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Abstract: The Dirac–Fock equations are the relativistic analogue of the well-known
Hartree–Fock equations. They are used in computational chemistry, and yield results on
the inner-shell electrons of heavy atoms that are in very good agreement with experi-
mental data. By a variational method, we prove the existence of infinitely many solutions
of the Dirac–Fock equations “without projector”, for Coulomb systems of electrons in
atoms, ions or molecules, withZ ≤ 124,N ≤ 41,N ≤ Z. Here,Z is the sum of the
nuclear charges in the molecule,N is the number of electrons.

1. Introduction

In relativistic quantum mechanics [5], the state of a free electron is represented by a
wave function9(t, x) with 9(t, .) ∈ L2(R3,C4) for any t. This wave satisfies the free
Dirac equation:

i∂t9 = H09, with H0 = −i
3∑

k=1

αk∂k + β. (1.1)

Here, we have chosen a system of units such that~ = c = 1, the massme of the electron
has also been normalized to 1.

Before going further, let us fix some notations. In the whole paper, the conjugate of

z ∈ C will be denoted byz∗. ForX =
( z1··

z4

)
a column vector inC4 , we denote by

X∗ the row covector (z∗
1 , . . . , z

∗
4 ). Similarly, if A = (aij) is a 4× 4 complex matrix, we

denote byA∗ its adjoint, (A∗)ij = a∗
ji.
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We denote by (X,X ′) the Hermitian product of two vectorsX,X ′ in C4, and by

|X| , the norm ofX in C4 , i. e. |X|2 =
4∑

i=1

XiX
∗
i . The usual Hermitian product in

L2(R3,C4) is denoted

(ϕ,ψ)L2 =
∫
R3

(
ϕ(x), ψ(x)

)
d3x. (1.2)

In the Dirac equation,α1, α2, α3 andβ are 4×4 complex matrices, whose standard form
(in 2 × 2 blocks) is

β =

(
I 0
0 −I

)
, αk =

(
0 σk

σk 0

)
(k = 1,2,3),

with

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

One can easily check the following relations:{
αk = α∗

k, β = β∗,
αkα` + α`αk = 2δk`, αkβ + βαk = 0. (1.3)

These algebraic conditions are here to ensure thatH0 is a symmetric operator, such that

H2
0 = −1 + 1. (1.4)

Let us now consider an electron near a nucleus of atomic numberZ. We assume
that the nucleus is point-like and is situated at the origin of coordinates, and we take
the system of units of Eq. (1.1). The Hamiltonian of the electron, in the coulombic field
created by the nucleus, is then

HZ = H0 − αZV (x), with V (x) =
1
|x| . (1.5)

Here,α is a positive dimensionless constant. Its physical value isα ≈ 1
137 .

Lemma 1.1 lists some properties ofH0 andV (x), that will be useful in this paper.

Lemma 1.1. (P1)H0 is a self-adjoint operator onL2(R3,C4), with domainD(H0) =
H1(R3,C4). Its spectrum is(−∞,−1] ∪ [1,+∞). There are two orthogonal projectors
onL2(R3,C4),3+ and3− = 1L2 − 3+, both with infinite rank, and such that{

H03
+ = 3+H0 =

√
1 − 13+ = 3+√1 − 1

H03
− = 3−H0 = −√

1 − 13− = −3−√
1 − 1.

(1.6)

(P2)The coulombic potentialV (x) = 1
|x| satisfies the following Hardy-type inequalities:(

ϕ, (µ ∗ V )ϕ
)

L2
≤ 1

2
(
π

2
+

2
π

)
(
ϕ, |H0|ϕ

)
L2
, (1.7)

for all ϕ ∈ 3+(H1/2)∪3−(H1/2) and for all probability measuresµ onR3. Moreover,(
ϕ, (µ ∗ V )ϕ

)
L2

≤ π

2

(
ϕ, |H0|ϕ

)
L2
,∀ϕ ∈ H1/2, (1.8)

‖ (µ ∗ V )ϕ‖L2 ≤ 2‖∇ϕ‖L2, ∀ϕ ∈ H1. (1.9)
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In the particular case whereµ is equal to the Dirac mass at the originδ0 , an inequality
more precise than (1.7) was proved in [8, 47, 48]. This inequality reads as follows:((

H0 − αZ

|x|
)
ϕ,ϕ

)
≥ ((1 − αZ)ϕ,ϕ) ,

for all Z ≤ Zc := 2
( π

2 + 2
π )α , for all ϕ ∈ 3+(H1/2(R3,C4)) . The technique used in

[8, 47, 48] is based on ideas introduced by Evans-Perry and Siedentop in [18]. We refer
to [27, 30] for inequality (1.8) in the caseµ = δ0. Thaller’s book [46] gathers many
results on the Dirac operator, including (P1) and the standard Hardy inequality (1.9) for
µ = δ0, with references. The extension of (1.7), (1.8) and (1.9) fromµ = δ0 to a general
probability measureµ is immediate, since the projectors3± , the gradient∇ and the
free Dirac operatorH0 commute with translations. For completeness, we shall give the
explicit form of the projectors3+, 3− in Sect. 3.

Forϕ ∈ L2(R3,C4), let us denoteϕ+ = 3+ϕ, ϕ− = 3−ϕ. Let

E = H1/2(R3,C4), E+ = 3+E, E− = 3−E.

E is a Hilbert space with Hermitian product(
ϕ,ψ

)
E

=
(
ϕ,

√
1 − 1ψ

)
L2

=
(
ϕ+, ψ+

)
E

+
(
ϕ−, ψ−

)
E
. (1.10)

SinceH0 is unbounded from below, it is difficult to define a ground state for rela-
tivistic atoms and molecules. In order to study the stability of relativistic molecules from
a mathematical viewpoint, various simplified models have been introduced. In the sim-
plest one,H0 is replaced by the positive definite Hamiltonian

√
1 − 1. See for instance

[27, 14, 37, 34], and the Selecta of E.H. Lieb [33] for a more detailed list of references
on this topic.

A more realistic model due to Brown and Ravenhall [6] uses projection operators:
3+(H0 + V )3+ replacesH0 + V , i. e., the one-particle Hilbert space is3+L2 instead
of L2. The above projected operator and its multi-particle counterpart was widely dis-
cussed by J. Sucher in [43, 44]. In [26], Hardekopf and Sucher investigated numerically
the operatorB := 3+(H0 −αZ|x|−1)3+ , and they claimed that its ground state energy
vanishes whenZ = Zc := 2

( π
2 + 2

π )α . The first mathematical study on the semibounded-

ness ofB appeared in [18]. In [18], Evans, Perry and Siedentop proved that on the space
of rapidly decaying smooth spinors,B is bounded from below byαZ(1/π − π/4) if
the chargeZ does not exceedZc and unbounded from below ifZ is larger thanZc. As
already mentioned, several authors [8, 47, 48] improved this result later by showing that
B is positive and bounded from below by (1− αZ) wheneverZ ≤ Zc. For results
concerning multi-particle versions ofB, see for instance [35].

The Dirac–Fock (DF) functional was first introduced by Swirles [45] as an approx-
imation for the energy of a system ofN electrons in an atom of large nuclear charge
Z. In such atoms, the inner-shell electrons have relativistic energies, and the standard
Hartree–Fock (HF) approximation, based on the nonrelativistic Schr¨odinger equation,
is no longer valid. The Euler–Lagrange equations of the DF energy functional can be
solved numerically. The solutions represent stationary states of the electrons in the
atom. The numerical results are in very good agreement with experimental data (see e.g.
[32, 23, 15, 38, 31, 22]). In [43, 44, 41, 24, 10], the relationship between Dirac–Fock
and quantum electrodynamics is studied.
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In the Dirac–Fock model, theN electrons are represented by a Slater determinant
of N functionsϕk ∈ E, subjected to the normalization constraints(

ϕ`, ϕk

)
L2

= δk`. (1.11)

We shall denote8 = (ϕ1, · · · , ϕN ), and the constraints above will be written in the
shorter form Gram8 = 11, with[

Gram8
]

k`
:=

(
ϕ`, ϕk

)
L2
. (1.12)

We consider a molecule, with:

• nuclear charge densityZµ, whereZ > 0 is the total nuclear charge andµ is a
probability measure defined onR3. In the particular case ofm point-like nuclei, each

one having atomic numberZi at a fixed locationxi, Zµ =
m∑
i=1

Zi δxi
andZ =

m∑
i=1

Zi .

• N relativistic electrons.

We assume that the interaction between these particles is purely electrostatic. The
DF energy of theN electrons in the molecule, is

E(8) =
N∑
`=1

(
ϕ`, H0ϕ`

)
L2

− αZ
N∑
`=1

(
ϕ`, (µ ∗ V )ϕ`

)
L2

+
α

2

∫∫
R3×R3

V (x− y)
[
ρ(x)ρ(y) − tr

(
R(x, y)R(y, x)

)]
d3xd3y.

(1.13)

Here,ρ is a scalar andR is a 4× 4 complex matrix, given by

ρ(x) =
N∑
`=1

(
ϕ`(x), ϕ`(x)

)
, R(x, y) =

N∑
`=1

ϕ`(x) ⊗ ϕ∗
` (y), (1.14)

ρ is the electronic density,R is the exchange matrix which comes from the antisymmetry

of the Slater determinant. Note thatR(y, x) = R(x, y)∗, so that tr
(
R(x, y)R(y, x)

)
=∑

i,j

|R(x, y)ij |2.

The main difference with the more standard HF functional, is that the kinetic energy
term (ϕk,−1ϕk)L2 in HF is replaced by (ϕk, H0ϕk)L2 in DF. This changes completely
the nature of the functional, which becomes strongly indefinite: it is not bounded below,
and any of its critical points has an infinite Morse index.

