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Abstract: This paper is concerned with the formulation of a non-pertubative theory of
the bosonic string. We introduce a formal gratipvhich we propose as the “universal
moduli space” for such a formulation. This is motivated becamsstablishes a natural
link between representations of the Virasoro algebra and the moduli space of curves.
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1. Introduction

On the moduli space of smooth algebraic curves of ggnud,, one can define a family
of determinant invertible sheavés, |n € Z}. In a remarkable paper, Mumford ([Mu])
proved the existence of canonical isomorphisms:

6n+1) VneZ

S A8
which have been studied in depth from different approaches.

* This work is partially supported by the CICYT research contract n. PB96-1305 and Castilla y Ledn
regional goverment contract SA27/98.
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For instance, within the frame of string theory, these isomorphisms are one of the main
tools in the explicit computation of the Polyakov measure for bosonic strings in genus
g ([BK,MM)]). Proposals for developing a genus-independent (or “non-pertubative”)
formulation of the theory of bosonic strings have been made by several authors (e.g.
[BR,Mo, BNS)).

In this paper we propose a “universal moduli space” as the main ingredient for a
non-perturbative string theory which is different from those introduced by the above
authors.

Following the spirit of previous papers (JAMP, MP]), where a “formal geometry” of
curves and Jacobians was developed (see [BF, P] for other applications of these ideas),
we introduce a formal group schengerepresenting the functor of automorphisms of
k((1)) (see Sect. 3); more precisely, the pointsofvith values in a&-schemes are:

G(S) = Autyocs o) —aig HO(S. O5)((1)).

The formal group schemé& might be interpreted as a formal moduli scheme for
parametrized formal curves. The canonical actiorGobn the infinite Grassmannian
Gr(k((¢))dt®") allows us to construct an invertible sheaf,, on G (for everyn € 7Z)
endowed with a bitorsor structure. Using a generalization of the Lie Theory for certain
non commutative groups (given in Appendix B), we prove that these sheaves satisfy an
analogous formula of the Mumford Theorem; that is, there exist canonical isomorphisms
(see Theorem 4.5):

~ 2_
Ay > AT vy ez

To show that our formula is a local version of Mumford'’s, rather than a mere “coin-
cidence”, we relaté and the moduli of curves by means of infinite Grassmannians (see
subsection 4.4 for precise statements). M3° be the moduli space of pointed curves
of genusg with a given parameter at the point (see Definition 4.7). Then, the actién of
on Gr(k((¢))) induces an action, onMg°. Moreover, given a rational poitt € M°,
the action induces a morphism of schemes:

G 25 me.

Let $X be the composite of the immersion of (the formal completion of; at the
identity) into G, ¢x, and the projectionMg® — M,. Let (M), be the formal

completion ofMS at X. Then, from the surjectivity of the map — (M%), induced
by ¢x (see Theorem 4.11), it follows easily that there exist isomorphisms:

50m) > A, Vnel.

Finally, the last section offers a proposal on how to apply these results to a non-
perturbative formulation of the bosonic string. The explicit development of these ideas
and the geometric interpretation of partition functions in terms of the geometry of the
groupG will be performed elsewhere.
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2. Background on Grassmannians

2.1. The Grassmannian Gr(k((z))). This section summarizes results on infinite Grass-
mannians as given in [AMP] in order to set notations and to recall the facts we will
need.

Below, V will always denote thé&-vector spacé((r)) andV T the subspacg[[¢]].
Let B/ be the set of subspaces generatedsty 1, ...} for every strictly increasing
sequence of integess < s1 < ... suchthask; 11 = s; +1fori >> 0. Let3 denote the
set of subspaces &f given by ther-adic completion of the elements Bf . We can now
interpret3 as a basis of a topology dn. It is easy to characterize the neighborhoods of 0
as the set of subspacéaof V such that there exists an integet > Owithz"k[[¢]] C A
and it is of finite codimension.

Now the pair(V, B) satisfies the following properties:

the topology is separated afdis complete,
for everyA, B € B, it holds that(A + B)/(A N B) is finite dimensional,
if A, B e B,thenA+ B,ANB € B,
V/A=lim (B + A/A) foreveryA € B,
BeB

and hence there existskascheme, called the Grassmannian(éf B) and denoted by
Gr*(V), whoseS-valued points is the set:

quasi-coherent subk-modulesL < Vs such that for every point € S,
Lis) € Vis) and there exists an open neighborh@odf s andA € B
such thatVy /Ly + Ay = (0) andLy N Ay is free of finite type

(k(s) is the residual field of) whereiT = Lim(L/L N As) ®o, O for a submodule
L of Vg and a morphism of-schemed” — S.

The very construction of GfV) shows thaf{F4 | A € B} is an open covering by
affine subschemes whefg is thek-scheme whosg-valued points are:

{Iocally free sub®g-modulesL € Vg suchthatLg @ Ag ~ \7S] )

From this fact one deduces (see [AMP]) that the complexe®®#y)-modules
L® AGr'(V) — VGr-(V) are perfect £ being the universal object of &V)) for every
A € B. Moreover, the Euler—Poincaré characteristic of the comglex AGr'(V) —
VGr°(V)1

L+— dim(L NVt —dimWV/L+ V")

gives the decomposition of &tV) into connected components. The connected compo-
nent of characteristic O will be denoted by(@. It is easy to show that these complexes
are all quasi-isomorphic.

From the theory of [KM] on determinants, it follows that their determinants are
well defined and that they are isomorphic. The choicé’df € B now enables us to
construct a line bundle on the Grassmannian as follows: on the connected component
of characteristio: consider the determinant of D& & ¢" ‘A/gr“w) — Vemv))- The
resulting bundle will be called “the determinant bundle” and will be denoted simply by
Dety.
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Itis also known that given a compl& AAGr'(V) E‘) VGr-(V) (A € B), the morphism
84 gives a section of DEL @ Agr(vy — Vare(vy)*. By fixing the basigs"|n € Z} of
V one checks that the induced isomorphisms among determinants of these complexes
are compatible (see [AMP]). Using such isomorphisms the above-defined section gives
asectiorez4 of Detj,. The section defined on the connected component of characteristic
n by the determinant of the addition homomorphisr® " \A/gr,l(v) — VGWV) will be
denoted by, .

