

e2
i = e∗

i = ei,

eiej = ejei, |i− j| ≥ 2,

eiei±1ei = (dimH)−1 ei.

(2.20)

3. Amplimorphisms and Cosymmetries

In this section we pick up the methods of [SzV] to reformulate the DHR-theory of
superselection sectors for locally finite dimensional quantum chains using the category
of amplimorphismsAmpA.

In Sect. 3.1 we shortly review the notions and results of [SzV] and introduce the
important concept ofcompressibilitysaying that up to equivalence all amplimorphisms
can be localized in a common finite intervalI. In Sect. 3.2 we consider the special class
of amplimorphisms given by localized coactions of some Hopf algebraG onA. We call
such coactionscosymmetries.

Sections 3.3 and 3.4 investigate some general conditions under which universal
cosymmetries exist on a given netA. Here an amplimorphismρ is calleduniversal,
if it is a sum of pairwise inequivalent and irreducible amplimorphisms, one from each
equivalence class inAmpA. In Sect. 3.3 we look at properties ofeffective cosymmetries
and use these to show that a universal amplimorphism becomes a cosymmetry (with
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respect to suitable coproduct onG) if and only if the intertwiner space (ρ × ρ|ρ) is
“scalar”, i.e. contained in 11A ⊗ Hom (Vρ, Vρ ⊗ Vρ). With this result we can prove
in Sect. 3.4 that universal cosymmetries always exist in models which arecompletely
compressible. We show that Haag dual split nets (like the Hopf spin chain) are completely
compressible iff they are compressible. Compressibility of the Hopf spin chain will then
be stated in Theorem 3.12. It will be proven later in Sect. 4.2, where we show that all
amplimorphisms of this model are in fact compressible into any interval of length two.

In Sect. 3.5 we investigate the question ofuniquenessof universal cosymmetries.
We prove that (up to automorphisms ofG) universal coactions are alwayscocycle equiv-
alent, where we use a more general definition of this terminology as compared to the
mathematics literature (e.g. [Ta,NaTa]). In particular this means that the coproduct of a
universal cosymmetryG onA is only determined up to cocycle equivalence.

In Sect. 3.6 we discuss two notions of translation covariance for universal coactions
and relate these to the existence of acoherently translation covariantstructure inAmpA.

3.1. The categoriesAmpA andRepA. In this subsection{A(I)} denotes a split net
of finite dimensionalC∗-algebras which satisfies algebraic Haag duality. Furthermore
we assume that the net istranslation covariant. That is the net is equipped with a *-
automorphismα ∈ AutA such that

α(A(I)) = A(I + 2) I ∈ I . (3.1)

At first we recall some notions introduced in [SzV]. Anamplimorphismof A is an
injectiveC∗-algebra map

µ:A → A⊗ EndV, (3.2)

whereV is some finite dimensional Hilbert space. Ifµ(1) = 1⊗ 1V thenµ is called
unital. Here we will restrict ourselves to unital amplimorphisms since the localized
amplimorphisms in a split net are all equivalent to unital ones (see Thm. 4.13 in [SzV]).
An amplimorphismµ is calledlocalizedwithin I ∈ I if

µ(A) = A⊗ 1V A ∈ A(Ic),

whereIc := R \ I. For simplicity, from now on by an amplimorphism we will always
mean a localized unital amplimorphism.

The space ofintertwinersfrom ν:A → A⊗ EndW to µ:A → A⊗ EndV is

(µ|ν) := {T ∈ A⊗ Hom(W,V ) |µ(A)T = Tν(A), A ∈ A}. (3.3)

Two amplimorphismsµ andν are calledequivalent, µ ∼ ν, if there exists an isomor-
phismU ∈ (µ|ν), that is an intertwinerU satisfyingU∗U = 1⊗1W andUU∗ = 1⊗1V .
Let µ be localized withinI. Thenµ is calledtransportableif for all integer a there
exists aν localized withinI + 2a and such thatν ∼ µ. µ is calledtranslation covariant
if (αa ⊗ id V ) ◦ µ ◦ α−a ∼ µ for all a ∈ Z. Clearly, translation covariance implies
transportability.

LetAmpA denote the category with objects given by the localized unital amplimor-
phismsµ and with arrows fromν toµ given by the intertwinersT ∈ (µ|ν). This category
has the followingmonoidal product:

(µ, ν) 7→ µ× ν := (µ⊗ id EndW ) ◦ ν : A → A⊗ EndV ⊗ EndW,

T1 ∈ (µ1|ν1), T2 ∈ (µ2|ν2) 7→ T1× T2 := (T1⊗ 1V2)(ν1⊗ id Hom(W2,V2))(T2), (3.4)

∈ (µ1× µ2|ν1× ν2)
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with the monoidal unit being the trivial amplimorphism idA. The monoidal product×
is a bifunctor therefore we have (T1× T2)(S1× S2) = T1S1× T2S2, for all intertwiners
for which the products are defined, and 1µ×1ν = 1µ×ν where 1µ := 1⊗ id V is the unit
arrow at the objectµ : A → A⊗ EndV .

AmpA containsdirect sumsµ⊕ ν of any two objects: (µ⊕ ν)(A) := µ(A)⊕ ν(A)
defines a direct sum for any orthogonal direct sumV ⊕W .

AmpA hassubobjects: If P ∈ (µ|µ) is a Hermitian projection then there exists an
objectν and an injectionS ∈ (µ|ν) such thatSS∗ = P andS∗S = 1ν . The existence
of subobjects is a trivial statement in the category of all, possibly non-unital, amplimor-
phisms becauseν can be chosen to beν(A) = Pµ(A) in that case. In the category
AmpA this is a non-trivial theorem which can be proven [SzV] provided the net is split.
An amplimorphismµ is calledirreducible if the only (non-zero) subobject ofµ is µ.
Equivalently,µ is irreducible if (µ|µ) = C1µ. Since the selfintertwiner space (µ|µ) of
any localized amplimorphism is finite dimensional (use Haag duality to show that any
T ∈ (µ|µ) belongs toA(Int I)⊗EndV , whereI is the interval whereµ is localized, see
also Lemma 3.8 below), the categoryAmpA is fully reducible. That is any object is a
finite direct sum of irreducible objects. The categoryAmpA is calledrigid if for any
objectµ there exists an objectµ and intertwinersCµ ∈ (µ×µ | idA) , Cµ ∈ (µ×µ | idA)
satisfying

(C
∗
µ × 1µ)(1µ × Cµ) = 1µ,

(1µ × C
∗
µ)(Cµ × 1µ) = 1µ,

(3.5)

Two full subcategoriesAmp 1A and Amp 2A of AmpA are calledequivalent,
Amp 1A ∼ Amp 2A, if any object inAmp 1A is equivalent to an object inAmp 2A
and vice versa. ForI ∈ I we denoteAmp (A, I) ⊂ AmpA the full subcategory of
amplimorphisms localized inI. We say thatAmpA is compressible(into I) if there
existsI ∈ I such thatAmpA ∼ Amp (A, I). Clearly, if AmpA is compressible
into I then it is compressible intoI + 2a, ∀a ∈ Z. This follows, since the transla-
tion automorphismα ∈ AutA induces an autofunctorα on AmpA given on objects
by ρ 7→ ρα := (α ⊗ id ) ◦ ρ ◦ α−1 and on intertwiners byT 7→ (α ⊗ id )(T ). Hence
α(Amp (A, I)) = Amp (A, I + 2). Moreover, we have

Lemma 3.1. LetAmpA be compressible intoI ∈ I and letJ ⊃ I+2a for somea ∈ Z.
Then all amplimorphisms inAmp (A, J) are transportable.

Proof. Let {ρr : A → A ⊗ EndVr} be a complete list of pairwise inequivalent irre-
ducible amplimorhisms inAmp (A, I) and putρ = ⊕rρr.4 Thenρ : A → A⊗G, G :=
⊕rEndVr, is universalin AmpA, i.e. everyµ ∈ AmpA is equivalent to (idA ⊗ β) ◦ ρ
for someβ ∈ RepG. Moreover,ρα ∈ Amp (A, I + 2) is also universal and therefore
ρα = AdW ◦ (id ⊗ σ) ◦ ρ for some unitaryW ∈ A ⊗ G and someσ ∈ AutG. Let
now J ⊃ I andµ = AdU ◦ (idA ⊗ β) ◦ ρ ∈ Amp (A, J). Then, by Haag duality,
U ∈ A(Int J) ⊗ EndVµ, sinceU must commute withA(Jc) ⊗ 1. With σ ∈ AutG
defined as above put ˜µ := AdU ◦ (idA ⊗ β̃) ◦ ρ ∈ Amp (A, J), whereβ̃ := β ◦ σ−1.
Thenµ̃α ≡ (α⊗ id ) ◦ µ̃ ◦ α−1 ∈ Amp (A, J + 2) satifies

µ̃α = Ad Ũ ◦ (idA ⊗ β) ◦ ρ = Ad (ŨU∗) ◦ µ,

whereŨ = (α⊗ id )(U )(idA⊗ β̃)(W ) ∈ A⊗EndVµ is unitary. Thusµ is transportable
into J + 2 and analogously intoJ − 2 and therefore intoJ + 2a, a ∈ 2Z. �

4 If calA(I) is finite dimensional, this sum is finite.
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We remark that even ifµ was localized inJ0 ⊂ I, its transported version may in
general only be expected to be smeared over all ofI + 2a.

Next, we recall that the full subcategoryAmp trA of transportable amplimorphisms
is abraided category. The braiding structure is provided by thestatistics operators

ε(µ, ν) ∈ (ν × µ|µ× ν) (3.6)

defined by
ε(µ, ν) := (U∗ ⊗ 1)(11⊗ P )(µ⊗ id )(U ), (3.7)

whereP : EndVµ ⊗ EndVν → EndVν ⊗ EndVµ denotes the permutation and where
U is any isomorphism fromν to some ˜ν such that the localization region of ˜ν lies to the
left from that ofµ. The statistics operator satisfies

naturality: ε(µ1, µ2) (T1× T2) = (T2 × T1) ε(ν1, ν2), (3.8a)

pentagons:

{
ε(λ× µ, ν) = (ε(λ, ν)× 1µ)(13 × ε(µ, ν))
ε(λ, µ× ν) = (1µ × ε(λ, ν))(ε(λ, µ)× 1ν) . (3.8b)

The relevance of the categoryAmpA to the representation theory of the observable
algebraA can be summarized in the following theorem taken over from [SzV].

Theorem 3.1. Let π0 be a faithful irreducible representation ofA on a Hilbert space
H0 that satisfies Haag duality (here the second prime denotes the commutant inL(H0)):

π0(A(I ′))′ = π0(A(I)) I ∈ I , (3.9)

and let RepA be the category of representationsπ of A that satisfy the following
selection criterion (analogue of the DHR-criterion):

∃I ∈ I, n ∈ N : π|A(I′) ' n · π0|A(I′), (3.10)

where' denotes unitary equivalence. ThenRepA is isomorphic toAmpA. If we add
the condition thatπ0 isα-covariant and denote byRepαA the full subcategory inRepA
of α-covariant representations thenRepαA is isomorphic to the categoryAmp αA of
α-covariant amplimorphisms.

In generalAmp αA ⊂ Amp trA ⊂ AmpA. In the Hopf spin model we shall see in
Sect. 4 thatAmp αA = AmpA and thatAmpA is equivalent toRepD(H).