The DF functional is invariant under the action of the groupU(N ):

u · 8 =
(∑

`

u1`ϕ`, . . . ,
∑

`

uN`ϕ`

)
, u ∈ U(N ),8 ∈ EN . (1.15)

We denote

6 =
{

8 ∈ EN /Gram8 = 11
}
. (1.16)
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Using inequality (1.8), one can easily prove that the DF functionalE is smooth onEN .
A critical point ofE|6 is a weak solution of the following Euler–Lagrange equations:

H8ϕk =
N∑
`=1

λk`ϕ`, k = 1, . . . , N. (1.17)

Here,

H8ψ = H0ψ −αZ (µ ∗ V )ψ
+α(ρ ∗ V )ψ − α

∫
R3 R(x, y)ψ(y)V (x− y) dy.

(1.18)

SinceH8 is self-adjoint fromH1/2 to its dualH−1/2,3 = (λk`) is a self-adjoint (N×N )
complex matrix. It is the matrix of Lagrange multipliers associated to the constraints
(ϕ`, ϕk)L2 = δk`.

For 8 ∈ 6 a critical point whose matrix of multipliers is3, andu ∈ U(N ), the
matrix of multipliers of the critical point̃8 = u · 8 is 3̃ = u3u∗. So anyU (N )-orbit
of critical points ofE|6 contains a weak solution of the following system of nonlinear
eigenvalue problems, called the Dirac–Fock equations:

H8ϕk = εkϕk, k = 1, . . . , N. (1.19)

Physically,H8 represents the Hamiltonian of an electron in the mean field due to the
nuclei and the electrons. The eigenvaluesε1, . . . , εN are the energies of each electron in
this mean field.

In the HF model, the Euler–Lagrange equations have a form similar to (1.19), with
−1 instead ofH0 in the expression ofH8. The physically interesting states correspond
to ε1 ≤ · · · ≤ εN < 0, and the ground state minimizesEHF on 6, which implies
that ε1, . . . , εN are theN first eigenvalues ofH8 (see [36]). In the DF model, the
physically interesting states correspond to 0< εk < 1: a positive energy inferior to the
rest mass of the electron. The definition of a ground state is less clear: the DF functional
has no minimum on6. This fact is at the origin of serious difficulties in the numerical
implementation, as well as the interpretation, of the DF equations (see [10] and references
therein). One way to deal with this problem, is to restrict the energy functional to the
space (3+E)N , 3+ being, as defined above, the projector on the space of positive states
of the free Dirac operator [43, 44]: this corresponds to a Hartree–Fock reduction of the
already mentioned Brown-Ravenhall model. The associated Euler–Lagrange equations
are the “projected” Dirac–Fock equations

3+H8 3+ϕk = εkϕk. (1.20)

Note that, in the caseεk > 0, (1.19) can be written formally as

3+
8H8 3+

8 ϕk = εkϕk. (1.21)

Here,3+
8 is the projector on the positive space associated toH8. Numerical computa-

tions using (1.19) rather than (1.20), give results that are in very good agreement with
experimental data (see e.g. [23, 38]). This is not very surprising: in the presence of strong
electric fields, the projector3+

8 seems physically more adequate than the free-energy
projector3+ (see [28]). In [41] Mittleman derived the DF equations with “self-consistent
projector” (1.21), from a variational procedure applied to a QED Hamiltonian in Fock
space, followed by the standard Hartree–Fock approximation.
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Important existence results are known on the HF equations. Lieb and Simon [36]
proved the existence of a ground state ofEHF on 6, providedN < Z + 1, whereZ is
the total nuclear charge, P.-L. Lions [39] proved the existence of infinitely many excited
states ifN ≤ Z. Using inequality (1.7), one can easily extend the results of [36, 39] to
the projected equations (1.20), assuming that

αmax(Z,N ) <
2

π/2 + 2/π
,N < Z + 1.

The only difference is that1
|x| is not a compact perturbation ofH0, but this does not

create any important difficulty.
In the present paper, we give the first existence result for solutions of the DF equations

“without projector” (1.19). Our assumptions are

αmax(Z,3N − 1)<
2

π/2 + 2/π
,N < Z + 1.

Since we find positive eigenvaluesεk, the equations we solve are formally equivalent
to the DF equations with “self-consistent projector” (1.21).

The conditionα(3N − 1)< 2
π/2+2/π is rather restrictive, and we do not have a clear

definition of the “ground state”. But we hope that this first study will stimulate further
mathematical research on Dirac–Fock. Our main theorem is the following:

Theorem 1.2. Assume thatαmax(Z,3N − 1)< 2
π/2+2/π , N < Z + 1, withZ > 0 the

total nuclear charge. The nuclear charge density isZµ, whereµ is a fixed probability
measure onR3. Then, there is an infinite sequence(8j)j≥0 of critical points of the DF
functionalE on

6 =
{

8 ∈ EN /Gram8 = 11
}
.

The functionsϕj
1, · · · , ϕj

N satisfy the normalization constraints (1.11) and they are
strong solutions, inH1/2(R3,C4) ∩ ⋂

1≤q<3/2W
1,q(R3,C4), of the Dirac–Fock equa-

tions

H8jϕj
k = εjkϕ

j
k, 1 ≤ k ≤ N, (1.22)

0< εj1 ≤ · · · ≤ εjN < 1. (1.23)

Moreover,

0< E(8j) < N, (1.24)

lim
j→∞

E(8j) = N. (1.25)

Remark 1.With the physical valueα ≈ 1
137 andZ an integer, our conditions become

Z ≤ 124, N ≤ 41, N ≤ Z.

Remark 2.Sinceµ is arbitrary, our assumptions contain the case of point-like nuclei as

well as more realistic nuclear potentials, of the form−α
∑

i

ρi(x) ∗ 1
|x| , where ρi ∈

L∞ ∩ L1, ρi ≥ 0,
∑

i

∫
R3

ρi = Z.
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Remark 3.The first solution80 is a good candidate for a ground state. Indeed, in the
nonrelativistic limit (α → 0), it converges, after rescaling, to a ground state of Hartree–
Fock. This will be proved in a forthcoming paper.

Remark 4.In the caseN = 1, the Dirac–Fock equations are linear and correspond to an
eigenvalue problem for Dirac operators with scalar potentials. For variational results in
this case, see [17, 25, 16].

Remark 5.The functionsϕj
1, · · · , ϕj

N of Theorem 1.2 are smooth outside suppµ. More-
over, if suppµ is compact, they decay exponentially fast, as well as their derivatives,
when|x| goes to infinity.

Our main theorem is the analogue, for the DF model, of P.-L. Lions’ result for HF
[39]. In order to control the Lagrange multipliersεk (they should be negative in his
case), Lions uses an estimate on the Morse index of the critical points. Such an estimate
can be obtained for a critical point associated to a “finite-dimensional” min-max, if the
functional satisfies the Palais–Smale compactness condition (see e.g. [2, 3, 4, 11, 49]).
However, the HF functional does not satisfy the Palais–Smale compactness condition:
since the essential spectrum of−1 is [0,∞), only Palais–Smale sequences with nega-
tive Lagrange multipliersεk are precompact. Lions works on approximate functionals
that satisfy Palais–Smale, finds critical points of these functionals with Morse index es-
timates, and passes to the limit. In [19, 21], Fang and Ghoussoub give general existence
results on Palais–Smale sequences with Morse-type information, for functionals that do
not satisfy Palais–Smale. As an application, they rewrite Lions’ proof, working directly
with the HF functional.

For DF, we also need a control onεk : 0< εk < 1.Moreover, the essential spectrum
of H0 is R \ (−1,1), so that the only precompact Palais–Smale sequences for DF, are
such that|εk| < 1. So a natural approach is to adapt the above ideas to DF. To realize
this program, we faced several difficulties.

The first (and smallest) difficulty is thatµ∗ 1
|x| is not a compact perturbation ofH0.

This creates some technical problems. They are easily solved, replacingV = 1
|x| by a

regularized potentialVν . At the end of the proof, we can pass to the limitν → 0, thanks
to inequality (1.7).

The second difficulty is that the Morse index estimates can only give upper bounds
on the multipliers in [39]. But in the DF case, we want to ensure thatεk > 0. To overcome
this problem, we replace the constraint Gram (8) = 11 by a penalization termπp(8),
subtracted from the energy functional. The new Euler equations areH8ϕk = ∂ϕk

πp

(no more Lagrange multipliers). The eigenvalueεk is now an explicit function ofϕk,
which appears in the expression of the derivative∂ϕk

πp. This function has only positive
values, so we automatically getεk > 0.

The third difficulty with DF, is that all critical points have an infinite Morse index.
This kind of problem is often encountered in the theory of Hamiltonian systems and
in certain elliptic PDEs. One way of dealing with it is to use a concavity property of
the functional to get rid of the “negative directions”: see e.g. [1, 7, 9]. We shall use
this method. We get a reduced functionalIν,p. A min-max argument gives us Palais–
Smale sequences8n,ν,p for Iν,p with finite “Morse index”, thanks to [19]. Adapting the
arguments of [39], we prove that theεk ’s of such sequences are smaller than 1. Then
we pass to the limit (ν, n, p) → (0,∞,∞), and get the desired solutions of DF, with
0< εk < 1.
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Our concavity argument works only ifα(3N − 1) < 2
π/2+2/π . In the last 20 years,

very powerful methods have been developed to deal with strongly indefinite functionals,
that do not present any concavity property [42, 13, 20, 29]. This suggests that it might
be possible to weaken the assumptions onN in Theorem 1.2.

2. Sketch of the Proof of Theorem 1.2

As announced in the Introduction, we replaceV (x) = 1
|x| , in the expression ofE (1.13),

by the regularized potential

Vν(x) =
1

(2πν)3/2
e−|x|2/2ν ∗ V (x), ν > 0. (2.1)

This replacement is made for the attractive potential of the nucleus, as well as for
the electronic repulsion and exchange terms. The regularized DF functional is denoted
Eν , and the associated one-particle Hamiltonian (1.18) is denotedH

ν

8.
The Gaussian 1

(2πν)3/2 e
−|x|2/2ν is normalized inL1, so thatVν satisfies the same

inequalities (1.7–8–9) asV .
We also replace the constraint “8 ∈ 6′′ by a penalization termπp. The penalization

parameterp is a positive integer. The penalized functional

Fν,p = Eν − πp (2.2)

is defined in the domain

A =
{

8 ∈ EN /0< Gram8 < 11
}
, (2.3)

where Gram8 is theN × N matrix
(
(ϕi, ϕj)L2

)
1≤i,j≤N

. The penalization term has
the form

πp(8) = tr
[(

Gram8
)p(

11 − Gram8
)−1]

. (2.4)

Note thatFν,p is invariant under theU(N ) action (1.15). It is easy to see thatFν,p is
well-defined and smooth onA. We are going to construct approximate critical points of
Fν,p. As ν → 0 andp → ∞, these points will converge to critical points ofE|6.

