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Abstract: We classify extended Poincaré Lie super algebras and Lie algebras of any
signature (p, ¢), that is Lie super algebras (resp. Z>-graded Lie agebras) g = go + g1,
wherego = 50(V)+V isthe(generalized) PoincaréLieal gebraof the pseudo-Euclidean
vector space V' = IRP:¢ of signature (p,¢) and g1 = S is the spinor s0(1")-module
extended to a go-module with kernel . The remaining super commutators {g1, g1}
(respectively, commutators[ g1, g1]) aredefined by anso(1)-equivariant linear mapping

Vv2g: =V (respectivdly, A%gy— V).

Denote by P*(n, s) (respectively, P~ (n, s)) the vector space of all such Lie super
algebras (respectively, Lie algebras), wheren = p+¢ = dmV and s = p — ¢ is
the classical signature. The description of P+ (n, s) reduces to the construction of all
so(V)-invariant bilinear formson .S and to the cal cul ation of three Z »-valued invariants
for some of them.

This calculation is based on a simple explicit mode of an irreducible Clifford
module S for the Clifford agebra C1, , of arbitrary signature (p, ¢). As a result of
the classification, we obtain the numbers L= (n, s) = dimP*(n, s) of independent Lie
super algebras and algebras, which take values 0,1,2,3,4 or 6. Due to Bott periodicity,
L*(n, s) may be considered as periodic functionswith period 8 in each argument. They
areinvariant under the group I" generated by thefour reflections with respect to the axes
n=-2,n=2s—1=-2ands — 1= 2. Moreove, thereflection (n, s) — (—n, s)
with respect to theaxisn = O interchanges L* and L~ :

LY (—n,s) =L (n,s).
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Introduction

General relativity is a gauge theory with the Poincaré group P(1, 3) = R%3x Lor(1, 3)
of Minkowski space IR 12 as gauge group. In N -extended supergravity the N -extended
Poincaré supergroup plays therole of (super) gauge group.

The Liesuper agebraof thissuper groupfor N = 1isdefined asfollows: pM(1, 3) =
g=go+gs=p( 3+, wherep(l,3) = RY3+50(1, 3) isthe Poincaré Lie algebra
and S = (C? isthe spinor module of the Lorentz algebraso(1,3) = s((2, C) trivialy
extended to ap(1, 3)-module. The supercommutator {-,-} : S ® S — R13isdefined as
projection onto the unique vector submodule V' > R 13 in the symmetric square v2S.

We remark that in this case there exists aso a unique vector submodule in A2S,
which defines on p(1, 3) + S the structure of aZ,-graded Lie algebrap(-1(1, 3).

Our goad is to classify for any pseudo-Euclidean space V' = RP:¢ @l similar ex-
tensions of the (generalized) Poincaré algebra p(1) = p(p, ¢) = RP?+s0(p,q) to a
super LiealgebraortoaZ-graded Lie algebra. The super Lie algebraextensions of the
Poincaré agebra p(p, ¢) are the natural gauge algebras for supergravity theories over
space times of signature (p, ¢). Since the time when the classical (i.e. (p, ¢) = (1, 3))
super Poincaré algebra was discovered [G-L] these (generalized) super Poincaré alge-
bras play amayor role in many super symmetric field theories, see eg [O-S and F] for
further reference. However, despitethe variousrealizations of particul ar super Poincaré
algebras as infinitessimal symmetries of supergravity theories (for specia dimensions
and signatures of the space time), a systematic classification, as given in our paper, was
missing.
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Another motivation to study such extensionsisthat extended Poincaré Lie algebras
areclosdly related to thefull isometry algebraisom(M) of homogeneous quaternionic
Kahler manifolds M (see [dW-V-VP, A-C1]). Infact, isom(M) =p + R A, wherep is
an extension of the Poincaré algebra (3, 3 + k) of the pseudo-Euclidean space R 33
of signature (3,3+ k), £k = —1,0,1,.. ., and A isaderivation of p defining a natural
gradation.

Definition 1. A super Lie algebra (respectively a Z-graded Lie algebra) g = go + g1
iscalled an N-extended (respectively — N -extended) Poincaré algebra of V' = RP:¢
if the following conditionshold

1) go = p(V).

2) g1 isasumof N irreducible spinor or semi spinor modules of p(V) =V + s0(V)
with trivial action of the vector group V.

3) The super bracket {5, S} C V (respectively Lie bracket [S, 5] C V).

Let S be ap(V)-module with trivid action of the vector group V. Then defining
ong = p(V) + .S the structure of a super Lie algebra (respectively of a Z,-graded Lie
algebra) such that go = p(V), g1 = S and {5, S} C V (respectively [S, 5] C V) is
equivalent to defining an so(V/)-equivariant mapping j : V* — V25~ (respectively
j 1 V* — A2S*). The super bracket (respectively the Lie bracket) is given by j* :
V25 — V (respectively j* : A2S — V). Remark that under these assumptions the
Jacobi identities are automatically satisfied since [[z, y], 2] = 0for 2, y, z € ¢1.

We show that the classification of NV-extended (N € Z) Poincaré algebras easily
reduces to the classification of equivariant embeddings V* — Vv25* if N > 0 and
V* < A28 if N < 0, where V is the vector module and S the spinor module of
50(V). In other words, we reduce the classification tothe cases N = +£1, +2.

We prove that the following three vector spaces are isomorphic:

1) the space J of so(V')-equivariant mappingsj : V* — S* @ S*,
2) the space M of so(V')-equivariant multiplicationsy : V* @ S — S, and
3) thespace B of so(V)-invariant bilinear forms 5 on S.

Let p : V*® S — S be the (standard) Clifford multiplication, where we have
identified V' = V* using the scalar product on V' = RP>¢, Then an isomorphism
Jp 1 B— J isgiven by

Jp(B) vt €V = Bop(v™) = pp(v)-, ) € ST @S5,

In particular, the classification of s0(V")-equivariant mappings V* — S5* ® 5* is
equivalent to the classification of s0(V')-invariant bilinear forms on the spinor module
S. The latter amounts to the description of the Schur agebra C of so(V)-invariant
endomorphismsof S. Thestructureof C asabstract al gebradependsonly on thesignature
s =p—qof RP¢modulo 8; itisasimplereal, complex or quaternionic matrix algebra
of rank 1 or 2 or a sum of two isomorphic such agebras.

To construct equivariant embeddings of the vector module V* into the symmetric
square vV25* (or into the exterior square A25*) weintroducethe notion of an admissible
bilinear form 3 on S and a so the corresponding notion of an admissible endomorphism
of S, which depends on the choice of an admissible bilinear form 5.

Definition 2. An so(V)-invariant bilinear form g on the spinor module S is called
admissibleif it has the following properties:
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1) Clifford multiplication p(v) is either 3-symmetric or §-skew symmetric. e define
thetype r of 5 to be () = +1inthefirst case and r(55) = —1 in the second.

2) 3 is symmetric or skew symmetric. Accordingly, we define the symmetry o of 5 to
bes(3) = +1.

3) If the spinor module is reducible, S = S* + S—, then S* are either mutually
orthogonal or isotropic. We put «(5) = +1 in thefirst case, «(5) = —1 in the second
and call «(3) theisotropy of 5.

Every admissibleform 3 defines an so(1')-equivariant enbedding j,,(8) : V* — v25*
if 7(3)o(B) =+Lorj,(8): V* — A25* if r(8)c(8) = —1. Moreover, if S = S* + S,
then either S* are orthogonal or isotropic for every bilinear formin theimage of j,(3).

The main part of the paper is the construction of an admissible basis for the space
J of equivariant mappings V= — S* © S*, i.e. abasis consisting of embeddings j,(3),
where 3 are admissible bilinear formson S.

To describe al admissible forms 3 we make use of very simple explicit models of
the irreducible Clifford modules inspired by RaSevskil [R]. We prove that the problem
reducestothethreefundamental casesV = R™™, R*9and R %* usingtheisomorphisms
Clintsm = Ol ©Cl; and Clyy, ik = Cli, 1 ©Clo 1, and the algebraic properties of
the fundamenta invariants r, o and . with respect to Z,-graded tensor products.

Moreover, we establish that for every pseudo-Euclidean vector space V' = IR?-4 there
isa preferred non-degenerate so(1)-invariant bilinear form /2 on the spinor module S.
Thisalowsusto define canonicallythe notion of an admissibleendomorphismof S and
theinvariants r, o and : for such endomorphisms. They are multiplicative with respect
to the compositionr o A = h(A-, ), A € C admissible.

Finally, we explicitly construct in al the cases an admissible basis for the Schur
algebraC. Thiscanonically yields admissible bases for the space 5 of invariant bilinear
forms and the space 7 of equivariant mappings.

This gives an explicit description of al extended Poincaré algebras g = p(V) +
S, where S is the spinor module. The super (respectively Lie) brackets v2S — V
(respectively A2S — V) are given as linear combinations of mappings j, where the
ji 1 V¥ = V28" (respectively V* — A2S*) form an admissible basis for the space of
so(V)-equivariant mappings V> — V25* (respectively V* — A25%).

If the spinor module S is an irreducible so(1/)-module, we obtain all N = +1
extended Poincaré algebras. If S is reducible, then we obtain all N = 42 extended
Poincaré algebras and using the invariant . we can determine al N = +1 extended
Poincaré algebras. Sometimes there exist only trivid N = 1 (or N = —1) extended
Poincaré algebras, i.e. {S,5} =0 (or [S, 5] =0).

Given a pseudo-Euclidean vector space V' = R4, let |N| = 1 or 2 denote the
number of irreducible summands of the spinor module S of s0(V). For fixed N = +| N |
or N = —|N|wegivenow thedimension dy of thevector space of N -extended Poincaré
algebrastructureson g = p(V) + 5.

The function d, which depends only on the signature (p, ¢), admits a symmetry
group I generated by reflections. Moreover, there is an additional supersymmetry
whichrelatesthedimension L™ := d. x| of the space of super algebrasto thedimension
L~ :=d_n) of the space of Lie algebras.

More precisely: Denote by n = p + ¢ thedimension and by s = p — ¢ the signature
of V = RP? and let LY = L*(n, s) (respectively L~ (n, s)) be the maximal number
of linearly independent super agebra structures V25 — V' (respectively Lie algebra
structures A2S — V) on g = p(V) + S. The functions L* and L~ are periodic with
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period 8 in each argument, hence we may consider them as functionson Z? = 7Z x Z.
Thevaueof thepair (L*, L™) isgivenin Table 1.

Table 1. The numbers I* of super algebrasand L.~ of Lie algebrasg = p(V) + .S are given as functions of
the dimension » and signature s of V. A fundamental domain for the reflection group 7" is emphasized in
boldface. The supersymmetry axisis given by the equation ». = 0.

s (L*(n, 5), L= (n, 5))
5 13 13 31 31
4 | 44 2,6 44 6,2 44
3 13 13 31 31
2| 44 2,6 44 6,2 44
1 13 13 31 31
0|11 0,2 11 2,0 11
-1 0,1 0,1 10 10
2|11 0,2 11 2,0 11
-3 13 13 31 31
n: | -4 | -3 -2 -1 0 1 2 3 4

It followsfrom the inspection of thistable, that the function (L*, L™) isinvariant under
the group I generated by the reflections with respect to the 4 axes defined by the
equationsn = —-2,n =2, s’ ;=5 — 1= —-2and s’ = 2. A fundamental domain F for I
is

F={(ns) €7 -2<n<2, —2<s=5-1<2}nG,

G={(n,5)3p,q)€Z* n=p+q, s=p—q}={(n,s) €Z%n+s even}

and consists of 12 points. The values of the pair (L*, L™) at these points are typed in
boldfacein Table 1.

