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Abstract: We give a new characterization of the affine Kac-Moody algebras in terms
of extended affine Lie algebras. We also present new realizations of the twisted affine
Kac-Moody algebras.

Introduction

The purpose of this paper is twofold. We present a new characterization of the affine
Kac-Moody Lie algebras and then go on to give some new realizations for the twisted
affine algebras.

This work grew out of our study, in [AABGP], of extended affine Lie algebras
(EALAS, for short) and their root systems. EALA's were first introduced in [H-KT] by
R. Hgegh-Krohn and B. Torresani (under the name irreducible quasisimple Lie algebras)
as a generalization of finite dimensional simple Lie algebras and affine Kac-Moody Lie
algebras. Thereafter classifications of tame EALAS of simply-laced type (extgpt
were carried out in [BGK] and [BGKN]. In [AABGP], we developed the basic structure
theory of EALA'S; gave a satisfying picture and many classification results for their root
systems; and introduced many new examples of these algebras.

The characterization of affine Lie algebras proved in this paper says that a Lie algebra
L over the complex field is an affine Kac-Moody Lie algebra if and only if it is a tame
EALA with nullity » = 1. Moreover the realizations we give for the twisted algebras
show how they can be viewed as Lie algebras arising from some of the usual and well-
known constructions of finite dimensional simple Lie algebras in characteristic O studied
by N. Jacobson, G. Seligman, and J. Tits, among others. Thus, for example, we are able
to show that the twisted affine algelF&?) (using the notation from [MP]) has structure

tied up with a Jordan algebra while that 6 is connected with a Cayley algebra.

* The author gratefully acknowledges the support of the Natural Sciences and Engineering Research Council
of Canada.
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The aIgebrasBl(Z) (> 2), Cl(z) (>3 andBCl(z) (! > 1) are dealt with using matrix
constructions.

To describe our main result in more detail, we briefly recall some terminology from
[AABGP]. We begin with a complex Lie algebxawhich has a non-degenerate invariant
symmetric bilinear form and a self-centralizing finite dimensional diagonalizable abelian
subalgebrd{. One then gets a root space decompositiod ahd assumes that:f is
an element in a root space of a non-isotropic root thenaats locally nilpotently orC.

One also assumes that the Ratf roots of £ is a discrete subset &f*, that the sei*

of non-isotropic roots is indecomposable and that there are no isolated isotropic roots.
Such an algebra is called axtended affine Lie algebraetV be the real span of the
roots. This is a positive semi-definite space andrihlity v of R is by definition the
dimension of the radical of this space. Finallyfetbe the subalgebra df generated by

the non-isotropic root spaces ffand call this theoreof £. ThenL. is in fact an ideal

of £, and. is calledtameif the kernel of the representatign. £ — End(£.) given by

p(r) = adz|,_is just the center of.. Our main result then says that such an algebra
(i.e., atame EALA of nullity one) is an affine Kac-Moody Lie algebra. (The converse of
this result follows from well known properties of affine Lie algebras.) Our proof relies
on some of the general results in [AABGP] dealing with EALA's as well as some results
about the root systems involved. We think this result is interesting in its own right but
note here that it also clearly identifies the affine Kac-Moody algebras within the class
of tame EALAs and hence shows how the latter algebras can be considered as natural
generalizations of the former.

Other characterizations of the affine Kac-Moody Lie algebras are known. For exam-
ple, from the deep and beautiful work of O. Mathieu in [Mal1-3] which extends earlier
work of Kac in [K3] one finds the following result. & = &,,cz L,, is a simpleZ-graded
Lie algebra which is infinite dimensional in both directions and if the dimensionig, of
are uniformly bounded then eithéris a Witt algebra or an affine Lie algebra. Moreover,
the Witt algebra does not admit a non-degenerate invariant form. Of course, here, in this
characterization, one means by affine Lie algebra the loop version, so there is no cen-
ter and no degree derivation added. There are some other interesting characterizations
within Kac-Moody Lie algebras. One, given in [BC], is in terms of universal enveloping
algebras: Ifg is a symmetrizable Kac-Moody Lie algebra then its universal enveloping
algebrais an Ore domain which is not Noetherian if and orgysfan affine Kac-Moody
Lie algebra. Another characterization, given in [G], is in terms of the second homology
group of Lie algebras: I is a Kac-Moody Lie algebra (not necessarily symmetrizable)
then the second homology groiify(g ®c C[t,t]) of the Lie algebray ®c C[t, 7]
is infinite dimensional if and only i is affine.

The paper is organized as follows. In Sect. 1 we will recall the terminology, notation
and results that we need from [AABGP]. Our main result, the characterization of affine
Lie algebras, is contained in Sect. 2. This depends on numerous results about root systems
as well as some results abau-triples which appear in our algebras. Finally in Sect. 3
we present our realizations following along the lines in [AABGP].

Throughout the papeall algebras will be over the fiel@ of complex number&y
anaffine Kac-Moody Lie algebrare will mean a minimally realized affine Kac-Moody
Lie algebra as defined in [MP, Sects. 4.1-4.3] or, equivalently, an affine Kac-Moody
Lie algebra as defined in [K2, Chapter 6]. Such a Lie algebra then has a 1-dimensional
center and a derived algebra of codimension 1.
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1. Extended Affine Lie Algebras and their Root Systems

In this section, we recall the definitions and facts that we will need from [AABGP].
An extended affine Lie algebf&ALA, for short) is a triple £, (-, -), H) consisting
of two complex Lie algebra®( C £ and a symmetric bilinear form,() : L x £ — C
such that the axioms (EA1) through (EA5) described below hold. The first two axioms
are

(EA1l) The form(-,-) is non-degenerate and invariant.

