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Abstract: We present a unified approach to establishing the Gibbsian character of a
wide class of non-Gibbsian states, arising in the Renormalisation Group theory. Inside
the realm of the Pirogov–Sinai theory for lattice spin systems, we prove that RG trans-
formations applied to low temperature phases give rise to weakly Gibbsian measures.
In other words, we show that the Griffiths–Pearce–Israel scenario of RG pathologies
is carried by atypical configurations. The renormalized measures are described by an
effective interaction, with relative energies well-defined on a full measure set of config-
urations. In this way we complete the first part of the Dobrushin Restoration Program:
to give a Gibbsian description to non-Gibbsian states. A disagreement percolation esti-
mate is used in the proof to bound the decay of quenched correlations through which
the interaction potential is constructed. The percolation is controlled via a novel type of
pathwise large deviation theory.

1. Introduction and the Main Result

1.1. Problem of Gibbsianity for the restrictions of Gibbs random fields.In this paper
we continue the study of the Gibbsian nature of certain random fields, arising naturally
in the context of statistical mechanics. As it is known by now, not all reasonable ran-
dom fields are Gibbs fields. One class of examples can be obtained by applying simple
Renormalization Group transformations to some of the most usual lattice Gibbs fields of
statistical mechanics. A theorem of van Enter, Fernandez, and Sokal [EFS], extending
earlier results of Griffiths and Pearce [GP1, GP2] and Israel [I], states that the restriction
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of the(+)-phase of the two-dimensional low temperature Ising model to any square sub-
lattice is not a Gibbs field. In [Sch] it is proven that the restriction of the same(+)-phase
to the one-dimensional sublattice is also not a Gibbs field. So, originated by Dobrushin
[D2], some efforts were made to generalize the notion of a Gibbsian field so as to bring
these restrictions back into some class of generalized Gibbs fields.

One way of doing this is to compromise on the condition that the interaction energy
between a finite volume configuration and the outside world is always defined. More
precisely, for states of infinite range dependence, this energy has to be represented by
an infinite series. However, in some natural cases the absolute convergence of this series
can not be satisfied for all configurations, for whatever choice of the interaction function.
Dobrushin’s idea was that the convergence condition can be sacrificed, and one should
be content with only almost everywhere convergence, according to the corresponding
probability measure. This idea was implemented in [DS,MvdV1] for the projection of
the(+)-phase of the two-dimensional low temperature Ising model to the 1D sublattice,
and in [BKL] for the projection to a square sublattice. It is worthwhile to mention that
the methods of these papers are quite different. In [BKL] the crucial technique is the one
used in the study of the behavior of the Ising model in a random field, [BK]. It seems that
such a technique can not be applied to the case of projections to lower dimensions. The
methods of [DS] can in principle be applied to other situations, but their implementation
requires much additional technical work.

Let us remind the reader of the remark in Sect. 4.2 of [EFS] (used in [LMV]) that
the image measure under a renormalization group transformation of a Gibbs measure
may be viewed as the restriction of (another) Gibbs measure (obtained as the joint
distribution of the original Gibbs measure with its RG image). In that way, the study
of restrictions of Gibbs measures in fact incorporates a wide class of renormalization
group transformations applied to Gibbs measures. For that reason, in the present paper
we will concentrate on the case of the simplest renormalization group transformation,
that of the restriction(≡projection) to a sublattice. The generalization to other examples
of renormalization group transformations is straightforward. In fact, our restrictions are
more general, since we project Gibbs measures on a quite arbitrary infinite countable
subsetM of the lattice. On the other hand, the Gibbs measures we treat are the so called
pure phases of models satisfying conditions of the Pirogov-Sinai theory [Sin].(The plus
and minus phases of the standard Ising model are the best known examples.) We develop
a universal approach to the problem, which is insensitive to the geometry of the subset
M. In particular, all the above cited results are included. However, the temperatures for
which our technique works depends on how sparse the setM is, and goes to zero when the
sparseness increases. Our strategy is the development of the one used in [MvdV1] for the
case of projecting the 2D Ising model onto the 1D sublattice. The idea of [MvdV1] to use
percolation techniques has to be supplemented in our present more general situation by a
certain large deviation theory. The required large deviation estimates are of a novel type,
which is developed in Sect. 6 of this paper (see also Sect. 1.2 of the present Introduction).

We now describe briefly our results. Throughout the paper we fix a countable subset
M of the regulard-dimensional latticeZd , containing the origin. The only restriction is
that the setM has to bek-connected,k > 0. It means that the set{

x ∈ Z
d : dist(x, M) ≤ k

}
(1)

is connected. The numberk is fixed throughout the paper. Let now the random field
P be an extremal low temperature Gibbs state of a model of statistical mechanics on
Z

d , d ≥ 2, satisfying all the conditions of the Pirogov–Sinai (PS) theory (see [Sin]).
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(The reader can think about the(+)-phase of the two-dimensional Ising model.) The
field P is a probability measure on the set� = SZ

d
, S finite, of all spin configurations

σ on Z
d . We are interested in the projection (≡restriction)PM of P onto the subset

�M ⊂ � of all spin configurationsσM on M. We are looking for aGibbsian potential
for PM, i.e. for a systemU = (U(T , σT ), T ⊂ M, 0 < |T | < ∞) of real-valued
functionsU(T , σT ) of σT ∈ ST , such that the usual Gibbs formula for the conditional
distributions ofPM holds. However, a potential, which is absolutely summable, does
not exist in general, as we already said above. What it is possible to find, is a systemU ,
which makesPM into aweakly Gibbs random field. That means that one can find a tail
measurable subset�̃M ⊂ �M, such that

PM

(
�̃M

)
= 1, (2)

and therelative energyseries

EU
V (σV |σ̄M\V )

=
∑

T ⊆V,T 6=∅
U(T , σT ) +

∑
T ⊂M:T ∩V 6=∅,T ∩(M\V ) 6=∅,|T |<∞

U(T , σT ∩V ∪ σ̄T ∩(M\V ))

(3)

converges absolutely for all boundary conditionsσ̄M ∈ �̃M. The properties (2), (3)
allow to write the Gibbs specification forPM-almost all configurations, and hence one
can also write down the DLR equations, which in turn are satisfied by our measurePM.
We refer to [MRV1,EMS] for further definitions and for a comparison with the notion
of an almost Gibbsian field.

Summarizing, our results in a preliminary form are given by the following

Theorem 1.The projectionPM of a Gibbs stateP, describing a low temperature pure
state of the PS model, to ak-connected subsetM ⊂ Z

d , is a weakly Gibbs random field.
The set of configurations̃�M, for which the Gibbs specifications can be defined, is given
by a constructive procedure.

(A more detailed statement is contained in Theorem 4 below.)

Actually, the construction of the set̃�M is an interesting subject in itself, so we
conclude the introduction by mentioning our results concerning it.

1.2. Path large deviations.For the sake of simplicity we describe in the introduction the
corresponding results in the simplified setting of the(+)-phase of the low temperature
2D Ising model. We want to discuss properties of the typical configurations, or, rather,
typical properties of configurations.

One well-known example of a typical property is the property of “having the right
magnetization”. It means the following. Consider the event

A (ε, V ) =
{

σ ∈ � :
∣∣∣∣∣ 1

|V |
∑
x∈V

σx − m∗ (β)

∣∣∣∣∣ > ε

}
,

wherem∗ (β) is the spontaneous magnetization at inverse temperatureβ. Then for every
ε > 0,

P
β,+
V (A (ε, V )) → 0 asV → Z

2, (4)
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whereP
β,+
V is the Gibbs state in the square boxV with (+) boundary conditions. In

particular, if we put

A (ε) =
⋂
N

⋃
n≥N

A (ε, Vn) ,

whereVn is ann-square, then for everyε > 0,

P
β,+ [

(A (ε))c
] = 1.

HereP
β,+ stands for the(+)-phase.

In the present paper we need properties which are valid for almost all configurations
not just in the bulk, but alongeverysingle selfavoiding path. So letSV be the collection
of all selfavoiding paths inV , connecting the origin to the boundary ofV . Is it then true
that the following strengthening of (4) holds: for everyε > 0,

P
β,+
Vn


 ⋃

W∈SVn

A (ε, W)


 → 0 asVn → Z

d . (5)

In other words, is the property of “having the right magnetization along every path” a
typical one? The answer is clearly negative, since for aP

β,+-typical configurationσ we
easily can find a selfavoiding pathγ , which avoids essentially all contours ofσ , and so
the magnetization ofσ along the pathγ – that is the quantity1

|γ |
∑

x∈γ σx – can easily
be almost equal to 1. So we introduce a smaller event

B (ε, W) =
{

σ ∈ � : m∗ (β) − 1

|W |
∑
x∈W

σx > ε

}
. (6)

For example, the eventB (ε, γ ) happens, if the pathγ enters too often inside the contours
of the configurationσ . Then the following theorem holds:

Theorem 2. If β is large enough, then

P
β,+
Vn


 ⋃

W∈SVn

B (ε, W)


 → 0 asn → ∞. (7)

In words, the above statement means that the magnetization ofany typical con-
figuration alongeveryselfavoiding path is abovem∗ (β) − ε. If a configurationσ /∈⋃

W∈SVn
B (ε, W), then we say thatσ has a correctPath Large Deviationproperties, or

simply thatσ is aPLD configuration.
In contrast with (4), where the convergence is exponential in|V |, in (7) we only

have a stretched exponential decay. This is the content of Theorem 9 below, which in
particular proves the claim of Theorem 2 above.