Moreover, the reflection @ with respect to the axis {n = 0}, 6 : (n, s) — (—n, s), 1S
asupersymmetry of thepair (L*, L™), that isit interchanges the number of Lie algebras
and Lie super agebras:

(LT (#n,s), L~ (+n,5)) = (L™ (=n, s), L7(—n, 5)).
In short:
A fundamental domain F for the groupf =< I',8 > isgiven by
F={(n,s)=(0,0), (0,2), (1,-1), (1,1), (1,3), (2,0), (2,2)}.

In terms of the coordinates (p, ¢) afundamental domain with p > Oand ¢ > Oisgiven
by

D={(r,9)=(20), (1,2), 3,0), (2,1), (1,2, (3,2, 22}
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1. (Super) Extensions of the Poincaré Algebra p(p, ) and
Spin(p, q)-Equivariant Embeddings R?? «— §* ® S*

1.1. Extending the Poincaré algebra.  Let V' = RP:¢ be the pseudo-Euclidean space
withthemetric < z,y > =0 2’y — ";:qﬂ x4y . We denote by s0(V) = s0(p, ¢)
the pseudo-orthogonal Lie algebraand by p(V) = p(p, ¢) = s0(V) + V' the semidirect
sum of s0(V) and the Abelian ideal V/, it isthe Lie algebra of the isometry group of

(V,< -, - >). Wecdl p(V) the Poincar & algebra of the space V.

Definition 1.1. A Z-graded Lie algebra (respectively a super algebra) g = go + g1 iS
called an extension (respectively a super extension) of p(V) if go = p(V), V isinthe
kernel of the representation of go on g1 and [g1, g1] C V (respectively {g1, g1} C V).

Remark 1. Sometimes, for unification, we will refer to Z,-graded Lie algebras and to
super algebras as c-algebras, where ¢ = —1 or +1 respectively. Correspondingly, wewill
speak of e-extensions.

Proposition 1.1. There existsa natural one-to-onecorrespondence between extensions
(respectively super extensions) of (1) up to isomor phisms and equival ence classes of
pairs(p, ), where

p:so(V) — gl(w)

isa representation and
TIANPW =SV (resp. VEW = V)

is a so(V)-equivariant linear map from the space of skew symmetric (respectively
symmetric) bilinear formson 1W* to the vector module V. Two pairs (p, 7) and (o', ©’)
(¢ 1 s0(V) — gl(W")) are equivalent if there exists an automorphism ¢ : p(V) —
p(V)andalinear map+y : W — W' such that thefollowing diagramsare commutative
(for pairsof skew symmetric type):

so(V) % gl(v) AW Iy
) v 1w Lolv |
so(V) 2 gl(w) PN N

where ¢ is theinduced automorphismof so(V/) = p(V)/V. For pairsof symmetric type
A2 must be replaced by 2.

Proof. Given apair (p, ) of skew symmetric type, we define aZ,-graded Lie algebra
g=got g1, 80 =p(V)=50(V)+V,g1=W by
(A4 w] = p(Aw,
[wi,wr] = mw(wiAwy),
[v,w] = 0,
where A € s0(V), v € V and w, w1, wy € W. For apair of symmetric typewedefine a
super algebrag = do + g1 by the same formul as replacing only the middle equation by
{w,wy} = w(wyVwy).

The Jacobi identity is satisfied because p is a representation, = is equivariant and the
(anti)commutator of 14 with 11" is contained in V' and hence commutes with 11/. The
other statements can be checked easily. a
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Recall that the spinor representation is the representation of so(17) on an irreducible
module S of theClifford algebraC?(1/). Itiseither irreducibleor asum of twoirreducible
semi spinor modules S*.

Definition 1.2. (cf. Def. 1) Let g = g(p, 7) be an e-extension of p(1/) associated with
a pair (p, v). We say that g is an e N-extended Poincaré algebra if p is a sum of
N =0,1,2,...irreducible spin 1/2 representations, i.e. irreducible spinor or semi-
spinor representations.

The purpose of this paper isto classify al N-extended (V € 7) Poincaré algebras.
Before starting this classification we explain how, given a (super) extension of the
Poincaré agebra, we can construct more complicated e-algebras.

1.2. Internal symmetries and charges.

Definition 1.3. Let g = go + g1 be an e-algebra. An internal symmetry of g is an
automorphismof g which actstrivially on go.

Now we give a simple construction which associates with an e-extension g = g(p, 7)
of the Poincaré algebrap(V) and [ € I an e-extension g™ and also a —c-extension
92 which admit O({), respectively, Sp(2!, R) asinternal symmetry groups. We define
g(*l) = g(p('*l)’ ﬂ-(*l))' where

P =lp iso(V) = IW =W @R,

7T(+l)(w1 ® v1, w2 ® v2) = w(wy, w2)< vy, v2 >,

< -,-> isthe standard Euclidean scalar product on R!. Similarly, we define
=D =2p:50V) > 2AW =W @ R?

ﬂ(_Zl)(wl ® v1, w2 ® v2) = w(w, wo)w(vi, v2),

wherew isthe standard symplectic form on 2%, Here we have used the convention that
m(wi, w2) = (w1 V wy) if € = +1 and (w1, wa) = w(w1 A wy) if e = =1

Proposition 1.2. If g isan c-extension of the Poincaré algebra p(V), then g™ is an
e-extension and g(=?) is a —c-extension. The standard actions of O(/) (respectively
Sp(2l,R)) on B! (respectively R?) are naturally extended to actions on g (respec-
tively g(=2) by internal symmetries.

Proof. The first statement follows immediately from Prop. 1.1 and the remark that
the bilinear map =) (respectively =(-?)) has the same (respectively the opposite)
symmetry as 7. The last statement isimmediate. a

Examplel: Applyingthisconstructiontoan e-extended (see Def. 1.2) Poincaréa gebra,
we obtain an e/-extended Poincaré algebra and also an —e2/-extended Poincaré algebra
withinternal symmetry groups O(!) and Sp(2/, R) respectively.

Definition 1.4. A Z,-graded Lie algebra (respectively a super algebra) g = go + g1 iS
called a charged extension (respectively a charged super extension) of the Poincaré
algebrap(V) if

1) go=p(V)+Cisatrivial extension of p(V),i.e [C,C]=0.
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2) Theactionof VV + C' onthe go-module W = g, istrivial.

3) The Lie (respectively super) bracket = : A?W — go (respectively VIV — go) is
asumr = 1y + 7o, where my  A2W — V oand ne @ AW — C (respectively
Ty VW — Vandre @ VW — O). Inparticular, (p(V)+W, 7y ) isan extension
(respectively super extension) of p (V).

If moreover, [s0(V),C] = 0, and hence [C, g] = O, then g is called a central charge
extension (respectively a central charge super extension) of p(1/).

Let an extension (respectively super extension) p(V') + W admitting a connected

Liegroup H of interna symmetries be given. Without restriction of generality we can
assume that i is simply connected and we denote the Lie agebra of H by h. To
construct acharged extension (respectively super extension) (p(V) +C') +W preserving
theinternal symmetry group H it is necessary and sufficient to define an (so (V) + h)-
equivariant map 7 from the exterior (respectively symmetric) square of W to an
(so(V) +b)-module C.
Example2. Let p(V)+1W bean extension of p(V'). Consider theextension g*) = p(1)+
W @ R! with internal symmetry group H = O(!) defined above. Let h € VZW* @ R”
beasymmetric so(V)-invariant (possibly trivia) vector valued bilinear formon W and
n € A2W* @ R* askew symmetric such form. Define

e AW QRN - C=R"® AR +R® @ VIR

mo(w1 ® 21, w2 @ x2) = h(wy, wa)ry A xo + n(w, wr)e V @z,

where wi,wp, € W and z1, 2, € RY. Then 7 defineson (p(V) + C) + W @ R! the
structure of central charge extension of p (V") with symmetry group O(/).

Anaogously, wecan defineon (p(V)+C)+W @R, C = R"@VZRZ+R* @ A2RZ,
the structure of central charge super extension of p (V) with symmetry group Sp(2/, IR)
by

e VAW o RY) = C,

mo(w1 ® 21, w2 @ x2) = h(wy, w)ry V @2 + n(w, wr)ey A zz.

Example 3. Let p(V') + W be asuper extension of p(17). Consider the super extension
gt = p(V)+W @ R! withinternal symmetry group 7 = O({) and let h beasymmetric
and 7 a skew symmetric vector valued so(1/)-invariant bilinear form on 1/, as above.
Define

e VAW QR - C=R"® VIR +R* @ AZR!,

mo(w1 ® 21, w2 @ x2) = h(wy, wa)ry V @2 + n(w, wr)ey A zz.

Then r¢ defineson (p(V) +C) +W @ R the structure of central charge super extension
of p(V) with symmetry group O(/).

Anaogously, we can defineon (p(V)+C)+W @ RZ, C = R" @ A2RZ +R* @ VZRZ
the structure of central charge extension of p(1) with symmetry group Sp(2l, R) by

e AW o RY) = O,

mo(w1 ® 21, w2 @ x2) = h(wy, wa)ry A xo + n(w, wr)ey V xz.

In the physical literature (see [F]) the expression “central charges’ is used for a
special case of Example 3.



N -(Super)-Extended Poincaré Algebras and Bilinear Invariants 485

1.3. Reduction of the classification of V-extended Poincaré algebrasto the cases N =
+1,42. Let g =g(p,m) = p(V)+ W bea+N-extended Poincaré algebra, N =
1,2,.... Then either the spinor representation po : s0(V) — gl(S) isirreducible and
p=Npo, W=NS=SaR",oritdecomposesintotwoirreducible subrepresentations
po=pstp_,S=St+STandp=Nips+N_p_ , W =N ST+ N_S™ =S" RN+
S™®@RN-, N = Ny+N_. Thedescriptionof al e NV -extended Poincaréa gebras g(p, )
reduces to the description of al so(1)-equivariant mappings = : AW — Vife=—1
and 7 : V2W — V if e = +1. If 7 # 0, the dual mapping defines an s0(1/)-equivariant
embedding 7* @ V* < A2W*ife= —1lorr* : V* < V2W* if € = +1. Tofind al
such embeddingsit is sufficient to determineall submodulesisomorphicto V= in A2V *
and V2W* or, equivalently, al vector submodules V in AW and V2. Tables 2 and 3
reduce thisproblemto thecases N = 1 or 2.

Table 2. Decomposition of the symmetric square of W

p: Npo Nip+ + N_p_

w: NS=S@RY NeST+N_S— =

St@RN+ ST @RN-

VAW | VZS @ VAR + A28 @ APRY | V28t @ VAR Y+ + V28T @ VAR N-+

AZS* @ AZR N+ + A2ZS— @ AZRV-+
S+ ® S— ®RN+N—

Table 3. Decomposition of the exterior square of W

p: Npo Nipr + N_p_

w: NS=S@RY NiST+N_S— =

S+ ®RN++S_ (X)RN—

AW | A28 @ VRV +v25 @ APRY | A28 @ VERY+ + A28 @ VAR N-+

V2S* @ AZR N+ + 25— @ AZRV-+
St ® S~ ®RN+N_

If pr and p_ areequivaentthenp = Nip:. + N_p_ = Npo, po = p+,

VW = V2S5, @ VRN + AZSe @ ARV
AW = V25, @ AZRY + AZS, @ VRN

whereSp = S* and N = N,+N_. Table2 showsthat theclassification of al equivariant
embeddings V' — V2V (case ¢ = +1) reduces to finding all equivariant embeddings
V < v2S and V — A2S if S isirreducibleand equivariant embeddings V' «— v25*,
Ve A2ST and V — ST @ S~ if § =S5t + 5. Table 3 showsthat the same reduction
appliesto the case ¢ = —1, i.e. to the problem of finding all equivariant embeddings
V < AZS. We see that e.g. the classification of N-extended Poincaré agebras for
N > 0 (i.e. super algebra extensions) reduces to the classification of N = +1-extended
Poincaré algebrasin case thereisonly oneirreducible spin 1/2 representation of s0 (V).
Thesameistruefor N < 0,i.e. for Lie algebraextensions.