(EA2) H #(0)is finite dimensional, abelian, and self-centralizing. Moreaaeh <
End L) is diagonalizable for alh € H.

From (EA2) we obtain the usual root space decomposition

L =®aerLas (11)
whereL,, = {z € L|[h,z] = a(h)z for all h € H}. Theroot system
R={aeH|Cq 7 (0)) (1.2)

is divided intoisotropicandnon-isotropicroots,
R=R"y R*

whereR® = {a € R|(a, @) = 0} andR* = {a € R|(a, a) # 0}. Note that Oc R° and
thatLo = H.
Reasoning along standard lines we obtain that

(Lo, Ls)=(0) unlessx+3=0. (1.3)

In particular the restriction of (-) to H x H is non-degenerate. This allows us to identify
H with H*. Fora € H* lett,, € H be given by

a(h) = (e, h) forallh e H. (1.4)
The mapy — t,, is an isomorphism and allows us to transfer the forrftoby setting
(o, B) = (ta,tp) forallo, g e H". (1.5)

It is easy to see that
[Ta; 0] = (Ta, T—a)ta

forx, € Lo, x_0 € L_,. Thus
[La,L_o]=Ct, forallae R. (1.6)
The next axiom
(EA3) ad:(z) is locally nilpotent for allz € £, anda € R*
allows us to construct automorphisms®bf the form
exp adte, expad(t~1f,) exp ade, (1.7)

whenevere, € L., fo € L_o,a € R*, andt € C*. Armed with this we obtain the
following (see Theorem 1.1.29 in [AABGP]):
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Theorem 1.8. Suppose that satisfies (EA1)—(EA3). Let € R* be non-isotropic.
Then

e 7 forall g€ R. (2.9)
e Themap

(1.10)

is a reflection inw of H* stabilizing R.
¢ CanR={«,0,—a}. (2.12)
o dimcL,=1andl_, & Ct, ® L, is a Lie algebra isomorphic tel,(C). (1.12)
e Foranyp € R there exist two non-negative integersand d such that forn € Z
we have

B+naeR & —d<n<u. (1.13)
Moreover,d — u = 26:2)

[CHIN

Let W = W, be the subgroup of7L(H+*) generated by the reflections, for
a € R*. W is called theNeyl groupof our algebra’.

The remaining axioms relate the geometry associated with the fornt@ the
topology of Euclidean spaces.

(EA4) Ris discrete subset Gi*.

(EA5) R* is indecomposable (i.eR* cannot be decomposed as a disjoint union
Ri1 W Ry, whereR; and R, are nonempty subsets B satisfying(R., R,) = {0}) and
RO has no isolated roots (i.e., givenc RO there existsy € R* such thato + o € R).

Assume now thaf is an EALA or in other words thaf satisfies the axioms (EA1)—
(EAS). From these axioms we obtain the following crucial fact aliéfl¢see Proposition
[.2.1in [AABGP]):

(R, R% = (0). (1.14)
Further if we let
V=> Ra. (1.15)
a€ER

then

Proposition 1.16. The form(-, -) can be scaled so that its restrictionYbis real valued
and positive semidefinite.

This fact was an assumption about)Y made in [H-KT]. Therein the authors reported
that V. Kac had conjectured that it follows from (EA1)—-(EA5). This was proved in
Theorem 1.2.14 of [AABGP]. From now owe assume that our forin, -) is scaled so
that (1.16) holds.

At the outset we thus have

(RO) Vs a finite dimensional real spacé€, -) is a positive semidefinite symmetric
bilinear form on V, and R = R* & R°, where

R*={acR:(a,0) #0} and R°={a € R: (o, a)=0}.
Moreover it follows from the axioms (EA1)—-(EA5) and Theorem 1.8 that we have:

(R1) 0O€R.
(R2) —R=R.
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(R3) R spansy.
(R4) aeR*=2a¢R.
(R5) Risdiscretein).
(R6) If a € R* andf € R, then there exist non-negative integérand« so that
{B+tna:neZ}NR={F—da,..,0+ua} and d—u= ZEQ’B;.
o,
(R7) R* cannot be decomposed as a disjoint uninw R,, whereR; and R, are
nonempty subsets & satisfying(R1, R») = {0}.
(R8) Foranyo € RY, there existsy € R* such thatw + o € R.

The properties just listed suggest the following definition.extended affine root
system(EARS for short) is defined to be a subgeof a real vector space with a form
(-, -) so that the axioms (R0)—(R8) hold. Thus, we have just seen that the root system of
an EALA is an EARS.

Assume now thaR is an arbitrary EARS in a real vector spate So in particular
our discussion will apply to the root system of an EAIZA We now describe houR
can be constructed from a finite root system and semilattices [AABGP, Chapter I1].

Let

V0= {z € V|(z,V) = (0)}.