In the next section we introduce the notations. In Sect. 3 we reduce the proof of
Theorem 1 to the question of correlation decay in a random (quenched) environment.
In Sect. 4 the correlation decay question is reduced to a question about percolation in a
random environment. In Sect. 5 the percolation problem is solved under the hypothesis
that the random environment has a property of the type described in Theorem 2. Finally,
in Sect. 6 the generalization of Theorem 2 is proven, which justifies the use of the
hypothesis above.
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2. Notation

We fix an arbitraryk-connected (see (1)) infinite subsetM of the regulard-dimensional
lattice Z

d , containing the origin. The most interesting cases concernM = l Z
r , r =

1, . . . , d; l = 1, ..., 2k − 1, where we keep the invariance under (a subgroup of) trans-
lations. In the following,|A| is the cardinality of the setA, while Ac denotes the com-
plement ofA in Z

d . ForW ⊂ M we sometimes denote byWc the complementM \ W .
General elements (sites) ofZ

d are written asx, y, z, but we writei, j when referring to
sites (elements) inM. The distance betweenx = (x1, . . . , xd) andy = (y1, . . . , yd) is

|x − y| ≡
d∑

α=1

|xα − yα|. (8)

The distance between two setsA andB is d(A, B) ≡ minx∈A,y∈B |x −y|. The diameter
of a setA is diamA ≡ maxx,y∈A |x−y|.When dealing with a singletonA = {x}, we often
writeA = x. 3n is the cube{x ∈ Z

d : |x| ≤ n}, n = 1, 2, . . . . Its intersection withM is
3n∩M ≡ Vn.The boundary of a set3 is∂3 ≡ {x ∈ 3c : ∃y ∈ 3, |x−y| = 1}and must
be distinguished from its internal boundary∂i3 ≡ {x ∈ 3 : ∃y ∈ ∂3, |x − y| = 1}.
We find it also useful to regardZd as a graph with its sites as vertices and its bonds
(nearest-neighbor connections) as edges.x andy are adjacent (nearest-neighbors) if
|x − y| = 1. A (finite) path (of lengthn) from x to y is a sequence of consecutive and
mutually distinct nearest-neighbors(x0 = x, x1, . . . , xn−1 = y). Infinite paths are the
natural extensions of this. A path fromA to B is any path starting in a sitex ∈ A and
ending in a sitey ∈ B (its length is at leastd(A, B)).

We will be using the lexicographic order “≤” on Z
d to say thatx < y if x1 < y1, or

x1 = y1 andx2 < y2, or ...x1 = y1, x2 = y2, . . . , xd−1 = yd−1 andxd < yd . Dual
to paths are surfaces. They are sometimes referred to as?-circuits in two dimensions.
A surface aroundA is any collection of next-nearest-neighbor connected sites inAc so
that by removing them from the lattice, no infinite path can exist starting inA.

We consider lattice spin systems onZ
d .A general spin configuration onZd is denoted

byσ orη. They are elements of the configuration space� ≡ SZ
d
, whereS is the finite set

(|S| ≡ q ≥ 2) of spin-valuesa, b, c, . . . at a single site. Ising-spins haveS = {+1, −1}.
The value of the spin at a sitex in the configurationσ isσ(x) ∈ S. We will frequently use
some reference configuration, denoted by 1 with 1(x) = +1 everywhere. The restriction
of aσ ∈ � to a setA isσA ∈ SA;σAηAc ≡ σA∪ηAc equalsσ onA (i.e.,σAηAc(x) = σ(x)

for all x ∈ A) and equalsη onAc. We writeσA for the configuration which equalsσ onA

and is equal to+1 outsideA. The restriction of� toM is�M ≡ SM and�n ≡ �3n . We
often consider�M as a subset of�Zd via natural embeddingσ ∈ �Zd → σM ∈ �M.
Therefore the same symbolsσ, η, ξ will sometimes appear for configurations in� and
in �M. All notation is inherited, e.g.ξV equalsξ onV and is+1 onV c.

A functionf on� is local if its dependence setDf , i.e. the minimal setA such that
f (σ) = f (η) wheneverσA = ηA, is finite. Continuous functions are uniform limits of
local functions with the sup-norm||f || ≡ supσ |f (σ)|.

The sigma-algebra generated by the evaluationsx ∈ A → σ(x) is denoted byFA.
WhenA = Z

d , respectivelyA = M, we simply setF = FZd , respectivelyF ′ = FM.
The tailfield sigma-algebras are denoted byF∞ = ∩nF3c

n
and F ′∞ = F∞ ∩ F ′

respectively.
In what follows we will be considering probability measuresµon(�, F).Their corre-

sponding random field is denoted byX ≡ (X(x), x ∈ Z
d). Expectations are abbreviated
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as
∫

f (σ)dµ(σ) = µ(f ) and a covariance is written asµ(f ; g) = µ(fg)−µ(f )µ(g).
The probability of an eventE ∈ F isµ[E] = µ[X ∈ E] or alsoµ(I [X ∈ E]), where we
introduced the indicator functionI . The same notation is used for probability measures
ν on(�, F ′). Such a measure appears as the restriction ofµ to F ′ (or, toM). We denote
by Y ≡ (Y (i), i ∈ M) the restriction of the random fieldX to M.

The basic model system we will be dealing with here is defined via a nearest-neighbor
interaction

H3n(σ ) = −
∑

x∈3n,y∈Zd ,|x−y|=1

J (σ3n(x), σ3n(y)). (9)

The interaction termJ (·, ·) is a real-valued symmetric function onS × S (possibly
containing a self-energy). We have taken care of putting+1 boundary conditions outside
the cube3n. The nearest-neighbor aspect ensures that the corresponding Gibbs fields
will be Markov random fields but that will not be essential. The partition function is

Zn ≡
∑

σ∈S3n

e−βH3n(σ ). (10)

We suppose thatH satisfies the conditions of the PS theory, and that the configuration
1 with 1(x) = +1 everywhere is a ground state and gives rise to pure states atlow

temperatures in the usual sense of PS theory. More specifically, we assume that for all
a, b ∈ S \ {+1},

J (+1, +1) = 0, J (a, +1) < −1, J (a, b) ≤ 0. (11)

We assume further, that all ground state configurations ofH are translation invariant.
That implies in particular thatJ (a, b) < 0 for a 6= b. We then assume that in such a
situationJ (a, b) < −1 as well.

3. Correlation Decay⇒ Weak Gibbsianity

We start with the definition of some finite subsets ofM. For everyi ∈ M we put

Li,m ≡ {j ∈ M : j ≤ i, |j − i| ≤ m}, m = 0, 1 . . . . (12)

Clearly,Li,m−1 ⊂ Li,m ⊂ M and

v(i, m) ≡ |Li,m \ Li,m−1| ≤ 2d−1

(d − 1)!m
d−1 ≤ 2md−1, m ≥ 1. (13)

We can now, following the lexicographic order, add sites one by one toLi,m−1 to end
up with the setLi,m. So let us writeLi,m \ Li,m−1 = {j1, j2, . . . , jv} with j1 < j2 <

. . . < jv and their numberv = v(i, m) possibly depending onm andi but not exceeding
2md−1. It can happen thatLi,m−1 = Li,m in which casev(i, m) = 0. Define the sets

Qi,m,r ≡ Li,m−1 ∪ {j1, j2, . . . , jr} (14)

with r = 1, 2, . . . , v. We haveQi,m,v = Li,m and we putQi,m,0 ≡ Li,m−1.
Let µn be the Gibbs state in the box3n, defined by our HamiltonianH and the

configuration 1 as boundary condition. According to our hypothesis, the sequence of
probability measuresµn ≡ µ3n on (�, F) weakly converges to a measureµ, which is
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a pure state of our model. Letνn denote the probability measures obtained fromµn by
restricting them toM. Then, the limit limn νn = ν exists and equalsµ restricted toM.

