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Abstract: The Dirac—Fock equations are the relativistic analogue of the well-known
Hartree—Fock equations. They are used in computational chemistry, and yield results on
the inner-shell electrons of heavy atoms that are in very good agreement with experi-
mental data. By a variational method, we prove the existence of infinitely many solutions
of the Dirac—Fock equations “without projector”, for Coulomb systems of electrons in
atoms, ions or molecules, with < 124, N < 41, N < Z. Here,Z is the sum of the
nuclear charges in the molecul¥,is the number of electrons.

1. Introduction

In relativistic quantum mechanics [5], the state of a free electron is represented by a
wave function®(t, x) with W(¢,.) € L?(R3,C*) for anyt. This wave satisfies the free
Dirac equation:

3
i0,¥ = HoW, with Ho=—i ) axdi + 6. (1.1)
k=1

Here, we have chosen a system of units suchitlrat = 1, the mass,. of the electron
has also been normalized to 1.
Before going further, let us fix some notations. In the whole paper, the conjugate of

21
z € C will be denoted by:*. For X = ( L)@ column vector irC*, we denote by
X the row covectord, .. ., z;). Similarly, if A = (a;;) is a 4x 4 complex matrix, we
denote byA* its adjoint, (A*);; = aj;.

* Present address: Ceremade (UMR CNRS 7534), Uniedpsitis-Dauphine, Place du Ma&Hal de Lattre
de Tassigny, F-75775 Paris Cedex 16, France
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We denote by X, X’) the Hermitian product of two vector®¥, X’ in C*, and by
4

|X|, the norm of X in C*,i.e. [X|2 =" X;X; . The usual Hermitian product in
=1
L?(R3,C* is denoted

P | CORTE (12)

R3

In the Dirac equationyy, a2, az andg are 4x 4 complex matrices, whose standard form
(in 2 x 2 blocks) is

ﬁ=(é_01> , ak:@%’@) (k=1239),

_ /01 (0 /10
7= (10) ==(70) + ==(0):

One can easily check the following relations:

{Ozk:az, ﬁ:[}*7 (13)

apoy + apay = 208, oS+ Bag, = 0.

with

These algebraic conditions are here to ensurefilgas a symmetric operator, such that
HZ=—-A+1 (1.4)

Let us now consider an electron near a nucleus of atomic nutdb&/e assume
that the nucleus is point-like and is situated at the origin of coordinates, and we take
the system of units of Eq. (1.1). The Hamiltonian of the electron, in the coulombic field
created by the nucleus, is then

. 1

Hz =Hy— aZV(x), with V(z)= W
T

Here,«a is a positive dimensionless constant. Its physical valmze:i:s%7 .

Lemma 1.1 lists some properties B andV (z), that will be useful in this paper.

Lemma 1.1. (P1)H, is a self-adjoint operator o.?(R3, C*), with domainD(Hy) =
HY(R3,CH. Its spectrum i§—oo, —1] U [1, +00). There are two orthogonal projectors
on L?(R3,C*, A" and A~ = 1,2 — A", both with infinite rank, and such that

HoA"=A"Ho=vV1-AA"=A'VI-A (1.6)
HoA™=A"Ho=—vV1I-—AA" =—A"V/I-A. :

(P2) The coulombic potentidl () = %, satisfies the following Hardy-type inequalities:

||

(1.5)

1r 2
(o tex)e) <56+ (o Hole) . (17)
forall ¢ € A*(HY2)UA~(HY?) and for all probability measureg onR3. Moreover,
m 1/2
< = .
(99, (n*V) @) 2573 (90, IHolsO) Lo Ve € HTE, (1.8)

[ (uxV)ollre < 2|Vellre, Ve H". (1.9)



Dirac—Fock Equations for Atoms and Molecules 501

Inthe particular case wherds equal to the Dirac mass at the origin an inequality
more precise than (1.7) was proved in [8, 47, 48]. This inequality reads as follows:

((Ho - aj) Wp) > ((1—aZ)p, ) ,

forall Z < Z, = =2 for all ¢ € AT(HYZR3,C*). The technique used in

T+2)q?

[8, 47, 48] is based on ideas introduced by Evans-Perry and Siedentop in [18]. We refer
to [27, 30] for inequality (1.8) in the case = dp. Thaller's book [46] gathers many
results on the Dirac operator, including (P1) and the standard Hardy inequality (1.9) for
1 = do, with references. The extension of (1.7), (1.8) and (1.9) from dy to a general
probability measurg: is immediate, since the projectors™ , the gradientV and the
free Dirac operatofl; commute with translations. For completeness, we shall give the
explicit form of the projectors\*, A~ in Sect. 3.

Foryp € L2(R3,C%), letus denote* = A*p, ¢~ = A" ¢. Let

E=HYXR3CY, E*=A'E, E-=AE.

E'is a Hilbert space with Hermitian product

(%07 ¢)E - ((P’ 1= Alp) L (<,0+, w+)E " ((’0_’ w_)E’ (1.10)

Since Hyp is unbounded from below, it is difficult to define a ground state for rela-
tivistic atoms and molecules. In order to study the stability of relativistic molecules from
a mathematical viewpoint, various simplified models have been introduced. In the sim-
plest one Hy is replaced by the positive definite Hamiltonigil — A. See for instance
[27, 14, 37, 34], and the Selecta of E.H. Lieb [33] for a more detailed list of references
on this topic.

A more realistic model due to Brown and Ravenhall [6] uses projection operators:
A*(Ho+ V)A" replacesHp + V , i. e., the one-particle Hilbert spaceAs L? instead
of L2. The above projected operator and its multi-particle counterpart was widely dis-
cussed by J. Sucher in [43, 44]. In [26], Hardekopf and Sucher investigated numerically
the operatorB := A*(Hy — aZ|z|~1)A*, and they claimed that its ground state energy
vanishes wher? = Z,. := =% — . The first mathematical study on the semibounded-

ness ofB appeared in [18].2In"[18], Evans, Perry and Siedentop proved that on the space
of rapidly decaying smooth spinor® is bounded from below bywZ(1/7 — 7 /4) if
the charge”Z does not exceed,. and unbounded from below ¥ is larger tharZ... As
already mentioned, several authors [8, 47, 48] improved this result later by showing that
B is positive and bounded from below by 1«Z) wheneverZ < Z.. For results
concerning multi-particle versions &f, see for instance [35].

The Dirac—Fock (DF) functional was first introduced by Swirles [45] as an approx-
imation for the energy of a system &f electrons in an atom of large nuclear charge
Z. In such atoms, the inner-shell electrons have relativistic energies, and the standard
Hartree—Fock (HF) approximation, based on the nonrelativisticdsiamgér equation,
is no longer valid. The Euler-Lagrange equations of the DF energy functional can be
solved numerically. The solutions represent stationary states of the electrons in the
atom. The numerical results are in very good agreement with experimental data (see e.qg.
[32, 23, 15, 38, 31, 22]). In [43, 44, 41, 24, 10], the relationship between Dirac—Fock
and quantum electrodynamics is studied.
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In the Dirac—Fock model, th& electrons are represented by a Slater determinant
of N functionsy, € E, subjected to the normalization constraints

<<Pé, sﬁk)Lz = Oke- (1.11)
We shall denot& = (¢4, - - - , ¢n), and the constraints above will be written in the
shorter form Grar® = 11, with
[Gramcb} y = (w,@k) Lo (1.12)

We consider a molecule, with:

e nuclear charge densit¥ ., whereZ > 0 is the total nuclear charge andis a
probability measure defined @®?. In the particular case of point-like nuclei, each

m m
one having atomic numbé; at a fixed location:;, Zu = Z Z; 65, andZ = Z Z;.
=1 =1
e N relativistic electrons.