SetV = y/Voandlet™ : YV — V be the canonical map. Since our form is positive
semidefinite we have

W={aeV|(a,0)=0} and R°=RNV°

We define thanullity of R to be the (real) dimensiomof V0. If R is the root system of
an EALA L, v is also called thaullity of L.

Next one has thak = {a]a € R} is a finite irreducible (not necessarily reduced)
root system [AABGP, Prop. 11.2.9]. (Here we depart from [Bou] in assuming that an
irreducible finite root system contains 0.) We define tinite typeof R, which we
usually refer to simply as thiypeof R, to be the typeX; of the finite root systen®. If
R is the root system of an EALK, X is also called théypeof L. _

We now want to liftR to a root system iv. Fix abasdl = {ay, ..., a;} for R and
choosey; in R so thato; = a;. LetV be the real span of the;’s. Then,

V=Va)Ve.
and~ restricts to an isometry af ontoV. If we let
R={a€V:a+oc Rforsomes € V°},

thenR ~ R (isomorphism of root systems).
Fora € R* = R\ {0}, we define

So={oceV  :ia+toceR}.
Then,
R=R°U( | (@+5a).
aeRX
By means of the Weyl group one can see tRatdepends only on the length of

(Prop. 11.2.15 in [AABGP])). SetS (respectivelyL, F) to be S, whenevera'is short
(respectively long, extra-long). (Here, € R* is said to beshort if it has minimal



676 B.N. Allison, S. Berman, Y. Gao, A. Pianzola

length inR*, extra longif it is twice a short root ofR*, andlong if it is neither short
nor extra long.) Then

R=(S+S)u( | @+sHu( | @+nyu( | @+E)), (1.17)

O‘LGRS;,, dGng dGRCI

whereR* = Ry, W Ry W R, is the decomposition akR* according to length. Note
that R® = S + S. One also knows that C S andE C S and soS, L andE consist of
isotropic roots.

The key feature here is thatand L aresemilatticesThat is, they are subsefsof
10 such that

(S1) 0eS.
(S2) —S=8§.

(S3) S+25CS.

(S4) S spans)°.

(S5) Sis discrete inV°.

As for E it is atranslated semilatticéi.e., £ is nonempty and (S2)—(S5) hold) which
satisfiest; N 25 = .

Up to this point, we have shown how to decompose any EARS as in (1.17) using a
finite root system and up to 3 semilattices or translated semilattices of isotropic roots.
Conversely, we can use a finite root system and semilattices to construct EARS:

Construction 1.18Suppose thar is an irreducible finite root system of typ€; in a
finite dimensional real vector spa¢ewith positive definite symmetric bilinear form
(-,-). We decompose the sBt* of nonzero elements dt according to length a&* =
Rsn W Ry W Rey. Let 10 be a finite dimensional real vector space et V @ V°, and
extend (,-) to V in such a way thaty, V°) = {0}.

(a) (The simply laced constructiprSuppose thaX; is simply laced, i.eX; = A; (I > 1),
D, (I > 4), Eg, F7 or Eg. Suppose tha$ is a semilattice in°. If X; # A; suppose
further thatS is a lattice inV°. Put

R=R(X,,8) =S +S)u( | (@+9).
QERX
(b) (The reduced nonsimply laced construcjidBuppose thak; is reduced and non-

simply laced, i.eX; = B; (I > 2),C; (I > 3), F,4 or G. Suppose that and L are
semilattices in/° so that

L+kSCL and S+LCS,

wherek = 21if X; = B; (I > 2),C; (I > 3) or Fy, andk = 3 if X; = G». Further, if
X; = B; (I > 3) suppose that is a lattice, ifX; = C; (I > 3) suppose that is a lattice,
and if X; = F4 or G, suppose that bots and L are lattices. Put

R=R(X,,S,L):=(+S)u( [ @+s)u( | @+1r).
&€Rqp a€Ry,

(c) (TheB(; construction! > 2). Suppose thaX; = BC; (I > 2). Suppose thai and
L are semilattices in® and E is a translated semilattice W such thatt N 25 = (),
and
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L+2SCL,S+LC S, E+2LCFE and L+EC L.
If I > 3, suppose further thdt is a lattice. Put

R = R(BC), S, L, E)
= (S + U WUsch,, @+ U Uaer, @+ L) U Usesp,, (@ + E)).

(d) (TheBC1 construction. Suppose thak; = BC1. Suppose tha$ is a semilattice
in V° andE is a translated semilattice W° such that? N 2S5 = () and

E+4SCFE and S+FE CS.

Put
R=R(BC1,S,E) =(S+5)U( U (a+9)u( U (a + E)).

&€R,, GER s

We can now state the main result on the structure of EARS (Theorem 11.2.37 in
[AABGP]).

