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Abstract: Inthis paperwe consider analyticity in time and smoothing effect of solutions
to nonlinear Schidinger equations

10u + %Au = Mu|?u, (t,r) € R x R", )
u(0,2) = ¢, z € R7,

where) € C, p € N. We prove that i satisfies

then there exists a unique solutiaft, ) of (1) and positive constants, Cy, C; such
thatu(t, z) is analytic in time and space variables toe [-T,7] \ {0} andz € 2 =
{z;]z| < R} and has an analytic continuatidf(zo, z) on

elw\2¢HH < o0, )

[n/2]+1

{z0=t+ir;—Cot® < 7 < Cot*,t € [-T,T] \ {0}

and
{z=a+iy,~Calt| <y < Cu(t), (t,2) € [T, T]\ {0} x 2}.
In the casen = 1, 2, 3 the condition (2) can be relaxed as follows:
Je<Fel] . <o
HW‘L
wherem =0ifn=1,p=1,m=1ifn=2,peNandm=1ifn=3,p=1.
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1. Introduction

In this paper we consider analyticity in time and smoothing effect of solutions to non-
linear Schédinger equations

{ 10pu + %Au = Mu|®u, (t,r) € R x R",

w(0, 7) = ¢(x), z € R", 1.1)

where) € C, p € N. Equation in (1.1) appears in various physical applications, such as
plasma physics, nonlinear optics, and nonrelativistic quantum physics. There have been
many works on global existence of solutions, and on asymptotic behavior of solutions
(see [Ca] and references cited therein).

The analyticity in space and smoothing effect of solutions to (1.1) were studied in
[H-Sai 1]. In particular, [H-Sai 1] showed that the solutionf (1.1) withp = 1 has an
analytic continuation on the strip

St ={z=z+iy;—|t| <y; <|t|,i=1,...,n}

for any time provided thaHH?zl(coshrijH is sufficiently small withm > n and

n > 2. If we restrict our attention to the local existence of solutions, the method used in
[H-Sai 1] is applicable to (1.1) whem = 1.

The analyticity in time of solutions to (1.1) replacing:|??u by F(u, u) was proved
in [H-K.K] first under the analytical condition on the data, whél:, «) is a polynomial
with respect ta: andu (see [H-K.K, Theorem 1.1]).

Our purpose in this paper is to prove analyticity in time of solutions to (1.1) without
regularity assumption on the data. Our main tool is the opef#gter|z|? + nit + 2itz -
V + 2it?0,, which almost commutes with = 9, + %A. Indeed we havel], K] = 4itL

which yieldsL K = (I +4it)! Lu. Theorems are obtained through Propositions 3.1-3.3
which state the existence of solutions in analytic function spaces involving the operator
K. In order to prove Propositions 3.1-3.3 we need the multiplication lemmas (Lemma
2.7, Lemmas 2.12-2.14). Lemma 2.7 is used to prove Proposition 3.2, Lemma 2.12 is
used to prove Proposition 3.1 and Lemmas 2.13-2.14 are used to prove Proposition 3.3,
respectively. The maintoolinthe previous work [H-K.K] was the operBterz-V+2t0;

which has the commutation relatioh [P] = 2L.

Differences between the proof in this paper and the previous one follow from the
facts that the operatdk’ does not commute with the time varialilend the operator
x-V,andK is not the first order differential operator. The fact thatloes not commute
with the time variable¢ means that we can not use the Reibniz rulefin+ 4it)' and
so we need to prepare Lemma 2.3 which prevents us from considering the analyticity in
time of solutions in large time. On the other hand the fact that the opePatommutes
with the constant 2 appears ih,[P] = 2L enables us to use the Reibniz rule in{ 2).
FurthermoreP is the first order differential operator which commutes with the operator
x- V. SinceK is not the first order differential operator, we introduce the multiplication

il=|? T . ilo|? .
terme~ "z to prove the multiplication lemmas. By making useeof z —, we easily

see that

i|x|?

~ ilz)?
K = |z|? + 2itx - V + 2it?0; = 2ite%(x -V +t0)e” 7.

The operatorf{ is considered as the first order differential operator for nonlinear terms
satisfying the gauge condition and we see tha2if) X' commutes with the operator

eF g Ve H- althoughXk does not commute with - V. We also know is almost
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equivalent toK through Lemma 2.3. We give the strategy of the proofs of Theorems
1-2. The desired results are established by showing

iax|?

e 2ty

< o0
Gb1(t9;Gb2% (9, L2(£2)))

for some constants, b, and sufficiently smalt, where the norm is defined below. We
show the above estimate by combining Propositions 3.1-3.3 and Lemmas 4.1-4.2. We
note that Lemma 4.1 also prevents us to prove the analyticity in time in largettime

ilz ilz|?

2
Lemma 4.1 says thatthe relation betwdgrandt!(,1 K)! = tle 5 (z-V+t0,) e~ 5.

The operato was also used to prove the Gevrey smoothing effect in space variable
in [B-H-K.K]. Roughly speaking it was shown that the dathelongs to a Gevrey class
of order 2, then solutions of some nonlinear Sadlinger equations become analytic in
the space variable far # 0. Korteweg-de Vries equation’s version of the operdtor
written aszd,, + 3td, is also useful to study analyticity in time and Gevrey regularizing
effect in space variables for solutions (see [B-H-K.K] for details).

Local smoothing effect of solutions to linear Sétimger equations were studied by
[Co-Sau, Sjand V] for the homogeneous case and by [Ke-P-V] for the inhomogeneous
case. Kenig, Ponce and Vega [Ke-P-V] applied them to the proof of local existence
results of nonlinear Schdinger equations with nonlinearities having the derivatives of
unknown function.

This paper is organized as follows. In Sect. 2 we prove multiplication lemmas
(Lemma 2.7, Lemmas 2.12—-2.14) which are needed to prove local existence of ana-
Iytic solutions of (1.1) which are established in Sect. 3. Section 4 is devoted to prove
Theorems 1.1 and 1.2. In Sect. 5 we give some applications.