We assume that the interaction between these particles is purely electrostatic. The
DF energy of theV electrons in the molecule, is

(D) = i(w, HoW) o OéZzN: ((Pb (n=V) W)Lz
£=1 =1

N (1.13)
+5 [ [ Ve = 0| pt) - v R, 2)) | iy
R3xR3
Here,p is a scalar an@® is a 4x 4 complex matrix, given by
N N
p@) =Y (e@), oe(@) s Rl y) =D oda) @ 2i(), (1.14)
=1 =1

pis the electronic density; is the exchange matrix which comes from the antisymmetry
of the Slater determinant. Note thB(y, ) = R(x,y)*, so that tl(R(x,y)R(yw)) =
Z IR(.I‘, y)ij |2'
ij

The main difference with the more standard HF functional, is that the kinetic energy
term (o, —Apr) 2 in HE is replaced by, Hopx) 2 in DF. This changes completely
the nature of the functional, which becomes strongly indefinite: it is not bounded below,
and any of its critical points has an infinite Morse index.

The DF functional is invariant under the action of the grod(av):

u-d= (Zulg(pg,. . '7ZUN“0€>7U c U(N), dc EN (115)
L 0

We denote

s = {CD c BN / Gramd = 11}. (1.16)
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Using inequality (1.8), one can easily prove that the DF functiérialsmooth ont? .
A critical point of €|y is a weak solution of the following Euler—Lagrange equations:

N
Hopr = Aupr,k=1,...,N. (1.17)
=1
Here,
Hoy = Hyp —aZ (n*xV)y (1.18)

+a(p* VYU — o [oo Rz, )Y (y)V (@ — y) dy.

SinceH , is self-adjoint fromH /2 to its dualH —%/2, A = (\) is a self-adjointV x N)
complex matrix. It is the matrix of Lagrange multipliers associated to the constraints
(e; Pr) 2 = O

For ® € X a critical point whose matrix of multipliers i&, andu € U(N), the
matrix of multipliers of the critical pointb = w - ® is A = uAu*. So anyU(NN)-orbit
of critical points of€|x contains a weak solution of the following system of nonlinear
eigenvalue problems, called the Dirac—Fock equations:

Fq;(pkzﬁk(pk, ]{J:].,...,N. (119)

Physically,H , represents the Hamiltonian of an electron in the mean field due to the
nuclei and the electrons. The eigenvalags. ., e are the energies of each electron in
this mean field.

In the HF model, the Euler—Lagrange equations have a form similar to (1.19), with
— A instead offj in the expression o 5. The physically interesting states correspond
toe; < --- < ey < 0, and the ground state minimiz€g » on X, which implies
that e, ..., ex are theN first eigenvalues ol (see [36]). In the DF model, the
physically interesting states correspond ta @;, < 1: a positive energy inferior to the
rest mass of the electron. The definition of a ground state is less clear: the DF functional
has no minimum ork. This fact is at the origin of serious difficulties in the numerical
implementation, as well as the interpretation, of the DF equations (see [10] and references
therein). One way to deal with this problem, is to restrict the energy functional to the
space A" E)N, A" being, as defined above, the projector on the space of positive states
of the free Dirac operator [43, 44]: this corresponds to a Hartree—Fock reduction of the
already mentioned Brown-Ravenhall model. The associated Euler—Lagrange equations
are the “projected” Dirac—Fock equations

A+F¢. A+g0k = €L Pk (120)
Note that, in the casg, > 0, (1.19) can be written formally as
A; H.:p A; Pk = €xPk- (121)

Here, A} is the projector on the positive space associatefd 4o Numerical computa-

tions using (1.19) rather than (1.20), give results that are in very good agreement with
experimental data (see e.qg. [23, 38]). This is not very surprising: in the presence of strong
electric fields, the projectan seems physically more adequate than the free-energy
projectorA™ (see [28]). In [41] Mittleman derived the DF equations with “self-consistent
projector” (1.21), from a variational procedure applied to a QED Hamiltonian in Fock
space, followed by the standard Hartree—Fock approximation.



504 M. J. Esteban, E.&é

Important existence results are known on the HF equations. Lieb and Simon [36]
proved the existence of a ground state€gf- on T, providedN < Z + 1, whereZ is
the total nuclear charge, P.-L. Lions [39] proved the existence of infinitely many excited
states ifN < Z. Using inequality (1.7), one can easily extend the results of [36, 39] to
the projected equations (1.20), assuming that

amaxZ, N) < SN < Z+1

2
w/2+2/7
The only difference is tha%‘ is not a compact perturbation éfo, but this does not
create any important difficulty.

Inthe present paper, we give the first existence result for solutions of the DF equations
“without projector” (1.19). Our assumptions are

_2
T2+ 2/m
Since we find positive eigenvalues the equations we solve are formally equivalent
to the DF equations with “self-consistent projector” (1.21).
The conditiom(3N — 1) < W is rather restrictive, and we do not have a clear

definition of the “ground state”. But we hope that this first study will stimulate further
mathematical research on Dirac—Fock. Our main theorem is the following:

amax@,3N —1) < SN < Z+1.

Theorem 1.2. Assume thaty max(Z, 3N — 1) < ﬁ,N < Z+1,with Z > Othe
total nuclear charge. The nuclear charge densityig, wherey is a fixed probability
measure ofR3. Then, there is an infinite sequen(@’);>o of critical points of the DF

functional€& on
E:{cbeEN/Gramcbzﬂ}.

The functionap{, e ,gof\, satisfy the normalization constraints (1.11) and they are
strong solutions, inHY/2(R3, C*) N Ni<g<aa WHI(R®, C%), of the Dirac-Fock equa-
tions -

Hyipl, =gl 1<k <N, (1.22)
0<e < <ey<1l (1.23)
Moreover,
0 < E(@%) < N, (1.24)
lim £(®7) = N. (1.25)
oo

Remark 1.With the physical value: = %7 andZ an integer, our conditions become

Z <124 N <41 N<Z
Remark 2.Sincey is arbitrary, our assumptions contain the case of point-like nuclei as
well as more realistic nuclear potentials, of the formz pi(x) 1 , Where p; €

|z
Loole7 i>0; i=Z.
r0 3 e

K3
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Remark 3.The first solution®? is a good candidate for a ground state. Indeed, in the
nonrelativistic limit (¢ — 0), it converges, after rescaling, to a ground state of Hartree—
Fock. This will be proved in a forthcoming paper.

Remark 4.In the caseV = 1, the Dirac—Fock equations are linear and correspond to an
eigenvalue problem for Dirac operators with scalar potentials. For variational results in
this case, see [17, 25, 16].

Remark 5.The functionso{, cee cp{v of Theorem 1.2 are smooth outside supMore-
over, if supp: is compact, they decay exponentially fast, as well as their derivatives,
when|z| goes to infinity.

Our main theorem is the analogue, for the DF model, of P.-L. Lions’ result for HF
[39]. In order to control the Lagrange multipliees (they should be negative in his
case), Lions uses an estimate on the Morse index of the critical points. Such an estimate
can be obtained for a critical point associated to a “finite-dimensional” min-max, if the
functional satisfies the Palais—Smale compactness condition (see e.qg. [2, 3, 4, 11, 49)).
However, the HF functional does not satisfy the Palais—Smale compactness condition:
since the essential spectrum-e\ is [0, o), only Palais—Smale sequences with nega-
tive Lagrange multiplierg;, are precompact. Lions works on approximate functionals
that satisfy Palais—Smale, finds critical points of these functionals with Morse index es-
timates, and passes to the limit. In [19, 21], Fang and Ghoussoub give general existence
results on Palais—Smale sequences with Morse-type information, for functionals that do
not satisfy Palais—Smale. As an application, they rewrite Lions’ proof, working directly
with the HF functional.