Theorem 1.19 Let X, be one of the types for a finite root system. Starting from a

finite root systenk of type X; and up to three semilattices or translated semilattices

(as indicated in the construction), Construction 1.18 produces an extended affine root

system of typ&;. Conversely, any extended affine root system of e isomorphic

to a root system obtained from the part of Construction 1.18 corresponding toXiype
Using Theorem 1.19, itis easy to classify EARS of nullity 1. (This classification can

also be deduced from the more general arguments in Sect. 1.4 of [AABGP]. However,

these more general arguments are not necessary in nullity 1.) Indeed, suppdsésthat

an EARS of nullity 1. ThenR is obtained as in Construction 1.18 from soigeS, L

andF satisfying the assumptions in the construction. Since Win¢ 1, any semilattice

in V0 is a lattice inV° (see Corollary 11.1.7 of [AABGP)). So

S=75 (1.20)
for some 07 § € S. Next, if R.,, 7 (), we have
E =5+ 276. (1.21)

Indeed, we hav&+4S C FandS+FE C S andsaF is the union of cosets ofslin S. But
thensince®N2S = PandE+2F C E,itfollows thatE = (6 +4S5)U(35+4S) = §+274
as claimed. Also, if?;;, 7 0, we have

L=7ps (1.22)

for some integep > O (sincel is a lattice contained i¥). Moreover, if R has type
B (I >2),C; (I >3),F,orG wehavekS C L C S and sop = 1 ork (wherek
is as in Construction 1.18 (b)). On the other han® ihas typeBC; (I > 2), we have
25 C L C SandL + E C L which forcesp = 1. Summarizing: IfR;, 7 0,

lor3 if R hastypeGs . (2.23)

{ lor2 if RhastypeB;(l > 2),Ci(l > 3)orF,
p =
1 if R has typeBCy(l > 2)

So R is one of the EARS in the following table:
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Table 1.24: EARS when= 1

EARS Finite typeX, Affine label
R(X;, Z5) A1 > 1), Di(I > 4), Es, 7, Eg x®
R(X,,78,70) Bi(l > 2), Cy(l > 3), Fy, G> x®
R(X,, 78, 27.5) Bi(l > 2), Cy(l > 3), Fy x®
R(G», 75, 3Z.6) Go G¥
R(BC1, 76,8 + 275) BC, BC®
R(BCy, 78,7, 5 + 27.5) BC/(1 > 2) BCj(z)

We note that in the last column of Table 1.24 we have attached to each root gystem
an affine label(or affine typé of the forle(t), whereX; is the type ofR andt is an
integer between 1 and 3 called tfier numberof R. (The affine labels are those used in
[MP]. See the note below.) We will see in the next section thatig a tame EALA of
nullity 1 with root systemR then£ is isomorphic to an affine Kac-Moody Lie algebra
constructed from an affine matrix of type X*).

For the convenience of the reader, we note that the correspondence between the
affine labels in [MP] and the affine labels from V. Kac’ book [K2] is as follows (with
the affine labels from [K2] listed second):

x® — x®if X is reduced
B? < D? (1>2), P AD (>3)

FP - EY, G« DP and BCP « AP (1 >1).

2. Tame EALA’s of Nullity One

In this section, we obtain the characterization of affine Kac-Moody Lie algebras as tame
EALA’ of nullity 1.

We begin by considering EALA's with arbitrary nullity. Set £, or more precisely
(Z,(-,-), H), be an EALA with root systerR and nullity ». The subalgebra,. of £
generated by the non-isotropic subspatgsa € R*, is called thecoreof L. Itis easy
to see that,. is an ideal of.. Its orthogonal complement

Ly ={z € Ll(x, L) = (0)}
is nothing but the centralizer df.. Thus
Ly ={z € L|[z,L] = (0)}. (2.1)
L is said to beameif £ equals the centet(L.) of L... Equivalently
L is tame if and only ifC> C L... (2.2)
We assume for the rest of the section that the EAlis\tame.

We use the notation of Sect. 1 for the root systen$o R is decomposed as in (1.17)
usingR, S, L andE. By Prop. I1.1.11 of [AABGP] the grougS) generated bys is a
lattice inV°. In fact

(S)y=7ZbL® - B LS, (2.3)
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where the elementy, ..., §, € S form a basis fod° overR. Also, thanks to (11.2.34)
and (11.2.35) of [AABGP] we haves, L, E C (S). Furthermore,

V=ve )P (2.4)

with V = @l Ra; andV® = &1, R4, Let

l v
Qc=Y Cts, and Q=) Cis,.
=1 =1
Then by (1.6) and (1.17) and the fact tfatN ' = 3 _ « [La, L], One can easily

show that _
L.NH=Qc ®QY, (2.5)

Our next objective is to show that
dimg H =1+ 2dime Q2. (2.6)

Since Qc + Q%, Q%) = (0) and the restriction of the form to bot and Q¢ is non-
degenerate, it follows that there exists a subsfiaoé with the following properties:

o H=Qc®Q2aD;
e dimD> dimQ2;
e (Qc,D)=(0)
If dim D > dim Q2 then we can find: € D\ {0} such that Qc & Q2%,z) = (0). By

(1.3) and (2.5) we get € £ andz ¢ L. This contradicts tameness. Hence we have
dimD = dim Q% and (2.6) follows.

Assume now that the nullityof £ is 1. (We are still assuming thdt is tame.) Then,

we have
S=76 E=6+2Z6 and L =Zpd 2.7)

asin (1.20)—(1.23). MoreoveR is one of the root systems in Table 1.24. Détbe the
(finite) type of R and letX") be the affine label of? from Table 1.24.