Any U(N ) orbit inA contains a point8 such that Gram8 is diagonal, with eigen-
values in nondecreasing order:

Gram8 = Diag(σ1, . . . , σN ),0< σ1 ≤ · · · ≤ σN < 1. (2.5)

We callO the set of points8 ∈ A, satisfying (2.5). If8 ∈ O, then

∂Fν,p

∂ϕk
(8) = H

ν

8ϕk − εkϕk, (2.6)

with

εk = ep(σk), ep(x) =
d

dx

( xp

1 − x

)
=
pxp−1 − (p− 1)xp

(1 − x)2
. (2.7)
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The functionep is positive and increasing on (0,1), so that 0< ε1 ≤ · · · ≤ εN . This
is one of the advantages of the penalized functionalFν,p : its critical points inO are
solutions of a nonlinear eigenvalue problem, with positiveeigenvalues.

In the proof of Theorem 1.2, we need to control not only the critical points of
Fν,p, but also its Palais–Smale sequences. Of course, we just need to study Palais–
Smale sequences inO, thanks to theU(N ) invariance. Unfortunately, the Palais–Smale
condition does not hold forFν,p, exactly as in the case of the HF functional. But it can
be replaced by the following lemma, which is related to the spectral properties of the
Dirac operator with a potential. Its proof is based on inequality (1.7).

Lemma 2.1 (Convergence of approximate solutions).Assume thatαmax(Z,N ) <
2

π/2+2/π .

(a) Let (νn) be a sequence of real numbers in(0,1), (pn) a sequence of positive
integers, and(8n) a sequence inO, i.e. such that

Gram8n = Diag(σ1,n, . . . , σN,n),0< σ1,n ≤ · · · ≤ σN,n < 1.

We denoteεk,n = epn
(σk,n), with epn

(x) = d
dx

(
xpn

1−x

)
. We assume that

F ′
νn,pn

(8n) −→
n→∞ 0 (2.8)

for the strong topology of
[
H− 1

2 (R3,C4)
]N

=
(
EN

)∗
.We also assume that

lim inf
n→∞ σ1,n > 0. (2.9)

Then,

lim inf
n→∞ ε1,N ≥ h0, (2.10)

whereh0 ∈ (0,1) is a constant which depends only onαZ, αN.

(b) If, moreover,

lim sup
n→∞

εN,n < 1, (2.11)

then, after extraction of a subsequence, the functionsϕk,n converge toN functions
ϕk ∈ E ∩ ⋂

1≤q<3/2W
1,q(R3,C4), for the strongH1/2 topology.

(b.1) In the caseνn → ν ∈ (0,1) andpn = p for n large, 8 = (ϕ1, · · · , ϕN ) is a
critical point ofFν,p in O. Moreover,Fν,p(8) = limn→∞ Fνn,pn(8n).

(b.2) In the caseνn → 0 and pn → +∞, ϕ1, · · · , ϕN satisfy the orthonormality
constraints(ϕl, ϕk)L2 = δkl. They are strong solutions, in6 ∩ ⋂

1≤q<3/2W
1,q(R3,C4),

of the Dirac–Fock equations

H8ϕk = εkϕk, εk = lim
n→∞ εk,n ∈ [h0,1), (2.12)

and the DF energy of8 is

E(8) = lim
n→∞ Fνn,pn

(8n). (2.13)
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Lemma 2.1 will be proved in Sect. 3. Our problem now is to find sequences8n

satisfying the assumptions of this lemma. Assumption (2.11) is the most difficult to
check.

In the HF case, a similar question was solved by P.-L.Lions [39]: if8∗ is a critical

point ofEHF on6, the associated multipliersε1 ≤ · · · ≤ εN are eigenvalues ofH
HF

8∗ .
Let us denoteλ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · < 0 the sequence of negative eigenvalues of

H
HF

8∗ = −1− Z
|x| + . . . (assumingN < Z). If εk < 0, there is an integern(k) such that

εk = λn(k). Moreover, we may imposen(k + 1)> n(k). If εk ≥ 0, we taken(k) = +∞.
Lions proved the following inequality:

m(8∗) ≥ max
1≤k≤N

[
n(k) − k

]
, (2.14)

wherem(8∗) is the Morse index of8∗.
As a consequence, if8∗ is a minimizer ofEHF on 6, thenn(k) = k (∀k). This

particular case of (2.14) was proved earlier by Lieb and Simon [36].
In the DF case, we would also like to control theεk ’s, using the Morse index forFν,p.

Unfortunately, the functionalFν,p is strongly indefinite, as mentioned in the introduction.
We overcome this difficulty thanks to a concavity argument, as in [1, 7, 9].

Lemma 2.2 (Concavity in theE− directions). Assume thatα(3N − 1) < 2
π/2+2/π .

Then there is a constants > 0, independent ofν, p, such that, for any8 ∈ A and
9− ∈ (E−)N ,

F ′′
ν,p(8) · [

9−,9−] ≤ −s
N∑

k=1

||ψ−
k ||2E . (2.15)

Lemma 2.2 will be proved in Sect. 4, where an explicit formula forF ′′
ν,p will be

given. Now, let

A+ = A ∩ (E+)N =
{

8+ ∈ (E+)N /0< Gram(8+) < 11
}
. (2.16)

For8+ ∈ A+, let

0(8+) =
{
χ− ∈ (E−)N /Gram(8+) + Gram(χ−) < 11

}
=

{
χ− ∈ (E−)N /8+ + χ− ∈ A

}
. (2.17)

One can easily see that0(8+) is an open convex subset of (E−)N , and thatFν,p(8++χ−)
converges to−∞ asχ− approaches the boundary of0(8+), for 8+ fixed.

So, Lemma 2.2 has the following consequence:

Corollary 2.3. Assume thatα(3N − 1) < 2
π/2+2/π . Then, for any8+ ∈ A+, the func-

tional
χ− ∈ 0(8+) 7→ Fν,p(8+ + χ−)

has a unique maximizerhν,p(8+) ∈ 0(8+). The mappinghν,p : A+ → (E−)N is
smooth for the(H1/2)N norm, and equivariant under theU(N ) action (1.15).
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We denote

Iν,p(8+) = Fν,p

(
8+ + hν,p(8+)

)
, 8+ ∈ A+. (2.18)

Iν,p is well-defined and smooth onA+. Sincehν,p isU(N ) equivariant,Iν,p is invariant,
and anyU(N ) orbit in A+ contains a point8+ such that8 = 8+ + hν,p(8+) satisfies
(2.5). By definition ofhν,p , for all 9− ∈ (E−)N , F ′

ν,p(8+ + hν,p(8+)) · 9− = 0 . As
a consequence, if8+ is a critical point ofIν,p, then,8 = 8+ + hν,p(8+) is a critical
point of Fν,p. So we just have to look for critical points ofIν,p. This is much more
comfortable, because this reduced functional is notstrongly indefinite. We now give a
relationship between Morse-type information on a Palais–Smale sequence8+

n for Iν,p,
and the estimate (2.11) on theεk ’s. Unfortunately, we do not have a precise inequality
like (2.14).

Lemma 2.4 (The Morse index controls theεk ’s). Assume thatα(3N−1)< 2
π/2+2/π ,

N < Z + 1. Letν ∈ (0,1), p ≥ 2,M > 0, and(8+
n) a sequence inA+. Denoting

8n = 8+
n + hν,p(8+

n),

we assume that8n ∈ O, i.e.

Gram8n = Diag(σ1,n, . . . , σN,n), with 0< σ1,n ≤ · · · ≤ σN,n < 1.

Suppose that

Iν,p(8+
n) ≤ M, I

′
ν,p(8+

n) → 0, lim inf σ1,n > 0, (2.19)

and that the quadratic form on(E+)N :

Qn(9+) = I
′′
ν,p(8+

n)
[
9+,9+

]
+ δn

n∑
k=1

||ψ+
k||2E (2.20)

has a negative space of dimension at mostm, for a sequenceδn → 0. Then, there is a
constantbm ∈ (0,1), independent ofν, p,M,8+

n, δn, such that

lim sup
n→∞

εN,n ≤ bm, with εN,n = ep(σN,n). (2.21)

The last step in the proof of Theorem 1.2 is to find Palais–Smale sequences forIν,p,
with Morse-type information. For this purpose, we look for positive min-max levels of
Iν,p in A+. Note thatA+ is an open subset ofEN , whose boundary is∂A+ = G1 ∪G2,
with G1 =

{
8+ ∈ (E+)N /Gram8+ ≤ 11,det Gram8+ = 0

}
G2 =

{
8+ ∈ (E+)N /Gram8+ ≤ 11,det(11 − Gram8+) = 0

} .

If Iν,p were negative for8+ close to∂A+, the existence of positive min-max levels for
Iν,p would be a direct consequence of the topology of (A+, ∂A+). We have

Iν,p(8+) −→ −∞ as distL2(8+, G2) −→ 0,

with ||8+||EN bounded. ButIν,p(8+) may remain positive when8+ is close toG1.
Following [12, 13, 40], we solve this difficulty by studying the gradient vector field of
Iν,p nearG1. We prove that this field “points inward”, in the following sense:
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Lemma 2.5 (A pseudo-gradient pointing inward nearG1). Assume that

αmax(Z,3N − 1)<
2

π/2 + 2/π
.