For DF, we also need a control ep: 0 < ¢, < 1. Moreover, the essential spectrum
of HyisR \ (—1, 1), so that the only precompact Palais—Smale sequences for DF, are
such thate;| < 1. So a natural approach is to adapt the above ideas to DF. To realize
this program, we faced several difficulties.

The first (and smallest) difficulty is that = - is not a compact perturbation éf.

E]
This creates some technical problems. They are easily solved, replécmg}‘ by a
regularized potentidl,, . At the end of the proof, we can pass to the limit> 0, thanks
to inequality (1.7).

The second difficulty is that the Morse index estimates can only give upper bounds
onthe multipliersin [39]. Butin the DF case, we want to ensuredhat 0. To overcome
this problem, we replace the constraint Grady) & 1L by a penalization term,(®),
subtracted from the energy functional. The new Euler equationglake, = 0, T,
(no more Lagrange multipliers). The eigenvalyels now an explicit function ofp,
which appears in the expression of the derivatlygr,,. This function has only positive
values, so we automatically get > 0.

The third difficulty with DF, is that all critical points have an infinite Morse index.
This kind of problem is often encountered in the theory of Hamiltonian systems and
in certain elliptic PDEs. One way of dealing with it is to use a concavity property of
the functional to get rid of the “negative directions”: see e.g. [1, 7, 9]. We shall use
this method. We get a reduced functiodal,. A min-max argument gives us Palais—
Smale sequencds,, , , for I, , with finite “Morse index”, thanks to [19]. Adapting the
arguments of [39], we prove that thg's of such sequences are smaller than 1. Then
we pass to the limit«, n, p) — (0, 00, 00), and get the desired solutions of DF, with
O0<ep <1,
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Our concavity argument works only déf(3N — 1) < 7r/2732/7r In the last 20 years,

very powerful methods have been developed to deal with strongly indefinite functionals,
that do not present any concavity property [42, 13, 20, 29]. This suggests that it might
be possible to weaken the assumptions\bim Theorem 1.2.

2. Sketch of the Proof of Theorem 1.2

As announced in the Introduction, we repldcér) = ﬁ in the expression of (1.13),
by the regularized potential

V,(z) = el s v(z), v >o. 2.1)

(2rv)%/?

This replacement is made for the attractive potential of the nucleus, as well as for
the electronic repulsion and exchange terms. The regularized DF functional is denoted

&,, and the associated one-particle Hamiltonian (1.18) is derﬁﬁed
; 1 —lz|?/2v ; H H icfi
| The?aussmqme lzI*/2v js normalized inLY, so thatV, satisfies the same
inequalities (1.7—8-9) ds.
We also replace the constraink“c =" by a penalization term,. The penalization
parametep is a positive integer. The penalized functional

Fop=E& —mp (2.2)
is defined in the domain

A={CI>€EN/0<Gramd><]1}, 2.3)

where Gran® is the N x N matrix ((<pi,gaj)Lz)l<ij<N. The penalization term has
the form T

p(P) = tr [(Gramcb)p (]1 — Gramd>) 71} . (2.4)

Note thatF, , is invariant under thé/(V) action (1.15). It is easy to see th&} , is
well-defined and smooth aA. We are going to construct approximate critical points of
Fup.-Asv — 0 andp — oo, these points will converge to critical points &fs.

Any U(N) orbit in A contains a pointb such that Gran® is diagonal, with eigen-
values in nondecreasing order:

Gram® = Diag(cy,...,0n),0< 01 <--- <oy < 1L (2.5)
We call O the set of pointsb € A, satisfying (2.5). If® € O, then

o0F, —v
T’p(q’) = Hopr — €69k, (2.6)
Pk

with

er = eplor), ep(x) = (2.7)
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The functione,, is positive and increasing on (D), so that 0< e; < --- < ey . This
is one of the advantages of the penalized functicfig) : its critical points inO are
solutions of a nonlinear eigenvalue problem, with posiéigenvalues.

In the proof of Theorem 1.2, we need to control not only the critical points of
F..p, but also its Palais—-Smale sequences. Of course, we just need to study Palais—
Smale sequences @, thanks to thé/(V) invariance. Unfortunately, the Palais—Smale
condition does not hold faF,, ,, exactly as in the case of the HF functional. But it can
be replaced by the following lemma, which is related to the spectral properties of the
Dirac operator with a potential. Its proof is based on inequality (1.7).

Lemma 2.1 (Convergence of approximate solutions)Assume that max(Z, N) <
2
T/2+2/ 7"

(a) Let(v,,) be a sequence of real numbers(h 1), (p,,) a sequence of positive
integers, and®,,) a sequence id, i.e. such that

Gramd,, = Diag(E1,n,---,0Nn),0< 01 <+ - <onp < 1L
We denotey, ,, = ey, (0k,,), Withe,,, (z) = & ({iz) We assume that

Fp (@) — 0 (2.8)
ol n—oo

1 N *
for the strong topology OEH —2(R3, (C“)} = (EN)". We also assume that

liminf o1, > 0. (2.9)
n— oo
Then,
liminf e; v > ho, (2.10)
n—oo

wherehg € (0, 1) is a constant which depends only @&, aV.
(b) If, moreover,

lim supey,, < 1, (2.12)

n—oo

then, after extraction of a subsequence, the functipng converge toN functions
¢ € EN(Nicyesn WH(R? CY), for the strongH /2 topology.

(b.1) In the case,, — v € (0,1)andp,, = p for n large, ® = (1, -- ,pN)iS @
critical point of 7, ,, in O. Moreover.F, ,(®) = lim, o Fu,, p, (Pr).

(b.2) In the case/, — 0andp, — +oo, ¢1,- -,y Satisfy the orthonormality
constraints(¢;, k)2 = 1. They are strong solutions, BN, .3/, WH9(R?, CY),
of the Dirac—Fock equations

Hopr = €kprs €k = Jim ey, € [ho, 1), (2.12)
and the DF energy ob is
E(@)= lim F, , (D). (2.13)
n—roo
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Lemma 2.1 will be proved in Sect. 3. Our problem now is to find sequedges
satisfying the assumptions of this lemma. Assumption (2.11) is the most difficult to
check.

In the HF case, a similar question was solved by P.-L.Lions [38}ifs a critical

. . .. . —HF
point of g r 0N X, the associated multipliees < --- < ¢ are eigenvalues off ;- .

Letus denote\; < X\, < --- < A, <-.- < 0the sequence of negative eigenvalues of
Hff =—A-— EZ\ +... (assumingV < 2). If ¢, < 0, there is an integet(k) such that

€x = An(k)- Moreover, we may impose(k + 1) > n(k). If ¢, > 0, we taken(k) = +oo.
Lions proved the following inequality:

m(e*) = max [n(k) - k] (2.14)

wherem(®*) is the Morse index ofb*.

As a consequence, ¥ is a minimizer ofgr on X, thenn(k) = k& (Vk). This
particular case of (2.14) was proved earlier by Lieb and Simon [36].

In the DF case, we would also like to control #3és, using the Morse index faF,, ,,.
Unfortunately, the functionak, , is strongly indefinite, as mentioned in the introduction.
We overcome this difficulty thanks to a concavity argument, asin [1, 7, 9].