For convenience, from now on we writg instead ofo;, ¢ = 1,...,1. Then, with
respect to the fixed badev, ..., «;} for R there exists a unique rogt of maximal
heightinR. If R has roots of different lengths then in additiorgtgwhich is either long
or extra-long) there exists a unique short r§opbf maximal height. Note that iR has
type BC; (I > 1), we havet; = 2¢,. We use these maximal roaisandé, to define

ap = —£+6, (2.8)
where¢ € Ris defined according to the affine label Bfas follows:

Table 2.9

Affine label £
x® or BC® ¢ = the highest root of?
GY or X X, # BC; ¢, = the highest short root d&

The maximality of height, (1.9) and (2.7) yield



680 B.N. Allison, S. Berman, Y. Gao, A. Pianzola

200.%) g foralll<i<l. (2.10)
(i, o) -

Next we establish two results (2.11) and (2.12) which will eventually allow us to
prove the main theorem of this section without having to appeal to the realizations of
the different affine Kac-Moody Lie algebras.

First of all:

Lemma 2.11Leta € R. Thena = ¥'_;a;a; for some uniqueig, as, . .., a; € Z.
Furthermore they;’s are all non-negative or all non-positive.

Proof. Indeed if thea,’s exist they are unique as the’s are linearly independent. To
establish existence, let € R. By (1.17) we can writex = & + nd for somea € R
andn € Z. Substitutingy by —« if necessary we may assume that 0. Now (2.11)
follows from (1.17) and the following observation about finite root systems:

1 1
a+& e Zzzoai, a+2, € Zzzoai forae R and
=1 =1

l

a+ & € Z Zzoai for o € Rsh-
i=1
Lemma 2.12If o € R* then
a = waoy,

for somei, 0 < i < [, and somev in the subgroup oV generated by the fundamental
reflectionswegy, . - . ; Wy, -

Proof. We reason by induction ohit(«) whereht(:), is the height function defined by
(2.11). We may assume that(c)) > 1. By (1.17) we see thai( ;) > 0 for some
0 <j < 1. Thus 1< ht(wa;a) < ht(a). By inductionw,,a = wa;, and therefore
a = wq,;wa; is as desired.

Next, since they;’s are non-isotropic, each of the 3-dimensional spaces
5[(21) = ‘C—Cti D [L"—OCNLOQ] D Lai

is a Lie algebra isomorphic tel,(C) (see (1.21)). We can thus find/3f 1) elements
ei, hq, fi, 0 < i <l of L such that for alk,

ei € Loy, fi € L_q; [hisei] = 2e;, [es, fil=h and |y, f;]=-2f;. (2.13)

The elements; above are unique sindg is the unique element of],,, £_,,] = Ct,,
satisfyingo; (h;) = 2. By (1.4) we have

2t
;= i (2.14)
(g, )
So by (1.9) we have
2(a;,
ailhy) = ﬁ ez (2.15)
VAR

Using some standard facts about finite root systems, (2.10) and (2.15), one can show
that the {+ 1) x (I + 1) matrix A given by
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A= (Aij)7 Aij = Oéi(hj)

is an indecomposable (generalized) Cartan matrix. If we write (see Table 2.9)

l
5 = Z N,
=1

and set = 1, then fomn = (ng, n1, - - -, n;) we havenA = 0. Indeed, thgj*” entry of
nA is

l l
Z n;As; = Agj + Z niai(h;) = ao(hy) +&(hy) = 6(hy) = 0.
=0 =1
We have established thdtis an affine Cartan matrix with null roat. It is easy to
verify that A is of typeXl(t) according to the list in Chapter 3.5 of [MP]. We cdllithe
affine Cartan matrix associated t¢Z, (-, -), H). We will see thatC is isomorphic to an
affine Kac-Moody algebra with Cartan matrik
Observe that irC the following familiar looking relations hold:

ET%; [[hm;j} = gljihej{t [}Oli»fj] = —24jifj for0 <5 <1,
r €;, f3] = 0i5h; Tor 0 < 4,5 <; (2.16)
(T3) (adej)_A”'*lei = O, (adfj)‘Ai-f+lf,» =0for0 <7 7] <.

Indeed, (rl) is a consequence of (2.13) and so is (r2) in theicase The case ¥ j

of (r2) follows from (2.11). To prove (r3), assunjez i. We have [;, e;] = 0, since
—a; +a; ¢ Rby(2.11). Then by Lemma [.1.21 in [AABGP] we get (r3) (or one can
use the standarg, theory to easily show this fact).

Now let g = g(A) be the affine Kac-Moody Lie algebra constructed from the
matrix A and a minimal realization ofi. In the notation of [MP, Sect. 4.2} is
the Lie algebrag(A4, R), whereR = (b, II, IIV) is a minimal realization ofd. (See
also [K2, Chapter 6], wherg is denoted byg(A4).) Sob is a fixed Cartan subalge-
bra ofg, IT = {ag,01,...,;} C h* is a base for the root systemx of (g,5) and
v = {of,...,a)} C b is a corresponding co-base. Observe that we are using the
same notatiomy; for a root of g, h) and for aroot of ¢, H),7 = 0,. .., l. We regard this
as an identification which we extend to an identification of the root lajite, Za; of
gin b* with 4., Zay; in H*.

For later use we note the following consequence of (2.12):

Corollary 2.17. Leta = Zizo a;o; € H*. If a € R*, thena, when viewed as an
element of*, is a real root ofg.