Takeν > 0. Then there ared(ν), e(ν) > 0 such that,

if 8+ ∈ A+ satisfies det (Gram8+) ∈ [d(ν),2d(ν)]

then one can find a vectorX ∈ (E+)N , with{
I ′
ν,p(8+) ·X ≥ e(ν)‖X‖(E)N (∀p ≥ 2),

1′(8+) ·X > 0, where 1(8+) = det(Gram8+).
(2.22)

Note that in Lemma 2.5 there is a constant,d(ν), which depends onν. We have been
unable to maked independent ofν.

Now, letαν ∈ C∞
(

(d(ν),1),R
)

be such that
αν(x) = 0, ∀x ≥ 2d(ν)

α′
ν(x) > 0, ∀x < 2d(ν)

αν(x) → −∞ asx → d(ν).

(2.23)

Let β ∈ C∞(R,R) be such thatβ ≡ −1 on (−∞,−1)
β(t) = t, ∀t ≥ 0
β(t) ≤ 0, ∀t ≤ 0.

(2.24)

We define a new functionalJν,p, by{
Jν,p(8+) = β

(
Iν,p(8+) + αν ◦ 1(8+)

)
if 8+ ∈ A+ and1(8+) > d(ν),

Jν,p(8+) = −1 otherwise
(2.25)

It is easy to see thatJν,p is smooth on (E+)N . If 8+ is a critical point ofJν,p with
Jν,p(8+) ≥ 0, then8+ is also a critical point ofIν,p + αν ◦ 1, at the same level. From
(2.22)–(2.23), this is only possible if1(8+) > 2d(ν), hence8+ is a critical point ofIν,p

andIν,p coincides withJν,p in a neighborhood of8+. The same holds for Palais–Smale
sequences.

So we can look for positive min-max levels ofJν,p instead ofIν,p. This is much
more convenient, becauseJν,p is defined on (E+)N , with Jν,p = −1 on∂A+ . Jν,p is
invariant under theU(N ) action (1.15).

ForF a finite dimensional complex subspace ofE+, let

D(F ) =
{

8+ ∈ FN /Gram8+ ≤ 11
}
. (2.26)

We say that a homotopyh ∈ C
(

[0,1] × (E+)N , (E+)N
)

is “admissible ” ifh(λ, u · 8+) = u · h(λ,8+),

{∀u ∈ U(N )
∀(λ,8+) ∈ [0,1] × (E+)N

h(λ,8+) = 8+,∀λ ∈ [0,1], ∀8+ ∈ ∂A+.

(2.27)
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We define the class of sets

Q(F ) =
{
Q ⊂ (E+)N / there ish, admissible, such that

h(0, ·) = Id(E+)N , h(1, D(F )) = Q
}
.

(2.28)

Finally, let

cν,p(F ) = inf
Q∈Q(F )

max
8+∈Q

Jν,p(8+). (2.29)

We have

Lemma 2.6 (The min–max levels).Assume that

αmax(Z,3N − 1)<
2

π/2 + 2/π
, N < 2Z + 1.

For any integerj ≥ 0, there is a complex vector spaceFj ⊂ E+ with dimCFj = N + j,
and three constants

0< a(j) < a(j) < N, p(j) ≥ 1, such that

a(j) → N asj → ∞, and

a(j) ≤ cν,p(Fj) ≤ ā(j), (∀ν ∈ (0,1)) (∀p ≥ p(j)). (2.30)

Note that the action ofU(N ) is free on the set
{

8+ ∈ (E+)N / Jν,p(8+) > 0
}

.

Moreover,D(Fj) /U(N ) has dimensionmj = 2Nj+N2. It then follows from arguments
by Fang and Ghoussoub [19, 21], that there is a Palais–Smale sequence at the level
cν,p(Fj), with Morse-type information:

Lemma 2.7 (Palais–Smale sequences with bounded Morse index).Assume that

αmax(Z,3N − 1)<
2

π/2 + 2/π
, N < Z + 1.

TakeFj as in Lemma 2.6, andν ∈ (0,1), p ≥ p(j). Then there is a sequence8+
n ∈ A+,

with

I
′
ν,p(8+

n) → 0, Iν,p(8+
n) → cν,p(Fj),1(8+

n) > d(ν), (2.31)

and a sequenceδn > 0, δn → 0, such that the quadratic form

Qn(9+) = I
′′
ν,p(8+

n)
[
9+,9+

]
+ δn

N∑
k=1

||ψ+
k||2E ,

(
9+ ∈ (E+)N

)
(2.32)

has a negative space of dimension at mostmj = 2Nj +N2.
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Proof of Theorem 1.2.We now prove Theorem 1.2 as a direct consequence of Lemmas
2.1, 2.4, 2.6 and 2.7. Letj ≥ 0, p ≥ max(3, p(j)) be two integers. Takeν = 1

p ∈ (0,1).
There is a sequence8+

n satisfying (2.31–32) of Lemma 2.7 and such that8n = 8+
n +

h1/p,p(8+
n) satisfies (2.5). Then (2.21) of Lemma 2.4 holds, withm = mj . So, from

(b.1) of Lemma 2.1,8n converges, after extraction of a subsequence, to a critical point
8j,p of F1/p,p, with

F1/p,p(8j,p) = c1/p,p(Fj) , Gram8j,p = Diag(σp
1 , · · · , σp

N ),

0< σp
1 ≤ · · · ≤ σp

N < 1, h0 ≤ ep(σp
k) ≤ bmj < 1.

Sinceep converges uniformly to 0 on any interval [0, s], s < 1, we have lim
p→∞σ

p
1 = 1.

Applying (b.2) of Lemma 2.1 to the sequence8j,p, for j fixed, we find, after extraction
of a subsequence, a limit8j which satisfies the requirements (1.22–25) of Theorem 1.2.
�

In Sect. 3, we study the properties of the first derivative ofFν,p, and we prove Lemma
2.1.

In Sect. 4, we compute the Hessian ofFν,p, and we prove Lemmas 2.2 and 2.4.
In Sect. 5, we study the min-max argument, and prove Lemmas 2.5 and 2.6.

3. The First Derivative of Fν,p

Our first task is to prove property (P1) of Lemma 1.1. For this purpose, we writeH0 in
Fourier space:

Ĥ0ψ(ξ) =
( 3∑

k=1

αkξk + β
)
ψ̂(ξ) =

( 1 ξ · σ
ξ · σ −1

)
ψ̂(ξ) (3.1)

We denote bŷH0(ξ) the matrix
( 1 ξ.σ
ξ.σ −1

)
, with the standard notationξ · σ =

3∑
k=1

ξkσk.

Ĥ0(ξ) is a self-adjoint 4× 4 matrix, and we have:̂H0(ξ)2 = (1 + |ξ|2)11C4. Taking

3̂+(ξ) =
Ĥ0(ξ) +

√
1 + |ξ|211

2
√

1 + |ξ|2 =

=
1
2


1√

1+|ξ|2
+ 1 | ξ.σ√

1+|ξ|2

− − − − − | − − − − −
ξ.σ√
1+|ξ|2

| − 1√
1+|ξ|2

+ 1


(3.2)

and 

3̂−(ξ) =
−Ĥ0(ξ) +

√
1 + |ξ|211

2
√

1 + |ξ|2 =

=
1
2


− 1√

1+|ξ|2
+ 1 | − ξ.σ√

1+|ξ|2

− − − − − | − − − − −
− ξ.σ√

1+|ξ|2
| 1√

1+|ξ|2
+ 1

 ,

(3.3)
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we find that3̂+(ξ), 3̂−(ξ) are two orthogonal projectors of rank 2, with
3̂+Ĥ0(ξ) = Ĥ03̂

+(ξ) =
√

1 + |ξ|2 3̂+(ξ)

3̂−Ĥ0(ξ) = Ĥ03̂
−(ξ) = −√

1 + |ξ|2 3̂−(ξ)

3̂+3̂−(ξ) = 3̂−3̂+(ξ) = 0

3̂+(ξ) + 3̂−(ξ) = 11C4

. (3.4)

Finally, if we define3+,3− onL2(R3,C4) by{
3̂+ψ(ξ) = 3̂+(ξ)ψ̂(ξ)

3̂−ψ(ξ) = 3̂−(ξ)ψ̂(ξ)
(3.5)

we easily obtain (P1) of Lemma 1.1, as a consequence of (3.4).�
We now give a first consequence of inequality (1.7).

Lemma 3.1. Assume thatα max(Z,N ) < 2
π/2+2/π .

(i) There is a constanth0 > 0, such that for anyν ∈ [0,1], 8 ∈ EN such that
Gram(8) ≤ 11, andψ ∈ E,

h0||ψ||H1/2 ≤ ||Hν

8ψ||H−1/2. (3.6)

In other words,H
ν

8 is a self-adjoint isomorphism betweenH1/2 and its dualH−1/2,
whose inverse is bounded independently of8, ν.

(ii) Take ν ∈ [0,1], 8 ∈ EN with Gram(8) ≤ 11, andψ ∈ E, such thatH
ν

8ψ ∈
L2(R3,C4). Thenψ ∈ ⋂

1≤q<3/2W
1,q
loc (R3,C4).

(iii) Let νn ∈ [0,1], and8n ∈ EN with Gram(8n) ≤ 11. We assume that‖ϕk,n‖E

is a bounded sequence, fork = 1, · · · , N . Letψn ∈ E be such that the sequence
‖Hνn

8n
ψn‖L2 is bounded. Thenψn is precompact inH1/2

loc (R3,C4).

Proof. (i) Let ψ+ = 3+ψ, ψ− = 3−ψ. From inequality (1.7), we have
(ψ+,H

ν

8ψ
+)E×E∗ ≥ (1 − (π/2 + 2/π)αZ

2
)||ψ+||2E ,

−(ψ−, H
ν

8ψ
−)E×E∗ ≥ (1 − (π/2 + 2/π)αN

2
)||ψ−||2E

(3.7)

Let us chooseh0 = 1− (π/2+2/π)α max(Z,N )
2 . We get

‖ψ‖E‖Hν

8ψ‖H−1/2≥Re(ψ+ − ψ−, H
ν

8ψ)E×E∗

= (ψ+, H
ν

8ψ
+)E×E∗ − (ψ−, H

ν

8ψ
−)E×E∗ (3.8)

≥ h0‖ψ‖2
E ,

hence (3.6). Now,H
ν

8 is obviously self-adjoint fromH1/2 to its dualH−1/2, so it is
Fredholm of index 0. Equation (3.6) tells us thatH

ν

8 is injective, so it is an isomorphism,
and the norm of its inverse is less than or equal to 1/h0.