To illustrate thisreduction we consider thecase ¢ = +1 and p = N pg in more detail .

Lemmal.l. Assumee = +1 and p = N pg, where po isanirreducible spin 1/2 repre-
sentation on .Sp. Then any so(1/)-equivariant embedding
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J iV s VW = V2S5 @ VRN + A28, @ APRY

isgiven by

J0) =) 6a) @ Ag+ D Uy(v) @ By,
a b

where ¢, : V — V2Sgand +, 1 V — ASp are equivariant embeddings, A, € VRN
and B, € A2RY,

Proof. Choose bases (A,) and (By) of VZRY and A2RY respectively. Then j(v) can
be decomposed as above and the coefficients ¢, and v, are equivariant embeddings or
zero. O

1.4. Equivariant embeddings V* — S* ® S* , modified Clifford multiplications
and Dirac operators.  We reduced the problem of the classification of N -extended
Poincaré algebras to the description of s0(V)-equivariant mappings V* — S* ® S*,
where S is the spinor module of so(1"). We will denote by 7 the vector space of all
such mappings.

Now we will show that this space is closaly related to two other vector spaces:

— the space B of dl so(V)-invariant bilinear formson S, and
— the space M of so0(V')-equivariant multiplicationsy : V> @ S — S.

Denote by C the Schur algebra of so(1)-invariant endomorphisms of S. We define
two natural anti-representations of C on 5 and J and also a representation and an
anti-representation of ¢ on M by:

€86 = B,
nag = B(,A),
€N = 360,
N = 930,

€X' mE?) = Aopu@),

X' 0@*) = p)oe A,
whereA e C,v* eV, peB,jeJandue M C Hom(V*, EndS). Remark that
anon zero equivariant mapping j : V* — S$* ® S* isautomatically an embedding.

Definition 1.5. Anequivariantembeddingj : V* — S*®S5™* iscalled non-degener ate,
if j(V*)S = 5% and j(S) = S, where we consider j asmappingj : S — V ® S*. An
equivariant multiplicationu : V* @ S — S iscalled non-degenerate, if (V)5S = S.

Using the following identifications, we define mappings from two of the spaces 55,
J and M into thethird:

B - (S* ® S*)so(V)’

sovy &) s
J = Hom(V*,§ ©5)*°V) = Hom(s,V* @ 5%)*)
M = Hom(V*®85,8)*°V) = Hom(V*, End S)*°")
> Hom(V* @ §*,57)%0)
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At (x) we used the metric identification V* = V. The mappings are defined asfollows:

BxM — J
B,p) = JjBp)=Bopu
iGmET) = BuE),), v eV,
MxJ — B
(1, 5) = Bl j)=poj,
B, d)(s, 1) = <pu(i(s),t>, stes;
BxJ — M
B,7) = p(B,j)=P0j
p(B, @) = BGHE"),)eS®ST = EndS,

where < -, - > denotesthe natural duality pairing S* x .S — IR and for thelast mapping
we have used that j(v*) € S* @ S* = Hom(S*, S).

Theorem 1.1. The choice of a non-degenerate element /3y, jo Or 10 in any of the spaces
B, J and M defines vector space i somor phisms between the two others:

jﬁo:M - J

o= j(Bo,p) =Poop,
pgo I — M

Jo= pBo,j)=Booj;
Bjg M — B

poo= o B(ps jo) = pojo,
Hio B — M

B = u(B,jo) =50 jo;
Juo B = T

B = J(B po)=pBopo,
Puo oI — B

J = PB(po,j) =pooj.

Proof. The statement is trivia for jg,

and pg,, because these mappings amount to

“raising and lowering” indices of tensors viathe non-degenerate form gy.

Itisclear that ., and j,, areinjective, since jo and 1 are non-degenerate. Hence,
itis sufficient to prove that 5;, and 5, areinjective.

Consider first 8,,,(j) = poo j,wherej : S = V*®@ S*and po : V* @ S — S*.

The kernel of 3, equals

ker 8, ={j € Jj(S) C ker po}.

If0 % j € ker 8,,, thenker ug containsthenon-trivial submodule j(.5). Thisisimpossi-
ble, because ker 110 doesnot contain spin 1/2 submodul es. | ndeed, after compl exification
the 50(V°)-module (V*)© @ (S*)© has the decomposition

(V)F @ (5)° = @ (5)° = (ker pig) @ (57)°,

where X' = ker p§ containsonly spin 3/2 modules, i.e. Kronecker product of the vector
module V¢ = (V*)C (spin 1) and an irreducible spin 1/2 module.
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Consider now 5;,(u) = p o jo, wherejo : S = V@ S*andp : V¥ @ S — S*.
As before we have the decomposition (V*)© @ (5*)¢ = ¥ @ (5*), where X has no
submodules isomorphic to submodules of (S*)©. If u # 0, ker u® = ¥ @ ST, where
ST # (5*)C is a proper submodule of (S*)©. Since jo is non-degenerate jo(S) = S
cannot be contained in ker p. a

Lemmal.2. Let.S bethespinor moduleofso(1/). Therealwaysexistsanon-degenerate
so(V)-invariant bilinear form 3 on S.

Proof. The existence of 3 is equivalent to the self duality of .S, i.e. to the condition
S* = S asso(V)-modules.

The self duality of the complex 50(V'C) spinor module S follows from the criterion
of sdf duality givenin[O-V], p. 195.

Now we discuss thereal case. Assume first S© has the same number of irreducible
summands as S. Then the sdlf duaity of S follows from that of S, see [O-V], p.
291. In the opposite case S admits an invariant complex structure J and (S, J) = S
(complex spinor module of 50(17C)). Then the real part of a non-degenerate complex
s50(VO)-invariant bilinear formon S = S gives area so(V)-invariant bilinear form on
S and itiseasy to check that thisform is non-degenerate. a

From Theorem 1.1 and thislemmawe now derive an important consegquence. Recall
that by definition the spinor module S isan irreduciblemodul e over the Clifford algebra
Ce(V). Therestriction of the multiplication mapping C¢(V) x S — StoV x S defines
anon-degenerate 50(V')-equivariant multiplicationp : V@ S = V* @ S — S, which
is called Clifford multiplication (as above V' and V'* are identified using the pseudo-
Euclidean scalar product of V). The composition j(3, p) = 5 o p with anon-degenerate
so(V)-invariant form 3 gives a non-degenerate so(V')-equivariant embedding V* —
S* ® §*. Using the lemma and this remark, we obtain the following corollary from
Theorem 1.1.

Corollary 1.1. The spaces B of so(V)-invariant bilinear forms on S, 7 of so(V)-
equivariantmappingsV* — 5*®.S5* and M of so(1/)-equivariant multiplications V> @
S — S areisomorphic. In particular, Clifford multiplication p defines the isomorphism
Jp » B — J and hence any so(V)-equivariant embedding V* — S* ® S* is of the
form

J=7,(B) vt = Blp(v™), ), BEB, v eV,

Remark 2. Using an so(V/)-equivariant multiplication : V* @ § — S one can define
a Dirac type operator D* on a pseudo-Riemannian spin manifold M as follows. Let
pe P 1o M @ Sy — S; be afidd of eguivariant multiplications, where S(A) =
Ugzenm Sy — M isthe spinor bundle. Then

(D*5)e = 1o (Vs) = ux(z e @Ve,s),

where (¢;) isabasisof T}, M, (¢*) thedual basisof 7* M and V isthe spinor connection
induced by the Levi Civitaconnection.
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1.5. Z,-graded type and Schur algebra C. It iswell known (see [L-M]), that every
Clifford adgebra C¢(V), V' = RP¢, isisomorphic to K(/) or to 2K(!) = K() & K(I),
where K(I) isthe full matrix algebra over K of rank [ depending on (p, q) and where
K=R,C orH.

Definition 1.6. We say that a Clifford algebra C¢(1') has type rK, r = 1 or 2, if
Ce(V) = rK(!) for somel € IN.

Recall that the Clifford algebra C¢(V) has a natura Zp-grading C¢(V) = CO(V) +
COY V). If V = RBP4 (# 0), then the even part C¢°(V) is isomorphic to the Clifford
agebra C¢(V') of V! = RP~L9if p > 1 and V/ = R4 1if p = 0. Remark that
dimCrO(V) = dimC¢(V')/2. By the preceding remarks, the following definition makes
sense.

Definition 1.7. The pair t(C4(V)) = (roKo, 7K) = (type CLO(V), type C¢(V)) is called
the Z »-graded type of the Clifford algebra C¢(1).

The following proposition describes the periodicity of the type ¢ of the Z-graded
Clifford algebras (¥, ; = CE(IRP>9).

Proposition 1.3. The Z-graded type ¢, , = t(C¥, ,) depends only on the signature
s=p—q¢modulo8andi(s) =t(p — ¢) = ¢, 4 iSgiveninthetable

s | 1 2 3 4 5 6 7 8
ts) |R,C|CH | H21 | 20H | B,C | CR | R,2R | 2R, R

Proof. The proof reduces to theinvestigation of [L-M], Tablell. a

Corollary 1.2. TheZy-gradedtypet, , = (s = p— ¢) ismirror symmetric with respect
to thediagonal {p + ¢ = 0}: t, , = t_, _,; inother words, t(C?, ;) = t(Clgr—q,8:—p),
8k >p,q.

‘Moreover, the Zrgraded typetp q = t(s) = (19%s), t1(s)) ismirror super symmetric
with respect totheaxis {s = p — ¢ = 3.5}, i.

(t°(7 = 5), tH(7 — 5)) = (t(5), 1°(5))

The type »C and Z,-graded typet,, = (roC, »C) of acomplex Clifford algebra C?,,, =
Ce(C™) aredefined by putting V' = C™ in Definition 1.6 and 1.7, where C™ isequipped
with a non-degenerate (complex) bilinear form, eg. the standard one: < z,w >=
E;n:lzjwj, z,we .

Proposition 1.4. The Z,-graded typet,, = t({Z,,) depends only on the parity of im:

. (2C,C) if miseven
" (C,2C) if misodd

Let S =5, , beanirreducible ¥, ,-module. Recall that by definition the Schur
dgebraC = C, 4 of S is the agebra of al its so(V)-invariant endomorphisms; it is
the algebra of endomorphlsmswhlch commute with Cﬁg . Analogoudly, we define the
Schur algebra C:, of the complex spinor module S; it |sthe algebra of endomorphism
of S commuting with @ .
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Corollary 1.3. The Schur algebraC, , = C(p — ¢) dependsonlyon s = p — ¢ modulo 8
andisgiveninthetable In particular, it admitsthemirror symmetry (p, q) — (—¢, —p).

s 1 2 [3] 4 [5]6]|7] 8
Cs) |[R@Q|CQ |H|Hem |H|C|R|RaR

Proof. Remark that if ¢(Ct, ;) = (roKo, rK), and hence C3 , = roKo(lo), Clp 4 =
rIK(l), then ! is completely determined by [y and vice versa; [ = [ or 2[p. This follows
fromdimCt, , =2dimCe9 .