2.2. The linear group GI(V). For eachk-schemesS, let us denote by A@S(VS) the
group of automorphisms of th@s-moduleVs.

Definition 2.1. ¢ A sub-Og-module L < Vs is said to be a B-neighborhood if there
exists a vector subspace A € B suchthat As ¢ L and L/Ag islocally free of finite
type.

e Anautomorphismg € Auto, (Vs) iscalled B-bicontinuousif g(As) and g ~1(As) are
B-neighborhoods for all A € B.

e Thelinear group, GI(V), of (V, B) isthe contravariant functor over the category of
k-schemes defined by:

S~ GI(V)(S) :={g e AutoS(VS) such that g is B-bicontinuous}.

Theorem 2.2.There existsa natural action, u, of GI(V) on the Grassmannian, preserv-
ing the determinant bundle.

Proof. The first part is easy to show. It suffices to prove thdt) belongs to GY(V)(S)
for an S-valued pointZ. € Gr*(V)(S) and an arbitrary € GI(V)(S) using thatg is
B-bicontinuous.

Note that givery € GI(V)(S) and anS-scheme7’, one has an induced isomorphism
Vs/As — Vs/g(As) foreachA € B. Twisting by©Or, and taking the inverse limit over
A € B, one obtains a@®r-automorphisngz of V7, which due to the very construction
is B-bicontinuous. Moreover, the map:

Gl(V)(S) — GI(V)(T),
8= 81

is functorial. So, for an elemegte GI(V)(S) we have constructegr € GI(V)(T) for
every S-schemerT'; hence,g yields anS-automorphism of Gr(V)s := Gr*(V) x; S.
We have then constructed a functor homomorphism:

GI(V) — Aut(Gr*(V)),

8 > Ko

where AutGre(V))(S) := Auts.sch(Gr*(V)s).

With the expression “preserving the determinant bundle” we meargfhgtDet ~

pi Det®pi N (wherep; denotes the projection onto th8 factor of G (V) x; S) for
a line bundleN over S. It is therefore enough to prove the statement wkiés a local
affine scheme.
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Recall that:
gipiDety ~ Det(g: piL @ gipiAcrv) — 8ipiVerw))

for A € B. TakeA e B such thatds € g~1(V{) andg(V)/As are free of finite
type. Theng induces an isomorphism:

g pi Dety ~ pi Dety ® Det(pi Vv, /8s(piAcrv))”.
From the very construction @f, it follows that there is an isomorphism:
PV )/ (i Acrv) = p3(V§ /g(As))
and the claim follows. O

Theorem 2.3.There exists a canonical central extension of functors of groups over the
category of k-schemes;

0— G, —> G~|(V) - GlI(V) =0

and a natural action, /i, of GI(V) over the vector bundle, V(Dety), defined by the
determinant bundle lifting the action .

Proof. For an affinek-schemes, defineG(S) as the set of commutative diagrams (in
the category of-schemes):

V(Det})s —°— V(Det;)s

l l

Gr(V)s —5— Gr(V)s,

whereg is an isomorphism and € GI(V)(S) and the homomorphistd — GI(V)
by g — g. For an arbitrary schemg defineG(S) by sheafication; that is, consider a
covering{U;} by open affine subschemes ®fand G(S) the kernel of the restriction
homomorphisms:

[Town = []owinuy.
i i,j
We have then obtained an extension:

0—>HGm—>g—>GI(V)—>0,
Z

sinceHO(Gr'(V)S,NOGro(V)S) =[], H°(S, Os) (AMPY)).

Finally, defineGI(V)(S) as the direct image of this extension by the morphism
[1z G — G, which mapsa;} to ag. Observe that for any projectide;} — a, the
resulting extensions are isomorphica
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Let us compute the cocycle associated with this central extension. For the sake
of clarity we shall begin with the finite dimensional situatidn:finite dimensional,
{v1,...,vq} a basis,B consists of all finite dimensional subspaces and :=
< Upg1,...,vg > (for an integer 0< n < d). Then, G(V) parametrizes the-

dimensional subspaces ®f. Let g denote the morphism: v1,...,v, >— V &
V — V/ VT for an elemeng € GI(V) (observe thag consists of the first columns
and rows of the matrix associated wih

We now have the following exact sequence:

0— G, — Gl(V) 2 GI(V) ~ Aut(A"V) — 0.

Let us consider the subgroupGlV) consisting of those automorphisms= GI(V)
such thag is an isomorphism. It is easy to check that:

g — (g, det(®))

is a section ofp over GI* (V). The cocycle associated to the central extension is given
by:
c(g1, g2) = det(210 (810 g2) ' o 32).

The cocyle corresponding to the Lie algebra level follows from a straightforward
computation. Let Idr¢; D; be ak[ei]/eiz-valued point of G(V) (i = 1, 2). The very
definition of the cocycle:

cLie(D1, D2)erex = c(ld +€1D1, Id +€2D3) — c(ld +€2D2, Id +€1 D7)
yields the expression:
clie(D1, D2) = Tr(Df " D;* — D3~ D), (2.1)

whereD™ : V* — V= =< v1,...,v, > is induced by ld+¢; D; € GI(V) with
respect to the decompositidh~ V= @ V' (and, analogously,)f+ (VT = V).

The case of V = k((¢)), B, Vt = k[[¢]]) andV~ = ¢~ Yk[+~1] is very similar and
the same formulae remain valid.

3. The Automorphism Group of k((¢)): G
This section aims at studying the functor (on groups) over the categanscifiemes
defined by:
S~ G(S) := Altyyo(s. 0)-aig HO(S. O) (1)),
where the group law i6; is given by the composition of automorphisms (h&rgr))

stands forR[[¢]][z 1] for a commutative ring? with identity; or, what amounts to the
same, the Laurent developments with coefficients inR).
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3.1. Elements of G. Let us consider the following functor over the categorykef
schemes:

S~ k((£)*(S) == {invertibles of HO(S, (95)((1‘))}.
The first result is quite easy to show:
Lemma 3.1.The functor homomor phism:
YR @ AUtg-aig R((1)) — k((1))*(R)
g g

inducesaninjection of G into the connected component of z, k((t))’i. Moreover, G(R) —
k((t))i(R) isa semigroup homomor phismwith respect to the following composition law
on k((t))’;:

m 2 k((0))](R) x k(1) (R) — k()] (R),
(8(®), k(1)) > h(g(1)).