(ii) ψ and ϕ1, · · · , ϕN are in H1/2(R3,C4), so they are inLr(R3,C4), for
any 2 ≤ r < 3. Vν is in the Marcinkiewicz spaceM3, so (µ ∗ Vν)ψ is in any



514 M. J. Esteban, E. S´eré

Lq
loc(R3,C4),1 ≤ q < 3/2, and (ρ8 ∗Vν)ψ− ∫

R8(x, y)ψ(y)dy is in anyLq′
loc(R3,C4),

1 ≤ q′ < 3. As a consequence,

ψ = H−1
0

(
αZ(µ ∗ Vν)ψ − α(ρ8 ∗ Vν)ψ + α

∫
R8(x, y)ψ(y)dy +H

ν

8ψ

)
is in

⋂
1≤q<3/2W

1,q
loc (R3,C4).

(iii) From (i), ‖ψn‖E is a bounded sequence.‖ϕk,n‖E is also bounded.ψn andϕk,n

are thus precompact in anyLr
loc(R3,C4),2 ≤ r < 3. So, refining the arguments in the

proof of (ii), we see thatψn is precompact inH1/2
loc (R3,C4). �

We are now going to prove Lemma 2.1.

(a) First of all, (2.8) gives

H
νn

8n
ϕk,n = εk,nϕk,n + δk,n, (3.9)

with lim
n→∞||δk,n||H−1/2 = 0.As a consequence,

||Hνn

8n
ϕk,n||H−1/2 ≤ εk,n||ϕk,n||L2 + ||δk,n||H−1/2. (3.10)

Using (3.6) of Lemma 3.1, we get

h0||ϕk,n||E ≤ εk,n||ϕk,n||L2 + ||δk,n||H−1/2. (3.11)

But we assume (2.9), i.e. lim inf||ϕ1,n||L2 > 0. So we must have lim infε1,n ≥ h0, and
(2.10) follows from (2.8) (2.9), with the sameh0 as in Lemma 3.1.

(b) Under the additional assumption (2.11), i.e. lim supεN,n < 1, let us study the
convergence ofϕk,n for theH1/2 topology. After extraction of a subsequence, we may
impose

εk,n −→
n→∞ εk ∈ [h0,1) and νn ν ∈ [0,1].

‖εk,nϕk,n‖L2 is a bounded sequence. So (3.11) implies that‖ϕk,n‖E is bounded uni-
formly in n.

Letχk,n ∈ H1/2 be defined byHνn
8n
χn = εk,nϕk,n. By (iii) of Lemma 3.1, we may

impose, after extraction of a subsequence,χk,n −→
n→∞ ϕk in H1/2

loc (R3,C4).

On the other hand, we may write

H
νn

8n
(ϕk,n − χk,n) = δk,n −→

n→∞ 0 in H−1/2(R3,C4).

So1k,n = ϕk,n − χk,n → 0 in H1/2(R3,C4), andϕk,n = χk,n + 1k,n −→
n→∞ ϕk, in

H
1/2
loc (R3,C4).

Then8 = (ϕ1, . . . , ϕN ) is a strong solution, in
(
E ∩ ⋂

1≤q<3/2W
1,q
loc (R3,C4)

)N
, of

H
ν

8ϕk = εkϕk, (∀k).

Our goal is to prove thatϕk,n converges toϕk in H1/2(R3,C4). Letψk,n = ϕk,n − ϕk.
Let us denote

ρ̃n =
∑

k

|ψk,n(x)|2, R̃n(x, y) =
∑

k

ψk,n(y)∗ ⊗ ψk,n(x). (3.12)
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Forψ ∈ H1/2(R3,C4), let

Lk,nψ = H0ψ + α
(
ρ̃n ∗ Vνn

)
ψ

− α

∫
R̃n(x, y)ψ(y)Vνn

(x− y)dy − εkψ. (3.13)

We have
lim

n→∞||Lk,nψk,n||H−1/2 = 0.

Now, from inequality (1.7) and our assumptions, it is easy to see that the map

ψ− ∈ E− 7→ Fk,n(ψ−) =
(
ψk,n + ψ−, Lk,n(ψk,n + ψ−)

)
L2

is strictly concave. So, denotingψ±
k,n = 3±ψk,n,

Fk,n(−ψ−
k,n) ≤ Fk,n(0) − F

′
k,n(0).ψ−

k,n ≤ 3||ψk,n||
E
||Lk,nψk,n||H−1/2,

(3.14)

hence lim sup
n→∞

Fk,n(−ψ−
k,n) ≤ 0. But if we defineδ = 1− εN , we have

Fk,n(−ψ−
k,n) =

(
ψ+

k,n, Lk,nψ
+
k,n

)
L2

≥
(
ψ+

k,n, δ
√

1 − 1ψ+
k,n

)
L2
. (3.15)

As a consequence,||ψ+
k,n||

E
→ 0 asn → ∞.

So,||Lk,nψ
−
k,n||H−1/2 −→

n→∞ 0 and lim
n→∞

(
ψ−

k,n, Lk,nψ
−
k,n

)
L2

= 0. But from inequal-

ity (1.7), (
ψ−

k,n, Lk,nψ
−
k,n

)
L2

≤ −
(

1 − αN (π/2 + 2/π)
2

)
||ψ−

k,n||2E . (3.16)

So||ψ−
k,n||E 0, and||ψk,n||E −→ 0 asn → ∞.

We have thus proved that||ϕk,n − ϕk||E −→ 0 asn → ∞.

(b.1) We now assume thatpn = p for n large. Being a limit of8n in the strong
EN -topology,8 is obviously a critical point ofFν,p inA, and from (2.9), Gram8 > 0.
We also have Gram8 = Diag(σ1, . . . , σN ), 0< σ1 ≤ . . . . ≤ σN < 1. From (2.10),

ep(σ1) =
pσp−1

1 − (p− 1)σp
1

(1 − σ1)2
≥ h0.

There is a unique numbercp ∈ (0,1) such thatep(cp) = h0, and we have lim
p→∞cp = 1.

Sinceep is increasing on (0,1), we get

cp11 ≤ Gram8 < 11.

(b.2) Finally, let us assume thatνn → 0 andpn → ∞. Then

1> εk,n ≥ cpn
−→

n→∞ 1,
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so 8 ∈ 6. Obviously,8 satisfies (2.12), so it is a critical point ofE|6. Moreover,
E(8) = lim

n→∞E(8n).

Now,πpn
(8n) =

∑
k

θpn
(σk,n), with θp(x) = xp

1−x .

We recall thatθ
′
pn

(σk,n) = εk,n < 1. But
θ

′
p(x)

θp(x)
=
p

x
+

1
1 − x

≥ p, ∀x ∈ (0,1) . So,

θpn (σk,n) <
1
pn

−→
n→∞ 0. As a consequence,πpn (8n) → 0 and

E(8) = lim
n→∞ Fνn,pn

(8n).

This ends the proof of Lemma 2.1. �

4. The Hessian ofFν,p

We shall use the following formula for the second derivative of the DF energy:

1
2

E ′′
ν (8)

[
9,9

]
=

∑
`

||ψ+
` ||2E − ||ψ−

` ||2E − αZ
(
ψ`, (µ ∗ Vν(x))ψ`

)
L2

+ K1 − K2 + K3 − K4 + K5, (4.1)

where

K1 = α
∫∫

R3×R3

Vν(x− y)ρ9(x)ρ8(y) (4.2)

ρ9(x) =
∑

`

|ψ`(x)|2, ρ8(y) =
∑
m

|ϕm(y)|2,

K2 = α
∑
` 6=m

∫∫
Vν(x− y)

(
ψ`(y), ϕm(y)

)(
ϕm(x), ψ`(x)

)
+ α

∑
`

∫∫
Vν(x− y)Im

(
ϕ`(x), ψ`(x)

)
Im (ϕ`(y), ψ`(y)) ,

(4.3)

K3 = α
∫∫

k(x)k(y)Vν(x− y), k(x) =
∑

`

Re
(
ϕ`(x), ψ`(x)

)
, (4.4)

K4 = 2α
∫∫

Vν(x− y)tr
(
K(x, y)K(y, x)

)
, (4.5)

K(x, y) =
1
2

∑
`

(
ϕ∗

` (y) ⊗ ψ`(x) + ψ∗
` (y) ⊗ ϕ`(x)

)
,

K5 = α
∑
` 6=m

∫∫
Re

(
ϕ`(x), ψ`(x)

)
Re

(
ϕm(y), ψm(y)

)
Vν(x− y). (4.6)

Eν has a very useful concavity property:
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Lemma 4.1. If (3N −1)α < 2
π/2+2/π , then for any8 ∈ A, and any9− ∈ (E−)N , ν ∈

[0,1],

E ′′
ν (8)

[
9−,9−

]
≤ −s

N∑
k=1

||ψ−
k ||2E , (4.7)

wheres > 0 is a constant independent of8,9, ν.