Theorem 1.1. We letf? be a ball inR™ with radius R center at the origin and assume
that

2
elel d)H < 00
Hln/21+1

Then for anyR, there exists a unique solutianof (1.1) and positive constants, Cp,
Cy such thatu is analytic in time and space variables f@r ) € [-T,T] \ {0} x 2
and has an analytic continuatiali(zo, z) on

{zo=t+ir: —Cot* <7 < Cot?,t € [-T,T]\ {0}}
and

{z = a+iy, —Cift| < y;
< C’l|t‘ <y < Cl|t‘7(taw) € [_T7T] \ {0} X Qv] = 17 7n}'

Theorem 1.2. We assume that

He'mlquH <o for p=1n=1
L2

|2 H peEN,n=2
He ¢H1<OO for p=1n=3

Then the same results asTimeorem 1.holds.
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In the case of the linear Sardinger equations

{ iu+3Au=0, (t,z) € RxR", (1.2)

u(0,z) = o(x), x€R",
we have the same as in the proof of [H-Sai2, Theorem 1].
Proposition 1.1. We assume that
e, <

Then there exists a unique solutiafi, x) of (1.2) such thatu(¢, z) has an anylytic
continuationU (¢, z) to S(c0) = {z;2z € C"} and

iz2
e~ U(t,z) € A(oo, 2t?),

where

A(oo,a) = {the set of all analytic functiong(z) on S(co) such that

2
W/}R/}R e T |f(2)Pdedy < 0o foreacha}.

FurthermorelU (¢, z) satisfies

L — 3 (% +20)"+22?| iy)|? / 2a? 2
s b2l g+ i) Pdady = [ €A do. (1.3
(2127)/2 /n /ne ’ \U(t,x +iy)|* dx dy o |p(2)|° dz. (1.3)

From Proposition 1.1 and the same argument as in Sect. 4 the result about analyticity
in time follows. However we can not expect the estimate (1.3) in the case of nonlinear
Schidinger equations because the function spags, 2t?) does not work for (1.1).

We notice that Proposition 1.1 follows from the use of the operatorz + itV.

Notatation and function spaceiset X be a Banach space with nofim || x ando® =
oyt -+~ On, wherela| = 377 a;,0; = 9/dx; anda; € NU {0}. We define analytic
function spaces as follows:

alel
GUO:X) =4 f e Xilflloron= Yo —ll0%fllx <oop,
a€e(NU0)™ :

where
o] o]
a a
E : —110%fllx = E |07 - O f| x -
! N... | n
ac@ooy & actinoy (@) - (anl)

In the following we denote the infinite sul,, g o) bY 2,
We also define

N
G4 X) = {f € X[l fllgeaix) = Z%HANJ’HX < OO} ;
— NI
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where
A=K =|z|* +nit + 2itx - V + 2it%0;,
or N
A=K =[x +2itz - V +2it°0, with 2-V =) 2;0;.
=0
We note that .

~ ix|?
K= Zite%(x -V +td)e 2.
The usual Sobolev spadé™? is defined by

P ||a“f|Lp<oo},

la]<m

H™P = {f € L7 ||f]

and we letH™ = H™2, We let with.J = (Jj)lgjgn, Jj =z;+ itﬁj,

R™P(t) = {f € L% fllrmey = Y 110 fllee < OO}

||+ B]<m

andR™(t) = R™2(t). For simplicity we writeG*(A, B; X) = G*(B; G*(4; X)).

2. Preliminary Estimates

Lemma 2.1. We assume that operatorsand B satisfy the commutation relations
[A’ B] = 751427 [Aaf}/] = [B,"}/] = 07

whereg, v € C. Then we have

k-1
(A+B) = Z (]i) H(l +3§)A*B'=* + B, (2.1)

1<k<I 3=0

Proof. We prove (2.1) by induction. Whdn= 1, it is clear that (2.1) holds. We assume
that (2.1) holds for any. Then we have by the assumption

k—1
(A+B)*t = Z (é) H(l +3j)(A+ B)A*B'=F + (A + B)B'. (2.2)

1<k<lI §=0

We next prove by induction
[B, A¥] = gEA*L, (2.3)

The case: = 1 follows from the assumtion. Assume (2.3) for dnythen
[B Ak+l] - BAk+l _ Ak+lB
= (BA* — A*B)A+ A*(BA — AB)
= [B, AF]1A + A¥[B, A] = B(k + 1)AF*2,

This implies (2.3). We apply (2.3) to (2.2) to obtain



278 N. Hayashi, K. Kato

(A + B)l+l

1<k<i (

)k
- ¥ (4 ) (4 G+ GAS B + 4B 4 (45 BB
1<k<1

H

[1@ +8)(A** + A B + gk A**)B' %) + (A + B)B'

??‘h

J=

= " ) [ @B o — 1a¥ s
2<k'<l 1

+ ) (é) H(1+g )A* Bk + (A + B)B'

1<k<lI 7=0
I I k—1
= Z ((k—1>+<k>> H(1+ﬁj)Ak‘Bl+1—k
2<k<l 4=0

1
+ JJe+siart+ ( i) AB'+(A+ B)B!

J=0

=y (l+1) H(1+6)AkBl+l k

2<k<l

!
[+1 . 1+1 [+1 l 1+1
+<l+1>H(1+ﬁj)A +( 1 )AB +B

§=0

Z (l+1) H(l+ﬁj)Ak Btk 4 gitl (2.4)

1<k<l+1 j=0
This implies (2.1). O
Lemma 2.2. We have foids,; = K +idt,

C
f O G (i gratxwy < m”f(t)ﬂca(kd;xm),

provided thatb|t| < 1, ||t ||x@) < |t|l| - ||x@), whereb > 2.

