
Commun. Math. Phys. 216, 609 – 634 (2001) Communications in
Mathematical

Physics
© Springer-Verlag 2001

Automorphism Group of k((t)):
Applications to the Bosonic String�

J. M. Muñoz Porras, F. J. Plaza Martín

Departamento de Matemáticas, Universidad de Salamanca, Plaza de la Merced 1–4, 37008 Salamanca, Spain.
E-mail: jmp@gugu.usal.es; fplaza@gugu.usal.es

Received: 26 March 1999 / Accepted: 10 September 2000

Abstract: This paper is concerned with the formulation of a non-pertubative theory of
the bosonic string. We introduce a formal groupG which we propose as the “universal
moduli space” for such a formulation. This is motivated becauseG establishes a natural
link between representations of the Virasoro algebra and the moduli space of curves.
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1. Introduction

On the moduli space of smooth algebraic curves of genusg, Mg, one can define a family
of determinant invertible sheaves{λn|n ∈ Z}. In a remarkable paper, Mumford ([Mu])
proved the existence of canonical isomorphisms:

λn
∼→ λ

(6n2−6n+1)
1 ∀ n ∈ Z

which have been studied in depth from different approaches.

	 This work is partially supported by the CICYT research contract n. PB96-1305 and Castilla y León
regional goverment contract SA27/98.
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For instance, within the frame of string theory, these isomorphisms are one of the main
tools in the explicit computation of the Polyakov measure for bosonic strings in genus
g ([BK,MM]). Proposals for developing a genus-independent (or “non-pertubative”)
formulation of the theory of bosonic strings have been made by several authors (e.g.
[BR,Mo,BNS]).

In this paper we propose a “universal moduli space” as the main ingredient for a
non-perturbative string theory which is different from those introduced by the above
authors.

Following the spirit of previous papers ([AMP,MP]), where a “formal geometry” of
curves and Jacobians was developed (see [BF,P] for other applications of these ideas),
we introduce a formal group schemeG representing the functor of automorphisms of
k((t)) (see Sect. 3); more precisely, the points ofG with values in ak-schemeS are:

G(S) = AutH0(S,OS)−algH
0(S,OS)((t)).

The formal group schemeG might be interpreted as a formal moduli scheme for
parametrized formal curves. The canonical action ofG on the infinite Grassmannian
Gr(k((t))dt⊗n) allows us to construct an invertible sheaf,�n, onG (for everyn ∈ Z)
endowed with a bitorsor structure. Using a generalization of the Lie Theory for certain
non commutative groups (given in Appendix B), we prove that these sheaves satisfy an
analogous formula of the Mumford Theorem; that is, there exist canonical isomorphisms
(see Theorem 4.5):

�n
∼→ �

(6n2−6n+1)
1 ∀ n ∈ Z.

To show that our formula is a local version of Mumford’s, rather than a mere “coin-
cidence”, we relateG and the moduli of curves by means of infinite Grassmannians (see
subsection 4.4 for precise statements). LetM∞

g be the moduli space of pointed curves
of genusg with a given parameter at the point (see Definition 4.7). Then, the action ofG

on Gr(k((t))) induces an action,φ, onM∞
g . Moreover, given a rational pointX ∈ M∞

g ,
the action induces a morphism of schemes:

G
φX−→ M∞

g .

Let φ̂X be the composite of the immersion of̂G (the formal completion ofG at the
identity) intoG, φX, and the projectionM∞

g → Mg. Let (M∞
G )̂X be the formal

completion ofM∞
G atX. Then, from the surjectivity of the map̂G→ (M∞

G )̂X induced
by φX (see Theorem 4.11), it follows easily that there exist isomorphisms:

φ̂∗X(λn)
∼→ �n ∀ n ∈ Z.

Finally, the last section offers a proposal on how to apply these results to a non-
perturbative formulation of the bosonic string. The explicit development of these ideas
and the geometric interpretation of partition functions in terms of the geometry of the
groupG will be performed elsewhere.
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2. Background on Grassmannians

2.1. The Grassmannian Gr(k((t))). This section summarizes results on infinite Grass-
mannians as given in [AMP] in order to set notations and to recall the facts we will
need.

Below,V will always denote thek-vector spacek((t)) andV + the subspacek[[t]].
Let Bf be the set of subspaces generated by{t s0, ts1, . . . } for every strictly increasing
sequence of integerss0 < s1 < . . . such thatsi+1 = si+1 for i >> 0. LetB denote the
set of subspaces ofV given by thet-adic completion of the elements ofBf . We can now
interpretB as a basis of a topology onV . It is easy to characterize the neighborhoods of 0
as the set of subspacesA of V such that there exists an integern >> 0 with tnk[[t]] ⊆ A
and it is of finite codimension.

Now the pair(V ,B) satisfies the following properties:

• the topology is separated andV is complete,
• for everyA,B ∈ B, it holds that(A+ B)/(A ∩ B) is finite dimensional,
• if A,B ∈ B, thenA+ B,A ∩ B ∈ B,
• V/A = lim−→

B∈B
(B + A/A) for everyA ∈ B,

and hence there exists ak-scheme, called the Grassmannian of(V ,B) and denoted by
Gr•(V ), whoseS-valued points is the set:

quasi-coherent sub-OS-modulesL ⊆ V̂S such that for every points ∈ S,

Lk(s) ⊆ V̂k(s) and there exists an open neighborhoodU of s andA ∈ B
such thatV̂U/LU + ÂU = (0) andLU ∩ ÂU is free of finite type


(k(s) is the residual field ofs) whereL̂T := lim←−(L/L ∩AS)⊗OS

OT for a submodule
L of VS and a morphism ofk-schemesT → S.

The very construction of Gr•(V ) shows that{FA | A ∈ B} is an open covering by
affine subschemes whereFA is thek-scheme whoseS-valued points are:{

locally free sub-OS-modulesL ⊆ V̂S such thatLS ⊕ ÂS � V̂S
}
.

From this fact one deduces (see [AMP]) that the complexes ofOGr•(V )-modules
L⊕ ÂGr•(V ) → V̂Gr•(V ) are perfect (L being the universal object of Gr•(V )) for every
A ∈ B. Moreover, the Euler–Poincaré characteristic of the complexL ⊕ ÂGr•(V ) →
V̂Gr•(V ):

L �−→ dim(L ∩ V +)− dim(V/L+ V +)
gives the decomposition of Gr•(V ) into connected components. The connected compo-
nent of characteristic 0 will be denoted by Gr(V ). It is easy to show that these complexes
are all quasi-isomorphic.

From the theory of [KM] on determinants, it follows that their determinants are
well defined and that they are isomorphic. The choice ofV + ∈ B now enables us to
construct a line bundle on the Grassmannian as follows: on the connected component
of characteristicn consider the determinant of Det(L ⊕ tnV̂ +Grn(V ) → V̂Grn(V )). The
resulting bundle will be called “the determinant bundle” and will be denoted simply by
DetV .
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It is also known that given a complexL⊕ÂGr•(V )
δA→ V̂Gr•(V ) (A ∈ B), the morphism

δA gives a section of Det(L⊕ ÂGr•(V ) → V̂Gr•(V ))∗. By fixing the basis{tn|n ∈ Z} of
V one checks that the induced isomorphisms among determinants of these complexes
are compatible (see [AMP]). Using such isomorphisms the above-defined section gives
a section A of Det∗V . The section defined on the connected component of characteristic
n by the determinant of the addition homomorphismL⊕ tnV̂ +Grn(V ) → V̂Grn(V ) will be
denoted by +.

