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Abstract: We give a new characterization of the affine Kac-Moody algebras in terms
of extended affine Lie algebras. We also present new realizations of the twisted affine
Kac-Moody algebras.

Introduction

The purpose of this paper is twofold. We present a new characterization of the affine
Kac-Moody Lie algebras and then go on to give some new realizations for the twisted
affine algebras.

This work grew out of our study, in [AABGP], of extended affine Lie algebras
(EALA’s, for short) and their root systems. EALA’s were first introduced in [H-KT] by
R. Høegh-Krohn and B. Torresani (under the name irreducible quasisimple Lie algebras)
as a generalization of finite dimensional simple Lie algebras and affine Kac-Moody Lie
algebras. Thereafter classifications of tame EALA’s of simply-laced type (exceptA1)
were carried out in [BGK] and [BGKN]. In [AABGP], we developed the basic structure
theory of EALA’s; gave a satisfying picture and many classification results for their root
systems; and introduced many new examples of these algebras.

The characterization of affine Lie algebras proved in this paper says that a Lie algebra
L over the complex field is an affine Kac-Moody Lie algebra if and only if it is a tame
EALA with nullity ν = 1. Moreover the realizations we give for the twisted algebras
show how they can be viewed as Lie algebras arising from some of the usual and well-
known constructions of finite dimensional simple Lie algebras in characteristic 0 studied
by N. Jacobson, G. Seligman, and J. Tits, among others. Thus, for example, we are able
to show that the twisted affine algebraF (2)

4 (using the notation from [MP]) has structure
tied up with a Jordan algebra while that ofG(3)

2 is connected with a Cayley algebra.

? The author gratefully acknowledges the support of the Natural Sciences and Engineering Research Council
of Canada.
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The algebrasB(2)
l (l ≥ 2), C (2)

l (l ≥ 3) andBC (2)
l (l ≥ 1) are dealt with using matrix

constructions.

To describe our main result in more detail, we briefly recall some terminology from
[AABGP]. We begin with a complex Lie algebraL which has a non-degenerate invariant
symmetric bilinear form and a self-centralizing finite dimensional diagonalizable abelian
subalgebraH. One then gets a root space decomposition ofL and assumes that ifx is
an element in a root space of a non-isotropic root then adx acts locally nilpotently onL.
One also assumes that the setR of roots ofL is a discrete subset ofH∗, that the setR×
of non-isotropic roots is indecomposable and that there are no isolated isotropic roots.
Such an algebra is called anextended affine Lie algebra. Let V be the real span of the
roots. This is a positive semi-definite space and thenullity ν of R is by definition the
dimension of the radical of this space. Finally letLc be the subalgebra ofL generated by
the non-isotropic root spaces ofL and call this thecoreof L. ThenLc is in fact an ideal
of L, andL is calledtameif the kernel of the representationρ : L → End(Lc) given by
ρ(x) = adx|Lc

is just the center ofLc. Our main result then says that such an algebra
(i.e., a tame EALA of nullity one) is an affine Kac-Moody Lie algebra. (The converse of
this result follows from well known properties of affine Lie algebras.) Our proof relies
on some of the general results in [AABGP] dealing with EALA’s as well as some results
about the root systems involved. We think this result is interesting in its own right but
note here that it also clearly identifies the affine Kac-Moody algebras within the class
of tame EALA’s and hence shows how the latter algebras can be considered as natural
generalizations of the former.

Other characterizations of the affine Kac-Moody Lie algebras are known. For exam-
ple, from the deep and beautiful work of O. Mathieu in [Ma1-3] which extends earlier
work of Kac in [K3] one finds the following result. IfL = ⊕n∈ZLn is a simpleZ-graded
Lie algebra which is infinite dimensional in both directions and if the dimensions ofLn

are uniformly bounded then eitherL is a Witt algebra or an affine Lie algebra. Moreover,
the Witt algebra does not admit a non-degenerate invariant form. Of course, here, in this
characterization, one means by affine Lie algebra the loop version, so there is no cen-
ter and no degree derivation added. There are some other interesting characterizations
within Kac-Moody Lie algebras. One, given in [BC], is in terms of universal enveloping
algebras: Ifg is a symmetrizable Kac-Moody Lie algebra then its universal enveloping
algebra is an Ore domain which is not Noetherian if and only ifg is an affine Kac-Moody
Lie algebra. Another characterization, given in [G], is in terms of the second homology
group of Lie algebras: Ifg is a Kac-Moody Lie algebra (not necessarily symmetrizable)
then the second homology groupH2(g ⊗C C[t, t−1]) of the Lie algebrag ⊗C C[t, t−1]
is infinite dimensional if and only ifg is affine.

The paper is organized as follows. In Sect. 1 we will recall the terminology, notation
and results that we need from [AABGP]. Our main result, the characterization of affine
Lie algebras, is contained in Sect. 2. This depends on numerous results about root systems
as well as some results aboutsl2-triples which appear in our algebras. Finally in Sect. 3
we present our realizations following along the lines in [AABGP].

Throughout the paper,all algebras will be over the fieldC of complex numbers.By
anaffine Kac-Moody Lie algebrawe will mean a minimally realized affine Kac-Moody
Lie algebra as defined in [MP, Sects. 4.1–4.3] or, equivalently, an affine Kac-Moody
Lie algebra as defined in [K2, Chapter 6]. Such a Lie algebra then has a 1-dimensional
center and a derived algebra of codimension 1.
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1. Extended Affine Lie Algebras and their Root Systems

In this section, we recall the definitions and facts that we will need from [AABGP].
An extended affine Lie algebra(EALA, for short) is a triple (L, (·, ·), H) consisting

of two complex Lie algebrasH ⊆ L and a symmetric bilinear form (·, ·) : L × L → C
such that the axioms (EA1) through (EA5) described below hold. The first two axioms
are

(EA1) The form(·, ·) is non-degenerate and invariant.

(EA2) H 6= (0) is finite dimensional, abelian, and self-centralizing. Moreoveradh ∈
End(L) is diagonalizable for allh ∈ H.