Proof. Since pt, K] = —2Z(at)?, we have by Lemma 2.1 withd = at, B = K,
8=2i/a

k—1

Grvar'= Y ()T H(1+2—J)(at)kKl ) (25)

I<k<I

By (2.5)

l
a ~
1@l rarxen = 22 37 1Ea + at) F Ol Lxc
0
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l
RIS ( )H<1+ Z DM IR £l xo

>1 ° \1<k<l

Z Hde(t)HX(t)

l k (2 t)k
I 1‘[('“' # DIRE O xor + 1 Ollonixon

1>1 1<k<l

Z(za\tnklr[('a‘w) 1 Ollgecies ey + 1 Ollgeierney.  26)

k>1

IN

It is clear that

(0% . ~ ~
2l H(| ‘+J)§Cak for @> 1.

Hence we have by (2.6),

Ol ga(zpratxw) < C(Z(ab\tl) WOl ga(i,xwy):

which implies the lemma.
Lemma 2.3. We have fords,; = K +idt,

C
[l Ge (i gratx ) < mﬂfﬂca(kd;xm),

provided thatdbT < 1, ||t - ||x¢r) < |T|| - || x (), Wwhereb > 2.

Proof. In the same way as in the proof of Lemma 2.2 we have the lemma. In what
follows we use the notation

M@=, F=Meys

and the relation
J = M(—1)(it0)™ M (t).

Lemma 2.4. We have fop; > 1,

3
| fufoFallaaeimy < [T fillgeiesmy,

J=1

wherel/p; = ijl(l/pﬁl)-
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Proof. We have by Reibniz’ rule,

_ alel —
fifoFallgawiim = D2 — 112l Fa)l| e,

[e3%

=3O e )|

Lh

ol ) o
IR by (g) (f ) (0" F)(0% )0 o)

Bla
y<B LP1

(a\tl)‘o" a—pB 7 By 7
<X X e @R

<8

L1

@ 1)

0 F)

L2 LP3 LFa

(alt‘)la‘ a—Bf
<22 G 1)
Y<B
(by Holder’s inequality)
3
< H | fillga(rLrimy-
j=1

O

Lemma 2.5. We have fop1, ¢; > 1,
3

||f1f273| |G“(J;L71(—T,T;Lf’1)) < H ||fj | |G“(J;L“J’+1(7T,T;L”j+1))a
j=1

wherel/p; = Zj’:l(pjﬂ) andl/q; = Z;’:l(l/qjﬂ).
Proof. By the definition

a‘al T 1/‘11
lgllGa(s;Lo(—1,1;Lr1)) = Z ol (/ ||Ja9(t)|qup1dt> :
: -T

[}

In the same way as in the proof of Lemma 2.4,

| f1f2f sllGaqrLon L)

| T - aq
<22 (a— g)f(g T (/_T |(Ja_ﬁfl)(Jﬁ_”fz)(J”fs)l|q£mdt>

a B<a
Y<B

ol N
< Z Z (a — BB — ! TP fu]| Loa(7 1:Lw2)

a B=a
v<B

|| T fol | as(—r,ines)|| T fal | Las(— 1,108y

which gives the lemma.
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Lemma 2.6. We have fop; > 1,
3
I[fifofallGas, ioey < H | fillge (s, & Lpimys
771

wherel/py = 33, (1/p;+1).
Proof. We have
l
_ a o _
| frfofsll s iciomn = D 37 1K (fifafo)lgernes. 2.7
ol

Since
K= M(—t)(2itx - V + 2it?0,)' M (),

we easily see that

KU (frfafa) = M(=t)Qitx - ¥V + 2it20,) (fofofa).

The operator
2itP = 2it(x - V + 1)

is the first order differential operator and so in the same way in the proof of Lemma 2.4
we find that the right-hand side of (2.7) is bounded from above by

S5 it (@ 5) (@er 1 2) (@)

Ga(J;LP1)
i<k
(2.8)
We apply Lemma 2.4 to (2.8) to get the lemma.
Lemma 2.7. We have fop1, ¢1 > 1,
_ 3
||f1f2f3||Ga(J;f(;Lq1(_T,T;Lp1)) < H ||fj||Ga(J,f(;LqJ‘ﬂ(—T,T;LPM))a
j=1

wherel/p; = Z?zl(l/pjﬂ) andl1/q; = Z?zl(l/qjﬂ).

Proof. In the same way as in the proof of Lemma 2.6 we have the lemma by using
Lemma 2.5.

Lemma 2.8. We have
_ 3
I frfofsllvay < CTT v,
=1

whereY (T') = L*° (-T,T; R™(t)) andm > [n/2] + 1
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Proof. By integration by parts and the commutation relation
[0k, Jk] = 65k (2.9)
we obtain

Ifrfefalrmey < C Y ([T (afaf3)|| o + [|0°(Frtfefa)| 12) (2.10)

lal<m

Hence we have witlf = M (),

S kR, = Y |@ordikh)|

la|<m la|<m
< MZW > () (D)oo i@ i@ ),

<o ¥ i,

la|=lag[+]ag]+|ag]

~ || P2 ~
oy fo||[@tor=fy

LP3

|| <m

(by Holder’s inequality)

<c Y f[H(z‘ta)“fj

lal<m j=1

(;Z I1£il724 (by Sobolev's inequality)

where .
1 _ oy <1 m) 1
— =+ q. o , —.
. J 2 n ;pj

Hence we have

_ 3
ST, < Y TTITEHIE IS

o] <m la]<m j=1

We again apply Sobolev’s inequality to get

3 3
Z HJa(flfzfs)HLz < CH 1551l g sy - (2.11)

la|]<m 7=1

In the same way as in the proof of (2.11) we have

3
> o%(fufefa)|| e < CTT IS5 lrmen- (2.12)
1

la] <m J=
From (2.10)—(2.12) the lemma follows. O

Lemma 2.9. We have
3

I ffafallceacryvay < C T lae@yay,
i=1

whereY (T') = L*° (-7, T; R™(t)) andm > [n/2] + 1.
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Proof. We have by Lemma 2.8,

_ | _
| f1f2fallqacry )y = Z aoT ||Ja(f1f2f3)||y(T)

