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Abstract: In this paper we consider analyticity in time and smoothing effect of solutions
to nonlinear Schr̈odinger equations{

i∂tu + 1
2∆u = λ|u|2pu, (t, x) ∈ R × Rn,

u(0, x) = φ, x ∈ Rn,
(1)

whereλ ∈ C, p ∈ N. We prove that ifφ satisfies∥∥∥e|x|2

φ
∥∥∥

H [n/2]+1
< ∞, (2)

then there exists a unique solutionu(t, x) of (1) and positive constantsT , C0, C1 such
thatu(t, x) is analytic in time and space variables fort ∈ [−T, T ] \ {0} andx ∈ Ω =
{x; |x| < R} and has an analytic continuationU (z0, z) on{

z0 = t + iτ ; −C0t
2 < τ < C0t

2, t ∈ [−T, T ] \ {0}}
and

{z = x + iy; −C1|t| < y < C1(t), (t, x) ∈ [−T, T ] \ {0} × Ω} .

In the casen = 1, 2, 3 the condition (2) can be relaxed as follows:∥∥∥e|x|2

φ
∥∥∥

Hm
< ∞,

wherem = 0 if n = 1,p = 1,m = 1 if n = 2,p ∈ N andm = 1 if n = 3,p = 1.
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1. Introduction

In this paper we consider analyticity in time and smoothing effect of solutions to non-
linear Schr̈odinger equations{

i∂tu + 1
2∆u = λ|u|2pu, (t, x) ∈ R × Rn,

u(0, x) = φ(x), x ∈ Rn,
(1.1)

whereλ ∈ C, p ∈ N. Equation in (1.1) appears in various physical applications, such as
plasma physics, nonlinear optics, and nonrelativistic quantum physics. There have been
many works on global existence of solutions, and on asymptotic behavior of solutions
(see [Ca] and references cited therein).

The analyticity in space and smoothing effect of solutions to (1.1) were studied in
[H-Sai 1]. In particular, [H-Sai 1] showed that the solutionu of (1.1) withp = 1 has an
analytic continuation on the strip

S(|t|) = {z = x + iy; −|t| < yj < |t|, j = 1, . . . , n}

for any time provided that
∥∥∥∏n

j=1(coshxj)φ
∥∥∥

Hm
is sufficiently small withm > n and

n ≥ 2. If we restrict our attention to the local existence of solutions, the method used in
[H-Sai 1] is applicable to (1.1) whenn = 1.

The analyticity in time of solutions to (1.1) replacingλ|u|2pu byF (u, ū) was proved
in [H-K.K] first under the analytical condition on the data, whereF (u, ū) is a polynomial
with respect tou andū (see [H-K.K, Theorem 1.1]).

Our purpose in this paper is to prove analyticity in time of solutions to (1.1) without
regularity assumption on the data. Our main tool is the operatorK = |x|2 + nit + 2itx ·
∇ + 2it2∂t, which almost commutes withL = i∂t + 1

2∆. Indeed we have [L, K] = 4itL

which yieldsLKlu = (K+4it)lLu. Theorems are obtained through Propositions 3.1–3.3
which state the existence of solutions in analytic function spaces involving the operator
K. In order to prove Propositions 3.1–3.3 we need the multiplication lemmas (Lemma
2.7, Lemmas 2.12–2.14). Lemma 2.7 is used to prove Proposition 3.2, Lemma 2.12 is
used to prove Proposition 3.1 and Lemmas 2.13–2.14 are used to prove Proposition 3.3,
respectively. The main tool in the previous work [H-K.K] was the operatorP = x·∇+2t∂t

which has the commutation relation [L, P ] = 2L.
Differences between the proof in this paper and the previous one follow from the

facts that the operatorK does not commute with the time variablet and the operator
x ·∇, andK is not the first order differential operator. The fact thatK does not commute
with the time variablet means that we can not use the Reibniz rule in (K + 4it)l and
so we need to prepare Lemma 2.3 which prevents us from considering the analyticity in
time of solutions in large time. On the other hand the fact that the operatorP commutes
with the constant 2 appears in [L, P ] = 2L enables us to use the Reibniz rule in (P +2)l.
FurthermoreP is the first order differential operator which commutes with the operator
x ·∇. SinceK is not the first order differential operator, we introduce the multiplication

terme− i|x|2

2t to prove the multiplication lemmas. By making use ofe− i|x|2

2t , we easily
see that

K̃ = |x|2 + 2itx · ∇ + 2it2∂t = 2ite
i|x|2

2t (x · ∇ + t∂t)e
− i|x|2

2t .

The operatorK̃ is considered as the first order differential operator for nonlinear terms
satisfying the gauge condition and we see that (i/2it)K̃ commutes with the operator

e
i|x|2

2t x · ∇e− i|x|2

2t althoughK̃ does not commute withx · ∇. We also knowK̃ is almost
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equivalent toK through Lemma 2.3. We give the strategy of the proofs of Theorems
1–2. The desired results are established by showing∥∥∥∥e i|x|2

2t u

∥∥∥∥
Gb1(t∂;Gb2t2(∂t;L2(Ω)))

< ∞

for some constantsb1, b2 and sufficiently smallt, where the norm is defined below. We
show the above estimate by combining Propositions 3.1–3.3 and Lemmas 4.1–4.2. We
note that Lemma 4.1 also prevents us to prove the analyticity in time in large timet.

Lemma 4.1 says that the relation betweenK̃l andtl( 1
2itK̃)l = tle

i|x|2

2t (x·∇+t∂t)le− i|x|2

2t .
The operatorP was also used to prove the Gevrey smoothing effect in space variable

in [B-H-K.K]. Roughly speaking it was shown that the dataφ belongs to a Gevrey class
of order 2, then solutions of some nonlinear Schrödinger equations become analytic in
the space variable fort 6= 0. Korteweg-de Vries equation’s version of the operatorP
written asx∂x + 3t∂t is also useful to study analyticity in time and Gevrey regularizing
effect in space variables for solutions (see [B-H-K.K] for details).

Local smoothing effect of solutions to linear Schrödinger equations were studied by
[Co-Sau, Sj and V] for the homogeneous case and by [Ke-P-V] for the inhomogeneous
case. Kenig, Ponce and Vega [Ke-P-V] applied them to the proof of local existence
results of nonlinear Schrödinger equations with nonlinearities having the derivatives of
unknown function.

This paper is organized as follows. In Sect. 2 we prove multiplication lemmas
(Lemma 2.7, Lemmas 2.12–2.14) which are needed to prove local existence of ana-
lytic solutions of (1.1) which are established in Sect. 3. Section 4 is devoted to prove
Theorems 1.1 and 1.2. In Sect. 5 we give some applications.

Theorem 1.1. We letΩ be a ball inRn with radiusR center at the origin and assume
that ∥∥∥e|x|2

φ
∥∥∥

H [n/2]+1
< ∞.

Then for anyR, there exists a unique solutionu of (1.1)and positive constantsT , C0,
C1 such thatu is analytic in time and space variables for(t, x) ∈ [−T, T ] \ {0} × Ω
and has an analytic continuationU (z0, z) on{

z0 = t + iτ : −C0t
2 < τ < C0t

2, t ∈ [−T, T ] \ {0}}
and

{z = x + iy; −C1|t| < yj

< C1|t| < yi < C1|t|, (t, x) ∈ [−T, T ] \ {0} × Ω, j = 1, . . . , n}.

Theorem 1.2. We assume that∥∥∥e|x|2

φ
∥∥∥

L2
< ∞ for p = 1, n = 1,

∥∥∥e|x|2

φ
∥∥∥

H1
< ∞ for

{
p ∈ N, n = 2,
p = 1, n = 3.

Then the same results as inTheorem 1.1holds.
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In the case of the linear Schrödinger equations{
i∂tu + 1

2∆u = 0, (t, x) ∈ R × Rn,
u(0, x) = φ(x), x ∈ Rn,

(1.2)

we have the same as in the proof of [H-Sai2, Theorem 1].

Proposition 1.1. We assume that∥∥∥e|x|2

φ
∥∥∥

L2
< ∞.

Then there exists a unique solutionu(t, x) of (1.2) such thatu(t, x) has an anylytic
continuationU (t, z) to S(∞) = {z; z ∈ Cn} and

e− iz2

2t U (t, z) ∈ A(∞, 2t2),

where

A(∞, α) =

{
the set of all analytic functionsf (z) onS(∞) such that

1
(απ)n/2

∫
Rn

∫
Rn

e− y2

α |f (z)|2 dx dy < ∞ for eachα

}
.