From (EA2) we obtain the usual root space decomposition

L = ⊕α∈H∗Lα, (1.1)

whereLα = {x ∈ L|[h, x] = α(h)x for all h ∈ H}. Theroot system

R = {α ∈ H∗|Lα 6= (0)} (1.2)

is divided intoisotropicandnon-isotropicroots,

R = R0 ] R×

whereR0 = {α ∈ R|(α, α) = 0} andR× = {α ∈ R|(α, α) 6= 0}. Note that 0∈ R0 and
thatL0 = H.

Reasoning along standard lines we obtain that

(Lα, Lβ) = (0) unlessα + β = 0. (1.3)

In particular the restriction of (·, ·) toH×H is non-degenerate. This allows us to identify
H with H∗. Forα ∈ H∗ let tα ∈ H be given by

α(h) = (tα, h) for all h ∈ H. (1.4)

The mapα → tα is an isomorphism and allows us to transfer the form toH∗ by setting

(α, β) = (tα, tβ) for all α, β ∈ H∗. (1.5)

It is easy to see that
[xα, x−α] = (xα, x−α)tα

for xα ∈ Lα, x−α ∈ L−α. Thus

[Lα, L−α] = Ctα for all α ∈ R. (1.6)

The next axiom

(EA3) adL(x) is locally nilpotent for allx ∈ Lα andα ∈ R×

allows us to construct automorphisms ofL of the form

exp adteα exp ad(−t−1fα) exp adteα (1.7)

whenevereα ∈ Lα, fα ∈ L−α, α ∈ R×, andt ∈ C×. Armed with this we obtain the
following (see Theorem I.1.29 in [AABGP]):
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Theorem 1.8. Suppose thatL satisfies (EA1)–(EA3). Letα ∈ R× be non-isotropic.
Then
• Z for all β ∈ R. (1.9)
• The map

wα : x → x − 2(x, α)
(α, α)

α (1.10)

is a reflection inα of H∗ stabilizingR.
• Cα ∩ R = {α, 0, −α}. (1.11)
• dimC Lα = 1 andL−α ⊕ Ctα ⊕ Lα is a Lie algebra isomorphic tosl2(C). (1.12)
• For anyβ ∈ R there exist two non-negative integersu andd such that forn ∈ Z
we have

β + nα ∈ R ⇔ −d ≤ n ≤ u. (1.13)

Moreover,d − u = 2(β,α)
(α,α) .

Let W = WL be the subgroup ofGL(H∗) generated by the reflectionswα for
α ∈ R×. W is called theWeyl groupof our algebraL.

The remaining axioms relate the geometry associated with the form (·, ·) to the
topology of Euclidean spaces.

(EA4) R is discrete subset ofH∗.

(EA5) R× is indecomposable (i.e.,R× cannot be decomposed as a disjoint union
R1 ] R2, whereR1 andR2 are nonempty subsets ofR× satisfying(R1, R2) = {0}) and
R0 has no isolated roots (i.e., givenσ ∈ R0 there existsα ∈ R× such thatα + σ ∈ R).

Assume now thatL is an EALA, or in other words thatL satisfies the axioms (EA1)–
(EA5). From these axioms we obtain the following crucial fact aboutR0 (see Proposition
I.2.1 in [AABGP]):

(R, R0) = (0). (1.14)

Further if we let
V =

∑
α∈R

Rα. (1.15)

then

Proposition 1.16. The form(·, ·) can be scaled so that its restriction toV is real valued
and positive semidefinite.

This fact was an assumption about (·, ·) made in [H-KT]. Therein the authors reported
that V. Kac had conjectured that it follows from (EA1)–(EA5). This was proved in
Theorem I.2.14 of [AABGP]. From now onwe assume that our form(·, ·) is scaled so
that (1.16) holds.

At the outset we thus have

(R0) V is a finite dimensional real space, (·, ·) is a positive semidefinite symmetric
bilinear form on V, andR = R× ] R0, where

R× = {α ∈ R : (α, α) 6= 0} and R0 = {α ∈ R : (α, α) = 0}.

Moreover it follows from the axioms (EA1)–(EA5) and Theorem 1.8 that we have:

(R1) 0∈ R.
(R2) −R = R.
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(R3) R spansV.
(R4) α ∈ R× ⇒ 2α /∈ R.
(R5) R is discrete inV.
(R6) If α ∈ R× andβ ∈ R, then there exist non-negative integersd andu so that

{β + nα : n ∈ Z} ∩ R = {β − dα, ..., β + uα} and d − u = 2
(α, β)
(α, α)

.

(R7) R× cannot be decomposed as a disjoint unionR1 ] R2, whereR1 andR2 are
nonempty subsets ofR× satisfying(R1, R2) = {0}.
(R8) For anyσ ∈ R0, there existsα ∈ R× such thatα + σ ∈ R.

The properties just listed suggest the following definition. Anextended affine root
system(EARS for short) is defined to be a subsetR of a real vector spaceV with a form
(·, ·) so that the axioms (R0)–(R8) hold. Thus, we have just seen that the root system of
an EALA is an EARS.

Assume now thatR is an arbitrary EARS in a real vector spaceV. So in particular
our discussion will apply to the root system of an EALAL. We now describe howR
can be constructed from a finite root system and semilattices [AABGP, Chapter II].

Let
V0 = {x ∈ V|(x, V) = (0)}.

Set V̄ = V/V0 and let− : V → V̄ be the canonical map. Since our form is positive
semidefinite we have

V0 = {α ∈ V|(α, α) = 0} and R0 = R ∩ V0.

We define thenullity of R to be the (real) dimensionν of V0. If R is the root system of
an EALA L, ν is also called thenullity of L.

Next one has that̄R = {ᾱ|α ∈ R} is a finite irreducible (not necessarily reduced)
root system [AABGP, Prop. II.2.9]. (Here we depart from [Bou] in assuming that an
irreducible finite root system contains 0.) We define thefinite typeof R, which we
usually refer to simply as thetypeof R, to be the typeXl of the finite root system̄R. If
R is the root system of an EALAL, Xl is also called thetypeof L.