67

laf -
< iy 1T TRy

a B=a
Y<B

]
<O Y =g M Al 1777 Ellyy 17 Bl

o BLa
v<B

which gives the lemma. [

Lemma 2.10. We have

3

I f1f2fallgogs vy < CTT il Gag, vy
i=1

whereY (T') = L*°(-T,T; R™(t)) andm > [n/2] + 1.
Proof. We have by the definition
!
_ a . _
||f1f2f3||G“(J,k;Y(T)) = Z ZT ||Kl(f1f2f3)||Ga(J;y(T)) .
l

In the same way as in the proof of (2.8) we obtain

| frfafallgaqs, kv ey

al ~ ke =
< XX g K (B )|

k<l
i<k

Ga(Y(T)

We apply Lemma 2.9 to the right-hand side of the above to get lemmal]

Lemma 2.11. We have

I1£1%7f — 19*g]

Ge(J,K;Y(T)
2p 2p ~
< C (0% vy * 1912 zeyery) 1 = Ilgainicovan:
whereY (T') = L°(-T,T; R™(t)) andm > [n/2] + 1.

Proof. We prove by induction with respect . Whenp = 1 we have the lemma by
Lemma 2.10. We assume that the lemma holds foriarom the equality

[F122°2F — 9|29 = | F12 (|12 f — |9I?9) + |99 (F(f — 9) + 9(f — ),

and Lemma 2.10 it follows that
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727 = 191729 || go s vy

< C (112 vy 11121 = lgl?g]

Go(J,K;Y(T))

+l ‘g|2pg||Ga(J,f(;Y(T))
(||f||Ga(J,f<;Y(T)) + ”g”Ga(J,f(;Y(T))) Hf - 9||Ga(J,f<;Y(T))) :

Thus the lemma for the cape- 1 follows from the assumption. This completes the proof
of Lemma 2.11.

Lemma 2.12. We have

£ f =191 gllGe (s, x+ait,y (1))

c 2 2
< W (||f||c§)a(J,K;y(T)) + ||gH(§')a(J,K;Y(T))) I1f = gllae@,x:v @y,

provided thatudT > 1, whereb < 2, Y/(T) = L>°(-T,T; R™(t)) andm > [n/2] + L.
Proof. Lemma 2.3 withd = 0, = (4 +n)i and X(T') = G*(J; Y (1)) gives

|- HG“'(J,K+4it;Y(T)) < ﬁ” : ”GG(J,I?;Y(T))’ (2.13)
since
[t Nxery < T - [lxery.
We again use Lemma 2.3 with=n, o« = —ni to obtain
| ey < Tl - laeeamrern, 214)
The lemma follows from (2.13) and Lemma 2.11. [

Lemma 2.13. We assume that = 2 or 3. Then we have

H fjf_j+p fapr1

J=1 Go(J, KL (=T, T;RE (1))
2p+12p+1
<C Z H Hfj”Ga'(JJ?;LOO(fT,T;Rl(t)))ka||Ga(J,f(;LT(fT7T;R1v”‘(t)))7
k=1 J=1

i
wherer =2+ (4/n), (1/r)+ (1/r')=1landp=1ifn=3,p e Nifn =2,
Proof. We have by tlder inequality

p p—
117 fie0 | fopna

=1 L™(~T,T;Rb (8)
p —
= > |7 [ T] fifiw | foom (2.15)
lal+|B]<1 J=1 LT L)
2p+12p+1
<O [T Wil rapmmall fell or—,:m0e)-
k=1 4=1

7k
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By Sobolev’s inequality,

p —_—
Hfjfj+p fop+1 (2.16)
=t L7 (=T, T;RM (1)
2p+12p+1
<O T il e rrrmapll fell - mririe@y-
k=1 =L
7k

In the same way as in the proof of Lemma 2.9 we obtain by (2.16),

p J—
115t | fona

j=1 Ga(J, L™ (=T, T;RL" (t)))
2p+12p+1l

<C Y 1 illeewiecrrmonllfelloeurrrmeay.  @17)
k=1 =t

7k
From (2.17) and the similar argument as in the proof of Lemma 2.10 the lemma follows.
O

Lemma 2.14. We assume that = 2 or 3. Then we have

H fjf_j’fp Jop+1

7=1 Go(J, KLY =T,T; RA(2)))

3
<CTs E ”fj”GG(J,IN(;LOO(fT}T;Rl(t)))”fkHG“(J,f(;LT(fT,T;Rl»r(t)))
jik,1=1
J7kA

X Hfl‘|G"'(J,f(;Lr(—T,T;RlvT(t))) forn =3,

p J—
Hfjfj+p Jop+1
=t G (K LY(~T,T;R(t)))

2p+12p+1
3
<CT+* Z H Hfj||Ga(J,i(;Loo(—T,T;R1(t)))||fk||Ga(J,I”(;L'r'(—T,T;RL'r-(t)))

k=1 j=1
7k

wherer =2+ (4/n),p=1lifn=3andp € Nifn = 2.
Proof. We have by Hlder’s inequality

p J—
117 fie | forna

g=1 LY(~T,T;RY(t))

p —
= > | | [T £ifiw | form

lal+6]<1 j=1 LT
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2p+12p+1

<O T Milles crapzseoy |l fill aw — 1 mer s (2.18)

k=1 J=1
7k

where>~%1"1/q; = 1. On the other hand by Sobolev's inequality we haverfer3,

1zt = || Fll oo < CIENEENFIMZ, (2.19)

and forn =2
| £l Lovneay < C|| f || - (2.20)

We use (2.19) and (2.20) in the right-hand side of (2.18) to get

H HfJ i | faprt

LY=T,T;R\(t))

<C Z 1Fill, 22 o pagoy W s marap il o e
Gok,1=1
J7RFA

< CT™% Y | filleerrmeylfel oo crrmrew)
3o ki=1
J7kA

I fill L~ 72y fOr n=3

and

p J—
117 fie0 | fana

7=l LY(—T,T:R(t))

2p+12p+1

<c> 11 ”fJHLT( TTRl(t))”fkHLr(fT,T;RlvT(t)) '

lil

2p+12p+1

g
cT3 > T 1filleecr.rrepl fellorr.rmrey forn=2.

k=1 j=1
J7k

The rest of the proof is done in the same way as in the proof of Lemma 2.13 and so we
leave it to the reader.