FurthermoreU (t, z) satisfies

1
(2t2π)n/2

∫
Rn

∫
Rn

e− 1
2 ( u

t +2x)2+2|x2||U (t, x + iy)|2 dx dy =
∫

Rn

e2|x|2|φ(x)|2 dx. (1.3)

From Proposition 1.1 and the same argument as in Sect. 4 the result about analyticity
in time follows. However we can not expect the estimate (1.3) in the case of nonlinear
Schr̈odinger equations because the function spaceA(∞, 2t2) does not work for (1.1).
We notice that Proposition 1.1 follows from the use of the operatorJ = x + it∇.

Notatation and function spaces.Let X be a Banach space with norm‖ · ‖X and∂α =
∂α1

1 · · · ∂αn
n , where|α| =

∑n
j=1 αj , ∂j = ∂/∂xj andαj ∈ N ∪ {0}. We define analytic

function spaces as follows:

Ga(∂; X) =

f ∈ X; ||f ||Ga(∂;X) =
∑

α∈(N∪0)n

a|α|

α!
||∂αf ||X < ∞

 ,

where ∑
α∈(N∪0)n

a|α|

α!
||∂αf ||X =

∑
α∈(N∪0)n

a|α|

(α1!) · · · (αn!)
||∂α1

1 · · · ∂αn
n f ||X .

In the following we denote the infinite sum
∑

α∈(R∪0)n by
∑

α.
We also define

Ga(A; X) =

{
f ∈ X; ||f ||Ga(A;X) =

∑
N

aN

N !
||ANf ||X < ∞

}
,
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where
A = K = |x|2 + nit + 2itx · ∇ + 2it2∂t,

or

A = K̃ = |x|2 + 2itx · ∇ + 2it2∂t with x · ∇ =
n∑

j=0

xj∂j .

We note that

K̃ = 2ite
i|x|2

2t (x · ∇ + t∂t)e
− i|x|2

2t .

The usual Sobolev spaceHm,p is defined by

Hm,p =

f ∈ Lp; ||f ||Hm,p =
∑

|α|≤m

||∂αf ||Lp < ∞
 ,

and we letHm = Hm,2. We let withJ = (Jj)1≤j≤n, Jj = xj + it∂j ,

Rm,p(t) =

f ∈ Lp; ||f ||Rm,p(t) =
∑

|α|+|β|≤m

||Jα∂βf ||Lp < ∞


andRm(t) = Rm,2(t). For simplicity we writeGa(A, B; X) = Ga(B; Ga(A; X)).

2. Preliminary Estimates

Lemma 2.1. We assume that operatorsA andB satisfy the commutation relations

[A, B] = −βA2, [A, γ] = [B, γ] = 0,

whereβ, γ ∈ C. Then we have

(A + B)l =
∑

1≤k≤l

(
l
k

) k−1∏
j=0

(1 +βj)AkBl−k + Bl. (2.1)

Proof. We prove (2.1) by induction. Whenl = 1, it is clear that (2.1) holds. We assume
that (2.1) holds for anyl. Then we have by the assumption

(A + B)l+1 =
∑

1≤k≤l

(
l
k

) k−1∏
j=0

(1 +βj)(A + B)AkBl−k + (A + B)Bl. (2.2)

We next prove by induction
[B, Ak] = βkAk+1. (2.3)

The casek = 1 follows from the assumtion. Assume (2.3) for anyk, then

[B, Ak+1] = BAk+1 − Ak+1B

= (BAk − AkB)A + Ak(BA − AB)

= [B, Ak]A + Ak[B, A] = β(k + 1)Ak+2.

This implies (2.3). We apply (2.3) to (2.2) to obtain
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(A + B)l+1

=
∑

1≤k≤l

(
l
k

) k−1∏
j=0

(1 +βj)((Ak+1 + AkB + βkAk+1)Bl−k) + (A + B)Bl

=
∑

1≤k≤l

(
l
k

) k−1∏
j=0

(1 +βj)((1 +βk)Ak+1Bl−k + AkBl+1−k) + (A + B)Bl

=
∑

2≤k′≤l−1

(
l

k′ − 1

) k′−2∏
j=0

(1 +βj)(1 +β(k′ − 1))Ak′
Bl+1−k′

+
∑

1≤k≤l

(
l
k

) k−1∏
j=0

(1 +βj)AkBl+1−k + (A + B)Bl

=
∑

2≤k≤l

((
l

k − 1

)
+

(
l
k

)) k−1∏
j=0

(1 +βj)AkBl+1−k

+
l∏

j=0

(l + βj)Al+1 +

(
l
1

)
ABl + (A + B)Bl

=
∑

2≤k≤l

(
l + 1
k

) k−1∏
j=0

(1 +βj)AkBl+1−k

+

(
l + 1
l + 1

) l∏
j=0

(1 +βj)Al+1 +

(
l + 1

1

)
ABl + Bl+1

=
∑

1≤k≤l+1

(
l + 1
k

) l∏
j=0

(1 +βj)AkBl+1−k + Bl+1. (2.4)

This implies (2.1). �

Lemma 2.2. We have forK̃d = K̃ + idt,

||f (t)||Ga(K̃d+αt;X(t)) ≤ C

1 − ab|t| ||f (t)||Ga(K̃d;X(t)),

provided thatab|t| < 1, ||t · ||X(t) ≤ |t||| · ||X(t), whereb > 2.

Proof. Since [αt, K̃d] = − 2i
α (αt)2, we have by Lemma 2.1 withA = αt, B = K̃d,

β = 2i/α

(K̃d + αt)l =
∑

l≤k≤l

(
l
k

) k−1∏
j=0

(1 +
2i

α
j)(αt)kK̃l−k

d + K̃l
d. (2.5)

By (2.5)

||f (t)||Ga(K̃d+αt;X(t)) =
∑

l

al

l!
||(K̃d + αt)lf (t)||X(t)
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≤
∑
l≥1

al

l!

 ∑
1≤k≤l

(
l
k

) k−1∏
j=0

(1 +
2

|α|j)|α|k|t|k||K̃l−k
d f (t)||X(t)


+
∑

l

al

l!
||K̃l

df (t)||X(t)

≤
∑
l≥1

∑
1≤k≤l

al−k

(l − k)!
(2a|t|)k

k!

k−1∏
j=0

(
|α|
2

+ j)||K̃l−k
d f (t)||X(t) + ||f (t)||Ga(K̃d;X(t))

≤
∑

k≥1

(2a|t|)k 1
k!

k−1∏
j=0

(
|α|
2

+ j)

 ||f (t)||Ga(K̃d;X(t)) + ||f (t)||Ga(K̃d;X(t)). (2.6)

It is clear that

1
k!

k−1∏
j=0

(
|α|
2

+ j) ≤ Cãk for ã > 1.

Hence we have by (2.6),

||f (t)||Ga(K̃d+αt;X(t)) ≤ C(
∑

k

(ab|t|)k)||f (t)||Ga(K̃d;X(t)),

which implies the lemma.

Lemma 2.3. We have forK̃d = K̃ + idt,

||f ||Ga(K̃d+αt;X(T )) ≤ C

1 − abT
||f ||Ga(K̃d;X(T )),

provided thatabT < 1, ||t · ||X(T ) ≤ |T ||| · ||X(T ), whereb > 2.

Proof. In the same way as in the proof of Lemma 2.2 we have the lemma. In what
follows we use the notation

M (t) = e− i|x|2

2t , f̂ = M (t)f

and the relation

Jα = M (−t)(it∂)αM (t).

Lemma 2.4. We have forp1 ≥ 1,

||f1f2f3||Ga(J ;Lp1) ≤
3∏

j=1

||fj ||Ga(J ;Lpj+1),

where1/p1 =
∑3

j=1(1/pj+1).
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Proof. We have by Reibniz’ rule,

‖f1f2f3‖Ga(J ;LP1) =
∑
α

a|α|

α!

∥∥Jα(f1f2f3)
∥∥

LP1

=
∑
α

a|α|

α!

∥∥∥(it∂)α(f̂1f̂2f̂3)
∥∥∥

LP1

∑
α

(a|t|)|α|

α!

