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Abstract: We present a unified approach to establishing the Gibbsian character of a
wide class of non-Gibbsian states, arising in the Renormalisation Group theory. Inside
the realm of the Pirogov—Sinai theory for lattice spin systems, we prove that RG trans-
formations applied to low temperature phases give rise to weakly Gibbsian measures.
In other words, we show that the Griffiths—Pearce—Israel scenario of RG pathologies
is carried by atypical configurations. The renormalized measures are described by an
effective interaction, with relative energies well-defined on a full measure set of config-
urations. In this way we complete the first part of the Dobrushin Restoration Program:
to give a Gibbsian description to non-Gibbsian states. A disagreement percolation esti-
mate is used in the proof to bound the decay of quenched correlations through which
the interaction potential is constructed. The percolation is controlled via a novel type of
pathwise large deviation theory.

1. Introduction and the Main Result

1.1. Problem of Gibbsianity for the restrictions of Gibbs random fieldsthis paper

we continue the study of the Gibbsian nature of certain random fields, arising naturally
in the context of statistical mechanics. As it is known by now, not all reasonable ran-
dom fields are Gibbs fields. One class of examples can be obtained by applying simple
Renormalization Group transformations to some of the most usual lattice Gibbs fields of
statistical mechanics. A theorem of van Enter, Fernandez, and Sokal [EFS], extending
earlier results of Griffiths and Pearce [GP1, GP2] and Israel [I], states that the restriction
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of the(+)-phase of the two-dimensional low temperature Ising model to any square sub-
lattice is not a Gibbs field. In [Sch] it is proven that the restriction of the samehase

to the one-dimensional sublattice is also not a Gibbs field. So, originated by Dobrushin
[D2], some efforts were made to generalize the notion of a Gibbsian field so as to bring
these restrictions back into some class of generalized Gibbs fields.

One way of doing this is to compromise on the condition that the interaction energy
between a finite volume configuration and the outside world is always defined. More
precisely, for states of infinite range dependence, this energy has to be represented by
an infinite series. However, in some natural cases the absolute convergence of this series
can not be satisfied for all configurations, for whatever choice of the interaction function.
Dobrushin’s idea was that the convergence condition can be sacrificed, and one should
be content with only almost everywhere convergence, according to the corresponding
probability measure. This idea was implemented in [DS, MvdV1] for the projection of
the (4)-phase of the two-dimensional low temperature Ising model to the 1D sublattice,
and in [BKL] for the projection to a square sublattice. It is worthwhile to mention that
the methods of these papers are quite different. In [BKL] the crucial technique is the one
used in the study of the behavior of the Ising modelin a random field, [BK]. It seems that
such a technique can not be applied to the case of projections to lower dimensions. The
methods of [DS] can in principle be applied to other situations, but their implementation
requires much additional technical work.

Let us remind the reader of the remark in Sect. 4.2 of [EFS] (used in [LMV]) that
the image measure under a renormalization group transformation of a Gibbs measure
may be viewed as the restriction of (another) Gibbs measure (obtained as the joint
distribution of the original Gibbs measure with its RG image). In that way, the study
of restrictions of Gibbs measures in fact incorporates a wide class of renormalization
group transformations applied to Gibbs measures. For that reason, in the present paper
we will concentrate on the case of the simplest renormalization group transformation,
that of the restrictiof=projection) to a sublattice. The generalization to other examples
of renormalization group transformations is straightforward. In fact, our restrictions are
more general, since we project Gibbs measures on a quite arbitrary infinite countable
subseiM of the lattice. On the other hand, the Gibbs measures we treat are the so called
pure phases of models satisfying conditions of the Pirogov-Sinai theory [Sin].(The plus
and minus phases of the standard Ising model are the best known examples.) We develop
a universal approach to the problem, which is insensitive to the geometry of the subset
M. In particular, all the above cited results are included. However, the temperatures for
which our technique works depends on how sparse thd égtand goes to zero when the
sparseness increases. Our strategy is the development of the one used in [MvdV1] for the
case of projecting the 2D Ising model onto the 1D sublattice. The idea of [MvdV1]to use
percolation techniques has to be supplemented in our present more general situation by a
certain large deviation theory. The required large deviation estimates are of a novel type,
whichis developed in Sect. 6 of this paper (see also Sect. 1.2 of the present Introduction).

We now describe briefly our results. Throughout the paper we fix a countable subset
M of the regulak/-dimensional lattic&<, containing the origin. The only restriction is
that the seM has to be-connectedk > 0. It means that the set

[x e 74 : dist(x, M) gk} 1)

is connected. The numbéris fixed throughout the paper. Let now the random field
P be an extremal low temperature Gibbs state of a model of statistical mechanics on
74,d > 2, satisfying all the conditions of the Pirogov-Sinai (PS) theory (see [Sin]).
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(The reader can think about tfie-)-phase of the two-dimensional Ising model.) The

field P is a probability measure on the get= SZ S finite, of all spin configurations

o onZ?. We are interested in the projectiosrestriction) Py of P onto the subset
Qu C Q2 of all spin configurationsy; on M. We are looking for aibbsian potential

for Py, i.e. for a systenid = (U(T,o7), T C M,0 < |T| < o0) of real-valued
functionsU (T, o) of o7 € ST, such that the usual Gibbs formula for the conditional
distributions ofPy; holds. However, a potential, which is absolutely summable, does
not exist in general, as we already said above. What it is possible to find, is a g¢ystem
which makesPy; into aweakly Gibbs random field@hat means that one can find a tail
measurable subs€ty; C €, such that

Py (QM> =1, (2)
and therelative energyseries
EZ(/[(UV|5M\V)
= Y UTon+ > U(T,ornv Uornaiv))
TCV,T#0 TCM:TNV #3, TNM\V)#0, | T| <00
®3)

converges absolutely for all boundary conditiahg € Q. The properties (2), (3)
allow to write the Gibbs specification f@t-almost all configurations, and hence one
can also write down the DLR equations, which in turn are satisfied by our meagure
We refer to [MRV1,EMS] for further definitions and for a comparison with the notion
of an almost Gibbsian field.

Summarizing, our results in a preliminary form are given by the following

Theorem 1.The projectionPy; of a Gibbs staté®, describing a low temperature pure
state of the PS model, tokaconnected subsafl  Z¢, is a weakly Gibbs random field.
The set of configuratior@y, for which the Gibbs specifications can be defined, is given
by a constructive procedure.

(A more detailed statement is contained in Theorem 4 below.)

Actually, the construction of the s&?y; is an interesting subject in itself, so we
conclude the introduction by mentioning our results concerning it.

1.2. Path large deviationsFor the sake of simplicity we describe in the introduction the
corresponding results in the simplified setting of the-phase of the low temperature
2D Ising model. We want to discuss properties of the typical configurations, or, rather,
typical properties of configurations.

One well-known example of a typical property is the propertyltdving the right
magnetizatioh It means the following. Consider the event

1 *
Wi Z ox —m” (B)
wherem™ (8) is the spontaneous magnetization at inverse temperatditeen for every

A(s,V):{aeQ:
xeV
e >0,

P€’+ (A(e,V)) = 0asV — 72, 4
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whereIP”f,’Jr is the Gibbs state in the square bbxwith (+) boundary conditions. In

particular, if we put
Ae=UAEv,
N n>N

whereV, is ann-square, then for every > 0,
PPt [(A ()] = L.