DefineU (t) by
U(t)(g) = F e ilel*t/2g,

which is the fundamental solution of linear Sétinger equation

iOu + %Au =0, (t,z)eRxR",
u(0, ) = ¢(x), = € R™

ForU(t) we have
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Lemma 2.15. (1) We le2 < p < oo and(1/p) + (1/p) = 1. Then for any € L¥',
_n(1—2
U@l < CltI72 26 - (2.21)
(2) We letr = 2 + (4/n). for any¢ € L2,
10O @y < ClidllLe. (2.22)
Lemma 2.15 (2.21) is well known. Lemma 2.15 (2.22) is due to Stricharz [St].

3. Existence of Analytic Solutions
Proposition 3.1. We assume that
¢ € G (v, |23 R™0) with m > [g] +1.
Then there exists a unique solutia(t, z) of (1.1) and a positive constarf such that
u(t,x) € G*(J,K; L>®°(-T,T; R™(t))) for tel[-T,T].

Proof. We only treat the case of positive time, since the negative time is treated similarly.
To prove Proposition 3.1 we introduce the function space

Xr ={f € L=O,T; L?);|||lxr = | fllge vy < o0},

where
Y(T) = L>=(0,T; R™())-

We consider the linearized equation of (1.1),

2

i0u + 3 Au = Ao|?v, (t,r) € R x R", 3.1)
u(0, z) = ¢(x), z eR", '

wherev € Xp. We defineM by v = Mw. It is sufficient to provel is a contraction
mapping from a closed ball
Xrp ={f € Xri||fllx, < p}

into itself for some timé&". Applying both sides of (3.1) byf’aWJaKl, we obtain
10y JPOV T K u + %Aﬂ’awamu = APV JYK + 4it)|v|*v, (3.2
where we have used the commutation relations
[L,J]=0, [L,K]=4itL,

with 1
L= ’Laf + EA

From (3.2) it follows that
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17707 J* K"l 2 < (|27 072 |2|* || 2

t
+c/ 1T507 T2 (K + dir)! o] u]| dr. (3.3)
0

Multiplying both sides of (3.3) by:l*I*! /all!l, making a summation with respect to
Q, lv 57 v, we get

T
l[u®)l| o xy ey < [|ollce(, |$|2;Rm(0))+0/ [0 0(7) | o, K +airy (T
0

(3.4)
By Lemma 2.3 withd = n, o = (4 +n)i, X (T) = G*(J; Y (T)) we see that

c
Mo keaizyay < ———11 - lges 5y . 35
I Mleewrsainy@y < 77l - lleewryay (3.5)

We apply (3.5) and Lemma 2.12 to the second term of the right-hand side of (3.4) to
obtain

T
1 2p+1
l[u@®)||e,xv @y < |0llGew,z2:mm0) +C/o m||v”g€(,l,K;Y(T))dT

from which it follows that

ullxs < 119l Geg,jo2rm @) + CTP™ (3.6)

provided that
1

T< —.
2ab

We take ,
19l Ga, |22 mm @) < > andC§P+1T <

NI

Then (3.6) gives us
lullxr < p. 3.7
In the same way as in the proof of (3.7) we have by Lemma 2.12,

1
||Mv1 — Muvy||x, < CTp?||vg — va| |z < Sl —vallx,. (3.8)

provided thatT p? < % From (3.7) and (3.8) we see that there exisissuch that\/
is a contraction mapping frodi ., into itself. This completes the proof of Proposition
3.1
Proposition 3.2. We assume that=1,n = 1and
¢ € Gz, |z|? L?).
Then there exists a unique solutia(t, z) of (1.1) and a positive constafit such that

u(t,z) € GYJ, KL% for tel[-T,T).
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Proof. To prove Proposition 3.2 we introduce the function space
X ={f € L=, T; L?); || fl| xr < oo},

where
fllxz = Ifllge@,k;poo0,m;02) * 1 fll o, k;080,7:9)-
We also define a closed ball

Xr,={f € Xr;]

Fllxr < p}-

We now prove that there existsTasuch thatd/ defined byu = Mwv is a contraction
mapping fromXr, p into itself. In the same way as in the proof of (3.2) we have by
3.1),

1
10y JO K u + éAJ@Klu = AJO(K + 4it)!|v|v,
which can be written as
t
JOK u(t) = Ut)z|z|2 ¢ — i / U(t — T)NT(K + 4ir)!|v|?v(r)dr. (3.9)
0
By virtue of Lemma 2.13 we get
170K u(®)||s < (U@ 2| 6| s
t
+ C/ (t— T)‘§\|JQ(K + 4i7)! ) ?0(7)|| LessdrT.
0
Taking L® norm in time, using Lemma 2.15, we obtain
74K ]| so.rine) < Cllz®[a[? ¢ 2
t
+C|| / t—7)°3 [|J(K + 4Z'T)l|’l)|2’l}(7')‘|Ls/5dTHL6(Q’T). (3.10)
0

By Holder’s inequality

t t % t %
/O (t - Dg(r)ir < ( /O (tv)sdv) ( /O |g(v)|2d7) < ot lgll o)

(3.11)
We use (3.11) with

g(7) = |72 (K +4ir) [v]?v] | pors
to (3.10) to have
1 .
1T K ul | so.rize) < Clla®[a|? ¢l 2 + CT3 ([T (K +4it) [o[?0] | oo 7675 (3:12)

Multiplying both sides of (3.12) by!*!*! /a!i!, making a summation with respectdo!,
we get