∥∥∥∥∥∥∥
∑
β≤α
γ≤β

(
α

β

)(
β

γ

)
(∂α−β f̂1)(∂β−γ f̂2)(∂γ f̂3)

∥∥∥∥∥∥∥
LP1

≤
∑
α

∑
β≤α
≤β

(a|t|)|α|

(α − β)!(β − γ)!γ!

∥∥∥(∂α−β f̂2)(∂β−γ f̂3)
∥∥∥

LP1

≤
∑
α

∑
α≤α
γ≤β

(a|t|)|α|

(α − β)!(β − γ)!γ!

∥∥∥(∂α−β f̂1)
∥∥∥

LP2

∥∥∥(∂β−γ f̂2)
∥∥∥

LP3

∥∥∥(∂γ f̂3)
∥∥∥

LP4

(by Hölder’s inequality)

≤
3∏

j=1

‖ fj‖Ga(J ;Lpj+1).

�

Lemma 2.5. We have forp1, q1 ≥ 1,

||f1f2f3||Gα(J ;Lq1(−T,T ;Lp1)) ≤
3∏

j=1

||fj ||Ga(J ;Lqj+1(−T,T ;Lpj+1)),

where1/p1 =
∑3

j=1(pj+1) and1/q1 =
∑3

j=1(1/qj+1).

Proof. By the definition

||g||Ga(J ;Lq1(−T,T ;Lp1)) =
∑
α

a|α|

α!

(∫ T

−T

||Jαg(t)||q1
Lp1 dt

)1/q1

.

In the same way as in the proof of Lemma 2.4,

||f1f2f3||Ga(J ;Lq1(−T,T ;Lp1))

≤
∑
α

∑
β≤α
γ≤β

a|α|

(α − β)!(β − γ)!γ!

(∫ T

−T

||(Jα−βf1)(Jβ−γf2)(Jγf3)||q1
Lp1 dt

)1/q1

≤
∑
α

∑
β≤α
γ≤β

a|α|

(α − β)!(β − γ)!γ!
||Jα−βf1||Lq2(−T,T ;Lp2)

×||Jβ−γf2||Lq3(−T,T ;Lp3)||Jγf3||Lq4(−T,T ;Lp4),

which gives the lemma.
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Lemma 2.6. We have forp1 ≥ 1,

||f1f2f3||Ga(J,K̃;Lp1) ≤
3∏

j=1

||fj ||Ga(J,K̃;Lpj+1),

where1/p1 =
∑3

j=1(1/pj+1).

Proof. We have

‖f1f2f̄3‖Ga(J,K̃;Lp1) =
∑

l

al

l!
‖K̃l(f1f2f̄3)‖Ga(J ;Lp1). (2.7)

Since
K̃l = M (−t)(2itx · ∇ + 2it2∂t)

lM (t),

we easily see that

K̃l(f1f2f̄3) = M (−t)(2itx · ∇ + 2it2∂t)
l(f̂1f̂2f̂3).

The operator
2itP̃ = 2it(x · ∇ + t∂t)

is the first order differential operator and so in the same way in the proof of Lemma 2.4
we find that the right-hand side of (2.7) is bounded from above by

∑
l

∑
k≤l
j≤k

al

(l − k)!(k − j)!j!

∥∥∥((2itP̃ )l−kf̂1

)(
(2itP̃ )k−j f̂2

)(
(2itP̃ )j f̂3

)∥∥∥
Ga(J ;Lp1)

.

(2.8)

We apply Lemma 2.4 to (2.8) to get the lemma.

Lemma 2.7. We have forp1, q1 ≥ 1,

‖f1f2f̄3‖Ga(J ;K̃;Lq1(−T,T ;Lp1)) ≤
3∏

j=1

‖fj‖Ga(J,K̃;Lqj+1(−T,T ;Lpj+1)),

where1/p1 =
∑3

j=1(1/pj+1) and1/q1 =
∑3

j=1(1/qj+1).

Proof. In the same way as in the proof of Lemma 2.6 we have the lemma by using
Lemma 2.5.

Lemma 2.8. We have

‖f1f2f̄3‖Y (T ) ≤ C
3∏

j=1

‖fj‖Y (T ),

whereY (T ) = L∞ (−T, T ; Rm(t)) andm ≥ [n/2] + 1.
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Proof. By integration by parts and the commutation relation

[∂k, Jk] = δjk (2.9)

we obtain

‖f1f2f̄3‖Rm(t) ≤ C
∑

|α|≤m

(∥∥Jα(f1f2f̄3)
∥∥

L2 +
∥∥∂α(f1f2f̄3)

∥∥
L2

)
. (2.10)

Hence we have witĥf = M (t)f ,∑
|α|≤m

∥∥Jα(f1f2f̄3)
∥∥

L2 =
∑

|α|≤m

∥∥∥(it∂)α(f̂1f̂2f̂3)
∥∥∥

L2

≤
∑

|α|≤m

∑
α≤α
γ≤β

(
α
β

)(
β
γ

)
|t||α|

∥∥∥(∂α−β f̂1)(∂β−γ f̂2)(∂γ f̂3)
∥∥∥

L2

≤ C
∑

|α|=|α1|+|α2|+|α3|
|α|≤m

∥∥∥(it∂)α1f̂1

∥∥∥
Lp1

∥∥∥(it∂)α2 f̂2

∥∥∥p2

L

∥∥∥(it∂)α3f̂3

∥∥∥
Lp3

(by Hölder’s inequality)

≤ C
∑

|α|≤m

3∏
j=1

∥∥∥(it∂)αf̂j

∥∥∥αj

L2
‖fj‖1−αj

L∞ (by Sobolev’s inequality),

where
1
pj

=
|αj |
n

+ aj

(
1
2

− m

n

)
,

3∑
j=1

1
pj

.

Hence we have∑
|α|≤m

∥∥Jα(f1f2f̄3)
∥∥

L2 ≤ C
∑

|α|≤m

3∏
j=1

‖Jαfj‖aj

L2 ‖fj‖1−aj

L∞ .

We again apply Sobolev’s inequality to get

∑
|α|≤m

∥∥Jα(f1f2f̄3)
∥∥

L2 ≤ C
3∏

j=1

‖fj‖Rm(t) . (2.11)

In the same way as in the proof of (2.11) we have

∑
|α|≤m

∥∥∂α(f1f2f̄3)
∥∥

L2 ≤ C
3∏

j=1

‖fj |Rm(t). (2.12)

From (2.10)–(2.12) the lemma follows. �
Lemma 2.9. We have

‖f1f2f̄3‖Ga(J ;Y (T )) ≤ C
3∏

j=1

‖fj‖Ga(J ;Y (T )),

whereY (T ) = L∞ (−T, T ; Rm(t)) andm ≥ [n/2] + 1.
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Proof. We have by Lemma 2.8,

‖f1f2f̄3‖Ga(J ;Y (T )) =
∑
α

a|α|

α!

∥∥Jα(f1f2f̄3)
∥∥

Y (T )

≤
∑
α

∑
β≤α
γ≤β

a|α|

(α − β)!(β − γ)!γ!

∥∥(Jα−βf1)(Jβ−γf2)(Jγf3)
∥∥

Y (T )

≤ C
∑
α

∑
β≤α
γ≤β

a|α|

(α − β)!(β − γ)!γ!

∥∥Jα−βf1

∥∥
Y (T )

∥∥Jβ−γf2

∥∥
Y (T )

‖Jγf3‖Y (T ) ,

which gives the lemma. �

Lemma 2.10. We have

‖f1f2f̄3‖Ga(J,K̃;Y (T )) ≤ C
3∏

j=1

‖fj‖Ga(J,K̃;Y (T )),

whereY (T ) = L∞(−T, T ; Rm(t)) andm ≥ [n/2] + 1.

Proof. We have by the definition

‖f1f2f̄3‖Ga(J,K̃;Y (T )) =
∑

l

al

l!

∥∥K̃l(f1f2f̄3)
∥∥

Ga(J ;Y (T ))
.

In the same way as in the proof of (2.8) we obtain

‖f1f2f̄3‖Ga(J,K̃;Y (T ))

≤
∑

l

∑
k≤l
j≤k

al

(l − k)!(k − j)!j!

∥∥∥(K̃l−kf1)(K̃k−jf2)
(
K̃jf3

)∥∥∥
Ga(J ;Y (T ))

.