For every configurationξ ∈ �M the measureµξ
n on (�n, F) is defined in the fol-

lowing way:
i) one takes the conditional Gibbs distributionµ̄n,σ̄n,ξ in 3n, defined by our Hamiltonian
H and the following boundary conditions̄σn,ξ :

σ̄n,ξ (x) =
{

ξ (x) for x ∈ ∂3n ∩ M,

1 for x ∈ 3c
n\ (∂3n ∩ M) ,

(in our notation,σ̄n,ξ = ξ∂3n∩M),

ii) one definesµξ
n by the conditioning:

µξ
n[X = σ onA] = µ̄n,σ̄n,ξ [X = σ onA|X = ξ onVn], whereA ⊂ 3n. (15)

We denote by�ξ
n ≡ �

ξ

n,M
⊂ �Zd the support of the measureµξ

n; by definition, these

configurations coincide with̄σn,ξ outside3n, and withξ onVn. Also, we defineµξ by

µ· [A] = µ
(
1A|F ′) ; by what follows one can show thatµξ = limn µ

ξ
n on a set ofξ ’s

of PM-measure one.
Let us define the local observablesφi = φ

ξ
i (σ ) , i ∈ M so that for alli ∈ Vn,

µn[X = ξQ\i onVn] = µn[X = ξQ onVn]µξQ

n (φi). (16)

Of course, these functionsφi can be written down, but we do not need explicit expressions
for them. Also, for alli, j ∈ Vn we have

µn[X = ξQ\{i,j} onVn] = µn[X = ξQ onVn]µξQ

n (8ij ). (17)

Since the interaction is nearest neighbor,

8ij = φiφj , (18)

provided|i − j | > 4.
Next we formulate the Correlation Decay property, which, if valid, implies Weak

Gibbsianity.

Definition 3. We say that the Quenched Correlation Decay (QCD) property holds, if
there are constantsC < ∞, λ > 0, a tail-setK ∈ F ′ with

µn[K] = µ[K] = 1 (19)

and a functioǹ (i, ξ), defined forξ ∈ K, i ∈ M, such that for everyj ∈ M the set

Bad(j, ξ) ≡ {i ∈ M : `(i, ξ) ≥ |i − j |} (20)

is finite, and for all finiteQ ⊂ M, all n and all j with |i − j | > min {`(i, ξ), `(j, ξ)},
|µξQ

n (φi; φj )| ≤ Ce−λ|i−j |. (21)

We suppose additionally that for everyξ ∈ K and everyQ̄ ⊂ M (finite or infinite)

ξQ̄ ∈ K as well, and that for everyj ∈ M Bad
(
j, ξ Q̄

)
⊂ Bad(j, ξ).
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Theorem 4.Assume that the condition QCD holds. Then the restricted state,ν, is weakly
Gibbsian with interaction potentialU = {U(T , ·), T ⊂ M} vanishing except possibly
for the setsT = Li,m with v(i, m) ≥ 1, wherei ∈ M, m ∈ N, and is then given by

U(Li,m, ξ) = −
v(i,m)∑
r=1

ln
µξ

Qi,m,r
(φiφjr )

µξ
Qi,m,r

(φi)µξ
Qi,m,r

(φjr )
for m > 4, (22)

U(Li,m, ξ) = −
v(i,m)∑
r=1

ln
µξ

Qi,m,r
(8ijr )

µξ
Qi,m,r

(φi)µξ
Qi,m,r

(φjr )
for 1 ≤ m ≤ 4, (23)

while form = 0

U(Li,0, ξ) = ln µξi

(φi). (24)

This potential is absolutely summable on the tail-setK. Moreover, it satisfies the fol-
lowing bound: there exist constantsC1, C2 < ∞, λ > 0 such that for allm ≥ 0, ξ ∈
K, i ∈ M,

|U(Li,m, ξ)| ≤ C1I [m ≤ `(i, ξ)]md−1 + C2I [m > `(i, ξ)]md−1 exp[−λm], (25)

with the`(i, ξ) and the setK as in QCD conditions (19–21) above.

Proof. Consider the probability to find the configurationξ in Vn. In our notation it is

νn[Y = ξ onVn] = µn[X = ξ onVn], (26)

and we will abbreviate it asµn[ξ ]. Order the sites inVn lexicographically asi1 < i2 <

. . . < i|Vn| to write

µn[ξ ]
µn[1] =

|Vn|∏
s=1

µn[ξ {i1,... ,is }]
µn[ξ {i1,... ,is−1}] . (27)

For everyi ∈ Vn we definem(i, n) ≡ maxj∈Vn:j≤i |i − j |. Then we can rewrite every
factor in (27) as

µn[ξ {i1,... ,is }]
µn[ξ {i1,... ,is−1}] =

m(is ,n)∏
m=0

µn[ξLis ,m]
µn[ξLis ,m−1]

µn[ξLis ,m−1\is ]
µn[ξLis ,m\is ] .

So if we define the familyUn = {Un(·, ·)} by

Un(Li,m, ξ) ≡ − ln
µn[ξLi,m ]

µn[ξLi,m−1]
µn[ξLi,m−1\i]
µn[ξLi,m\i] , (28)

then we have

µn[ξ ] = µn[1] exp


−

∑
i∈Vn

m(i,n)∑
m=0

Un(Li,m, ξVn)


 . (29)
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Note thatξ∅ ≡ 1, and so

Un(Li,0, ξ) ≡ − ln
µn[ξ i]
µn[1] = ln µξi

n (φi). (30)

Observe also thatm(i, n) = 0 wheni = i1 is the “first” site inVn, and that

ξ(i) = +1,

or
Un(Li,m, ξ) = 0, provided v(i, m) = 0,

or
ξ(j) = +1 for all j ∈ Li,m \ Li,m−1.

(31)

We can further telescope (28) as

Un(Li,m, ξ) = −
v(i,m)∑
r=1

ln
µn[ξQi,m,r ]µn[ξQi,m,r−1\i]
µn[ξQi,m,r−1]µn[ξQi,m,r\i] , (32)

providedm > 0 andv(i, m) ≥ 1. If m > 4, we can use (16-18) to rewrite (32) as

Un(Li,m, ξ) = −
v(i,m)∑
r=1

ln
µ

ξ
Qi,m,r

n (φiφjr )

µ
ξ

Qi,m,r

n (φi)µ
ξ

Qi,m,r

n (φjr )

, (33)

while for 1 ≤ m ≤ 4 we can not use the factoring (18), so we keep the initial local

observables8ijr Here we remind the reader that the conditioningµ
ξQ

n of the measure
µn by the configurationξQ means the use of the condition

X = ξ onQ, X = 1 onM\Q, |Q| < ∞.

So the cluster expansion easily provides us with the existence of the limits

limn→∞ µ
ξ

Qi,m,r

n (f ) for every local observablef . Taking the limitsn → ∞ in (33),
(30), we arrive to the formulas (22)–(24). The estimate (25) follows from relation (21).
The almost sure convergence of the relative energy series (3) follows from the finiteness
of the sets Bad(j, ξ) of “bad” points (20), whenξ ∈ K.

What remains is to show that indeed the random fieldν is a Gibbs field with the
potentialU = {U(T , ·), T ⊂ M}, i.e. to prove that the corresponding DLR equations
hold. The rest of the present section contains the proof of validity of DLR equations.
Since this proof is not used in the rest of the paper, the reader might want to go directly
to the next section.

The following proof is an adaptation of the similar statement from [DS], Sect. 8. We
begin by introducing for every finiteV ⊂ M the Gibbs specification

pU
V (ξV |ξ̄M\V ) = exp{−EU

V (ξV |ξ̄M\V )}
ZU

V (ξ̄M\V )
, (34)

where the partition function

ZU
V (ξ̄M\V ) =

∑
ξV ∈XV

exp{−EU
V (ξV |ξ̄M\V )}. (35)
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Here the functionEU
V (ξV |ξ̄M\V ) is defined by the series (3), if the latter converges. Let

us show that for̄ξ = ξV ∪ ξ̄M\V ∈ K this convergence follows from that part of Theorem
4 that is already proven.

Indeed, let the setLi,m ⊂ M be “bad”, in the sense that it intersects the box
V , and `(i, ξ̄ ) ≥ m. In other words, the contribution ofU(Li,m, ξV ∪ ξ̄M\V ) to
EU

V (ξV |ξ̄M\V ) might be big, according to (25). Then necessarily the sitei belongs to the
set

⋃
j∈V Bad

(
j, ξ̄

)
, which is finite. Note that the number of different setsLi,m with

m ≤ `(i, ξ̄ ) is less than
(
2`(i, ξ̄ )

)d
, so the total number of “bad”Li,m-s is bounded by

∑
i∈⋃

j∈V Bad(j,ξ̄)

(
2`(i, ξ̄ )

)d
,

which is also finite.
The above argument implies that the functionspU

V (ξV |ξ̄M\V ) are definedν-a.s., which
makes well-defined the rhs of the DLR equation (36), which follows:∫

φW(ξW )ν(dξ) =
∫ ∑

ξV ∈SV

(
φW(ξW )pU

V (ξV |ξ̄M\V )
)

νM\V (dξ̄M\V ). (36)

HereV ⊆ W are arbitrary finite subsets ofM, ξW = (
ξV ∪ ξ̄M\V

) |W is (with some
abuse of notation) the restriction, the local observableφW(ξW ) ≡ φW(ξV ∪ ξW\V ) is a
function onSW , while νM\V is the restriction of the measureν to theσ -algebraF ′

M\V .
Equation (36) should hold for any choice ofV ⊆ W .