HereP#* stands for the+)-phase.
In the present paper we need properties which are valid for almost all configurations
not just in the bulk, but alongverysingle selfavoiding path. So I&Y be the collection
of all selfavoiding paths i, connecting the origin to the boundary¥f Is it then true
that the following strengthening of (4) holds: for every- O,

Pyt | Aew) | —oasy, —» 74, (5)
WESV”
In other words, is the property ohaving the right magnetization along every path

typical one? The answer is clearly negative, since fBf-d-typical configuratiorr we
easily can find a selfavoiding path which avoids essentially all contours®f and so

the magnetization of along the pathy — that is the quantitﬁ ery o, — can easily
be almost equal to 1. So we introduce a smaller event
N 1
B (s, W) = aeQ:m(ﬂ)—WZox>e ) (6)
xeW

Forexample, the eve® (¢, y) happens, if the path enters too often inside the contours
of the configuratiorr. Then the following theorem holds:

Theorem 2.1f g is large enough, then

Pyt | B(e. W) | — Oasn — oco. (7
WESVH

In words, the above statement means that the magnetizatianyotypical con-
figuration alongeveryselfavoiding path is above™* (8) — ¢. If a configurationo ¢
Uwe Sy, B e, W), then we say that has a corredPath Large Deviatiorproperties, or
simply thato is aPLD configuration

In contrast with (4), where the convergence is exponentiaVin in (7) we only
have a stretched exponential decay. This is the content of Theorem 9 below, which in
particular proves the claim of Theorem 2 above.

In the next section we introduce the notations. In Sect. 3 we reduce the proof of
Theorem 1 to the question of correlation decay in a random (quenched) environment.
In Sect. 4 the correlation decay question is reduced to a question about percolation in a
random environment. In Sect. 5 the percolation problem is solved under the hypothesis
that the random environment has a property of the type described in Theorem 2. Finally,
in Sect. 6 the generalization of Theorem 2 is proven, which justifies the use of the
hypothesis above.
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2. Notation

We fix an arbitraryk-connected (see (1)) infinite sub3dtof the regulak/-dimensional
lattice Z¢, containing the origin. The most interesting cases conbére: [ Z’, r =
1,...,d;1=1,.., 2k — 1, where we keep the invariance under (a subgroup of) trans-
lations. In the following,A| is the cardinality of the set, while A¢ denotes the com-
plement of4 in Z¢. For W ¢ M we sometimes denote 3y the complemenivl \ W.
General elements (sites) @f are written as;, y, z, but we writei, j when referring to

sites (elements) ibl. The distance between= (x%,... ,x%)andy = (y1,...,y?)is
d

x—yl=) Ix* =y ®)
a=1

The distance between two set&ndB isd(A, B) = Mincea, yep |x — y|. The diameter
ofasetd isdiamA = max, yca |x—y|. Whendealing with a singletofi = {x}, we often
write A = x. A, isthecubdx € Z¢ : |x| <n},n = 1,2, ....Its intersection wittM is
A,NM = V,,. TheboundaryofasetisdA = {x € A : 3y € A, |x—y| = 1}and must
be distinguished from its internal boundaiyA = {x € A : Iy € 0A, |[x — y| = 1}.
We find it also useful to regar@? as a graph with its sites as vertices and its bonds
(nearest-neighbor connections) as edgeand y are adjacent (nearest-neighbors) if
|x — y| = 1. A (finite) path (of length:) from x to y is a sequence of consecutive and
mutually distinct nearest-neighbotgy = x, x1, ..., x,—1 = y). Infinite paths are the
natural extensions of this. A path fromto B is any path starting in a site € A and
ending in a sitey € B (its length is at leasi (A, B)).

We will be using the lexicographic ordex® on Z¢ to say thatc < y if x1 < y*, or
¥t =ylandx? < y?, or..xt =yl x2 =y? ... x? 1 =y landx? < y¢. Dual
to paths are surfaces. They are sometimes referredtecasuits in two dimensions.
A surface aroundi is any collection of next-nearest-neighbor connected sit@s iso
that by removing them from the lattice, no infinite path can exist starting in

We consider lattice spin systems . A general spin configuration ¢f is denoted

by o orn. They are elements of the configuration sp@ce §Z° , WhereS is the finite set
(IS| = g = 2) of spin-valueg, b, c, ... atasingle site. Ising-spins hafe= {+1, —1}.
The value of the spin at a sitdn the configuratiow iso (x) € S. We will frequently use
some reference configuration, denoted by 1 with) &= 41 everywhere. The restriction
ofac € Qtoasetdisos € S4;0anac = 04Unac equalsy onA (i.e.,o4n4c(x) = o (x)
forallx € A)and equalg onA°. We writes 4 for the configuration which equasson A
and is equal te-1 outsideA. The restriction of2 toM is @y = SM andQ, = Qy, - We
often considefy as a subset a2+ via natural embedding € Q7 — oy € QM.
Therefore the same symbatsn, & will sometimes appear for configurationsSihand
in Q. All notation is inherited, e.g5" equalst onV and is+1 on V<.

A function f onQ is local if its dependence séty, i.e. the minimal sefl such that
f(o) = f(n) wheneverr4 = n4,, is finite. Continuous functions are uniform limits of
local functions with the sup-normf|| = sup, | f (o).

The sigma-algebra generated by the evaluatioesA — o (x) is denoted byFy4.
WhenA = Z¢, respectivelyA = M, we simply setF = F4, respectivelyF’ = Fy.
The tailfield sigma-algebras are denoted By = N,Fac and Fo = FonF
respectively.

Inwhat follows we will be considering probability measuresn (2, F). Their corre-
sponding random field is denoted Ky= (X (x), x € Z¢). Expectations are abbreviated
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as/ f(o)du(o) = n(f) and a covariance is written s f; g) = 1 (fg) — n(f)i(g).
The probability of aneverf € Fisul[E] = u[X € E]oralsou(I[X € E]), where we
introduced the indicator functioh The same notation is used for probability measures
v on(L2, F). Such a measure appears as the restrictipntofF’ (or, toM). We denote
byY = (Y (i), i € M) the restriction of the random field to M.

The basic model system we will be dealing with here is defined via a nearest-neighbor
interaction

Ha,(0) = — > T (@™ (x), o (y)). ©9)
x€Ap,yeZd |x—y|=1

The interaction term/ (-, -) is a real-valued symmetric function dfix S (possibly
containing a self-energy). We have taken care of puttiidpoundary conditions outside

the cubeA,. The nearest-neighbor aspect ensures that the corresponding Gibbs fields
will be Markov random fields but that will not be essential. The partition function is

Zy= ) e FHu@ (10)
oeShn

We suppose that{ satisfies the conditions of the PS theory, and that the configuration

1 with 1(x) = +1 everywhere is a ground state and gives rise to pure stafesvat
temperatures in the usual sense of PS theory. More specifically, we assume that for all
a,be S\ {+1},

J(+1,+1) =0, J(a.+1) < —1, J(a,b) <O. (11)

We assume further, that all ground state configuratiorn¥ @fre translation invariant.
That implies in particular that/ (a, b) < 0 fora # b. We then assume that in such a
situationJ (a, b) < —1 as well.