(3.1)

Theorem 3.2.The morphism v induces a natural isomorphism of functors:
G = k(@)

Proof. The only delicate part of the proof is the surjectivityyof. The idea is to relate
G (R) with the group of automorphisms &f{[x]][y].
Let I be the ideal ofR[[x]][y] generated byx - y — 1), and let Au} R[[x]][y] be
the group:
{g € Autg.aig R[[x]][y] such thatg (1) = 1}.

Since there is an isomorphisRi[x]][y]/1 S R(() (which mapsx to ¢ andy tor~1),
one has a morphism ApR[[x]][y] — Autg.aig R((z)), and a commutative diagram:

Aut; RI[xTIIY] —2— RIIIY] —— RIx1yI/1

AutgagR((1) —2> R(1); ——  R(0)"

whereyg(f) = f(x).
Observe that the induced morphism:

seriesf(x, y) € x - R[[x]] ® RadR)[y] s
({ such that the coefficient of is invertible}) — RO

is surjective. The claim being equivalent to the surjectivity/gf, it is then enough to
show that:

{ seriesf (x, y) € x - R[[x]] ® RadR)[y]

c -
such that the coefficient af is invertible} S ImWr).
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Givenanelement- f(x)+n(y) € x- R[[x]]®Rad R)[y], wheref (0) is invertible,
consider the followingR-endomorphism:
¢ : RI[x11[y] = RIlx]1[y]
x> x- f(x) +n(y)

-1
y .<1+y-n(y)>
f(x) fx)
(which is well defined since (x) € R[[x]]* andn(y) is nilpotent).
Provided thatp is an isomorphism, it holds that(/) = I and thatyz(¢) = x -

f(x) + n(y). To show that is actually anR-isomorphism ofR[[x]][y], observe that
¢ = ¢3 0 ¢2 0 P1, Wheregpq, ¢2, ¢p3 are R-isomorphisms oR[[x]][y] defined by:

V=

$2(x) = x - f(x) falx) =x L e =x+@zod2) o)
92(0) =y ) = 75 - (1+ 29) 910) =y
O

3.2. Formal scheme structure of G. Set ank-schemeS and an element € k((¢))*(S).
From [AMP] we know that the function:

S — 7Z,

s — vg(f) := order of f; € k(s)((2))
is locally constant and that the connected componenkdf:))’, is identified with the set

of S-valued points of a formal-schemek((¢))7. One therefore obtains an isomorphism
between the functor and the functor of points of the formal schektgr));:

Gs) S KO)ES) = { series(a,t" +---+ag+ ait +...)t such tha}

ar,...,a_1 € RadR), ag € R* andr <0

(whereR = HO(S, Oy)).

3.3. Subgroups of G. Two important subgroups af = k((¢))] are the subschemes
G+ andG_ defined by:

G (S) = {t-(l-}-Zai ') whereq; € R},

i>0

.S polynomialst - (a, t" + - - - + a1t~ + 1) such
N o thata; € R are nilpotent and arbitrary
respectively. R R
Let G (respectivelyG_, G,, and G) be the completion of the formal scherge
(G-, G, andG ) at the point{ld}.
Lemma 3.3.The subgroups G _, G,, and G, commute with each other and

G- -Gn-G+=0G.
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Proof. Recall that HoniSpecA), 5) is the union of HomO /my,, A), whereQ is the
ring of G andmg is the maximal ideal corresponding to the identity. It therefore suffices
to show that:

1. G (A), G (A) andG+(A) commute with each other,
2. G_(A)-Gyu(A) - G4(A) = G(A),

for each local and ration@lalgebraA such tha’m’jfl =0forn >> 0.
Let us proceed by induction on The case: = 1 is a simple computation.

1. Letusprove thab _ (A) and@m (A) commute with each other. Consider the following
subgroup ofG(A):

H(A) = {ant_" + ...+ agwitha; e my fori < 0andag € A*}

and note that we have the group exact sequence:
0— H(k[m"]) > H(A) 5> H(B) > 0,

whereB = A/m’;.
For an element: € H(A) there existi_ € G_(B) andhg € G, (B) such that
o(h) = p(h_ o hg); or what amounts to the same:

h=Yohohy € H(k[m]).

The induction hypothesis implies thﬁ(k[m/’é]) = G_(k[m"]) - G, (k[m"}]) and
hence there exist_ € G_(k[m’}]) andh € G, (k[m’}]) such that:
h=tohohgt=h_ohj
and therefore: TR
H=G_ G,.
Analogously, one proves that = G, - G_.
The proofs of the other commutation relations are similar.

2. Note thatgpo g = g_ o go for gg € G (A) andg_ € G_ (k[m’}]) and proceed
similarly. O

Theorem 3.4.The functor G is canonically a subgroup of GI(V).

Proof. Note that it suffices to show that_(S), G,,(S) and G(S) are canonically
subgroups of GIV)(S) for eachk-schemes, since:

eG=G_ -Gu- Gy,
° G_ = G andG+ - G+,
«G=0C-G,.

By the very definition of GV), itis enough to prove the case wheis a local affine
scheme, Spe®).
The cases aofs,,, andG . are straightforward since:

¢("R[[1]]) =t"R[[t]] Vn
forgp € G,,(S) or¢ € G(S).
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Let us now considep € G_(S). Letu(t) be such thap—1(t) = r(1+ u(2)). It then
holds that:

—1,..r\ _ ,r [ . r i
o) =" A4 u@) =t ; <i>u(t) .
Sinceu(r) is nilpotent, there existssuch that:

¢ X" RIID € PRI,
in other words:
" RI[t1] € ¢ RID).

The Nakayama lemma implies that the familg(r*), ..., ¢ 1)} generates
¢ R[[t]1])/¢" R[[¢]]. Using the fact thaty € G_ one proves that they are linearly
independent; summing up,¢* R[[¢]1])/¢" R[[¢]] is free of finite type. O

3.4. The Liealgebra of G, Lie(G).

Theorem 3.5.Thereis a natural isomorphism of Lie algebras:
Lie(G) = k((1))d

compatible with their natural actions on the tangent space to the Grassmannian,
TGr(V). (Fromnow on Der k((¢)) will denote k((¢))d;.)