Lemma 2.2 (Concavity in the £~ directions). Assume thaty(3N — 1) < ﬁ

Then there is a constant > 0, independent of, p, such that, for anyd € A and
v e (BN,

N
Forp(@) - [07,07] < =53 [l |13 (2.15)
k=1

Lemma 2.2 will be proved in Sect. 4, where an explicit formula}?j’[p will be
given. Now, let

At = AN (ENDN = {cp* € (E")N /0 < Gram@*) < 11}. (2.16)
For®® € A", let
r(e*) = {X— e (B7)Y / Gram@*) + Gramf ) < 11}
= {X* c(E )W /ot +y € A}. (2.17)

One can easily see thafd ") is an open convex subset @ ()", and thatf,, ,(d*+x )
converges te-co asy~ approaches the boundaryofd*), for & fixed.
So, Lemma 2.2 has the following consequence:

Corollary 2.3. Assume that(3N — 1) < Tr/zifz/ﬂ Then, for anyd* € A*, the func-
tional

X~ ET(PY) = Fup(@ +x7)

has a unique maximizerh, ,(®*) € I'(®*). The mapping,, : A* — (E7)V is
smooth for thé H/2)N norm, and equivariant under thé(V') action (1.15).
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We denote
Lp(@°) = Fup (07 + 1y (97)), @F € A", (2.18)

I, , is well-defined and smooth oft*. Sinceh,, ,, ist/(V) equivariant/], , is invariant,
and any/(IV) orbit in A* contains a pointb™ such thatd = ®* + h,, ,(d*) satisfies
(2.5). By definition ofh,, ,, , for all W= € (E7)¥, ]—',,',p(cb+ +hy,p(P7))- ¥ =0.As
a consequence, ib* is a critical point off, ,,, then,® = ®* + h, ,(®") is a critical
point of ¥, ,. So we just have to look for critical points df ,. This is much more
comfortable, because this reduced functional isstaingly indefinite. We now give a
relationship between Morse-type information on a Palais—Smale seq@érfce I, ,,,
and the estimate (2.11) on thg's. Unfortunately, we do not have a precise inequality
like (2.14).

Lemma 2.4 (The Morse index controls the’s). Assume thak(3N —1) < ﬁ
N < Z+1 Letv € (0,1),p > 2, M > 0, and(®;) a sequence inl*. Denoting

®,, = B+, (),
we assume thab,, € O, i.e.
Gramd,, = Diag(o1,n,-..,0nn), With 0<o1,, <---<on, <1l
Suppose that
L(@h) <M, I, (®})—0, liminfoy, >0, (2.19)

and that the quadratic form of2*)™ :
Qu(W") = I, (@1) [ W', W] +6, > il (220)
k=1

has a negative space of dimension at masfor a sequencé,, — 0. Then, there is a
constant,,, € (0, 1), independent af, p, M, ®; . §,,, such that

limsupen,n, < by, with enn =ep(onn)- (2.22)
n—oo
The last step in the proof of Theorem 1.2 is to find Palais—Smale sequendgs for
with Morse-type information. For this purpose, we look for positive min-max levels of
I, in A*. Note that4* is an open subset d*¥, whose boundary i8A* = G* U G2,
with
= {o* e (BN / Gramd* < 1, det Gramb* = o}

G2 = {@* & (5%)" / Gramd* < 1, det@ — Gramp™) = 0}

If I,., were negative forb™ close todA*, the existence of positive min-max levels for
I, , would be a direct consequence of the topology4f,0A*). We have

I, ,(®") — —co as disg2(®*,G?) — 0,

with ||®*||z~ bounded. Butl, ,(®*) may remain positive wheid* is close toG?.
Following [12, 13, 40], we solve this difficulty by studying the gradient vector field of
I, nearG. We prove that this field “points inward”, in the following sense:
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Lemma 2.5 (A pseudo-gradient pointing inward nearG?). Assume that

2
w/2+2/T

Takev > 0. Then there arel(v), e(r) > 0 such that,
if ®* ¢ A" satisfies det (Gram") € [d(v), 2d(v)]

amax(Z,3N —1) <

then one can find a vectdf € (E*)V, with
I, (@) - X > e X |myy (VP > 2), (2.22)
A(@Y)- X >0, where A(®") = det(Grand*). '

Note that in Lemma 2.5 there is a constat{t;), which depends on. We have been
unable to make independent of.

Now, leta,, € C'> ((d(u), 1), R) be such that

a,(x) =0, YV > 2d(v)
al,(z) > 0, YV < 2d(v) (2.23)
ay(x) = —oco  asz — d(v).

Let 5 € C*°(R,R) be such that

=-1 on(oo,—-1)
ps)=t, vt>0 (2.24)
B(t) <0, vt <O0.

We define a new functional, ,,, by

{ ICHE ﬁ(fu,p(qﬁ) +a, 0 A(CI>+)> f @7 € AT andA®") > dv). (, g
Jyp(@)=-1 otherwise

It is easy to see thal, , is smooth on £*)V. If ® is a critical point of.J, ,, with
J,,yp(df) > 0, then®™ is also a critical point of, , +a, o A, at the same level. From
(2.22)—(2.23), this is only possibleff(®*) > 2d(v), henced is a critical point ofl,, ,
andI,, , coincides withJ, ,, in a neighborhood ob*. The same holds for Palais—Smale
sequences.

So we can look for positive min-max levels gf ,, instead off,, ,,. This is much
more convenient, becausk , is defined on £*)Y, with J,, = —1 ondA*. J,, is
invariant under thé{(NV) action (1.15).

For F a finite dimensional complex subspaceftf, let

D(F) = {q>+ e FN / Gramp* < 31}. (2.26)

We say that a homotopy C([O, 1] x (EN)V, (E*)N) is “admissible " if

L + Yu € U(N)
{h(/\,u.cb ) =u- h(), &), {V& o9 €[0.1] x (B 2.27)
A\, @)= @*, VA €[0,1], Vo' € dA".
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We define the class of sets

Q(F) = {Q C (E")N /there ish, admissible, such that

(2.28)
B0, ) = 1digyv, b3, DIF) = Q.
Finally, let
v p(F) = _inf o (®%). 2.29
cop(F) = dnf - max.J, ,(®7) (2.29)
We have

Lemma 2.6 (The min—max levels).Assume that

2
Z3N - 1)< ——F7—, N<2Z+1
amax(Z, ) < T2+ 2 <

For any integerj > O, there is a complex vector spaée C E* withdimcF; = N +j,
and three constants

O0<a(j) <a(y) <N, p()>1, suchthat
a(j) > N asj — oo, and
a(j) < v p(Fy) < aly), (v € (0,1)) (vp > p(y)). (2.30)

Note that the action of/(V) is free on the se{cb+ e (BN /T, p(@7) > O}.

Moreover,D(F;) /U(N) has dimensiom; = 2N j+N?2. Itthen follows from arguments
by Fang and Ghoussoub [19, 21], that there is a Palais—Smale sequence at the level
cv,p(F}), with Morse-type information:

Lemma 2.7 (Palais—Smale sequences with bounded Morse indeXdssume that

2
max(Z,3N — 1 —, N<Z+1

TakeF; as in Lemma 2.6, and € (0, 1), p > p(j). Then there is a sequendg, € A*,
with

L, (®7) = 0, 1,,,(®}) = ey p(F)), A(@}) > d(v), (2.31)
and a sequencg, > 0, §,, — 0, such that the quadratic form

Qu(W) = 1, (@) [ W7, W7 +4, S It (vre@Y) (32

k=1

has a negative space of dimension at mast= 2N j + N2,
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Proof of Theorem 1.2Me now prove Theorem 1.2 as a direct consequence of Lemmas
2.1,2.4,2.6 and 2.7. Let> 0, p > max(3 p(5)) be two integers. Take = 5 € (0,1).

There is a sequence;, satisfying (2.31-32) of Lemma 2.7 and such ttkgt = & +
hy/p»(®;,) satisfies (2.5). Then (2.21) of Lemma 2.4 holds, with= m;. So, from
(b.1) of Lemma 2.1¢>,, converges, after extraction of a subsequence, to a critical point
7P of Fy/p p, With

F1/pp(®7P) = 1/, ,(F;) , Gramd?* = Diag(e?}, -+ , 0%,
0<o] <---<of <1, ho<ep(o}) <bm, <1
Sincee,, converges uniformly to 0 on any interval,[d, s < 1, we have limo] =
pP—>00
Applying (b.2) of Lemma 2.1 to the sequendé?, for j fixed, we find, after extraction

of a subsequence, a limit’ which satisfies the requirements (1.22—25) of Theorem 1.2.
O

In Sect. 3, we study the properties of the first derivativ&pf,, and we prove Lemma
2.1.