To prove (36), let us introduce the subsetsXN ≡ XN(W) ⊂ K as

XN =

ξ̄ ∈ K :

∑
j∈W

∣∣Bad
(
j, ξ̄

)∣∣ < N


 ,

and rewrite the rhs integral of (36) as a sum:∫
( · ) =

∫
XN

( · ) +
∫

(XN )c
( · ) . (37)

Note that the last integral goes to zero asN → ∞, since the function
∑

j∈W

∣∣Bad
(
j, ξ̄

)∣∣
is finite onK and because the integrand is bounded. We further introduce the subsets
XN,R of XN :

XN,R =

ξ̄ ∈ XN : ∀ i ∈

⋃
j∈W

Bad
(
j, ξ̄

)
we have dist(i, W) ≤ R


 .

We have that ∫
XN

( · ) =
∫

XN,R

( · ) +
∫

XN\ XN,R

( · ) . (38)

Again, the last integral goes to zero asR → ∞.
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The estimate (25) implies the continuity of the functionpU
V (ξV |ξ̄M\V ) on the sub-

spacesXN ,XN,R. Note also that Definition 3 of the QCD property implies that the follow-
ing implications hold:

(
ξ̄ ∈ XN

) ⇒ (
ξ̄Q ∈ XN

)
, and

(
ξ̄ ∈ XN,R

) ⇒ (
ξ̄Q ∈ XN,R

)
.

Together these properties imply that for everyε > 0 there exists a distanceρ (ε, N, R)

big enough, such that for every setQρ containing the set

Q (W ; ρ (ε, N, R)) = {i ∈ M : dist(i, W) ≤ ρ (ε, N, R)}

we have: ∣∣∣∣∣∣
∫

XN,R

∑
ξV ∈SV

(
φW(ξW )pU

V (ξV |ξ̄M\V )
)

νM\V (dξ̄M\V )− (39)

−
∫

XN,R

∑
ξV ∈SV

(
φW(ξW )pU

V (ξV |ξ̄Qρ

M\V )
)

νM\V (dξ̄M\V )

∣∣∣∣∣∣ < ε.

Repeating the arguments (37), (38) for the last integral, in the reversed order, we can
replace it by the integral over the whole space,

∫ ∑
ξV ∈SV

(
φW(ξW )pU

V (ξV |ξ̄Qρ

M\V )
)

νM\V (dξ̄M\V ), (40)

again with arbitrary precision. But because of (31) the integrand in the last integral is
a local function! Therefore we can approximate it arbitrarily close by the integral with
respect to the finite volume measureνn,∫ ∑

ξV ∈SV

(
φW(ξW )pU

V (ξV |ξ̄Qρ

3n\V )
)

(νn)3n\V (dξ̄3n\V ), (41)

providedn > n
(
Qρ

)
is large enough.

Note that for any local eventA we have the exponential convergenceµn (A) →
µ (A) asn → ∞ (though not uniform inA, of course). Therefore the two functions,

pU
V (ξV |ξ̄Qρ

3n\V ) andpUn

V (ξV |ξ̄Qρ

3n\V ) can be made arbitrarily close, uniformly inξV ∪
ξ̄

Qρ

3n\V , provided only thatn (= n (ρ)) is large enough. The last step would be to use
again the approximations (37-39) to replace the integral

∫ ∑
ξV ∈SV

(
φW(ξW )pUn

V (ξV |ξ̄Qρ

3n\V )
)

(νn)3n\V (dξ̄3n\V )

by

∫ ∑
ξV ∈SV

(
φW(ξW )pUn

V (ξV |ξ̄3n\V )
)

(νn)3n\V (dξ̄3n\V ),
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and then to observe that because of the validity of the finite volume DLR equation (which
is an identity) ∫ ∑

ξV ∈SV

(
φW(ξW )pUn

V (ξV |ξ̄Qρ

3n\V )
)

(νn)3n\V (dξ̄3n\V )

=
∫

φW(ξW )νn(dξ̄3n) →
∫

φW(ξW )ν(dξ̄ ).

This use is possible since the relations (37-39) hold in fact for the integrals∫ ∑
ξV ∈SV

(
φW(ξW )pUn

V (ξV |ξ̄M\V )
)

(νn)M\V (dξ̄M\V )

as well, uniformly inn → ∞, due to our Definition 3 of QCD.ut
Remark.The construction of the potential of the basic lemma above goes back to the
paper of Kozlov, [Koz]. This telescoping potential was already used in [MvdV1,MRV2]
and it has the nice property that, when the setM allows it, U is explicitly translation-
invariant.

4. Percolation⇒ Correlation Decay

We continue with the same setup of the previous section. We must estimate the covari-
ances in the left hand side of (21). Using an idea of [B,BM,BS] as applied in [MvdV1,
MRV2], we can reduce this to a percolation question. Form > 4, the two local observ-
ablesf = φi andg = φjr have disjoint dependence setsDf = F, Dg = G ⊂ 3n. We
will take n large enough, so thatQi,m,r ⊂ 3n. To save on notation we fixξ andQi,m,r

and we writeµξ
Qi,m,r

n = ρn. We must estimateρn(f ; g).
To proceed we consider the product space of configurationsS3n ×S3n = (S ×S)3n

on which we put the product couplingρn × ρn. So, we just consider two independent
copies of the original system. Now, for any two disjoint finite setsB andC, we introduce
the eventE(B, C) that there is a path fromB to C in 3n, such that for every sitex of
this path in3n \ Qi,m,r we have(X(x), X′(x)) 6= (+1, +1).

Lemma 5. For the Markov random fieldρn we have

|ρn(f ; g)| ≤ 2 ||f || ||g|| (ρn × ρn) [E(F, G)]. (42)

Proof. First of all, we can write

|ρn(fg) − ρn(f )ρn(g)|
= |ρn (g(X)[ρn(f |XG) − ρn(f (X))]) |
≤ ||g|| ρn (|ρn(f |XG) − ρn(f )|)
= ||g|| ρn

(
dX

∣∣(ρn

(
dX′|XG

) × ρn (·)) (f (X) × 1 − 1 × f (X′))
∣∣) . (43)

To save on notation, let3 ≡ 3n \ Qi,m,r \ G. Now imagine a fixed configurationσ
on ∂3 with σ = +1 on∂3n, σ = ξ on Qi,m,r andσ some fixed configuration onG;
we must study

(ρn(·|X = σ on ∂3) × ρn (·)) (f × 1 − 1 × f ).
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If for every path in3n from F to G there is a pointx ∈ 3n \ Qi,m,r on it where
(X (x) , X′ (x)) = (+1, +1), then there exists a surface (or?− circuit) aroundF sepa-
rating it inside3n from G and on whichX ≡ X′. In general, this surface has a part in
3 \ F ∪ ∂3n on which(X, X′) ≡ (+1, +1) and a part inQi,m,r on which the config-
urationξ lives and thus there(X, X′) ≡ (ξ, ξ). Hence there exists a maximal surface
among these,1, inside3 (maximal in the inclusion sense). Now sinceX = X′ on 1

and by the Markov property,

|(ρn(·|X = σ on ∂3) × ρn (·)) (f × 1 − 1 × f )| (44)

≤ 2||f || (ρn(·|X = σ on ∂3) × ρn (·)) [E(F, G)].
Continuing with (43), (44) now yields that

|ρn(f ; g)| ≤ 2 ||f || ||g|| (ρn × ρn) [E(F, G)], (45)

which we wanted to prove.ut
Remark.Clearly, from the proof above, an analogous estimate to (42) holds in the case
that µn is not (strictly) Markovian but becomes Markovian when to each site of the
lattice a finite number of edges is attached linking that site with more than just its
nearest-neighbors.

5. PLD ⇒ Contour Estimates⇒ Exponentially Weak Percolation

Let F be a finite subset ofZd , as in the previous section. Denote byCF the random
set containing all sitesx ∈ Z

d \ M which are nearest-neighbor connected to∂F via
sitesy ∈ Z

d \ M for which (X(y), X′(y)) 6= (+1, +1). This is the cluster ofF . Our
task is now to find a (large) setK of configurationsξ and corresponding lengths`(i, ξ)

(see(19)), for which

µξ
Qi,m,r

n × µξ
Qi,m,r

n [diam(CF ) > m] ≤ e−λm, (46)

wheneverm > `(i, ξ). Given the bound (42), this would take care of the assumption (21).
This of course is reminiscent of the stochastic-geometric structure of the low-temperature
phases in the realm of the Pirogov-Sinai theory.

Since the coupling we are considering is just a product couplingµ
ξ

Qi,m,r

n × µ
ξ

Qi,m,r

n ,
it is clear that we have (46) once we know that a suitable analogue of the Peierls estimate

holds for the stateµξ
Qi,m,r

n ≡ µ
ξQ

n itself. So we will formulate it next, leaving the
derivation of (46) for the end of the present section.