Proof. Take an elemeng(r) = (1 + €go(t)) € Lie(G) (recall that by definition
gie(G) = G(k[e]/€?) X gk {1d}). Let us computee(g)(t™) form e Z:

n(@) ™) =g®" =1"(1+ego(®)" =
=1"(1+mego(t)) = (Id + € - go(t)t3;)(t™).

It is now natural to define the following map:

gie(G) — Der, k((1)),
t(1+ego(?)) = go(®)t - 9y,

and this turns out to be an isomorphisnkefector spaces.

In order to check that this map is actually an isomorphism of Lie algebras, let us
compute explicitly the Lie algebra structure &ie(G).

Given two elementg,, (1) = t(1 + €1t") andg,, (r) = t (1 + €2t™) (Whereei2 = 0),
we have:

gn(@m(®) = gm(gn())(L+ (m — n)erear™*")
that is:
[gm» gnl = (M — 1) gyn.

Since[t"119,, 1"119,]1 = (m — n) - ™" +13,, one concludes that the map is in fact an
isomorphism of Lie algebras.

Let us check that the actions of these Lie algebras@n(V) coincide. Fix a rational
point U € Gr(V) and take an element(t) = ¢(1 + €go(t)) € Lie(G). Clearly, the
image of(g, U) by u lies on:

TyGr(V) = Gr(V)(k[el/e®) x {U}~Homp(U,V/U),
Gr(V)(k)
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which is associated with the morphism:

U vy v

Consider an elemernd < Der; k((z)). Then the image of D, U) under the action of
Der, k((t)) onTGr(V) is:

Usv2vosviu
and the conclusion follows. O

Let Vir denote the Virasoro algebra; that is, the Lie algebra with a Hégigm <
7}, c} and Lie brackets given by:

[dn,c]l =0,
(m® — m)
—

[dn, dn] = (m — n)dm+n + an,—m 12

By abuse of notation Vir and Virasoro will also denote the Lie algebra given by
I(im Vir /{d,,|m > n}. Both algebras have a “universal” central extension:
n

Ext}(k((1))d;, C) = C - Vir

and this is the important feature for our approach (see [KR] Lecture 1, [ACKP, 2.1],
[LW]).

Definition 3.6. The central extension of G given by Theorem 2.3, G, will be called the
Virasoro Group.

Proposition 3.7.The Lie algebra of G, Lie(G), is isomor phic to the Virasoro algebra,
Vir.

Remark 1. Let us compute the cocycle associated vﬂth((N}) Let GI+(V) be the sub-
group of GlV) consisting of elementssuch thag (Fy+) = Fy+. SlnceG is contained
in GI*T(V), one can use the formula 2.1. Recallthat a bas&efo) is given by the set
{gn(®) =t(L+et")|n € Z} smce£|e(G) G(k[e]/ez)

The element of GI(V) (aZ x Z matrix) corresponding t@,, is:

1 ifi =j
(gm)ij=€-j fi=j+m
0 otherwise

and the cocycle is therefore:

n—1 3
L. m- —m
C(gma 8n) = an,fm : Z](] —n) = 8n,fm : .
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3.5. Central extensions of G. We begin with an explicit construction of an important
family of central extensions af.
Fix two integer numbers, 8 and consider thé-vector space

Vo p 1= 17k((1))(d1)®P.
The natural isomorphism:
dog:V —> Vup,
f@) > 1 f@)(d)®?

allows us to define a tripletVy g, Ba,g = do,p(B), Vojfﬁ = dy,(VT)). One has
therefore an isomorphism:
GIH(V) = Gr(Vyp).
Observe that the action @& onV, g defined by:

(g(), " F(OAD®P) = g1 f(g(1)(dg(t)®P
= (52) pgung @Pan®”

induces an action on @G¥,, g) (by a straightforward generalization of Theorem 3.4), and
also in G(V):
Ha,p o G x Gr(V) — Gr(V).

Note thatuo,o is the action ol on Gr(V) defined in the previous section. Moreover,
these actions are related by:

(D«
Hap (8(0) = ((gT) -g/(r)ﬁ) 0 110,0(8(1),
where the first factor is the homothety defined by itself.
Theorem 2.3 implies that there exists a central extension:

O—>Gm—>5a,ﬁ—>G—>0

corresponding to the actiqn, g. Moreover, it follows from its proof thaG’va,,g consists
of commutative diagrams:

V(Det;,) —%— V(Det))

l l

crv) L Gy

or equivalently:
Gap = {(g, &) Wwhereg € G andg : 1, (g)* Dety — Dety}

smceua ,g(g)* Dety ~ Dety forall g € G. Itis not dlfflcult to show that the extensions
Ga B andG pare isomorphic for every, ¢ o' € Z.Then Go g (respectivelyg g) will
be denoted bﬁﬁ (ng). The group law OG/S is:

(h,h)-(g,8) = (h-g &oup(g)*h))
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since we have:

1p(2)* (h) g
up(h - g)* Dety = (up(g)* o up(h)*) Dety '~ up(g)* Dety —> Dety .

These central extensions induce extensions of the Lie alg&b(&) whose corre-
sponding cocycles are:

n—1
cpm,n) = 8 m- Yy (j+m+DB)j —n+@n+1)p)
j=0 (3.2)

= Sy - (’”36_ m)(l — 6B+ 682).

To obtain such a formula, one only has to check that the matrix correspondingdn)
is:

1 ifi =j
(up(gm))ij=€-(G+m+1p) fi=j+m.
0 otherwise

Remark 2. Itis worth pointing out that one can continue with this geometric point of view
for studying the representations@ie(G) since it acts on the space of global sections of
the Determinant line bundle which contains the “standard” Fock space. (For an explicit
construction of sections of Dgf see [AMP]). An algebraic study of the representations
of Vir induced by, g has been done in [KR].

3.6. Linebundleson G. Formula (3.2) may be stated in terms of line bundles. For this
goal, let us first recall from [SGA] the relationships among line bundles, bitorsors and
extensions.

Recall that a central extension of the gratifpy G,,:

0—-G,—-€&—-G—~>0

(€ being a group) determines a bitorsor o{(eﬁrm)g, (Gm)G), which will be denoted
by £ again.