In Sect. 4, we compute the Hessian®f,, and we prove Lemmas 2.2 and 2.4.

In Sect. 5, we study the min-max argument, and prove Lemmas 2.5 and 2.6.

3. The First Derivative of F,, ,

Our first task is to prove property (P1) of Lemma 1.1. For this purpose, we Wgiia
Fourier space:

o0 = (St + )50 - (1, 7)0© (3.0
k=1
3
We denote bﬁo(g) the matrix(g1 &0 1) with the standard notatiap- o = kaak
k=1
Hy(€) is a self-adjoint 4x 4 matrix, and we haveH(¢)? = (1 +|¢|?)1cs. Taking

Sy = Hol©) + VI+]EPL
HOs /AT
1 \/1+|£|2 : \/1+\£\2 (3.2)
2| o 1,
VIHER v
and
A = —Ho©* VIFIEPL
2/T+ e
! _\/1+\£\2 : _\/1+|£ (3:3)
BF) R vty &
V1€l | V1€l 1
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we find that//\:(g), ?(5) are two orthogonal projectors of rank 2, with

NToe) = HoA Q) = VIFER A

AH) = HA (= —IFER A -
NATQ  =AA©=0

INGEVSIGES *

Finally, if we defineA*, A~ on L?(R3, C*) by

{A B(E) = A (E)w(ﬁ) (3.5)
P(§) = A ©)%(©)

we easily obtain (P1) of Lemma 1.1, as a consequence of (3.4)]
We now give a first consequence of inequality (1.7).

Lemma 3.1. Assume thaty max(Z, N) < ﬁ :

() There is a constankg > 0, such that for any € [0,1], ® € EY such that
Gram@) < 1, andy € F,

hollv|| gz < |[How| |- (3.6)

In other words H ,, is a self-adjoint isomorphism betwegH/2 and its duald —%/2,
whose inverse is bounded independentlp of.

(i) Takev € [0,1], ® € EN with Gram(d>) < 1, and+ € E, such thatH v €
L¥(R®,C*). Theny € 1< yca/0 Wiy LI(R3, CH).

(iii) Let v, € [0,1], and®,, € EV with Gram(cpn) < 1. We assume thdlo || &
is a bounded sequence, fbr=1,--- | N. Lett,, € E be such that the sequence

T7Vn

|H ' tn| 22 is bounded. Thewn is precompact inf S/%(R3, C%).

Proof. (i) Let " = A%y, ¢p~ = A~ ). From inequality (1.7), we have

@ Hoi e > (- 22 2T0Z e,
W Ha eepe > (L W)Ilw 7 +
Let us chooség = 1 — /ZAmMamaxZN) \ye get
1) | H bl gr-2/2> Re($* — ™, Hot)) b -
=" Hotoxp — (", Hot )pxp- (3.8)

> holl¥||%,

hence (3.6). NowH, is obviously self-adjoint fromH /2 to its dual H /2, so it is
Fredholm of index 0. Equation (3.6) tells us t@i is injective, so itis anisomorphism,
and the norm of its inverse is less than or equal bl

(i) ¢ and p1,---, oy are in HY?(R3,C*%, so they are inL"(R%,C%, for
any 2 < r < 3.V, is in the Marcinkiewicz space\3, so (u * V, )¢ is in any
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LI (R3,C*),1< q < 3/2,and po * V, ) — [ Ro(x, y)v(y)dy isinanyLL (R? CH),
1 < ¢ < 3.As a consequence,

¢ = Hyt (OéZ(u * V) — alpe * V)b + / Ro(z, y)(y)dy +H§>w>
IS N Ny yea/2 Wigl (RS, CH).
(iii) From (i), ||+ || £ is @ bounded sequendgos , || £ is also bounded),, andyy, .,

are thus precompact in ady, .(R3,C*),2 < r < 3. So, refining the arguments in the

proof of (ii), we see that,, is precompact iff/?(R3,C4. O

We are now going to prove Lemma 2.1.
(a) First of all, (2.8) gives

F;ﬁfpk,n = €knPhan T 6k,n7 (39)

with lim ||0x .|| z-12 = 0. As a consequence,
n—o0

He: rnllm-12 < ernllernlliz + |0kl g2 (3.10)

Using (3.6) of Lemma 3.1, we get

hollk,nllE < €knllernllLz + |6kl g-1/2- (3.11)
But we assume (2.9), i.e. limithfio1 .|| 2 > 0. So we must have lim ind; ,, > ho, and
(2.10) follows from (2.8) (2.9), with the santg as in Lemma 3.1.

(b) Under the additional assumption (2.11), i.e. lim sup, < 1, let us study the

convergence oy, ,, for the HY/? topology. After extraction of a subsequence, we may
impose
€k,n — €k € [ho, 1) and v, VE [0, l].
n—oo

llex.nk.n | 22 is @ bounded sequence. So (3.11) implies that || z is bounded uni-
formly in n.
Let xk,n € HY? be defined byH ;" X», = € nx,n- By (iii) of Lemma 3.1, we may

impose, after extraction of a subsequengg, — ¢y in Hli,/cz(ﬂ@, CH.
n—oo
On the other hand, we may write

H;n (kam - Xk,n) = 6k7n — 0 in H_l/z(Rsa C4)
" n— oo

So Ak,n = Pkn — Xk,n — 01in Hl/Z(R3aC4)v and@k,n = Xk,n + Ak,n — Pk, in
n—oo
2
Hig(R3,C4).
Thend = (p1,..., ) is a strong solution, ifE Ny, 3/, Wied (B3, C*) ™, of

loc
F;‘Pk = ek, (VK).

Our goal is to prove thapy, ,, converges t@y, in HY/2(R3, C*). Let vy, ., = r.n — @k
Let us denote

Pn = [k n@)P R, 9) =Y rn(y)” @ Yrn(®). (3.12)
k k
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Foriy € HY?(R3,C%), let
Linth = Hot + Vi, )1
~a [ B lw@Ve, @ - )y - v, @13)

We have

lim HLk,nT/)k,n |H*1/2 =0.
n— oo

Now, from inequality (1.7) and our assumptions, it is easy to see that the map
T E BT o Fin(67) = (Yen + 07 L (en +97))

is strictly concave. So, denoting‘fn = Aiwk,n,

5

Fion(=y) < Fien(0) — F];,n(o)'w];n < 3|Yknlle | Lk Vrnl | g-1/2s
(3.14)

hence lim suﬁm(—%;n) < 0. But if we defined =1 — en , we have

n—oo

Fen(e) = (U L) = (00,0 VIZA0L,) . (315)

As a consequencgy; ||, — 0asn — oco.
So,||Lin¥y pllgr-12 — O and lim (@bkfn, Lk,n¢;n> e 0. Butfrominequal-
’ n—00 n—00 ’ "
ity (1.7),

(0 ati,) < (1 NOLZZDY s 2 (aae)

Sol|¢y, |z 0, and|[Yy ||z — 0 asn — oo.
We have thus proved thétoy ,, — vi||r — 0 asn — oco.

(b.1) We now assume that, = p for n large. Being a limit of®,, in the strong
EX -topology,® is obviously a critical point ofF,, ,, in 4, and from (2.9), Gran® > 0.
We also have Granp = Diag(o1,...,0n), 0< 01 < .... <oy < 1. From (2.10),

p—1 P
po; ~—(p—1)o
ep(or) = —2 A= 002 L > ho.