3. Correlation Decay= Weak Gibbsianity
We start with the definition of some finite subsetdvbf For everyi € M we put
Lipm={jeM:j<i|j—il<m}m=01.... (12)
Clearly,L; ,—1 C L;,» € M and
od—1
d—n"

We can now, following the lexicographic order, add sites one by orig 0 1 to end
up with the set; ,,. So let us writeL; ,, \ Li m—1 = {j1, j2, .- . , ju} With j1 < jo <

. < jy and their numbev = v(i, m) possibly depending an andi but not exceeding
2m?=1, It can happen that; ,,_1 = L;,, in which cases(i, m) = 0. Define the sets

Qi,m,r = Li,m—l U {jla J2, e, ]r} (14)

withr =1,2,...,v. We haveQ; v = L ,» and we putQ; ,, 0 = Li m—1.

Let u, be the Gibbs state in the bak,, defined by our Hamiltoniaf{ and the
configuration 1 as boundary condition. According to our hypothesis, the sequence of
probability measureg,, = u,, on (2, F) weakly converges to a measyrewhich is

v(i,m) = |Lim \ Lim-1| < =t <omd=1 m > 1. (13)
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a pure state of our model. Le} denote the probability measures obtained froyrby
restricting them tdM. Then, the limit lim, v, = v exists and equalg restricted taVI.

For every configuratio§ € Qy the measureuﬁ on (2,, F) is defined in the fol-
lowing way:
i) one takes the conditional Gibbs distributiop, . in A,, defined by our Hamiltonian
‘H and the following boundary conditiofs ¢ :

5 e (x) = & (x) forx € A, N M,

InE =101 forx e AS\ (A, NM),
(in our notationg, ; = &?A"M),
ii) one definemi by the conditioning:

15X = o ONA] = jin s, [X =0 ONA|X =& onV,], whereA C A,.  (15)

We denote b)Qf, = Qi v € gz« the support of the measuré; by definition, these

configurations coincide with;, ¢ outsideA,, and withé on V,,. Also, we defing.é by

w [A] = n (141F") ; by what follows one can show that = lim,, 115 on a set of’s

of Py-measure one.
Let us define the local observablgs= ¢f (0),i €e M sothatforall € V,,

palX = £V onV, ] = ualX = £2 on Vi, lu” (¢0). (16)

Of course, these functiogs can be written down, but we do not need explicit expressions
for them. Also, for alli, j € V,, we have

palX = 200 on V] = u[X = £2 on v, ué’ (@y)). (17)
Since the interaction is nearest neighbor,
b =¢i9;, (18)
provided|i — j| > 4.
Next we formulate the Correlation Decay property, which, if valid, implies Weak
Gibbsianity.

Definition 3. We say that the Quenched Correlation Dec&®Cp) property holds, if
there are constant§€ < oo, A > 0, a tail-setk € F’ with

punlKl=plK]l=1 (19)
and a functior? (i, &), defined fo € K, i € M, such that for every € M the set
Bad(j,§) ={i e M: €@, &) > |i — jI} (20)

is finite, and for all finiteQ c M, all » and all j with |i — j| > min{£(i, &), £(j, &)},
1S iz d)] < Ce i, (21)

We suppose additionally that for evefye K and everyQ c M (finite or infinite)
£2 ¢ K as well, and that for every € M Bad(j, éQ) Cc Bad(j, &).
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Theorem 4. Assume that the condition QCD holds. Then the restricted stataweakly
Gibbsian with interaction potentidd = {U(T, -), T C M} vanishing except possibly
for the setsl’ = L; ,, with v(i, m) > 1, wherei € M, m € N, and is then given by

v(i,m) é:Qi.m,r e
Lim €)= Z Nt 0D o, g, (22)
HE (s (g
U(i,m) %-Qi.m,r (CD . )

U(Lim.£)=—)_ In T gQi,er.r forl<m <4, (23)

— M (P (@)

while form =0

U(Lio, &) = In ' (@) (24)

This potential is absolutely summable on the tail-EetMoreover, it satisfies the fol-
lowing bound: there exist constanty, C2> < oo, A > 0 such that for allm > 0,& €
K,i eM,

\U(Lin, §)| < C1I[m < €, §)Im* ™t + Col[m > €(i, £)Im* L expd—am],  (25)
with the£(i, £) and the seK as in QCD conditions (19-21) above.
Proof. Consider the probability to find the configurati&mn V,,. In our notation it is
wlY =§onV,] = u,[X =& onV,l, (26)

and we will abbreviate it ag,[£]. Order the sites iV, lexicographically ag; < i> <
. <1y, to write

[V i s"'si,\‘}]

mal§l T pal§
walll 1:[1 G ET

(27)

For everyi € V, we definem(i, n) = maxjey,.j<i li — j|. Then we can rewrite every
factor in (27) as

(is,n) ; ; i

" palglm] (gt ]

Hn S{ll ZV}] 1—[
Mn [S{ilq-u,i,r—l}] - e M,l[ELi~T*m_l] /J/n[ELif’m\iS]

So if we define the family/" = {U" (-, -)} by

palEhim] pun[gHin—1\]

U'(L;p, &) = — - 28
(Lizm, £) pnlELim=1] pu, [ELim\i] (28)
then we have
m(i,n)
pal€] = palllexpd = Y~ U"(Lim, £ ¢ (29)

ieV, m=0
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Note thatt” = 1, and so

0 [£] i
U (Lig 8) = —In 2] _in g g,), (30)
1]

Observe also tha# (i, n) = 0 wheni = i1 is the “first” site inV,,, and that
£(i) = +1,
or

U'(Lim,§) =0, provided wv(i,m) =0, (32)

or

£(j)=+1forallj € L\ Lim-1.

We can further telescope (28) as

(i,m) i i i
U'(Lijm, &) = — Uin in Hnlé Qimr 1y [ Qimr—1\]
1,m» —~ Mn [E Qi.m,r—l]un [é Qi,m,r\l] )

(32)

providedm > 0 andv(i, m) > 1. If m > 4, we can use (16-18) to rewrite (32) as

v(i,m) SQi,m,r

Un(Li,lnv ‘i:) = — Z In EQLM” (¢l¢/r)

m,r gQi,m,r
r=1 [n (i) n

: (33)
(9,)

while for 1 < m < 4 we can not use the factoring (18), so we keep the initial local

. . g0
observablesb;; Here we remind the reader that the cond|t|0nufg of the measure
w, by the configuratiors € means the use of the condition

X=¢o0onQ, X =1onM\Q, |Q| < oco.

So the cluster expansion easily provides us with the existence of the limits

im0 b (f) for every local observabl¢g. Taking the limitsn — oo in (33),

(30), we arrive to the formulas (22)—(24). The estimate (25) follows from relation (21).
The almost sure convergence of the relative energy series (3) follows from the finiteness
of the sets Badj, &) of “bad” points (20), wher§ € K.

What remains is to show that indeed the random field a Gibbs field with the
potential/ = {U(T,-), T C My}, i.e. to prove that the corresponding DLR equations
hold. The rest of the present section contains the proof of validity of DLR equations.
Since this proof is not used in the rest of the paper, the reader might want to go directly
to the next section.

The following proof is an adaptation of the similar statement from [DS], Sect. 8. We
begin by introducing for every finit¢’ c M the Gibbs specification

exp(—EY (&vIéw 1)}
ZYEwny)

P Evigvy) = (34)

where the partition function

ZHEay) = Y expl—EY EviEmny)). (35)
gyexV
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Here the functiorE%,’(gV@M\v) is defined by the series (3), if the latter converges. Let

us show that fo = &y UéM\V € K this convergence follows from that part of Theorem
4 that is already proven.