2.2. The linear group Gl(V ). For eachk-schemeS, let us denote by AutOS
(V̂S) the

group of automorphisms of theOS-moduleV̂S .

Definition 2.1. • A sub-OS-module L ⊆ V̂S is said to be a B-neighborhood if there
exists a vector subspace A ∈ B such that ÂS ⊂ L and L/ÂS is locally free of finite
type.

• An automorphism g ∈ AutOS
(V̂S) is called B-bicontinuous if g(ÂS) and g−1(ÂS) are

B-neighborhoods for all A ∈ B.
• The linear group, Gl(V ), of (V ,B) is the contravariant functor over the category of
k-schemes defined by:

S � Gl(V )(S) := {g ∈ AutOS
(V̂S) such that g is B-bicontinuous}.

Theorem 2.2.There exists a natural action,µ, of Gl(V ) on the Grassmannian, preserv-
ing the determinant bundle.

Proof. The first part is easy to show. It suffices to prove thatg(L) belongs to Gr•(V )(S)
for anS-valued pointL ∈ Gr•(V )(S) and an arbitraryg ∈ Gl(V )(S) using thatg is
B-bicontinuous.

Note that giveng ∈ Gl(V )(S) and anS-scheme,T , one has an induced isomorphism
V̂S/ÂS → V̂S/g(ÂS) for eachA ∈ B. Twisting byOT , and taking the inverse limit over
A ∈ B, one obtains anOT -automorphismgT of V̂T , which due to the very construction
is B-bicontinuous. Moreover, the map:

Gl(V )(S)→ Gl(V )(T ),

g �→ gT

is functorial. So, for an elementg ∈ Gl(V )(S) we have constructedgT ∈ Gl(V )(T ) for
everyS-schemeT ; hence,g yields anS-automorphism of Gr•(V )S := Gr•(V ) ×k S.
We have then constructed a functor homomorphism:

Gl(V )→ Aut(Gr•(V )),
g �→ g•,

where Aut(Gr•(V ))(S) := AutS-sch(Gr•(V )S).
With the expression “preserving the determinant bundle” we mean thatg∗•p∗1 Det�

p∗1 Det⊗p∗2N (wherepi denotes the projection onto theith factor of Gr•(V )×k S) for
a line bundleN overS. It is therefore enough to prove the statement whenS is a local
affine scheme.
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Recall that:

g∗•p∗1 DetV � Det
(
g∗•p∗1L⊕ g∗•p∗1ÂGr•(V ) → g∗•p∗1V̂Gr•(V )

)
for A ∈ B. TakeA ∈ B such thatÂS ⊆ g−1(V̂ +S ) andg−1(V̂ +S )/ÂS are free of finite
type. Then,g induces an isomorphism:

g∗•p∗1 DetV � p∗1 DetV ⊗Det
(
p∗1V̂

+
Gr•(V )/g

∗•(p∗1ÂGr•(V ))
)∗
.

From the very construction ofg• it follows that there is an isomorphism:

p∗1V̂
+
Gr•(V )/g

∗•(p∗1ÂGr•(V )) � p∗2
(
V̂ +S /g(ÂS)

)
and the claim follows. ��
Theorem 2.3.There exists a canonical central extension of functors of groups over the
category of k-schemes:

0→ Gm → G̃l(V )→ Gl(V )→ 0

and a natural action, µ̃, of G̃l(V ) over the vector bundle, V(DetV ), defined by the
determinant bundle lifting the action µ.

Proof. For an affinek-schemeS, defineG(S) as the set of commutative diagrams (in
the category ofS-schemes):

V(Det∗V )S
ḡ−−−−→ V(Det∗V )S� �

Gr•(V )S
g−−−−→ Gr•(V )S,

whereḡ is an isomorphism andg ∈ Gl(V )(S) and the homomorphismG → Gl(V )
by ḡ �→ g. For an arbitrary schemeS defineG(S) by sheafication; that is, consider a
covering{Ui} by open affine subschemes ofS andG(S) the kernel of the restriction
homomorphisms: ∏

i

G(Ui) −→−→
∏
i,j

G(Ui ∩ Uj).

We have then obtained an extension:

0→
∏
Z

Gm → G → Gl(V )→ 0,

sinceH 0(Gr•(V )S,OGr•(V )S ) =
∏

Z
H 0(S,OS) ([AMP]).

Finally, defineG̃l(V )(S) as the direct image of this extension by the morphism∏
Z

Gm → Gm which maps{ai} to a0. Observe that for any projection{ai} �→ an the
resulting extensions are isomorphic.��
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Let us compute the cocycle associated with this central extension. For the sake
of clarity we shall begin with the finite dimensional situation:V finite dimensional,
{v1, . . . , vd} a basis,B consists of all finite dimensional subspaces andV + :=
< vn+1, . . . , vd > (for an integer 0≤ n ≤ d). Then, Gr(V ) parametrizes then-

dimensional subspaces ofV . Let ḡ denote the morphism< v1, . . . , vn >↪→ V
g→

V → V/V + for an elementg ∈ Gl(V ) (observe that̄g consists of the firstn columns
and rows of the matrix associated withg).

We now have the following exact sequence:

0→ Gm → G̃l(V )
p→ Gl(V ) � Aut(∧nV )→ 0.

Let us consider the subgroup Gl+(V ) consisting of those automorphismsg ∈ Gl(V )
such that̄g is an isomorphism. It is easy to check that:

g �−→ (
g,det(ḡ)

)
is a section ofp over Gl+(V ). The cocycle associated to the central extension is given
by:

c(g1, g2) = det
(
ḡ1 ◦ (g1 ◦ g2)

−1 ◦ ḡ2
)
.

The cocyle corresponding to the Lie algebra level follows from a straightforward
computation. Let Id+εiDi be ak[εi]/ε2

i -valued point of Gl(V ) (i = 1,2). The very
definition of the cocycle:

cLie(D1,D2)ε1ε2 = c(Id+ε1D1, Id+ε2D2)− c(Id+ε2D2, Id+ε1D1)

yields the expression:

cLie(D1,D2) = Tr(D+−1 D−+2 −D+−2 D−+1 ), (2.1)

whereD+−i : V + → V − :=< v1, . . . , vn > is induced by Id+εiDi ∈ Gl(V ) with
respect to the decompositionV � V − ⊕ V + (and, analogously,D−+i : V − → V +).

The case of(V = k((t)),B, V + = k[[t]]) andV − = t−1k[t−1] is very similar and
the same formulae remain valid.

3. The Automorphism Group of k((t)): G

This section aims at studying the functor (on groups) over the category ofk-schemes
defined by:

S � G(S) := AutH 0(S,OS)-algH
0(S,OS)((t)),

where the group law inG is given by the composition of automorphisms (hereR((t))
stands forR[[t]][t−1] for a commutative ringR with identity; or, what amounts to the
same, the Laurent developments int with coefficients inR).
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3.1. Elements of G. Let us consider the following functor over the category ofk-
schemes:

S � k((t))∗(S) :=
{
invertibles ofH 0(S,OS)((t))

}
.