We now want to liftR̄ to a root system inV. Fix a baseΠ = {ᾱ1, . . . , ᾱl} for R̄ and
choose ˙αi in R so that¯̇αi = ᾱi. Let V̇ be the real span of the ˙αi’s. Then,

V = V̇ ⊕ V◦.

and− restricts to an isometry oḟV ontoV̄. If we let

Ṙ = {α̇ ∈ V̇ : α̇ + σ ∈ R for someσ ∈ V◦},

thenṘ ' R̄ (isomorphism of root systems).
For α̇ ∈ Ṙ× = Ṙ \ {0}, we define

Sα̇ = {σ ∈ V ′ : �α + σ ∈ R}.

Then,
R = R0 ∪ (

⋃
α̇∈Ṙ×

(α̇ + Sα̇)).

By means of the Weyl group one can see thatSα̇ depends only on the length of ˙α
(Prop. II.2.15 in [AABGP]). SetS (respectivelyL, E) to beSα̇ whenever ˙α is short
(respectively long, extra-long). (Here, ˙α ∈ Ṙ× is said to beshort if it has minimal
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length inṘ×, extra longif it is twice a short root ofṘ×, andlong if it is neither short
nor extra long.) Then

R = (S + S) ∪ (
⋃

α̇∈Ṙsh

(α̇ + S)) ∪ (
⋃

α̇∈Ṙlg

(α̇ + L)) ∪ (
⋃

α̇∈Ṙex

(α̇ + E)), (1.17)

whereṘ× = Ṙsh ] Ṙlg ] Ṙex is the decomposition oḟR× according to length. Note
thatR0 = S + S. One also knows thatL ⊆ S andE ⊆ S and soS, L andE consist of
isotropic roots.

The key feature here is thatS andL aresemilattices. That is, they are subsetsS of
V0 such that

(S1) 0∈ S.
(S2) −S = S.
(S3) S + 2S ⊆ S.
(S4) S spansV0.
(S5) S is discrete inV0.

As for E it is a translated semilattice(i.e.,E is nonempty and (S2)–(S5) hold) which
satisfiesE ∩ 2S = ∅.

Up to this point, we have shown how to decompose any EARS as in (1.17) using a
finite root system and up to 3 semilattices or translated semilattices of isotropic roots.
Conversely, we can use a finite root system and semilattices to construct EARS:

Construction 1.18.Suppose thaṫR is an irreducible finite root system of typeXl in a
finite dimensional real vector spacėV with positive definite symmetric bilinear form
(·, ·). We decompose the setṘ× of nonzero elements oḟR according to length aṡR× =
Ṙsh ] Ṙlg ] Ṙex. LetV0 be a finite dimensional real vector space, letV = V̇ ⊕ V0, and
extend (·, ·) to V in such a way that (V, V0) = {0}.

(a) (The simply laced construction). Suppose thatXl is simply laced, i.e.Xl = Al (l ≥ 1),
Dl (l ≥ 4), E6, E7 or E8. Suppose thatS is a semilattice inV0. If Xl 6= A1 suppose
further thatS is a lattice inV0. Put

R = R(Xl, S) := (S + S) ∪ (
⋃

α̇∈Ṙ×

(α̇ + S)).

(b) (The reduced nonsimply laced construction). Suppose thatXl is reduced and non-
simply laced, i.e.Xl = Bl (l ≥ 2), Cl (l ≥ 3), F4 or G2. Suppose thatS andL are
semilattices inV0 so that

L + kS ⊆ L and S + L ⊆ S,

wherek = 2 if Xl = Bl (l ≥ 2), Cl (l ≥ 3) or F4, andk = 3 if Xl = G2. Further, if
Xl = Bl (l ≥ 3) suppose thatL is a lattice, ifXl = Cl (l ≥ 3) suppose thatS is a lattice,
and ifXl = F4 or G2 suppose that bothS andL are lattices. Put

R = R(Xl, S, L) := (S + S) ∪ (
⋃

α̇∈Ṙsh

(α̇ + S)) ∪ (
⋃

α̇∈Ṙlg

(α̇ + L)).

(c) (TheBCl construction, l ≥ 2). Suppose thatXl = BCl (l ≥ 2). Suppose thatS and
L are semilattices inV0 andE is a translated semilattice inV0 such thatE ∩ 2S = ∅,
and
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L + 2S ⊆ L, S + L ⊆ S, E + 2L ⊆ E and L + E ⊆ L.

If l ≥ 3, suppose further thatL is a lattice. Put

R = R(BCl, S, L, E)
:= (S + S) ∪ (

⋃
α̇∈Ṙsh

(α̇ + S)) ∪ (
⋃

α̇∈Ṙlg
(α̇ + L)) ∪ (

⋃
α̇∈Ṙex

(α̇ + E)).

(d) (TheBC1 construction). Suppose thatXl = BC1. Suppose thatS is a semilattice
in V0 andE is a translated semilattice inV0 such thatE ∩ 2S = ∅ and

E + 4S ⊆ E and S + E ⊆ S.

Put
R = R(BC1, S, E) := (S + S) ∪ (

⋃
α̇∈Ṙsh

(α̇ + S)) ∪ (
⋃

α̇∈Ṙex

(α̇ + E)).

We can now state the main result on the structure of EARS (Theorem II.2.37 in
[AABGP]).

Theorem 1.19 Let Xl be one of the types for a finite root system. Starting from a
finite root systemṘ of typeXl and up to three semilattices or translated semilattices
(as indicated in the construction), Construction 1.18 produces an extended affine root
system of typeXl. Conversely, any extended affine root system of typeXl is isomorphic
to a root system obtained from the part of Construction 1.18 corresponding to typeXl.