Using thisremark, Proposition 1.3 shows that the pair (Clz?yq, Cly, 4) isisomorphic
to one of thefollowing:

O, K@) , S=K',
(K@), 2K@0) ., S=K,
® (1), x2)) , S=K?,
K@), K@) , S=K¥,

wheeK =R, CorHandR'=C, C' =H.

In the first case the K(/)-module S = K" is a sum of two irreducible equivalent
modules S* = K' and hence the Schur algebraC = K(2).

In the second (respectively third) case S = K (respectively k%) is irreducible as
K(!)- (respectively K’ (/)-) module and hence C = K (respectively K').

Inthelast case C = K ¢ KK, which followsfrom the next lemma O

Lemmal3. Let S = K? be the irreducible module of the algebra K(2/) and A =
2K(!) a subalgebra of K(2/), then the .A-module S is decomposed into a sum of two
nonequivalent submodules S*.

Proof. Itisclear that the.A-module S isthe sum of two irreducible submodules S* and
S~ . They are not equivalent because A|S* and A|S™ have different kerndls, namely
thetwoidealsK(l) C A. O

Remark that the algebras C ¢ € and H(2) do not occur as Schur algebras of thereal
spinor module S.

Corollary 1.4. The Schur algebraC¢, of the complex spinor module S depends only on
the parity of m:
C,, =

m

CeC if miseven
C if misodd
The proof of Corollary 1.3 shows that the structure of the matrix algebra C contains
the following information about the C¢°(1/)-module S.

Proposition 1.5. CisasimpleK-matrix algebra (respectively a sum of two isomorphic
K-matrix algebras) if and only if C#°(V) isa simple [K-matrix algebra (respectively a
sum of two isomorphic such algebras). S isan irreducible C¢°(V)-moduleif and only
if C = K(= IR, C or H). S isdecomposed into a sum of two equivalent (respectively
inequivalent) C¢°(V)-modulesif and only if ¢ = [K(2) (respectively C > K & K).
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The corresponding statement in the complex case is given for the sake of complete-
ness:

Proposition 1.6. If m is even, then the spinor module S = S, isthesumS = S*+ S~
of two inequivalent irreducible (%, -modules. In this case, %, and the Schur algebra
C¢, arethedirect sum of two isomor phic simple (complex) matrix algebras.

If m is odd, then the spinor module is an irreducible module of the simple matrix
algebra ¥%, and its Schur algebraisalso simple.

Since, due to Lemma 1.2, S admits a non-degenerate s0(p, ¢)-invariant bilinear
form, by Schur’'sLemmathedimension b, ., of thespace B = B, , of s0(p, ¢)-invariant
bilinear formson S equals

bpq =dimpB, , =dimC, , .
Hence we have:

Corollary 1.5. b, , = b(p — ¢) is a periodic function of s = p — ¢ with period 8. In
particular, it admitsthe mirror symmetry (p, ¢) — (—¢, —p). Itsvalues are given in the
following table:

s [1]2]3]4a]5]6]7]8
bs) |4|8|alslal2]1]2

Denote by b,,, the (complex) dimension of the space of 50(m, C)-invariant bilinear
forms on the complex spinor module S, then b,,, = dim¢ C¢, and we have:

b = 2 if miseven
" 1 if misodd.

2. Fundamental Invariantsr , o and ¢« and Reduction to the Basic Signatures
(m,m), (k,0)and (0, k)

2.1. Fundamental invariants. As before let V' denote a pseudo-Euclidean vector
space and S its spinor module. In Corollary 1.1 we have established that every so(V)-
equivariant embedding j : V* — S* @ S* isof theform

j :]p(ﬁ) vt = 6(p(v*)a ')a v” € V* )

where s is Clifford multiplicationand 5 € B. The dimension of the space 5 of s0(1/)-
invariant bilinear forms on S was given in Corollary 1.5.

Now we will concentrate on a class of bilinear forms g € B for which j,(3)V* C
V25* or j,(3)V* C A25* and define fundamental invariants 7, o and . for thisclass.

Definition 2.1. Abilinear form 3 on the spinor module S iscalled admissibleif it has
the following properties:

1) Clifford multiplication p(v), v € V, iseither 3-symmetric or /F-skew symmetric. We
definethetype r of 5 tobe r(3) = +1 inthefirst case and () = —1 in the second.

2) The bilinear form 3 is symmetric or skew symmetric. Accordingly, we define the
symmetry ¢ of 5 tobe o(5) = +1.
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3) If the spinor module is reducible, S = S* + S—, then S* are either mutually
orthogonal or isotropic. We put «(5) = +1 in thefirst case, «(5) = —1 in the second
and call «(3) theisotropy of 5.

Due to 1) every admissible form g is so(V)-invariant and hence defines an so(1/)-
equivariant embedding j,(3) : V = V* < S* © S*. In addition, j,(8)V C Vv25*
if 7(8)c(8) = +1 and j,(B)V C A2S* if r(8)e(8) = —1. If S = S* + 57, then for
every bilinear form y € j,(8)V the semi spinor modules S* are either ~-isotropic (if
t(y) = —u(P) = —1) or mutually y-orthogonal (if (y) = —«(8) = +1).

Given an admissibleform 8 € B and A € C, thecomposition 3o A = 5(4-,-) € B
isin genera not admissible. However, if A is f-admissible (see Definition 2.2 below)
then 3 o A isadmissible.

Definition 2.2. Let 3 € B be admissible An endomorphism A of S is called -
admissibleif it has the following properties:

1) Clifford multiplication p(v), v € V, either commutes or anticommutes with A. We
definethetype r of A tober(4) = +1inthefirst caseand (A) = —1 inthe second.

2) A isp-symmetric or 5-skew symmetric. Accordingly, we define the 3-symmetry o
of Atobecss(A4) = +1.

3) If the spinor moduleisreducible, S = S* + S, then either AS* C S* or AS* C
ST.Weput :(A4) = +1 inthefirst case, «(A) = —1 in the second and call :(A) the
isotropy of A.

Dueto 1) every /-admissibleendomorphism A isso(V)-invariant and hence 5o A € B.
Moreover, 5 o A isadmissible and the fundamental invariants are multiplicative:

T(BoA) = 7(F)7(A),
a(BoA) = a(B)a(4),
WBoA) = uB)(A).

In Sect. 3.1 (see Definition 3.1), for every pseudo-Euclidean space V/, we will
construct a canonical non-degenerate 50(V')-invariant bilinear form A on the spinor
module S. We will define that an endomorphism A of S is admissible of symmetry
o(A) =+1,if Aish-admissibleand o5 (A) = +1.

Remark 3. The complete classification of admissible forms 5 € 3, which we will give
in this paper, impliesthefollowing. Let v € 3 be non-degenerate and admissible. Then
ay-admissible endomorphism A € C is f-admissible for every admissible 5 € B. In
particular, admissibility (i.e. h-admissibility) implies f-admissibility.

2.2. Reduction to the basic signatures.  Let V3 and V> be pseudo-Euclidean spaces
and V' = V1 + V; their orthogonal sum. Werecall (see [L-M] I. Prop. 1.5) that thereisa
canonical isomorphism of Z,-graded algebras

Co(V) = Ce(V1)&Ce(Vs)

where & denotes the 7 -graded tensor product of Z,-graded algebras.



N -(Super)-Extended Poincaré Algebras and Bilinear Invariants 493

Proposition 2.1. Let M; = M? + M} be a Z,-graded C¢(V1)-module and M a (not
necessarily Z »-graded) C¢(V5)-module. Then M = M ® M carriesanatural structure
of C¢(V)-module, V' = V1 + V5, given by:

(a1 @ az)(m1 @ my) = (—1)%eD UMD 41y @ aymy

where a; € CU(V;), m; € My, i = 1,2.If Mp = M2+ M3 is a Zp-graded C{(V5)-
module, then this formula defines on M the structure of Z»-graded C¢(1)-module:
MO =MP® M2+ Mo M} MY =M2 o M} + Mo M.

Corollary 2.1. Let S; be an irreducible C¥¢(V;)-module, ¢ = 1 2, and assume that
S1 = S7 +.57 isreducible as CrO(Vy)-module. Then S = S; @ S» is an irreducible
(Ce(V) = Ce(V1)&CE(Vz))-module. The Cr°(V)-module S isreducible, S = S* + S, if
and only if S5 isreducible as Cr°(1%)-module, S, = Sy +55.

Proof. Let S; be an irreducible C¢(11)-module which is reducible as C¢°(V;)-module
and let S7 bean irreducible C¢°(V4)-submodule. Then

Si = CE(V]_) ®CZ°(V1) SI

is an irreducible C¥(V1)-module, hence without restriction of generality 51 = S| as
Ct(V1)-modules. Moreover, 57 isaZy-graded C¢(V1)-module (see [L-M] I. Prop. 5.20):
Sy = 91%+51,51° = CO(V) @ cuovy St = St and Si* = CEY(V1)55° = CE (V)@ oy
ST,

Therefore, we may assume (as usual) that S1 = ST + .57 isaZy-graded Cl(V1)-
module: S9 = 57, St =57 = CY(14)ST, reducing thefirst statement to Proposition 2.1.
The remaining statements a so follow from the structure of Z,-graded Clifford module
on S and on S5 (inthe reducible case). a

Now we investigate the algebraic properties of the fundamental invariants with
respect to Z,-graded tensor products.

Proposition 2.2. Under the assumptions of Corollary 2.1 let 5; be admissible bilinear
formson S;,i =1, 2.
If 7(61) = 1(B1)7(B2), then 3 = p1 ® B, isadmissibleand

7(0) (1) = «(B)7(B2),
o(B) = o(B1)e(B2),
() t(B1)u(B2) ,

where :(5) and «(3,) are defined if and onlyif S> (and hence 5) isreducible asa module
of the even part of the corresponding Clifford algebra.

Let A; be 3;-admissibleendomorphismsof S;, ¢ = 1, 2. If (A1) = ¢(A1)7(A2), then
A=A, ® Asisadmissbleand

7(4) (A1) = «(A1)7(A2),
0g (A) = 0'@1(141)0'@2(142) )
1(4) 1(A1)e(42),

where ((A) and «(A,) are defined if and only if .S isreducible as C¢°(15)-module.
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Proof. Theonly non-trivial statementsaretheonesconcerningthetyper. For s;,t; € .S;
and v; € V; we compute:

B(v1 @ D(s1® 52), 81 @12) = [vis1 @ s2,t1@1p) =
B1(v1s1,t1)P2(s2,12) 7(81)B1(s1, vit1) Fa(s2,12) =
7(81)B(51 @ 52, v1t1 @ 12) 7(£1)8(s1 @ 52, (v1 © 1)(t1 @ t2))

and

BLOv)(s1@52),11@15) = (1) *1B(s1 @ vasz, L1 @ tp) =
(—1)%95131 (51, 1) Ba(v252, 12) (—1)%9517(8,) B1(s1, 11) Ba(s2, vat2) =

(—1)%9517(8,) B(51 © 52,11 @ vat) =
(—1)de9s*datr (8,)8(s1 @ 52, (1 © v2)(t1 @ 12)).