The first result is quite easy to show:

Lemma 3.1.The functor homomorphism:

ψR : AutR-alg R((t))→ k((t))∗(R)
g �→ g(t)

induces an injection ofG into the connected component of t , k((t))∗
1
. Moreover,G(R)→

k((t))∗
1
(R) is a semigroup homomorphism with respect to the following composition law

on k((t))∗
1
:

m : k((t))∗
1
(R)× k((t))∗

1
(R)→ k((t))∗

1
(R),

(g(t), h(t)) �→ h(g(t)).
(3.1)

Theorem 3.2.The morphism ψR induces a natural isomorphism of functors:

G
∼→ k((t))∗

1
.

Proof. The only delicate part of the proof is the surjectivity ofψR. The idea is to relate
G(R) with the group of automorphisms ofR[[x]][y].

Let I be the ideal ofR[[x]][y] generated by(x · y − 1), and let AutI R[[x]][y] be
the group: {

g ∈ AutR-algR[[x]][y] such thatg(I) = I} .
Since there is an isomorphismR[[x]][y]/I ∼→ R((t)) (which mapsx to t andy to t−1),
one has a morphism AutI R[[x]][y] → AutR-algR((t)), and a commutative diagram:

AutI R[[x]][y] ψ̄R−−−−→ R[[x]][y] π−−−−→ R[[x]][y]/I� �
�

AutR-algR((t))
ψR−−−−→ R((t))∗1 −−−−→ R((t))∗,

whereψ̄R(f ) := f (x).
Observe that the induced morphism:

π

({
seriesf (x, y) ∈ x · R[[x]] ⊕ Rad(R)[y]
such that the coefficient ofx is invertible

})
−→ R((t))∗1

is surjective. The claim being equivalent to the surjectivity ofψR, it is then enough to
show that: {

seriesf (x, y) ∈ x · R[[x]] ⊕ Rad(R)[y]
such that the coefficient ofx is invertible

}
⊆ Im(ψ̄R).
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Given an elementx ·f (x)+n(y) ∈ x ·R[[x]]⊕Rad(R)[y], wheref (0) is invertible,
consider the followingR-endomorphism:

φ : R[[x]][y] → R[[x]][y]
x �→ x · f (x)+ n(y)

y �→ y

f (x)
·
(

1+ y · n(y)
f (x)

)−1

(which is well defined sincef (x) ∈ R[[x]]∗ andn(y) is nilpotent).
Provided thatφ is an isomorphism, it holds thatφ(I) = I and thatψ̄R(φ) = x ·

f (x) + n(y). To show thatφ is actually anR-isomorphism ofR[[x]][y], observe that
φ = φ3 ◦ φ2 ◦ φ1, whereφ1, φ2, φ3 areR-isomorphisms ofR[[x]][y] defined by:{
φ2(x) = x · f (x)
φ2(y) = y

φ3(x) = x
φ3(y) = y

f (x)
·
(
1+ y·n(y)

f (x)

)−1

{
φ1(x) = x + (φ3 ◦ φ2)

−1(n(y))

φ1(y) = y

��

3.2. Formal scheme structure ofG. Set ank-schemeS and an elementf ∈ k((t))∗(S).
From [AMP] we know that the function:

S −→ Z,

s �→ vs(f ) := order offs ∈ k(s)((t))
is locally constant and that the connected component oft ,k((t))∗

1
, is identified with the set

of S-valued points of a formalk-scheme,k((t))∗1. One therefore obtains an isomorphism
between the functorG and the functor of points of the formal schemek((t))∗1:

G(S)
∼→ k((t))∗1(S) =

{
series(ar t

r + · · · + a0 + a1t + . . . )t such that

ar , . . . , a−1 ∈ Rad(R), a0 ∈ R∗ andr < 0

}
(whereR = H 0(S,OS)).

3.3. Subgroups of G. Two important subgroups ofG
∼→ k((t))∗1 are the subschemes

G+ andG− defined by:

G+(S) :=
{
t · (1+

∑
i>0

ai t
i) whereai ∈ R

}
,

G−(S) :=
{

polynomialst · (ar tr + · · · + a1 t
−1 + 1) such

thatai ∈ R are nilpotent andr arbitrary

}
respectively.

Let Ĝ (respectivelyĜ−, Ĝm andĜ+) be the completion of the formal schemeG
(G−,Gm andG+) at the point{Id}.
Lemma 3.3.The subgroups Ĝ−, Ĝm and Ĝ+ commute with each other and

Ĝ− · Ĝm · Ĝ+ = Ĝ.
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Proof. Recall that Hom(Spec(A), Ĝ) is the union of Hom(O/mnO, A), whereO is the
ring ofG andmO is the maximal ideal corresponding to the identity. It therefore suffices
to show that:

1. Ĝ−(A), Ĝm(A) andĜ+(A) commute with each other,
2. Ĝ−(A) · Ĝm(A) · Ĝ+(A) = Ĝ(A),
for each local and rationalk-algebraA such thatmn+1

A = 0 for n >> 0.
Let us proceed by induction onn. The casen = 1 is a simple computation.

1. Let us prove that̂G−(A)andĜm(A)commute with each other. Consider the following
subgroup ofG(A):

H(A) := {
ant

−n + . . .+ a0 with ai ∈ mA for i < 0 anda0 ∈ A∗
}

and note that we have the group exact sequence:

0→ Ĥ (k[mnA])→ Ĥ (A)
ρ→ Ĥ (B)→ 0,

whereB = A/mnA.
For an elementh ∈ Ĥ (A) there existh− ∈ Ĝ−(B) andh0 ∈ Ĝm(B) such that
ρ(h) = ρ(h− ◦ h0); or what amounts to the same:

h−1− ◦ h ◦ h−1
0 ∈ Ĥ (k[mnA]).

The induction hypothesis implies that̂H(k[mnA]) = Ĝ−(k[mnA]) · Ĝm(k[mnA]) and
hence there existh′− ∈ Ĝ−(k[mnA]) andh′0 ∈ Ĝm(k[mnA]) such that:

h−1− ◦ h ◦ h−1
0 = h′− ◦ h′0

and therefore:
Ĥ = Ĝ− · Ĝm.

Analogously, one proves that̂H = Ĝm · Ĝ−.
The proofs of the other commutation relations are similar.

2. Note thatg0 ◦ g− = g− ◦ g0 for g0 ∈ Ĝm(A) andg− ∈ Ĝ−(k[mnA]) and proceed
similarly. ��

Theorem 3.4.The functor G is canonically a subgroup of Gl(V ).

Proof. Note that it suffices to show thatG−(S),Gm(S) andG+(S) are canonically
subgroups of Gl(V )(S) for eachk-schemeS, since:

• Ĝ = Ĝ− · Ĝm · Ĝ+,
• Ĝ− = G− andĜ+ ⊆ G+,
• G = Ĝ ·G+.

By the very definition of Gl(V ), it is enough to prove the case whenS is a local affine
scheme, Spec(R).