[Jul] Ge (J,K:L80,T;LS))

i 2
<C (||¢HG“($,|Q:|2;L2) +T5 |||’U| U||G"(J,K+4it;L2(O,T;L6/5))) . (313)
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We have by Lemma 2.3 with (T)) = G* (J; L?(0, T'; L%®)), d = 0, = (n + 4)i,

H |v|2vHG“(JaK*“if?LZ(OvT;LG/S)) - H |U|Zv"G“(K+4it;G‘¥(J;LZ(O,T;LG/S)))
= 1_abT H|U|21)||C;a(J,R;LZ(O,T;L6/5))
C

1—abT HU||éa(J,;};Le(O7T;Ls)) ||11HG<~(J,1"<;L6(0,T;L2)) (by Lemma 2.7)

We again use Lemma 2.3 to obtain

C 1
H\U|2U||Ga(J,K+4it;L2(o,T;L6/5)) < mTGPS- (3.14)
Hence by (3.13) and (3.14),
1
”u”GQ(J,K;LG(QT;LG)) <C <||¢||Ga(z,|z\2;L2) +T2P3) ) (3.15)
provided that
1
T< —.
— 2ab

In the same way as (3.4) we have

T
2
HUHG“(J,K;LQC(O,T;LZ)) S ||¢||G"(ac,\w|2;L2) "’C/O l[lv] v||Ga(J,K+AiT;L2)dT

2
= ”‘bHG“(z,IrIZ;LZ) +C H|”| ”HGa(J,K+4it;L1(o,T;L2)) : (3.16)

We have

| \U|2'U||G~(J,K+4it;L2(o,T;L2))

lll®

<
— 1—abT
C

<
— 1—abT
<
~(1—abD)?
We use (3.17) in the right-hand side of (3.16) to get
[u®)l|Go k2 < 6l Goe, azry + CTZp% (3.18)
From (3.15) and (3.18) it follows that
lullxr < € (I6llgo (o ofsize) + TH6%) - (319)

In the same way as in the proof of (3.19) we have by Lemma 2.6 and Lemma 2.7,

v||Ga(“~<;L1(O’T;L2)) (by Lemma 2.3)

‘|“||3éa(J,k;L3(o,T;L6)) (by Lemma 2.7) (3.17)

3
Go (K L3O.T5L9) (by Lemma 2.3).

IMvy — My,||x, < CT?p?|lor — val|x,- (3.20)
We take

p 1 1

Clll e (a,opiz2) < > CT?p? < >

Then (3.19) and (3.20) show that there exisis such that)M is a contraction mapping
from X1 , into itself. This completes the proof of Proposition 3.2.
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Proposition 3.3. We assume that = 2 or 3andp = 1whenn = 3, p € N whenn = 2,
and
¢ € G* (z,|z[* RY0)) .
Then there exists a unique solutioft, =) of (1.1) and a positive constari such that
u(t,x) € G* (J,K;Rl(t)) for ¢te[-T,T].
Proof. We define the function space as follows:

Xr ={f € L=0,T; L%;||f|| xs < o0},

where
I fllxr = Hf”G”(J}K;LOO(O,T;Rl(t))) + ”f||G’°(J,K;LT(O,T;RLT(t)))v

andr = 2 + 4/n. We also define a closed balll

Xrp={fe€ X |flxs <p}-

We let M be defined by = Mv, wherev € Xt ,. In the same way as in the proof of
(3.10),
a|x|2l

17K ull o7 m1.r) < Cllz® 216 i

t
+C H/ t—7) 209 | J(K + 4i7')l|v|2pv(7’)||RM,(T) dr (3.21)
0 LT(0,T)
The similar arguments as in (3.13) and (3.21) give
Hu”G“(J,K;LT‘(O,T;RL"(t))) < C(”(ﬁ\ G (w, |21 RY(0))
2n 2
+ T2 |||v]*P) Ga(J,K+4it;L7'(0,T;R1=7"(t))))' (38.22)
We have
2
H|”| p”| Ga(J,K+4it; L™ (0,T; RV (1))

2
< 1_abT 0] pv|’Ga(J,f(';LT(O,T;RlvT'(t))) (by Lemma 2.3)

C

2
mHU”é)a(J,R;Lw(o,T;Rl(t)))HU”G“(JJ?:LT(O,T:R“(t))) (by Lemma 2.13)
R
— (1— abT)%+2
2
X Hv||C§’G(J’K;LM(O7T;R%») Hv||GQ(J$K;L<O’T;R1@))) (by Lemma 2.3) (3.23)

From (3.22) and (3.23) it follows that

2n
lullge (kLm0 mR2r () < C (||¢||G“(x,|x\2;R1(t)) + TZ”*“Pzpﬂ) ; (3.24)
provided that
1
T< —.
— 2ab

In the same way as in the proof of (3.16)
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[wll Ga (g, ;Lo (0,7: R3E)

2
= ||¢HG“(:E,\$|2:R1(0)) +C vl pvHGa(J,K+4it;L1(0,T;R1(t))) : (3.25)

We have by Lemma 2.3,

| |v]? (3.26)

2p < C
|||U| U|{Gﬂ(J,K+4it;L1(O,T;R1(t))) = 1_ T ”HG&(J,R;LI(O,T;Rl(t))) :

We apply Lemma 2.14 to (3.26) to see that the right-hand side of (3.26) is bounded from
above by

CT3/5
m”UHGa(J,f(:L”(O,T;Rl(t)))”v”é“(],f{;LT(O,T:Rl,r(t))) forn=3 (3.27)
and
CT8/4 2
1= arr 1lGe @ =0 rmoVlca@ i ormew) forn=2. (3.28)

We use Lemma 2.3 in (3.27) and (3.28) to get

o

3/5 .3 -
<C{T/P forn=3,  (329)

U|{Ga(J,K+4it;L1(O,T;R1(t))) = T3/4p2P%L forn =2,

provided that

1
T< —.
— 2ab

Hence by (3.25) and (3.29),

3 3
ullga (7,520 0.7 m20) < Dl o (i o2 pr () + € MEX (T57T4> p™*L. (3.30)
From (3.24) and (3.30) we see that there exisissaich that
[ullx, < p. (3.31)

In the same way as in the proof of (3.31) we have by Lemma 2.3, Lemma 2.13 and
Lemma 2.14

|Mv1 = Mgy < Sllon = vl (332)

for a sufficiently smalll’. Proposition 3.3 follows from (3.31) and (3.32).
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4. Proofs of Theorems

We first prove

Lemma 4.1. We letP = z - V +td,. Then we have for any € N,
al+k

~ ~ k ~ .
2 (+k)! PP e < D (lik)! (2_Zat|)H(tP)Mf”X(tw

0<i<m 0<i<m

provided thatt - || x, < [¢||| - || x() and2 — el*l > 0.