Using Theorem 1.19, it is easy to classify EARS of nullity 1. (This classification can
also be deduced from the more general arguments in Sect. II.4 of [AABGP]. However,
these more general arguments are not necessary in nullity 1.) Indeed, suppose thatR is
an EARS of nullity 1. Then,R is obtained as in Construction 1.18 from someṘ, S, L
andE satisfying the assumptions in the construction. Since dim(V0) = 1, any semilattice
in V0 is a lattice inV0 (see Corollary II.1.7 of [AABGP]). So

S = Zδ (1.20)

for some 06= δ ∈ S. Next, if Rex 6= ∅, we have

E = δ + 2Zδ. (1.21)

Indeed, we haveE+4S ⊆ E andS+E ⊆ S and soE is the union of cosets of 4S inS. But
then sinceE∩2S = ∅ andE+2E ⊆ E, it follows thatE = (δ+4S)∪(3δ+4S) = δ+2Zδ
as claimed. Also, ifRlg 6= ∅, we have

L = Zpδ (1.22)

for some integerp > 0 (sinceL is a lattice contained inS). Moreover, ifR has type
Bl (l ≥ 2), Cl (l ≥ 3), F4 or G2, we havekS ⊆ L ⊆ S and sop = 1 or k (wherek
is as in Construction 1.18 (b)). On the other hand ifR has typeBCl (l ≥ 2), we have
2S ⊆ L ⊆ S andL + E ⊆ L which forcesp = 1. Summarizing: IfRlg 6= ∅,

p =

{
1 or 2 if R has typeBl(l ≥ 2), Cl(l ≥ 3) orF4
1 or 3 if R has typeG2
1 if R has typeBCl(l ≥ 2)

. (1.23)

SoR is one of the EARS in the following table:
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Table 1.24: EARS whenν = 1

EARS Finite typeXl Affine label
R(Xl, Zδ) Al(l ≥ 1), Dl(l ≥ 4), E6, E7, E8 X (1)

l

R(Xl, Zδ, Zδ) Bl(l ≥ 2), Cl(l ≥ 3), F4, G2 X (1)
l

R(Xl, Zδ, 2Zδ) Bl(l ≥ 2), Cl(l ≥ 3), F4 X (2)
l

R(G2, Zδ, 3Zδ) G2 G(3)
2

R(BC1, Zδ, δ + 2Zδ) BC1 BC (2)
1

R(BCl, Zδ, Zδ, δ + 2Zδ) BCl(l ≥ 2) BC (2)
l

We note that in the last column of Table 1.24 we have attached to each root systemR

anaffine label(or affine type) of the formX (t)
l , whereXl is the type ofR andt is an

integer between 1 and 3 called thetier numberof R. (The affine labels are those used in
[MP]. See the note below.) We will see in the next section that ifL is a tame EALA of
nullity 1 with root systemR thenL is isomorphic to an affine Kac-Moody Lie algebra
constructed from an affine matrixA of typeX (t)

l .
For the convenience of the reader, we note that the correspondence between the

affine labels in [MP] and the affine labels from V. Kac’ book [K2] is as follows (with
the affine labels from [K2] listed second):

X (1)
l ↔ X (1)

l if Xl is reduced,

B(2)
l ↔ D(2)

l+1 (l ≥ 2), C (2)
l ↔ A(2)

2l−1 (l ≥ 3),

F (2)
4 ↔ E(2)

6 , G(3)
2 ↔ D(3)

4 and BC (2)
l ↔ A(2)

2l (l ≥ 1).

2. Tame EALA’s of Nullity One

In this section, we obtain the characterization of affine Kac-Moody Lie algebras as tame
EALA’s of nullity 1.

We begin by considering EALA’s with arbitrary nullity. Solet L, or more precisely
(L, (·, ·), H), be an EALA with root systemR and nullity ν. The subalgebraLc of L
generated by the non-isotropic subspacesLα, α ∈ R×, is called thecoreof L. It is easy
to see thatLc is an ideal ofL. Its orthogonal complement

L⊥
c = {x ∈ L|(x, Lc) = (0)}

is nothing but the centralizer ofLc. Thus

L⊥
c = {x ∈ L|[x, Lc] = (0)}. (2.1)

L is said to betameif L⊥
c equals the centerZ(Lc) of Lc. Equivalently

L is tame if and only ifL⊥
c ⊆ Lc. (2.2)

We assume for the rest of the section that the EALAL is tame.

We use the notation of Sect. 1 for the root systemR. SoR is decomposed as in (1.17)
usingṘ, S, L andE. By Prop. II.1.11 of [AABGP] the group〈S〉 generated byS is a
lattice inV0. In fact

〈S〉 = Zδ1 ⊕ · · · ⊕ Zδν , (2.3)
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where the elementsδ1, . . . , δν ∈ S form a basis forV0 overR. Also, thanks to (II.2.34)
and (II.2.35) of [AABGP] we haveS, L, E ⊆ 〈S〉. Furthermore,

V = V̇ ⊕ V0 (2.4)

with V̇ = ⊕l
i=1Rα̇i andV0 = ⊕ν

i=1Rδi. Let

Q̇C =
l∑

i=1

Ctα̇i and Q0
C =

ν∑
i=1

Ctδi .

Then by (1.6) and (1.17) and the fact thatLc ∩ H =
∑

α∈R× [Lα, L−α], one can easily
show that

Lc ∩ H = Q̇C ⊕ Q0
C, (2.5)

Our next objective is to show that

dimC H = l + 2 dimC Q0
C. (2.6)

Since (Q̇C + Q0
C, Q0

C) = (0) and the restriction of the form to bothH andQ̇C is non-
degenerate, it follows that there exists a subspaceD of H with the following properties:

• H = Q̇C ⊕ Q0
C ⊕ D;

• dimD ≥ dimQ0
C;

• (Q̇C, D) = (0).

If dim D > dimQ0
C then we can findx ∈ D \ {0} such that (̇QC ⊕ Q0

C, x) = (0). By
(1.3) and (2.5) we getx ∈ L⊥

c andx /∈ Lc. This contradicts tameness. Hence we have
dimD = dimQ0

C and (2.6) follows.

Assume now that the nullityν of L is 1.(We are still assuming thatL is tame.) Then,
we have

S = Zδ, E = δ + 2Zδ and L = Zpδ (2.7)

as in (1.20)–(1.23). Moreover,R is one of the root systems in Table 1.24. LetXl be the
(finite) type ofR and letX (t)

l be the affine label ofR from Table 1.24.
For convenience, from now on we writeαi instead of ˙αi, i = 1, . . . , l. Then, with

respect to the fixed base{α1, . . . , αl} for Ṙ there exists a unique rootξl of maximal
height inṘ. If Ṙ has roots of different lengths then in addition toξl (which is either long
or extra-long) there exists a unique short rootξs of maximal height. Note that iḟR has
typeBCl (l ≥ 1), we haveξl = 2ξs. We use these maximal rootsξl andξs to define

α0 = −ξ + δ, (2.8)

whereξ ∈ Ṙ is defined according to the affine label ofR as follows:

Table 2.9

Affine label ξ

X (1)
l or BC (2)

l ξl = the highest root oḟR
G(3)

2 or X (2)
l , Xl 6= BCl ξs = the highest short root oḟR

The maximality of height, (1.9) and (2.7) yield
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2(α0, αi)
(αi, αi)

∈ Z≤0 for all 1 ≤ i ≤ l. (2.10)

Next we establish two results (2.11) and (2.12) which will eventually allow us to
prove the main theorem of this section without having to appeal to the realizations of
the different affine Kac-Moody Lie algebras.