If 1(31) = (—1)%e9s1*de9ts \ye obtain

B(L® v2)(51 @ 82), 11 @ t2) = 1(B1)7(32) (51 @ 52, (L@ v)(t1 @ t2)) . (1)

Otherwise, both sides of (1) vanish. Hence, Eq. (1) isawaystrue.
Similarly we have:

(11 @ D((A1® A2)(s1 @ s2)) = 7(A1)(A1 @ A2)((v1 © 1)(51 @ 52))

and

v2 1 2)\51 & 82 v2)(A181 282) =
(1@ v2)((A1 ® A2)(51 ® 52)) (1© v2)(A151 ® Ags2)
(—1)deg(Alsl)A18]_ @ vpAzsy = (—1)deg(Alsl)T(A2)A181 & Apvosy =

(— 1) A1) 1 (45) (A @ Ap)(s1 @ vas2) =
(—1)dedAns DI (4) (A © Ap)((1 @ va)(s1 @ 52)) =
((A1)7(A2)(A1® A)(L@ v2)(s1 @ 52)). O

Now we point out that every pseudo-Euclidean space V' can be decomposed as the
orthogonal sum V' = V4 + V5, such that the assumptions of Corollary 2.1 are satisfied,
i.e. such that the spinor C¢°(1/1)-module S; isreducible. In fact, we can decompose V'
into V3 = R™™ and V5 = R*0 or RO,

Proposition 2.3. Let VV = V4 + V> be the orthogonal sum of the pseudo Euclidean
spaces V4 = R ™ and V». Let S1 beanirreducible C¢(V1)-module. Then S1 = ST + 57
is a sum of two inequivalent irreducible C¢°(V1)-submodules Siﬁ and an irreducible
(Ce(V) = Ce(V1)&CE(Vz))-module S isgivenby S = 51 © S», where S, isanirreducible
Ct(V2)-module. S isreducibleas C£°(V')-moduleif and only if S»isreducibleas CO(15)-
module.

Proof. Thefirst statement followsfrom the fact that the Schur agebraof S1 iSCp, 1 =
C(s =m—m =0) = Re R. Now al other statements follow immediately from
Corollary 2.1. a
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3. Case of Signature (m, m) and Complex Case

3.1. Sgnature(m, m). LetU and U™ denote two complementary i sotropic subspaces
of V =R™™ soV = U+U*. Wedenoteby < -, - > thescalar product of V" andidentify
U* with the dual spaceto U by

uw(u) = 2<u,u* >, wrelU  uel.

Proposition 3.1. The following formulas define an irreducible CZ,,, ,,,-moduleon S =
AU
plu)s=u As,
pu)s=—u*ss, se NU, uelU, u elU*,

where Z istheinterior multiplication.

Proof. This follows from the obvious identities p(u)? = p(u*)? = 0 and p(u)p(u*) +
p(u®)p(u) = —2< u,u* >1d. a

Forany a € AU and o« € AU* we define nilpotent endomorphismse, and ¢, of S = AU
by:

€ag=alNs,

o =als.

Proposition 3.2. TheLiealgebraso(m, m) — End S of the spinor group admitsthe
following graded decomposition:

so(m,m) = g2+ g%+ g% = vz +5I(U) + e,

sl(U) = [w+, v, [@F, ¢7] C ¢'* (g™ = Ofor |i +j| > 2). In particular, ¢,2;» and
€2y are Abelian subalgebras.

It is very easy to describe the semi spinor modules S* in our model of the spinor
module S.

Lemma3.l. S = AU is the sum of the two inequivalent irreducible so(m, m)-
submodules S* = AV and S~ = A°%4.

Proof. It isclear that A°*U and A°%U are irreducible 50(m, m)-submodules and we
already know that they are inequivalent, see e.g. Proposition 2.3. a

Remark 4. The statement that A®VU and A°Y U are inequivaent 50(m, m)-modules
follows aso from the fact that these are eigenspaces of the volume element w,y, »,, =
e1- ez € CO, ., (¢;) an orthonormal basis of k™™,

We can define an 50 (m, m)-invariant endomorphism £ of S by
E|St =41d.

To congtruct an admissiblebilinear form f on.S = AU wefix avolumeformvol € A™U
on U/* and define ' '
FINUNU)Y=0, if i+jZm,

f(sﬁt)vOZZEiS/\t, SE/\iU’te/\m—iU’
where ¢; = (—1)/0*9/2, Remark that ;.1 = (—1)"*e;.
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Proposition 3.3. The space 55 of 50(m, m)-invariant bilinear formson S = Sy, ,, is
spanned by the admissibleelements f and fg = f(E-, -). Their fundamental invariants
(r,0,¢) depend onlyonm  (mod 4) and are given in the next table:

f — | —=+ | =+ = | —++
fE ++— | +—+ | +—— | +++
m ! 1 2 3 4

An f- and fr-admissible basis for the Schur algebra C = R ¢ IR is given by the
endomorphisms /d and F of S:

T(E) = =1, op(E) =05, (E) = (=17, «(E)=+1.

Proof. We first check that p(v), v € U + U~, is f-skew symmetric. For v = u € U,
s ENU,t e NI

(F(p(w)s, ) + f(s, p(u)t))vol = eiaa(u A s) At +es A(uAt)=0.
Forv=u* € U* s € AU, t € Nm:
—(f(p(u™)s, ) + f(s, plu"))vol = e_a(u™Ls) At +eis A (u™Lt) =
ci_1(u* Zs) At + (=) (u* L(s At) — (u"Ls) A t) =
(cim1— (D'e)(w Ls) At =0.
The symmetry properties of f follow from the computation
Ft, syvol = ¢t As = ¢jei(=1) f(s, tyvol = (=1) " D/2¢(s t)vol ,

wheres € AU, t € ANU and i + j = m.

Finally, f(AYU, A°%U) = 0if miseven and f(ASU, A®Y) = (AU, A1) =0
if m is odd. This proves al the statements about f. It is immediate to see that
is f-admissible with fundamental invariants given above. Since f is admissible and
E is f-admissible, fg is admissible and its fundamenta invariants are computed by
multiplicativity:

(fe) =r(N7(E), o(fp) =a(flos(E), «(fr)=()(E).
This proves the proposition. a

Proposition 3.3 implies the following theorem:

Theorem 3.1. Every so(m, m)-equivariant embedding V> — S* @ S*, where S =
Sm.m isthespinor 50(m, m)-module, isa linear combination of the embeddings j, (f)
and j,(fg). Their imageis contained in the dual of the subspacesindicated in the table
dependingonm (mod 4).

Jo(f) | VAST+V2ST | STV ST | A2ST 4+ A2ST | STAST
Jo(fm) | V2ST +V2S™ | S*AST | A2ST+A2ST | STV ST
m 1 2 3 4
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Now put V3 = IR™™ Z 0and let , be an arbitrary pseudo-Euclidean space. Denote
the spinor module of so(V;) by S;, i =1, 2.

Proposition 3.4. Let /3, be an admissible bilinear form on \S,. Then thereis a unique
(up to scaling) admissible form 51 on Sy such that 7(52) = «(81)7(51). In particular,
51 ® Pz isan admissible bilinear formon the spinor 50 (V1 + V2)-module S1 @ So.

If moreover, A, is a (,-admissible endomorphism of S5, then there is a unique
(1-admissible endomorphism A; of 53 such that 7(A2) = «(A1)7(A1), in particular,
A1 ® Az isaf ® (2-admissibleendomorphism of 51 ® S5.

The fundamental invariantsof 51 ® 8, and A; ® A, are easily computed using the
rules given in Proposition 2.2.

Proof. Thisfollowsfrom .(fg)7(f&) = —¢(f)7(f), «(E)m(F) = —«(Id)T(Id) and Sect.
2.2. O

If we assume that V> is of definite signature, i.e. V> = R¥:0 or R%*, then thereisa
unique (up to scaling) Pin(V>2)-invariant symmetric bilinear form %, ontheirreducible
module S> of the compact group Pin(172).

Lemma3.2. The Pin(V2)-invariant scalar product s, is admissible; r(hp) = —1 if
Vo =R*%and 7(hy) = +1if V3 = ROK; o(hy) = +1andif S, isreducible, S, = 55 +5;
S5 = CY(V2)S3, then u(hy) = +1.

Proof. Let p(v) denote Clifford multiplication by a unit vector v € V5. Then h; is
p(v)-invariant and p(v)? = —Id if Vo, = R*%and p(v)? = +1d if V, = RO, Thisimplies
7(h2) = F1.

To see that ¢(hy) = +1 in the reducible case, consider the scalar product /) on S,
defined by

hy(S3,55) =0, hy|SE =ho|SFE (70).

It is easy to check that A5 is invariant under Clifford multiplication by unit vectors
v € Vo usingthat S~ = vS*. Thisimplies k), = hs. a

By Proposition 3.4 for every V7 = R™"™ = 0 there is a unique admissible bilinear
form £ on the spinor module S1 of s0(V1) such that 7(h2) = ¢(h1)7(h1).

Definition 3.1. The canonical bilinear form on the spinor module S = 57 ® S of
so(V1 + V) ish = hy ® hy, where h» is the canonical bilinear form on the spinor
module Sz of s0(1%) = s0(k), i.e the Pin(V>2)-invariant scalar product. In line with
thisdefinitionwe say that an endomor phism A of S’ (respectively A, of S») isadmissible
of symmetry o(A) = +1 (respectively o(A42) = +1) if A is h-admissible (respectively
ho-admissible) and ¢4, (A) = +1 (respectively oj,(A2) = £1).

Remark 5. For V1 = R™™ we have two (non-degenerate) admissible bilinear forms f
and fg on S1 = Sy, . If we want to choose a canonical one, which is not necessary
for our purpose, we can consider on Sy the structure of irreducible C¥,, ,,+1-module
defined in Sect. 3.2. Then only one of the forms remains admissible for the C?,, ,+1-
module S1 = Sy, m+1, itisinfact the canonica bilinear form on thismodule. Moreover,
its complex bilinear extension is the unique (up to scaling) s0(2m + 1, C)-invariant
complex bilinear form on the irreducible ,,+1-module Son+1 = Smom+r ® C, s
Corollary 3.1.
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3.2. Complex case.  Case of even dimension. The following theorem follows im-
mediately from the fact that an irreducible module S, of X2, can be obtained as
Som = Spmm @ C and that Sy, splits as @3, -module: S,, = S3,, + S5, , where
53, = 5%, ®C.

Theorem 3.2. Every s0(2m, C)-equivariant embedding C?" — S,,,, ® S, isalinear
combination of the embeddings j,(f)© and j,(f£)*. Their imageis contained in the
dual of the subspacesindicated in the table dependingonm  (mod 4), where we have
put S = Sop,.

Jp(NC | VBST+VEST | STV ST | APSTH+AZST | STAST
G,(fE)C | VASTHVAST | STAST | ABSTHAZST | STV ST
m 1 2 3 4

Case of odd dimension. The odd dimensional complex case can be obtained from the
real case of signature (m, m + 1) by complexification.

We fix the orthogonal decomposition (R”™* < . . >) = Reg + R™™, where
< eg,e0 > = —1, and denote by p the irreducible representation of C¥,, ,,, on Sy, m
constructed in Proposition 3.1.

Proposition 3.5. An irreducible representation g of Cly, py+1 ON Sy, e+t = Spam 1S
defined by

PIR™™ = p|R™™ - ple) = p(win,m)
wherew,, ., isthevolumee ement of Cﬁmym.TheCES%mﬂ-moduleSmymﬂ isirreducible
and has Schur algebra Cy, m+1 = R Id.