Gm .
Moreover, given two bitorsor§ and&’, one defines their product I8 x £’, which
is the quotient of x &£’ by the action ofG,,:

Gmx (ExE)—>ExE,
(8. (e,e)) > (e-g,8-¢)

(where the dot denotes the actions®and£’).
From [SGA] 8§1.3.4 we know that the group law &finduces a canonical isomor-
phism:

Gm ~
pi€ x p53E& — m*E (3.3)

of ((Gm)GxG, (Gm)Gxc)-bitorsors (where; : G x G — G is the projection in the™
component and: the group law ofG).
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Conversely, a bitorsdf satisfying (3.3) and an associative type property (see [SGA]
for the precise statement) determines an extensi@n of
Observe that one can associate a line bundle to such an extension. Given:

0—-G,—-€—->G—=0

consider the line bundle: G
L= & X A}

wheref is interpreted as a principal fiber bundle of graep andG,, acts onA,} by the
trivial character and o8 via the inclusionG,, C £. Further, the structure & implies
that there exists a canonical isomorphism:

PIL® psL > m*L. (3.4)
One proves that the product of bitorsors corresponds to the tensor product of line
bundles; that is, for two extensiofisand&’ there exists a canonical isomorphism:

Lg, — Le®Lg.
5Gx€/ & &

Conversely, if£ is a line bundle satisfying (3.4) and an associative type property,
then the principal fibre bundle Isai®¢, £) is a principal fibre bundle of grou,,
which can be endowed with the structure of central extension such that the associated
line bundle is..

Definition 3.8. The invertible sheaf on G associated with G 5 will be denoted by A .

4. Main Results

4.1. Modular properties of the t-function. Let us fix a pointX € Gr(V) and a non-
negative integep. From Theorem 2.2 we know that there exiBls a line bundle over
G, such that:

upsps Dety ~ p3 Dety ®piLg, (4.1)
where
B p2
G xGr(V) — G x Gr(V) = Gr(V).
Then, restricting t&@G x X and looking at sections we have:

Q4 (np(@)(X)) =1p(g) - Q4 (X)

for a certain sectiofg(g) of Lg (we assume here th&t, (X) # 0, so that it generates
(Det) x).

The above identity is the cornerstone of the modular properties of-fhactions.
However, let us give a more precise statement. Assume that the ofbitiederT” (con-
sisting of an invertible Laurent series acting by multiplication, see [AMP]) is contained
in Fy+. Note, further, that.g may be trivialized. Then, with the above premises, the
following theorem holds:

Theorem 4.1.There exists a function l_/g (g) on G, such that

Tus)x) = lp(8) - Tx.
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To finish this section let us offer a few hints on the explicit computatiok oThe
previous statement is to be understood as an equal§ywaiiued functions (for a fixed
k-schemeS andg € G(9)).

However, in order to describe this isomorphism explicitly it suffices to deal with the
case of the universal automorphisgy,corresponding to the identity point of(G).
Note that the following relation holds:

np(@ =g oup-1(9)

(whereg' acts as a homothety) and observe that the proof of Theorem 2.2 implies that
the existence of canonical isomorphisms:

(@, p; Dety >~ ug_1(9), p; Dety ®p1(N), B =1,
no(9), p3 Dety ~ p3 Dety @ pi(M),

where
= (AVE/9(AG)) ® (AVF /Ac)*,
= (AVZ /Y - Ag) ® (AVZ /AG)*,

(A € Bis locally chosen such that c V*, g - Ag c V andg(Ag) C V). Thus,
we obtain:

Ly =M@N’ (4.2)

and the computation cifg (8) :==1p(g)/1p(D) (g € G(S)) is now straightforward.

Remark 3. The above theorem can be interpreted as the formal version of Theorems 5.10
and 5.11 of [KNTY].

4.2. Central extensionsof G and £ie(G). Alongthe restof this section itwillbe assumed
thatk = C. Nevertheless, some results remain valid for ¢hiae= 0. (We refer the reader
to Appendix B for notations and the main results on Lie theory for formal group schemes).

Theorem 4.2.The functor Lie induces an injective group homomor phism:
Ext}(G, G,,) — Ext}(Lie(G), Gy).

Proof. Here Ext(G, G,,) denotes the group of equivalence classes of central extensions
of G by G,, as formal groups, and ExiCie(G), G «) denotes the group of equivalence
classes of central extensions of Lie algebras.

Given an extensmn af, G, the restriction of the group functofs,, G andG to the
categoryC, (Gm, G andG respectively) gives rise to a class in G, G,,). Observe

that this map is injective. Recalling théte(G) = £|e(G) Ga o~ G and Theorem B.4,
one concludes. 0
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4.3. Some canonical isomorphisms.

Theorem 4.3.

Proof. Observe that Eq. (4.1) implies that:
piLg ~ 1som(up’ ps Dety, ps Dety ),
and hence.; is the line bundle associated with the central extenéign o
Theorem 4.4.There are canonical isomor phisms:
m*Ag = piAg® psAg VB €.
Proof. This is a consequence of Subsect. 3.6.

Theorem 4.5 (ocal Mumford formuld. There exist canonical isomor phisms of invert-
ible sheaves:

~ _ 2
Ag > APITOPHD vy
Proof. This is a consequence of Theorem 4.2 and formula (3.2).

Remark 4. This theorem is a local version of Mumford’s formula. The next subsection
will throw some light on the relation between this formula and the original global one. It
is worth pointing out that the calculations performed in Subsect. 4.1 throw light on the
explicit expression of the above isomorphism. This can be done with procedures similar
to those of [BM].

Corollary 4.6. Let H be the subgroup of G consisting of series >, ga;z’, where ag is
nilpotent and a1 = 1. B
Thereisa canonical isomorphism:

(Lo|m)®2 ~ Oy

(see [Se] 86 for explicit formulae).

4.4. Orbits of G: Relation with the moduli space of curves. Recall from [MP] the defi-
nition (which follows the ideas of [KNTY, Ue]):

Definition 4.7. Set ak-scheme S. Definethefunctor /\7;50 over the category of k-schemes
by:
S~ MZ(S) = {families (C, D, z) over S},

where these families satisfy:

1.7 : C — Sisaproper flat morphism, whose geometric fibres are integral curves of
arithmetic genus g,

2.0 : § — Cisasection of r, such that when considered as a Cartier divisor D over
C itis smooth, of relative degree 1, and flat over S. (We understand that D c C is
smooth over S, iff for every closed point x € D there exists an open neighborhood U
of x in C such that the morphismU — S is smooth.)
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3. ¢ isanisomorphism of Os-algebras:
Scp = Os((2).