First of all:

Lemma 2.11Let α ∈ R. Thenα =
∑l

i=0 aiαi for some uniquea0, a1, . . . , al ∈ Z.
Furthermore theai’s are all non-negative or all non-positive.

Proof. Indeed if theai’s exist they are unique as theαi’s are linearly independent. To
establish existence, letα ∈ R. By (1.17) we can writeα = α̇ + nδ for someα̇ ∈ Ṙ
andn ∈ Z. Substitutingα by −α if necessary we may assume thatn ≥ 0. Now (2.11)
follows from (1.17) and the following observation about finite root systems:

α̇ + ξl ∈
l∑

i=1

Z≥0αi, α̇ + 2ξs ∈
l∑

i=1

Z≥0αi for α̇ ∈ Ṙ and

α̇ + ξs ∈
l∑

i=1

Z≥0αi for α̇ ∈ Ṙsh.

Lemma 2.12If α ∈ R× then
α = wαi,

for somei, 0 ≤ i ≤ l, and somew in the subgroup ofW generated by the fundamental
reflectionswα0, . . . , wαl

.

Proof. We reason by induction onht(α) whereht(·), is the height function defined by
(2.11). We may assume thatht(α) > 1. By (1.17) we see that (α, αj) > 0 for some
0 ≤ j ≤ l. Thus 1≤ ht(wαj

α) < ht(α). By inductionwαj
α = wαi, and therefore

α = wαj
wαi is as desired.

Next, since theαi’s are non-isotropic, each of the 3-dimensional spaces

sl(i)2 = L−αi
⊕ [L−αi

, Lαi
] ⊕ Lαi

is a Lie algebra isomorphic tosl2(C) (see (1.21)). We can thus find 3(l + 1) elements
ei, hi, fi, 0 ≤ i ≤ l of L such that for alli,

ei ∈ Lαi
, fi ∈ L−αi

, [hi, ei] = 2ei, [ei, fi] = h and [hi, fi] = −2fi. (2.13)

The elementshi above are unique sincehi is the unique element of [Lαi , L−αi ] = Ctαi

satisfyingαi(hi) = 2. By (1.4) we have

hj =
2tαj

(αj , αj)
. (2.14)

So by (1.9) we have

αi(hj) =
2(αi, αj)
(αj , αj)

∈ Z. (2.15)

Using some standard facts about finite root systems, (2.10) and (2.15), one can show
that the (l + 1)× (l + 1) matrixA given by
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A = (Aij), Aij = αi(hj)

is an indecomposable (generalized) Cartan matrix. If we write (see Table 2.9)

ξ =
l∑

i=1

niαi,

and setn0 = 1, then forn = (n0, n1, · · · , nl) we havenA = 0. Indeed, thejth entry of
nA is

l∑
i=0

niAij = A0j +
l∑

i=1

niαi(hj) = α0(hj) + ξ(hj) = δ(hj) = 0.

We have established thatA is an affine Cartan matrix with null rootn. It is easy to
verify thatA is of typeX (t)

l according to the list in Chapter 3.5 of [MP]. We callA the
affine Cartan matrix associated to(L, (·, ·), H). We will see thatL is isomorphic to an
affine Kac-Moody algebra with Cartan matrixA.

Observe that inL the following familiar looking relations hold:

(r1) [hi, ej ] = Ajiej , [hi, fj ] = −Ajifj for 0 ≤ i, j ≤ l;
(r2) [ei, fj ] = δijhi for 0 ≤ i, j ≤ l;
(r3) (adej)−Aij+1ei = 0, (adfj)−Aij+1fi = 0 for 0≤ i 6= j ≤ l.

(2.16)

Indeed, (r1) is a consequence of (2.13) and so is (r2) in the casei = j. The casei 6= j
of (r2) follows from (2.11). To prove (r3), assumej 6= i. We have [fi, ej ] = 0, since
−αi + αj /∈ R by (2.11). Then by Lemma I.1.21 in [AABGP] we get (r3) (or one can
use the standardsl2 theory to easily show this fact).

Now let g = g(A) be the affine Kac-Moody Lie algebra constructed from the
matrix A and a minimal realization ofA. In the notation of [MP, Sect. 4.2],g is
the Lie algebrag(A, R), whereR = (h, Π, Π∨) is a minimal realization ofA. (See
also [K2, Chapter 6], whereg is denoted byg(A).) So h is a fixed Cartan subalge-
bra of g, Π = {α0, α1, . . . , αl} ⊆ h∗ is a base for the root system1 of (g, h) and
Π∨ = {α∨

0 , . . . , α∨
l } ⊆ h is a corresponding co-base. Observe that we are using the

same notationαi for a root of (g, h) and for a root of (G, H), i = 0, . . . , l. We regard this
as an identification which we extend to an identification of the root lattice

∑l
i=0 Zαi of

g in h∗ with
∑l

i=0 Zαi in H∗.
For later use we note the following consequence of (2.12):

Corollary 2.17. Let α =
∑l

i=0 aiαi ∈ H∗. If α ∈ R×, thenα, when viewed as an
element ofh∗, is a real root ofg.