Proof. Itissufficienttocheck that {5(eo), p(x)} = Ofor z € R” ™ andthat f(eo)? = Id.
Thisfollowsfrom the next lemma. a

Lemma3.3. Thevolumeeement w = wy, m = e1e2 - - - eom ((e;) @an orthonormal basis
of R"™™) of C,y, ,,, satisfies{w,z} =0for all x € R™™ andw? = +1.

Proposition 3.6. If m is even, then every so(m, m + 1)-invariant bilinear form on
S = Spm,m+1 is @ multiple of the admissible (canonical) form fz (see Proposition
3.3) and hence every s0(m, m + 1)-equivariant embedding R”™* — (S @ S)* is
proportional to theembedding j;(f), which mapsR™™*tinto v2S* if m = 0 (mod 4)
andinto A%2S* if m = 2 (mod 4). If m isodd, then every 50(m, m + 1)-invariant bilinear
formon S = Sy, n+1 isamultipleof the admissible (canonical) form f (see Proposition
3.3) and hence every so(m, m + 1)-equivariant embedding R™™* « (S © S)* is
proportional to the embedding j;(f), which mapsR™™*into v25* if m = 1 (mod 4)
andinto A%2S* if m = 3 (mod 4).

Proof. If m is even, then p(eo) = p(wm m) is fe-symmetric and 7(fr) = +1. If m is
odd, then p(eg) is f-skew symmetric and ~(f) = —1. a

Corollary 3.1. If m iseven, then every 50(2m + 1, O)-invariant bilinear formon S =
Som+1 = Im,m+1 @ Cisamultipleof theform fg and every so(2m + 1, C)-equivariant
embedding C2"*1 < (S @ S)* is proportional to the embedding j;(f£)®. If m isodd,
then every so(2m + 1, O)-invariant bilinear formon S = So41 = Spome1 ® Cisa
multiple of the form ¢ and every so(2m + 1, O)-equivariant embedding C2"*1 —
(S @ S)* is proportional to the embedding j;(f)®.
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4. Case of Signature (k, 0)

4.1. Caseof evendimension.  Wefix the orthogonal decomposition R = R™+R™,

where™: R™ — R™ jsan isometry. Denote by « the involution of (¥, (respectively
@, ) extending z — —z onR™ (respectively C™).

Proposition 4.1. Ifm = 0or3 (mod 4) thefollowingformulasdefineon S = So,, o =
C¥,, the structure of irreducible C?5,,,-module:

p(x)s s,
p(%)s wsz if m=0 (mod 4),

p(@)s = wa(s)z if m=3 (mod4),

wheez € R™, s € S andw isthe volume dement of C?,,,, i.e w = e;---e,, for an
orthonormal basis(e;) of R™. The 50(2m)-module S isthesum S = S* + S~ of thetwo
inequivalent irreducible modules S* = C¢% and S~ = X ifm =0 (mod 4) andis
irreducibleif m =3 (mod 4).

Ifmm=1or2 (mod 4) the structure of irreducible Cf5,,-moduleon S = 52, ¢ =
Som = I, isgiven by:

p(x)s = ws,
p(@)s = ia(s)e, z€R™, seS.
As50(2m)-module S = S* + S~ is the sum of the two irreducible modules S* = (@9,

and S~ = @% , whichare equivalent for m =1 (mod 4) and inequivalent for m = 2
(mod 4).

Proof. Itissufficienttocheck theidentitiesp(x)? = —< x,x >1d,p(¥)?> = —< z,z >1d
and {p(z), p(§)} = Ofor z, y € R™. Thisisstraightforward using the following lemma.
O

Lemmad4.1l. Thevolumeeement w = w,, =e;1 - e, Of (¢, satisfies{w,z} =0ifm
iseven and [w, 2] = 0if misodd, x € R™ C (¥,,. Moreover,

2 +1 if m=0 or 3 (mod4)
w =
-1 if m=1 or 2 (mod4).

Now we describe the Pin(2m)-invariant symmetric bilinear form 4 on S using the
canonical identification AR™ — (¥, of Z,-graded vector spaces given by

L A AN T O A 2

with respect to an orthonormal basis (¢;), ¢ = 1, ..., m, of R™.
The standard scalar product < -, - > on AR induced by thescalar productonR™ is
invariant under exterior = A - and interior zZ- multiplication with unit vectors z € R™.

Lemma4.2. Using the identification C?¢,,, = AR™, Clifford multiplication of z € R™
and ¢ € (¥, isgiven by:

T
ox

T NG —axlo,
A a(p)+ala(d).
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Proof. The proof issimilar to [L-M] I. Prop. 3.9. a

Corollary 4.1. Thestandard scalar product < -, - > on AR™ = (¥, isinvariant under
left and right multiplications by unit vectors « € R™. In particular, if m = Oor 3
(mod 4), h = < -,- > isthe (admissible) Pin(2m)-invariant scalar product on the
irreducible C?5,,,-module S = C¥,,,.

If m = 1or2 (mod4), we extend the standard scalar product on AR™ to a
symmetric complex bilinear form < -, - >~ on S = AC™. Using the operator ¢ of
complex conjugation, we define a symmetric real bilinear form 2 = Re < ¢-,- >¢ on

Lemma4.3. Letm = 1or 2 (mod4). Thenh = Re< c-,- > isthe (admissible)
Pin(2m)-invariant scalar product on theirreducible C¥¢5,,-module S = Z,,, .

Proof. We check that p(z) and p(Z), « € R™, are < ¢, - >-skew symmetric and
hence h-skew symmetric. By Corollary 4.1 left and right multiplication, ., and R, by
z e R™are< - - >p-skew symmetric endomorphismsof S = 7, , in particular, p(z)
iS< -, - >p-skew symmetric. It iseasy to see that « and the operator I of multiplication
by i are < -, - > -symmetric endomorphisms. Moreover,

[1,R;] =[I,a] ={ea, Ry} =0
and hence p(z) = [ o R, o 2 iS< -, - >¢-Symmetric. From therelations
[e, Le] =[c, Re] = [c, 0] ={c, I} =0

weobtainthat [p(x), c] = {p(Z), ¢} = O,whichimpliesthat p(z) and p(Z) are< ¢ -, - >¢-
skew symmetric. a

Now we construct admissible, i.e. h-admissible, bases of the Schur algebraC = Cop, 0
for al thevauesof m (mod 4).

Proposition 4.2. Ifm =0 (mod 4), an admissiblebasisof the Schur algebraCa,, o =
IR ¢ R is given by the endomorphisms /d and £ = « of S = Cl,,: 7(F) = -1,
o(E) =op(F) =+1, (F) = +1.

If m =3 (mod 4), an admissible basis of C2,, 0 = C is given by the endomor-
phisms/dand J = L, ca of S = Cl,,: 7(J) = =1, 0(J) = —1.

The space B of s0(2m)-invariant bilinear forms on S is spanned by admissible
elements:

B=span{h,hg} if m=0 (mod4),

B=span{h,h;} if m=3 (mod4).

Thefundamental invariants(r, o, ) aregivenby (r, o, :)(k) = (=1, +1, +1), (7, o, 1) (hg) =
(+1,+1,+1) if m = 0 (mod 4) and (7, 0)(h) = (=1,+1), (r,o)(hs) = (+1,-1) if
m =3 (mod 4).

Proof. We show that J isadmissibleand (/) = ¢(J) = —1. All other statements are
immediate.

Letm =3 (mod 4). From [L,, L,] = [Rs, Lw] = {Ls,a} = {Rs;,a} = 0 (see
Lemma4.1) itfollowsthat {L., J} = {R.,J} =0.Sincep(z) = L, and p(&) = Ry o J,
we conclude {p(z), J} = {p(&), J} = 0.

The operator J is skew symmetric as the product of two anticommuting symmetric
operators, namely L., and o (the scalar product is L, -invariant and L2 = +1d). a
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Ifm=1or2 (mod 4), weconsider thefollowing operatorson S = Z,, :
I:sw—is, J=L,oc, K=1IJ and F=a,
wherew =eq---¢,, € Cf,, C Z,, isthevolume € ement.

Proposition 4.3. Letm = 1or2 (mod 4). The Schur algebraCop, o (2 C(2) ifm =1
(mod 4) and = H ¢ Hifm =2 (mod 4)) isgenerated by the admissible operators 7,
J and £ satisfying the following (anti) commutator relations:

P=J=12=-1, BE*=c=+1,

{I,J}=[1,E1=[I,L,]={I,¢c} =0,

[/, L,]=[J,c]=[E,c]=[Lu,c] =0,
{L,E}={Ly,E}=0 if m=1 (mod4),
[J,E]1=[Ls,E]1=0 if m=2 (mod4).

An admissiblebasis of the Schur algebraisgiven by theendomorphismsid, I, J, K, E,
El, EJ, FK. Ther fundamental invariants (r, o, «) are given in the next table, where
the value of m ismodulo 4.

m: 1d 1 J K E El EJ EK
1 4+ |-+ [ F—— |+ — | | ——+ | —+— | —+—
2 +++ |-+ | ——F | ——F+ | —F+ | ——+ | +—+ | +—+

The fundamental invariants of the corresponding admissible basis of 55 are also
listed for convenience:

mi h hr hy hx hg her | hes | hex
1 —++ | ——F+ | = | ——— | +++ |+ —F | ++— | ++—
2 —++ | ——+ | =+ | +—F |+ |-+ | ——+ | ——+

Proof. The proof is similar to the proof of Proposition 3.3 and 4.2. One uses the
multiplicationrulesfor theinvariantsand also that 7., isskew symmetric, ¢ issymmetric
and they commute. a

Theorem 4.1. Every 50(2m)-equivariant embedding R?™ < (S © S)*, S = Som. 0, iS
alinear combination of the embeddings

Jp(h) i R*M s (ST AST) and j,(hp) iR < (STV.ST)
ifm=0 (mod 4)andalinear combination of
Jp(h) i IRZ™ s A28 and  j,(hy) i RZ" s AZST
ifm=3 (mod 4).
Ifm =1or2 (mod 4)every 50(2m)-equivariant embedding R?” — (S ® S)* is

alinear combinationof theembeddingsja = j,(ha), A € C admissible, whoseimageis
contained in the dual of the subspacesindicated in Table 4 dependingonm  (mod 4).
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Table 4. 50(2m)-equivariant embeddingsj 4 = jp(ha) : R?™ — (S @ S)*

ird STAST S*AST
ir S*tv S— S*tv ST
Jy V2SSt +v28— | ST A ST
IK V2SSt +v28— | ST A ST
iB S*tv S— S*tv ST
IBT STAST S*AST
jps | V2St+v2s— | Stv ST
Jex | VESt+v2S— | Stv ST
m: 1 2

4.2. Caseof odd dimension.  To reduce the odd dimensional case to the even dimen-
sional, we consider the orthogonal decomposition R27*1 = Req + R2™, where ¢ is
aunit vector. Let p denote the irreducible representation of C¥5, on S, o defined in
Sect. 4.1. Wewill extend p to an irreduciblerepresentation g of Cla,+1 0N.S = Some10,
where So,,410 = Somo if m =1, 20r 3 (mod 4) and Sopm+1,0 = S2m,0 @ C = Sop
ifm=0 (mod4).1fm=1o0r2 (mod 4), Som 0= So, admitsthe Cl,-invariant
complex structure /. For m = 0 (mod 4) multiplication by ¢ is a Clop,-invariant
complex structure on S, o @ € and will also be denoted by /.