If Dg is the derived algebra gf(i.e.,Dg = [g, g]) we have the following information
(see Proposition 4.1.12 in [MP)):

(Dg)* =g~ forall « € h*\ {0}, (2.18

(Dg)°=DgnNh =@, Cay’. (2.19)

Since dimh = [ + 2 (the realization being minimal) it follows from (2.18)-(2.19) that
there existsl € h such that
h = (@!,Cay) ® Cd, (2.20)

0(d) #0, whered € A isnull, (2.21)
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g=Dg& Cd. (2.22)

By (2.16), [MP, Proposition 4.3.3] and the Gaber-Kac theorem (see [MP, Theorem
4.6.4]) there exists a natural Lie algebra homomorphism

p:Dg— L
satisfying
p((Dg)*) = La,, (2.23)
pla) = hi, (2.24)

forall 0 <+ <. ChooseD € H so that
ai(D) = a;(d)
forall 0 < ¢ <. By (1.14) and (2.21) it follows that
D ¢ Qc ® Q2 = ©lCh;.

Now (2.6) yields
H = (2!oCh;) © CD.

We can now in view of (2.22) extengdlto a Lie algebra homomorphism
prg— L,

so thatp(d) = D. Sinceh = H underp we conclude from (2.23) and [MP, Prop. 4.3.9]
thatp is injective. Note thap is graded:

l
p(@*) C Lo forall a € Za. (2.25)
=0

Next we show that
p(Dg)=L. and p(g)=L.+CD. (2.26)

(The sumZ, + CD is actually direct by (2.5)). For this we must show tidat C p(Dg)
whenevern € R*. By (2.17)«a is a real root ofy sog® # (0). Now (2.26) follows from
the fact thap is injective, graded and difi, = 1.

Let M = L.+ CD. This is a subalgebra & and we know that

HC M. (2.27)
Consequently, by [MP, Prop. 2.1.1} is a graded subalgebra:
M =PBpen My Where My, = MnNL,. (2.28)
Let us now show that
Mt = {z € L|(z, M) = (0)} = (0). (2.29)
Indeed, we have

ML C £t (asL. C M)

Z(L.) (bytameness)
H (usep andZ(Dg) C b [MP, Prop. 4.3.4])

N 1niN
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Now (1.3) and (2.27) yield\i+ = {0}.
Finally we can show that
L=M. (2.30)

By (2.28) it suffices to show tha¥t,, = £,, for all « € H*. Leta € H*, and set
L@)=L,DL_, and M(a) =M, D M_,.

Consider the canonical map
x & L(a) = M(a)*

given by
x(@)(y) = (x,y) forallxz € L(a), y € M(c).

By (1.3) and (2.29)y is injective. On the other hanti(«) is finite dimensional because
of (2.25) and (2.26). Thus (2.30) holds true.

We have therefore proved
Theorem 2.31Let (L, (+,-), H) be a tame extended affine Lie algebra of nullity one.
Then there is a graded isomorphism

L= g(A),

whereA is the affine Cartan matrix associated(t®, (-, -), H) andg(A) is a (minimally
realized) Kac-Moody Lie algebra constructed froim

Thus we have proved the implicatior==" in the following characterization of
affine Kac-Moody Lie algebras. The reverse implicatiog-"%ollows from well known
properties of affine algebras.

Theorem 2.32 A Lie algebral overC is isomorphic to an affine Kac-Moody Lie algebra
if and only if £ is isomorphic to a tame extended affine Lie algebra of nullity 1.

3. Constructions

As we have seen in Sect. 1, the EARS of nullity 1 are:

() R(X;,7Z6) andR(X;,Z06,76), whereX is a reduced type,
(b) R(By,Z6,2Z5) (I = 2),

(¢) R(Cy,Z6,2Z5) (I > 3),

(d) R(BC1,7Z0,0 +2Z6) andR(BCy, 7.6, 7.6, 6 + 27.0) (I > 2),
(e) R(Fau,7Z6,276) and

(H R(Gz, 76, 3Z9).

In this section, for each of the above root systefisve describe a construction of a
tame EALA with root systengR. It follows from Theorem 2.31 that these Lie algebras
are affine Kac-Moody Lie algebras. Also, all affine types are obtained, and so the Lie
algebras that we construct are precisely the affine Kac-Moody Lie algebras. (This gives
another proof of the implication %" in Theorem 2.32.)

The constructions that we describe are special cases of the constructions given in
Chapter Il of [AABGP]. We present them here since they take on a much simpler form
than in [AABGP], where EALA's of arbitrary nullity were considered. We do not give
proofs of any of the facts that we describe. The interested reader can either directly check
the assertions or read the more general proofs in Chapter Il of [AABGP].
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We begin by recalling the nullity 1 case of the general construction of EALA's
described in [AABGP, Chapter II§1]. Assume thag = > _, G" is aZ-graded Lie
algebra ovefC which possesses a nondegenerate invariant symmetric bilinear-feym (
and a nontrivial finite dimensional ad-diagonalizable abelian subal@ébtech that the
restriction of ¢, -) to H is nondegenerate. Then as is usual we can transfietq a form
on the dual spacg* of H. Let

G= > Ga, whereG, = {x € G : [h, 2] = a(h)a for all h € H},
QEH*
be the root space decompositiontbfelative to, and putk = {& € H* : G, 7 {0} }.
We suppose further that the following conditions hold:

e Gis generated as a Lie algebrapy, ¢ s\ (0} Ya-

e The restriction of the form(-) to the real spac‘é spanned by'% is a positive definite
real valued form such tha® is an irreducible finite root system (including 0) in the
Euclidean space/, (-, -)). .