LetX ∈ �+
n = �+

n (ξ), where�+
n (ξ) is the set of configurations that are+1 outside

3n, except at sites inM \ 3n, where they coincide withξ .We introduce now the contours
of configurationX in the usual manner. Namely, we call a faceF of the dual lattice a
boundary face, iff the valuesXy, Xz at the sitesy, z, closest toF, are different. The
connected components of the boundary faces are called contours. We denote byG (X)

the set of all contours ofX, while Gex (X) is the set of exterior contours ofX; these
are the contours which are not surrounded by other contours. Finally, we call a contour
closed, if it does not contain faces outside3n. Otherwise the contour will be called open.
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If the configurationX ∈ �+
n (ξ) , andξ 6 ≡ + 1, thenX can have both open and closed

contours. Forx ∈ 3n we define the contour2x (X) by

2x (X) =
{

0, if 0 ∈ Gex (X) , x ∈ Int0,

∅ otherwise.

We are interested in showing that the event that the contour20 (·) is of the sizeL

happens withµξQ

n -probability ≤ exp{−cβL}. However, that cannot possibly be true
without putting conditions on the configurationξ . The condition should be of the type
that the setD (ξ) ⊂ M of sites whereξ 6= 1 is quite sparse. The following generalization
of the Path Large Deviation property is a condition of this type. We will still call itPLD
property.

Definition 6. Let ξ ∈ �M, λ > 0 andx ∈ Z
d be given. Put

`λ(x, ξ) ≡ `λ(x, D (ξ)) =




min {l : for all finite k-connected
T ⊂ Z

d with x ∈ T , diam(T ) > l if suchT -s exist,
we have|T ∩ D (ξ)| ≤ λ|T |}
∞ otherwise.

A setD will be calledλ-sparse, iff̀ λ(x, D) is finite for allx. We define the set

Bad(y, ξ ; λ) ≡ {x ∈ Z
d : `λ(x, ξ) ≥ 1

2
|x − y|}, (47)

and we putK (λ) ≡ ∩y∈Zd Ky (λ) with

Ky (λ) ≡ {ξ ∈ �M : |Bad(y, ξ ; λ)| < ∞} .

We say that PLD holds iffµ (K (λ)) = 1.

Theorem 7.Letξ ∈ K (λ/2) with λ ≤ λ (J ), whereλ (J ) is small enough. Then for all
Q ⊂ Z

d finite and uniformly in largen

µξQ

n {X : diam(20 (X)) > L} ≤ exp{−cβL} , (48)

providedL > `λ(0, ξ). Herec is some constant.

Note.In case the setD (ξ) itself would contain a long contour0 surrounding the origin,

the event diam(20 (X)) ≥ diam(0) happens withµξQ

n -probability one, if0 ⊂ Q,
so Theorem 7 has no chance to hold in such a case. Happily, under the condition that
ξ ∈ K0 (λ) we have immediately thatD (ξ) cannot contain a contour with diam(0) >

`λ(0, ξ) onceλ < 1/2.

Proof. We begin by showing that under our hypothesis the value`λ(0, ξ) is finite. (This
is the only property of the configurationξ needed to prove (48)). Sinceξ ∈ K (λ/2),
we have`λ/2(x, ξ) < ∞ for somex. Let us check now that if for somex the value
`κ(x, ξ) is finite, then for ally the values̀ 2κ(y, ξ) are also finite. Indeed, lety ∈ T ,
diam(T ) = l and |T ∩ D (ξ)| ≥ 2κ|T |. Below, we denote by[x, y] ⊂ Z

d any n.n.
connection betweenx andy, having|x − y| sites. If maxz∈T |x − z| > `κ(x, ξ), then

|(T ∪ [x, y]) ∩ D (ξ)| < κ |T ∪ [x, y]| ≤ κ |T | + κ |x − y| .
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On the other hand,

|(T ∪ [x, y]) ∩ D (ξ)| ≥ |T ∩ D (ξ)| ≥ 2κ|T | ≥ 2κ
l

k
.

Thereforel < k |x − y|, and`2κ(y, ξ) < max{k |x − y| , 2`κ(x, ξ)}.
For convenience, we suppress the indexQ throughout the proof. First, let0 be a

contour, surrounding the origin and not attached to the boundary of the box3n, i.e. a
closed contour. Then we have to estimate the probability

µξ
n

{
X : 0 ∈ Gex (X)

}
.

The first remark is that it does not exceed the ratio

Z′ (Int 0, +1, β)

Z′′ (Int 0, +1, β)
, (49)

where the partition functionZ′ is calculated over the subset�′ (Int 0, M, ξ) of config-
urations in Int0, where

�′ (3, M, ξ) = {σ ∈ �3 : σ (x) 6= +1 for everyx ∈ ∂i (3) , (50)

σ (x) = ξ (x) for all x ∈ M ∩ 3} ,

while Z′′ is calculated over�′′ (Int 0, M, ξ) with

�′′ (3, M, ξ) = {σ ∈ �3 : σ (x) = ξ (x) for all x ∈ M ∩ 3} . (51)

To estimate the ratio (49), we need the following two cluster expansion results for
the partition functions in the framework of the PS theory (see [Sin] and [KP] or [D1]).
The first one deals with the case when we calculate the partition functionZ (3, a, β) in
the box3 with the constant boundary conditiona, corresponding to the stable phase.
Then

ln (Z (3, a, β)) = |3| f (β) + c (3, a, β) , (52)

wheref (β) is the free energy of the model, and the boundary termc (3, a, β) has the

property that the ratio
c (3, a, β)

|∂3| is exponentially small inβ.The second case is obtained

when we restrict the summation in the partition function (52) to the configurationsσ ,
which possess a contour0 right at the boundary of3. In other words, for all pointsx ∈ 3,
adjacent to∂i3, σ (x) 6= a. This partition function will be denoted byZ (3, 0, a, β).
Then

ln (Z (3, 0, a, β)) = |Int 0| f (β) + c′ (3, a, β) − βE (0) . (53)

Herec′ (3, a, β) is again a boundary term, whileE (0) is the (temperature independent)
energy of the contour0. It satisfies thePeierls condition:

E (0) ≥ c1 |0| with c1 > 0,

which bound is the precondition of the PS theory.
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The estimate of (49) proceeds as follows. Note that every configurationσ from the
set (50) possesses in addition to the contour0 a collection of contours̃κ (σ ) = {γi},
separating the set

M1 (ξ, 0) = {x ∈ M ∩ Int 0, ξ (x) = 1} (54)

from the contour0. Their presence is due to the fact that the 1-spins sitting in the set
M1 (ξ, 0) force the 1-phase inside the box Int0. Our notatioñκ (σ ) refers to the collec-
tion of all such contours, and we denote byκ (σ ) ⊂ κ̃ (σ ) a subset of external contours
of κ̃ (σ ). The contours fromκ (σ ) have the 1-phase inside them and are not separated
from 0 by other contours. Another way of defining them is to say that the contours from
κ (σ ) are boundaries of maximal 1-surfaces, surrounding points ofM1 (ξ, 0). We now
split the partition functionZ′ (Int 0, +1, β) according to what the familyκ = κ (σ ) is:

Z′ (Int 0, +1, β) =
∑
κ

Z′ (Int 0 ∩ Extκ, +1, β) Z′′ (Int κ \ ∂i (Int κ) , +1, β) ;

here the partition functionZ′ (Int 0 ∩ Extκ, +1, β) is calculated over the set�′(Int 0∩
Extκ, M, ξ). Hence,

Z′ (Int 0, +1, β)

Z′′ (Int 0, +1, β)

≤
∑
κ

Z′ (Int 0 ∩ Extκ, +1, β) Z′′ (Int κ \ ∂i(Int κ), +1, β)

Z′′ (Int 0, +1, β)
(55)

≤
∑
κ

Z′ (Int 0 ∩ Extκ, +1, β)

Z′′ (Int 0 ∩ Extκ, +1, β)
.

We note for clarity that for everyκ the set Int0 ∩ Extκ contains no sites of the set
M1 (ξ, 0).

To obtain the upper estimate forZ′, we use (53). Our upper bound onZ′ is

ln Z′ (Int 0 ∩ Extκ, +1, β) (56)

≤ |(Int 0 ∩ Extκ) \ M| f (β) − τ (|0| + |κ|) ,

with τ diverging asβ → ∞. Moreover,τ = τ (β) satisfies the estimate

τ (β) ≥ c2β, (57)

with c2 = c2 (c1) > 0.
To estimate the denominator, we diminish the partition functionZ′′(Int 0 ∩ Extκ,

+1, β), replacing it by the partition functionZ′′′ (Int 0 ∩ Extκ, +1, β) calculated over
the subset�′′′ (Int 0 ∩ Extκ, M, ξ) of �′′ (Int 0 ∩ Extκ, M, ξ), where

�′′′ (3, M, ξ) = {σ ∈ �3 : σ (x) = ξ (x) for all x ∈ M ∩ 3,

σ (s) = 1 for all s ∈ ∂D (ξ) ∩ 3} .