Proof. We prove the lemma by induction. Itis clear that the lemma holds:/fer0 and
any k. We assume that the lemma holds ferand anyk. We have

al** LDy Dk
T,
—_ _m+
_ a¥ Sy k
= S0Pl
al** -1 DI-117 4 f—1Dl—17p 7 Pk
> T [(#724, PP+ P EP)) (EP) f ||
1<i<m+1
ak Sy k al** 1—1l—17, DH\k+1
S ﬁ H(tP) f“X(t) + Z (l +k)| Ht P (tP) fHX(t)
1<I<m+1
e . o
> L] [¢711t, PPEPY £ - (4.1)
2<i<m+1 ’
We prove by induction
Plt=¢(P +1). (4.2)

In casel =0, (4.2) is valid. We assume that (4.2) holdsfoFhen we have

P = pt(P+1) (by assumption)
= (tP+[P,1]) (P +1) =t(P +1)*". (4.3)

This completes the proof of (4.2). From (4.2) we have
Bl — I\ Bi—j o, 5l
Ple=t 3" (j)P +th,

1<5<d

Hence

[t,P1=~t ) (;) P, (4.4)
1<G<!

From (4.4) it follows that
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>

al*k

[#721, PPEPY

2<1<m+1 (l * k)l

< al+k l* Pl ; B

S TR DI G LI e 2 O
2<i<m+1 1<5<i-1

— a“k(l_]_)! o
i (Z -1 17 “P)’“fHXu’)' (4.5)

2<i<m+1 \1<j<i—1
We have fork € NU {0},

(- 1) _ 1
(+RII—1—j) — (+k—j

Hence the right-hand side of (4.5) is bounded from above by

al+k‘t|j iRl
2 > i i PP gy | - (4.6)

151
2<i<m+1 \1<j<I—1 *7)']'

Since

2<i<m+1 \1<;5<1—1 1<i<m 1<i<m

we obtain by (4.6) if we put

alt|)?
“ (l+k)| Htl ) fHX(t)’ h= ‘Z!D ’
t l
= ( 2 (a|“|)> ( > (l+k;)l PPy f“X(t))
1<i<m 1<i<m
< (ealt‘ ) 3 (z ol HtPl(tP) - 4.7)

1<I<

From (4.1) and (4.7) it follows that

Soci<met o [FPEPY |
L+1+k

H(tP) fHX(t) +> o<i<m (l+1+k:)| Ht Pl(tp)kﬂfHX(t)
( altl — 1) Zl<l<m W Hthl(tP) fHX(t)

< LRV f]| iy * zo«m e N [ s
+ (el —1) Yy & W |t PP fllx@ (by assumption)
-1 ~
= 77 |y~ fHX(t) +aY < T (l+k)| (2 pa\t\) H(tP)kaHX(t)

G\ D [£PEPY £ -
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Therefore
PO o
1<I<m+1
a” a l By l+k
SK;H (I + k) <2ea't> IEPY™ o

which means the lemma holds for + 1. This completes the proof of the lemma.

We next prove the multi-dimensional version of [H-K.K, Lemma 2.4 (2.2)].

Lemma 4.2. We have for any € N,

2.

||(x v)lJrk:fHX(t)

o<i<m (l + kl)
o
|z<: @+h)! (ia> (R PR

provided thaD < a < 1.

Proof. We prove by induction. It is clear that the lemma holdsifor 0 and any. We
assume that the lemma holds farand anyk. Then we have by the assumption

>

0<i<m+1

( +k)' H( V)le”X(t)

qlti+k
e+ p> @z [ e il @)

1+k
< k, H(x )l * Z (a+1+k).< fa> I 9120 £ -

Since
(x-V)z©0°* = Z (a;z%0% + z;2%0;0%),

1<j<n
we have by (4.8),

I+k

> 1@Vl < e 9

0<i<m+1

e a . k.o
Z (a+k+1)|< _ ) (Z (aj||(x-V):v 0 fHX(t)

la|<m 1<5<n

+ H(J? . v)kxjmaajaafnx(t))) . (49)

By a simple calculation



296 N. Hayashi, K. Kato

_ artaxt--a 1
> (o +1)'_(a+1)!(a+2)‘ (a,b+l)'><oz

1<j<n

Hence by (4.9)

D

0<i<m+1

CLk k ak a lad k o aa
SEH(JC'V) f||X(t)+a Z (@+k) \1-a @ - V)* 20 f”X(t)

1<|al<m

(l + k)' H( )k+lf||X(t)

aF a ] .
Fa-a D (a+k)'<1a> [0

1<]af<m+l
ak a | .
< 2 (o +k)! <l—a> Iz )"0 fll -
|| <m+1
This completes the proof of the lemma.