Indeed, let the seL;,, C M be “bad”, in the sense that it intersects the box
V, and£(i,&) > m. In other words, the contribution o (L; ., &y U &) to

E{f (§V|§M\V) mig_ht be big, according to (25). Then necessarily theidiglongs to the
setJ;.y Bad(j, ), which is finite. Note that the number of different séts,, with

m < £(i, §) is less thar(2¢(i, é))d, so the total number of “bad; ,,-s is bounded by
. znd
> (2a6.9)".
ieU;cy Bad(j.€)

which is also finite. B
The above argumentimplies thatthe functiga(;}fs{év |&vr\v) are defined-a.s., which
makes well-defined the rhs of the DLR equation (36), which follows:

/¢W(EW)V(d§) =/ Z <¢W(SW)PZ\//{(‘§V|§M\V)) vy v (dEnny ). (36)

gyeSV

HereV < W are arbitrary finite subsets &, &w = (&v Ué&wv) lw is (with some
abuse of notation) the restriction, the local observai€ty) = ¢w &y U éw\v) is a
function ons", while vy v is the restriction of the measureto theo-algebra}‘M\V.

Equation (36) should hold for any choice 6fC W.
To prove (36), let us introduce the subs&tg = Xy (W) C K as

Xy = [éeK:Z |Bad(j, &) <N],
jew

and rewrite the rhs integral of (36) as a sum:

/(~>= (.)+/ (). (37)
XN (Xn)©

Note that the last integral goes to zerd\as> oo, since the functio) " ; .y, [Bad(j, £)|
is finite on K and because the integrand is bounded. We further introduce the subsets
XN,R of Xn:

jew

XNR= [§ €eXy:Vie U Bad(j, &) we have disti, W) < R}.

We have that

/(-):/ <->+/ (). (38)
XN XN.R XN\ XN.R

Again, the last integral goes to zeroRs— oo.
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The estimate (25) implies the continuity of the functipﬁj(EV@M\v) on the sub-
spaceX y, Xy r. Note also that Definition 3 of the QCD property implies that the follow-
ing implications hold: (§ € Xy) = (69 € Xy), and (§ € Xy .8) = (¢ € X&)
Together these properties imply that for every 0 there exists a distange(e, N, R)
big enough, such that for every s}, containing the set

O (W:p(e, N,R)) ={i e M:disti, W) < p (e, N, R)}

we have:

/X > (owewr Evigny) vy @) (39)

EyesV

- fx > (ewiewrtEvIgs)) vy @) <e.

NRS esv

Repeating the arguments (37), (38) for the last integral, in the reversed order, we can
replace it by the integral over the whole space,

/ > (owempttEviED,) ) viay @), (40)

gyesv

again with arbitrary precision. But because of (31) the integrand in the last integral is
a local function! Therefore we can approximate it arbitrarily close by the integral with
respect to the finite volume measug

| X (owennf e ) tany @Enan (41)

fvESV

providedn > n (Q,) is large enough.
Note that for any local evend we have the exponential convergencg(A) —
u(A) aSn — 00 (though not uniform inA, of course). Therefore the two functions,

pV(§V|§'A \v) andp ($V|§A \v) can be made arbitrarily close, uniformly &y U

EA,L\V' provided only that: (= n (p)) is large enough. The last step would be to use
again the approximations (37-39) to replace the integral

| X (ol @iE ) Gnany @)

SVeSV

by

/ Z <¢W(§W)PZ\//[H(SV|§A,,\V)) W) av @Eav),

Eyesy
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and then to observe that because of the validity of the finite volume DLR equation (which
is an identity)

/ > (swewrt @ IEL ) Gaay @)

EyeSY
= /¢W(EW)Vn(d§A,,) - f¢W(§W)V(d§)~

This use is possible since the relations (37-39) hold in fact for the integrals

[ 3 (owenntf @vignn) oy @y

gyesVy
as well, uniformly inn — oo, due to our Definition 3 of QCD.O

Remark.The construction of the potential of the basic lemma above goes back to the
paper of Kozlov, [Koz]. This telescoping potential was already used in [MvdV1,MRV2]
and it has the nice property that, when thelgeallows it, U is explicitly translation-
invariant.

4. Percolation= Correlation Decay

We continue with the same setup of the previous section. We must estimate the covari-
ances in the left hand side of (21). Using an idea of [B, BM, BS] as applied in [MvdV1,
MRV2], we can reduce this to a percolation question./kcr 4, the two local observ-
ablesf = ¢; andg = ¢;, have disjoint dependence sédg = F, D, = G C A,. We
will take n large enough, so th&; ,, » C A,. To save on notation we fixand Q; ,, »
and we writeuf,Ql’m’r = pn. We must estimatg, (f; g).

To proceed we consider the product space of configuraiiénsc S4» = (S x S)»
on which we put the product coupling, x p,. So, we just consider two independent
copies of the original system. Now, for any two disjoint finite S¢&ndC, we introduce
the eventE (B, C) that there is a path from to C in A, such that for every site of
this path inA, \ Qi m.» we have(X (x), X'(x)) # (+1, +1).

Lemma 5. For the Markov random fiel@,, we have

lon(f: @) < 211 fI11Igll (on % pu) [E(F, G)]. (42)

Proof. First of all, we can write

lon (&) = Pn(f)Pn(Q)]
= 10 (§(X)[on(f1XG) — pu(f(X))D |
< llgll on (pn(f1XG) = Pu(SID
= llgll o (X [(pn (dX'1XG) X pu () (F(X) x L=1x f(X)]).  (43)
To save on notation, lex = A, \ Q;.n.r \ G. Now imagine a fixed configuratian

ondA witho = +10ndA,, o =& on Q; ., ando some fixed configuration o@;
we must study

(Pn(|1X =0 0ndA) x p, () (f x1—1x f).
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If for every path inA, from F to G there is a pointkk € A, \ Qi .. On it where
(X (), X' (x)) = (+1, +1), then there exists a surface ger circuit) aroundF sepa-
rating it insideA,, from G and on whichX = X’. In general, this surface has a part in
A\ FUJA, onwhich(X, X') = (+1, +1) and a part inQ; ., on which the config-
uration¢ lives and thus theréX, X’) = (€, &£). Hence there exists a maximal surface
among theseA, inside A (maximal in the inclusion sense). Now sinke= X’ on A
and by the Markov property,

[(on(-1X =0 0NIA) X pp (1)) (f x 1=1x f)] (44)
=21l (pa-|X =0 0NIA) x p () [E(F, G)].

Continuing with (43), (44) now yields that

lon (3 @)1 = 211 FI11IgI Gon X pn) [E(F, G)], (45)
which we wanted to prove.n

Remark.Clearly, from the proof above, an analogous estimate to (42) holds in the case
that u, is not (strictly) Markovian but becomes Markovian when to each site of the
lattice a finite number of edges is attached linking that site with more than just its
nearest-neighbors.

5. PLD = Contour Estimates= Exponentially Weak Percolation

Let F be a finite subset d£¢, as in the previous section. Denote Oy the random
set containing all sites € Z? \ M which are nearest-neighbor connected fo via

sitesy € Z¢ \ M for which (X (), X'(y)) # (+1, +1). This is the cluster of". Our
task is now to find a (large) sé&t of configurationg and corresponding lengtlégi, &)

(see(19)), for which

pES s T [diam(C ) > m] < e, (46)

whenever > £(i, £). Given the bound (42), this would take care of the assumption (21).
This of course is reminiscent of the stochastic-geometric structure of the low-temperature

phases in the realm of the Pirogov-Sinai theory.
Qi,m,r Qi,m,r
Since the coupling we are considering is just a product coupd§ng X ﬁ

it is clear that we have (46) once we know that a suitable analogue of the Peierls estimate

Qi.m.r [ . . .
holds for the stateu, = /Li itself. So we will formulate it next, leaving the

derivation of (46) for the end of the present section.