Here by∂D (ξ) we denote the set

∂D (ξ) =
{
x ∈ Z

d \ M : for somei ∈ M with ξ (i) 6= 1 we have|x − i| = 1
}

.
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To estimate the partition functionZ′′′ from below, we use (52):

ln Z′′′ (Int 0 ∩ Extκ, +1, β) ≥ |(Int 0 ∩ Extκ) \ M| f (β) (58)

−c3 (β) (|0| + |κ| + |∂D (ξ) ∩ (Int 0 ∩ Extκ)|) − R |∂D (ξ) ∩ (Int 0 ∩ Extκ)| ,
with c3 (β) → 0 asβ → ∞; the last term corresponds to the interaction of the 1-spins
σ sitting at pointsx ∈ ∂D (ξ) with spinsξ (i) 6= 1, i ∈ M ∩ (Int 0 ∩ Extκ) . Clearly,

R ≤ βC (J (·, ·)) . (59)

The crucial observation now is that the set∂ (Int 0) ∪ [M ∩ Int 0] is k-connected, and
so the setM (0, κ) = ∂ (Int 0 ∩ Extκ) ∪ [M ∩ (Int 0 ∩ Extκ)] is k-connected as well.
We are going to argue now that it implies that the term(|0| + |κ|) from (56) suppresses
the term|∂D (ξ) ∩ (Int 0 ∩ Extκ)| in (58) provided the constantλ is small. To see it we
first need the following lemma. It claims, roughly, that if an Ising contour0 surrounds
aλ-sparse setD, which in turn is a subset of ak-connected setT , then either the length
(surface area)|0| of this contour is of the order ofλ−1 |D|, or else the contour surrounds
a lot of points belonging toT .

Lemma 8. Let D ⊂ Z
d be a finiteλ-sparse set, see Def. 6, and letT ⊂ Z

d be ak-
connected set, withD ⊂ T . Let κ be a finite collection of mutually external contours,
while0 is a contour surrounding the familyκ.

(The familyκ can be empty.) Suppose thatD ⊂ (Int 0 ∩ Extκ). Then

|0| + |κ| + |T ∩ (Int 0 ∩ Extκ)| ≥ λ−1 |D| .
Proof. Consider the set∂ (Int 0 ∩ Extκ)∪[T ∩ (Int 0 ∩ Extκ)]. This set isk-connected
and it containsD. Therefore

|D| ≤ λ |∂ (Int 0 ∩ Extκ) ∪ [T ∩ (Int 0 ∩ Extκ)]| ,
so the claim follows. ut

We would like now to use for the setM (0, κ) the information provided by the
assumptions of the theorem we are proving: namely, that diam(M (0, κ)) > `λ (0, ξ) .

However, that would be of use only if 0∈ M (0, κ) . If that is not the case, we can
modify the setM (0, κ) by attaching to it a connection to the origin of length≤ |0| /2.
The resulting set will still be denoted byM (0, κ) . Now Lemma 8, under the conditions
of the theorem we are proving, provides us with the estimate:

|∂D (ξ) ∩ (Int 0 ∩ Extκ)| ≤ 3dλ

1 − λ
(|0| + |κ|) . (60)

(To get it we apply Lemma 8 withD = D (ξ) ∩ (Int 0 ∩ Extκ) andT = M (0, κ) .)
Using (60) together with the bounds (57), (59) and the estimates (56) and (58), we have
for (55),

∑
κ

Z′ (Int 0 ∩ Extκ, +1, β)

Z′′ (Int 0 ∩ Extκ, +1, β)
≤

∑
κ

exp
{−τ ′ (|0| + |κ|)} (61)

with τ ′ = τ ′ (τ, λ) diverging withτ . We remind the reader that the last summation goes
over familiesκ surrounding the setM1 (ξ, 0) ∩ Int 0. Hence (48) follows from (61) by
standard combinatorics.
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As the last step in the proof of Theorem 7 we have to consider the case when a
contour0 is not a closed contour, but is attached to the boundary of the box3n, due to
the impurity of the boundary conditions around the box3n, caused by the presence of
the conditioning byξ. Note however that we can well assume thatn > `λ(0, ξ), since
otherwise the theorem holds trivially, and also thatL > n. That implies that the set
D (ξ)∩ ∂i (Int 0) is λ-sparse. (Again, we add to0 the connector to 0, if needed.) So the
number of these impurities to which the contour0 is attached does not exceedλ |0| .
If now σ is any configuration in3n with the contour0, then it can be modified to the
value+1 in the vicinities of these impurities, so that the resulting configurationσ ′ has a
(closed) contour0′, which is not attached to the boundary of3n any more. The energy
cost of such a modification is no more thanλC (J ) |0|, while the contour0′ can be treated
by the already proven part of our theorem. So ifλ is small, the factor exp

{−cβ
∣∣0′∣∣}

beats the energy weight exp{βλC (J ) |0|}, and that completes our argument.ut
Proof of Estimate (46).The proof goes essentially along the same lines. Without loss
of generality we can suppose that 0∈ CF . Let Y = {y ∈ CF : X(y) 6= +1}, Y ′ ={
y ∈ CF : X′(y) 6= +1

}
. ThenY ∪ Y ′ = CF . Consider the following collections of

contours:

2Y = {
0 ∈ Gex (X) : Int 0 ∩ Y 6= ∅}

,

2Y ′ = {
0 ∈ Gex

(
X′) : Int 0 ∩ Y ′ 6= ∅}

.

Note that the unionϒ of all contours from2Y ∪ 2Y ′ is a connected set. Clearly,

µξ
Qi,m,r

n × µξ
Qi,m,r

n [diam(CF ) > m] ≤
∑

2Y ,2Y ′ :
diam(2Y ∪2Y ′)>m

µξ
Qi,m,r

n (2Y ) µξ
Qi,m,r

n (2Y ′) .

Using the analogue of the estimates (56), (58) and the analogue of Lemma 8 withγ

replaced by the (connected) unionϒ , we arrive at the following analogue of (61):

µξ
Qi,m,r

n (2Y ) µξ
Qi,m,r

n (2Y ′) ≤ exp
{−τ ′′ |ϒ |} .

The rest of the proof is standard combinatorics.ut

6. Proof of PLD

In this last section we finally prove an unconditional statement: the PLD property, as
defined in the previous section, holds with probability one. We will start with the low-
temperature(+)-phasePβ,+ of the Ising model. We consider the general case in the last
subsection.

The events we are interested in here are

B (ε, W) =
{

σ ∈ � : m∗ (β) − 1

|W |
∑
x∈W

σx > ε

}
. (62)

We now introduce the notationSV (x; k, N) for the family of all k-connected subsets
of the boxV of diameter betweenN and 2N , containing a sitex, with SV (k, N) ≡
SV (0; k, N). Then we have the following theorem:
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Theorem 9.For everyk > 0, ε1 > 0 there exists a valueβk, such that for allβ > βk

and allV containingx

P
β,+
V


 ⋃

W∈SV (x;k,N)

B (ε, W)


 ≤ exp

{
−βN

d−1
(2+ε1)d

}
. (63)

Let us now fixN , and consider the union

SZd (y; k, N) =
⋃

x∈Zd

SZd

(
x; k, N + 1

3
|x − y|

)
.

Note that because of (63)

P
β,+


 ⋃

W∈S
Zd (y;k,N)

B (ε, W)


 → 0

asN → ∞. On the other hand, ifσ ∈ � \
(⋃

W∈S
Zd (0;k,N)

B (ε, W)
)

, then the set

Bad
(
0, σ ; λ̄

)
(see (20), (47)) with

λ̄ = λ̄ (ε, β) = 1 + ε − m∗ (β)

2

is contained within the ball of radius 6N around the origin and is therefore finite. Hence,
the set of configurations

K̃ (ε) =
⋂

y∈Zd


� \

⋂
N


 ⋃

W∈S
Zd (y;k,N)

B (ε, W)







is contained in the setK
(
λ̄
)
. SinceK̃ (ε) has full measure, PLD is satisfied. Note finally

that λ̄ (ε, β) → 0 asε → 0, β → ∞, so forε small andβ largeλ̄ (ε, β) ≤ λ (J ) (see
Theorem 7).

So what is left is the proof of Theorem 9. We will consider the casex = 0, therefore
x will disappear from the notation.

6.1. The strategy.The proofs of the above results turn out to be quite non-trivial. To ex-
plain the nature of the difficulties, we present below a short account of the straightforward
idea of the proof, together with the explanation why it does not work.

Let us try to prove Theorem 9 for the case ofk = 1; moreover, let us takeV = Vn to
be a cube, and restrict the setSVn (k) to consist of selfavoiding paths only, connecting
the origin to the boundary∂Vn. So, we are talking about the events which may be called
“large deviations along paths”. If we would be able to prove the estimate

P
β,+
Vn

[
B (ε, γ )

] ≤ exp{−c (β) |γ |} , (64)

valid for every pathγ , with the exponentc (β) diverging asβ → ∞, then we would be
done. Indeed, the number of pathsγ containing the origin and having lengthl is bounded
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by 3l , so we can finish the proof by summation over all paths. The point however is that
the estimate (64) does not hold in general. To see it can be violated, let us introduce the
setC (0) of configurations having the contour0 among their exterior contours, and take
0 to be a boundary of a cubic box centered at the origin and having the volumen. Then

P
β,+
Vn

[C (0)] ≥ exp
{
−c (β) n

d−1
d

}
.