We apply Lemma 2.9 to the right-hand side of the above to get lemma.�

Lemma 2.11. We have∥∥|f |2pf − |g|2pg
∥∥

Ga(J,K̃;Y (T ))

≤ C
(
‖f‖2p

Ga(J,K̃;Y (T ))
+ ‖g‖2p

Ga(J,K̃;Y (T ))

)
‖f − g‖Ga(J,K̃;Y (T )),

whereY (T ) = L∞(−T, T ; Rm(t)) andm ≥ [n/2] + 1.

Proof. We prove by induction with respect top . Whenp = 1 we have the lemma by
Lemma 2.10. We assume that the lemma holds for anyp. From the equality

|f |2p+2f − |g|2p+2g = |f |2 (|f |2pf − |g|2pg
)

+ |g|2pg
(
f̄ (f − g) + g(f̄ − ḡ)

)
,

and Lemma 2.10 it follows that
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∥∥|f |2p+2f − |g|2p+2g
∥∥

Ga(J,K̃;Y (T ))

≤ C
(
‖f‖2

Ga(J,K̃;Y (T ))

∥∥|f |2pf − |g|2pg
∥∥

Ga(J,K̃;Y (T ))

+
∥∥|g|2pg

∥∥
Ga(J,K̃;Y (T ))(‖f‖Ga(J,K̃;Y (T )) + ‖g‖Ga(J,K̃;Y (T ))

) ‖f − g‖Ga(J,K̃;Y (T ))

)
.

Thus the lemma for the casep+1 follows from the assumption. This completes the proof
of Lemma 2.11.

Lemma 2.12. We have

‖|f |2pf − |g|2pg‖Ga(J,K+4it,Y (T ))

≤ C

(1 − abT )2p+2

(
‖f‖2p

Ga(J,K;Y (T )) + ‖g‖2p
Ga(J,K;Y (T ))

)
||f − g||Ga(J,K;Y (T )),

provided thatabT > 1, whereb < 2, Y (T ) = L∞(−T, T ; Rm(t)) andm ≥ [n/2] + 1.

Proof. Lemma 2.3 withd = 0,α = (4 +n)i andX(T ) = Ga(J ; Y (T )) gives

‖ · ‖Ga(J,K+4it;Y (T )) ≤ C

1 − abT
‖ · ‖Ga(J,K̃;Y (T )), (2.13)

since
‖t · ‖X(T ) ≤ T‖ · ‖X(T ).

We again use Lemma 2.3 withd = n, α = −ni to obtain

‖ · ‖Ga(J,K̃;Y (T )) ≤ C

1 − abT
‖ · ‖Ga(J,K;Y (T )). (2.14)

The lemma follows from (2.13) and Lemma 2.11. �
Lemma 2.13. We assume thatn = 2 or 3. Then we have∥∥∥∥∥∥

 p∏
j=1

fj f̄j+p

 f2p+1

∥∥∥∥∥∥
Ga(J,K̃;Lr(−T,T ;R1,r′ (t)))

≤ C

2p+1∑
k=1

2p+1∏
j=1
j 6=k

‖fj‖Ga(J,K̃;L∞(−T,T ;R1(t)))‖fk‖Ga(J,K̃;Lr(−T,T ;R1,r(t))),

wherer = 2 + (4/n), (1/r) + (1/r′) = 1 andp = 1 if n = 3, p ∈ N if n = 2.

Proof. We have by Ḧolder inequality∥∥∥∥∥∥
 p∏

j=1

fj f̄j+p

 f2p+1

∥∥∥∥∥∥
Lr(−T,T ;R1,r′ (t))

=
∑

|α|+|β|≤1

∥∥∥∥∥∥Jα∂β

 p∏
j=1

fj f̄j+p

 f2p+1

∥∥∥∥∥∥
Lr(−T,T ;Lr′ )

(2.15)

≤ C

2p+1∑
k=1

2p+1∏
j=1
j 6=k

‖fj‖L∞(−T,T ;Lp(n+2))‖fk‖Lr(−T,T ;R1,r(t)).
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By Sobolev’s inequality,∥∥∥∥∥∥
 p∏

j=1

fj f̄j+p

 f2p+1

∥∥∥∥∥∥
Lr(−T,T ;R1,r′ (t))

(2.16)

≤ C

2p+1∑
k=1

2p+1∏
j=1
j 6=k

‖fj‖L∞(−T,T ;R1(t))‖fk‖Lr(−T,T ;R1,r(t)).

In the same way as in the proof of Lemma 2.9 we obtain by (2.16),∥∥∥∥∥∥
 p∏

j=1

fj f̄j+p

 f2p+1

∥∥∥∥∥∥
Ga(J,Lr(−T,T ;R1,r′ (t)))

≤ C

2p+1∑
k=1

2p+1∏
j=1
j 6=k

‖fj‖Ga(J ;L∞(−T,T ;R1(t)))||fk||Ga(J ;Lr(−T,T ;R1,r(t))). (2.17)

From (2.17) and the similar argument as in the proof of Lemma 2.10 the lemma follows.
�
Lemma 2.14. We assume thatn = 2 or 3. Then we have∥∥∥∥∥∥

 p∏
j=1

fj f̄j+p

 f2p+1

∥∥∥∥∥∥
Ga(J,K̃;L1(−T,T ;R1(t)))

≤ CT
3
5

∑
j,k,l=1
j 6=k 6=l

‖fj‖Ga(J,K̃;L∞(−T,T ;R1(t)))‖fk‖Ga(J,K̃;Lr(−T,T ;R1,r(t)))

×‖fl‖Ga(J,K̃;Lr(−T,T ;R1,r(t))) for n = 3,∥∥∥∥∥∥
 p∏

j=1

fj f̄j+p

 f2p+1

∥∥∥∥∥∥
Ga(J,K̃;L1(−T,T ;R1(t)))

≤ CT
3
4

2p+1∑
k=1

2p+1∏
j=1
j 6=k

‖fj‖Ga(J,K̃;L∞(−T,T ;R1(t)))‖fk‖Ga(J,K̃;Lr(−T,T ;R1,r(t)))

for n = 2,

wherer = 2 + (4/n), p = 1 if n = 3 andp ∈ N if n = 2.

Proof. We have by Ḧolder’s inequality∥∥∥∥∥∥
 p∏

j=1

fj f̄j+p

 f2p+1

∥∥∥∥∥∥
L1(−T,T ;R1(t))

=
∑

|α|+|β|≤1

∥∥∥∥∥∥Jα∂β

 p∏
j=1

fj f̄j+p

 f2p+1

∥∥∥∥∥∥
L1(−T,T ;L2)
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≤ C

2p+1∑
k=1

2p+1∏
j=1
j 6=k

‖fj‖Lqj (−T,T ;L2p(n+2))‖fk‖Lqk (−T,T ;R1,r(t)), (2.18)

where
∑2p+1

j=1 1/qj = 1. On the other hand by Sobolev’s inequality we have forn = 3,

‖f‖L2p(n+2) = ‖f‖L10 ≤ C‖f‖1/2
H1 ‖f‖1/2

H1,r , (2.19)

and forn = 2
‖f‖L2p(n+2) ≤ C‖f‖H1. (2.20)

We use (2.19) and (2.20) in the right-hand side of (2.18) to get∥∥∥∥∥∥
 p∏

j=1

fj f̄j+p

 f2p+1

∥∥∥∥∥∥
L1(−T,T ;R1(t))

≤ C
3∑

j,k,l=1
j 6=k 6=l

‖fj‖
L

n+2
2 (−T,T ;R1(t))

‖fk‖Lr(−T,T ;R1,r(t))‖fl‖Lr(−T,T ;R1,r(t))

≤ CT
n

n+2

∑
j,k,l=1
j 6=k 6=l

‖fj‖L∞(−T,T ;R1(t))‖fk‖Lr(−T,T ;R1,r(t))

‖fl‖Lr(−T,T ;R1,r(t)) for n=3

and ∥∥∥∥∥∥
 p∏

j=1

fj f̄j+p

 f2p+1

∥∥∥∥∥∥
L1(−T,T :R1(t))

≤ C

2p+1∑
k=1

2p+1∏
j=1
j 6=k

‖fj‖
L

8p
3 (−T,T ;R1(t))

‖fk‖Lr(−T,T ;R1,r(t)) ·

≤ CT
3
4

2p+1∑
k=1

2p+1∏
j=1
j 6=k

‖fj‖L∞(−T,T ;R1(t))‖fk‖Lr(−T,T ;R1,r(t)) for n = 2.