LetX € QF = Q}F (&), whereQ; (¢) is the set of configurations that ard outside
A,, exceptatsitesiM \ A,, where they coincide with. We introduce now the contours
of configurationX in the usual manner. Namely, we call a faEef the dual lattice a
boundary face, iff the valueX,, X, at the sitesy, z, closest toF, are different. The
connected components of the boundary faces are called contours. We degat& oy
the set of all contours ok, while G¢* (X) is the set of exterior contours &f; these
are the contours which are not surrounded by other contours. Finally, we call a contour
closed, if it does not contain faces outsitlg. Otherwise the contour will be called open.
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If the configurationX € Q (&), andé £ + 1, thenX can have both open and closed
contours. For € A, we define the contou®, (X) by

T, if T € G (X), x € IntT’,

O (X) = { @ otherwise.

We are interested in showing that the event that the coraur) is of the sizeL

happens witmig-probabilityf exp{—cBL}. However, that cannot possibly be true
without putting conditions on the configuratign The condition should be of the type
thatthe seD (¢§) C M of sites wheré& # 1is quite sparse. The following generalization
of the Path Large Deviation property is a condition of this type. We will still c&LD

property.
Definition 6. Let¢ € Qyy, A > 0andx e Z¢ be given. Put

min{! : for all finite k-connected
T c 7z withx € T, diam(T) > [ if suchT-s exist,
6(x,8) =L (x, D(§)) = | we have|T N D &) < A|T|}

00 otherwise.

A setD will be calledi-sparse, ifft, (x, D) is finite for all x. We define the set
1
Bad(y, &;4) = {x € Z*: 63(x,§) = Slx =y}, (47)

and we putk (A) = Nyeza Ky (1) with
Ky (A) =1{§ € Qu : Bad(y, &; A)| < oo} .
We say that PLD holds iff (K (A)) = 1.

Theorem 7.Let& € K (A/2) with A < A (J), wherex (J) is small enough. Then for all
Q c 74 finite and uniformly in large:

1E% (X : diam(©9 (X)) > L} < exp{—cBL}, (48)
providedL > ¢,(0, £). Herec is some constant.

Note.In case the sab (§) itself would contain a long contodit surrounding the origin,

the event diani®q (X)) > diam(I") happens witmiQ—probability one, ifl" C Q,

so Theorem 7 has no chance to hold in such a case. Happily, under the condition that
& € Ko (A) we have immediately thad (£) cannot contain a contour with dia¢h) >

£,(0, &) oncea < 1/2.

Proof. We begin by showing that under our hypothesis the vaje, &) is finite. (This
is the only property of the configuratignneeded to prove (48)). Sinéec K (1/2),
we havel; »(x, &) < oo for somex. Let us check now that if for some the value
£ (x, &) is finite, then for ally the value<y (y, &) are also finite. Indeed, let € T,
diam(T) = [ and|T N D (¢)| > 2|T|. Below, we denote byx, y] c Z< any n.n.
connection between andy, having|x — y| sites. If maxcr |x — z| > £, (x, &), then

(T Ulx,yDNDE| <« |TU[x,y]l =« IT|+xlx —yl.
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On the other hand,
l
(TU[x,yDND @I =T NDE) = 2|T| > ZKZ'

Thereford < k |x — y|, andla. (v, &) < max{k |x — y|, 2¢,(x, &)}.

For convenience, we suppress the indgxhroughout the proof. First, It be a
contour, surrounding the origin and not attached to the boundary of the poixe. a
closed contour. Then we have to estimate the probability

pi{X T eg™x)}.
The first remark is that it does not exceed the ratio

Z'(IntT, +1, B)

_— 49
Z” (IntT, +1, B) (49)
where the partition functio&’ is calculated over the subs@t (IntT", M, &) of config-
urations in Infl", where

Q (A, M, €) = {0 € Qp : 0 (x) #+1foreveryx € 9; (A), (50)
o(x)=¢& () forallx e MN A},

while Z” is calculated ovef2” (Int T, M, &) with
Q'AME ={ceQpr:ox) =E&) forallx e MN A}. (51)

To estimate the ratio (49), we need the following two cluster expansion results for
the partition functions in the framework of the PS theory (see [Sin] and [KP] or [D1]).
The first one deals with the case when we calculate the partition fungtian «, g) in
the boxA with the constant boundary conditian corresponding to the stable phase.
Then

IN(Z (A, a,B) =IAlf(B)+c(A,a,p), (52)

where f () is the free energy of the model, and the boundary tetm, a, 8) has the
c(A,a,p). . . . .
property thatthe raueW is exponentially smallig. The second case is obtained
when we restrict the summation in the partition function (52) to the configuragions
which possess a contobiright at the boundary ok . In other words, for all points € A,
adjacent ta; A, o (x) # a. This partition function will be denoted by (A, T, a, B).

Then
IN(Z(A,T,a,B)=IIntT| f(B) +c' (A,a,B) —BET). (53)

Herec’ (A, a, B) is again a boundary term, while (") is the (temperature independent)
energy of the contour. It satisfies thdPeierls condition

E() > c1|T'| witheg > 0,

which bound is the precondition of the PS theory.
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The estimate of (49) proceeds as follows. Note that every configuratfoom the
set (50) possesses in addition to the confowr collection of contourg (o) = {y;},
separating the set

Mi (5,T) = {x e MNIntT, £ (x) = 1} (54)

from the contourl™. Their presence is due to the fact that the 1-spins sitting in the set
Mj (&, I') force the 1-phase inside the box IntOur notatiork (o) refers to the collec-

tion of all such contours, and we denotebys) C k (o) a subset of external contours

of k¥ (o). The contours fromr (o) have the 1-phase inside them and are not separated
from " by other contours. Another way of defining them is to say that the contours from
k (o) are boundaries of maximal 1-surfaces, surrounding pointdoft, I"). We now

split the partition functiorZ’ (Int T, +1, 8) according to what the family = « (o) is:

Z'(IntT,+1, p) = > Z' (IntT N Extk, +1, f) Z" (Intx \ 3; (Int&) , +1, B);
K

here the partition functio&’ (IntT" N Extk, +1, B) is calculated over the s&' (IntI'N
Extk, M, &). Hence,

Z'(IntT, +1, B)

Z"(IntT, +1, B)
-y Z' (IntT N Extk, +1, B) Z" (Int« \ 3; (Int«), +1, B)
k- Z" (IntT, +1, B)

-y Z' (IntT N Extk, +1, B)
= £~ 77 (IntT NExtk, +1, B)’

(55)

We note for clarity that for every the set Inf" N Extx contains no sites of the set
My (&, ).
To obtain the upper estimate f@r, we use (53). Our upper bound @nis

InZ' (IntT N Extk, 4+1, B) (56)
< [(ntI'NExte) \M]| f(B) — (I + |«]),

with t diverging as8 — oo. Moreover,r = t (8) satisfies the estimate

T (B) > c2B, (57)

with ¢c2 = ¢2(c1) > 0.

To estimate the denominator, we diminish the partition func#éiint " N Ext«,
+1, B), replacing it by the partition functiog” (IntT" N Ext«, +1, B) calculated over
the subse®” (IntT" N Extx, M, &) of Q" (IntT" N Extk, M, &), where

Q" (AM,E)={0€Qp:0(x) =& ) forallx e MN A,
o(s)=1foralls € D (§) N A}.