3.2. Localized Cosymmetries.For simplicity we assume from now on thatAmpA
contains only finitely many equivalence classes of irreducible objects. For the Hopf
spin model this will follow from compressibility, see Theorem 3.12 in Sect. 3.4. Let
{µr} be a list of irreducible amplimorphisms inAmpA containing exactly one from
each equivalence class . Then an objectρ is calleduniversalif it is equivalent to⊕rµr.
Define theC∗-algebraG by

G := ⊕r EndVr,

then every universal object is a unitalC∗-algebra morphismρ:A → A⊗G. We denote
by er the minimal central projections inG. There is a distinguished 1-dimensional block
r = ε, i.e. EndVε

∼= C associated with the identity morphism idA ≡ ρε as a subobject
of ρ. We also denoteε:G → C the associated 1-dimensional representation ofG. Note
that by constructionG is uniquely determined up to isomorphisms leavingeε invariant.
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We also remark that ifε is the counit with respect to some coproduct1:G → G ⊗ G
theneε is the two-sidedintegral in G, sincexeε = eεx = ε(x)eε for all x ∈ G.

Universality ofρ implies that any amplimorphismµ is equivalent to (id ⊗ βµ) ◦ ρ
for some representationβµ of G. In particular, there must exist a∗-algebra morphism
1ρ : G → G⊗G such thatρ×ρ is equivalent to (id⊗1ρ)◦ρ 5. As a characteristic feature
of a Hopf algebra symmetry we now investigate the question whether there exists an
appropriate choice ofρ such thatρ×ρ = (idA⊗1)◦ρ for somecoassociative coproduct
1:G → G⊗G. If ρ can be chosen in such a way then we arrive to the very useful notion
of a comodule algebra action.

Definition 3.2. Let G be aC∗-bialgebra with coproduct1 and counitε. A localized
comodule algebra action ofG onA is a localized amplimorphismρ:A → A⊗ G that
is also a coaction onA with respect to the coalgebra(G,1, ε). In other words:ρ is a
linear map satisfying the axioms:

ρ(A)ρ(B) = ρ(AB), (3.11a)

ρ(11) = 11⊗ 1, (3.11b)

ρ(A∗) = ρ(A)∗, (3.11c)

ρ× ρ ≡ (ρ⊗ id ) ◦ ρ = (id ⊗1) ◦ ρ, (3.11d)

(idA ⊗ ε) ◦ ρ = idA, (3.11e)

∃I ∈ I : ρ(A) =A⊗ 1 A ∈ A(Ic). (3.11f)

The coactionρ is said to be universal if it is – as an amplimorphism – a universal object
of AmpA.

For brevity by a coaction we will from now on mean a localized comodule algebra action
in the sense of Definition 3.2. IfA admits a coaction of (G, ε,1) then we also callG a
localized cosymmetryofA. Examples of universal localized cosymmetries for the Hopf
spin chain will be given in Sect. 4.

Next, we recall that every coactionρ:A → A ⊗ G uniquely determines an action
of the dualĜ onA, also denoted byρ, as follows (for simplicity assumeG to be finite
dimensional ):

ρξ : A → A ξ ∈ Ĝ,
ρξ(A) := (idA ⊗ ξ)(ρ(A)).

(3.12)

The following axioms for a localized action of the bialgebraĜ on theC∗-algebraA are
easily verified

ρξ(AB) = ρξ(1)(A)ρξ(2)(B), (3.13a)

ρξ(11) = ε̂(ξ)11, (3.13b)

ρξ(A)∗ = ρξ∗ (A∗), (3.13c)

ρξ ◦ ρη = ρξη, (3.13d)

ρε = idA, (3.13e)

∃I ∈ I : ρξ(A) = ε̂(ξ)A , ∀A ∈ A(Ic). (3.13f)

5 This argument fails in locally infinite theories where one may haveA(I) ∼= A(I) ⊗ Mat (n), ∀n ∈ N,
in which case the dimensions dimVµ are not an invariant of the equivalence classes [µ].
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Hereε̂ ≡ 1 ∈ G denotes the counit on̂G. Converseley, ifρξ satisfies (3.13) then

A 7→ ρ(A) =
∑

s

ρηs
(A)⊗ Y s ∈ A⊗ G

defines a coaction, where{ηs} and {Y s} denote a pair of dual bases ofĜ and G,
respectively. In (3.13c) we used the notationξ 7→ ξ∗ for the antilinear involutive algebra
automorphism defined by〈ξ∗|a〉 = 〈ξ|a∗〉. If G (and therefore alsôG) has an antipode
S, thenξ∗ := S(ξ∗) ≡ S−1(ξ)∗ defines a∗-structure onĜ.

One can also check that for〈ξ|a〉 := Dkl
r (a), the representation matrix of the unitary

irrep r of G, the matrixρξ(A) determines an ordinary matrix amplimorphismρr:A →
A⊗Mnr

. Whether such aρr is irreducible is not guaranteed in general, so we will call
it a componentof ρ.

3.3. Effective Cosymmetries.To investigate the conditions under which the components
of a given coaction are pairwise inequivalent and irreducible we introduce the following

Definition 3.3. Letρ : A → A⊗ EndVρ be an amplimorphism and letA have trivial
center. A unital *-subalgebraG ⊂ EndVρ is calledeffectivefor ρ, if ρ(A) ⊂ A⊗G and
(ρr|ρs) = δrsC(1A⊗1Vr

), wherer, s run through a complete set of pairwise inequivalent
representations ofG and whereρr = (id⊗ r) ◦ ρ. A coactionρ : A → A⊗ G is called
effective, ifG is effective forρ (with respect to some unital inclusionG ⊂ EndVρ).

To see whether an effectiveG ⊂ EndVρ exists for a given amplimorphismρ, we
now introduceAmp ρA as the full subcategroy ofAmpA generated by objects which
are equivalent to direct sums of the irreduciblesρr ocurring inρ as a subobject. We also
put Amp ◦

ρA ⊂ Amp ρA as the full subcategory consisting of objectsµ, such that all
intertwiners in (µ|ρ) are “scalar”, i.e.

(µ|ρ) ⊂ 1A ⊗ Hom (Vρ, Vµ).

Note that the amplimorphismρ itself belongs toAmp ◦
ρA iff ( ρ|ρ) ≡ ρ(A)′ = 1A⊗Cρ for

some unital∗-subalgebraCρ ⊂ EndVρ, which also impliesA⊗ (C′
ρ ∩EndVρ) ⊂ ρ(A).

We now have

Proposition 3.4. LetA have trivial center and letρ : A → A⊗EndVρ be an amplimor-
phism. For a unital∗-subalgebraG ⊂ EndVρ the following conditions are equivalent:

i) G is effective forρ .

ii) (ρ|ρ) = 1A ⊗ Cρ andG = C′
ρ ∩ EndVρ .

iii) ρ(A) ⊂ A ⊗ G and Rep(G) ∼= Amp ◦
ρ(A), where the isomorphism is given on

objects byβ → (id⊗ β) ◦ ρ and on intertwiners byt→ 1A ⊗ t.

Proof. DenoteVr the representation spaces of a complete set of pairwise inequivalent
irreducible representationsr of G. DecomposingVρ into irreducible subspaces under
the action ofG we get an isomorphismu = ⊕rur : ⊕r(Vr ⊗ CNr

ρ )→ Vρ obeying

u∗Gu =⊕r(EndVr ⊗ 1Nr
ρ
),

u∗(G′ ∩ End Vρ)u =⊕r(1Vr
⊗Mat(Nr

ρ )),

(1A ⊗ u∗)ρ(A)(1A ⊗ u) =⊕r(ρr(A)⊗ 1Nr
ρ
) , ∀A ∈ A,
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whereNr
ρ ∈ N are nonvanishing multiplicities. Hence, (ρr|ρs) = δrsC(1A ⊗ 1Vr ) is

equivalent to

(1A ⊗ u∗)(ρ|ρ)(1A ⊗ u) = ⊕r(1A ⊗ 1Vr ⊗Mat(Nr
ρ )),

proving the equivalence i)⇔ ii) (see [NSz2] for more details).
The implication iii)⇒ i) being trivial we are left to show i)+ii)⇒ iii). To this

end we first note that under the condition ii)µ ∈ Amp 0
ρA implies (µ|ρr) ⊂ 1A ⊗

Hom (Vr, Vµ), ∀r. Moreover,µ ∈ Amp 0
ρA being equivalent to a direct sum ofρr ’s we

must have a family of isometrieswr : Vr ⊗ CNr
µ → Vµ, whereNr

µ ∈ No are possibly
vanishing multiplicities and wherew∗

rws = δrs (if Ns
µ 6= 0), Σrwrw

∗
r = 1Vµ

and

µ(A)(1A ⊗ wr) = (1A ⊗ wr)(ρr(A)⊗ 1Nr
µ
), A ∈ A.

Hence we getµ = (id⊗ βµ) ◦ ρ, whereβµ ∈ RepG is given by

βµ(g) = Σrwr(r(g)⊗ 1Nr
µ
)w∗

r .

Next, to show thatβ ∈ RepG is uniquely determined byµ = (id⊗ β) ◦ ρ ∈ Amp 0
ρ(A)

we define
Gρ := {(ω ⊗ idG)(ρ(A))| ω ∈ Â} ⊂ G,

whereÂ is the dual ofA. Clearly the restrictionβ|Gρ is uniquely determined byµ.
Moreover

1A ⊗ (G′
ρ ∩ End Vρ) = (1A ⊗ End Vρ) ∩ ρ(A)′.

Since, by assumption ii),ρ(A)′ ≡ (ρ|ρ) = 1A ⊗ (G′ ⊗ End Vρ) we conclude

G′
ρ ∩ End Vρ = G′ ∩ End Vρ,

and therefore the algebraic closure ofGρ coincides withG. Hence, being an algebra
homomorphismβ is uniquely determined by its restrictionβ|Gρ and therefore byµ.

Finally, by decomposingβ and γ into their irreducible subrepresentations it is
straightforward to check [NSz2] that under the assumption i)1A ⊗ (β|γ) = ((id⊗ β) ◦
ρ|(id⊗γ)◦ρ) for all β, γ ∈ Rep G, which in particular implies (id⊗β)◦ρ ∈ Amp 0

ρA
for all β ∈ Rep G (putγ = id). �

We are now in the position to give a rather complete characterization of effective
cosymmetries.

Theorem 3.5. Letρ : A → A⊗EndVρ be an amplimorphism and assumeG ⊂ EndVρ

to be effective forρ (implying the center ofA to be trivial). Let furthermoreε : G → C
be a distinguished one-dimensional representation such thatρε := (id ⊗ ε) ◦ ρ = idA.
Then the following conditions A)-C) are equivalent

A) Amp ◦
ρ(A) closes under the monoidal product.

B) ρ× ρ ∈ Amp ◦
ρ(A).

C) There exists a coassociative coproduct1 on (G, ε) such that(ρ,1) provides an
effective coaction of(G, ε) onA.

Moreover, under these conditions we have

i) 1 is uniquely determined byρ.
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ii) Amp ρ(A) is rigid iff G admits an antipode.

iii) Amp ρ(A) is braided, iff there exists a quasitriangular elementR ∈ G ⊗ G.

iv) Amp ρ(A) ∼ Rep(G) as strict monoidal, (rigid, braided) categories.

Proof. The implicationA)⇒ B) is obvious, sinceρ ∈ Amp ◦
ρ(A) by Proposition 3.4ii).