The cases ofGm andG+ are straightforward since:

φ(tnR[[t]]) = tnR[[t]] ∀ n
for φ ∈ Gm(S) or φ ∈ G+(S).
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Let us now considerφ ∈ G−(S). Letu(t) be such thatφ−1(t) = t (1+ u(t)). It then
holds that:

φ−1(tr ) = t r (1+ u(t))r = t r ·
r∑
i=0

(
r

i

)
u(t)i .

Sinceu(t) is nilpotent, there existss such that:

φ−1(trR[[t]]) ⊆ t sR[[t]],
in other words:

t rR[[t]] ⊆ φ(tsR[[t]]).
The Nakayama lemma implies that the family{φ(ts), . . . , φ(tr−1)} generates

φ(tsR[[t]])/trR[[t]]. Using the fact thatφ ∈ G− one proves that they are linearly
independent; summing up,φ(tsR[[t]])/trR[[t]] is free of finite type. ��

3.4. The Lie algebra of G, Lie(G).

Theorem 3.5.There is a natural isomorphism of Lie algebras:

Lie(G)
∼→ k((t))∂t

compatible with their natural actions on the tangent space to the Grassmannian,
TGr(V ). (From now on Derk k((t)) will denote k((t))∂t .)

Proof. Take an elementg(t) = t (1 + εg0(t)) ∈ Lie(G) (recall that by definition
Lie(G) = G(k[ε]/ε2)×G(k) {Id}). Let us computeµ(g)(tm) for m ∈ Z:

µ(g)(tm) = g(t)m = tm(1+ εg0(t))
m =

= tm(1+mεg0(t)) = (Id + ε · g0(t)t∂t )(t
m).

It is now natural to define the following map:

Lie(G)→ Derk k((t)),

t (1+ εg0(t)) �→ g0(t)t · ∂t ,
and this turns out to be an isomorphism ofk-vector spaces.

In order to check that this map is actually an isomorphism of Lie algebras, let us
compute explicitly the Lie algebra structure ofLie(G).

Given two elementsgn(t) = t (1+ ε1tn) andgm(t) = t (1+ ε2tm) (whereε2
i = 0),

we have:
gn(gm(t)) = gm(gn(t))(1+ (m− n)ε1ε2tm+n)

that is:
[gm, gn] = (m− n)gm+n.

Since[tm+1∂t , t
n+1∂t ] = (m − n) · tm+n+1∂t , one concludes that the map is in fact an

isomorphism of Lie algebras.
Let us check that the actions of these Lie algebras onTGr(V ) coincide. Fix a rational

point U ∈ Gr(V ) and take an elementg(t) = t (1+ εg0(t)) ∈ Lie(G). Clearly, the
image of(g, U) byµ lies on:

TUGr(V ) = Gr(V )(k[ε]/ε2) ×
Gr(V )(k)

{U} � Homk(U, V/U),
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which is associated with the morphism:

U ↪→ V
tg0(t)−→ V → V/U.

Consider an elementD ∈ Derk k((t)). Then the image of(D,U) under the action of
Derk k((t)) onTGr(V ) is:

U ↪→ V
D−→ V → V/U

and the conclusion follows.��
Let Vir denote the Virasoro algebra; that is, the Lie algebra with a basis{{dm|m ∈

Z}, c} and Lie brackets given by:

[dm, c] = 0,

[dm, dn] = (m− n)dm+n + δn,−m (m
3 −m)
12

c.

By abuse of notation Vir and Virasoro will also denote the Lie algebra given by
lim←−
n

Vir /{dm|m > n}. Both algebras have a “universal” central extension:

Ext1(k((t))∂t ,C) = C · Vir

and this is the important feature for our approach (see [KR] Lecture 1, [ACKP, 2.1],
[LW]).

Definition 3.6. The central extension of G given by Theorem 2.3, G̃, will be called the
Virasoro Group.

Proposition 3.7.The Lie algebra of G̃, Lie(G̃), is isomorphic to the Virasoro algebra,
Vir .

Remark 1. Let us compute the cocycle associated withLie(G̃). Let Gl+(V ) be the sub-
group of Gl(V ) consisting of elementsg such thatg(FV+) = FV+ . SinceĜ is contained
in Gl+(V ), one can use the formula 2.1. Recall that a basis ofLie(Ĝ) is given by the set
{gn(t) := t (1+ εtn)|n ∈ Z} sinceLie(Ĝ) = Ĝ(k[ε]/ε2).

The element of Gl+(V ) (aZ× Z matrix) corresponding togm is:

(gm)ij =


1 if i = j
ε · j if i = j +m
0 otherwise

and the cocycle is therefore:

c(gm, gn) = δn,−m ·
n−1∑
j=0

j (j − n) = δn,−m · m
3 −m

6
.
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3.5. Central extensions of G. We begin with an explicit construction of an important
family of central extensions ofG.

Fix two integer numbersα, β and consider thek-vector space

Vα,β := tαk((t))(dt)⊗β.
The natural isomorphism:

dα,β : V −→ Vα,β,

f (t) �→ tαf (t)(dt)⊗β

allows us to define a triplet(Vα,β,Bα,β := dα,β(B), V +α,β := dα,β(V
+)). One has

therefore an isomorphism:
Gr(V )

∼→ Gr(Vα,β).

Observe that the action ofG onVα,β defined by:(
g(t), tαf (t)(dt)⊗β

) �→ g(t)αf (g(t))(dg(t))⊗β

= tα
(g(t)
t

)α
f (g(t))g′(t)β(dt)⊗β

induces an action on Gr(Vα,β) (by a straightforward generalization of Theorem 3.4), and
also in Gr(V ):

µα,β : G×Gr(V )→ Gr(V ).

Note thatµ0,0 is the action ofG on Gr(V ) defined in the previous section. Moreover,
these actions are related by:

µα,β(g(t)) =
((g(t)

t

)α · g′(t)β) ◦ µ0,0(g(t)),

where the first factor is the homothety defined by itself.
Theorem 2.3 implies that there exists a central extension:

0→ Gm → G̃α,β → G→ 0

corresponding to the actionµα,β . Moreover, it follows from its proof that̃Gα,β consists
of commutative diagrams:

V(Det∗V )
ḡ−−−−→ V(Det∗V )� �

Gr(V )
µα,β (g)−−−−→ Gr(V )

or equivalently:

G̃α,β = {(g, g̃) whereg ∈ G andg̃ : µα,β(g)∗ DetV
∼→ DetV }

sinceµα,β(g)∗ DetV � DetV for all g ∈ G. It is not difficult to show that the extensions
G̃α,β andG̃α′,β are isomorphic for everyα, α′ ∈ Z. Then,G̃0,β (respectivelyµ0,β ) will
be denoted bỹGβ (µβ ). The group law of̃Gβ is:

(h, h̃) · (g, g̃) = (h · g, g̃ ◦ µβ(g)∗(h̃))
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since we have:

µβ(h · g)∗ DetV = (µβ(g)∗ ◦ µβ(h)∗)DetV
µβ(g)

∗(h̃)−→ µβ(g)
∗ DetV

g̃−→ DetV .

These central extensions induce extensions of the Lie algebraLie(G) whose corre-
sponding cocycles are:

cβ(m, n) = δn,−m ·
n−1∑
j=0

(j + (m+ 1)β)(j − n+ (n+ 1)β)

= δn,−m ·
(m3 −m

6

)
(1− 6β + 6β2).