On the setﬂgo(S) one can define an equivalence relatiow, (C, D, z) and

(C’, D', 7') are said to be equivalent, if there exists an isomorphism> C’ (over
S) such that the first family goes to the second under the induced morphisms. Let us
define the moduli functor of pointed curves of genysMg®, as the sheafication of

M;O(S)/w. We know from Theorem 6.5 of [MP] that it is representable liystheme
M. The following theorems are now standard results:

Theorem 4.8.Let g, B be two non-negative integer numbers. The “ Krichever morphis-

m:
Kg: M3 —> Gr(k(())(dn®P),
(C, p,2) — HY%C — p,02’)

is injective in a (formal) neighborhood of every geometric point. The image will be
denoted by M°,.

8B
Theorem 4.9.The action ug of G on Gr(V) induces an action /\/lgf’ﬁ.

Proof. Recall thatG(R) = Autr_,, R((¢)) and that the points of3°(R) are certain
sub-R-algebras oR((¢)) (R being a commutative ring with identity). We thus have that
the Krichever morphism is equivariant with respect to the canonical actiGroofA12°
and o on Gr(V). This implies thes = 0 case. The claim is now a straightforward
generalization. O

In order to study the deformations of a given datum, more definitions are needed.
First, let M/, be the subscheme @#1¢° defined by the same conditions as in Definition
4.7 except that the third one is replg:';\ced by:

e zis aformal trivialization ofC alongD; that is, a family of epimorphisms of rings:
Oc — 04 (Os[t]/1" Oglt]) m e N
compatible with respect to the canonical projections
Osl11/t™ Oslt] — Oslt1/e™ Oslt]
(for m > m’), and such that that correspondingsic= 1 equalss.

Analogously, we introduce the moduli space of pointed curves with-arder trivial-
ization, M} (n > 1), as thek-scheme representing the sheafication of the following
functor over the category @fschemes:

S ~ { families(C, D, z) overS }/ ~,

where these families satisfy the same conditions except for the third which is replaced
by:

e z is an-order trivialization ofC along D; that is, an isomorphism:

Oc/Oc(—nD) — oy (Oslt]/1" Oslt]) .
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The canonical projectiond13° — M will be denoted byp,. Observe that the
natural projections\ty — My (m > n) render{Mj|n > 0} an inverse system and
that/\/l’g is its inverse limit. In particular, we have:

/AT n
M, =lim M

n

The deformation functor of a rational poiitof Mg°, Dy, is the following functor
over(C, (local rational and artiniak-algebras):

A MP(A) x  {X).
ME®

Similarly, defineD’, (resp.D’)’(n), the deformation functor of (resp.X,, := p,(X))in
M;, (resp.My). Since all theM’s are schemes, the corresponding deformation functors
are representable by the completion of the local rings.

Lemma4.10.Let X € M;,(k) beatriplet (C, p, z) with C smooth. Then, the following
sequence:

0— H%C - p,Te) — k()3 — lim HX(C, Te(—np)) — 0

n
(where T'¢ isthe tangent sheaf on C) is exact.
Proof. Letm, n be two positive integers. Let us consider the exact sequence:
0 — Oc(—np) — Oc(mp) - Oc(mp)/Oc(—np) — 0

Sincez is a formal trivialization ang is smooth, it induces an isomorphism

Oc(mp)/Oc(—np) = t~"k[[¢]1/¢"k[[t]].

Twisting the sequence witfic and taking cohomology one obtains:

0 — H%Tc(—np)) — HY(Tc(mp)) — ™" k[[t113, /1" k[[1119; —
— HYT¢(—np)) — HY(Tc(mp)) — 0

since0, ®o, Tc ~< 9, >. Taking direct limit orvz and inverse limit om, the result
follows. O

Theorem 4.11.Let k be a field of characteristic 0. Fix a rational point X < M‘;(k)
corresponding to a smooth curve.
The mor phism of functors:

6—)DX

induced by Theorem 4.9 is surjective.
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Proof. Let Ox be the local ring ofM3° at X. The statement is equivalent to showing
the surjectivity of the induced maps:

G(A) — Dx(A) = Spf(Ox)(A)
forall A € C,. Now, Lemma A.2 reduces the problem to the case k[e]/e?:
7 : G(k[el/e?) — Tx M

(whereT denotes the tangent space). R
Observe that givelX there exists an elemegte G such that the transform of
underg, X8, belongs to/\/l;,. Then, the proof is equivalent to showing that:

TXgM;, Clmm.

From Lemma 4.10, it follows that the action af(k[e]/ez) = k((1))d; = Lie(G)
onk((¢)) and that of DetH°(C — p, Oc)) = H%(C — p, T¢) on HO(C — p, O¢) are
compatible; further, the isotropy &f underk((1))d; is preciselyH°(C — p, T¢). One
can now check that the above sequence induces a map:

lim H(C, Tc(=np)) — Tx M
n
whose image is naturally identified wimng’g = lim Ty

<« n
n

Mg via the Kodaira—

Spencer isomorphism. And the theorem followsi
Remark 5. Let us now compare Theorem 4.5 and the standard Mumford formula. Let
M, denote the moduli space of gengigurves,r, : C;, — M, the universal curve,
andw the relative dualizing sheaf. Let us consider the family of invertible sheaves:
rg := Det(R*m, ,0®F) B eZ.
Let p : Mg® — M, be the canonical projection. Then, it holds that:
KEDetV > p*)»ﬁ.
Furthermore, choose a rational poiite M2° and letpg be the composite:
Pl B
G — Dy — M,.
Then, it holds that there exist isomorphisms:

Ag = pirp.

The compatibility of these isomorphisms with those of the Mumford formU,&a,—X
5, ®(1-66-+65%)
1

BS].

, should follow from the proof Theorem 4.5 and the computations of [BM,
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5. Application to a Non-Perturbative Approach to Bosonic Strings

Two standard approaches to Conformal Field Theories are based on moduli spaces of
Riemann Surfaces (with additional structure) and on the representation theory of the
Virasoro algebra, respectively. Itis thus natural to attempt to “unify” both interpretations
(e.g. [KNTYY]).