Proof of Lemma 4.1.We obviously have (ψ`, (µ ∗ Vν)ψ`)L2 > 0. The Fourier transform
of Vν is a positive measure, so∫∫

Vν(x− y)f (x)f (y)∗ ≥ 0, ∀f ∈ L1 ∩ L3/2(R3,C). (4.8)

As a consequence,K2 ≥ 0.
Now,K(y, x) = K(x, y)∗, so that

tr
(
K(x, y)K(y, x)

)
≥ 0 ∀x, y,

henceK4 ≥ 0. We thus have

1
2
E ′′

(8)
[
9,9

]
≤

∑
`

||ψ+
` ||2E − ||ψ−

` ||2E + K1 + K3 + K5. (4.9)

Now, take8 ∈ A and9− ∈ (E−)N . Form = 1, . . . , N , we have||ϕm||L2 ≤ 1. So,
using inequality (1.7), we easily get

K1 ≤ (π/2 + 2/π)αN
2

∑
`

||ψ−
` ||2E , (4.10)

and

K5 ≤ (π/2 + 2/π)α(N − 1)
2

∑
`

||ψ−
` ||2E . (4.11)

By the Cauchy–Schwarz inequality,

K3 ≤ K1. (4.12)

Finally, for any8 ∈ A and9− ∈
(
E−

)N

,

1
2
E ′′

ν (8)
[
9−,9−

]
≤ −

∑
`

||ψ−
` ||2E +

(π/2 + 2/π)α
2

(3N − 1)
∑

`

||ψ−
` ||2E

≤ −s
∑

`

||ψ−
` ||2E , (4.13)

with s = 1− (π/2+2/π)α
2 (3N − 1) . Note thats > 0 provided

α(3N − 1)<
2

π/2 + 2/π
. (4.14)
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This proves Lemma 4.1. �
We now compute the second derivative of the penalization termπp.We writeπp(8) =

Sp ◦ Gram(8), with Sp(Q) = tr
[
Qp(1 −Q)−1

]
=

∑
n≥p

Tn(Q),

Tn(Q) = tr(Qn).
(4.15)

Sinceπp is U(N ) invariant, we just need an expression ofπ
′′
p (8) when8 ∈ O, i.e.

Q = Gram8 = Diag(σ1, . . . , σN ),0< σ1 ≤ · · · ≤ σN < 1.

For any self-adjoint matrixh we have

T
′
n(Q) · h =

∑
α+β=n−1

tr(QαhQβ) = ntr(Qn−1h) = n
∑

k

σn−1
k hkk, (4.16)

and

T
′′
n (Q) ·

[
h, h

]
= n

∑
a+b=n−2

tr(QahQbh) = n
∑
k,`

( ∑
a+b=n−2

σa
kσ

b
`

)
|hk`|2. (4.17)

Summing up, we get

S
′
p(Q) · h =

∑
k

ep(σk)hkk, (4.18)

S
′′
p (Q) ·

[
h, h

]
=

∑
k

e
′
p(σk)|hkk|2 +

∑
k 6=`

ep(σk) − ep(σ`)
σk − σ`

|hk`|2, (4.19)

with ep(t) =
(

tp

1−t

)′

= ptp−1−(p−1)tp

(1−t)2 . Finally we obtain

π
′
p(8) · ψ = 2

∑
k

ep(σk)Re(8k, ψk), (4.20)

π
′′
p (8).

[
9,9

]
=

∑
k

2ep(σk)||ψk||2L2 + e
′
p(σk)|2Re(ϕk, ψk)L2|2

+
∑
k 6=`

ep(σk) − ep(σ`)
σk − σ`

∣∣∣∣(ϕk, ψ`)L2 + (ψk, ϕ`)L2

∣∣∣∣2

.
(4.21)

The functionep is positive and strictly increasing on (0,1). As a consequence, we have

Lemma 4.2. For anyp ≥ 1, the functionalπp is strictly convex on

A =
{

8 ∈ EN /0< Gram8 < 11
}
.



Dirac–Fock Equations for Atoms and Molecules 519

Lemma 2.2 is an immediate consequence of Lemmas 4.1 and 4.2.
Our goal is now to prove Lemma 2.4. We start with an upper bound on the sec-

ond derivativeI
′′
ν,p(8+)

[
9+,9+

]
, at a point8+ ∈ A+, in a direction9+ ∈ (E+)N ∩[

H1(R3,C4)
]N

, under the orthogonality conditions (ϕ+
k, ψ

+
` )L2 = 0,∀k, `.

Lemma 4.3. Assume thatα(3N − 1) < 2
π/2+2/π . Takeν ∈ (0,1) andp ≥ 2. Consider

8+ ∈ A+ such that

Gram(8) = Diag(σ1, . . . , σN ),0< σ1 ≤ · · · ≤ σN < 1, (4.22)

where8 = 8+ + hν,p(8+). Let9+ ∈ (
E+ ∩H1(R3,C4)

)N
satisfy

(ϕ+
k, ψ

+
` )L2 = 0, ∀k, `. (4.23)

Then the following inequality holds:

1
2
I

′′
ν,p(8+)

[
9+,9+

]
≤ 1

2
E ′′

ν (8)
[
9+,9+

]
−

∑
k

ep(σk)‖ψ+
k‖2

L2+

+ c
∑

k

‖∇ψ+
k‖2

L2. (4.24)

Here,c depends only on(Z,N ).

Proof. Take8+ ∈ A+, 9+ ∈ (E+)N ∩
[
H1(R3,C4)

]N

, and denote

8− = hν,p(8+),9− = h
′
ν,p(8+)9+,8 = 8+ + 8−,9 = 9+ + 9−. (4.25)

We may write

1
2
I

′′
ν,p(8+)

[
9+,9+

]
=

1
2
F ′′

ν,p(8)
[
9,9

]
. (4.26)

If we impose the condition (4.23):
(
ϕ+

k, ψ
+
`

)
L2

= 0 ∀k, `, then, from (4.21), we see

that, for anyχ− ∈ (E−)N ,

π′′
p (8)

[
9+ + χ−,9+ + χ−

]
=

∑
k

2ep(σk)‖ψ+
k‖2

L2 + π
′′
p (8)

[
χ−, χ−

]
. (4.27)

As a consequence,

1
2
F ′′

ν,p(8)
[
9,9

]
=

1
2
E ′′

ν (8)
[
9+,9+

]
−

∑
k

ep(σk)‖ψ+
k‖2

L2 + (4.28)

+ E ′′
ν (8)

[
9+,9−

]
+

1
2
F ′′

ν,p(8)
[
9−,9−

]
.

Now, 9− = h
′
ν,p(8)9+ is solution of

F ′′
ν,p(8)

[
9+, χ−

]
+ F ′′

ν,p(8)
[
9−, χ−

]
= 0,∀χ− ∈ (E−)N . (4.29)
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Note thatF ′′
ν,p(8)

[
9+, χ−

]
= E ′′

ν

[
9+, χ−

]
, from (4.21) and (4.27). So, applying (4.29)

to χ− = 9−, and using Lemma 2.2, we get

s
∑

k

‖ψ−
k ‖2

E ≤
∣∣∣E ′′

ν (8)
[
9+,9−

]∣∣∣. (4.30)

From Hardy’s inequality (1.9), we have∣∣∣E ′′
ν (8)

[
9+,9−

]∣∣∣ ≤ C(N,Z)
[∑

k

||∇ψ+
k||2L2

]1/2[∑
k

||ψ−
k ||2L2

]1/2
. (4.31)

Combining (4.30) (4.31), we get∑
k

‖ψ−
k ‖2

E ≤ C ′ ∑
k

‖∇ψ+
k‖2

L2, (4.32)

and finally

1
2
F ′′

ν,p(8)
[
9,9

]
≤ 1

2
E ′′

ν (8)
[
9+,9+

]
−

∑
k

ep(σk)‖ψ+
k‖2

L2 +

+c̄
∑

k

‖∇ψ+
k‖2

L2. (4.33)

Now, combining (4.26), (4.33), one easily gets (4.24), and the lemma is proved.�

The next lemma gives an upper estimate onE ′′
ν (8)

[
9,9

]
for 9 of the form (0, . . . ,0, ψ),

ψ ∈ E, radial. It is inspired by [36, 39].

Lemma 4.4. For any8 ∈ A, ν ∈ (0,1) andψ ∈ E, of the formψ(x) = f (|x|), taking
9(x) = (0, . . . ,0, ψ(x)), we have

1
2

E ′′
ν (8)

[
9,9

]
≤

(
ψ,H0ψ

)
L2

+ α(N − 1)
(
ψ, Vνψ

)
L2

− αZ
(
ψ, (µ ∗ Vν)ψ

)
L2
.

(4.34)

Proof. We may write

Eν(ϕ1 . . . ϕN ) = Eν

(
ϕ1 . . . ϕN−1

)
+

(
ϕN , H0ϕN

)
L2

− αZ
(
ϕN , (µ ∗ Vν)ϕN

)
L2

+α
∫∫

Vν(x− y)
N−1∑
k=1

|ϕk(y)|2|ϕN (x)|2 (4.35)

−α
∫∫

Vν(x− y)
N−1∑
k=1

(
ϕk(y), ϕN (y)

)(
ϕN (x), ϕk(x)

)
.

SoEν is a quadratic form inϕN , whenϕ1, . . . , ϕN−1 are fixed. Note that∫∫
Vν(x− y)

(
ϕk(y), ψ(y)

)(
ψ(x), ϕk(x)

)
is nonnegative, from (4.8). Hence,
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1
2
E ′′

ν (8)
[
9,9

]
≤

(
ψ,H0ψ

)
L2

− αZ
(
ψ, (µ ∗ Vν)ψ

)
L2

+α
∫∫

Vν(x− y)
N−1∑
k=1

|ϕk(y)|2|ψ(x)|2, (4.36)

for any9 =
(

0, . . . ,0, ψ), ψ ∈ E.

Now, if ρ ∈ L1(R3,R+) is radial, then an easy computation shows that∫
R3

ρ(x)Vν(x− x0)dx ≤
∫
R3

ρ(x)Vν(x)dx, ∀x0 ∈ R3. (4.37)

As a consequence, ifψ(x) = f (|x|), then∫
R3

dy
N−1∑
k=1

|ϕk(y)|2
∫
R3

|ψ(x)|2Vν(x− y)dx

≤
∫
R3

dy
N−1∑
k=1

|ϕk(y)|2
∫
R3

|ψ(x)|2Vν(x)dx = (4.38)

= (N − 1)
(
ψ, Vνψ

)
L2
.

Lemma 4.4 follows directly from (4.36) and (4.38). �

We now give an upper bound onI
′′
ν,p · (0, . . . ,0, ψ+)2 for ψ+ in a suitably chosen

finite dimensional subspace ofE+.