(3.2)

To obtain such a formula, one only has to check that the matrix corresponding toµβ(gm)

is:

(µβ(gm))ij =


1 if i = j
ε · (j + (m+ 1)β) if i = j +m
0 otherwise

.

Remark 2. It is worth pointing out that one can continue with this geometric point of view
for studying the representations ofLie(G) since it acts on the space of global sections of
the Determinant line bundle which contains the “standard” Fock space. (For an explicit
construction of sections of Det∗V , see [AMP]). An algebraic study of the representations
of Vir induced byµα,β has been done in [KR].

3.6. Line bundles on G. Formula (3.2) may be stated in terms of line bundles. For this
goal, let us first recall from [SGA] the relationships among line bundles, bitorsors and
extensions.

Recall that a central extension of the groupG by Gm:

0→ Gm → E → G→ 0

(E being a group) determines a bitorsor over
(
(Gm)G, (Gm)G

)
, which will be denoted

by E again.

Moreover, given two bitorsorsE andE ′, one defines their product byE Gm× E ′, which
is the quotient ofE × E ′ by the action ofGm:

Gm ×
(E × E ′) → E × E ′,
(g, (e, e′)) �→ (e · g, g · e′)

(where the dot denotes the actions onE andE ′).
From [SGA] §1.3.4 we know that the group law ofE induces a canonical isomor-

phism:

p∗1E Gm× p∗2E ∼→ m∗E (3.3)

of
(
(Gm)G×G, (Gm)G×G

)
-bitorsors (wherepi : G×G→ G is the projection in theith

component andm the group law ofG).
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Conversely, a bitorsorE satisfying (3.3) and an associative type property (see [SGA]
for the precise statement) determines an extension ofG.

Observe that one can associate a line bundle to such an extension. Given:

0→ Gm → E → G→ 0

consider the line bundle:

L := E Gm× A
1
k,

whereE is interpreted as a principal fiber bundle of groupGm andGm acts onA1
k by the

trivial character and onE via the inclusionGm ⊂ E . Further, the structure ofE implies
that there exists a canonical isomorphism:

p∗1L⊗ p∗2L ∼→ m∗L. (3.4)

One proves that the product of bitorsors corresponds to the tensor product of line
bundles; that is, for two extensionsE andE ′ there exists a canonical isomorphism:

L
EGm× E ′

∼→ LE ⊗ LE ′ .

Conversely, ifL is a line bundle satisfying (3.4) and an associative type property,
then the principal fibre bundle Isom(OG,L) is a principal fibre bundle of groupGm
which can be endowed with the structure of central extension such that the associated
line bundle isL.

Definition 3.8. The invertible sheaf on G associated with G̃β will be denoted by �β .

4. Main Results

4.1. Modular properties of the τ -function. Let us fix a pointX ∈ Gr(V ) and a non-
negative integerβ. From Theorem 2.2 we know that there existsLβ , a line bundle over
G, such that:

µβ
∗
•p

∗
2 DetV � p∗2 DetV ⊗p∗1Lβ, (4.1)

where
G×Gr(V )

µβ−→ G×Gr(V )
p2→ Gr(V ).

Then, restricting toG×X and looking at sections we have:

 +(µβ(g)(X)) = lβ(g) · +(X)
for a certain sectionlβ(g) of Lβ (we assume here that +(X) $= 0, so that it generates
(Det∗V )X).

The above identity is the cornerstone of the modular properties of theτ -functions.
However, let us give a more precise statement. Assume that the orbit ofX under< (con-
sisting of an invertible Laurent series acting by multiplication, see [AMP]) is contained
in FV+ . Note, further, thatLβ may be trivialized. Then, with the above premises, the
following theorem holds:

Theorem 4.1.There exists a function l̄β (g) on G, such that

τµβ(g)(X) = l̄β (g) · τX.
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To finish this section let us offer a few hints on the explicit computation oflβ . The
previous statement is to be understood as an equality ofS-valued functions (for a fixed
k-schemeS andg ∈ G(S)).

However, in order to describe this isomorphism explicitly it suffices to deal with the
case of the universal automorphism,g, corresponding to the identity point ofG(G).
Note that the following relation holds:

µβ(g) = g′ ◦ µβ−1(g)

(whereg′ acts as a homothety) and observe that the proof of Theorem 2.2 implies that
the existence of canonical isomorphisms:

µβ(g)∗•p∗2 DetV � µβ−1(g)∗•p∗2 DetV ⊗p∗1(N), β ≥ 1,

µ0(g)∗•p∗2 DetV � p∗2 DetV ⊗p∗1(M),

where

• M = (∧V̂ +G /g(ÂG))⊗ (∧V̂ +G /ÂG)∗,
• N = (∧V̂ +G /g′ · ÂG)⊗ (∧V̂ +G /ÂG)∗,
(A ∈ B is locally chosen such thatA ⊂ V +, g′ · ÂG ⊂ V̂ +G andg(ÂG) ⊂ V̂ +G ). Thus,
we obtain:

L∗β = M ⊗Nβ (4.2)

and the computation of̄lβ(g) := lβ(g)/ lβ(1) (g ∈ G(S)) is now straightforward.

Remark 3. The above theorem can be interpreted as the formal version of Theorems 5.10
and 5.11 of [KNTY].

4.2. Central extensions ofG and Lie(G). Along the rest of this section it will be assumed
thatk = C. Nevertheless, some results remain valid for char(k) = 0. (We refer the reader
toAppendix B for notations and the main results on Lie theory for formal group schemes).

Theorem 4.2.The functor Lie induces an injective group homomorphism:

Ext1(G,Gm) ↪→ Ext1(Lie(G), Ĝa).

Proof. Here Ext1(G,Gm) denotes the group of equivalence classes of central extensions
of G by Gm as formal groups, and Ext1(Lie(G), Ĝa) denotes the group of equivalence
classes of central extensions of Lie algebras.

Given an extension ofG, G̃, the restriction of the group functorsGm, G̃ andG to the
categoryCa (Ĝm, ̂̃G andĜ respectively) gives rise to a class in Ext1(Ĝ, Ĝm). Observe
that this map is injective. Recalling thatLie(G) = Lie(Ĝ), Ĝa � Ĝm and Theorem B.4,
one concludes. ��
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4.3. Some canonical isomorphisms.

Theorem 4.3.
Lβ � �β.

Proof. Observe that Eq. (4.1) implies that:

p∗1Lβ � Isom
(
µβ

∗
•p

∗
2 DetV , p

∗
2 DetV

)
,

and henceLβ is the line bundle associated with the central extensionG̃β . ��
Theorem 4.4.There are canonical isomorphisms:

m∗�β
∼→ p∗1�β ⊗ p∗2�β ∀β ∈ Z.

Proof. This is a consequence of Subsect. 3.6.

Theorem 4.5 (Local Mumford formula). There exist canonical isomorphisms of invert-
ible sheaves:

�β
∼→ �

⊗(1−6β+6β2)
1 ∀β ∈ Z.

Proof. This is a consequence of Theorem 4.2 and formula (3.2).��
Remark 4. This theorem is a local version of Mumford’s formula. The next subsection
will throw some light on the relation between this formula and the original global one. It
is worth pointing out that the calculations performed in Subsect. 4.1 throw light on the
explicit expression of the above isomorphism. This can be done with procedures similar
to those of [BM].