There is a unigue numbey, € (0, 1) such thak,(c,) = ho, and we have linr, = 1.
pP—0o0
Sincee,, is increasing on (AL), we get

cpll < Gramd < 1L

(b.2) Finally, let us assume that — 0 andp,, — co. Then

1>epn>c,, — 1,

n—oo
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so ® € X. Obviously, @ satisfies (2.12), so it is a critical point éfz. Moreover,
E(P) = Ii_r)n E(D,).

Now, 7y, (©1) = Y 0, (0., With 0, (2) = £
k

, 0.2) p. 1
Werecalltha¥, (ok.,) = €rn < 1.But ==+ > p,Vx € (0,1). So,
L ’ Op(x) = 11—z

1
0p,.(0kn) < — — 0.As aconsequence,, ($,) — 0and

p’I’L n—oo

E@)= lim F, , (P,).
n—oo

This ends the proof of Lemma 2.1. O

4. The Hessian ofF, ,

We shall use the following formula for the second derivative of the DF energy:

2

1 " + —
SE(@)|w v = 2 il = I 1 ~ oz (e, G Vo@D )
+ - Ko+ ]C3 — K4+ ]C5, (41)

where
Kazaf / e = o) (4.2)
pu(@) = @) poy) =Y lem@)P,
l

m

K220y [[ Ve = ) (00, o) (0 (0),v00)

l7m

4.3)
+ a%: // Vi (x — y)lm(w(x%i/)e(w))lm (pe(y), o)) ,

Koo [[ MKV - ). )= Y Re(p) vnt@), (@)
14

Ka = 2 // Vi(x — y)tr (K(x, y) K (y, J:))7 (4.5)
K(e,9) =3 32 (010 © ala) +6:0) @ 02@)),
0

Ks=a Y [ [ Be(oa i) Be(enl) vn)Velo 1) @46)

lFm

&, has a very useful concavity property:
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Lemma4.l. If (BN —1)a <
[0,1],

Tr/2+2/7r then forany® € A, andanyW~ € (E7)V,v €

&/@)]w v < stHwkHE, (.7)

wheres > 0is a constant independent &f W, v.

Proof of Lemma 4.2e obviously havey, (i * V,)1¢) 2 > 0. The Fourier transform
of V,, is a positive measure, so

/ Vi — g)f@)f@) =0, Vf e L' L¥2®3,C). (4.8)

As a consequencé;, > 0.
Now, K (y, z) = K(z,y)*, so that

tr(K (@, 9)K(y,2)) 20 Va,y,
hencelC, > 0. We thus have

1 " + —
€ @)W, 9] < ST — 7 115 + Ko+ Ko+ Ks. (4.9)
4

Now, take® € A and¥~ € (E~)N. Form = 1,..., N, we have||p,,|/z: < 1. So,
using inequality (1.7), we easily get

w/2+2/m)aN _
oy < 222N Sy, (4.10)
14
and
(r/2+2/m)a(N — 1) _

Ks < 5 > v 115 (4.11)

By the Cauchy—Schwarz inequality,
K3 < Ka. (4.12)

. N
Finally, for any® € AandV¥™ € (E*) ,

Lel@)|v SRS AU DI

stng 1%, (4.13)

IN

with s = 1 — (/Z2/me (3 _ 1) Note thats > 0 provided

2

(4.14)
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This proves Lemma 4.1. O

We now compute the second derivative of the penalizationtgriwe writer, (®) =
Sp o Gram@), with

Sp@Q) =tr|QA- Q) = ) Tu(Q)
{ { } ,;, (4.15)
Tn(Q) = tr(@").

Sincer, is U(N) invariant, we just need an expressiomg'g’f(cb) when® € O, i.e.
Q=GramED= Diag(CTl,...,O'N),0< o1 <---<ony<Ll

For any self-adjoint matrix we have
T,(Q)-h= Y t(@QhQ%) =ntr(@Q"*h)=nd op ‘hi, (4.16)
atf=n—1 k

and

T,’[(Q).[h,h] =n 3 tr(Q“thh):nZ( 3 agaz)mmz. (4.17)

a+b=n—2 k4 atb=n—2

Summing up, we get

Sp(@)-h= " ep(on)hg, (4.18)
k

@[] =Sy toniat+ S LB w29

with e, (t) = (%) = W. Finally we obtain

m (@)1 =2 e, (or)Re(Pr, ), (4.20)
k

T (@), | W, W] = 37 26, () [l B + (o) 2Re(or, el
k

Ly 2l — (o) ’

O — 0y

(or,%e) 2 + (Wr, 0e) L2

ke (4.22)

The functione,, is positive and strictly increasing on,(D). As a consequence, we have

Lemma 4.2. For anyp > 1, the functionalr, is strictly convex on

A:{cDeEN/O<Grarm><11}.
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Lemma 2.2 is an immediate consequence of Lemmas 4.1 and 4.2.
Our goal is now to prove Lemma 2.4. We start with an upper bound on the sec-

ond derivativell'f’p(CD*) [\Iﬁ, \If'}, at a pointd* € A*, in a direction¥* € (E")V N
N
[Hl(R3, (C“)} , under the orthogonality conditiong{, 1/;) 2 = 0, Vk, L.

Lemma 4.3. Assume that(3N — 1) < —»2>—. Taker € (0,1) andp > 2. Consider

/22
®" € A* such that
Gram(@) = Diag(c1,...,0n),0< 01 < --- <oy < 1, (4.22)
whered = &* +h,,,(®*). Letw" € (E* n HY(R3,C4)" satisfy
(05, ¥) 2 =0, Vk,£. (4.23)

Then the following inequality holds:

AR ACI S ool

+ey VRl (4.24)
k
Here,¢ depends only ofZ, N).
N
Proof. Take®* € A*, " € (EY)N N {Hl(ﬂ@, (C“)} , and denote

D =Dy, (@F), VT =h, (@)W, 0=+ O, W= W+ W, (4.25)
We may write

SI @ [w v = 2E @) v v (4.26)

If we impose the condition (4.23(%, wz)Lz =0 Vk,/, then, from (4.21), we see
that, for anyy~ € (E7)V,

T(@) | WX W x| =D 20 (@0 [l + (@)X x| (427)
k
As a consequence,
1 " 1 " + + +
SFop @[ W] = 2/ @) W] = e nvilE+ (428)
k
” + _ 1 " _ _
+5u(c1>){\p W ] +§fuyp(q>)[w v }
Now, U™~ = h,, ()W is solution of

Fol (@) [qﬁ, x*} + F, (@) [qr, X*} =0,V € (E)V. (4.29)
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Note thatF,, ,(®) [\lﬁ, X_] =& {\If', X_} , from (4.21) and (4.27). So, applying (4.29)
tox~ =¥, and using Lemma 2.2, we get

s e I% <
k

From Hardy’s inequality (1.9), we have

& (@) [w*, \r] ‘ (4.30)

el@vv]| < con [ iveiz] [ ] @ay

k k
Combining (4.30) (4.31), we get
oIl < IVl (4.32)
k k
and finally
1 1

E}'V/:p((b) [\y, qz] < ZE)(D) [\Iﬁ, \If*} = eplon)lvill: +
k

N

+ey I VeillZe. (4.33)
k

Now, combining (4.26), (4.33), one easily gets (4.24), and the lemma is proved.

The nextlemma gives an upper estimatefé(rb) [\IJ, \Il} for woftheform(Q...,0,1),
1 € E, radial. It is inspired by [36, 39].