To proveB)⇒ C) let 1 : G → End (Vρ ⊗ Vρ) such thatρ× ρ = (id⊗1) ◦ ρ. Then1

uniquely exists by Proposition 3.4iii). Moreover1A ⊗ G′ ⊗ G′ ⊂ (ρ× ρ|ρ× ρ) which
again by Proposition 3.4iii) impliesG′⊗G′ ⊂ 1(G)′ and therefore1(G) ⊂ G ⊗G. The
identityρε = idA implies the counit property (idG⊗ε)◦1 = (ε⊗idG)◦1 = idG and the
identityρ×(ρ×ρ) = (ρ×ρ)×ρ implies the coassociativity (idG⊗1)◦1 = (1⊗idG)◦1.
Here we have again used that anyβ ∈ RepG is uniquely determined by (idA ⊗ β) ◦ ρ.
To proveC) ⇒ A) we noteAmp ◦

ρ(A) ∼= RepG by Proposition 3.4iii) and recall that
RepG becomes monoidal for any bialgebra (G,1, ε).

Next, part i) has already been pointed out above and part iv) follows since any
object inAmp ρ(A) is equivalent to an object inAmp ◦

ρ(A) and thereforeAmp ρ(A) ∼
Amp ◦

ρ(A) ∼= RepG by Proposition 3.4iii). By the same argument, it is enough to prove
parts ii)+iii) with Amp ρ(A) replaced byRepG. However, forRepG these statements
become standard (see e.g. [Maj2,U]) and we only give a short sketch of proofs here. So if
β ∈ RepG andS : G → G is the antipode then one defines the conjugate representation
β̄ := βT ◦ S, whereβT is the transpose ofβ acting on the dual vector spaceV̂β . Since
on finite dimensionalC∗-Hopf algebrasG the antipode is involutive,S2 = id G [W], the
left and right evaluation maps which makeRepG rigid are given by the natural pairings
V̂β⊗Vβ → C andVβ⊗V̂β → C, respectively. Conversely, letRepG be rigid and identify
G = ⊕rEndVr, wherer labels the simple ideals – and therefore the (equivalence classes
of) irreducible representations – ofG. ForX ∈ EndVr ⊂ G letS(X) ∈ EndVr be given
by

S(X) = (1r ⊗ C
∗
r)(1r ⊗X ⊗ 1r)(Cr ⊗ 1r).

We now use that forX ∈ EndVr ⊂ G the coproduct may be written as1(X) =∑
p,q 1p,q(X), where1p,q(X) ∈ EndVp ⊗ EndVq is given by

1p,q(X) =

Nr
pq∑

i=1

trpq,i X tr ∗
pq,i,

wheretrpq,i ∈ (p× q|r), i = 1, .., Nr
pq, is an orthonormal basis of intertwiners inRepG.

Choosing a basis inVp and using the rigidity properties (3.5) it is now not difficult to
verify the defining properties of the antipode

S(X(1))X(2) = X(1)S(X(2)) = ε(X)1.

To prove iii) letR ∈ G ⊗ G be quasitriangular and letα, β ∈ RepG. Then

ε(α, β) := σα,β ◦ (α⊗ β)(R)

defines a braiding onRepG, whereσα,β : Vα⊗Vβ → Vβ⊗Vα denotes the permutation.
Conversely, letε(α, β) ∈ (β × α|α× β) be a braiding and denote

Rr,r′ := σr′,r ◦ ε(r, r′) ∈ EndVr ⊗ EndVr′ .

PuttingR := ⊕r,r′Rr,r′ and using the above formula for the coproduct it is again
straightforward to check thatR is quasitriangular, i.e.
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(1⊗ id )(R) =R13R23,

(id ⊗1)(R) =R13R12.

This concludes the proof of Theorem 3.5. �

Corollary 3.6. Necessary for a localized effective coaction(ρ,1) of (G, ε) on a net
{A(I)} to be transportable is thatG be quasitriangular.

Proof. If ρ is transportable then any irreducible componentρr is transportable and hence
Amp ρA is braided, see Eqs. (3.6–8) and [SzV]. �

3.4. Universal Cosymmetries and Complete Compressibility.Theorem 3.5 implies that
AmpA ∼ RepG for a suitableC∗-bialgebra (G, ε,1), provided we can find a universal
objectρ = ⊕rρr in AmpA, such thatρ×ρ ∈ Amp 0

ρA. In this case we callρ auniversal
coactiononA andG auniversal cosymmetryofA. In other words, a localized coaction
ρ : A → A⊗ G is universal, if and only if it is effective and for anyµ ∈ AmpA there
exists a representationβµ ∈ RepG such thatµ is equivalent to (id⊗ βµ) ◦ ρ.

We note that a priori universal coactions need not exist onA. However, if they do,
then as an algebraG is determined up to isomorphisms, i.e.

G ' ⊕rEnd Vr,

whereρr : A → A ⊗ EndVr are the irreducible components ofρ. Moreover, as will
be shown in Sect. 3.5, universal coactionsρ - and hence the coproduct1 on G - are
determined up to cocycle equivalence provided they exist.

In this subsection we investigate the question ofexistenceof universal coactionsρ
by analysing the conditionρ × ρ ∈ Amp ◦

ρA. To this end we introduce theρ-stable
subalgebraAρ ⊂ A,

Aρ := {A ∈ A| ρ(A) = A⊗ 1}. (3.14)

Lemma 3.7. Letρ = ⊕rρr be universal inAmpA. If A′
ρ ∩ A = C · 1A, thenρ× ρ ∈

Amp ◦
ρA, i.e.ρ is a universal coaction.

Proof. For any two amplimorphismsρi we obviously have

(ρ1|ρ2) ⊂ ((Aρ1 ∩ Aρ2)
′ ∩ A)⊗ Hom (V2, V1),

SinceAρ ⊂ Aρ×ρ, the conditionA′
ρ ∩ A = C · 1A implies that all intertwiners in

(ρ | ρ× ρ) are scalar and thereforeρ× ρ ∈ Amp ◦
ρA. �

Note that ifρ is localized in3 thenA(3c) ⊂ Aρ. Our strategy for constructing lo-
calized universal coactions inAmpA will now be to find a suitable bounded region
3 = ∪nIn, In ∈ I, such thatAmpA is compressible into3 andA(3c)′ ∩ A = C · 1.
In this case we callAmpA completely compressible. By Lemma 3.7 we are then only
left with constructing a universal object inAmp (A,3). First we note

Lemma 3.8. For i = 1, 2 let ρi ∈ Amp (A, I), I ∈ I, and let the net{A(I)} satisfy
Haag duality. Thenρi(A(I)) ⊂ A(I)⊗EndVρi

and(ρ1|ρ2) ⊂ A(Int I)⊗Hom(Vρ2, Vρ1).
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Proof. We use the general identityρ(A(I)) ⊂ ρ(A(I)′)′ and the locality property
A(I)′ ⊃ A(I ′) to conclude

ρ(A(I)) ⊂ ρ(A(I ′))′ = A(I ′)′ ⊗ EndVρ = A(I)⊗ EndVρ,

where we have usedA(I ′) ⊂ A(Ic) ⊂ Aρ in the second line and Haag duality in the third
line. SinceIc = (Int I)′ we haveA((Int I)′) ⊂ Aρ for all ρ ∈ Amp (A, I) and therefore
A′

ρi
⊂ A(Int I) by Haag duality, from which (ρ1|ρ2) ⊂ A(Int I) ⊗ Hom (Vρ2, Vρ1)

follows. �

We remark that for additive Haag dual nets Lemma 3.8 implies thatAmp (A, I) is
uniquely determined byAmp (A(I), I), with arrows given by the set of intertwiners
localized in IntI.

Next, if the Haag dual net{A(I)} is also split, then for any localized amplimorphism
ρ there existsI ∈ I such thatA(I) is simple andρ is localized inA(I). By Lemma
3.8,ρ restricts to an amplimorphism onA(I) and by simplicity ofA(I) this restriction
must be inner, i.e.ρ(A) = U (A ⊗ 1)U−1 for some unitaryU ∈ A(I) ⊗ EndVρ and all
A ∈ A(I). Henceρ′ := AdU−1 ◦ ρ is localized in∂I and we have

Corollary 3.9. Let{A(I)} be a split net satisfying Haag duality. Then for any localized
amplimorphismρ there existsI ∈ I such thatA(I) is simple andρ is compressible into
∂I. In particular AmpA is completely compressible if and only if it is compressible.

Proof. The second statement follows by noting that ifA(I) is simple thenA((∂I)c)′ ∩
A ≡ A(I)′ ∩A(I) = C1. Indeed, we have (∂I)c = I ∪ I ′ and thereforeA((∂I)c)′ ∩A =
A(I)′ ∩ A(I ′)′ = A(I)′ ∩ A(I). �

We now recall that in the special case of our Hopf Spin model the local algebras
A(I) are simple for all intervalsI of even length,|I| = 2n, n ∈ No. The following
theorem then implies that in this modelAmpA is completely compressible and therefore
universal coactions do exist.

Theorem 3.12. If A is the observable algebra of the Hopf spin model thenAmpA is
compressible into any interval of length two.

Theorem 3.12 will be proven in Sect. 4.2. In Sect. 4.1 we will completely analyse
Amp (A, I) for all |I| = 2 (i.e.A(I) = Ai,i+1, i ∈ Z), showing that its universal
cosymmetry is given by the Drinfeld doubleG = D(H). We also construct a universal
intertwiner fromAmp (A, I) to Amp (A, I−1) and thereby prove thatAmp (A, I) (and
thereforeAmpA) is not only transportable, but evencoherently translation covariant
(see Def. 3.17 below and [DR1, Sec.8]).

3.5. Cocycle Equivalences.Given two amplimorphismsρ, ρ′ ∈ Amp (A,3) which are
both universal inAmp (A,3) we may without loss consider both of them as mapsA →
A⊗G, with a fixed∗-algebraG = ⊕rEnd Vr and a fixed 1-dimensional representation
ε : G → End Vε = C such thatρε = idA. However, even ifρ andρ′ are both effective
coactions, they may lead to different coproducts,1 and1′, on (G, ε). Coactions with
(G, ε) fixed, but with varying coproduct1, will be denoted as a pair (ρ,1). In order
to compare such coactions we first identify coactions (ρ,1) and (ρ′,1′) whenever
ρ′ = (id ⊗ σ) ◦ ρ and1′ = (σ ⊗ σ) ◦ 1 ◦ σ−1 for some *-algebra automorphism
σ : G → G satisfyingε ◦ σ = ε. In other words, given an effective coaction (ρ,1) of
(G, ε) onA , then up to a transformation byσ ∈ Aut (G, ε) any universal amplimorphism
in Amp ρ(A) will be considered to be of the form
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ρ′ = Ad U ◦ ρ,

whereU ∈ A ⊗ G is a unitary satisfying (id ⊗ ε)(U ) = 1A. Decomposingρ = ⊕rρr

andρ′ = ⊕rρ
′
r this impliesρr ' ρ′

r for all r, i.e. we have fixed an ordering convention
among the irreduciblesr of coinciding dimensionsdr = dim Vr.