In our setting, Subsects. 3.4 and 4.4 unveil the important role of the grdnoth
approaches. Motivated by this fact and by the suggestions of [BR] and [Mo], we propose
G as a “universal moduli space” which will allow a formulation of a non-perturbative
string theory. Let us remark that in the formal geometric setting developed in [MP], the
groupG is the moduli space of formal curves.

Let us sketch how this construction should be carried out, although details and proofs
will be given in a forthcoming paper.

Let us consider the vector spae = C¢ @ C((r)). The natural representatioy
of G on V1 induces a representation 6fon V,;, given by, @ .4. @ 1. Following the
procedure givenin Sect. 3, itis easily proved that this representation yields an agtion,
of G onthe Grassmannian Gry) preserving the determinant bundle. The corresponding
central extension determines a line bund|g on G with a bitorsor structure.

In order to clarify the physical meaning of this higher dimensional picture, it is worth
pointing out that the Fock space corresponding to string theory in the spacB4ime!
is naturally interpreted as a subspacéf¥Gr(V;), Det"), the space of global sections
of the dual of the determinant bundle. Moreover, the actions of the Virasoro algebra on
the Fock space and that 8fe(G) on H%(Gr(V;), Det*) are compatible.

The calculations in Sect. 5 of [BR] can now be restated in the following form: there
exists a canonical isomorphism of invertible sheaves:

YoA®d
Loy — AT°.

This isomorphism, together with the Local Mumford Formula (Theorem 4.5), implies
that£,, and A, are isomorphic if and only if = 13 (complex dimension).
Observe that the group sche@ecarries a filtrationG,,|n > 0}, where

Gn(R) := {¢p € G(R)|$p(t) = Z a;it’ withm < n}.

i>—m
The restriction homomorphisms:

jr HY%G, Ap) — H(Gy, Aglg,)
associated with the inclusions : G,, — G give

J* HY%G, Ap) — lim HY(G,.. Aglg,).

n

Let X be a rational point ofMg°. The action ofG on X induces:
¢y 1 Gn —> MY

which takes values in the deformation functodgfDy . Moreover,G,, — Dyx happens
to be surjective for alk > 3g — 3 (see Theorem 4.11). Denote By e HO(Ggg,g,

A2|Gs, ) the inverse image bygg—3 of the section of., corresponding to the partition
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function of genug. Then, there exists a global sectibne H(G, A») such thatj*(F)
is precisely{ Fy}.

The relationship between hermitian forms on the canonical sheaf of a complex man-
ifold and holomorphic measures on them is well known. The generalization of this
relation to infinite-dimensional manifolds would allow us to give a genus-independent
Polyakov measure o@ constructed in terms of the above introduded

Appendix
A. Deformation Theory

Let us recall some notations and give some results on deformation theory as exposed in
[Sc].

Let C, be the category of local rational Artik-algebras. An admissible linearly
topologizedk-algebraO (see [EGA] §7) canonically defines a functor frahp to the
category of sets:

A ~ ho(A) := Homeon(O, A)

(whereA is endowed with the discrete topology). Observetigtd) = Hom.ag(O, A)
for a discretek-algebra0O.

The condition that:np consists of only one point is equivalent to saying t&ais
local and rational.

The definition belowis that givenin[Sc] 2.2, which generalizes the concept of “formal
smoothness” of [Ma].

Definition A.1. A functor homomorphism F — G is smooth iff the morphism:
F(B) — F(A) xga) G(B)

is surjective for every surjection B — A inC,.

Remark 6. The following remarks merit attention:

o if F — G is smooth, therF(A) — G(A) is surjective for allA in C, ([Sc, (2.4)],
e o — hey is smooth iffO is a series power ring ové?’ ([Sc] 2.5),
e h is said to be smooth iff the canonical morphig@ — hy is smooth.

The tangent space to a functor oggs F, is defined by
tp = F(k[e]/€?).
Recall Lemma 2.10 of [Sc]: if it holds that
Fk[V @& W] >~ Fk[V]) x F(k[W])

for arbitrary vector spaceg, W (wherek[V] is the ringk & V with V2 = 0), then
F(k[V]) (andin particulatr) has a canonical vector space structure suchittvdty ]) ~
tr ® V. Observe that the functaér, satisfies the above condition for &M.

LemmaA2.Let¢ : F := hp, - G = hp, and F — h; be two morphisms of
functors over C, such that:

e F — hy issmooth,
o the sets F (k) and G (k) consist of one €l ement,
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o tp := F(k[€]/€?) — tg := G(k[e]/€?) issurjective,

then F — G issmooth (and hence surjective).

Proof. First, we claim thatF (k[V]) — G (k[V]) is surjective for everg-vector space
V (k[V] denotes the ring @ V in which V2 = 0). SinceF (k[V & W]) ~ F(k[V]) x
Fk[W]) andG (k[V®W]) >~ G(k[V]) x G(k[W]) for vector spaceg, W,Lemma2.10
of [Sc] holds, and hence there are canonical vector space structurescpri]) and
G (k[V]) such that they are isomorphic tp ® V andtg ® V (in a functorial way)
respectively. Sincér — {g is surjective by hypothesis, the claim follows.

Let A be an object o, and/ C A an ideal such that? = 0. Then, one has a
commutative diagram:

F(A) -2 G

pFl pcl :
F(A/D) =2 G/

where we can assume by induction over gitnthat¢; is surjective (sinceér — tg is
surjective).

Let(f, g) beanelementaf(A/I)x G(A) suchthat;(f) = pc(g). SinceF — hy
is smooth and is local it follows thator is a surjection. Lelff € F(A) be a preimage
of f. Then the images af4 ( f) andg underpg coincide; both of them arg; (f). Note

that,ogl(qs](f)) is an affine space modeled over P@&?¢, 1); or what amounts to the
same:

g — ¢u(f) € Den(Og, I).
Observe that the bottom arrow of the following commutative diagram:

Den(Of, 1) —— Den(Og, )
Fk[Il) —— G&k[ID

is surjective. LetD € F(k[I]) be a preimage of — &n(f).
Itis now easy to verify that + D is a preimage of f, g) under the induced morphism:

F(A) — F(A/I) x G(A),

and the statement follows.O

B. Lie Theory

This appendix aims at generalizing some results of Lie Theory for the case of (infinite)
formal groups. To this end, we recall some more results of [Sc] and proceed with ideas
quite close to those of [Ha, §14].