Proposition 4.4. The following formulas define an irreducible representation p of
Clom+1 ON Sop41 0.

pIRZ™ = p|R2™

3(eo) plwam) If m=1 or 3 (mod 4)
e =
PN Toplwan) if m=0 or 2 (mod 4),

where, inthecase m = 0 (mod 4), p has been extended complex linearly to a rep-
resentation on S2,, o0 @ C, denoted by the same symbol. S = 55,410 iSirreducible as
C13,...-moduleif m #Z 0 (mod 4) and the sum S = S* + 5~ of the two equivalent
irreducible C#3,, ,,-modules S* = S5, o +iS,, o = €5, +iCly, and S~ =iS*ifm =0
(mod 4).

Proof. It is sufficient to check that 5(eo)? = —Id and {j(eo), p()} = O for x € R?™,
since all other information can be extracted from the Schur algebra, see Corollary 1.3.
These identities follow immediately from Lemma 4.1 and the fact that I is a Cls,,-
invariant complex structure. a

Now we describe the Pin(2m + 1)-invariant scalar product 2 on S = Sp,,+410. Lt
hom o denotethe Pin(2m)-invariant scalar product on Sz,,+1.0 = Sam o if m = 1,20r 3
(mod 4) and by hS o the complex bilinear extension of the Pin(2m)-invariant scalar
product on S, o to a Pin(2m)-invariant complex bilinear form on S2,,+10 = Som =
Som,o0® Cifm =4 (mod 4).

Lemma4.4. The Pin(2m + 1)-invariant scalar product & = hon+1,0 ON.S = Som+1,0
isgivenby i = hopoifm =1,20r3 (mod 4) and by h = Re hgmyo(c., Jifm=4
(mod 4), where ¢ is complex conjugation with respect to 52, 0 C Som 0 @ C.
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Proof. Ifm # 4 (mod 4), thestatement followsfrom Schur’sLemma, since S2,,+1,0 =
Som,0. If m = 4 (mod 4), the Hermitian form hgmyo(c -,+) is I-invariant and hence
invariant under p(eg) = I o p(way,) and the sameistruefor h = Re hgmyo(c o). a

If m #3 (mod 4), we have on Szp,+10 = &y, = CFy, +1CY,, the operator ¢ of
complex conjugation. Hence, we can define an endomorphism J of Sz,,410 = (&, by
the formulas

aoc if m=0 (mod4),

where L,, isleft multiplication by thevolume e ement w = w,, of C¢,,, anda |0, = +1d,
o|@k = —1d.

Proposition 4.5. Let m # 3 (mod 4). An admissible basis of the Schur algebra
C = Cam+1,0 IS given by the endomorphisms Id, 1, J and K = 1J of Sop410 = Gy, . I
m =1or2 (mod4),then?=J%2=—Id,{I,J} =0and Com+10 = H Ifm =0
(mod 4), then 1?2 = —J2 = —Id, {I,J} = 0 and Com+10 = R(2). The space B of
50(2m+1)-invariant bilinear formson 52,,+1,0 hastheadmissiblebasis (4, iy, b, hi).
Ifmm =3 (mod 4), then the Schur algebra Cz,,+10 =R Id and B = RA.

Proof. Straightforward, cf. Proposition 4.2. a

J__{Lwoc if m=1 or 2 (mod 4)

Theorem 4.2. Ifm =3 (mod 4), every 50(2m+1)-equivariant embedding R?m*1 <
5% ® S*, S = Somsr0, isamultipleof j, (k) : R < AZS* If m £ 3 (mod 4),
every 50(2m + 1)-equivariant embedding R?"*! < (S @ S)* isa linear combination
of the embeddings j4 = j,(ha), A = Id, I, J or K, whoseimageis contained in the
dual of the subspaces indicated in Table 5 depending on'm  (mod 4).

Table 5. 50 (2m + 1)-equivariant embeddings;j 4 : R??* — (S @ S)*

m! Jrd Jr JJ JK
1 A28 V28 V28 V28
2 A28 V28 A28 A28
4 STAST | VEST+v2ST | StV ST | v2St+v2S—

5. Case of Signature (0, k)

Now we discuss the case of signature (0, k). The proofs are similar to the proofsin the
case of signature (%, 0) and will mostly be omitted.

5.1. Caseof even dimension.  Asinthe positively defined case, we fix the orthogonal
decomposition R%27m = RO™ + ROm where™: RO™ — RO™ jsan isometry.
Lemmab5.1. The volume element w = wo, = e1- - e ((e;) an orthonormal basis of
RO™) of ¥l ,,, satisfies {w,z} = 0if miseven and [w, ] = 0if misodd, z € R%™ C
C¥o . Moreover,

5 _ +1 if m=0 or 1 (mod4)
w —_
-1 if m=2 or 3 (mod4).
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The next propositionis checked using Lemma 5.1.

Proposition 5.1. Ifmm = 0or1 (mod 4) thefollowingformulasdefineon S = So 2., =
Cl ,n the structure of irreducible Clg 2, -module:

p(x)s s,
p(%)s wsz if m=0 (mod 4),

p(@)s = wa(s)z if m=1 (mod4),

where z € R%™ s € S and w isthe volume element of Clo . The s0(0, 2m)-module
Sisthesum S = S* + 5~ of thetwo inequivalent irreducible modules 5* = C¢g,,, and
S—=ctk ifm=0 (mod4)andisirreducibleifm =1 (mod 4).

Ifm =2or3 (mod 4) the structure of irreducible Cfg »,,-moduleon S = Sg 2, =
Som = &y, isgiven by:

plr)s = s,
p(F)s = da(s)e, zeRO™C @, = Clom@C, sesS=U,.

As 50(0, 2m)-module S = S* + S~ is the sum of the two irreducible submodules
S*=@% and S~ = @2 , which are inequivalent for m = 2 (mod 4) and equivalent
form =3 (mod 4).

Recdll (see Corollary 4.1) that the standard scalar product on AR™ = C¥,,, = Cly, 0
isinvariant under |eft and right multiplicationsby unit vectors z € R™ = R™0, We can
consider R%™ as subspace

RO™ =R™ = @, = Cly, @ C = Cly, +iCl,, .

Then Clo , = €13, + Clg ,,, = CL3, +iCL}, . We define an isomorphism of Z-graded
vector spaces ¢ : Cf,, — Clg,, On elementsa € CF,, of puredegree deg(a) = 0or 1
by:

a — 199

A scalar product < -, - > on Cfg 5, isdefined by the condition thet ¢ : C¢,,, — Clg
isan isometry for the standard scalar product on AR™ = C¥,,,. The following lemmais
true by construction.

Lemmab.2. The scalar product < -,- > on Clg,, isinvariant under left and right
multiplications by unit vectors = € R%™. In particular, if m = 0or 1 (mod 4),
h =< -, ->isthe(admissible) Pin(0, 2m)-invariant scalar product on theirreducible
CEOVZm-mOduIeS = SO,Zm = Cgoym.

If m = 2or 3 (mod 4), we extend the scalar product < -,- > on Cfp,, to a
symmetric complex bilinear form < -, - >, on S = AC™. Using the operator ¢ = cq
of complex conjugation with respect to the real form Ctg ,,, = C8, +iCtL, of @, , we
define a(real) scalar product 2 = Re < ¢-,- > 0n S.

Lemmab3. Leem = 20r 3 (mod 4). Thenh = Re< ¢-,- > is the (admissible)
Pin(0, 2m)-invariant scalar product on theirreducible C¥g 2,,-module S = 7, .

Now we construct (A-)admissible bases of the Schur algebra C = Co 25, for dl the
vauesof m (mod 4).
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Proposition 5.2. Ifm =0 (mod 4), an admissiblebasisof the Schur algebraCo 2, =
R @ IR is given by the endomorphisms /d and £ = « of S = Clg,,: 7(£) = —1,
o(E) =op () =+1, (F) = +1.

Ifm =1 (mod 4), an admissible basis of Cy 2, = C is given by the endomor-
phisms Id and J = L, o o of S = Clp,, (Where w is a volume element of Clg .,):
m(J)=-10(J) = -1

Thespace B of 50(0, 2m)-invariantbilinear formson S isspanned by the admissible
edementsh and hg ifm =0 (mod 4)andbyh andiyifm =1 (mod 4). Their fun-
damental invariants(r, o, :) are (7, o, t)(R) = (+1, +1, +1), (7, o, 1) (hg) = (—1, +1, +1)
ifrn =0 (mod 4)and(r, ¢)(h) = (+1, +1),(r, o)(hs) = (=1, -1)ifm =1 (mod 4).

Ifm=2o0r3 (mod 4), weconsider thefollowing operatorson S = (Z,,, :

I:isw—is, J=Lyoc, K=lJandE=a (w=wom).
Proposition 5.3. Let m = 2 or 3 (mod 4). The Schur algebra Co 2, (¥ H ¢ H if
m =2 (mod4) and = C(2) if m = 3 (mod 4)) is generated by the admissible
operators /, J and ¥, which satisfy the following identities:
P=J2=12=-1, BE*=c*=+1,
{1, J}=11,E1=1[I,L,] ={I,c} =0,
[/, L] =1/, el = [E,c] = [Lu, ] =0,
[J,E]1=[Lw,E]=0 if m=2 (mod4),
{J,E}={L,,E}=0 if m=3 (mod4).
An admissiblebasis of the Schur algebraisgiven by theendomorphismsid, I, J, K, E,

El, EJ, FK. Ther fundamental invariants (r, o, «) are given in the next table, where
the value of m ismodulo 4.

m: 1d 1 J K E El EJ EK
2 +++ |-+ | ——F | ——F+ | —F+ | ——+ | +—+ | +—+
3 4+ |-+ [ F—— |+ — | | ——+ | —+— | —+—

The fundamental invariants of the corresponding admissible basis for the space
B = Bo,2m (of 50(0, 2m)-invariant bilinear forms on Sg 2,,,) are asfollows:

m: h hr hy hx he hgr hgs hex
P I R R R R R D .
3 |ttt | et | e e | mt | m— | = | —+—

Theorem 5.1. Everyso(0, 2m)-equivariantembeddingR%?™ — (S©S5)*, S = So 2m,
isalinear combination of the embeddings
Jp(h) 1 R%#M s (ST v ST) and  j,(hp) i R%*™ s (ST AST)
ifm=0 (mod 4)andalinear combination of
jo(R)andj,(hy) : RO?™ s v2S* if m=1 (mod4).
If m =2o0r3 (mod 4) every 50(0, 2m)-equivariant enbedding R%?™ — (S @ S)*
is alinear combination of the embeddings j4 = j,(ha), A € C = Co 2, admissible,

whose image is contained in the dual of the subspaces indicated in Table 6 depending
onm (mod 4).
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Table 6. $0(0, 2m)-equivariant embeddings;j 4 : R%?™ — (S @ S)*

ird S*tv ST S*tv S—
ir S*AST STAST
Jy Stv ST | A28t + 25—
IK Stv ST | A28t + 25—
iB S*AST STAST
IBT S*tv ST S*tv S—
jgs | STAST | AZST+ A28
Jex | STAST | AZST+ A28
m: 2 3

5.2. Caseof odd dimension.  Consider the orthogonal decomposition

(RO2M*L . . 5) =Reg+RO2™ where < eg, eg > = —1. Let p denotetheirreducible
representation of (Y 2, 0N So 2, definedin Sect. 5.1. Wewill extend p toan irreducible
representation g of (g 2,41 ON .S = Sp 2m+1, Where Sg 2m+1 = So2m if m = 0,2 0r 3
(mod 4) and So 241 = S0,2m @ C=Sopifm =1 (mod 4).1f m=2o0r3 (mod 4),
So,2m = Som admits the Clg 2., -invariant complex structure /. For m = 1 (mod 4)
multiplication by ¢ is a Clg 2,-invariant complex structure on Sp 2, @ C and will aso
be denoted by I.