We now introduce the notion of cocycle equivalence for coactions (ρ,1). First,
we recall that two coproducts,1 and1′, on (G, ε) are calledcocycle equivalent, if
1′ = Adu ◦1, whereu ∈ G ⊗ G is a unitaryleft 1-cocycle, i.e.u∗ = u−1 and

(1⊗ u)(id⊗1)(u) = (u⊗ 1)(1⊗ id)(u), (3.15a)

(id⊗ ε)(u) = (ε⊗ id)(u) = 1. (3.15b)

The most familiar case is the one where1′ = 1op, the opposite coproduct, and where
u = R is quasitriangular. We callu a right 1-cocycle, if u−1 is a left1-cocycle. Note
that if u is a left1-cocycle then1′ := Adu ◦1 is a coassociative coproduct on (G, ε).
If in this caseS is an antipode for1 thenS′ = Ad q ◦ S is an antipode for1′, where
q :=

∑
i aiS(bi) if u =

∑
i ai ⊗ bi. Moreover,v is a left 1′-cocycle iff vu is a left

1-cocycle. In particular,u−1 is a left1′-cocycle. Two left1-cocyclesu, v are called
cohomologous, if

u = (x−1⊗ x−1) v1(x) (3.16)

for some unitaryx ∈ G obeyingε(x) = 1. A left 1-cocycle cohomologous to1⊗ 1 is
called a left1-coboundary. We now give the following

Definition 3.13. Let (ρ,1) and (ρ′,1′) be two coactions of(G, ε) onA. Then a pair
(U, u) of unitariesU ∈ A ⊗ G andu ∈ G ⊗ G is called acocycle equivalencefrom
(ρ,1) to (ρ′,1′) if

Uρ(A) = ρ′(A)U A ∈ A, (3.17a)

u1(X) = 1′(X)u X ∈ G, (3.17b)

U ×ρ U = (11A ⊗ u) · (idA ⊗1)(U ), (3.17c)

(idA ⊗ ε)(U ) = 11A, (3.17d)

where we have used the notation

U ×ρ U = (U ⊗ 1)(ρ⊗ idG)(U ) ∈ A⊗ G ⊗ G. (3.18)

The pair(U, u) is called acoboundary equivalenceif in addition to (a–d)u is a left1-
coboundary. Ifu = 1⊗ 1, then(ρ,1) and(ρ′,1′) are calledstrictly equivalent.

Note that Eqs. (3.17 c,d) imply the left1-cocycle conditions (3.15) foru. We leave
it to the reader to check that the above definitions indeed provide equivalence relations
which are preserved under transformations byσ ∈ Aut (G, ε). We also remark that to
our knowledge in the literature the terminology “cocycle equivalence for coactions”
is restricted to the caseu = 1 ⊗ 1 and hence1′ = 1 [Ta,NaTa]. (If in this case
U = (V −1⊗ 1)ρ(V ) for some unitaryV ∈ A thenU would be called aρ-coboundary.)

We now have

Proposition 3.14. Let (ρ,1) be an effective coaction ofG = ⊕rEnd Vr on A.
Then up to transformations byσ ∈ Aut(G, ε) all universal coactions(ρ′,1′) in
Amp ρ(A) (Amp 0

ρ(A)) are cocycle equivalent (coboundary equivalent) to(ρ,1).
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Proof. Let ρ′ = AdU ◦ ρ whereU ∈ A ⊗ G is unitary and satisfies (id⊗ ε)(U ) = 1A.
We then have two unitary intertwiners

(id⊗1)(U ) : ρ× ρ→ (id⊗1) ◦ ρ′,
U ×ρ U : ρ× ρ→ ρ′ × ρ′ = (id⊗1′) ◦ ρ′.

Now G is also effective forρ′ and therefore any intertwiner from (id ⊗ 1′) ◦ ρ′ to
(id⊗1)◦ρ′ must be a scalar by Proposition 3.4iii (consider1 and1′ as representations
of G on⊕r,s(Vr ⊗ Vs)). Hence there exists a unitaryu ∈ G ⊗ G such that

U ×ρ U = (1A ⊗ u)(id⊗1)(U ).

Consequently (U, u) provides a cocycle for (ρ,1) and (id⊗1′)◦ρ′ = (id⊗(Adu◦1))◦ρ′.
By Theorem 3.5i) we conclude1′ = Adu◦1 and therefore (ρ′,1′) is cocycle equivalent
to (ρ,1). If in additionρ′ ∈ Amp 0

ρ(A) thenU = 1A⊗x for some unitaryx ∈ G. Hence
u = (x⊗ x)1(x−1) is a coboundary. �

3.6. Translation Covariance.In this section we study transformation properties of
universal coactions under the translation automorphismsαa : A → A, a ∈ Z.

First note that if (ρ,1) is a localized coaction onA then (ρα,1) also is a localized
coaction, whereρα := (α⊗ id ) ◦ ρ ◦ α−1.

Definition 3.15. A coaction(ρ,1) is called translation covariant if(ρ,1) and(ρα,1)
are cocycle equivalent. It is calledstrictly translation covariant if (ρ,1) and(ρα,1)
are strictly equivalent.

If (ρ,1) is a universal coaction inAmpA, then (ρα,1) is also universal. By Propo-
sition 3.14, (ρ,1) and (ρα,1) must be cocycle equivalent up to a transformation by
σ ∈ Aut (G, ε). Thus,ρ is translation covariant iff we can chooseσ = idG . The following
lemma shows that this property is actually inherent inAmpA, i.e. independent of the
choice ofρ.

Lemma 3.16. Let (ρ,1) be a universal and (strictly) translation covariant coaction on
A. Then all universal coactions inAmpA are (strictly) translation covariant.

Proof. By the remark after Definition 3.15 (strict) translation covariance is preserved
under transformations byσ ∈ Aut (G, ε). Let now (W,w) be a cocycle equiva-
lence from ρ to ρα and let (U, u) be a cocycle equivalence fromρ to ρ′. Then
((α⊗ idG)(U )WU−1, uwu−1) is a cocycle equivalence fromρ′ to ρ′α. �

In [NSz3] we will show (see also [NSz1]) that strict translation covariance of a
universal coactionρ is necessary and sufficient for the existence of a lift of the translation
automorphismα onA to an automorphism ˆα on the field algebraFρ ⊃ A constructed
from ρ, such that ˆα commutes with the globalG-gauge symmetry acting onFρ. In
continuum theories with a global gauge symmetry under a compact group there is a
related result [DR1, Thm 8.4] stating that such a lift exists if and only if the category of
translation covariant localized endomorphisms ofA is coherently translation covariant.

We now show that in our formalism these conditions actually coincide, i.e. a universal
coaction (ρ,1) onA is strictly translation covariant if and only ifAmpA is coherently
translation covariant. Here we follow [DR1, Sec.8] (see also [DHR4, Sec.2]) and define
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Definition 3.17. We say thatAmpA is translation covariant if for any amplimorphism
µ onA there exists an assignmentZ 3 a→Wµ(a) ∈ A⊗EndVµ satisfying properties
i)-iv) below. If also v) holds, thenAmpA is calledcoherently translation covariant:

i) Wµ(a) ∈ (µαa |µ), (3.19)

ii) Wµ(a + b) = (αa ⊗ id )(Wµ(b))Wµ(a), (3.20)

iii) Wµ(a)∗ = Wµ(a)−1 = (αa ⊗ id )(Wµ(−a)), (3.21)

iv) Wµ(a)T = (αa ⊗ id )(T )Wν(a), ∀T ∈ (µ | ν), (3.22)

v) Wµ×ν(a) = (Wµ(a)⊗ 1ν)(µ⊗ id ν)(Wν(a)). (3.23)

In the language of categories (coherent) translation covariance ofAmpAmeans that
the group of autofunctorsαa, a ∈ Z, onAmpA is naturally (and coherently) isomorphic
to the identity functor.

To illuminate these axioms letπ0 : A → L(H0) be a faithful Haag dual “vacuum”
representation and letZ 3 a→ U0(a) ∈ L(H0) be a unitary representation implement-
ing the translationsαa, i.e.

AdU0(a) ◦ π0 = π0 ◦ αa . (3.24)

Then givenWµ(a) satisfying i)-iii) above the “charged” representationπµ = (π0⊗ id µ)◦
µ is also translation covariant, i.e.

AdUµ(a) ◦ πµ = πµ ◦ αa , (3.25)

where the representationZ 3 a→ Uµ(a) ∈ L(H0)⊗ EndVµ is given by

Uµ(a) = (π0 ⊗ id )(Wµ(a)∗)(U0(a)⊗ 1µ). (3.26)

Conversely, ifUµ(a) is a representation ofZ satisfying (3.25) then we may defineWµ(a)
satisfying i)-iii) of Definition 3.17 by

(π0 ⊗ id )(Wµ(a)) = (U0(a)⊗ 1µ)Uµ(a)∗. (3.27)

Note that by faithfulness and Haag duality ofπ0 this is well defined, since ifµ is localized
in I ∈ I and if J ∈ I containsI andI − a then the r.h.s. of (3.27) commutes with
π0(A(J ′)) ⊗ 1µ and therefore is inπ0(A(J)) ⊗ EndVµ. In this case property iv) of
Definition 3.17 is equivalent to

(π0 ⊗ id )(T )Uµ(a) = Uν(a)(π0 ⊗ id )(T ), ∀T ∈ (ν|µ) (3.28)

and property v) is equivalent to

Uµ×ν(a) = (πµ ⊗ id )(Wν(a)∗)(Uµ(a)⊗ 1ν). (3.29)

Proposition 3.18. Let ρ be a universal coaction of(G,1, ε) onA. Thenρ is (strictly)
translation covariant if and only ifAmpA is (coherently) translation covariant.
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Proof. Let (W,w) be a cocycle equivalence from (ρ,1) to (ρα,1) and defineZ 3 a→
Wρ(a) ∈ A⊗ G inductively by puttingWρ(0) = 11⊗ 1 and

Wρ(a + 1) = (α⊗ id )(Wρ(a))W . (3.30)

Then (Wρ(a), wa) is a cocycle equivalence from (ρ,1) to (ραa

,1), ∀a ∈ Z. Moreover,

Wρ(a + b) = (αa ⊗ id )(Wρ(b))Wρ(a), (3.31)

Wρ(a)∗ =Wρ(a)−1 = (αa ⊗ id )(Wρ(−a)) (3.32)

as one easily verifies. For an amplimorphismµ ∈ AmpA let nowβµ ∈ RepG and let
Tµ ∈ A⊗ EndVµ be a unitary such that

µ = AdTµ ◦ (id ⊗ βµ) ◦ ρ . (3.33)

We then define

Wµ(a) := (αa ⊗ id )(Tµ)(id ⊗ βµ)(Wρ(a))T−1
µ . (3.34)

Sinceβµ is determined byµ up to equivalence, Definition (3.34) ofWµ(a) is actually
independent of the particular choice ofTµ andβµ. Moreover,Wµ(a) clearly intertwines
µ andµαa

and Eqs. (3.20/21) follow from Eqs. (3.31/32). To prove (3.22) letT ∈ (µ|ν).
Then

T−1
µ TTν ∈

(
(idA ⊗ βµ) ◦ ρ | (idA ⊗ βν) ◦ ρ

)
= 11A ⊗ (βµ|βν)

by the effectiveness ofρ. Therefore

T = Tµ(11⊗ t)T−1
ν (3.35)

for somet ∈ (βµ|βν), and (3.22) follows from (3.34/35).
If ρ is even strictly translation covariant then

(Wρ(a)⊗ 1)(ρ⊗ id )(Wρ(a)) = (id ⊗1)(Wρ(a)) . (3.36)

We show that this implies (3.23) for all objects inAmp 0
ρA. By Proposition 3.4iii) the

amplimorphisms inAmp 0
ρA are all of the formµ = (idA⊗βµ)◦ρ for someβµ ∈ RepG

uniquely determined byµ. Hence, by (3.34)

Wµ(a) = (idA ⊗ βµ)(Wρ(a)) .