Proof of Theorems 1.1 and 1. Pheorems 1.1 and 1.2 are obtained if we prove that there
exist constantsy, b, and7 such that

.‘z

_ilz|?
IIM(t)UIIGbl(m;sztz(Bt;Lz(m)) <oco, M({t)=e = (4.10)

fort € (—T,T) \ {0}. For simplicity we assume that> O since the negative time is
treated similarly. By [H-K.K Lemma 2.4 (2.1)]

||M(t)u|| Gh1 (ta'Gbth(E)t'Lz(Q)))

o
_Z(bl) Z(bzt) |04t0) M) 20 (4.11)

ol
_Z(bl) Z (1b211;t> 1¢t00) v 22

wherev, = (itd)*M(t)u, and positive constants andb, are determined later. By
Reibniz’ rule we see thatfaP =z - V + t0;,

() =(P-z-v) =3 ()P ),
0<k<l

since [z - V, P] = 0. We use the above equation in the right-hand side of (4.11) to obtain

HM(t)uHGbl (ta:G"ztz(@t;Lz(Q)))

(bl)‘al bot ! 1 bk
S; al ;(1—1)275) (U — k)'&! G- ) P val] o

Gyl /bt \" 1 -
> al (1—bzt> 111! I 2P| g -

a,ly,l
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We use Lemma 4.2 to the above to get

||M(t)u||Gb1 (ta;Gbth(8t§L2(Q)))

(bl)‘al bzt b bzt |ﬁ| 1 B ﬁ 1
< 1
< al lzg o) \Toay) mgl 0 Prvalie
1,

by)lel 2b,t) 1 (2Rb )P~
< Z (b) Z( 2t) {27byt) 10° PHroa || 20

al Ak
(bl)‘”| (2bat)(2Rb) 1 ~ b oo
Z Z A HJ (M(=)PM ()" J u‘LZ(Q),
provided that
1
t < 71)2

By Lemma 4.1 and (4.12)

||M(t)u|| Gh1 (ta;Gbth(at ;LZ(Q)))

I
= Z all B! |5| 1)a|( o2b2 It) (2Rby)P!|T* KB T 2

<2 awm (00)! 1 (202)" (2Rb2) 71| (K)* TP 2,
a,ll,ﬁ

provided that
—
t< sz og >
where we have used the commutation relation
[K,J]=
Hence we have by (4.13),

[ M @)l G (ta;G”Z‘Z(Bt;LZ(Q)))

b (2R s
= Z alpl I

ull g (K:L2(92))

< C”'U,‘|G(b1+2Rb2)(J;GZLZ(R;LZ(Q))).
We put
. 1 3
a= max{bl + 2Rby, 2b2} with b, < th |Og é
Then (4.14) and (4.15) imply that
||M(t)u|| Gh1 (ta;Gbth(at;Lz(Q)))

< CHuIlG“(f(,J;LZ(Q)) < CH“HG@(J,R;LZ)-

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

297
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From Propositions 3.1-3.3 we see that the right-hand side of (4.16) is bounded if

6l (o efermy < C |eg]| - (4.17)

We have

|| +k
I6llGe(oofmmey =2~ O [la?aal 9]l

ak B+ I<m

alol*k 2k
S Z Z O['kl H$a|$| xﬁa’y(ZSHLZ’

[Bl+|v[<m ek

from which it follows that

2(|a|+k)
(o) z
||¢Héa($"z|2:3m(o)) > 6_‘%<mazl; Oél)z(k|)2 ||$ |$|2kxﬁ87¢||L2
2(|a|+k)
(2v2a) 2 1 2%l
< Z Z @) on‘|x|2kxﬁ37¢HLz (byW < @)

|1+]y]<m ok
2

b
<C Z HCOSh(Z\/éa(xj + |x|2)> 2P0 ¢

B+ ] <m || =1 L2

<c ¥ HeblwlzxﬁawH; for b > 2/2a. (4.18)

[Bl+|v[<m

From (4.18) it follows that

2
elel ¢H fora <
Hm

1
[0l (oofiinnoy < €| eV

This completes the proof of Theorem 1.1-1.2.

5. Applications
Our proof of the theorems can be applicable to

iOpu+ 3 Au = Nu|?u+V(z)u, (t,2) eRxR",peN,\eC, (5.1)
u(0,z) = p(x) x € R™ '

and
i0pu + 02u + 2i60,(Jul?u) = 0, (t,z) e RxR,0 € R, (5.2)
w(0,z) = ¢(x), =z €R. '

We have for (5.1)
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Proposition 5.1. In addition to the assumption on Theorems 1.1-1.2 we assume that

alel
Zj”fc 0"V aoo;my < 00,

e}

where0 < a < 1, 0 < b. Then the same result as in Theorems 1.1-1.2 are valid for the
solutions of (5.1).

Proof. In the same way as in the proofs of Theorems 1.1-1.2 we have the result if we
prove that there exists a positive constansuch that

VeG™ (z- VG0, H™).

By Lemma 4.2 withX = G°(9; H™) andk = 0 we find that

lal
a 1 o aa
Wlenwm <3 ($2) - Se0Vlix < .

provided that*- < a. This completes the proof of Proposition 5.1.

The condition orl” given in Proposition 5.1 is satisfiedlif(x) has an analytic contin-
uationV(z) on the complex domain

Ly = {2 € Czj = xj +iy;; —00 < x; < +00,
—V2b — (tana)|z;| < yi < V2b+ (tana)|z;],
j:1,2,...,n,0<oz:Sinflx/éa<7r/2}

and

/ \V(2)|?dady < oo,
Fﬁa,ﬁb

(see the proof of Theorem 1.1 in([H-K.K]). Hence\i2b < 1,

Vi) = 1 1 {n

@+z)m 2 2} <mé&N

can be considered as the typical example satisfying the condition in Proposition 5.1.
The derivative nonlinear Scdinger equation (5.2) can be translated into the sys-

tem of nonlinear Sclidinger equations without nonlinear terms having derivatives of

unknown function by using a gauge transformation. Indeed putiing: E?u and

up = B0, (Fu) with

E(t, 2) = exp(o / fut, ) 2y,
we have

10sug + 8£u1 = 2i5ufﬂz,
10yup + 8%112 = —2@'6u§ﬂl,

(see [H] for details). Hence in the same way as in the proof of Theorem 1.2 we obtain
for (5.2)
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Proposition 5.2. We assume that

2
1! ][ < oo

Then the same result as in Theorem 1.1 is valid for the solutions of (5.2).
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