Lemma 4.5. Assume thatα(3N − 1) < 2
π/2+2/π , N < Z + 1. Then, for anym ≥ 0,

there is a real finite dimensional subspace ofE+ denotedXm, with dimR Xm = m + 1
and a constantbm ∈ (0,1) such that

1
2
I ′′
ν,p(8+).

(
0, . . . ,0, ψ+

)2
≤

[
bm − ep(σN )

]
‖ψ+‖2

E (4.39)

for any ν ∈ (0,1), p ≥ 1, ψ+ ∈ Xm, and any8+ ∈ A+ such thatGram 8 =
Diag(σ1, . . . , σN ), 0< σ1 ≤ · · · ≤ σN < 1, with the notation8 = 8+ + hν,p(8+).

Proof. Let d be a positive integer. We choose ad-dimensional subspace of

H1
({

[0,∞), r2dr
}
,R

)
,

denotedVd. To f (r) ∈ Vd, andλ > 0, we associate

ψ(x) =

f (|x|/λ)
0
0
0

 . (4.40)

Obviously,ψ ∈ H1(R3,C4). We callWd,λ the d-dimensional real vector space of
functionsψ of the form (4.54), withλ fixed andf ∈ Vd arbitrary.
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It is easy to see that there are two constants 0< c∗(d) < c∗(d) < ∞ such that, for
anyψ ∈ Wd,λ andλ large,

(H0ψ,ψ) = ‖ψ‖2
L2, (4.41)

‖∇ψ‖2
L2 ≤ c∗

λ2
‖ψ‖2

L2, (4.42)(
ψ, Vνψ

)
L2

≥ c∗
λ

‖ψ‖2
L2,∀ν ∈ [0,1], (4.43)

‖3−ψ‖2
L2 ≤ c∗

λ2
‖ψ‖2

L2, (4.44)

((µ ∗ Vν)ψ,ψ)L2 ≥ (Vνψ,ψ)L2 − o

(
1
λ

)
||ψ||2L2,∀ν ∈ [0,1].

(4.45)

Inequalities (4.42), (4.43) and (4.45) follow from scaling arguments, and (4.44) is a
consequence of formula (3.3).
Now, suppose thatψ ∈ Wd,λ satisfies(

ϕ+
k, ψ

)
L2

= 0, ∀k, (4.46)

for some8+ = (ϕ+
1, . . . , ϕ

+
N ) ∈ A+, such that Gram8 = (σ1, . . . , σn), 0< σ1 ≤ · · · ≤

σN < 1, with 8 = 8+ + hν,p(8+). Let 9+ = (0, . . . ,3+ψ). From Lemma 4.3, we have,
for anyν ∈ (0,1), p ≥ 1,

1
2
I

′′
ν,p(8+)

[
9+,9+

]
≤ 1

2
E ′′

ν (8)
[
9+,9+

]
− ep(σN )‖3+ψ‖2

L2 +

+ c̄‖∇ψ‖2
L2.

(4.47)

From Lemma 2.2,

1
2
E ′′

ν (8)
[
9+,9+

]
≤ 1

2
E ′′

ν (8)
[
9,9

]
− E ′′

ν (8)
[
9,9−

]
, (4.48)

where9 = (0, . . . ,0, ψ),9− = (0, . . . ,0,3−ψ). But from Hardy’s inequality (1.9),∣∣∣∣E ′′
ν (8)

[
9,9−

]∣∣∣∣ ≤ c‖∇ψ‖L2‖3−ψ‖L2, (4.49)

for somec > 0 which depends only onN,Z.
Moreover, using Lemma 4.4, we get

1
2
E ′′

ν (8)
[
9,9

]
≤

(
ψ,H0ψ

)
+ α(N−1)(ψ, Vνψ)L2 − αZ ((µ ∗ Vν)ψ,ψ)L2.

(4.50)

Finally, combining (4.41, 4.42,. . . , 4.50), we get

1
2
I

′′
ν,p(8)

[
9+,9+

]
≤

(
1 − (Z −N + 1)

αc∗ + o(1)
λ

)
‖ψ‖2

L2 − ep(σN )‖3+ψ‖2
L2

+
(c + c̄)c∗

λ2
‖ψ‖2

L2

≤
(

1 − αc∗(Z −N + 1)
2λ

− ep(σN )
)
‖3+ψ‖2

E

(4.51)



Dirac–Fock Equations for Atoms and Molecules 523

for λ = λ(d) large enough.

Now, takem ≥ 0. ChooseXm as an (m+1)-dimensional subspace of3+
(
Wd,λ(d) ∩{

ϕ+
1, . . . , ϕ

+
N

}⊥)
, whered = m + 2N + 1 (such a space always exists). Takebm =

1− αc∗(Z −N + 1)
2λ(d)

. Then it is easy to check thatXm satisfies (4.39), and Lemma 4.5

is proved. �

Lemma 2.4 is now an immediate consequence of Lemma 4.5.

5. The Min–Max Argument

We start with a proof of Lemma 2.5. We need the following result:

Lemma 5.1. Assume thatα(3N − 1) < 2
π/2+2/π . Takeν ∈ (0,1). There is a constant

C(ν) > 0 such that, for anyp ≥ 1 and8+ ∈ A+,

σ1(8+) ≤ C(ν)σ+
1(8+). (5.1)

Here, σ+
1(8+) is the smallest eigenvalue ofGram8+, andσ1(8+) is the smallest eigen-

value ofGram8, where8 = 8+ + hν,p(8+).

Remark.The constantC depends onν. We have been unable to prove thatC remains
bounded asν tends to 0.

Proof of Lemma 5.1.Take8+ ∈ A+, i.e.8+ ∈ (E+)N with 0< Gram(8+) < 11. Using
theU(N ) invariance, we just have to prove the lemma when

Gram(8+) = Diag(σ+
1 , . . . , σ

+
N ), 0< σ+

1 ≤ · · · ≤ σ+
N < 1. (5.2)

We denote

hν,p(8+) = 8− = (ϕ−
1 , . . . , ϕ

−
N ), 8 = 8+ + 8− = (ϕ1, . . . , ϕN ).

We introduce the following functional onE−:

F (ψ−) =
(
ϕ+

1 + ψ−, Hν
81

(ϕ+
1 + ψ−)

)
L2

− πp(ϕ+
1 + ψ−, ϕ2, . . . , ϕN ). (5.3)

Here,81 = (ϕ2, . . . , ϕN ) ∈ EN−1, and

Hν
81
ψ =

(
H0 − αZ (µ ∗ Vν)

)
ψ

+α
N∑

k=2

∫∫
Vν(x− y)

(
|ϕk(y)|2ψ(x) − (ϕk(y), ψ(y))ϕk(x)

)
dy.

(5.4)

We have extendedπp toEN , with values inR, by definingπp(8) = +∞when11−Gram8

is not positive definite.F is thus well-defined onE− with values inR, andF
′′
(ψ−)

exists whenF (ψ−) > −∞. From Lemma 2.2,F is strictly concave, and

F
′′
(ψ−)

[
χ−, χ−] ≤ −s‖χ−‖2

E , (5.5)
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for anyχ− ∈ E−, andψ− ∈ E− such thatF (ψ−) > −∞. We have

Fν,p

(
ϕ+

1 + ψ−, ϕ2, . . . , ϕN

)
= F (ψ−) + Eν(81), (5.6)

so ϕ−
1 is the unique maximizer ofF on E−. From (5.2), (ϕ+

1, ϕk)L2 = 0, ∀k ≥ 2.
Therefore, for anyχ− ∈ E−,

π
′
p

(
ϕ+

1, ϕ2, . . . , ϕN

) · χ− =

=
∑
n≥p

2ntr




(σ+
1)n−10 . . . 0

0
...

(
Gram81)n−1

0




0 Re(χ−, ϕ−
2 ) . . . Re(χ−, ϕ−

N )
Re(ϕ−

2 , χ
−)

... 0
Re(ϕ−

N , χ
−)




= 0.

As a consequence,

F ′(0)χ− = 2Re
(
χ−, Hν

81
ϕ+

1

)
. (5.7)

So there is a constantK1(ν) > 0 such that

|F ′(0)χ−| ≤ K1(ν)‖ϕ+
1‖L2‖χ−‖E ,∀χ− ∈ E−. (5.8)

But (5.5) implies that

F (ϕ−
1 ) ≤ F (0) +F ′(0)ϕ−

1 − s‖ϕ−
1 ‖2

E . (5.9)

SinceF (ϕ−
1 ) ≥ F (0), (5.8) (5.9) give

‖ϕ−
1 ‖E ≤ K2(ν)‖ϕ+

1‖L2. (5.10)

Finally, (5.10) gives

σ1(8+) = inf
ξ∈ C N

||ξ||=1

∥∥∥∥ N∑
k=1

ξkϕk

∥∥∥∥2

L2

≤ ‖ϕ1‖2
L2 ≤ C(ν)‖ϕ+

1‖2
L2 = C(ν)σ+

1(8+). (5.11)

Lemma 5.1 is proved. �
We are now ready to prove Lemma 2.5.
Using once again theU(N ) invariance, we just have to consider8+ ∈ A+ such that,

denoting8 = 8+ + 8−,8− = hν,p(8+), the following holds:

Gram(8) = Diag(σ1, . . . , σN ),0< σ1 ≤ · · · ≤ σN < 1. (5.12)

We want to findX ∈ (E+)N satisfying (2.22), assuming that1(8+) = det Gram8+

is in [d(ν),2d(ν)]. We choose

X = (ϕ+
1,0, . . . ,0). (5.13)

Obviously,

1′(8+) ·X = 21(8+) > 0. (5.14)
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SinceF ′
ν,p(8+) · (χ−,0, . . . ,0) = 0,∀χ− ∈ E−, we may write

I
′
ν,p(8+) ·X = F ′

ν,p(8) · (ϕ+
1 − ϕ−

1 ,0, . . . ,0) (5.15)

= 2
(
ϕ+

1, H
ν
81
ϕ+

1

)
L2

− 2
(
ϕ−

1 , H
ν
81
ϕ−

1

)
L2

− 2ep(σ1)
(
||ϕ+

1||2L2 − ||ϕ−
1 ||2L2

)
.