Moreover, using the coaction propertyρ×ρ = (idA⊗1)◦ρwe getµ×ν = (idA⊗βµ×ν)◦ρ
whereβµ×ν = (βµ ⊗ βν) ◦1. Hence

Wµ×ν(a) = (idA ⊗ βµ×ν)(Wρ(a))

= (idA ⊗ βµ ⊗ βν) ◦ (idA ⊗1)(Wρ(a))

= (Wµ(a)⊗ 1ν)(µ⊗ id ν)(Wν(a)), (3.37)

where we have used (3.36). This proves (3.23) inAmp 0
ρA. The extension toAmpA ∼

Amp 0
ρA follows straightforwardly from (3.22).

Conversely, let nowAmpA be translation covariant and identifyG with the direct
sum of its irreducible representations,G = ⊕rEndVr. Thenρ = ⊕rρr is a special
amplimorphism andWρ(a) = ⊕rWr(a) ∈ A⊗G is an equivalence fromρ toραa

, which
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must be a cocycle equivalence by Proposition 3.14. Henceρ is translation covariant. If
moreoverAmpA is coherently translation covariant then by (3.18) and (3.23) ,

Wρ×ρ(a) = Wρ(a)×ρ Wρ(a). (3.38)

On the other hand, similarly as in the proof of Proposition 3.4iii) Eq. (3.22) implies

W(idA⊗β)◦ρ(a) = (idA ⊗ β)(Wρ(a))

for all β ∈ RepG. Puttingβ = 1 : G → G ⊗ G this gives

Wρ×ρ(a) ≡W(idA⊗1)◦ρ(a) = (idA ⊗1)(Wρ(a)), (3.39)

and by (3.38/39)ρ is strictly translation covariant. �

4. The Drinfeld Double as a Universal Cosymmetry

In this section we prove that the Drinfeld doubleD(H) is a universal cosymmetry of the
Hopf spin chain. To this end we construct in Sect. 4.1 a family of “two-point” coactions
ρI : A(I)→ A(I)⊗D(H) for any intervalI ∈ I of length two. We then prove thatρI

extends to a universal coaction inAmp (A, I). We also explicitely provide the cocycle
equivalences fromρI to ρI−1 and show thatρI andρI−2 are strictly equivalent and
therefore – being translates of each other – also strictly translation covariant. Moreover,
the statistics operatorsε(ρI , ρI ) are given in terms of the standard quasitriangular R-
matrix inD(H)⊗D(H). Finally, for any left 2-cocycleu ∈ D(H)⊗D(H) we construct
a unitaryU ∈ A⊗D(H) and a universal coaction (ρ′,1′) onA such that (U, u) provides
a cocycle equivalence fromρI to ρ′. The statistics operator forρ′ is given in terms of
the twisted R-matrixuopRu∗.

In Sect. 4.2 we proceed with constructing “edge” amplimorphismsρ∂I : A(∂I)→
A⊗D(H) for all intervalsI of (nonzero) even length, which extend to universal ampi-
morphisms inAmp (A, ∂I). We then show that these edge amplimorphisms are all
equivalent to the previous two-point amplimorphisms. This proves complete compress-
ibility of the Hopf spin chain as stated in Theorem 3.12. Thus the doubleD(H) is the
universal cosymmetry of our model.

4.1. The Two-Point Amplimorphisms.In this subsection we provide a universal and
strictly translation covariant coactionρI ∈ Amp (A, I) of the Drinfeld doubleD(H) on
our Hopf spin chainA for any intervalI of length |I| = 2. Anticipating the proof of
Theorem 3.12 this proves thatD(H) is the universal cosymmetry ofA.

A review of the DrinfeldD(H) double is given in Appendix B. Here we just note that
it is generated byH andĤcop which are both contained as Hopf subalgebras inD(H),
whereĤcop is the Hopf algebraĤ with opposite coproduct. We denote the generators
of D(H) byD(a), a ∈ H, andD(ϕ), ϕ ∈ Ĥ, respectively.

Theorem 4.1. On the Hopf spin chain defineρI : A(I)→ A(I)⊗D(H), |I| = 2, by6

ρ2i,2i+1(A2i(a)A2i+1(ϕ)) :=A2i(a(1))A2i+1(ϕ(2)) ⊗ D(a(2))D(ϕ(1)), (4.1a)

ρ2i−1,2i(A2i−1(ϕ)A2i(a)) :=A2i−1(ϕ(1))A2i(a(2)) ⊗ D(ϕ(2))D(a(1)). (4.1b)

Then:
6 Here we identifyI with I ∩ Z.
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i) ρi,i+1 provides a coaction ofD(H) onAi,i+1 with respect to the natural coproducts
1D (if i is even) or1op

D (if i is odd) onD(H).
ii) ρi,i+1 extends to a coaction inAmp (A, I) which is universal inAmp (A, I) .

Proof. i) Since interchanging even and odd sites amounts to interchaningH andĤ and
sinceD(Ĥ) = D(H)cop it is enough to prove all statements fori even. It is obvious that
the restrictionsρ2i,2i+1|A2i andρ2i,2i+1|A2i+1 define *-algebra homomorphisms. Hence,
to prove thatρ2i,2i+1 : A2i,2i+1→ A2i,2i+1⊗D(H) is a well defined amplimorphism we
are left to check that the commutation relations (2.2) are respected, i.e.

ρ2i,2i+1(A2i+1(ϕ))ρ2i,2i+1(A2i(a)) = ρ2i,2i+1
(
A2i(a(1))〈a(2), ϕ(1)〉A2i+1(ϕ(2))

)
.

Using Eq. (B.2) this is straightforward and is left to the reader. Using Eqs. (B.3a,b) the
identities (idA ⊗ εD) ◦ ρ2i,2i+1 = idA and (ρ2i,2i+1× ρ2i,2i+1) = (id ⊗1D) ◦ ρ2i,2i+1 are
nearly trivial and are also left to the reader.

ii) To show thatρI extends to an amplimorphism inAmp (A, I) (still denoted by
ρI ) we have to check that together with the definitionρI (A) := A⊗ 1D(H), A ∈ A(Ic),
we get a well defined *-algebra homomorphismρI : A → A ⊗ D(H). Clearly, this
holds if and only ifρi,i+1|Ai,i+1 commutes with the left adjoint action ofAi+2 and the
right adjoint action ofAi−1, respectively, onAi,i+1, where these actions are defined on
B ∈ Ai,i+1 by

A2i+2(a) . B :=A2i+1(a(1))BA2i+1(S(a(2))),

B / A2i−1(ϕ) :=A2i−1(S(ϕ(1)))BA2i−1(ϕ(2)).

NowA2i+2 commutes withA2i andA2i−1 commutes withA2i+1 and

A2i+2(a) . A2i+1(ϕ) =A2i+1(a→ ϕ), (4.2a)

A2i(a) / A2i−1(ϕ) =A2i(a← ϕ). (4.2b)

Henceρ2i,2i+1 commutes with these actions, since by coassociativity

A2i((a← ϕ)(1))⊗D((a← ϕ)(2)) =A2i(a(1)← ϕ)⊗D(a(2)),

A2i+1((a→ ϕ)(2))⊗D((a→ ϕ)(1)) =A2i+1(a→ ϕ(2))⊗D(ϕ(1)).

Next we identifyD(H) = ⊕rEndVr ⊂ EndV , wherer runs through a complete set of
pairwise inequivalent irreducible representations ofD(H) and whereV := ⊕rVr. Since
|I| = 2 impliesA(Int I) = C · 11A we conclude by Lemma 3.8,

ρ2i,2i+1(A)′ ∩ (A⊗ EndV ) = 11A ⊗ C

for some unital *-subalgebraC ⊂ EndV . Hence, by Proposition 3.4ii,D(H) is effective
for ρ2i,2i+1 providedC = D(H)′ ∩EndV . To show this we now compute fora ∈ H and
ϕ ∈ Ĥ, [

A2i+1(S(ϕ(2)))A2i(S(a(1)))⊗ 1D(H)
]
· ρ2i,2i+1

(
A2i(a(2))A2i+1(ϕ(1))

)
= A2i+1(S(ϕ(3)))A2i(S(a(1))a(2))A2i+1(ϕ(2))⊗D(a(3))D(ϕ(1))

= 11A ⊗D(a)D(ϕ).

Hence,A⊗D(H) = (A⊗ 1D(H)) ∨ ρ2i,2i+1(A) and therefore
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11A ⊗ (D(H)′ ∩ EndV ) ≡ (A⊗D(H))′ ∩ (A⊗ EndV )

= (A⊗ 1D(H))
′ ∩ ρ2i,2i+1(A)′ ∩ (A⊗ EndV )

= 1A ⊗ C,

which proves thatD(H) is effective for ρ2i,2i+1. To prove thatρI is universal in
Amp (A, I) we now showAmp (A, I) ⊂ Amp 0

ρI
(A). Hence letµ ∈ Amp (A, I), I ∩

Z = {2i, 2i + 1}. Thenµ(A2i,2i+1) ⊂ A2i,2i+1 ⊗ D(H) by Lemma 3.8 and the re-
strictionµ|A2i,2i+1 commutes with the left adjoint action ofA2i+2 and the right adjoint
action ofA2i−1, respectively, onA2i,2i+1. This allows to construct a representation
βµ : D(H) → EndVµ such thatµ = (id ⊗ βµ) ◦ ρ2i,2i+1 and therefore, by Proposition
3.4iii), µ ∈ Amp 0

ρ2i,2i+1
(A), as follows. First we use the above commutation properties

together withAn,m = An,m+1 ∩ A′
m+2 = A′

n+2 ∩ An−1,m by Eq. (2.17) to conclude

µ(A2i) ⊂ (A2i,2i+1 ∩ A′
2i+2)⊗ EndVµ =A2i ⊗ EndVµ,

µ(A2i+1) ⊂ (A2i,2i+1 ∩ A′
2i−1)⊗ EndVµ =A2i+1⊗ EndVµ.

Now we define, fora ∈ H ⊂ D(H) andϕ ∈ Ĥ ⊂ D(H),

βµ(D(a)) := (A2i(S(a(1)))⊗ 1)µ(A2i(a(2))), (4.3a)

βµ(D(ϕ)) := µ(A2i+1(ϕ(1))) (A2i+1(S(ϕ(2)))⊗ 1). (4.3b)

Using thatµ commutes with the (left or right) adjont actions ofA2i−1 andA2i+2, re-
spectively, it is straight forward to check thatβµ(H) ⊂ A2i ⊗ EndVµ commutes with
A2i−1 ⊗ 1 andβµ(Ĥ) ⊂ A2i+1 ⊗ EndVµ commutes withA2i+2 ⊗ 1. Hence, by Eq.
(2.18),βµ|H andβµ|Ĥ take values in1A ⊗ EndVµ . Now, using (B1) of Appendix B
it is not difficult to show [NSz2] thatβµ indeed provides a∗-representation ofD(H) on
Vµ. Thus, identifyingA2i = H ⊂ D(H), A2i+1 = Ĥ ⊂ D(H) andβµ ≡ 11A ⊗ βµ we
may invert (4.3) to get

µ(A2i(a)) =A2i(a(1))⊗ βµ(D(a(2))), (4.4a)

µ(A2i+1(ϕ)) =A2i+1(ϕ(2))⊗ βµ(D(ϕ(1))). (4.4b)

Thusµ = (id⊗ βµ) ◦ ρI and thereforeµ ∈ Amp 0
ρI

(A). This proves thatρI is universal
in Amp (A, I). �

We now show that the coactionsρi,i+1 are all cocycle equivalent and strictly trans-
lation covariant. To this end let{bA} be a basis inH with dual basis{βA} in Ĥ and
define thecharge transportersTi ∈ Ai ⊗D(H) by

Ti :=

{
Ai(bA)⊗D(βA) i = even
Ai(βA)⊗D(bA) i = odd

. (4.5)

Also recall that the canonical quasitriangular R-matrix inD(H)⊗D(H) is given by

R = D(bA)⊗D(βA).