Lemma4.4. Forany® € A,v € (0,1) and« € FE, of the form)(z) = f(|z|), taking
W(zx) = (0,...,0,9(x)), we have

%5:(@) [‘1” ‘1’} < (@Z’v HW) L TalN 1) (¢’ V”w)LZ (4.34)
— aZ(w, (nxV,) w)LZ-

Proof. We may write

Elpr-..oN) =&, <<p1 e (pN_l) + ((pN,HogaN)LZ — ozZ(gpN,(u x V) cpN>L

2

N-1
+a / / Vi(z — ) ’; ok ) o (@) 2 (4.35)

N-1

—o [[ Ve =) X (200, o) (30, 10
k=1

Soé&, is a quadratic form ipy, whenes, . . ., o1 are fixed. Note that

[[vte = 0(100.00) (@), 02))

is nonnegative, from (4.8). Hence,
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el @ww] < (v.How)  —aZ(vGueVi)w)

N-1
+a / / Vi(z ) ,; @ Pe@E  (4.36)

foranyy = (O,...7O,w)7w S
Now, if p € LY(R3, R,) is radial, then an easy computation shows that

/p(x)V,,(x — xo)dr < /p(x)Vl,(a:)d:v, Vo € R (4.37)

R3 R3

As a consequence, if(z) = f(|z|), then

N-1
[ 3 lewr / @RV, — y)da
3 k=1

N-—1
< [ a3l [ v = (4.38)
R3 k=1 R3
=V - D(v.Vw) .

Lemma 4.4 follows directly from (4.36) and (4.38). O

We now give an upper bound dr;p (0, ...,0,7%)? for ¢* in a suitably chosen
finite dimensional subspace &f*.

Lemma 4.5. Assume that(3N — 1) < ﬂ/zifz/w N < Z + 1. Then, for anym > 0,

there is a real finite dimensional subspacerfdenotedX,,, withdimg X,, =m + 1
and a constanb,,, € (0, 1) such that

2
21(@. (0. .00) < b — eplon)] 6713 (4.39)
foranyrv € (0,1),p > 1, ¥* € X,,, and any®* € A* such thatGram & =
Diag(c1,...,0n),0< 01 < --- <oy < 1, with the notationd = ®* + h,, ().

Proof. Letd be a positive integer. We choosd-@limensional subspace of

Hl({[o, ), rzdr},R)7

denotedV,;. To f(r) € V4, andX > 0, we associate

flz|/2)
s@={ o | (4.40)

0

Obviously,y € H(R3 C*. We call W, , the d-dimensional real vector space of
functionsy of the form (4.54), with\ fixed andf € V; arbitrary.
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It is easy to see that there are two constants €.(d) < ¢*(d) < oo such that, for
anyy € Wy , andA large,

(Hot, %) = |7, (4.41)
IVoI2: < v, (@.42)
(v.Wv) , = Sl v e 0,11, (4.43)
1A= l2: < S, (4.44)

((ux V), ¥) e = (Vuih, ¥) 12 —0( ) 191172, v € [0,1].
(4.45)

Inequalities (4.42), (4.43) and (4.45) follow from scaling arguments, and (4.44) is a
consequence of formula (3.3).
Now, suppose that € W, » satisfies

+ —
(viv) =0, vk, (4.46)
for some®™ = (47, ..., p%) € A", such that Gran® = (01,...,0,),0< 01 < -+ <

on <1, with® =& +h, ,(®%). LetW" = (0,..., A™). From Lemma 4.3, we have
foranyv € (0,1),p > 1,

1 " 1 "
1,00 W, 0] < 2/ (@)W, W] - ep(on) AT +

+E| VY2

(4.47)

From Lemma 2.2,

15;/(q>) [\y W } < %E;/(CD) {\p, \p} — & (@) [\y xp—} (4.48)

wherew = (0,...,0,v),¥~ =(0,...,0, A~ ). But from Hardy’s inequality (1.9),

L(@)[w. ]| < eAvellaavile (4.49)

for somec > 0 which depends only ofV, Z.
Moreover, using Lemma 4.4, we get

260 @)[w, 9] < (w, How) + (N 1), Vet — a2 (e Vi) b, )y
(4.50)

Finally, combining (4.41, 4.42,.. , 4.50), we get

@ e ] < (1o - N2 T D) g, e eniatl
e
612 st
ac*(Z N +1)

< (1- 2T e lom) 18wl
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for A = \(d) large enough.
Now, takem > 0. ChooseX,,, as an {n +1)-dimensional subspace af (W(M(d) N

1
{gp{, N , whered = m + 2N + 1 (such a space always exists). Take =

ac(Z — N +1)

1= 2)\(d)
is proved. [

. Thenitis easy to check thaf,, satisfies (4.39), and Lemma 4.5

Lemma 2.4 is now an immediate consequence of Lemma 4.5.

5. The Min—Max Argument

We start with a proof of Lemma 2.5. We need the following result:

Lemma 5.1. Assume that(3N — 1) < ﬁ Takev € (0,1). There is a constant
C(v) > Osuch that, for anp > 1 and®* € A*,

o1(®7) < C(v)o1 (). (6.1

Here, o7 (®*) is the smallest eigenvalue Gfam®™*, ando(®*) is the smallest eigen-
value ofGram®, where® = ®* + h,, ().

Remark.The constanC depends omw. We have been unable to prove tliaremains
bounded ag tends to 0.

Proof of Lemma 5.1Take®* € A*,i.e.®* ¢ (E*)Y with 0 < Gram@™) < 1. Using
thel/(V) invariance, we just have to prove the lemma when

Gram@™) = Diag(cy,...,0y), 0<o; <--- <oy <1l (5.2)
We denote
hyp(@) =@ =(p1,. ., 0y), =D +DT =(p1,...,0N).

We introduce the following functional of—:

F) = (eI 07 Hy (1 +90) | —mlei+07 0z on). (63)

Here,®1 = (p2,...,pn) € EVN1 and
H,w = (Ho— aZ (us V,))w

N (5.4)
> [t = ) (lnPo@) - (). o) do
k=2

We have extended, to EVV, with values irR, by definingr, (®) = +oo whenll—Gramd

is not positive definiteF is thus well-defined o2~ with values inR, andF”(z/J‘)
exists whenf'(y)~) > —oo. From Lemma 2.2F" is strictly concave, and

F'@W) [, x7] < —slx7 1%, (5.5)
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foranyy~ € E~,andy~ € E~ such thatt'(y»~) > —oo. We have

Fun (P07 020w ) = F@T) + E,(), (5.6)

S0 ¢; Is the unique maximizer of” on E~. From (5.2), {7, ¢x)2 = 0, Vk > 2.
Therefore, forany~ € E—,

T, (01 02y oN) X =
(ehrt0 ... 0
0

0  Re(x,p5)..-Re(x™,¥n)
Re(py,x7)

= Z 2ntr

e (Gram®y)" 1 : 0
0 e(Pn:X7)
=0.
As a consequence,
F'OX~ = 2Re(x", Hy, 1) (5.7)
So there is a constatif; () > 0 such that
[F'Ox | < Ks@)lletllzzlxlle, Vx~ € E. (5.8)
But (5.5) implies that
Flop) < FO)+F'0)1 — slloq |5 (5.9)
SinceF(p; ) > F(0), (5.8) (5.9) give
o1 | < Ko@)t ze- (5.10)

Finally, (5.10) gives

N
(@) = inf 1> &reon
llel=1 " k=1

2
< lleallze < C@)eillze = CW)o1(@7). (5.11)
L2

Lemma 5.1 is proved. O

We are now ready to prove Lemma 2.5.
Using once again thig(N) invariance, we just have to considef € A* such that,
denoting® = " + &, ®~ =1, ,($"), the following holds:

Gram(@) = Diag(c1,...,0n),0< 01 < --- <oy < 1 (5.12)

We want to findX € (E*) satisfying (2.22), assuming that®*) = det Gramd™*
is in [d(v), 2d(v)]. We choose