The rest of the proof is done in the same way as in the proof of Lemma 2.13 and so we
leave it to the reader.

DefineU (t) by

U (t)(φ) = F−1e−i|ξ|2t/2φ̂,

which is the fundamental solution of linear Schrödinger equation{
i∂tu + 1

2∆u = 0, (t, x) ∈ R × Rn,
u(0, x) = φ(x), x ∈ Rn.

ForU (t) we have
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Lemma 2.15. (1) We let2 ≤ p ≤ ∞ and(1/p) + (1/p′) = 1. Then for anyφ ∈ Lp′
,

‖U (t)φ‖Lp ≤ C|t|− n
2 (1− 2

p )‖φ‖Lp′ . (2.21)

(2) We letr = 2 + (4/n). for anyφ ∈ L2,

‖U (·)φ‖Lr(R;Lr) ≤ C‖φ‖L2. (2.22)

Lemma 2.15 (2.21) is well known. Lemma 2.15 (2.22) is due to Stricharz [St].

3. Existence of Analytic Solutions

Proposition 3.1. We assume that

φ ∈ Ga
(
x, |x|2; Rm(0)

)
with m ≥ [

n

2
] + 1.

Then there exists a unique solutionu(t, x) of (1.1) and a positive constantT such that

u(t, x) ∈ Gα (J, K; L∞(−T, T ; Rm(t))) for t ∈ [−T, T ].

Proof. We only treat the case of positive time, since the negative time is treated similarly.
To prove Proposition 3.1 we introduce the function space

XT = {f ∈ L∞(0, T ; L2); ||f ||XT
= ‖f‖Ga(J,K;Y (T )) < ∞},

where
Y (T ) = L∞(0, T ; Rm(t)).

We consider the linearized equation of (1.1),{
i∂tu + 1

2∆u = λ|v|2pv, (t, x) ∈ R × Rn,
u(0, x) = φ(x), x ∈ Rn,

(3.1)

wherev ∈ XT . We defineM by u = Mv. It is sufficient to proveM is a contraction
mapping from a closed ball

XT,ρ = {f ∈ XT ; ||f ||XT
≤ ρ}

into itself for some timeT . Applying both sides of (3.1) byJβ∂γJαKl, we obtain

i∂tJ
β∂γJαKlu +

1
2
∆Jβ∂γJαKlu = λJβ∂γJα(K + 4it)l|v|2pv, (3.2)

where we have used the commutation relations

[L, J ] = 0, [L, K] = 4itL,

with

L = i∂t +
1
2
∆.

From (3.2) it follows that
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‖Jβ∂γJαKlu‖L2 ≤ ‖xβ∂γxα|x|2lφ‖L2

+ C

∫ t

0
‖Jβ∂γJα(K + 4iτ )l|v|2pv‖L2dτ. (3.3)

Multiplying both sides of (3.3) bya|α|+l/α!l!, making a summation with respect to
α, l, β, γ, we get

||u(t)||Ga(J,K;Y (T )) ≤ ||φ||Ga (x, |x|2; Rm(0)) +C

∫ T

0
|||v|2pv(τ )||Ga(J,K+4iτ ;Y (T ))dτ.

(3.4)
By Lemma 2.3 withd = n, α = (4 +n)i, X(T ) = Ga(J ; Y (T )) we see that

|| · ||Ga(J,K+4it;Y (T )) ≤ C

1 − abT
|| · ||Ga(J,K;Y (T )). (3.5)

We apply (3.5) and Lemma 2.12 to the second term of the right-hand side of (3.4) to
obtain

||u(t)||Ga(J,K;Y (T )) ≤ ||φ||Ga(x,|x|2;Rm(0)) + C

∫ T

0

1
(1 − abT )2p+3

||v||2p+1
ga(J,K;Y (T ))dτ

from which it follows that

||u||XT
≤ ||φ||Ga(x,|x|2;Rm(0)) + CTρ2p+1 (3.6)

provided that

T <
1

2ab
.

We take
||φ||Ga(x,|x|2;Rm(0)) ≤ ρ

2
andC2p+1

ρ T ≤ ρ

2
.

Then (3.6) gives us
||u||XT

≤ ρ. (3.7)

In the same way as in the proof of (3.7) we have by Lemma 2.12,

||Mv1 − Mv2||XT
≤ CTρ2p||v1 − v2||xT ≤ 1

2
||v1 − v2||XT

, (3.8)

provided thatcTρ2p ≤ 1
2. From (3.7) and (3.8) we see that there exists aT such thatM

is a contraction mapping fromXT,ρ into itself. This completes the proof of Proposition
3.1.

Proposition 3.2. We assume thatp = 1, n = 1 and

φ ∈ Ga(x, |x|2; L2).

Then there exists a unique solutionu(t, x) of (1.1) and a positive constantT such that

u(t, x) ∈ Ga(J, K; L2) for t ∈ [−T, T ].
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Proof. To prove Proposition 3.2 we introduce the function space

XT = {f ∈ L∞(0, T ; L2); ||f ||XT
< ∞},

where
||f ||XT

= ||f ||Ga(J,K;L∞(0,T ;L2)) + ||f ||Ga(J,K;L6(0,T ;L6)).

We also define a closed ball

XT,ρ = {f ∈ XT ; ||f ||XT
≤ ρ}.

We now prove that there exists aT such thatM defined byu = Mv is a contraction
mapping fromXT , ρ into itself. In the same way as in the proof of (3.2) we have by
(3.1),

i∂tJ
αKlu +

1
2
∆JαKlu = λJα(K + 4it)l|v|2v,

which can be written as

JαKlu(t) = U (t)xα|x|2lφ − i

∫ t

0
U (t − τ )λJα(K + 4iτ )l|v|2v(τ )dτ. (3.9)

By virtue of Lemma 2.13 we get

||JαKlu(t)||L6 ≤ ||U (t)xα|x|2lφ||L6

+C

∫ t

0
(t − τ )−

1
3 ||Jα(K + 4iτ )l|v|2v(τ )||L6/5dτ.

TakingL6 norm in time, using Lemma 2.15, we obtain

||JαKlu||L6(0,T ;L6) ≤ C||xα|x|2lφ||L2

+C||
∫ t

0
(t − τ )−

1
3 ||Jα(K + 4iτ )l|v|2v(τ )||L6/5dτ ||L6(0,T ). (3.10)

By Hölder’s inequality∫ t

0
(t − τ )

1
3 g(τ )dτ ≤

(∫ t

0
(t − τ )−

2
3 dτ

) 1
2
(∫ t

0
|g(τ )|2dτ

) 1
2

≤ Ct
1
6 ||g||L2(0,T ).

(3.11)
We use (3.11) with

g(τ ) = ||Jα(K + 4iτ )l|v|2v||L6/5

to (3.10) to have

||JαKlu||L6(0,T ;L6) ≤ C||xα|x|2lφ||L2 + CT
1
3 ||Jα(K + 4it)l|v|2v||L2(0,T ;L6/5). (3.12)

Multiplying both sides of (3.12) bya|α|+l/a!l!, making a summation with respect toα, l,
we get

‖u‖Gα(J,K;L6(0,T ;L6))

≤ C
(
‖φ‖Gα(x,|x|2;L2) + T

1
3
∥∥|v|2v∥∥

Gα(J,K+4it;L2(0,T ;L6/5))

)
. (3.13)
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We have by Lemma 2.3 withX(T ) = Gα
(
J ; L2(0, T ; L6/5)

)
, d = 0,α = (n + 4)i,∥∥|v|2v∥∥

Gα(J,K+4it;L2(0,T ;L6/5)) =
∥∥|v|2v∥∥

Gα(K+4it;Gα(J ;L2(0,T ;L6/5)))

≤ C

1 − abT

∥∥|v|2v∥∥
Gα(J,K̃;L2(0,T ;L6/5))

≤ C

1 − abT
‖v‖2

Gα(J,K̃;L6(0,T ;L6))‖v‖Gα(J,K̃;L6(0,T ;L2)) (by Lemma 2.7).