Now, consider a shortest possible pathγ0, which visits all points inside0 prior to leaving
for ∂V . Its length is proportional ton. On the other hand, evidently

P
β,+
Vn

[
B (ε, γ )

] ≥ P
β,+
Vn

[
B (ε, γ ) |C (0)

]
P

β,+
Vn

[C (0)] ,

and the first factor is larger than12 for β andn large. So the probabilityPβ,+
Vn

[
B (ε, γ )

]
decays inn subexponentially only.

The reason why the above argument fails is that the summation over all paths includes
an overcounting; the same set of configurations makes many different paths to have the
wrong magnetization along them. On the other hand, to control the contribution of the

set C (0) to the probabilityP
β,+
V

[⋃
γ∈SV (k) B (ε, γ )

]
, one does not need any extra

argument involving path counting, simply becauseP
β,+
V [C (0)] ≤ exp

{
−c′ (β) n

d−1
d

}
(Peierls estimate).

To proceed with the proof of Theorem 9, we introduce some more definitions. Let a
configurationσ ∈ �+ be given, where�+ = ∪n�

+
n . We denote byG (σ) the set of its

exterior contours. We call a setW ∈ SV (k, N) abad setfor σ , iff∑
0∈G(σ):

Int 0∩W 6=∅
|Int 0|

|W | ≥ δ. (65)

Hereδ > 0 is some fixed number. Clearly, ifσ belongs to the eventB (ε, W), thenW

is a bad set forσ , with δ = δ (ε, β). We denote the event (65) byC (δ, W).
As one will see later, the proofs of the above theorems require the introduction of dif-

ferent scales, and these scales are needed to treat contours of different sizes.Anticipating
that, we introduce now the eventsCr (·, W) , r = 1, 2, ..., as follows:

σ ∈ Cr

(
δr

r
, W

)
⇐⇒

∑
0∈G(σ): |Int 0|=r

Int 0∩W 6=∅
1

|W | ≥ δr

r
. (66)

If σ belongs to the eventCr

(
δr

r
, W

)
, then we say that the setW is anr-bad setfor σ .

Our choice of the parametersδr will be the following:

δr = δ

K (ε1) r1+ε1
, (67)

with any positiveε1 < 1
2d

. In this way the inclusion

C (δ, W) ⊂ ∪rCr

(
δr

r
, W

)
(68)
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holds, provided
∑∞

1
1

r1+ε1
< K (ε1). That means, in words, that ifW is a bad set forσ ,

thenW is alsor-bad forσ for at least one value ofr.
Let now the sequence of integersx1 ≤ x2 ≤ ... be given,x1 ≥ k (wherek is the

value of the connection parameter entering the formulation of our theorems). The values
xr will be used as scales for studying the configurations withr-bad sets. The choice of
these scales, depending onδr , will also be made later. The sequencexr does not depend
on any other parameter, but for a fixed value ofN we will use only the firstr (N) terms
of it, wherer (N) is defined in (80) below. The reason for that is that for a givenN the
contribution of contours of sizer > r (N) to the event (65) can be neglected.

Now we will start to estimate the probability of the event∪W∈SV (k,N)Cr

(
δr

r
, W

)
.

In order to avoid the overcounting, to which we were alluding above, we will make a
coarse graining of our system. So we introduce the natural partitionLr of Z

d into cubes
Axr of sizexr , with faces parallel to the coordinate planes:

Lr =
{
Axr (y) ≡ Axr + y, y ∈ xrZ

d
}

,

and we denote byWr thexr -fattening ofW , i.e. the union of all those cubesAxr (y) of
Lr , which contain at least one point of the initial setW . Note that the setWr is always

connected, sinceW is supposed to bek-connected, whilexr ≥ k. If σ ∈ Cr

(
δr

r
, W

)
,

then evidently

∑
0∈G(σ): |Int 0|=r

Int 0∩Wr 6=∅
1

|W | ≥
∑ 0∈G(σ): |Int 0|=r

Int 0∩W 6=∅ 1

|W | ≥ δr

r
, (69)

so

∑ 0∈G(σ): |Int 0|=r
Int 0∩Wr 6=∅ 1

|Wr | ≥ δr

κr (xr)
d−1 , (70)

provided the estimate

∣∣Wr
∣∣ ≤ κ (xr)

d−1 |W | (71)

holds for someκ = κ (d, k), all W ∈ SV (k, N) and allr = 1, 2, ..., r (N). The estimate
(71) is indeed valid under the condition that the sizexr(N) of the cubes of the partition
Lr(N) is much smaller thanN. The reason is that ifγ ⊂ Z

d is a path of length|γ | ≥ N,

then the number of cubes of the partitionLr the pathγ can hit is bounded from above by
C (d) |γ | /xr , providedxr � N. This last condition is ensured for allN large enough
and allr = 1, 2, ..., r (N) by the choices (80) and (86) made below.

Let us now introduce the familySr
V (N) as the collection of all connected subsets

of Z
d of diameter betweenN and 3N , containing the origin, which are made from

the cubes of the partitionLr , intersectingV . For future use we introduce for the sets
W ∈ Sr

V (N) the notation||W || for the number ofxr -cubes they are composed of; of
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course,||W || = (xr)
−d |W |. It follows from (69), (70) and the definition (66) that

P
β,+
V




⋃
W∈SV (k,N)

Cr

(
δr

r
, W

)
 ≤ P

β,+
V




⋃
W∈Sr

V (N)

Cr

(
δr

κ r (xr)
d−1 , W

)


≤
∑

W∈Sr
V (N)

P
β,+
V

{
Cr

(
δr

κr (xr)
d−1 , W

)}
. (72)

A heuristic comment. At first glance the maneuver we performed in (72) could have
well been done with the setsW themselves, without passing to the fatteningsWr . The
key difference however lies in the amount of events which are of the form of (66) or
(70). For example, there are aboutC (d, k)N different setsW with |W | = N , which
may appear in (66), so in order to have the summation over them to converge, we need
the estimate of the probability of the event (66) to be exponentially small inN . But
such an estimate simply does not hold! On the other hand, the corresponding number
of different (connected) sets which can be produced from theseW -s via fattening by

xr -cubes is bounded by
(
3d

) 2C(d)N
xr , and that makes the summation possible, as we will

see soon.

Note that the Peierls estimate implies immediately, that for every setW̃ andδ̃ > 0
we have

P
β,+
V

{
Cr

(
δ̃, W̃

)}
≤

∣∣∣W̃ ∣∣∣∑
k=δ̃

∣∣∣W̃ ∣∣∣

(∣∣∣W̃ ∣∣∣
k

) (
exp

{
−β ′r

d−1
d

})k

, (73)

with β ′ diverging together withβ. Indeed, we have to havẽδ
∣∣∣W̃ ∣∣∣ exterior contours,

surrounding points ofW̃ , which explains the first factor. The surface of every contour

contributing to the lhs of (73) is at least 2dr
d−1
d , the number of different0-s, containing

a given face and having the surfaceL, is bounded by 3L, and

∑
L≥2dr

d−1
d

3L exp{−2βL} ≤ exp
{
−β ′r

d−1
d

}
.

We want to interpret the rhs of (73) as a probability. So we introduce the Bernoulli
random field, made by i.i.d. Bernoulli random variablesξ r

i , i ∈ Z
d :

ξ r
i =




1 with probabilitypr = exp
{
−β ′r d−1

d

} (
1 + exp

{
−β ′r d−1

d

})−1
,

0 with probabilityqr =
(
1 + exp

{
−β ′r d−1

d

})−1
.

(74)
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Then we can rewrite (73) as

P
β,+
V

{
Cr

(
δ̃, W̃

)}
≤

(
1 + exp

{
−β ′r

d−1
d

})∣∣∣W̃ ∣∣∣
∣∣∣W̃ ∣∣∣∑

k=δ̃

∣∣∣W̃ ∣∣∣

(∣∣∣W̃ ∣∣∣
k

)
p k

r q

∣∣∣W̃ ∣∣∣−k

r

≤
(
1 + exp

{
−β ′r

d−1
d

})∣∣∣W̃ ∣∣∣
P




∣∣∣W̃ ∣∣∣∑
i=1

ξ r
i ≥ δ̃

∣∣∣W̃ ∣∣∣

 . (75)

That is why we will study now the large deviation properties of the random fieldξ r
i .

6.2. Large deviations for Bernoulli variables.The results in this section are fairly stan-
dard. We present them just for completeness.

Lemma 10.Let ξi be a sequence of Bernoulli random variables,

ξi =
{

1 with probabilityp,

0 with probability1 − p.

LetSK = ∑K
i=1 ξi . Then for everyk and everyz > 2 we have the estimate

P (SK > k) ≤ z−k (1 − p + pz)K . (76)

Proof. We use Cramer tilting. We have

P (SK = k) =
(

K

k

)
pk (1 − p)K−k ≡

≡
(

K

k

)
(pz)k (1 − p)K−k z−k ≡

≡
[(

K
k

)
(pz)k (1 − p)K−k

(1 − p + pz)K

]
z−k (1 − p + pz)K .