X =(¢7,0,...,0). (5.13)
Obviously,
A(®F) - X =2A(9) > 0. (5.14)
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SinceF, ,(®*) - (x~,0,...,0) = 0,¥x~ € E~, we may write
I,,(®") X = F, (®)- (¢} — ¢1.0,...,0) (5.15)
= 2(% Hélwi) o 2(%_, H$1¢I>L2
— 26,(00) (Il 1152 = ller I132).
From inequality (1.7), we have

(", 9" > (1= EEFED) ot 5, ™ € B, (5.16)
(o= HY 0 )2 > (1 — @/22maN=D)y —112 v~ ¢ B :
(o™ Hg, o )2 = ( 5 e~ l|%, Ve~ € E7.
As a consequence,

_ (7/2+2/m)a max@Z, N — 1)
2

I,,(®9- X > 2[1 —ep(o0)]lleilE- (5.17)
xP T
1-2 = 1—2x
assumption{T/Z*/mamx@N-1) 9

From Lemma 5.1,

But epy(x) = = ey(x) is small whenz > 0 is small. Moreover, by

A(@") £ 03(®%) < CWIi(@Y) < C) [ A(@Y)] ™. (5.18)

Lemma 2.5 is now an immediate consequence of (5.14), (5.17) and (5.18).
Our goal now is to prove Lemma 2.6. We start with a “linear” result that will give
us the lower bound(y) in (2.30).

Lemma 5.2. Assume thatvZ < ﬁ Then there is a nondecreasing sequence

{A\j,7 > 0}in (0,1), with lim \; = 1, and a sequencgG;, j > 0} of complex vector
j—o0

subspaces aof*, with dimc(E*/G;) = 4, and

(¢" (Ho—az (s V)e*) = Nle' e Vo' €Gy (5.19)

Proof. The arguments below are classical (see [46], 112-117 for a similar situation).
The operatol” = A* (Hy — oZ (1 + V)) A™, defined as a Friedrichs extension, is self-
adjoint onA*(L?) and has essential spectrum,(T) = [1, +c0). Indeed, the arguments
used in [18] to prove the result wheris a Dirac mass, extend to the more general case.
From (1.7)o(T) C (0, 00). As a consequence(T) N (—oo, 1) consists only of positive
eigenvalues with finite multiplicity. One can easily prove, using the Rayleigh quotients,
thato(T) N (—o0,1) = {A;,7 > 0}, withO < g < --- < \; < ...,jILmOOAj =1. Let

G; be the orthogonal space, for tié-hermitian product, of
K;= P Ker(T — \pIg). (5.20)
k<j—1
Obviously,E*/G; ~ K; has complex dimensiof and (5.19) holds. O
We now construct the spadg, and we find the upper bourndy).
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Lemma 5.3. Assume that(3N — 1) < 45—, N < 2Z + 1. There is a sequence

{a(j),j > 0}in (0, N) and a sequencgF}, j > 0} of complex vector subspacesiof,
with dimc¢ F; = j + N, and

N
L, ,(®") < a(j), Vo e (F]) N A*. (5.21)
Proof. Our arguments will be similar to those in the proof of Lemma 2.4, but simpler.
We consider the spad&;, » of functionsy of the form (4.40), with\ fixed andf € V;
arbitrary. We denoté?[/;jA = A"(Wa,»). From (4.44), for\ large enough,

dimCWJV,\ = dim(ch’)\ =d. (5.22)
N
From (4.37), for anyd € (WM) , such that Gran® < 2(§k5),

E/®) =Y (o, Hopr) — aZ (r, (1% Vi) r)e

k
+%Z// Voo = n){ lon(@) Plioet) P (5.23)
ks

~(iu@), 2e@)) (elw)s 1) }

< Zk:(ww (Ho + %(N - 1)%)%) L Xk:az (or; (m* V) or) e -

Moreover, using inequalities (1.7) and (1.9), one can find two constahts- 0 such
that

/ / /
@) <a(XIvelz) (S viig)
k k

(X ler ) (S wriz) 524)
k k

wherey; = Aty 0 = A" ¢, and¥™ € (E7)Y is arbitrary. Now, we take* =
(15 on) € (W3 )V N A"
We recall thatd* = {®* € (E*)V /0 < Gramd* < 1}. From (4.44), for\ large
enough, there i® € (W, 4)V, such thatA "¢y, = ¢} (Vk) and Gram) < 2(5 ¢).
Sincer, > 0, we may write

L (®%) < &, (B + (@) < L SUP E®+ V), (5.25)
sup

Combining (5.24), (5.25) and Lemma 4.1, we get, for samg O,

Lp(®7) < E(@)+a" Y[ VerlZz + A~ 03 (5.26)
k

Finally, combining (5.23), (5.26) and the estimates (4.41), (4.45), we find,
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1

I,,(9") < N(l —a(2Z - N+ 1)% +0 <A>) (5.27)

We takeA(d) large enough, andl; = ;+N,X(j+N)' Then (5.27) gives
I, ,(®") < a(j) < N, vo*e (F;)N nA*. (5.28)
From (5.22), ding F; = j + N, so Lemma 5.3 is proved. O

We are now ready to prove Lemma 2.6.
We takeF}; as in Lemma 5.3. Obviously,

cup(Fy) = infoe o) MaXereq Jup(®7) < (5.29)
< ma)((ye(Fj)NmA* Jy,p(q) ) < a(])a

where for anyF, the class of set§®(F') is defined in Section 2, formula (2.28). To find
a lower estimate on, ,(F;), we define

-
S; = {q>+ e (G,)N / Gramp* = ;Tzﬂ}' (5.30)

Take®" € S;. From Lemma 5.2, we have

j+1
@) 2 30 (o0 (Ho —aZ G WD) 2 N (63D

So there io(j) such that, ifp > p(j), then

m (i) = NG+ 2(10) < e

j+2 j+2) T 5+
Together with (5.31), this gives
+ + + j+ 1 ?
L, p(@7) = E,(P7) — mp(P7) = N jTZ Aj (5.32)

N2
We choose @) = N (%) Aj. Obviously,jﬂrglog(j) = N, and Lemma 2.6 is an imme-

diate consequence of the following intersection result:

Lemma 5.4. For any@ € Q(F), the intersectior) N S; is non-empty.

Proof of Lemma 5.4 (hence of Lemma 2Ta)e quotient sef; /U/(N) is a submanifold
of the Hilbert manifoldA* /U/(N), and

codimR<Sj JU(N), A* /U(N)) = codimR(Sj, (E+)N) =
N2 + codimg ((Gj)N, (E*)N) = N(Zj + N). (5.33)
Takee > 0 small, and define

M,(e) = {q>+ € (F;)N N A*/det(Gramd*)det(l — Grama*) > e}. (5.34)
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M is a manifold with boundary, and
dimg M, = dimg(F;)™ = 2N(j + N).

If his "admissible”, then, from (2.27) and by continuity lofthere ise;, > 0 such that
n(10,11 % 9M (1)) N S, =0. (5.35)

Now, M /U(N) is a submanifold (with boundary) of* /U/(V), and

dlm]RMJ/U(N) = dimRMj — dimRU(N)
= N(2j + N) = codimg (S; /U(N), A*JU(N)).  (5.36)

Perturbing slightly; if necessary, we may impose thiigtandG; intersect transversally.
Theirintersection is then a complex subspacef E*, of dimensionV, andS; /U(N)N
M /U(N)is atransverse intersection of cardinal 1. Its unique elementig(Ng class

+1 . .
ofbasesgr, ..., ¢y)of H;,suchthatGramdy, ..., ¢}) = J " 231. Sotheintersection
index of S; /U(N) and M ; /U(N) (mod 2) is 1. From (5.35), we also have

Iz, (S; JUN), h(1, M;)JU(N)) = 1. (5.37)

SoS; intersects) = h (1, D(F})), and Lemma 5.4 (hence Lemma 2.6) is proved
This ends the proof of Theorem 1.2.
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