Corollary 4.6. Let H be the subgroup of G consisting of series
∑
i≥0 aiz

i , where a0 is
nilpotent and a1 = 1.

There is a canonical isomorphism:

(L2|H )⊗12 � OH
(see [Se] §6 for explicit formulae).

4.4. Orbits of G: Relation with the moduli space of curves. Recall from [MP] the defi-
nition (which follows the ideas of [KNTY,Ue]):

Definition 4.7. Set a k-scheme S. Define the functor M̃∞
g over the category of k-schemes

by:
S � M̃∞

g (S) = {families (C,D, z) over S},
where these families satisfy:

1. π : C → S is a proper flat morphism, whose geometric fibres are integral curves of
arithmetic genus g,

2. σ : S → C is a section of π , such that when considered as a Cartier divisor D over
C it is smooth, of relative degree 1, and flat over S. (We understand that D ⊂ C is
smooth over S, iff for every closed point x ∈ D there exists an open neighborhood U
of x in C such that the morphism U → S is smooth.)
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3. φ is an isomorphism of OS-algebras:

ÂC,D
∼→ OS((z)).

On the setM̃∞
g (S) one can define an equivalence relation,∼: (C,D, z) and

(C′,D′, z′) are said to be equivalent, if there exists an isomorphismC → C′ (over
S) such that the first family goes to the second under the induced morphisms. Let us
define the moduli functor of pointed curves of genusg, M∞

g , as the sheafication of

M̃∞
g (S)/∼. We know from Theorem 6.5 of [MP] that it is representable by ak-scheme

M∞
g . The following theorems are now standard results:

Theorem 4.8.Let g, β be two non-negative integer numbers. The “Krichever morphis-
m”:

Kβ : M∞
g −→ Gr(k((t))(dt)⊗β),

(C, p, z) �−→ H 0(C − p,ω⊗βC )

is injective in a (formal) neighborhood of every geometric point. The image will be
denoted by M∞

g,β .

Theorem 4.9.The action µβ of G on Gr(V ) induces an action M∞
g,β .

Proof. Recall thatG(R) = AutR−alg R((t)) and that the points ofM∞
g (R) are certain

sub-R-algebras ofR((t)) (R being a commutative ring with identity). We thus have that
the Krichever morphism is equivariant with respect to the canonical action ofG onM∞

g

andµ0 on Gr(V ). This implies theβ = 0 case. The claim is now a straightforward
generalization. ��

In order to study the deformations of a given datum, more definitions are needed.
First, letM′

g be the subscheme ofM∞
g defined by the same conditions as in Definition

4.7 except that the third one is replaced by:

• z is a formal trivialization ofC alongD; that is, a family of epimorphisms of rings:

OC −→ σ∗
(OS[t]/tmOS[t]

)
m ∈ N

compatible with respect to the canonical projections

OS[t]/tmOS[t] → OS[t]/tm′ OS[t]
(for m ≥ m′), and such that that corresponding tom = 1 equalsσ .

Analogously, we introduce the moduli space of pointed curves with ann-order trivial-
ization,Mn

g (n ≥ 1), as thek-scheme representing the sheafication of the following
functor over the category ofk-schemes:

S � { families(C,D, z) overS }/ ∼,
where these families satisfy the same conditions except for the third which is replaced
by:

• z is an-order trivialization ofC alongD; that is, an isomorphism:

OC/OC(−nD) −→ σ∗
(OS[t]/tnOS[t]) .
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The canonical projectionsM∞
g → Mn

g will be denoted bypn. Observe that the
natural projectionsMm

g → Mn
g (m > n) render{Mn

g|n ≥ 0} an inverse system and
thatM′

g is its inverse limit. In particular, we have:

M′
g = lim←−

n

Mn
g

The deformation functor of a rational pointX of M∞
g ,DX, is the following functor

overCa (local rational and artiniank-algebras):

A �M∞
g (A) ×

M∞
g (k)

{X}.

Similarly, defineD′X (resp.DnXn ), the deformation functor ofX (resp.Xn := pn(X)) in
M′

g (resp.Mn
g). Since all theM’s are schemes, the corresponding deformation functors

are representable by the completion of the local rings.

Lemma 4.10.LetX ∈ M′
g(k) be a triplet (C, p, z) with C smooth. Then, the following

sequence:

0→ H 0(C − p,TC) → k((t))∂t → lim←−
n

H 1(C,TC(−np))→ 0

(where TC is the tangent sheaf on C) is exact.

Proof. Letm, n be two positive integers. Let us consider the exact sequence:

0→ OC(−np)→ OC(mp)→ OC(mp)/OC(−np)→ 0

Sincez is a formal trivialization andp is smooth, it induces an isomorphism

OC(mp)/OC(−np) ∼→ t−mk[[t]]/tnk[[t]].

Twisting the sequence withTC and taking cohomology one obtains:

0→ H 0(TC(−np))→ H 0(TC(mp))→ t−mk[[t]]∂t/tnk[[t]]∂t →
→ H 1(TC(−np))→ H 1(TC(mp))→ 0

sinceOp ⊗OC
TC �< ∂t >. Taking direct limit onm and inverse limit onn, the result

follows. ��
Theorem 4.11.Let k be a field of characteristic 0. Fix a rational point X ∈ M∞

g (k)

corresponding to a smooth curve.
The morphism of functors:

Ĝ −→ DX

induced by Theorem 4.9 is surjective.
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Proof. Let OX be the local ring ofM∞
g atX. The statement is equivalent to showing

the surjectivity of the induced maps:

Ĝ(A)→ DX(A) = Spf(ÔX)(A)

for all A ∈ Ca . Now, Lemma A.2 reduces the problem to the caseA = k[ε]/ε2:

π : Ĝ(k[ε]/ε2)→ TXM∞
g

(whereT denotes the tangent space).
Observe that givenX there exists an elementg ∈ Ĝ such that the transform ofX

underg,Xg, belongs toM′
g. Then, the proof is equivalent to showing that:

TXgM′
g ⊆ Im π.

From Lemma 4.10, it follows that the action of̂G(k[ε]/ε2) = k((t))∂t = Lie(G)
onk((t)) and that of Der(H 0(C − p,OC)) = H 0(C − p,TC) onH 0(C − p,OC) are
compatible; further, the isotropy ofX underk((t))∂t is preciselyH 0(C − p,TC). One
can now check that the above sequence induces a map:

lim←−
n

H 1(C,TC(−np)) ↪→ TXM∞
g

whose image is naturally identified withTXgM′
g = lim←−

n

TXnMn
g via the Kodaira–

Spencer isomorphism. And the theorem follows.��
Remark 5. Let us now compare Theorem 4.5 and the standard Mumford formula. Let
Mg denote the moduli space of genusg curves,πg : Cg → Mg the universal curve,
andω the relative dualizing sheaf. Let us consider the family of invertible sheaves:

λβ := Det(R•πg,∗ω⊗β) β ∈ Z.

Let p : M∞
g → Mg be the canonical projection. Then, it holds that:

K∗
βDetV

∼→ p∗λβ.