But the expression in the square brackets is again the probability of the same event, now
according to the Bernoulli sequence withp′ = pz

1−p+pz
, 1−p′ = 1−p

1−p+pz
. Summation

overk yields the result. ut
Corollary 11. LetA be a real number, such thatAp < 1. Then

P (SK > ApK) ≤ εK, (77)

with

ε = ε (p, A) =
(

1 − p

1 − Ap

)(1−Ap) (
1

A

)Ap

. (78)
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Note.Of course, the notationε (p, A) does not necessarily make the quantity (78) small.
This notation just expresses our hope.

Proof. Let us takez to be the solutionz0 of the equation

pz

1 − p + pz
= Ap.

(Note that such a choice ofz makes thep′-Bernoulli process of the previous proof to
have the mean value of the sum ofK its element to beApK.) The solution is given by

z0 = A
1 − p

1 − Ap
.

Note also the relation 1− p + pz0 = z0
A

. Putting this into (76), we have

P (SK > ApK) ≤ z
−ApK
0

(z0

A

)K = (z0)
K(1−Ap)

AK
=

=
(

1−p
1−Ap

)K(1−Ap)

AApK
≡

[(
1 − p

1 − Ap

)(1−Ap) (
1

A

)Ap
]K

. ut

6.3. Proof of Theorem 9. i)Let the numberN be fixed. Let us denote byR (> k, N) the
set of all configurationsσ = (σx, x ∈ V ), which have a large contour0 ∈ G (σ ) in the
vicinity of the origin:

dist(0, Int 0) < 2N,

|0| > k.

Then it is immediate to see that if

k (N) > ln N,

then

P
β,+
V (R (> k (N) , N)) ≤ exp

{−β ′k (N)
} → 0 asN → ∞, (79)

so we need to study only the intersection
[⋃

W∈SV (k,N) B (ε, W)
]

∩ R (< k (N) , N) .

Note that this intersection satisfies the inclusion
 ⋃

W∈SV (k,N)

B (ε, W)


 ∩ R (< k (N) , N) ⊂ ∪r(N)

r=1 Cr

(
δr

r
, W

)

(compare with (68)) if

r (N) = k (N)
d

d−1 . (80)
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For our purposes the optimal choice of the functionk (N) turns out to be

k (N) = N
d−1

2d(1+ε1) . (81)

ii) To estimate the probabilityPβ,+
V

{
Cr

(
δr

κr (xr )
d−1 , Wr

)}
of the event (70) we will

use first the estimate (75) and then (77) with

p = pr = exp
{
−β ′r

d−1
d

} (
1 + exp

{
−β ′r

d−1
d

})−1
,

see (74), and

A = p −1
r

δr

κr (xr)
d−1 .

We have:

P
β,+
V

{
Cr

(
δr

κ r (xr)
d−1 , Wr

)}
≤

{[
1 + exp

{
−β ′r

d−1
d

}](xr )
d }||Wr ||








1 − exp

{
−β ′r d−1

d

} (
1 + exp

{
−β ′r d−1

d

})−1

1 − δr

κr (xr)
d−1




(
1− δr

κr (xr )d−1

)

×

×


exp

{
−β ′r d−1

d

} (
1 + exp

{
−β ′r d−1

d

})−1

δr

κr (xr)
d−1




δr

κr (xr )d−1



(xr )
d 


||Wr ||

. (82)

If we are able to show that the product of the curly brackets in the last expression is
small for everyr, then we would be done, since that would enable us to beat the entropy

factor
(
3d

)2||Wr ||
. (It is not hard to see that the quantity

(
3d

)2k
estimates the number of

connected sets made fromk unit cubes inRd , containing a given one.) So we will look
at the logarithm of{·} in (82). It is equal to

ln { · } = (xr)
d ln

[
1 + exp

{
−β ′r

d−1
d

}]

+ (xr)
d

(
1 − δr

κr (xr)
d−1

)
ln


1 − exp

{
−β ′r d−1

d

} (
1 + exp

{
−β ′r d−1

d

})−1

1 − δr

κr (xr)
d−1




+ (xr)
d δr

κr (xr)
d−1 ln


exp

{
−β ′r d−1

d

} (
1 + exp

{
−β ′r d−1

d

})−1

δr

κr (xr)
d−1



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. (xr)
d exp

{
−β ′r

d−1
d

}
+ (xr)

d

(
1 − δr

κr (xr)
d−1

)

·
[

δr

κr (xr)
d−1 − exp

{
−β ′r

d−1
d

} (
1 + exp

{
−β ′r

d−1
d

})−1
]

+xrδr

κr

[
−β ′r

d−1
d − exp

{
−β ′r

d−1
d

}
− ln

δr

κr (xr)
d−1

]

. −xrδr

κr

(
β ′r

d−1
d + ln

δr

κr (xr)
d−1 − 1

)
+ (xr)

d exp
{
−β ′r

d−1
d

}
. (83)

The only thing needed for the validity of the above estimate is the smallness of

exp
{
−β ′r d−1

d

}
and

δr

κr (xr)
d−1 , which is not an extra constraint. From this estimate we

see that the following requirements are sufficient for the numbersxr to make the above
logarithm very negative:

xrδr

κr
≥ α > 0 for someα and allr, (84)

(xr)
d � α exp

{
β ′r

d−1
d

}
for all r. (85)

Indeed, under (84)

β ′r
d−1
d + ln

δr

κr (xr)
d−1 = ln

[
exp

{
β ′r

d−1
d

} δr

κr (xr)
d−1

]

≥ ln
[
α exp

{
β ′r

d−1
d

}
(xr )

−d
]

� 1,

because of (85). For example, any choice

xr ∼ r2+3ε1/2 (86)

would go. Then the dominating term in (83) would be

−β ′ xrδr

κr
r

d−1
d � −1

uniformly in r, providedβ is large.
iii) What remains now is to estimate the sum

k(N)
d

d−1∑
r=1

∑
Wr∈Sr

V (N)

P
β,+
V

{
Cr

(
δr

κ r (xr)
d−1 , Wr

)}
.

ForWr ∈ Sr
V (N) we have

||Wr || ≥ N

xr

.
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Hence, by the estimates (82), (83) the last sum is bounded by

k(N)
d

d−1∑
r=1

∑
L≥ N

xr

(
3d

)2L

exp

{
−β ′ xrδr

κr
r

d−1
d L

}
.

According to the choices made before, see (67), the second exponent beats the first one,
and the resulting upper bound is, due to (81),

k(N)
d

d−1∑
r=1

exp

{
−β ′ δr

κr
r

d−1
d N

}
≤ exp

{
−β ′N

d−1
2d(1+ε1)

}
.

Together with the estimate (79) and again in view of the choice made in (81), that proves
the result. ut

Remark 1.The reader might have noted from (85) that the values ofβ for which our
results hold, depend onk and go to infinity ask increases. We believe that this is only
due to technical reasons, and in fact the same result should hold forβ large enough,
uniformly in k.

This belief turned out to be correct, as it is shown in the paper [S] of one of us.

6.4. The general case.In this subsection we use the notationP
β,+ for the Gibbs state

of our Hamiltonian (9) corresponding to the boundary condition+1.
For P

β,+-almost every configurationσ the set of pointsx ∈ Z
d , whereσ (x) = 1

contains a unique infinite component Extσ , with all connected components of the com-
plementZd \ Extσ finite. We will denote these components by1i (σ ), their collection
by D (σ ), and will call themdroplets ofσ . In analogy with (62) we introduce the event

B (ε, W) =

σ ∈ � : 1

|W |
∑

i:1i(σ )∩W 6=∅
|1i (σ )| > ε


 .

With this notation Theorem 9 is valid in the above generality.

Proof. The proof of this statement is the same one as is given for the case of the Ising
model. The only extra ingredient needed for the general case is the estimate that for
every finite connected set1 ⊂ Z

d ,

P
β,+ (σ : 1 ∈ D (σ )) ≤ exp{−c (β) |∂1|} ,

with c (β) diverging withβ. But this is a standard corollary of the PS theory.ut
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7. Outlook

We end the paper with a short discussion concerning logical continuations of the present
work. First of all, it is clear that not all interesting cases of non-Gibbsian states have
been covered. As an example, we have not dealt here with fuzzy descriptions of Gibbs
random fields [MvdV2] which can be seen as a coarse graining of the spin space. A well
known example is the projection of the massless Gaussian field on the sign variables,
see [LM,EFS,ES]. Moreover, even for the projection to a sublattice, our assumption that
the original measure is a low temperature phase of the PS theory, is generally violated
for the space-time Gibbs measures describing the steady state of a stochastic dynamics.
So, we have no results on the Gibbsianness of the projections to spatial layers, hence
on the Gibbsian character of stationary measures in the coexistence regime, see [LMS,
GKLM].

Finally, the present work should be followed by establishing the standard results of
the Gibbs formalism (existence of thermodynamic potentials, variational principle, etc.).
The basis for that can be the structure of weakly Gibbsian fields, uncovered in the present
work, see the estimate (25) and Definition 6. That would contribute to the second part
of the Dobrushin program of Gibbsian Restoration.
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