® Go =2 ez (G"NG,) fora e R. _

e G°N G, 7 {0} foreachd’ € R\ {0} such thaa ¢ R.

e H=GNGo.

e G™ # {0} for at least one nonzerno € Z, and

e mn€eZm+nZ0= (G™ G") ={0}.

Using this data, we can construct a tame EALAT nullity 1. To do this, let
L=G®CcaCd
with anti-commutative product,[-]’ defined by

[£,c]’ = {0},
[d,z])’ = nz forallx € ", and
[z,y]" = [2,y] + O, —n(z, y)cforz € g™,y € G".

Next we define a form:(-) on £ such that {, -) extends the form-(-) onG and
(c,0)=(d,d)=0, (c,d)=1 and ¢G)=(dg)=0.

Finally, putH = H & Cc @ Cd. Then, it follows from [AABGP, Prop. 111.1.20] thaf
is a tame EALA of nullity 1. Hence, by Theorem 2.31 s an affine Kac-Moody Lie
algebra.

We are now ready to present, for each EARS the list at the beginning of this
section, a construction of a tame EALZof nullity 1 with root systenRz. In each case we
will specify a Lie algebra with aZ-grading, a form -) and a subalgebr as above;
and use the general construction just described to construct the EALE ® Ced Cd.
In each of the constructions, we will use the ring

S=C[t,t™Y

of Laurent polynomials ove€. Note thatS has a natural-gradingsS = > _, S",
whereS™ = Ct", n € Z. Also we will use the linear map: S — S defined by linear

extension of
m_ |1 ifn=0
6(t)‘{o it n #0.
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Finally, in each case, at the beginning of the construction we will list the ERR8ing
considered, the affine type of the resulting Kac-Moody Lie algebemd the relevant
section of [AABGP, Chapter Ill] which contains the more general construction.

(@) R = R(X;, Z3) or R(X, Z3, Z5), where X, is a reduced type. Affine type= X%,
[AABGP, Sect. I11.1]

This is the classical construction of the nontwisted affine Kac-Moody Lie algebras
([K1]and [M]). Let X; be areduced type, |6tbe a finite dimensional simple Lie algebra
of type X; overC and letH be a Cartan subalgebra@f LetG = S®cG. We define a
Z-grading ong by puttingG™ = S"®cg for n € Z. The form (, -) on G is defined by

(a®@cz, b&cy) = e(ab)r(z, y)

fora,b € S andz,y € G, wherex is the Killing form ong. Finally, we identifyH =
1®¢H as a subalgebra 6f. Then, applying the general constructigh: G  Cc @ Cd
is a tame EALA with root systen®(X, Z) if X; is simply laced andr(X;, Zd, Z6)
otherwise. So, by Theorem 2.31is an affine Kac-Moody Lie algebra of affine typg".

(b) R = R(By, Z5,27.5), 1 > 2. Affine type = B®. [AABGP, Sect. I11.3]
Let! > 2. We begin by letting

0 I, 0O
g= {X € M21+2(8) . GilXtG = 7X}, whereG = {)l 8 CJ)_ g € M21+2(3).
0O 0 O ¢

Then,G is a Lie algebra ove€ under the commutator product, agds the set of all
(20 + 2) x (2] + 2)-matrices ove§ of the form

A S Ot —tE?

T —-A* —-BY —tD!

B C 0 —ta |’
D F a 0

where A, S,T € M;(S) = M;x(S), B,C,D,E € M1,(S),a € S, S* = —S and
Tt = —T. We define &-grading onM»;.2(S), and hence by restriction gh by putting

deg("epq) = 2n + 0p 2142 — g 2142

forn € Z and 1< p, ¢ < 2]+ 2. (Here of course the elemenig, are the matrix units.)
The form (, -) on g is defined by

(X,Y) = (tr(XY))
for X, Y € G. Finally the subalgebrél of G is defined by

l
H= {Z a;(esi — epiei) ta; € Ch
=1
With this input, the general construction produces a tame EALAG @ Cc @ Cd with
root systemR(B;, Z6, 27Z.5). Hence, again by Theorem 2.31js an affine Kac-Moody
Lie algebra of affine type3(®.
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(d) R = R(C;, 25, 2Z5), | > 3. Affine type = C?. [AABGP, Sect. I11.4].
Let! > 3. We first let~ be the involution ofS such that = —¢. We then define

0 I

G={X € Mn(S): G'X'G=—X,tr(X) =0}, whereG = [—Iz 0

| € Mas).

G is a Lie algebra ovet under the commutator product, agds the set of all 2 x 2/-
matrices ovelS of the form
[ r]

T —At

whereA, S, T € My(S), tr(4) =tr(A), St = S andT*® = T. We define &-grading on
M(S), and hence by restriction @ by putting

deg¢"eyq) =n

forn € Zand 1< p,q < 2I. The form (, -) and the subalgebfd are defined exactly as
in (b) above. This time the general construction produces a tame EAEA & CcdCd
with root systemR(C, Z6, 27.0), and thereforel is an affine Kac-Moody Lie algebra
of affine typeC'®.