Proposition 5.4. The following formulas define an irreducible representation p of

Clo 2m+1 ON S0 2m+1.

RO,Zm - RO,Zm

Al ol
3(eo) plwo2m) If m=0 or 2 (mod4)
e =
PEO7\ Toplwoam) if m=1 or 3 (mod4),

bl

where, inthecasem =1 (mod 4), p has been extended complex linearly to a repre-
sentation on Sg 2m+1 = So,2m © C. S = Sp 2m+1 iSirreducibleas a Cﬁgyzml-module if

m %3 (mod 4) andthesum S = S* + S~ of thetwo equivalent irreduci bIeCESyZmﬂ-
modules $* = 57 and S~ =57 if m = 3_ (mod 4), where S” is the fixed point set
of a50(0, 2m + 1)-invariant real structure J on S (the explicit expression for J will be
given below).

Next we describe the Pin(0, 2m + 1)-invariant scalar product 2 = hg 21p+1 0N S =
S0,2m+1. L&t ho 2, denotethe Pin(0, 2m)-invariant scalar product on Sg 2,,+1 = S0 2m, if
m =0,20r3 (mod 4)and by hSZm the complex bilinear extension of the Pin(0, 2m)-
invariant scalar product on Sg 2,, t0 a Pin(0, 2m)-invariant complex bilinear form on
50,2m+1 = S2m = So2m @ Cifm =1 (mod 4).

Lemmab5.4. The Pin(0, 2m + 1)-invariant scalar product 2 = hg 2,,+1 0N.S = 50 2m+1
isgivenby & = hg 2y ifm =0,20r3 (mod 4) and by h = Re hSZm(c~, Jifm=1
(mod 4), where ¢ is complex conjugation with respect to Sg 2, C 5o 2m @ C.

If m Z£0 (mod 4), we have on Sg 2,41 = G, = Clg 1, +iClo . the operator ¢ =
co.m Of complex conjugation. Using it we define an endomorphism J of Sp 2m+1 = U
by

Ji=Lyoaoc ,

wherew = wg ,,, isavolume element of Clg ,, and o|@°, = +Id, o|T}, = —Id.
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Proposition 5.5. Let m # 0 (mod 4). The Schur algebra C = Cg 2,,+1 iS generated
by the endomorphisms 7 and Jof s = So,2m+1 = Gy, , which satisfy the following
relations: /2 = —1, {I,J} = 0. Moreover, J2 = +Id and Coom+1 = R(2)if m = 3
(mod 4) and J2=_Id and Coom+1 T Hifm=1o0r2 (mod 4). Anadmissiblebasis
of Co2m+1 1S given by the endomorphisms 7d, I, J and K = I.J. Their fundamental
invariants(r, o, ¢) together withtheinvariantsof the associated admissiblebasisfor the
space BB of 50(0, 2m + 1)-invariant bilinear formsare givenin Table 7 (¢ isonly defined
ifm=3 (mod4)).Ifm=0 (mod4),Coom+1=RId.

Table 7. Fundamental invariants of admissible endomorphismsand bilinear forms of Sg 2,,,+1

m: | Id T J K h hr hy hi
1 ++ +— - - ++ +— —— ——
2 ++ +— +— +— ++ +— +— +—
3 ++4+ | +—— | —++ | —+— ++4+ | +—— | —++ | —+—

Theorem 5.2. Every 50(0, 2m + 1)-equivariant embedding R%2"*1 — (S © 9)* is
proportional to j,(h) : R%?™* «— v25* if m = 0 (mod 4) and alinear combination
of the embeddings j4 = j,(ha), A =1Id, I, J and K ifm 0 (mod 4). Theimage of
the j 4 iscontained in the dual of the subspacesindicated in Table 8.

Table 8. 50(0, 2m + 1)-equivariant embeddingsj 4 : R%?™* — (S @ S)*

jra | V23S | v2s StvSs—
i1 | A%S | A2S StAS—
i5 | V23S | AZS | A28t +A25T
if | V23S | A2S | A28t +A25T
m: 1 2 3

6. Complete Classification

Every pseudo-Euclidean space V' admits a (unique up to an isometry) orthogonal de-
composition V' = V1 + V5, where V3 = R™™ and the scalar product of 15 is positively
or negatively defined. Now we consider the case when V7 # 0 and V2, 7 O, the other
cases were treated in Sects. 3.1, 4 and 5. We denote by S;, i = 1,2, the irreducible
C?(V;)-module constructed in Sects. 3.1 and 4, 5 respectively. Then S = 51 @ S, carries
the structureof irreduciblemodulefor the Clifford algebraCe(V) = Ce(V1)Cl(Vz), see
Proposition 2.3. By Proposition 3.4, to every admissible bilinear form /3, (respectively
endomorphism Ay) on S, we associate an admissiblebilinear form 5 = 81 ® 5, (respec-
tively endomorphism A; ® A») on S. In Sects. 4 and 5 we have contructed admissible
basesfor the space 3, of s0(1%)-invariant bilinear formson S, and for the Schur algebra
C, of S,. Therefore, this explicit correspondence defines an injective linear mapping
@ . P2 — B = ¢(F2) (respectively ¢ : Az — A = (A2)) from B3 into the space 5 of
so(V)-invariant bilinear forms on S (respectively from C, into the Schur algebra C of
S). Moreover, ¢ and v are actually isomorphisms, because the Schur algebras of S and
S, areisomorphic, dueto thefact that ' and 1, have the same signature s, see Corollary
1.3. So we have essentially proved:
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Theorem 6.1. There exist natural isomorphisms ¢ : 5, — B of vector spaces and
¥ : Co — C of algebras mapping admissible elements onto admissible e ements. Under
these maps, the fundamental invariants of admissible elements transform according to
the rules given in Proposition 2.2. In particular, if m = 0 (mod 4), then ¢ and ¢
preserve the fundamental invariants ((4,4)-periodicity).

Proof. We recall that by Proposition 3.3 the Schur agebraC,, ,, of 51 =S, ,, hasthe
admissiblebasis (/d, F) and £? = +Id. Thisimpliesthat the vector space isomorphism
1 isactualy an isomorphism of algebras. The (4,4)-periodicity follows from

U(fE) = L(fE) = U'f(E) = O'fE(E) = L(E) =+1. O

Recdll that B, , denotesthe space of 50(p, ¢)-invariantbilinear formsontheso(p, q)
spinor module S, , and C, , isthe Schur algebraof S, ,.

Corollary 6.1. ((8,0)- and (0,8)-periodicity) There exist natural isomorphisms
¢8,0:Bpg = Bpigg and ¢og: By g — By g

of vector spaces and
Y80:Cpg—>Cpgg anNd og:Cpgq — Cp g8

of algebras mapping the admissible el ements onto admi ssible el ements preserving their
fundamental invariants.

Proof. By Theorem 6.1 53, , and C, , have admissible bases. Now we recall from
Sect. 4 and 5 that if £ = 0 (mod 8), then Cr o = Co has an admissible basis,
which was denoted by (/d, £), such that (r, o, )(F) = (-1, +1, +1) and, of course,
(r,0,0)(Id) = (+1,+1,+1). The existence of the maps g and o g follows from
T(Id)e(Id) = —7(E)(E). They preserve the fundamental invariants, because o(/d) =
t(Id) = o(£) = «(F) = +1. The existence and properties of ¢g o and ¢q g are proved
similarly. a

Corollary 6.2. Every so(V)-equivariant mapping j : V' — (S ® S)* is a linear
combination of the embeddings j4 = j,(k4), where i isthe canonical bilinear formon
the spinor module S of s0(1") and A are admissible el ements of the Schur algebra C of
S.

To obtain an overview over all possible V-extended Poincaré agebras p(V) + 5,
N =41, £2,itisuseful todefinetheinvariantse and . for embeddingsj : V — (S®.5)*
having specia properties. More precisaly, we put o(j) = +1if jV C v2S* and o(j) =
—1if jV C A25*.1f S = S*+ 5~ ,wedefine(j) = +1if jV C (ST @ ST +S™ @ S7)*
and.(j) = —1if jV C (St ® S7)*.

Note that the fundamental invariantsof j4 = j,(ha), A € C admissible, are easily
computable:

o(ja) = 7(ha)o(ha) = 7(R)T(A)a(h)o(A) and w(ja) = —u(ha) = —1(h)(A).

Recall that ;7 denotesthe space of s0(V)-equivariant mappings;j : V — (S @ 9)*.
We define the subspaces

J7:={j € Jle(j) = o0} U{0} and
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J70={j € T7°|u(j) = 1o} U{0}
and put
L7 :=dim g, L7 :=dimJ7
We shall write L*, L*~, ... instead of the more cumbersome L*1, L*1 -1 .
Remark that I* (= L™+ L if S = 5 + 5™ ) isthe maximal number of linearly

independent super algebra structures on p(V) + .S and that L~ (= L=+ L~ ~) isthe
number of Z-graded Lie algebra structuresonp(V') + 5.

Theorem 6.2. The numbers (L*, L~) and (L**, L*~, L=*, L~ ~) depend only on the

dimension n = dimV = p + ¢ and the signature s = p — ¢ of V' = RP»¢ modulo 8.
Moreover, they admit the mirror super symmetry n — —n. More precisdly,

L*(—n,s)

L™(=n,s)

L= (n,s) and
L™%(n,s), w==.

Their values are given in Table 9.

Table 9. Numbers of extended Poincaré algebras P (p, q) + Sp,4 of different types dependingonn = p +¢q
ands = p — g modulo 8

s @, L=, L=, L= )(n, s) or (L*, L7)(n, 5)
4 2,06,0 04,04 6,0,2,0 04,04
3 1,3 1,3 31 31
2 0,24,2 22272 4,2,0,2 22272
10121 0121 2101 2101
0 0,0,2,0 0,101 2,000 0,101
-1 0,1 0,1 1,0 1,0
-2 0,2 1,1 2,0 1,1
-3 1,3 1,3 31 31
n -3 -2 -1 0 1 2 3 4

Proof. Thisfollowsfrom Theorem 6.1 and the tables of Sects. 3.1, 4 and 5 by straight-
forward computation. a

In the complex case we consider the space 7. of s0(m, C)-equivariant mappings
C™ — (S;m ® Sy)* and define the invariants o, « and the spaces 7', 7., €ic. asin

c

thereal case (¢ isonly defined if the complex so(m, C) spinor module S,,, is reducible
Sm =S}, +S;). Their dimensionsare denoted by L}, L*~, etc.

Theorem 6.3. The numbers (L}, L) and (L, L7~, L7*, L7 ~) depend only on m
(mod 8). Moreover, they admit the mirror super symmetrym — —m. More precisdly,
Li(-m) = L (m) and
Li(=m) = L;"(m), w==.
Their values are given in the next table.
0,1({00,20(01({02101|10|2000|10(010,1
m: | —3 -2 -1 0 1 2 3 4
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Proof. Follows from Sect. 3.2. a
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