Furthermore, choose a rational pointX ∈ M∞
g and letpβ be the composite:

Ĝ → D
β
X → Mg.

Then, it holds that there exist isomorphisms:

�β
∼→ p∗βλβ.

The compatibility of these isomorphisms with those of the Mumford formula,λβ
∼→

λ
⊗(1−6β+6β2)
1 , should follow from the proof Theorem 4.5 and the computations of [BM,

BS].
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5. Application to a Non-Perturbative Approach to Bosonic Strings

Two standard approaches to Conformal Field Theories are based on moduli spaces of
Riemann Surfaces (with additional structure) and on the representation theory of the
Virasoro algebra, respectively. It is thus natural to attempt to “unify” both interpretations
(e.g. [KNTY]).

In our setting, Subsects. 3.4 and 4.4 unveil the important role of the groupG in both
approaches. Motivated by this fact and by the suggestions of [BR] and [Mo], we propose
G as a “universal moduli space” which will allow a formulation of a non-perturbative
string theory. Let us remark that in the formal geometric setting developed in [MP], the
groupG is the moduli space of formal curves.

Let us sketch how this construction should be carried out, although details and proofs
will be given in a forthcoming paper.

Let us consider the vector spaceVd = C
d ⊗C C((t)). The natural representation,µ1,

ofG onV1 induces a representation ofG onVd , given byµ1⊕ d. . .⊕µ1. Following the
procedure given in Sect. 3, it is easily proved that this representation yields an action,ρd ,
ofGon the Grassmannian Gr(Vd)preserving the determinant bundle. The corresponding
central extension determines a line bundleLρd onG with a bitorsor structure.

In order to clarify the physical meaning of this higher dimensional picture, it is worth
pointing out that the Fock space corresponding to string theory in the space-timeR

2d−1,1

is naturally interpreted as a subspace ofH 0(Gr(Vd),Det∗), the space of global sections
of the dual of the determinant bundle. Moreover, the actions of the Virasoro algebra on
the Fock space and that ofLie(G) onH 0(Gr(Vd),Det∗) are compatible.

The calculations in Sect. 5 of [BR] can now be restated in the following form: there
exists a canonical isomorphism of invertible sheaves:

Lρd
∼→ �⊗d1 .

This isomorphism, together with the Local Mumford Formula (Theorem 4.5), implies
thatLρd and�2 are isomorphic if and only ifd = 13 (complex dimension).

Observe that the group schemeG carries a filtration{Gn|n ≥ 0}, where

Gn(R) := {φ ∈ G(R)|φ(t) =
∑
i≥−m

ait
i with m ≤ n}.

The restriction homomorphisms:

j∗n : H 0(G,�β)→ H 0(Gn,�β |Gn)
associated with the inclusionsjn : Gn ↪→ G give

j∗ : H 0(G,�β)→ lim←−
n

H 0(Gn,�β |Gn).

LetX be a rational point ofM∞
g . The action ofG onX induces:

φng : Gn −→ M∞
g

which takes values in the deformation functor ofX,DX. Moreover,Gn → DX happens
to be surjective for alln ≥ 3g − 3 (see Theorem 4.11). Denote byFg ∈ H 0(G3g−3,

�2|G3g−3) the inverse image byφ3g−3
g of the section ofλ2 corresponding to the partition
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function of genusg. Then, there exists a global sectionF ∈ H 0(G,�2) such thatj∗(F )
is precisely{Fg}.

The relationship between hermitian forms on the canonical sheaf of a complex man-
ifold and holomorphic measures on them is well known. The generalization of this
relation to infinite-dimensional manifolds would allow us to give a genus-independent
Polyakov measure onG constructed in terms of the above introducedF .

Appendix

A. Deformation Theory

Let us recall some notations and give some results on deformation theory as exposed in
[Sc].

Let Ca be the category of local rational Artink-algebras. An admissible linearly
topologizedk-algebraO (see [EGA] §7) canonically defines a functor fromCa to the
category of sets:

A � hO(A) := Homcont(O, A)
(whereA is endowed with the discrete topology). Observe thathO(A) = Homk-alg(O, A)
for a discretek-algebraO.

The condition thathO consists of only one point is equivalent to saying thatO is
local and rational.

The definition below is that given in [Sc] 2.2, which generalizes the concept of “formal
smoothness” of [Ma].

Definition A.1. A functor homomorphism F → G is smooth iff the morphism:

F(B) → F(A)×G(A) G(B)
is surjective for every surjection B → A in Ca .

Remark 6. The following remarks merit attention:

• if F → G is smooth, thenF(A)→ G(A) is surjective for allA in Ca ([Sc, (2.4)],
• hO → hO′ is smooth iffO is a series power ring overO′ ([Sc] 2.5),
• hO is said to be smooth iff the canonical morphismhO → hk is smooth.

The tangent space to a functor overCa , F , is defined by

tF := F(k[ε]/ε2).

Recall Lemma 2.10 of [Sc]: if it holds that

F(k[V ⊕W ]) � F(k[V ])× F(k[W ])
for arbitrary vector spacesV,W (wherek[V ] is the ringk ⊕ V with V 2 = 0), then
F(k[V ]) (and in particulartF ) has a canonical vector space structure such thatF(k[V ]) �
tF ⊗ V . Observe that the functorhO satisfies the above condition for allO.

Lemma A.2. Let φ : F := hOF
→ G := hOG

and F → hk be two morphisms of
functors over Ca such that:

• F → hk is smooth,
• the sets F(k) and G(k) consist of one element,
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• tF := F(k[ε]/ε2)→ tG := G(k[ε]/ε2) is surjective,

then F → G is smooth (and hence surjective).

Proof. First, we claim thatF(k[V ])→ G(k[V ]) is surjective for everyk-vector space
V (k[V ] denotes the ringk ⊕ V in whichV 2 = 0). SinceF(k[V ⊕W ]) � F(k[V ])×
F(k[W ])andG(k[V⊕W ]) � G(k[V ])×G(k[W ]) for vector spacesV,W , Lemma 2.10
of [Sc] holds, and hence there are canonical vector space structures onF(k[V ]) and
G(k[V ]) such that they are isomorphic totF ⊗ V and tG ⊗ V (in a functorial way)
respectively. SincetF → tG is surjective by hypothesis, the claim follows.

Let A be an object ofCa andI ⊂ A an ideal such thatI2 = 0. Then, one has a
commutative diagram:

F(A)
φA−−−−→ G(A)

ρF

� ρG

�
F(A/I)

φI−−−−→ G(A/I)

,

where we can assume by induction over dimk A thatφI is surjective (sincetF → tG is
surjective).

Let(f, g) be an element ofF(A/I)×G(A) such thatφI (f ) = ρG(g). SinceF → hk
is smooth andO is local it follows thatρF is a surjection. Letf̄ ∈ F(A) be a preimage
of f . Then the images ofφA(f̄ ) andg underρG coincide; both of them areφI (f ). Note
thatρ−1

G (φI (f )) is an affine space modeled over Derk(OG, I); or what amounts to the
same:

g − φn(f̄ ) ∈ Derk(OG, I).
Observe that the bottom arrow of the following commutative diagram:

Derk(OF , I ) −−−−→ Derk(OG, I)
�
� �

�
F(k[I ]) −−−−→ G(k[I ])

is surjective. LetD ∈ F(k[I ]) be a preimage ofg − φn(f̄ ).
It is now easy to verify that̄f+D is a preimage of(f, g)under the induced morphism:

F(A) −→ F(A/I)×G(A),
and the statement follows.��

B. Lie Theory

This appendix aims at generalizing some results of Lie Theory for the case of (infinite)
formal groups. To this end, we recall some more results of [Sc] and proceed with ideas
quite close to those of [Ha, §14].