We again use Lemma 2.3 to obtain

‖|v|2v‖Gα(J,K+4it;L2(0,T ;L6/5)) ≤ C

(1 − abT )4
T

1
6 ρ3. (3.14)

Hence by (3.13) and (3.14),

‖u‖Gα(J,K;L6(0,T ;L6)) ≤ C
(
‖φ‖Gα(x,|x|2;L2) + T

1
2 ρ3
)

, (3.15)

provided that

T ≤ 1
2ab

.

In the same way as (3.4) we have

‖u‖Gα(J,K;L∞(0,T ;L2)) ≤ ‖φ‖Gα(x,|x|2;L2) + C

∫ T

0
‖|v|2v‖Gα(J,K+4iτ ;L2)dτ

≤ ‖φ‖Gα(x,|x|2;L2) + C
∥∥|v|2v∥∥

Gα(J,K+4it;L1(0,T ;L2)) . (3.16)

We have ∥∥|v|2v∥∥
Gα(J,K+4it;L2(0,T ;L2))

≤ C

1 − abT

∥∥|v|2v∥∥
Gα(J,K̃;L1(0,T ;L2)) (by Lemma 2.3)

≤ C

1 − abT
‖v‖3

Gα(J,K̃;L3(0,T ;L6)) (by Lemma 2.7) (3.17)

≤ C

(1 − abT )4
‖v‖3

Gα(J,K;L3(0,T ;L6)) (by Lemma 2.3).

We use (3.17) in the right-hand side of (3.16) to get

‖u(t)‖Gα(J,K;L2) ≤ ‖φ‖Gα(x,|x|2;L2) + CT
1
2 ρ3. (3.18)

From (3.15) and (3.18) it follows that

‖u‖XT
≤ C

(
‖φ‖Gα(x,|x|2;L2) + T

1
2 ρ3
)

. (3.19)

In the same way as in the proof of (3.19) we have by Lemma 2.6 and Lemma 2.7,

‖Mv1 − Mv2‖XT
≤ CT

1
2 ρ2‖v1 − v2‖XT

. (3.20)

We take

C‖φ‖Gα(x,|x|2;L2) ≤ ρ

2
, CT

1
2 ρ2 ≤ 1

2
.

Then (3.19) and (3.20) show that there exists aT such thatM is a contraction mapping
from XT,ρ into itself. This completes the proof of Proposition 3.2.
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Proposition 3.3. We assume thatn = 2 or 3 andp = 1 whenn = 3, p ∈ N whenn = 2,
and

φ ∈ Gα
(
x, |x|2; R1(0)

)
.

Then there exists a unique solutionu(t, x) of (1.1) and a positive constantT such that

u(t, x) ∈ Gα
(
J, K; R1(t)

)
for t ∈ [−T, T ].

Proof. We define the function space as follows:

XT =
{
f ∈ L∞(0, T ; L2); ‖f‖XT

< ∞} ,

where
‖f‖XT

= ‖f‖Gα(J,K;L∞(0,T ;R1(t))) + ‖f‖Gα(J,K;Lr(0,T ;R1,r(t))),

andr = 2 + 4/n. We also define a closed ball

XT,ρ = {f ∈ XT ; ‖f‖XT
≤ ρ} .

We letM be defined byu = Mv, wherev ∈ XT,ρ. In the same way as in the proof of
(3.10),

‖JαKlu‖Lr(0,T :R1,r(t)) ≤ C‖xα|x|2lφ‖R1(0)

+ C

∥∥∥∥∫ t

0
(t − τ )−

n
2 (1− 2

r )
∥∥Jα(K + 4iτ )l|v|2pv(τ )

∥∥
R1,r′ (τ )

dτ

∥∥∥∥
Lr(0,T )

. (3.21)

The similar arguments as in (3.13) and (3.21) give

‖u‖Ga(J,K;Lr(0,T ;R1,r(t))) ≤ C
(
‖φ‖Ga(x,|x|2;R1(0))

+ T
2n

2n+4
∥∥|v|2pv

∥∥
Ga(J,K+4it;Lr(0,T ;R1,r′ (t)))

)
. (3.22)

We have∥∥|v|2pv
∥∥

Ga(J,K+4it;Lr(0,T ;R1,r′ (t)))

≤ C

1 − abT

∥∥|v|2pv
∥∥

Ga(J,K̃;Lr(0,T ;R1,r′ (t))) (by Lemma 2.3)

C

1 − abT
‖v‖2p

Ga(J,K̃;L∞(0,T ;R1(t)))‖v‖Ga(J,K̃;Lr(0,T ;R1,r(t))) (by Lemma 2.13)

≤ C

(1 − abT )2p+2

×‖v‖2p

Ga(J,K;L∞(0,T ;R1(t)))‖v‖Ga(J,K;L(0,T ;R1(t))) (by Lemma 2.3). (3.23)

From (3.22) and (3.23) it follows that

‖u‖Gα(J,K;Lr(0,T ;R1,r(t))) ≤ C
(
‖φ‖Gα(x,|x|2;R1(t)) + T

2n
2n+4 ρ2p+1

)
, (3.24)

provided that

T ≤ 1
2ab

.

In the same way as in the proof of (3.16)
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‖u‖Ga(J,K;L∞(0,T ;R1(t)))

≤ ‖φ‖Gα(x,|x|2;R1(0)) + C
∥∥|v|2pv

∥∥
Gα(J,K+4it;L1(0,T ;R1(t))) . (3.25)

We have by Lemma 2.3,

∥∥|v|2pv
∥∥

Gα(J,K+4it;L1(0,T ;R1(t))) ≤ C

1 − abT

∥∥|v|2pv
∥∥

Gα(J,K̃;L1(0,T ;R1(t))) . (3.26)

We apply Lemma 2.14 to (3.26) to see that the right-hand side of (3.26) is bounded from
above by

CT 3/5

1 − abT
‖v‖Gα(J,K̃;L∞(0,T ;R1(t)))‖v‖2

Gα(J,K̃;Lr(0,T ;R1,r(t))) for n = 3 (3.27)

and

CT 3/4

1 − abT
‖v‖2p

Gα(J,K̃;L∞(0,T ;R1(t)))‖v‖Gα(J,K̃;Lr(0,T ;R1,r(t))) for n = 2. (3.28)

We use Lemma 2.3 in (3.27) and (3.28) to get

∥∥|v|2pv
∥∥

Gα(J,K+4it;L1(0,T ;R1(t))) ≤ C

{
T 3/5ρ3 for n = 3,
T 3/4ρ2p+1 for n = 2,

(3.29)

provided that

T ≤ 1
2ab

.

Hence by (3.25) and (3.29),

‖u‖Gα(J,K;L∞(0,T ;R1(t))) ≤ ‖φ‖Gα(x,|x|2;R1(0)) + C max
(
T

3
5 , T

3
4

)
ρ2p+1. (3.30)

From (3.24) and (3.30) we see that there exists aT such that

‖u‖XT
≤ ρ. (3.31)

In the same way as in the proof of (3.31) we have by Lemma 2.3, Lemma 2.13 and
Lemma 2.14

‖Mv1 − Mv2‖XT
≤ ρ

2
‖v1 − v2‖XT

(3.32)

for a sufficiently smallT . Proposition 3.3 follows from (3.31) and (3.32).
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4. Proofs of Theorems

We first prove

Lemma 4.1. We letP̃ = x · ∇ + t∂t. Then we have for anyk ∈ N,

∑
0≤l≤m

al+k

(l + k)!
‖tlP̃ l(tP̃ )kf‖XT

≤
∑

0≤l≤m

ak

(l + k)!

(
a

2 − ea|t|

)∥∥(tP̃ )l+kf
∥∥

X(t)
,

provided that‖t · ‖Xt
≤ |t|‖ · ‖X(t) and2 − ea|t| > 0.

Proof. We prove the lemma by induction. It is clear that the lemma holds form = 0 and
anyk. We assume that the lemma holds form and anyk. We have

∑
0≤l≤m+1

al+k

(l + k)!

∥∥tlP̃ l(tP̃ )kf
∥∥

X(t)

=
ak

k!

∥∥(tP̃ )kf
∥∥

X(t)

+
∑

1≤l≤m+1

al+k

(l + k)!

∥∥(tl−1[t, P̃ l−1]P̃ + tl−1P̃ l−1(tP̃ )
)

(tP̃ )kf
∥∥

X(t)

≤ ak

k!