If Dg is the derived algebra ofg (i.e.,Dg = [g, g]) we have the following information
(see Proposition 4.1.12 in [MP]):

(Dg)α = gα for all α ∈ h∗ \ {0}, (2.18

(Dg)0 = Dg ∩ h = ⊕l
i=0Cα∨

i . (2.19)

Since dimh = l + 2 (the realization being minimal) it follows from (2.18)-(2.19) that
there existsd ∈ h such that

h = (⊕l
i=0Cα∨

i ) ⊕ Cd, (2.20)

δ(d) 6= 0, where δ ∈ 1 is null, (2.21)



682 B.N. Allison, S. Berman, Y. Gao, A. Pianzola

g = Dg ⊕ Cd. (2.22)

By (2.16), [MP, Proposition 4.3.3] and the Gaber-Kac theorem (see [MP, Theorem
4.6.4]) there exists a natural Lie algebra homomorphism

ρ : Dg → L
satisfying

ρ((Dg)αi ) = Lαi
, (2.23)

ρ(α∨
i ) = hi, (2.24)

for all 0 ≤ i ≤ l. ChooseD ∈ H so that

αi(D) = αi(d)

for all 0 ≤ i ≤ l. By (1.14) and (2.21) it follows that

D /∈ Q̇C ⊕ Q0
C = ⊕l

i=0Chi.

Now (2.6) yields
H = (⊕l

i=0Chi) ⊕ CD.

We can now in view of (2.22) extendρ to a Lie algebra homomorphism

ρ : g → L,

so thatρ(d) = D. Sinceh ∼= H underρ we conclude from (2.23) and [MP, Prop. 4.3.9]
thatρ is injective. Note thatρ is graded:

ρ(gα) ⊆ Lα for all α ∈
l∑

i=0

Zαi. (2.25)

Next we show that

ρ(Dg) = Lc and ρ(g) = Lc + CD. (2.26)

(The sumLc + CD is actually direct by (2.5)). For this we must show thatLα ⊆ ρ(Dg)
wheneverα ∈ R×. By (2.17)α is a real root ofg sogα 6= (0). Now (2.26) follows from
the fact thatρ is injective, graded and dimLα = 1.

Let M = Lc + CD. This is a subalgebra ofL and we know that

H ⊆ M. (2.27)

Consequently, by [MP, Prop. 2.1.1],M is a graded subalgebra:

M = ⊕α∈H∗Mα where Mα = M ∩ Lα. (2.28)

Let us now show that

M⊥ := {x ∈ L|(x, M) = (0)} = (0). (2.29)

Indeed, we have

M⊥ ⊆ L⊥
c (asLc ⊆ M)

= Z(Lc) (by tameness)
⊆ H (useρ andZ(Dg) ⊆ h [MP, Prop. 4.3.4]).
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Now (1.3) and (2.27) yieldM⊥ = {0}.
Finally we can show that

L = M. (2.30)

By (2.28) it suffices to show thatMα = Lα for all α ∈ H∗. Let α ∈ H∗, and set

L(α) = Lα ⊕ L−α and M(α) = Mα ⊕ M−α.

Consider the canonical map
χ : L(α) → M(α)∗

given by
χ(x)(y) = (x, y) for all x ∈ L(α), y ∈ M(α).

By (1.3) and (2.29),χ is injective. On the other handM(α) is finite dimensional because
of (2.25) and (2.26). Thus (2.30) holds true.

We have therefore proved
Theorem 2.31 Let (L, (·, ·), H) be a tame extended affine Lie algebra of nullity one.
Then there is a graded isomorphism

L ∼= g(A),

whereA is the affine Cartan matrix associated to(L, (·, ·), H) andg(A) is a (minimally
realized) Kac-Moody Lie algebra constructed fromA.

Thus we have proved the implication “⇐=” in the following characterization of
affine Kac-Moody Lie algebras. The reverse implication “=⇒” follows from well known
properties of affine algebras.
Theorem 2.32 A Lie algebraL overC is isomorphic to an affine Kac-Moody Lie algebra
if and only ifL is isomorphic to a tame extended affine Lie algebra of nullity 1.

3. Constructions

As we have seen in Sect. 1, the EARS of nullity 1 are:

(a) R(Xl, Zδ) andR(Xl, Zδ, Zδ), whereXl is a reduced type,
(b) R(Bl, Zδ, 2Zδ) (l ≥ 2),
(c) R(Cl, Zδ, 2Zδ) (l ≥ 3),
(d) R(BC1, Zδ, δ + 2Zδ) andR(BCl, Zδ, Zδ, δ + 2Zδ) (l ≥ 2),
(e) R(F4, Zδ, 2Zδ) and
(f) R(G2, Zδ, 3Zδ).

In this section, for each of the above root systemsR, we describe a construction of a
tame EALA with root systemR. It follows from Theorem 2.31 that these Lie algebras
are affine Kac-Moody Lie algebras. Also, all affine types are obtained, and so the Lie
algebras that we construct are precisely the affine Kac-Moody Lie algebras. (This gives
another proof of the implication “=⇒” in Theorem 2.32.)

The constructions that we describe are special cases of the constructions given in
Chapter III of [AABGP]. We present them here since they take on a much simpler form
than in [AABGP], where EALA’s of arbitrary nullity were considered. We do not give
proofs of any of the facts that we describe. The interested reader can either directly check
the assertions or read the more general proofs in Chapter III of [AABGP].
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We begin by recalling the nullity 1 case of the general construction of EALA’s
described in [AABGP, Chapter III,§1]. Assume thatG =

∑
n∈Z Gn is aZ-graded Lie

algebra overC which possesses a nondegenerate invariant symmetric bilinear form (·, ·)
and a nontrivial finite dimensional ad-diagonalizable abelian subalgebraḢ such that the
restriction of (·, ·) to Ḣ is nondegenerate. Then as is usual we can transfer (·, ·) to a form
on the dual spacėH∗ of Ḣ. Let

G =
∑

α̇∈Ḣ∗

Gα̇, whereGα̇ = {x ∈ G : [h, x] = α̇(h)x for all h ∈ Ḣ},

be the root space decomposition ofG relative toḢ, and putṘ = {α̇ ∈ Ḣ∗ : Gα̇ 6= {0}}.
We suppose further that the following conditions hold:

• G is generated as a Lie algebra by
∑

α̇∈Ṙ\{0} Gα̇.

• The restriction of the form (·, ·) to the real spacėV spanned bẏR is a positive definite
real valued form such thaṫR is an irreducible finite root system (including 0) in the
Euclidean space (V̇, (·, ·)).