We then have
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Proposition 4.2. The charge transportersTi are unitary intertwiners fromρi,i+1 to
ρi−1,i, i.e.

Tiρi,i+1(A) = ρi−1,i(A)Ti , A ∈ A, (4.6)

and they satisfy the cocycle condition

Ti ×ρi,i+1 Ti ≡ (Ti ⊗ 1) · (ρi,i+1⊗ id )(Ti) =

=

{
(1⊗R) · (id ⊗1D)(Ti) i = even
(1⊗Rop) · (id ⊗1

op
D )(Ti) i = odd .

(4.7)

Proof. This is a lengthy but straightforward calculation, which we leave to the reader.
�

Iterating the identities (4.6/7) we get an infinite sequence of cocycle equivalences

. . . (ρ2i,2i+1,1D)
(T2i+1,R

op)←− (ρ2i+1,2i+2,1
op
D )

(T2i+2,R)←− (ρ2i+2,2i+3,1D) . . . .

Composing two such arrows we obtain a coboundary equivalence (T2i+1T2i+2, R
opR)

becauseRopR = (s⊗ s)1D(s−1) according to [Dr], wheres ∈ D(H) is the central uni-
tarys = SD(R2)R1 = D(S(βA))D(bA). Likewise (T2iT2i+1, RR

op) yields a coboundary
equivalence. Therefore, introducing

Ui,i+1 := (1⊗ s−1)TiTi+1 ∈ (ρi−1,i|ρi+1,i+2), (4.8)

we obtain unitary charge transporters localized within{i, i + 1} that satisfiy thetrivial
cocycleconditions

U2i−1,2i ×ρ2i,2i+1 U2i−1,2i = (idA ⊗1D)(U2i−1,2i),
U2i−2,2i−1 ×ρ2i−1,2i U2i−2,2i−1 = (idA ⊗1

op
D )(U2i−2,2i−1). (4.9)

Hence, summarizing the above results (and anticipating the result of Theorem 3.12)
we have shown

Corollary 4.3. The coactionsρi,i+1 are all strictly translation covariant and universal
in AmpA.

Proof. Universality follows from Theorem 4.1ii) and Theorem 3.12 and strict translation
covariance (Definition 3.15) follows from (4.8/9), sinceρi+1,i+2 = (α⊗ id )◦ρi−1,i◦α−1.
�

Proposition 4.2 also enables us to compute the statistics operator ofρI .

Theorem 4.4. Let ρI be given as in Theorem 4.1 and letε(ρI , ρI ) be the associated
statistics operator (3.7). Then

ε(ρI , ρI ) = 11⊗ PRI , (4.10)

whereP : D(H)⊗D(H)→ D(H)⊗D(H) denotes the permutation and

Ri,i+1 =

{
R , i = even
Rop , i = odd . (4.11)

Moreover, if(U, u) is a cocycle equivalence from(ρI ,1
(op)
D ) to (ρ′,1′) thenε(ρ′, ρ′) =

11⊗ PR′, whereR′ = uopRIu
∗.



190 F. Nill, K. Szlach́anyi

Proof. PuttingI ∩ Z = {i, i + 1} and using (3.7) and (4.8) we get

(11⊗ P )ε(ρI , ρI ) = (U∗
i−1,i)

02(ρi,i+1⊗ idG)(Ui−1,i)

= (T ∗
i )02(T ∗

i )01(Ti ×ρi,i+1 Ti) , (4.12)

where the superfix 01/02 refers to the obvious inclusions ofA⊗D(H) intoA⊗D(H)⊗
D(H), and where the second line follows sinces is central and (ρi,i+1 ⊗ idG)(Ti−1) =
T 02

i−1. Now (4.10/11) follows from (4.7) and (4.12) by using1
op
D = AdR ◦1D and the

identities

(idA ⊗1D)(Ti) =

{
T 02

i T 01
i , i = even

T 01
i T 02

i , i = odd

which follow straightforwardly from (4.5).
Let now (U, u) be a cocycle equivalence from (ρ,1) to (ρ′,1′). Then by (3.8a) and

(3.17c) ,

(11⊗ P )ε(ρ′, ρ′) = (11⊗ P )(U ×ρ U )ε(ρ, ρ)(U ×ρ U )∗

= (11⊗ uop)(idA ⊗1op)(U )(11⊗R)(idA ⊗1)(U∗)(11⊗ u∗)

= 11⊗ (uopRu∗) . �

We conclude this subsection by demonstrating that for any left 2-cocycleu ∈ D(H)⊗
D(H) there exists a coaction (ρ′,1′) which is cocycle equivalent to (ρI ,1

(op)). To this
end we first note that there exist∗-algebra inclusions3i,i+1 : D(H)→ A given by

32i,2i+1(D(a)) :=A2i(a),

32i,2i+1(D(ϕ)) :=A2i−1(ϕ(2))A2i+1(ϕ(1)),

and analogously for32i−1,2i. Moreover, the following identities are straightforwardly
checked:

ρI ◦3I = (3I ⊗ id ) ◦1
(op)
D .

For a given 2-cocycleu ∈ D(H)⊗D(H) we now put1′ = Adu◦1(op)
D , U = (3I⊗id )(u)

andρ′ = AdU ◦ ρI , from which it is not difficult to see that (U, u) provides a cocycle
equivalence from (ρI ,1

(op)
D ) to (ρ′,1′).

4.2. Edge Amplimorphisms and Complete Compressibility .This subsection is devoted to
the construction of universal edge amplimorphisms and thereby to the proof of Theorem
3.12. As a preparation we first need

Proposition 4.5. Letj = i+2n+1, i ∈ Z, n ∈ N0. Then there exist *-algebra inclusions

Li,j : Ai−1→ Ai,j ∩ A′
i+1,j ,

Ri,j : Aj+1→ Ai,j ∩ A′
i,j−1,

such that for allAi−1(a) ∈ Ai−1 and allAj+1(ϕ) ∈ Aj+1 ,

i) Ai−1(a(1))Li,j(S(a(2))) ∈ Ai−1,j ∩ A′
i,j , (4.13)

ii) Ri,j(S(ϕ(1)))Aj+1(ϕ(2)) ∈ Ai,j+1 ∩ A′
i,j , (4.14)

iii) Li,j(a)Ri,j(ϕ) = Ri,j(ϕ(1))〈ϕ(2) , a(1)〉Li,j(a(2)). (4.15)



Quantum Chains of Hopf Algebras with Quantum Double Cosymmetry 191

Proof. We first use the left action (2.4) ofAj+1 onAi,j and the right action (2.5) ofAi−1
onAi,j to point out that the assertions (4.13) and (4.14) are equivalent, respectively, to

Ai,j / Ai−1(a) = Li,j(S(a(1))Ai,jLi,j(a(2)), (4.16a)

Aj+1(ϕ) . Ai,j =Ri,j(ϕ(1))Ai,jRi,j(S(ϕ(2))), (4.16b)

for allAi−1(a) ∈ Ai−1, Aj+1(ϕ) ∈ Aj+1 andAi,j ∈ Ai,j . Note that Eqs. (4.16) say that
these actions are inner inAi,j , as they must be sinceAi,j is simple forj − i = 2n + 1.

Given thatLi,j commutes withAi+1,j andRi,j commutes withAi,j−1 Eqs. (4.16)
may also be rewritten as

Ai(ψ)Li,j(a) = Li,j(a(1))Ai(ψ ← a(2)), (4.17a)

Ri,j(ϕ)Aj(b) =Aj(ϕ(1)→ b)Ri,j(ϕ(2)). (4.17b)

To construct the mapsLi,j andRi, j we now use the *-algebra isomorphism (2.12)

Ti,j : Ai,j → Ai,j−2 ⊗ EndH

(assume without lossAi
∼= Ĥ) and proceed by induction overn ∈ N0. Forn = 0 we

haveTi,i+1(Ai,i+1) = EndH, since

Ti,i+1(Ai(ψ)) =Q+(ψ), (4.18a)

Ti,i+1(Ai+1(b)) = P +(b), (4.18b)

and we put

Li,i+1(a) := T−1
i,i+1

(
P−(S−1(a))

)
, (4.19a)

Ri,i+1(ϕ) := T−1
i,i+1

(
Q−(S−1(ϕ))

)
. (4.19b)

ThenLi,i+1 andRi,i+1 define *-algebra inclusions and (4.15) follows straightforwardly
from the definitions (2.7). Moreover,Li,i+1(a) commutes withAi+1 = T −1

i,i+1(P
+(H))

andRi,i+1(ϕ) commutes withAi = T −1
i,i+1(Q

+(Ĥ)). Finally, using (4.18/19) and (2.7) we
get forj = i + 1 ,

Li,i+1(S(a(1)))Ai(ψ)Li,i+1(a(2)) = Ai(ψ ← a) =Ai(ψ) / Ai−1(a),
Ri,i+1(ϕ(1))Ai+1(b)Ri,i+1(S(ϕ(2))) =Ai+1(ϕ→ b) =Ai+2(ϕ) . Ai+1(b),

where the second equalities follow from (2.2), see also (4.2). This proves (4.16) and
therefore Proposition 4.5i)-iii) forn = 0.

Assume now the claim holds forj = i + 2n + 1 and put

Li,j+2(a) := T −1
i,j+2

(
Li,j(a)⊗ 1

)
, (4.20a)

Ri,j+2(ϕ) := T −1
i,j+2

(
Ri,j(ϕ(2))⊗Q−(S−1(ϕ(1))).

)
(4.20b)

ThenLi,j+2 andRi,j+2 again define *-algebra inclusions and (4.15) immediately follows
from the induction hypothesis. Next, one can also use the induction hypothesis to show
[NSz2]

Li,j+2(a) ∈ Ai,j+2 ∩ A′
i+1,j+2, (4.21)

Ri,j+2(ϕ) ∈ Ai,j+2 ∩ A′
i,j+1. (4.22)

Finally, one checks that (4.13) and (4.14)∼=(4.17b) also hold forLi,j+2 andRi,j+2, re-
spectively [NSz2]. �
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As a particular consequence of Proposition 4.5 we also need

Corollary 4.6. For all Aj(a) ∈ Aj andAj+1(ϕ) ∈ Aj+1 we have

i) Aj+1(S(ϕ(1)))Ri,j(ϕ(2)) = Ri,j(ϕ(2))Aj+1(S(ϕ(1))) ∈ Ai,j+1 ∩ A′
i,j , (4.23)

ii) Ri,j(ϕ)Aj(a) = Aj(a(1))Ri,j(ϕ← a(2)). (4.24)

Proof. By straight forward application of (4.14), see [NSz2]. �

Using Proposition 4.5 and Corollary 4.6 we are now in the position to prove Theorem
3.12 as a particular consequence of the following

Theorem 4.7. Letj = i + 2n + 1, n ∈ N0, i ∈ Z, and letI = [i− 1
2 , j + 1

2] ∈ I. Define
ρi−1,j+1 : A(∂I)→ Ai−1,j+1⊗D(H) by

ρi−1,j+1(Aj+1(ϕ)) :=Ri,j(ϕ(1)S(ϕ(3)))Aj+1(ϕ(4))⊗D(ϕ(2)), (4.25a)

ρi−1,j+1(Ai−1(a)) :=Ai−1(a(1))Li,j(S(a(2))a(4))⊗D(a(3)). (4.25b)

Then

i) ρi−1,j+1 extends to a coaction̂ρi−1,j+1 ∈ Amp (A, ∂I), which is strictly equivalent
to ρi−1,i.

ii) The coactionρ̂i−1,j+1 is universal inAmp (A, ∂I).