∥∥(tP̃ )kf
∥∥

X(t)
+

∑
1≤l≤m+1

al+k

(l + k)!

∥∥tl−1P̃ l−1(tP̃ )k+1f
∥∥

X(t)

+
∑

2≤l≤m+1

al+k

(l + k)!

∥∥tl−1[t, P̃ l−1]P̃ (tP̃ )kf
∥∥

X(t)
. (4.1)

We prove by induction

P̃ lt = t(P̃ + 1)l. (4.2)

In casel = 0, (4.2) is valid. We assume that (4.2) holds forl. Then we have

P̃ l+1t = P̃ t(P̃ + 1)l (by assumption)

=
(
tP̃ + [P̃ , t]

)
(P̃ + 1)l = t(P̃ + 1)l+1. (4.3)

This completes the proof of (4.2). From (4.2) we have

P̃ lt = t
∑

1≤j≤l

(
l
j

)
P̃ l−j + tP̃ l.

Hence

[t, P̃ l] = −t
∑

1≤j≤l

(
l
j

)
P̃ l−j . (4.4)

From (4.4) it follows that
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∑
2≤l≤m+1

al+k

(l + k)!

∥∥tl−1[t, P̃ l−1]P̃ (tP̃ )kf
∥∥

X(t)

≤
∑

2≤l≤m+1

al+k

(l + k)!

∑
1≤j≤l−1

(
l − 1

j

)
|t|l ∥∥P̃ l−j(tP̃ )kf

∥∥
X(t)

=
∑

2≤l≤m+1

 ∑
1≤j≤l−1

al+k(l − 1)!
(l + k)!(l − 1 − j)!j!

|t|l ∥∥P̃ l−j(tP̃ )kf
∥∥

X(t)

 . (4.5)

We have fork ∈ N ∪ {0},

(l − 1)!
(l + k)!(l − 1 − j)!

≤ 1
(l + k − j)!

.

Hence the right-hand side of (4.5) is bounded from above by

∑
2≤l≤m+1

 ∑
1≤j≤l−1

al+k|t|j
(l + k − j)!j!

∥∥tl−jP̃ l−j(tP̃ )kf
∥∥

X(t)

 . (4.6)

Since ∑
2≤l≤m+1

 ∑
1≤j≤l−1

al−jbj

 ≤
 ∑

1≤l≤m

al

 ∑
1≤l≤m

bl

 ,

we obtain by (4.6) if we put

al =
al+k

(l + k)!

∥∥tlP̃ l(tP̃ )kf
∥∥

X(t)
, bl =

(a|t|)t
l!

,

≤
 ∑

1≤l≤m

(a|t|)l
l!

 ∑
1≤l≤m

al+k

(l + k)!

∥∥tlP̃ l(tP̃ )kf
∥∥

X(t)


≤
(
ea|t| − 1

) ∑
1≤l≤m

al+k

(l + k)!

∥∥tlP̃ l(tP̃ )kf
∥∥

X(t)
. (4.7)

From (4.1) and (4.7) it follows that∑
0≤l≤m+1

al+k

(l+k)!

∥∥tlP̃ l(tP̃ )kf
∥∥

X(t)

≤ ak

k!

∥∥(tP̃ )kf
∥∥

X(t)
+
∑

0≤l≤m
al+1+k

(l+1+k)!

∥∥tlP̃ l(tP̃ )k+1f
∥∥

X(t)

+
(
ea|t| − 1

)∑
1≤l≤m

al+k

(l+k)!

∥∥tlP̃ l(tP̃ )kf
∥∥

X(t)

≤ ak

k!

∥∥(tP̃ )kf
∥∥

X(t)
+
∑

0≤l≤m
a1+k

(l+1+k)!

(
a

2−ea|t|

)l ∥∥(tP̃ )l+k+1f
∥∥

X(t)

+
(
ea|t| − 1

)∑
1≤l≤m

al+k

(l+k)!

∥∥tlP̃ l(tP̃ )kf
∥∥

X(t)
(by assumption)

= ak

k!

∥∥(tP̃ )kf
∥∥

X(t)
+ a
∑

1≤l≤m+1
ak

(l+k)!

(
a

2−ea|t|

)l−1 ∥∥(tP̃ )l+kf
∥∥

X(t)

+
(
ea|t| − 1

)∑
1≤l≤m

al+k

(l+k)!

∥∥tlP̃ l(tP̃ )kf
∥∥

X(t)
.
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Therefore ∑
1≤l≤m+1

al+k

(l + k)!

∥∥tlP̃ l(tP̃ )kf
∥∥

X(t)

≤
∑

1≤l≤m+1

ak

(l + k)!

(
a

2 − ea|t|

)l ∥∥(tP̃ )l+kf
∥∥

X(t)
,

which means the lemma holds form + 1. This completes the proof of the lemma.

We next prove the multi-dimensional version of [H-K.K, Lemma 2.4 (2.2)].

Lemma 4.2. We have for anyk ∈ N,∑
0≤l≤m

al+k

(l + k!)

∥∥(x · ∇)l+kf
∥∥

X(t)

≤
∑

|α|≤m

ak

(a + k)!

(
a

1 − a

)|α| ∥∥(x · ∇)kxα∂αf
∥∥

X(t)
,

provided that0 < a < 1.

Proof. We prove by induction. It is clear that the lemma holds form = 0 and anyk. We
assume that the lemma holds form and anyk. Then we have by the assumption∑

0≤l≤m+1

al+k

(l + k)!

∥∥(x · ∇)k+1f
∥∥

X(t)

=
ak

k!

∥∥(x · ∇)kf
∥∥

X(t)
+
∑

0≤l≤m

al+1+k

(l + 1 +k)!

∥∥(x · ∇)k+1(x · ∇)lj
∥∥

X(t)
(4.8)

≤ ak

k!

∥∥(x · ∇)kf
∥∥

X(t)
+
∑

|α|≤m

a1+k

(α + 1 +k)!

(
a

1 − a

)|α|∥∥(x · ∇)k+1xα∂αf
∥∥

X(t)
.

Since
(x · ∇)xα∂α =

∑
1≤j≤n

(ajx
α∂α + xjx

α∂j∂
α),

we have by (4.8),∑
0≤l≤m+1

al+k

(l + k)!

∥∥(x · ∇)k+1f
∥∥

X(t)
≤ ak

k!

∥∥(x · ∇)kf
∥∥

X(t)

+
∑

|α|≤m

ak+1

(α + k + 1)!

(
a

1 − a

)|α|( ∑
1≤j≤n

(
aj

∥∥(x · ∇)kxα∂αf
∥∥

X(t)

+
∥∥(x · ∇)kxjx

α∂j∂
αf
∥∥

X(t)

))
. (4.9)

By a simple calculation
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∑
1≤j≤n

aj

(α + 1)!
=

(
α1 + α2 + · · · αn

(α + 1)!(α + 2)! · · · (αn + 1)!

)
≤ 1

α!
.

Hence by (4.9),∑
0≤l≤m+1

al+k

(l + k)!

∥∥(x · ∇)k+1f
∥∥

X(t)

≤ ak

k!

∥∥(x · ∇)kf
∥∥

X(t)
+ a

∑
1≤|α|≤m

ak

(α + k)!

(
a

1 − a

)|α| ∥∥(x · ∇)kxα∂αf
∥∥

X(t)

+ (1− a)
∑

1≤|α|≤m+1

ak

(α + k)!

(
a

1 − a

)|α| ∥∥(x · ∇)kxα∂αf
∥∥

X(t)

≤
∑

|α|≤m+1

ak

(α + k)!

(
a

1 − a

)|α| ∥∥(x · ∇)kxα∂αf
∥∥

X(t)
.

This completes the proof of the lemma.

Proof of Theorems 1.1 and 1.2. Theorems 1.1 and 1.2 are obtained if we prove that there
exist constantsb1, b2, andT such that

‖M (t)u‖
Gb1
(
t∂;Gb2t2(∂t;L2(Ω))

) < ∞, M (t) = e− i|x|2

2t (4.10)

for t ∈ (−T, T ) \ {0}. For simplicity we assume thatt > 0 since the negative time is
treated similarly. By [H-K.K Lemma 2.4 (2.1)]

‖M (t)u‖
Gb1
(
t∂;Gb2t2(∂t;L2(Ω))

)
=
∑
α

(b1)|α|

α!

∑
l

(b2t
2)t

l!