• Gα̇ =
∑

n∈Zn (Gn ∩ Gα̇) for α̇ ∈ Ṙ.
• G0 ∩ Gα̇ 6= {0} for eachα̇ ∈ Ṙ \ {0} such that12α̇ /∈ Ṙ.
• Ḣ = G0 ∩ G0.
• Gn 6= {0} for at least one nonzeron ∈ Z, and
• m, n ∈ Z, m + n 6= 0 =⇒ (Gm, Gn) = {0}.

Using this data, we can construct a tame EALAL of nullity 1. To do this, let

L = G ⊕ Cc ⊕ Cd

with anti-commutative product [·, ·]′ defined by

[L, c]′ = {0},
[d, x]′ = nx for all x ∈ Gn, and
[x, y]′ = [x, y] + δm,−n(x, y)c for x ∈ Gm, y ∈ Gn.

Next we define a form (·, ·) onL such that (·, ·) extends the form (·, ·) onG and

(c, c) = (d, d) = 0, (c, d) = 1 and (c, G) = (d, G) = 0.

Finally, putH = Ḣ ⊕ Cc ⊕ Cd. Then, it follows from [AABGP, Prop. III.1.20] thatL
is a tame EALA of nullity 1. Hence, by Theorem 2.31,L is an affine Kac-Moody Lie
algebra.

We are now ready to present, for each EARSR in the list at the beginning of this
section, a construction of a tame EALAL of nullity 1 with root systemR. In each case we
will specify a Lie algebraG with aZ-grading, a form (·, ·) and a subalgebrȧH as above;
and use the general construction just described to construct the EALAL = G⊕Cc⊕Cd.
In each of the constructions, we will use the ring

S = C[t, t−1]

of Laurent polynomials overC. Note thatS has a naturalZ-gradingS =
∑

n∈Z Sn,
whereSn = Ctn, n ∈ Z. Also we will use the linear mapε : S → S defined by linear
extension of

ε(tn) =

{
1 if n = 0
0 if n 6= 0.
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Finally, in each case, at the beginning of the construction we will list the EARSR being
considered, the affine type of the resulting Kac-Moody Lie algebraL and the relevant
section of [AABGP, Chapter III] which contains the more general construction.

(a) R = R(Xl, Zδ) or R(Xl, Zδ, Zδ), whereXl is a reduced type. Affine type= X (1)
l .

[AABGP, Sect. III.1]
This is the classical construction of the nontwisted affine Kac-Moody Lie algebras

([K1] and [M]). LetXl be a reduced type, leṫG be a finite dimensional simple Lie algebra
of typeXl overC and letḢ be a Cartan subalgebra ofĠ. Let G = S⊗CĠ. We define a
Z-grading onG by puttingGn = Sn⊗CĠ for n ∈ Z. The form (·, ·) onG is defined by

(a⊗Cx, b⊗Cy) = ε(ab)κ(x, y)

for a, b ∈ S andx, y ∈ Ġ, whereκ is the Killing form onĠ. Finally, we identifyḢ =
1⊗CḢ as a subalgebra ofG. Then, applying the general construction,L = G ⊕ Cc⊕ Cd
is a tame EALA with root systemR(Xl, Zδ) if Xl is simply laced andR(Xl, Zδ, Zδ)
otherwise. So, by Theorem 2.31,L is an affine Kac-Moody Lie algebra of affine typeX (1)

l .

(b) R = R(Bl, Zδ, 2Zδ), l ≥ 2. Affine type = B(2)
l . [AABGP, Sect. III.3]

Let l ≥ 2. We begin by letting

G = {X ∈ M2l+2(S) : G−1XtG = −X}, whereG =

 0 Il 0 0
Il 0 0 0
0 0 1 0
0 0 0 t

 ∈ M2l+2(S).

Then,G is a Lie algebra overC under the commutator product, andG is the set of all
(2l + 2)× (2l + 2)-matrices overS of the form A S −Ct −tEt

T −At −Bt −tDt

B C 0 −ta
D E a 0

 ,

whereA, S, T ∈ Ml(S) = Ml×l(S), B, C, D, E ∈ M1×l(S), a ∈ S, St = −S and
T t = −T . We define aZ-grading onM2l+2(S), and hence by restriction onG, by putting

deg(tnepq) = 2n + δp,2l+2 − δq,2l+2

for n ∈ Z and 1≤ p, q ≤ 2l + 2. (Here of course the elementsepq are the matrix units.)
The form (·, ·) onG is defined by

(X, Y ) = ε(tr(XY ))

for X, Y ∈ G. Finally the subalgebrȧH of G is defined by

Ḣ = {
l∑

i=1

αi(eii − el+i,l+i) : αi ∈ C}.

With this input, the general construction produces a tame EALAL = G ⊕Cc⊕Cd with
root systemR(Bl, Zδ, 2Zδ). Hence, again by Theorem 2.31,L is an affine Kac-Moody
Lie algebra of affine typeB(2)

l .
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(d) R = R(Cl, Zδ, 2Zδ), l ≥ 3. Affine type = C (2)
l . [AABGP, Sect. III.4].

Let l ≥ 3. We first let− be the involution ofS such that̄t = −t. We then define

G = {X ∈ M2l(S) : G−1X̄tG = −X, tr(X) = 0}, whereG =
[ 0 Il

−Il 0

]
∈ M2l(S).

G is a Lie algebra overC under the commutator product, andG is the set of all 2l × 2l-
matrices overS of the form [

A S
T −Āt

]
whereA, S, T ∈ Ml(S), tr(A) = tr(A), St = S andT t = T . We define aZ-grading on
M2l(S), and hence by restriction onG, by putting

deg(tnepq) = n

for n ∈ Z and 1≤ p, q ≤ 2l. The form (·, ·) and the subalgebrȧH are defined exactly as
in (b) above. This time the general construction produces a tame EALAL = G⊕Cc⊕Cd
with root systemR(Cl, Zδ, 2Zδ), and thereforeL is an affine Kac-Moody Lie algebra
of affine typeC (2)

l .

(d) R = R(BCl, Zδ, δ + 2Zδ), l = 1, and R = R(BCl, Zδ, Zδ, δ + 2Zδ), l ≥ 2. Affine
type = BC (2)

l . [AABGP, Sect. III.3]
Let l ≥ 1. Let− be the involution ofS defined in (c) above, and put

G = {X ∈ M2l+1(S) : G−1X̄tG = −X, tr(X) = 0}, where

G =

[
0 Il 0
Il 0 0
0 0 1

]
∈ M2l+1(S).