Proof. Assume without lossAi ' Ĥ and define

Ti,j :=
∑

k

Li,j(bk)⊗D(ξk) ∈ Ai,j ⊗D(H), (4.26a)

wherebk ∈ H is a basis with dual basisξk ∈ Ĥ. ThenTi,j is unitary,

T ∗
i,j = T−1

i,j =
∑

k

Li,j(bk)⊗D(S(ξk)) (4.26b)

and we put
ρ̂i−1,j+1 := AdTi,j ◦ ρi−1,i. (4.27)

To prove i) we first show
ρ̂i−1,j+1 ∈ Amp (A, ∂I) (4.28)

and
ρ̂i−1,j+1|A(∂I) = ρi−1,j+1. (4.29)

To this end we use thatLi,j(a) ∈ Ai,j ∩ A′
i+1,j to conclude

Ti,j ∈ (A′
−∞,i−2 ∩ A′

i+1,j ∩ A′
j+2,∞)⊗D(H).

NowA((∂I)c) = A−∞,i−2 ∨ Ai,j ∨ Aj+2,∞ and sinceρi−1,i is localized onAi−1,i the
claim (4.28) follows provided

(Ai(ϕ)⊗ 1)Ti,j = Ti,j ρi−1,i(Ai(ϕ)), ∀ϕ ∈ Ĥ, (4.30)

which is straightforward to verify [NSz2]. To prove (4.29) we compute
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ρi−1,j+1(Aj+1(ϕ))Ti,j =

=
∑

k

Ri,j(ϕ(1)S(ϕ(3)))Aj+1(ϕ(4))Li,j(bk)⊗D(ϕ(2)ξ
k) (4.31a)

=
∑

k

Ri,j(ϕ(1))Li,j(bk)Ri,j(S(ϕ(3)))Aj+1(ϕ(4))⊗D(ϕ(2)ξ
k)

=
∑
k1,k2

Li,j(bk2)Ri,j(S−1(bk1)→ϕ(1))Ri,j(S(ϕ(3)))Aj+1(ϕ(4))⊗D(ϕ(2)ξ
k1ξk2)

=
∑

k

Li,j(bk)Ri,j(ϕ(1)S(ϕ(4)))Aj+1(ϕ(5))⊗D(ϕ(3)S
−1(ϕ(2))ξ

k)

=
∑

k

Li,j(bk)Aj+1(ϕ)⊗D(ξk)

= Ti,j (Aj+1(ϕ)⊗ 1) (4.31b)

= Ti,j ρi−1,i(Aj+1(ϕ)), (4.31c)

where in the second equation we have used (4.14) and in the third equation the inverse
of (4.15). Next we compute

Ti,j ρi−1,i(Ai−1(a)) = Ti,j [Ai−1(a(1))⊗D(a(a))]

= Ti,j [Ai−1(a(1))Li,j(S(a(2))a(3))⊗D(a(4))]

= [Ai−1(a(1))Li,j(S(a(2)))⊗ 1] Ti,j [Li,j(a(3))⊗D(a(4))]

= [Ai−1(a(1))Li,j(S(a(2))a(4))⊗D(a(3))] Ti,j

= ρi−1,j+1(Ai−1(a))Ti,j ,

where in the third line we have used (4.13) and in the fourth line the identity

Ti,j [Li,j(a(1))⊗D(a(2)] = [Li,j(a(2))⊗D(a(1))] Ti,j , (4.32)

which follows straightforwardly from Eq. (B.2) in Appendix B. Thus we have proven
(4.29). To complete the proof of part i) we are left to show thatρi−1,j+1 provides a
coaction which is strictly equivalent toρi−1,i. This follows provided

Ti,j ×ρi−1,i Ti,j = (id⊗1
(op)
D )(Ti,j). (4.33)

To prove (4.33) we use thatLi,j(bk) lies inAi,j and therefore ( ˆρi−1,j+1⊗ id )(Ti,j) = T 02
i,j

implying

Ti,j ×ρi−1,i Ti,j = (ρ̂i−1,j+1⊗ id )(Ti,j)(Ti,j ⊗ 1)

= T 02
i,jT

01
i,j

= (id ⊗1
(op)
D )(Ti,j).

Thus we have proven part i) of Theorem 4.7.
To prove part ii) first recall thatρi−1,i is effective and therefore ˆρi−1,j+1 = AdTi,j ◦

ρi−1,i is effective. Let nowµ ∈ Amp (A, ∂I) and define ˆµ : Aj+1→ A⊗ EndVµ by

µ̂(Aj+1(ϕ)) := µ(Aj+1(ϕ(2)))[Aj+1(S(ϕ(3)))Ri,j(ϕ(4)S
−1(ϕ(1)))⊗ 1]. (4.34a)

Thenµ may be expressed in terms of ˆµ
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µ(Aj+1(ϕ)) = µ(Aj+1(ϕ(3))) [Ri,j(S−1(ϕ(2)))Aj+1(S(ϕ(4)))Ri,j(ϕ(5))⊗ 1]
×[Ri,j(S(ϕ(6)))Aj+1(ϕ(7))Ri,j(ϕ(1))⊗ 1]

= µ̂(Aj+1(ϕ(2))) [Ri,j(ϕ(1)S(ϕ(3)))Aj+1(ϕ(4))⊗ 1],
(4.34b)

where in the second equation we have used (4.14). In Lemma 4.8 below we show that
there exists a *-representationβµ : Ĥ → EndVµ such that

µ̂(Aj+1(ϕ)) = 1A ⊗ βµ(ϕ). (4.35)

Then (4.34b) implies

µ(Aj+1(ϕ)) = Ri,j(ϕ(1)S(ϕ(3)))Aj+1(ϕ(4))⊗ βµ(ϕ(2)). (4.36)

Putting

Vi,j =
∑

k

Li,j(bk)⊗ βµ(ξk), (4.37)

and repeating the calculation from (4.31a) to (4.31b) withρi−1,j+1 replaced byµ, Ti,j

replaced byVi,j andD(ϕ) replaced byβµ(ϕ) we get

µ(Aj+1(ϕ))Vi,j = Vi,j(Aj+1(ϕ)⊗ 1). (4.38)

Moreover, similarly as forTi,j we have

Vi,j ∈ (A′
−∞,i−2 ∩ A′

i+1,j ∩ A′
j+2,∞)⊗ EndVµ. (4.39)

By (4.38) and (4.39) AdV ∗
i,j ◦ µ is localized onAi−1,i. In particular

V ∗
i,j µ(Ai(ϕ))Vi,j ≡ V ∗

i,j(Ai(ϕ)⊗ 1)Vi,j = A(ϕ(2))⊗ βµ(ϕ(1)), (4.40)

which one proves in the same way as (4.30). Hence, by Theorem 4.1ii)βµ extends to a
representation̂βµ : D(H)→ EndVµ such that

AdV ∗
i,j ◦ µ = (id⊗ β̂µ) ◦ ρi−1,i,

and therefore
µ = (id⊗ β̂µ) ◦ ρi−1,j+1. (4.41)

This proves thatρi−1,j+1 is universal inAmp (A, ∂I) and therefore part ii) of Theorem
4.7. �

Since by Proposition 4.2 the coactionsρi−1,i, i ∈ Z, are all (cocycle) equivalent
and since by Corollary 3.9 any amplimorphismµ ∈ AmpA is compressible into∂I for
some intervalI ∈ I of even length, Theorem 4.7 implies thatAmpA is compressible
into any interval of length two. In particular,AmpA is completely compressible. This
concludes the proof of Theorem 3.12.

We are left to prove the claim (4.35).

Lemma 4.8. Under the conditions of Theorem 4.7 letµ ∈ Amp (A, ∂I) and let µ̂ :
Aj+1 → Ai,j+1 ⊗ EndVµ be given by (4.34a). Then there exists a *-representation
βµ : Aj+1→ EndVµ such thatµ̂ = 1A ⊗ βµ.



Quantum Chains of Hopf Algebras with Quantum Double Cosymmetry 195

Proof. Since∂I ⊂ I we have by Lemma 3.8 ,

µ(A(∂I)) ⊂ Ai−1,j+1⊗ EndVµ.

UsingAj+1 ⊂ A(∂I) ∩ A′
i−2 ∩ A′

i,j−1 we conclude

µ(Aj) ⊂ (Ai−1,j+1⊗ EndVµ) ∩ µ(Ai−2)′ ∩ µ(Ai,j−1)′

= (Ai−1,j+1 ∩ A′
i−2 ∩ A′

i,j−1)⊗ EndVµ

= (Ai,j+1 ∩ A′
i,j−1)⊗ EndVµ.

Let now
λ(ϕ) := µ(Aj+1(ϕ(1)))[Aj+1(S(ϕ(2)))⊗ 1]. (4.42)

Using thatµ|Aj+2 = id⊗1one can show [NSz2] [Aj+2(a)⊗1]λ(ϕ) = λ(ϕ)[Aj+2(a)⊗1].
and therefore

λ(ϕ) ∈ (Ai,j+1 ∩ A′
j+2 ∩ A′

i,j−1)⊗ EndVµ = (Ai,j ∩ A′
i,j−1)⊗ EndVµ

Thus we get from (4.42) and (4.34a) ,

µ̂(ϕ) ≡ λ(ϕ(2))[Ri,j(ϕ(3)S
−1(ϕ(1)))⊗ 1] ∈ (Ai,j ∩ A′

i,j−1)⊗ EndVµ. (4.43)

One can show [NSz2] that ˆµ(ϕ) also commutes withAj ⊗ 1 and therefore

µ̂(ϕ) ∈ (Ai,j ∩ A′
i,j)⊗ EndVµ = 1A ⊗ EndVµ (4.44)

by the simplicity ofAi,j . Hence, ˆµ(ϕ) = 1A ⊗ βµ(ϕ) for some linear mapβµ : Aj+1→
EndVµ, which one may in fact check [NSz2] to provide a∗-representation ofAj+1.
�

A. Finite Dimensional C∗-Hopf Algebras

There is an extended literature on Hopf algebra theory the nomenclature of which,
however, is by far not unanimous [BaSk,Dr,E,ES,Sw,W]. Therefore we summarize in
this appendix some standard notions in order to fix our conventions and notations.

A bialgebra is a unital algebra7 together with unital algebra homomorphisms
1:B → B ⊗B (comultiplication) andε:B → C (counit) obeying

(1⊗ id ) ◦1 = (id ⊗1) ◦1,

(ε⊗ id ) ◦1 = (id ⊗ ε) ◦1 = id .

We use Sweedler’s notation1(x) = x(1)⊗ x(2), where the right hand side is understood
as a sum

∑
i x

i
(1)⊗ xi

(2) ∈ B ⊗B. For iterated coproducts we writex(1)⊗ x(2)⊗ x(3) :=

1(x(1)) ⊗ x(2) ≡ x(1) ⊗ 1(x(2)), etc. The linear dual̂B becomes also a bialgebra by
transposing all structural maps by means of the canonical pairing〈 , 〉: B̂ ×B → C.