Definition B.1. A functor F from Ca to the category of groups will be called a group
functor. If, moreover, there exists a k-algebra O and an isomorphism F � hO, then F
will be called a formal group functor.
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Let Cgr andCfor gr denote the categories of group functors and formal group functors
overCa , respectively. LetC0

for gr denote the full subcategory ofCfor gr consisting of those
F such thatF(k) has only one element andF is smooth.

Remark 7.

• Let F be a formal group functor overCa . Then, the “tangent space at the neutrum”:

Lie(F ) := F(k[ε]/ε2)×F(k) {1}
(which coincides withtF ) is a Lie algebra where the Lie bracket is induced by the
product ofF .

• Finally, for a formal group functor and a morphismA → A/I with I2 = 0 one has
the following exact sequence of groups:

0→ F(k[I ])→ F(A)→ F(A/I)→ 0.

Lemma B.2.Let char(k) = 0. Let F and G be two formal group functors. Assume that
F is smooth and that F(k) = {e} (one point). Then, the canonical map:

Homgr(F,G)→ Homvect. sp.(tF , tG)

is injective.

Proof. LetA be an object ofCa andm ⊂ A its maximal ideal andn such thatmn+1 = 0.
Letφ,ψ be in Homgr(F,G) such that the induced vector space homomorphismsφ∗, ψ∗
from tF to tG coincide. One has to prove thatφ = ψ .

Let us first deal with the casen = 1. By Lemma 2.10 of [Sc], there exist functorial
isomorphismsF(A) � tF ⊗m andG(A) � tG ⊗m (m as ak-vector space). It is now
clear that both,φ andψ , give the same morphismF(A)→ G(A).

Now assumen ≥ 2. Using the Nakayama Lemma one obtains a surjection:

Ar,n := k[x1, . . . , xr ]/(xn+1
1 , . . . , xn+1

r )→ A,

and hence a commutative diagram:

F(Ar,n) −−−−→ F(A)

φ

� φ

�
G(Ar,n) −−−−→ G(A)

and similarly forψ . Observe that the top row is surjective sinceF is smooth andAr,n →
A is surjective. Therefore, it suffices to prove the statement forAr,n.

Note that the injectionAr,n ↪→ Ar·n,1 (char(k) = 0):

k[{xi |1≤ i ≤ r}]/(xn+1
i )→ k[{xij |1≤ i ≤ r,1≤ j ≤ n}]/(x2

ij )

xi �−→ xi1 + . . .+ xin
induces two commutative diagrams (forφ andψ):

0 −−−−→ F(Ar,n) −−−−→ F(Ar·n,1)� �
0 −−−−→ G(Ar,n) −−−−→ G(Ar·n,1)

.
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It is then enough to check the case ofAr,1. Let us proceed by induction onr. The case
r = 1 follows directly from the hypotheses.

We claim that the the following diagram is commutative:

0 −−−−→ F(k[ker(p)]) −−−−→ F(Ar,1)
pF−−−−→ F(Ar−1,1) −−−−→ 0

φp

� φr

� φr−1

�
0 −−−−→ G(k[ker(p)]) −−−−→ G(Ar,1)

pG−−−−→ G(Ar−1,1) −−−−→ 0

(and analogously forψ). The morphismspF andpG are surjective since they have
sections, because the natural inclusionAr−1,1 ↪→ Ar,1 is a section of the projection:

p : Ar,1 → Ar−1,1,

xr �→ 0.

Bearing in mind that(kerp)2 = 0, the claim follows.
The first case, which we have already proved (the square of the maximal ideal is(0)),

implies that theφp = ψp. The induction’s hypothesis implies thatφr−1 = ψr−1.
Now, recalling that both sequences split, one concludes thatφr = ψr as desired. ��
Let us now relate the study of group functors with that of Lie algebras. LetCLie

denotes the category of Liek-algebras. Then, there is a functor:

Lie : Cfor gr −→ CLie,

F �−→ Lie(F ) = tF .

For a Liek-algebraL define a functor onCa :
A � L(A) := L⊗k mA

(the Lie bracket ofL(A) is that ofL extended byA-linearity).
LetCH(x, y)denote the Campbell-Hausdorff series (see, for instance, [Ha] 14.4.15):

CH(x, y) = x + y + 1

2
[x, y] + 1

12
[x, [x, y]] + 1

12
[y, [y, x]] + . . . (B.1)

then the map:

L(A)× L(A)→ L(A)

(x, y) �−→ CH(x, y)

(note thatCH(x, y) is a finite sum sinceA is artinian) endowsL(A) with a group
structure ([Ha] 14.4.13-16). Let us denote this group functor byLg. MoreoverLg → hk
is smooth andLg(k) consists of one point. Finally, sinceCH(x, y) only depends on
additions of iterated Lie brackets one has that every morphism of Lie algebrasL1 → L2
induces a morphism of group functorsL

g
1 → L

g
2. In other words, there is a functor:

G : CLie −→ Cgr

L �−→ Lg

such thatLie◦G = Id.
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Example 1. It is now easy to prove that finite dimensional Lie algebras are the Lie
algebras of formal groups. Indeed, letL∗ be the dual vector space of a given Lie algebra
L. Then, it holds that:

Homcont(O, A) = L⊗k mA,

whereO := Ŝ•L∗ is the completion of the symmetric algebra,S•L∗, with respect to the
maximal ideal generated byL∗.

It is now straightforward to see thatLg = hO and that

Lie(hO) = (mO/m2
O)

∗ = L.

Lemma B.3.Let F be an object of C0
for gr. The functor homomorphism (which will be

called exponential) defined by:

tF → F

D �→ exp(D) :=
∑
i≥0

1

i!D
i

yields an isomorphism t
g
F � F .

Proof. Note that the sum is finite sinceD ∈ tF (A) = tF ⊗ mA (for A ∈ Ca) is of the
typeD = ∑

j mjDj (wheremj ∈ mA andDj ∈ tF ) and henceDi has coefficients in

m
j
A. By the above construction, the exponential is a group homomorphism since it holds

that ([Ha] 14.14):
exp(D) · exp(D′) = exp(CH(D,D′)).

In the same way that the exponential map has been defined a logarithm can also be
introduced. Now the conclusion follows trivially.��

From all these results one has the main theorem of this appendix which is a version
for (certain) non-commutative group functors of the standard Lie Third Theorem.

Theorem B.4.The functor Lie renders C0
for gr a full subcategory of CLie.

Proof. This follows from the following two facts:

• if F,G ∈ Cgr have isomorphic Lie algebrastF � tG, then they are isomorphic. (Recall
that there are group isomorphismst

g
F � F andt

g
G � G).

• HomCgr(F,G) � HomCLie(tF , tG) (Lemma B.2 proves the injectivity and the equality
Lie◦G = Id the surjectivity).
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