Again G is a Lie algebra overC under the commutator product, and this timeG is the
set of all (2l + 1)× (2l + 1)-matrices overS of the form[

A S −C̄t

T −Āt −B̄t

B C a

]
,

whereA, S, T ∈ Ml(S), B, C ∈ M1×l(S), a ∈ S, tr(A) − tr(A) + a = 0, S̄t = −S and
T̄ t = −T . We define aZ-grading onM2l(S), and hence by restriction onG, by putting

deg(tnepq) = n

for n ∈ Z and 1≤ p, q ≤ 2l+1. The form (·, ·) and the subalgebrȧH are defined exactly
as in (b) above. Then the general construction produces a tame EALAL = G ⊕Cc⊕Cd
with root systemR(BCl, Zδ, δ + 2Zδ) if l = 1 andR(BCl, Zδ, Zδ, δ + 2Zδ) if l ≥ 2.
ThereforeL is an affine Kac-Moody Lie algebra of affine typeBC (2)

l .

(e)R = R(F4, Zδ, 2Zδ). Affine type = F (2)
4 . [AABGP, Sect. III.5]

Let J be the 27–dimensional exceptional simple Jordan algebra overC with product
denoted by· (see [S, Chapter IV]). LetT : J → C be the normalized trace onJ;
that isT is the usual trace normalized so thatT (1) = 1. ThenJ = C1 ⊕ J0, where
J0 = {x ∈ J : T (x) = 0}. Further, letĠ = [LJ, LJ], whereLx is the left multiplication
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operator byx ∈ J. Then,Ġ is the Lie algebra of all derivations ofJ andĠ is the simple
Lie algebra of typeF4 overC. Put

G = (Rt⊗CJ0) ⊕ (R⊗CĠ),

whereR = C[t2, t−2] in S. We define an anticommutative multiplication [, ] on G by

[at⊗Cx, bt⊗Cy] = abt2⊗C[Lx, Ly], [a⊗CD, bt⊗Cx] = (ab)t⊗CDy and

[a⊗CD, b⊗CE] = ab⊗C[D, E]

for a, b ∈ R, x, y ∈ J0 andD, E ∈ Ġ. Then,G is a Lie algebra overC. TheZ-grading
onG is defined by

deg(t2n+1⊗Cx) = 2n + 1 and deg(t2n⊗CD) = 2n

for x ∈ J0 andD ∈ Ġ. The form (·, ·) onG is the unique symmetric bilinear form such
thatRt⊗CJ0 is orthogonal toR⊗CĠ,

(at⊗Cx, bt⊗Cy) = ε(abt2)T (x · y) and (a⊗CD, b⊗C[Lu, Lv]) = ε(ab)T ((Du) · v)

for a, b ∈ R, D ∈ Ġ andx, y ∈ J0 andu, v ∈ J. Finally, we obtain a subalgebrȧH of G
by identifying a Cartan subalgebrȧH of Ġ with 1⊗CḢ. Then the general construction
produces a tame EALAL = G⊕Cc⊕Cd with root systemR(F4, Zδ, 2Zδ), and therefore
L is an affine Kac-Moody Lie algebra of affine typeF (2)

4 .

(f) R = R(G2, Zδ, 3Zδ). Affine type = G(3)
2 . [AABGP, Sect. III.5]

Let A be the 8-dimensional Cayley algebra overC (see [S, Chapter III]). LetT :
A → C be the normalized trace onA, in which case we haveA = C1 ⊕ A0, where
A0 = {x ∈ A : T (x) = 0}. Moreover, ifx, y ∈ A, we have

xy = T (xy)1 +x ∗ y

for some uniquex ∗ y ∈ A0. Next, letĠ = DA,A, whereDx,y = 1
4(L[x,y] − R[x,y] −

3[Lx, Ry]) for x, y ∈ J. (HereLx and Rx denote the left and right multiplication
operators byx in A.) ThenĠ is the Lie algebra of all derivations ofA andĠ is the simple
Lie algebra of typeG2 overC. Put

G = (Rt⊗CA0) ⊕ (Rt2⊗CA0) ⊕ (R⊗CĠ),

whereR = C[t3, t−3] in S. We define an anticommutative multiplication [, ] on G by

[at ⊗C x, bt ⊗C y] = (ab)t2 ⊗C x ∗ y, [at2 ⊗C x, bt2 ⊗C y] = (abt3)t ⊗C x ∗ y,

[a ⊗C D, bt ⊗C x] = (ab)t ⊗C Dx,
[
a ⊗C D, bt2 ⊗C x

]
= (ab)t2 ⊗C Dx,[

at ⊗C x, bt2 ⊗C y
]

= abt3 ⊗C Dx,y, [a ⊗C D, b ⊗C E] = ab⊗C[D, E]

for a, b ∈ R, x, y ∈ A0 andD, E ∈ Ġ. Then,G is a Lie algebra overC. TheZ-grading
onG is defined by

deg(t3n+1⊗Cx) = 3n + 1, deg(t3n+2⊗Cx) = 3n + 2 and deg(t3n⊗CD) = 3n

for x ∈ A0 andD ∈ Ġ. Next the form (·, ·) on G is the unique symmetric bilinear
form such thatRt⊗CA0 is orthogonal toRt⊗CA0 +R⊗CĠ, Rt2⊗CA0 is orthogonal to
Rt2⊗CA0 + R⊗CĠ,
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(at⊗Cx, bt2⊗Cy) = ε(abt3)T (xy) and (a⊗CD, b⊗CDu,v) = ε(ab)T ((Du)v)

for a, b ∈ R, D ∈ Ġ andx, y ∈ A0 andu, v ∈ A. Again, we obtain a subalgebra
Ḣ of G by identifying a Cartan subalgebrȧH of Ġ with 1⊗CḢ. This time the general
construction produces a tame EALAL = G⊕Cc⊕Cd with root systemR(G2, Zδ, 3Zδ),
and thereforeL is an affine Kac-Moody Lie algebra of affine typeG(3)

2 .
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