∥∥∂l
t(it∂)αM (t)u

∥∥
L2(Ω)

(4.11)

≤
∑
α

(b1)|α|

α!

∑
l

1
l!

(
b2t

1 − b2t

)l

‖(t∂t)
tvα‖L2(Ω)

wherevα = (it∂)αM (t)u, and positive constantsb1 and b2 are determined later. By
Reibniz’ rule we see that for̃P = x · ∇ + t∂t,

(t∂t)
l = (P̃ − x · ∇)l =

∑
0≤k≤l

(
l
k

)
P̃ l−k(x · ∇)k,

since [x ·∇, P̃ ] = 0. We use the above equation in the right-hand side of (4.11) to obtain

‖M (t)u‖
Gb1
(
t∂;Gb2t2(∂t;L2(Ω))

)
≤
∑
α,l

(b1)|α|

α!

∑
k≤l

(
b2t

1 − b2t

)l 1
(l − k)!k!

∥∥(x · ∇)kP̃ l−kvα

∥∥
L2(Ω)

≤
∑

α,l1,l2

(b1)|α|

α!

(
b2t

1 − b2t

)l1+l2 1
l1!l2!

∥∥(x · ∇)l1P̃ l2vα

∥∥
L2(Ω)

.
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We use Lemma 4.2 to the above to get

‖M (t)u‖
Gb1
(
t∂;Gb2t2(∂t;L2(Ω))

)
≤
∑
α

(b1)|α|

α!

∑
l1,β

(
b2t

1 − b2t

)l1
(

b2t

1 − 2b2t

)|β| 1
l1!β!

‖xβ∂βP̃ l1vα‖L2(Ω)

≤
∑
α

(b1)|α|

α!

∑
l1,β

(2b2t)t1(2Rb2t)|β|

l1!β!
‖∂βP̃ l1vα‖L2(Ω)

=
∑
α!

(b1)|α|

α!

∑
l1,β

(2b2t)l1(2Rb2)|β|

l1!β!

∥∥∥Jβ
(
M (−t)P̃M (t)

)l1
Jαu

∥∥∥
L2(Ω)

, (4.12)

provided that

t <
1

2b2
.

By Lemma 4.1 and (4.12)

‖M (t)u‖
Gb1
(
t∂;Gb2t2(∂t;L2(Ω))

)
≤
∑

α,l1,β

1
α!l1!β!

(b1)|α|
(

b2

2 − e2b2|t|

)l1

(2Rb2)|β|‖JαK̃l1Jαu‖L2

≤
∑

α,l1,β

1
α!l1!β!

(b1)|α|(2b2)l1(2Rb2)|β|‖(̃K)l1Jα+βu‖L2, (4.13)

provided that

t <
1

2b2
log

3
2
,

where we have used the commutation relation

[K̃, J ] = 0. (4.14)

Hence we have by (4.13),

‖M (t)u‖
Gb1
(
t∂;Gb2t2(∂t;L2(Ω))

)
≤
∑
α,β

b
|α|
1 (2Rb2)|β|

α!β!
‖Jα+βu‖G2b2(K̃;L2(Ω))

≤ C‖u‖G(b1+2Rb2)(J ;G2b2(K̃;L2(Ω))). (4.15)

We put

a = max{b1 + 2Rb2, 2b2} with b2 ≤ 1
2t

log
3
2
.

Then (4.14) and (4.15) imply that

‖M (t)u‖
Gb1
(
t∂;Gb2t2(∂t;L2(Ω))

)
≤ C‖u‖Ga(K̃,J ;L2(Ω)) ≤ C‖u‖Ga(J,K̃;L2). (4.16)
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From Propositions 3.1–3.3 we see that the right-hand side of (4.16) is bounded if

‖φ‖Ga(x,‖x|2;Rm(0)) ≤ C
∥∥∥e|x|2

φ
∥∥∥

Hm
. (4.17)

We have

‖φ‖Ga(x,|x|2;Rm(0)) =
∑
α,k

a|α|+k

α!k!

∑
|β|+|γ|≤m

∥∥xβ∂γxα|x|2kφ
∥∥

L2

≤
∑

|β|+|γ|≤m

∑
α,k

a|α|+k

α!k!

∥∥xα|x|2kxβ∂γφ
∥∥

L2 ,

from which it follows that

‖φ‖2
Ga(x,|x|2;Rm(0)) ≤

∑
|β|+|γ|≤m

∑
α,k

(√
2a
)2(|α|+k)

(α!)2(k!)2

∥∥xα|x|2kxβ∂γφ
∥∥2

L2

≤
∑

|β|+|γ|≤m

∑
α,k

(
2
√

2a
)2(|α|+k)

(2a)!(2k)!

∥∥xα|x|2kxβ∂γφ
∥∥2

L2 (by
1

(a!)2
≤ 22|α|

(2α)!
)

≤ C
∑

|β|+|γ|≤m

∥∥∥∥∥∥
b∏

j=1

cosh
(

2
√

2a(xj + |x|2)
)

xβ∂γφ

∥∥∥∥∥∥
2

L2

≤ C
∑

|β|+|γ|≤m

∥∥∥eb|x|2

xβ∂γφ
∥∥∥2

L2
for b > 2

√
2a. (4.18)

From (4.18) it follows that

‖φ‖Ga(x,|x|2;Rm(0)) ≤ C
∥∥∥e|x|2

φ
∥∥∥

Hm
for a <

1

2
√

2
.

This completes the proof of Theorem 1.1–1.2.

5. Applications

Our proof of the theorems can be applicable to{
i∂tu + 1

2∆u = λ|u|2pu + V (x)u, (t, x) ∈ R × Rn, p ∈ N, λ ∈ C,
u(0, x) = φ(x) x ∈ Rn (5.1)

and {
i∂tu + ∂2

xu + 2iδ∂x(|u|2u) = 0, (t, x) ∈ R × R, δ ∈ R,
u(0, x) = φ(x), x ∈ R.

(5.2)

We have for (5.1)
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Proposition 5.1. In addition to the assumption on Theorems 1.1–1.2 we assume that

∑
α

a|α|

α!
‖xα∂αV ‖Gb(∂;Hm) < ∞,

where0 < a < 1, 0 < b. Then the same result as in Theorems 1.1–1.2 are valid for the
solutions of (5.1).

Proof. In the same way as in the proofs of Theorems 1.1–1.2 we have the result if we
prove that there exists a positive constanta1 such that

V ∈ Ga1
(
x · ∇; Gb(∂; Hm)

)
.

By Lemma 4.2 withX = Gb(∂; Hm) andk = 0 we find that

‖V ‖Ga1(x·∇;X) ≤
∑
α

(
a1

1 − a1

)|α| 1
α!

‖xα∂αV ‖X < ∞,

provided that a1
1−a1

≤ a. This completes the proof of Proposition 5.1.

The condition onV given in Proposition 5.1 is satisfied ifV (x) has an analytic contin-
uationV (z) on the complex domain

Γ√
2a,

√
2b = {z ∈ C; zj = xj + iyj ; −∞ < xj < +∞,

−
√

2b − (tanα)|xj | < yi <
√

2b + (tanα)|xj |,
j = 1, 2, . . . , n, 0 < α = sin−1

√
2a < π/2}

and ∫
Γ√

2a,
√

2b

|V (z)|2dxdy < ∞,

(see the proof of Theorem 1.1 in([H-K.K]). Hence if
√

2b < 1,

V (x) =
1

(1 + |x|2)m
,

1
2

[n
2

]
< m ∈ N

can be considered as the typical example satisfying the condition in Proposition 5.1.
The derivative nonlinear Schrödinger equation (5.2) can be translated into the sys-

tem of nonlinear Schrödinger equations without nonlinear terms having derivatives of
unknown function by using a gauge transformation. Indeed puttingu1 = E2u and
u2 = E∂x(Eu) with

E(t, x) = exp(iδ
∫ x

−∞
|u(t, y)|2dy),

we have {
i∂tu1 + ∂2

xu1 = 2iδu2
1u2,

i∂tu2 + ∂2
xu2 = −2iδu2

2u1,

}
(see [H] for details). Hence in the same way as in the proof of Theorem 1.2 we obtain
for (5.2)
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Proposition 5.2. We assume that

||e|x|2

φ||H1 < ∞.

Then the same result as in Theorem 1.1 is valid for the solutions of (5.2).
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