Here byd D (&) we denote the set

aD (&) = {x € 724\ M : for somei € M with & (i) # 1 we have|x — i =1}.
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To estimate the partition functia”” from below, we use (52):

InZ"” (IntT N Extk, +1, ) > |(INtT N Extx) \M]| £ (8) (58)
—c3(B) (T + k| + 190D (&) N (IntT NExtk)|) — R|dD () N (IntT N Extk)]|,

with ¢3 (B) — 0 asp — oo; the last term corresponds to the interaction of the 1-spins
o sitting at pointst € D (&) with spinsg (i) #1, i e M N (IntT N Extk) . Clearly,

R=BCU (). (59)

The crucial observation now is that the sgintI") U [M N Int '] is k-connected, and
sothe seM (", k) = 9 (Int["' N Extx) U[M N (Int T N Extk)] is k-connected as well.
We are going to argue now that it implies that the t&ff + |«|) from (56) suppresses
thetermldD (§) N (Int T N Ext«)| in (58) provided the constaittis small. To see it we
first need the following lemma. It claims, roughly, that if an Ising contdwurrounds
aA-sparse seb, which in turn is a subset ofiaconnected sef, then either the length
(surface ared)"| of this contour is of the order 6f 1 | D|, or else the contour surrounds
a lot of points belonging ta@'.

Lemma 8.Let D C Z¢ be a finiter-sparse set, see Def. 6, and [Btc Z¢ be ak-
connected set, witlh C T. Letx be a finite collection of mutually external contours,
while T is a contour surrounding the famiky.

(The familyx can be empty.) Suppose thatc (IntT" N Extk). Then

IT| + |« + |T N (IntT NExtk)| > A~ |D].

Proof. Considerthe seét(IntT" N Extx)U[T N (IntT" N Extx)]. This setisk-connected
and it containgD. Therefore

ID| < A8 (INntT NExtx) U[T N (IntT N Extk)]],
so the claim follows. O

We would like now to use for the séfl (T, ) the information provided by the
assumptions of the theorem we are proving: namely, that diéiT, «)) > £, (0, &) .
However, that would be of use only if @ M (T, «) . If that is not the case, we can
modify the setM (T, ) by attaching to it a connection to the origin of lengthT"| /2.
The resulting set will still be denoted B (T, x) . Now Lemma 8, under the conditions
of the theorem we are proving, provides us with the estimate:

[0D (&) N (IntT N Extk)| < %GFIHKD. (60)
(To get it we apply Lemma 8 witth = D (¢§) N (IntT" NExtx) andT = M (', ) .)

Using (60) together with the bounds (57), (59) and the estimates (56) and (58), we have
for (55),

3 Z'(Int" NExte, +1,8) _

Z" (INtT N Extk, +1, B) — ;exp{—f (71 + D} (61)

K

with / = 1/ (7, A) diverging witht. We remind the reader that the last summation goes
over familiesk surrounding the sétl; (¢, I') N IntT". Hence (48) follows from (61) by
standard combinatorics.
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As the last step in the proof of Theorem 7 we have to consider the case when a
contourT  is not a closed contour, but is attached to the boundary of theAhoxlue to
the impurity of the boundary conditions around the kox caused by the presence of
the conditioning byt. Note however that we can well assume that ¢, (0, £), since
otherwise the theorem holds trivially, and also tlhat- n. That implies that the set
D ()N o; (IntT) is A-sparse. (Again, we add Iothe connector to Gf needed.) So the
number of these impurities to which the contduis attached does not excegdl| .

If now o is any configuration im\,, with the contourl”, then it can be modified to the
value+1 in the vicinities of these impurities, so that the resulting configuratidras a
(closed) contouF’, which is not attached to the boundaryf any more. The energy
cost of such a modification is no more tha@ (J) |T'|, while the contouF”’ can be treated
by the already proven part of our theorem. Sa i small, the factor ex{)—cﬂ \F/]}
beats the energy weight expAC (J) |T'|}, and that completes our argumert

Proof of Estimate (46)The proof goes essentially along the same lines. Without loss
of generality we can suppose thatelOCp. LetY = {y e Cr: X(y) #+1}, Y =
{yeCr:X'(y) #+1}. ThenyY UY’ = Cp. Consider the following collections of
contours:

Oy ={l' e G (X): IntI' NY # 0},

Oy ={I e G (X) :Int"' N Y’ # 4}
Note that the union’ of all contours fromBy U Oy is a connected set. Clearly,

Qim. 0; 0;
i im,r x S im,r g’: im,r

Q; m,r .
us " [diam(Cr) > m] < >
Qy,Oy:
diam(©@yU®y,)>m

(Oy) uy (©y).

Using the analogue of the estimates (56), (58) and the analogue of Lemma 8 with
replaced by the (connected) uniah we arrive at the following analogue of (61):

Sler thmi

(Oy) u;,

The rest of the proof is standard combinatorias.

(©y) <exp{—-"|Y}.

6. Proof of PLD

In this last section we finally prove an unconditional statement: the PLD property, as
defined in the previous section, holds with probability one. We will start with the low-
temperaturég+)-phaseP? + of the Ising model. We consider the general case in the last
subsection.

The events we are interested in here are

B(e,W):{aeQ:m*(ﬂ)—%Zax>e . (62)
xeW

We now introduce the notatiafiy (x; k, N) for the family of all k-connected subsets
of the boxV of diameter betweev and 2V, containing a sitec, with Sy (k, N) =
Sy (0; k, N). Then we have the following theorem:
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Theorem 9.For everyk > 0, ¢1 > O there exists a valug;, such that for allg > g
and all V containingx

d-1
POt U Bew|=< exp{—ﬁN @rer)d } . (63)
WeSy (x:k,N)

Let us now fix, and consider the union
_ 1
Sza (y;k, N) = U N <X;k,N+§|x—y|>.
xeZd

Note that because of (63)

PA U B, W)| >0
WeSa (vik,N)

asN — oo. On the other hand, iF € Q\ (Uw632d<o;k,zv) B (e, W)) , then the set
Bad (0, o; 1) (see (20), (47)) with
1+e—m"(p)

2

is contained within the ball of radius\6around the origin and is therefore finite. Hence,
the set of configurations

)-\.Z)-\.(E,,B):

K@o=)]2\N U B (s, W)
N

yez? WeS 4 (yik,N)

is contained in the sé¢ (1) . Sincek (¢) has full measure, PLD is satisfied. Note finally

thati (e, ) — O ass — 0, B — oo, so fore small andg largex (s, B) < A (J) (see
Theorem 7).

So what is left is the proof of Theorem 9. We will consider the caseO0, therefore
x will disappear from the notation.

6.1. The strategyThe proofs of the above results turn out to be quite non-trivial. To ex-
plain the nature of the difficulties, we present below a short account of the straightforward
idea of the proof, together with the explanation why it does not work.