A bialgebraB ≡ H is called aHopf algebra if there exists anantipodeS:H → H,
i.e. a linear map satisfying

(m ◦ (S ⊗ id ) ◦1)(x) = (m ◦ (id ⊗ S) ◦1)(x) = 1ε(x), ∀x ∈ H, (A.1)

7 All linear spaces are understood over the fieldC
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wherem : H ⊗ H → H denotes the multiplication. Using the above notation Eq.
(A1) takes the formS(x(1))x(2) = x(1)S(x(2)) = ε(x)1, which in connection with the
coassociativity of1 is often applied in formulas involving iterated coproducts like, e.g.,
x(1) ⊗ x(4)S(x(2))x(3) = x(1) ⊗ x(2). All other properties of the antipode, i.e.S(xy) =
S(y)S(x), 1 ◦ S = (S ⊗ S) ◦ 1op andε ◦ S = ε, as well as the uniqueness ofS are
all consequences of the axiom (A.1) [Sw]. The dual bialgebraĤ of H is also a Hopf
algebra with the antipode defined by

〈S(ϕ), x〉 := 〈ϕ, S(x)〉 ϕ ∈ Ĥ, x ∈ H . (A.2)

A ∗-Hopf algebra is a Hopf algebraH together with an antilinear involution∗:H → H
such that (H, ∗) is a∗-algebra and1 andεare∗-algebra maps. It follows thatS := ∗◦S◦∗
is the antipode in the Hopf algebraHop (i.e. with opposite muliplication) and therefore
S = S−1 [Sw]. The dual of a∗-Hopf algebra is also a∗-Hopf algebra with∗-operation
defined byϕ∗ := S(ϕ∗), whereϕ 7→ ϕ∗ is the antilinear involutive algebra automorphism
given by

〈ϕ∗, x〉 := 〈ϕ, x∗〉 . (A.3)

LetA be a∗-algebra and letH be a∗-Hopf algebra. A (Hopf module) left action of
H onA is a linear mapγ:H ⊗A → A satisfying the following axioms: ForA,B ∈ A,
x, y ∈ H,

γx ◦ γy(A) = γxy(A),
γx(AB) = γx(1)(A)γx(2)(B),
γx(A)∗ = γx∗ (A∗),

(A.4)

where as abovex∗ = S−1(x∗). A right action ofH is a left action ofHop. Important
examples are the action ofH onĤ and that ofĤ onH given by the Sweedler’s arrows:

γx(ϕ) = x→ ϕ := ϕ(1)〈x, ϕ(2)〉, (A.5a)

γϕ(x) = ϕ→ x := x(1)〈ϕ, x(2)〉. (A.5b)

A left action is called inner if there exists a *-algebra mapi : H → A such that
γx(A) = i(x(1))A i(S(x(2))). Left H-actionsγ are in one-to-one correspondence with
right Ĥ-coactions(often denoted by the same symbol)γ : A → A⊗ Ĥ defined by

γ(A) := γbi
(A)⊗ ξi, A ∈ A,

where{bi} is a basis inH and{ξi} is the dual basis in̂H and where for simplicity we
assume from now onH to be finite dimensional. Conversely, we haveγx = (idA⊗x)◦γ.
The defining properties of a coaction are given in Eqs. (3.11a-e).

Given a leftH-action (rightĤ-coaction)γ one defines thecrossed productA>/ γH
as theC-vector spaceA⊗H with ∗-algebra structure

(A⊗ x)(B ⊗ y) :=Aγx(1)(B)⊗ x(2)y, (A.6a)

(A⊗ x)∗ := (1A ⊗ x∗)(A∗ ⊗ 1H ). (A.6b)

An important example is the “Weyl algebra”W(Ĥ) := Ĥ>/H, where the crossed product
is taken with respect to the natural left action (A.5a). We haveW(Ĥ) ∼= EndĤ, where
the isomorphism is given by (see [N] for a review)

w : ψ ⊗ x 7→ Q+(ψ)P +(x) . (A.7)
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Here we have introducedQ+(ψ), ψ ∈ Ĥ andP +(x), x ∈ H as operators in End̂H
defined onξ ∈ Ĥ by

Q+(ψ)ξ := ψξ,

P +(x)ξ := x→ ξ,

Any right H-coactionβ : A → A ⊗ H gives rise to a natural leftH-actionγ on
A>/ βĤ

γx(A⊗ ψ) := A⊗ (x→ ψ). (A.8)

The resulting double crossed product (A>/ βĤ)>/ γH containsW(Ĥ) ∼= EndĤ as the
subalgebra given by1A ⊗ ψ ⊗ x ∼= Q+(ψ)P +(x), ψ ∈ Ĥ, x ∈ H. Moreover, by
the Takesaki duality theorem [Ta,NaTa] the double crossed product (A>/ βĤ)>/ γH is
canonically isomorphic toA ⊗ EndĤ. In fact, defining the representationL : H →
EndĤ by

L(x)ξ := ξ ← S−1(x) ≡ 〈ξ(1) , S
−1(x)〉ξ(2), (A.9)

one easily verifies thatT : (A>/ βĤ)>/ γH → A⊗ EndĤ,

T (A⊗ 1Ĥ ⊗ 1H ) := (idA ⊗ L)(β(A)), (A.10a)

T (1A ⊗ ψ ⊗ x) := 1A ⊗Q+(ψ)P +(x) (A.10b)

defines a∗-algebra map.T is surjective sincew is surjective and therefore1A⊗EndĤ ⊂
Im T and

A⊗ 1EndĤ ≡ A(0)⊗ L(A(1)S(A(2)))

= T (A(0)⊗ 1Ĥ ⊗ 1H )(1A ⊗ L(S(A(1))))

∈ Im T

for all A ∈ A. Here we have used the notationA(0)⊗A(1) = β(A),

A(0)⊗A(1)⊗A(2) = (β ⊗ id H )(β(A)) ≡ (idA ⊗1)(β(A))

(including a summation convention) and the identity (idA ⊗ ε) ◦ β = idA, see Eqs.
(3.11d,e). The inverse ofT is given by

T −1(1A ⊗W ) = 1A ⊗ w−1(W ), (A.11a)

T −1(A⊗ 1EndĤ ) =A(0)⊗ w−1(L(S(A(1)))) (A.11b)

for W ∈ EndĤ andA ∈ A.

A left(right) integral in Ĥ is an elementχL(χR) ∈ Ĥ satisfying

ϕχL = ε(ϕ)χL χRϕ = ε(ϕ)χR (A.12a)

for all ϕ ∈ Ĥ or equivalently

χL → x = 〈χL, x〉1 , x← χR = 〈χR, x〉1 (A.12b)

for all x ∈ H. Similarly one defines left(right) integrals inH.
If H is finite dimensional and semisimple then so isĤ [LaRa] and in this case they

are bothunimodular, i.e. left and right integrals coincide and are all given as scalar
multiples of a unique one dimensional central projection
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eε = e∗
ε = e2

ε = S(eε), (A.13)

which is then called theHaar integral.
Forϕ,ψ ∈ Ĥ andh ≡ eε ∈ H the Haar integral define the hermitian form

〈ϕ|ψ〉 := 〈ϕ∗ψ, h〉. (A.14)

Then〈·|·〉 is nondegenerate [LaSw] and it is positive definite – i.e. the Haar integralh

provides a positive state (the Haar “measure”) on Ĥ – if and only if Ĥ is aC∗-Hopf
algebra. These are the “finite matrix pseudogroups” of [W]. They also satisfyS2 = id
and1(h) = 1op(h) [W]. If Ĥ is a finite dimensionalC∗-Hopf algebra then so isH,
sinceH 3 x→ P +(x) ∈ EndĤ defines a faithful∗-representation on the Hilbert space
H ≡ L2(Ĥ, h). Hence finite dimensionalC∗-Hopf algebras always come in dual pairs.
Any such pair serves as a building block for our Hopf spin model.

B. The Drinfeld Double

Here we list the basic properties of the Drinfeld doubleD(H) (also called quantum
double) of a finite dimensional∗-Hopf algebraH [Dr,Maj1]. Although most of them
are well known in the literature, the presentation (B.1) by generators and relations given
below seems to be new, see also [Ni].

As a ∗-algebraD(H) is generated by elementsD(a), a ∈ H andD(ϕ), ϕ ∈ Ĥ
subjected to the following relations:

D(a)D(b) =D(ab), (B.1a)

D(ϕ)D(ψ) =D(ϕψ), (B.1b)

D(a(1)) 〈a(2), ϕ(1)〉D(ϕ(2)) =D(ϕ(1)) 〈ϕ(2), a(1)〉D(a(2)), (B.1c)

D(a)∗ = D(a∗) , D(ϕ)∗ = D(ϕ∗). (B.1d)

The relation (B.1c) is equivalent to any one of the following two relations:

D(a)D(ϕ) =D(ϕ(2))D(a(2)) 〈a(1), ϕ(3)〉〈S−1(a(3)), ϕ(1)〉, (B.2a)

D(ϕ)D(a) =D(a(2))D(ϕ(2)) 〈ϕ(1), a(3)〉〈S−1(ϕ(3)), a(1)〉. (B.2b)

These imply that as a linear spaceD(H) ∼= H ⊗ Ĥ and also that as a∗-algebraD(H)
andD(Ĥ) are isomorphic. This∗-algebra will be denoted byG.

The Hopf algebraic structure ofD(H) is given by the following coproduct, counit,
and antipode:

1D(D(a)) = D(a(1))⊗D(a(2)), 1D(D(ϕ)) = D(ϕ(2))⊗D(ϕ(1)), (B.3a)

εD(D(a)) = ε(a), εD(D(ϕ)) = ε(ϕ), (B.3b)

SD(D(a)) = D(S(a)), SD(D(ϕ)) = D(S−1(ϕ)). (B.3c)

It is straightforward to check that Eqs. (B.3) provide a∗-Hopf algebra structure onD(H).
Moreover,D(Ĥ) = (D(H))cop (i.e. with opposite coproduct) by (B.3a).

If H andĤ areC∗-Hopf algebras then so isD(H). To see this one may use the faithful
∗-representations ofD(H) on the Hilbert spacesHn,m in Lemma 2.2. Alternatively, it
is not difficult to see that
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D(h)D(χ) = D(χ)D(h) =: hD (B.4)

provides the Haar integral inD(H) and that the positivity of the Haar statesh ∈ H and
χ ∈ Ĥ implies the positvity of the statehD on D̂(H) .

The dualD̂(H) of D(H) has been studied by [PoWo]. As a coalgebra it isĜ and

coincides with the coalgebrâD(Ĥ). The latter one, however, as an algebra differs from
D̂(H) in that the multiplication is replaced by the opposite multiplication.

The remarkable property of the double construction is that it always yields a
quasitriangularHopf algebra [Dr]. By definition this means that there exists a uni-
taryR ∈ D(H) ⊗ D(H) satisfying the hexagonal identitiesR13R12 = (id ⊗ 1)(R),
R13R23 = (1⊗ id )(R), and the intertwining propertyR1(x) = 1op(x)R, x ∈ D(H),
where1op:x 7→ x(2)⊗ x(1).

If {bA} and{βA} denote bases ofH andĤ, respectively, that are dual to each other,
〈βA, bB〉 = δA

B , then

R ≡ R1⊗R2 :=
∑
A

D(bA)⊗D(βA) (B.5)

is independent of the choice of the bases and satisfies the above identities.
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