Definition B.1. A functor F from C, to the category of groups will be called a group
functor. If, moreover, there exists a k-algebra © and an isomorphism F =~ hp, then F
will be called a formal group functor.
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Let Cyr andCror gr denote the categories of group functors and formal group functors
overC,, respectively. Le(lf%r ar denote the full subcategory Gfor gr consisting of those
F such thatF' (k) has only one element arfdis smooth.

Remark 7.
e Let F be a formal group functor ovél,. Then, the “tangent space at the neutrum?”:

Lie(F) = F(klel/€®) x r {1}

(which coincides withtr) is a Lie algebra where the Lie bracket is induced by the
product ofF.

e Finally, for a formal group functor and a morphistn— A/I with 72 = 0 one has
the following exact sequence of groups:

0— F(k[I]) = F(A) — F(A/I) — 0.

Lemma B.2. Let chank) = 0. Let F and G be two formal group functors. Assume that
F issmooth and that F (k) = {e} (one point). Then, the canonical map:

Homg((F, G) — HoMyect. sp(tr, tG)
isinjective.
Proof. Let A be an object of, andm C A its maximal ideal and such tham+1 = 0.
Let¢, ¥ be in Homy(F, G) such that the induced vector space homomorphigmg,
from tz to tg coincide. One has to prove that= .
Let us first deal with the case= 1. By Lemma 2.10 of [Sc], there exist functorial
isomorphismsF(A) >~ tr @ m andG(A) >~ tg ® m (m as ak-vector space). It is now

clear that both¢ andvs, give the same morphisiFi(A) — G(A).
Now assume: > 2. Using the Nakayama Lemma one obtains a surjection:

Ay = klxe, . oox 1/ xS A,
and hence a commutative diagram:
F(Arn) —— F(A)
‘| ‘|
G(Arn) —> G(A)

and similarly foryr. Observe that the top row is surjective sinfces smooth andt,.,, —
A is surjective. Therefore, it suffices to prove the statementfgr.
Note that the injectiom,, < A;.,.1 (Chark) = 0):

klxi |1<i <P/ > kl{xj |11< i <r 1< j <n)l/(x5)
Xi F—>Xxi1+...+xin
induces two commutative diagrams (tband):

0 —— F(Ar,n) —_— F(Ar»n,l)

l |

0 —— G(Ar’n) E— G(Ar-n,l)
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It is then enough to check the caseAf;. Let us proceed by induction on The case
r = 1 follows directly from the hypotheses.
We claim that the the following diagram is commutative:

0 —— F(k[ker(p)]) —— F(A1) —2— F(A,—11) — O

dwl ‘Prl ¢r_1l

0 —— Gklker(p)]) ——> G(A.1) —*— G(A,_11) —> O

(and analogously fory). The morphismsr and pg are surjective since they have
sections, because the natural inclusign 1 < A, 1 is a section of the projection:

piArl—> Arc11,
x, — 0.
Bearing in mind tha(kerp)2 = 0, the claim follows.
The first case, which we have already proved (the square of the maximal id@dl is

implies that thep, = v/,,. The induction’s hypothesis implies that_; = v/, _1.
Now, recalling that both sequences split, one concludessthat v, as desired. O

Let us now relate the study of group functors with that of Lie algebrasCLgt
denotes the category of Liealgebras. Then, there is a functor:

£Lie : Crorgr —> Clie,
F +—— Lie(F) = tr.
For a Liek-algebrag define a functor o, :
A~ £(A) = £ @ my
(the Lie bracket of£(A) is that of € extended byA-linearity).
LetC H (x, y) denote the Campbell-Hausdorff series (see, forinstance, [Ha] 14.4.15):

CH(x,y) = 1 ) ) (B.1)
(x,y)=x+y+ 2[x, yl+ 12[x, [x, I + 12[y, [y, x]]+... .

then the map:
£(A) x £(4) — £(4)
(x,y) —> CH(x,y)
(note thatC H (x, y) is a finite sum sinced is artinian) endowsZ(A) with a group
structure ([Ha] 14.4.13-16). Let us denote this group functothyMoreoverLs — hy
is smooth andZé (k) consists of one point. Finally, sina@H (x, y) only depends on
additions of iterated Lie brackets one has that every morphism of Lie alg&bras £»
induces a morphism of group functog§ — £35. In other words, there is a functor:
(G CL|e — Cgr
£ 28

such thatCie o® = Id.
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Example 1. It is now easy to prove that finite dimensional Lie algebras are the Lie
algebras of formal groups. Indeed, &t be the dual vector space of a given Lie algebra
£. Then, it holds that:

Homeon(O, A) = £ ®; ma,

where© := §*£* is the completion of the symmetric algebsa£*, with respect to the
maximal ideal generated by*.
Itis now straightforward to see th&88 = i and that

Lie(hp) = (mp/m2)* = £.

Lemma B.3.Let F be an object of C?or gr The functor homomor phism (which will be
called exponential) defined by:

tp > F

1 .
D> expD) =) =D’
l

i>0
yields an isomorphism t5. ~ F.

Proof. Note that the sum is finite sind@ € t;(A) = tr ® my (for A € C,) is of the
typeD =} ;m;D; (wherem; € my andD; € tr) and henceD’ has coefficients in

mi. By the above construction, the exponential is a group homomorphism since it holds
that ([Ha] 14.14):
exp(D) - exp(D') = exp(CH (D, D")).

In the same way that the exponential map has been defined a logarithm can also be
introduced. Now the conclusion follows trivially.o

From all these results one has the main theorem of this appendix which is a version
for (certain) non-commutative group functors of the standard Lie Third Theorem.

Theorem B.4.The functor Lie rendersCg, or @ full subcategory of Ciie.

Proof. This follows from the following two facts:

e if F, G € Cygr have isomorphic Lie algebrag ~ t, then they are isomorphic. (Recall
that there are group isomorphismis: F andtf; ~ G).

e Home, (F, G) ~ Homg,, (tF, tg) (LemmaB.2 proves the injectivity and the equality
Lieo® = Id the surjectivity).
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