Let us try to prove Theorem 9 for the casekoE 1; moreover, let us tak€ = V,, to
be a cube, and restrict the s8, (k) to consist of selfavoiding paths only, connecting
the origin to the boundargV,,. So, we are talking about the events which may be called
“large deviations along paths”. If we would be able to prove the estimate

Py [B (e )] < expl—c (B I¥]}, (64)

valid for every pathy, with the exponent (8) diverging as8 — oo, then we would be
done. Indeed, the number of pathsontaining the origin and having lengtts bounded
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by 3, so we can finish the proof by summation over all paths. The point however is that
the estimate (64) does not hold in general. To see it can be violated, let us introduce the
setC (I') of configurations having the contoliramong their exterior contours, and take

I" to be a boundary of a cubic box centered at the origin and having the valLifiteen

By IC (D)) = expl—c (B)n"T |

Now, consider a shortest possible pgthwhich visits all points insid& prior to leaving
for 0V. Its length is proportional ta. On the other hand, evidently

Py [B(e.y)] = By [B (e, y) IC (D] BT [C (D).

and the first factor is larger tha]zﬂfor B andn large. So the probabilitﬁi”?,fr [B (e, y)]
decays im subexponentially only.

The reason why the above argument fails is that the summation over all paths includes
an overcounting; the same set of configurations makes many different paths to have the
wrong magnetization along them. On the other hand, to control the contribution of the

setC (I') to the probability]P"f;Jr [UyeSv(k) B (e, )/)], one does not need any extra

argument involving path counting, simply becaﬂla%’)e+ [C )] =< exp{—c’ B) n%]
(Peierls estimate).

To proceed with the proof of Theorem 9, we introduce some more definitions. Let a
configurationo € Q" be given, wher®@* = U, ;. We denote by (o) the set of its
exterior contours. We call a sét € Sy (k, N) abad seffor o, iff

Z eG(o): ||I’]tF|

INtTNW #£% > 8 (65)
W] -

Heres > 0 is some fixed number. Clearly,df belongs to the ever® (¢, W), thenW
is a bad set fos, with § = § (¢, 8). We denote the event (65) lay (s, W).

As one will see later, the proofs of the above theorems require the introduction of dif-
ferent scales, and these scales are needed to treat contours of different sizes. Anticipating
that, we introduce now the ever@s (-, W), r =1, 2, ..., as follows:

Y reG(o): intr|=r 1

5 5
ceC (L W) e w0 (66)
r |[W| r

1) .
If o belongs to the evertt, [ —, W ), then we say that the s@ is anr-bad seffor o
r
Our choice of the parametesswill be the following:

1)
o = W’ (67)

with any positives; < % In this way the inclusion

C (8, W) C U,C, <i—’ W) (68)
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holds, provided)_7° rl+q < K (g1). That means, in words, thatW¥ is a bad set fos,
thenW is alsor-bad foro for at least one value of

Let now the sequence of integers < x2 < ... be givenx1 > k (wherek is the
value of the connection parameter entering the formulation of our theorems). The values
x, will be used as scales for studying the configurations witiad sets. The choice of
these scales, depending &nwill also be made later. The sequengedoes not depend
on any other parameter, but for a fixed valué\ofve will use only the first (N) terms
of it, wherer (N) is defined in (80) below. The reason for that is that for a givethe
contribution of contours of size > r (N) to the event (65) can be neglected.

. . - )
Now we will start to estimate the probability of the evenfes, «.n)Cr [ —. W ).
r

In order to avoid the overcounting, to which we were alluding above, we will make a
coarse graining of our system. So we introduce the natural partifiari Z¢ into cubes
A,, of sizex,, with faces parallel to the coordinate planes:

Lr={Ay =4y 4y, yexz,

and we denote b¥" thex,-fattening ofW, i.e. the union of all those cubes,, (y) of
L, which contain at least one point of the initial $&t Note that the seV" is always

. . _ 1)
connected, sinc® is supposed to be-connected, while, > k. If 0 € C, (—r, W>,
,

then evidently

Y TeGo):|IntT|=r 1 3~ PeGlo): Intrl=r
INtTAW” £ Int TAW £ - o (69)
W] - W] T
SO
reG(o): |IntT|=
> |nt1(1mWf¢¢) "1 - 3 (70)
[Wr| okr ()4
provided the estimate
(W] < Wl (72)

holds forsome& =« (d, k),all W € Sy (k, N)andallr = 1, 2, ..., r (N). The estimate
(71) is indeed valid under the condition that the sizg, of the cubes of the partition
L,y is much smaller thaw. The reason is that if C Z4isa path of lengthy | > N,
then the number of cubes of the partitiBpthe pathy can hitis bounded from above by
C (d) |yl /x,, providedx, « N. This last condition is ensured for all large enough
and allr =1, 2, ..., (N) by the choices (80) and (86) made below.

Let us now introduce the family, (N) as the collection of all connected subsets
of Z¢ of diameter betweewv and 3V, containing the origin, which are made from
the cubes of the partitiod,, intersectingV. For future use we introduce for the sets
W e Sy, (N) the notation||W|| for the number ofx,-cubes they are composed of; of
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course/|W|| = (x,)~ |W|. It follows from (69), (70) and the definition (66) that

, Sr , Sy
W*{ U C%r”ﬁ}fﬁ*{lJ 0(5@??”0}

WeSy (k,N) WeSy (N)

5,
< T et (o)) o

WeS, (N)

A heuristic comment. At first glance the maneuver we performed in (72) could have
well been done with the se® themselves, without passing to the fattenifgs The
key difference however lies in the amount of events which are of the form of (66) or
(70). For example, there are abalif(d, k)" different setsW with |W| = N, which
may appear in (66), so in order to have the summation over them to converge, we need
the estimate of the probability of the event (66) to be exponentially small.iBut
such an estimate simply does not hold! On the other hand, the corresponding number
of different (connected) sets which can be produced from thésevia fattening by

. 2C(d)N
xr-cubes is bounded b{B?)
see soon.

, and that makes the summation possible, as we will

Note that the Peierls estimate implies immediately, that for everf¥sahds > 0
we have

rle i) = X (M) ol oo

with 8’ diverging together withB. Indeed, we have to ha\k‘vf/‘ exterior contours,

surrounding points oV, which explains the first factor. The surface of every contour

contributing to the lhs of (73) is at Ieast’ﬁ, the number of different -s, containing
a given face and having the surfateis bounded by 3, and

> shexpl-28L) =exp|-pr'T].

d-1
L>2dr d

We want to interpret the rhs of (73) as a probability. So we introduce the Bernoulli
random field, made by i.i.d. Bernoulli random variabd¢s i € Z4 -

1 with probability p, = exp{—ﬂ’r%} (1 + exp{—ﬂ’r% })71,

(74)

d-1

0 with probabilityg, = (1 + exp{—ﬁ’r% ]>_1.
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Then we can rewrite (73) as

W
4 e, (5.)) = (ol )T 5 (P10
k=3| |
W
< (1+exp{—ﬁ’rddl})’ | Z r> 3 VT/‘ . (75)

That is why we will study now the large deviation properties of the random §feld

6.2. Large deviations for Bernoulli variableS.he results in this section are fairly stan-
dard. We present them just for completeness.

Lemma 10.Leté&; be a sequence of Bernoulli random variables,

1 with probability p,
§i = { 0 with probability 1 — p.
LetSx = Zle & . Then for every and every; > 2 we have the estimate
P(Sk >k <z7*(1—-p+pf. (76)
Proof. We use Cramer tilting. We have

K
P(Skx =k) = <k)”k A-pFr=

= (’Z) (p)* (A — p)KF7* =

[ w2 a-p*<*
B 1-p+p)¥

}z"‘ (1-p+p2)¥

But the expression in the square brackets is again the probability of the same event, now
1-p

according to the Bernoulli sequence wjth= m 1-p' = Tt Summation

overk yields the result. O

Corollary 11. Let A be a real number, such thatp < 1. Then
P(Sx > ApK) < &X, (77)

with

1_ (1-Ap) /1 1\ AP
e=g(p, A) = (1_fp> (Z) . (78)



540 C. Maes, F. Redig, S. Shlosman, A. Van Moffaert

Note.Of course, the notation(p, A) does not necessarily make the quantity (78) small.
This notation just expresses our hope.