(d) R = R(BC,, 74,6 +27Z6),1 = 1, and R = R(BC}, 703,74, + 27Z5), | > 2. Affine
type = BC?). [AABGP, Sect. 111.3]
Let! > 1. Let™ be the involution ofS defined in (c) above, and put

G ={X € My:1(S): G X'G = —X,tr(X) =0}, where

0 I, O
G=|I, O O‘| €M2l+1(8).

0 0 1

Again g is a Lie algebra ove€ under the commutator product, and this tighés the
setofall (Z + 1) x (2] + 1)-matrices oves of the form

A S -t
T At —B'|,
B C a

whereA, S, T € M(S), B,C € My1(S),a € S, tr(A) —tr(4) +a =0, St =—S and
Tt = —T. We define &-grading on)My(S), and hence by restriction @i by putting

deg¢eyg) = n

forn € Zand 1< p,q < 2/+1. The form (, -) and the subalgebfd are defined exactly
asin (b) above. Then the general construction produces a tame EALZ ® Cc® Cd
with root systemR(BC, Z6, 6 + 27.6) if | = 1 andR(BC), Z4, 70,6 + 27.0) if | > 2.
ThereforeL is an affine Kac-Moody Lie algebra of affine typC® .

(€) R = R(Fy, 78, 27.5). Affine type = F\?. [AABGP, Sect. I1.5]

LetJ be the 27—dimensional exceptional simple Jordan algebralowdth product
denoted by (see [S, Chapter IV]). LeT” : J — C be the normalized trace ahi
that isT" is the usual trace normalized so tha{l) = 1. ThenJ = C1 @ Jo, where
Jo={x € J:T(x) = 0}. Further, letG = [Ly, L;], whereL,, is the left multiplication
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operator byr € J. Then,G is the Lie algebra of all derivations dfandg is the simple
Lie algebra of type+; overC. Put

G = (Rt@clo) ® (R&cg),
whereR = C[t?,t~?] in S. We define an anticommutative multiplication Jon G by
[at@cz, bt@cy] = abt’®c[ Ly, L], [a®cD,bt@cr] = (ab)t@cDy  and

[a®cD, b@cE] = ab&c[D, E]

fora,b e R,z,y € JoandD, E € G. Then,G is a Lie algebra ove€. TheZ-grading
ong is defined by

deg¢®*'®cz)=2n+1 and degl'®cD)=2n

for 2 € Jo andD € G. The form ¢, -) onG is the unique symmetric bilinear form such
that Rt®cJo is orthogonal tdR®¢ 3,

(at@cz, btQcy) = e(ath)T(x cy) and  @®cD,bRc[Ly, Ly]) = €(ab)T((Du) - v)

fora,b € R, D € G andz,y € Jo andu, v € J. Finally, we obtain a subalgebté of G
by identifying a Cartan subalgebtd of G with 1®¢H. Then the general construction
produces atame EALA = G & Cc®d Cd with root systenR(Fy, Z6, 27.6), and therefore
L is an affine Kac-Moody Lie algebra of affine typa?.

(f) R = R(G2, 76, 376). Affine type = G¥). [AABGP, Sect. II1.5]

Let A be the 8-dimensional Cayley algebra o@(see [S, Chapter III]). Lef" :
A — C be the normalized trace oh, in which case we havd = C1 ¢ Ag, where
Ao ={z € A: T(z) = 0}. Moreover, ifz,y € A, we have

zy=T(xy)l+xxy

for some uniquer * y € Ag. Next, letG = Dy 4, whereD, , = 3(Liz,y) — Rizy) —
3[Ls, Ry]) for x,y € J. (Here L, and R, denote the left and right multiplication

operators by in A.) Theng is the Lie algebra of all derivations éfandg is the simple
Lie algebra of typ&r, overC. Put

G = (Rt@cho) & (RI?®cho) & (R2c),
whereR = C[#3,t3] in S. We define an anticommutative multiplication Jon G by
[at ®c z, bt ®¢ y] = (ab)t? @¢c z xy, [at? @c z, bt? ¢ y] = (abtd)t @¢ z * y,
[a ®c D, bt ®c 2] = (ab)t ®@c Dz, [a®c D,bt* ®c z] = (ab)t® @c Da,
[at @c 2, b2 @c y] = abt® @c Dy y, [a®c D,b@c E] = ab@c[D, E]

fora,b e R,z,y € ApandD, E ¢ G. Then,G is a Lie algebra ove€. TheZ-grading
ong is defined by

deg®""@cz) =3n+1, degl>*?@cx)=3n+2 and degf"®cD)=3n

for z € Ag andD € G. Next the form (,-) on G is the unique symmetric bilinear
form such thaRt®cAg is orthogonal taRt@cAg + R2cG, Rt?®c Ay is orthogonal to
Rt2®(CA0 +R&cG,
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(at@cz, bt?Rcy) = e(abt®)T(xzy) and  @®cD, bRcDy,v) = e(ab)T(Du)v)

fora,b € R, D € Gandx,y € Ap andu,v € A. Again, we obtain a subalgebra
‘H of G by identifying a Cartan subalgebtd of G with 1®¢H. This time the general
construction produces atame EALA= G & Cc® Cd with root systenR(G2, Z4, 3Z9),
and thereforet is an affine Kac-Moody Lie algebra of affine typa>.
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