From inequality (1.7), we have{
(ϕ+, Hν

81
ϕ+)L2 ≥ (1 − (π/2+2/π)αZ

2 )||ϕ+||2E ,∀ϕ+ ∈ E+,

−(ϕ−, Hν
81
ϕ−)L2 ≥ (1 − (π/2+2/π)α(N−1)

2 )||ϕ−||2E ,∀ϕ− ∈ E−.
(5.16)

As a consequence,

I
′
ν,p(8+) ·X ≥ 2

[
1 − (π/2 + 2/π)α max(Z,N − 1)

2
− ep(σ1)

]
‖ϕ+

1‖2
E . (5.17)

But ep(x) =
xp

1 − x
≤ x

1 − x
= e1(x) is small whenx > 0 is small. Moreover, by

assumption,(π/2+2/π) α max(Z,N−1)
2 < 1.

From Lemma 5.1,

1(8+) ≤ σ1(8+) ≤ C(ν)σ+
1(8+) ≤ C(ν)

[
1(8+)

] 1
N

. (5.18)

Lemma 2.5 is now an immediate consequence of (5.14), (5.17) and (5.18).
Our goal now is to prove Lemma 2.6. We start with a “linear” result that will give

us the lower bounda(j) in (2.30).

Lemma 5.2. Assume thatαZ < 2
π/2+2/π . Then there is a nondecreasing sequence

{λj , j ≥ 0} in (0,1), with lim
j→∞

λj = 1, and a sequence{Gj , j ≥ 0} of complex vector

subspaces ofE+, with dimC(E+/Gj) = j, and(
ϕ+, (H0 − αZ (µ ∗ V ))ϕ+

)
L2

≥ λj‖ϕ+‖2
L2, ∀ϕ+ ∈ Gj . (5.19)

Proof. The arguments below are classical (see [46], 112-117 for a similar situation).
The operatorT = 3+ (H0 − αZ (µ ∗ V )) 3+, defined as a Friedrichs extension, is self-
adjoint on3+(L2) and has essential spectrumσess(T ) = [1,+∞). Indeed, the arguments
used in [18] to prove the result whenµ is a Dirac mass, extend to the more general case.
From (1.7),σ(T ) ⊂ (0,∞). As a consequence,σ(T )∩ (−∞,1) consists only of positive
eigenvalues with finite multiplicity. One can easily prove, using the Rayleigh quotients,
thatσ(T ) ∩ (−∞,1) = {λj , j ≥ 0}, with 0 < λ0 ≤ · · · ≤ λj ≤ . . . , lim

j→∞
λj = 1. Let

Gj be the orthogonal space, for theL2-hermitian product, of

Kj =
⊕

k≤j−1

Ker(T − λkIE+). (5.20)

Obviously,E+/Gj ≈ Kj has complex dimensionj, and (5.19) holds. �

We now construct the spaceFj , and we find the upper bound ¯a(j).
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Lemma 5.3. Assume thatα(3N − 1) < 2
π/2+2/π , N < 2Z + 1. There is a sequence

{ā(j), j ≥ 0} in (0, N ) and a sequence{Fj , j ≥ 0} of complex vector subspaces ofE+,
with dimCFj = j +N , and

Iν,p(8+) ≤ ā(j),∀8+ ∈
(
Fj

)N

∩A+. (5.21)

Proof. Our arguments will be similar to those in the proof of Lemma 2.4, but simpler.
We consider the spaceWd,λ of functionsψ of the form (4.40), withλ fixed andf ∈ Vd

arbitrary. We denoteW +
d,λ = 3+(Wd,λ). From (4.44), forλ large enough,

dimCW
+
d,λ = dimCWd,λ = d. (5.22)

From (4.37), for any8 ∈
(
Wd,λ

)N

, such that Gram8 ≤ 2
(
δk`

)
,

Eν(8) =
∑

k

(ϕk, H0ϕk) − αZ (ϕk, (µ ∗ Vν)ϕk)L2

+
α

2

∑
k 6=`

∫∫
Vν(x− y)

{
|ϕk(x)|2|ϕ`(y)|2 (5.23)

−(
ϕk(x), ϕ`(x)

)(
ϕ`(y), ϕk(y)

)}
≤

∑
k

(
ϕk,

(
H0 +

α

2
(N − 1)Vν

)
ϕk

)
L2

−
∑

k

αZ (ϕk, (µ ∗ Vν)ϕk)L2 .

Moreover, using inequalities (1.7) and (1.9), one can find two constantsa, b > 0 such
that

|E ′
ν(8).9−| ≤ a

(∑
k

‖∇ϕk‖2
L2

)1/2(∑
k

‖ψ−
k ‖2

L2

)1/2
+

+b
(∑

k

‖ϕ−
k ‖2

E

)1/2(∑
k

‖ψ−
k ‖2

E

)1/2
, (5.24)

whereϕ+
k = 3+ϕk, ϕ

−
k = 3−ϕk, and9− ∈ (E−)N is arbitrary. Now, we take8+ =

(ϕ+
1, . . . , ϕ

+
N ) ∈ (W +

λ,d)N ∩A+.
We recall thatA+ = {8+ ∈ (E+)N /0 < Gram8+ < 11}. From (4.44), forλ large

enough, there is8 ∈ (Wλ,d)N , such that3+ϕk = ϕ+
k (∀k) and Gram(8) ≤ 2(δk,`).

Sinceπp ≥ 0, we may write

Iν,p(8+) ≤ Eν

(
8+ + hν,p(8+)

)
≤ sup

9−∈(E−)N
Eν(8 + 9−). (5.25)

Combining (5.24), (5.25) and Lemma 4.1, we get, for somea′ > 0,

Iν,p(8+) ≤ Eν(8) + a′ ∑
k

‖∇ϕk‖2
L2 + ‖3−ϕk‖2

E . (5.26)

Finally, combining (5.23), (5.26) and the estimates (4.41),. . . , (4.45), we find,
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Iν,p(8+) ≤ N
(

1 − α(2Z −N + 1)
c∗
2λ

+ o

(
1
λ

))
. (5.27)

We takeλ̄(d) large enough, andFj = W +
j+N,λ̄(j+N ). Then (5.27) gives

Iν,p(8+) ≤ ā(j) < N, ∀8+ ∈ (Fj)N ∩A+. (5.28)

From (5.22), dimCFj = j +N , so Lemma 5.3 is proved. �

We are now ready to prove Lemma 2.6.
We takeFj as in Lemma 5.3. Obviously,

cν,p(Fj) = infQ∈Q(Fj ) max8+∈Q Jν,p(8+) ≤
≤ max8+∈(Fj )N ∩A+ Jν,p(8+) ≤ ā(j), (5.29)

where for anyF , the class of setsQ(F ) is defined in Section 2, formula (2.28). To find
a lower estimate oncν,p(Fj), we define

Sj =
{

8+ ∈ (Gj)N /Gram8+ =
j + 1
j + 2

11
}
. (5.30)

Take8+ ∈ Sj . From Lemma 5.2, we have

Eν(8+) ≥
∑

k

(
ϕk, (H0 − αZ (µ ∗ Vν))ϕk

)
≥ N

j + 1
j + 2

λj . (5.31)

So there isp(j) such that, ifp ≥ p(j), then

πp

(j + 1
j + 2

11
)

= N (j + 2)
(j + 1
j + 2

)p

≤ 1
j + 2

Eν(8+).

Together with (5.31), this gives

Iν,p(8+) ≥ Eν(8+) − πp(8+) ≥ N

(
j + 1
j + 2

)2

λj . (5.32)

We choose a(j) = N
(

j+1
j+2

)2
λj . Obviously, lim

j→∞
a(j) = N , and Lemma 2.6 is an imme-

diate consequence of the following intersection result:

Lemma 5.4. For anyQ ∈ Q(Fj), the intersectionQ ∩ Sj is non-empty.

Proof of Lemma 5.4 (hence of Lemma 2.6).The quotient setSj/U(N ) is a submanifold
of the Hilbert manifoldA+/U(N ), and

codimR

(
Sj/U(N ), A+/U(N )

)
= codimR

(
Sj , (E

+)N
)

=

N2 + codimR

(
(Gj)N , (E+)N

)
= N

(
2j +N

)
. (5.33)

Takeε > 0 small, and define

Mj(ε) =
{

8+ ∈ (Fj)N ∩A+/det(Gram8+)det(11 − Gram8+) ≥ ε
}
. (5.34)
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Mj is a manifold with boundary, and

dimR Mj = dimR(Fj)N = 2N (j +N ).

If h is ”admissible”, then, from (2.27) and by continuity ofh, there isεh > 0 such that

h
(

[0,1] × ∂Mj(εh)
)

∩ Sj = ∅. (5.35)

Now, Mj/U(N ) is a submanifold (with boundary) ofA+/U(N ), and

dimRMj/U(N ) = dimRMj − dimRU(N )

= N (2j +N ) = codimR

(
Sj/U(N ), A+/U(N )

)
. (5.36)

Perturbing slightlyFj if necessary, we may impose thatFj andGj intersect transversally.
Their intersection is then a complex subspaceHj ofE+, of dimensionN , andSj/U(N )∩
Mj/U(N ) is a transverse intersection of cardinal 1. Its unique element is theU(N ) class

of bases (ϕ+
1, . . . , ϕ

+
N ) ofHj , such that Gram (ϕ+

1, . . . , ϕ
+
N ) =

j + 1
j + 2

11. So the intersection

index ofSj/U(N ) andMj/U(N ) (mod 2) is 1. From (5.35), we also have

IZ2

(
Sj/U(N ), h(1,Mj)/U(N )

)
= 1. (5.37)

SoSj intersectsQ = h
(
1, D(Fj)

)
, and Lemma 5.4 (hence Lemma 2.6) is proved.�

This ends the proof of Theorem 1.2.
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