Proof. Let us take; to be the solutionrg of the equation

)24

——— = Ap.
1-p+pz P

(Note that such a choice afmakes thep’-Bernoulli process of the previous proof to
have the mean value of the sumKfits element to betp K .) The solution is given by

1-p
1-Ap’

20=A4A

Note also the relation & p + pzo = <. Puitting this into (76), we have

_apk (20\K _ (z0)K7AP
P(Sk > ApK) < 25" (Z) ==

( 1-p )K(l—Ap)

T—4p 1-p \&4 1\ 4"
= — . 0
AAPK <1—AP> (A>

6.3. Proof of Theorem 9. Detthe numbew be fixed. Let us denote by (> &, N) the
set of all configurations = (o, x € V), which have a large contollt € G (o) in the
vicinity of the origin:

dist(0, IntT") < 2N,

IT| > k.
Then it is immediate to see that if
k(N)>InN,
then
POY (R (> k(N) ,N)) < exp{—p'k (N)} = 0asN — oo, (79)

so we need to study only the intersect[c[rJIWESV(k,N) B (e, W)] NR(<k(N),N).
Note that this intersection satisfies the inclusion

8
U BEew |nrR=kw).N) cufc, <—’, W)
WeSy (k,N) r

(compare with (68)) if

r(N) =k (N)@1 . (80)
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For our purposes the optimal choice of the functiqiv) turns out to be
d—1
k(N) = N2Q+e1) (81)

ii) To estimate the probability!, ™ 1 C, (% W’)} of the event (70) we will
use first the estimate (75) and then (77) with
_ 1y -1
p=rpr= exp{—ﬂ’r%} (1 + exp{—ﬂ’r% }) ,
see (74), and

)
Az pi b
P e T

We have:

é
# e (g )1 <
v ' kr ()4t -

[1+ eXp{—ﬁ P H(xr)d}llwru

o
(1 Kr (xr)d_l )

1- exp[—ﬂ’r%} (1+ exp{—ﬂ’r% })_1

3 x
Kr (xr)d*l
5 (xr)d ||W'||
_ _ -1 Kr(xr)d_l
exp{—,B/rdT1 } (1 + exp{—ﬂ’r% })
X . (82)
Sy
wr (x)?

If we are able to show that the product of the curly brackets in the last expression is
small for everyr, then we would be done, since that would enable us to beat the entropy

factor(3")2HWrH . (Itis not hard to see that the quant(@l)Zk estimates the number of

connected sets made frounit cubes ifR¢, containing a given one.) So we will look
at the logarithm of-} in (82). It is equal to

In{-}=@)%In [1+ exp{—ﬂ’r%}]

) d=1 a1\ 7L
+ () (1_ — (j:)d_l)ln i rld }(1;@('0{ pre)
PR
kr (xr)
—p a1 1+ —p =11\ 71
0! — (j:)dl In i A SreXp{ ),

kr (x)471
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< (x)? eXp{—ﬁ’r“T*} + (x)¢ (1 - 5—>

Kr (Jcr)d_1
Sr -1 ,d=1\ L
[W —exp{=pr'7 | (L+exp|-pr'7 ) }
X8, , d=1 , d=1 S
—  —expy— at—In—
+ Kr |: ﬂ d p{ '3 d } Kr (xr)d_l
3 - b) _
< Aror (mddl +In—"— 1) + ()¢ eXp{—ﬁ’r%}. (83)
ker kr (xe)*
The only thing needed for the validity of the above estimate is the smallness of
d— 1) L . . .
exp{ —,B/r% } andﬁ, which is not an extra constraint. From this estimate we
kr (x,)¢"

see that the following requirements are sufficient for the numbets make the above
logarithm very negative:

r8r
I > & > 0 for somex and allr, (84)
Kr
) <o exp{ﬂ’r%} for all r. (85)
Indeed, under (84)
/ d-1 (Sr ! -1 8r :|
+In—— =1In|ex d { ————=
pr er ()4 [ i er (o)

> In [a exp{ﬁ’r%] (xr)_d] > 1,
because of (85). For example, any choice
xXp ~ 23/ (86)
would go. Then the dominating term in (83) would be

5, 4
—ﬁ/xl(rrrr% < -1

uniformly in r, providedg is large.
iii) What remains now is to estimate the sum

_d_
k(N)d-1

5 .
3 #fe (o))

r=1 WreSj(N) kr (X

ForW” e Sy, (N) we have

N
IWrll = —.

Xr
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Hence, by the estimates (82), (83) the last sum is bounded by

d
KT 2L 8, a—
> X (@) en|-pt L,
r=1 L>N kr

=

According to the choices made before, see (67), the second exponent beats the first one,
and the resulting upper bound is, due to (81),

k(N)"[iI
/5,, d—1 , _d-1
expy—pB'—r @ N} <exp{—p N0+ ¢
Kr
r=1

Together with the estimate (79) and again in view of the choice made in (81), that proves
the result. O

Remark 1The reader might have noted from (85) that the valueg &r which our
results hold, depend dnand go to infinity agk increases. We believe that this is only
due to technical reasons, and in fact the same result should hofllfsge enough,
uniformly in k.

This belief turned out to be correct, as it is shown in the paper [S] of one of us.

6.4. The general casdn this subsection we use the notatiBfi* for the Gibbs state
of our Hamiltonian (9) corresponding to the boundary conditidn

For P#-*-almost every configuratioa the set of points: € Z¢, wheres (x) = 1
contains a unique infinite component Bxtwith all connected components of the com-
plementZ? \ Exto finite. We will denote these components Ay (o), their collection
by D (o), and will call themdroplets ofo. In analogy with (62) we introduce the event

B (e, W) = oesz:% Y lai@) >

i:A; (0)NW £
With this notation Theorem 9 is valid in the above generality.

Proof. The proof of this statement is the same one as is given for the case of the Ising
model. The only extra ingredient needed for the general case is the estimate that for
every finite connected seét c 74,

PPt (0 : A € D(0)) < expl—c(B)dAl},

with ¢ (8) diverging with 8. But this is a standard corollary of the PS theory.
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7. Outlook

We end the paper with a short discussion concerning logical continuations of the present
work. First of all, it is clear that not all interesting cases of non-Gibbsian states have
been covered. As an example, we have not dealt here with fuzzy descriptions of Gibbs
random fields [MvdV2] which can be seen as a coarse graining of the spin space. A well
known example is the projection of the massless Gaussian field on the sign variables,
see [LM,EFS,ES]. Moreover, even for the projection to a sublattice, our assumption that
the original measure is a low temperature phase of the PS theory, is generally violated
for the space-time Gibbs measures describing the steady state of a stochastic dynamics.
So, we have no results on the Gibbsianness of the projections to spatial layers, hence
on the Gibbsian character of stationary measures in the coexistence regime, see [LMS,
GKLM].

Finally, the present work should be followed by establishing the standard results of
the Gibbs formalism (existence of thermodynamic potentials, variational principle, etc.).
The basis for that can be the structure of weakly Gibbsian fields, uncovered in the present
work, see the estimate (25) and Definition 6. That would contribute to the second part
of the Dobrushin program of Gibbsian Restoration.
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