Commun. Math. Phys. 217, 127 — 163 (2001) Communications in

Mathematical
Physics

Ground State Energy of the One-Component Char ged
Bose Gas*

Elliott H. Lieb®**, Jan Philip Solovej2 **

1 Departments of Physics and Mathematics, Jadwin Hall, Princeton University, PO Box 708, Princeton,
NJ 08544-0708, USA. E-mail: lieb@princeton.edu

2 Department of Mathematics, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
E-mail: solovej@math.ku.dk

Received: 23 August 2000 / Accepted: 5 October 2000

Dedicated to Ledlie L. Foldy on the occasion of his 80th birthday

Abstract: The model considered here is the “jellium” model in which there is a uniform,
fixed background with charge densityep in a large volumé/ and in whichN = pV
particles of electric chargee and mass: move — the whole system being neutral. In
1961 Foldy used Bogolubov’s 1947 method to investigate the ground state energy of this
system for bosonic particles in the largdimit. He found that the energy per particle

is —0.402r; ¥ *me /A2 in this limit, wherer, = (3/4np)Y/3¢2m /h2. Here we prove

that this formula is correct, thereby validating, for the first time, at least one aspect of
Bogolubov's pairing theory of the Bose gas.

1. Introduction

Bogolubov's 1947 pairing theory [B] for a Bose fluid was used by Foldy [F] in 1961 to
calculate the ground state energy of the one-component plasma (also known as “jellium”)
in the high density regime — which is the regime where the Bogolubov method was
thought to be exact for this problem. Foldy’s result will be verified rigorously in this
paper; to our knowledge, this is the first example of such a verification of Bogolubov’s
theory in a three-dimensional system of bosonic particles.

Bogolubov proposed his approximate theory of the Bose fluid [B] in an attempt to
explain the properties of liquid Helium. His main contribution was the concept of pairing
of particles with momentaand—k; these pairs are supposed to be the basic constituents
of the ground state (apart from the macroscopic fraction of particles in the “condensate”,
ork = O state) and they are the basic unit of the elementary excitations of the system. The
pairing concept was later generalized to fermions, in which case the pairing was between
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particles having opposite momenta and, at the same time, opposite spin. Unfortunately,
this appealing concept about the boson ground state has neither been verified rigorously
in a 3-dimensional example, nor has it been conclusively verified experimentally (but
pairing has been verified experimentally for superconducing electrons).

The simplest question that can be asked is the correctness of the prediction for the
ground state energy (GSE). This, of course, can only be exact in a certain limit — the
“weak coupling” limit. In the case of the charged Bose gas, interacting via Coulomb
forces, this corresponds to thegh density limit. In gases with short range forces the
weak coupling limit corresponds to low density instead.

Our system hagv bosonic particles with unit positive charge and coordinatgs
and a uniformly negatively charged “background” in a large donsaiof volume V.

We are interested in the thermodynamic limit. A physical realization of this model is
supposed to be a uniform electron sea in a solid, which forms the background, while
the moveable “particles” are bosonic atomic nuclei. The particle number density is then
p = N/V and this number is also the charge density of the background, thus ensuring
charge neutrality.

The Hamiltonian of the one-component plasma is

N
1 2
H=521P1+Upp+Upb+Ubb, 1)
j=

wherep = —iV is the momentum operatgs? = —A, and the three potential energies,
particle-particle, particle-background and background-background, are given by

Upp = Z |x; _xj|_la (2)
1<i<j<N
N
Upp = —pi xj — ¥yl d%y, 3
j=17%
Upp = %pzf / lx — yI "t d®xady. (4)
QJQ

In our unitsh?/m = 1 and the charge is = 1. The “natural” energy unit we use is
two Rydbergs, Ry = me?/h?. Itis customary to introduce the dimensionless quantity
ry = (3/4mp)Y/3e¢?m /h2. High density is smalt,.

The Coulomb potential is infinitely long-ranged and great care has to be taken because
the finiteness of the energy per particle in the thermodynamic limit depends, ultimately,
on delicate cancellations. The existence of the thermodynamic limit for a system of
positive and negative particles, with the negative ones being fermions, was shown only
in 1972 [LLe] (for the free energy, but the same proof works for the ground state energy).
Oddly, the jellium case is technically a bit harder, and this was done in 1976 [LN] (for
both bosons and fermions). One conclusion from this work is that neutrality (in the
thermodynamic limit) will come about automatically — even if one does not assume it
— provided one allows any excess charge to escape to infinity. In other words, given the
background charge, the choice of a neutral number of particles has the lowest energy in
the thermodynamic limit. A second point, as shown in [LN], is gtk independent of
the shape of the domain provided the boundary is not too wild. For Coulomb systems
this is not trivial and for real magnetic systems it is not even generally true. We take
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advantsage of this liberty and assume that our domain is af@)ldg x [0, L] x [0, L]
with L° = V.

We note the well-known fact that the lowest energydah (1) without any restriction
about “statistics” (i.e., on the whole & L2(R3)) is the same as for bosons, i.e., on the
symmetric subspace & L2(R3). The fact that bosons have the lowest energy comes
from the Perron—Frobenius Theorem applied-ta.

Foldy’s calculation leads to the following theorem about the asymptotics of the energy
for smallry, which we call Foldy’s law.

Theorem 1.1 (Foldy's Law). Let Eg denote the ground state energy, i.e., the bottom of
the spectrum, of the Hamiltonian H acting in the Hilbert space ®" L2(R3). We assume
that @ = [0, L] x [0, L] x [0, L]. The ground state energy per particle, eg = Eg/N ,
in the thermodynamic limit N, L — oo with N/ V = p fixed, in units of me* /72, is

lim Eo/N = eo = ~0.40154r, 34 4 o(pYH
—00

4\ V4 (5)
= _0_40154<?> oY+ oY,

where the number —0.40154is, in fact, the integral

1 o0 3441 (3/4)
A=—61/4/ 2pt+ 22— pt—1ldp = —=——"""" ~ _0.40154 (6
0 Jo (PPt +2¥2 — p* —1}ap 5/ ['(5/4) ©

Actually, our proof gives a result that is more general than Theorem 1.1. We allow
the particle numbeN to be totally arbitrary, i.e., we do not requitke= pV. Our lower
bound is still given by (5), where now refers to the background charge density.

In [F] 0.40154 is replaced by 0.80307 since the energy unit there is 1 Ry. The main
result of our paper is to prove (5) by obtaining a lower boundfgrthat agrees with
the right side of (5) An upper bound t6y that agrees with (5) (to leading order) was
given in 1962 by Girardeau [GM], using the variational method of himself and Arnowitt
[GA]. Therefore, to verify (5) to leading order it is only necessary to construct a rigorous
lower bound of this form and this will be done here. It has to be admitted, as explained
below, that the problem that Foldy and Girardeau treat is slightly different from ours
because of different boundary conditions and a concommitant different treatment of the
background. We regard this difference as a technicality that should be cleared up one
day, and do not hesitate to refer to the statement of 1.1 as a theorem.

Before giving our proof, let us remark on a few historical and conceptual points.
Some of the early history about the Bose gas, can be found in the lecture notes [L].

Bogolubov’s analysis starts by assuming periodic boundary condition on the big box
Q and writing everything in momentum (i.e., Fourier) space. The values of the momen-
tum, k are then discretek = (27 /L)(m1, m2, m3) with m; an integer. A convenient
tool for taking care of various! factors is to introduce second quantized operatﬁrs
(wherea” denotes: or a*), but it has to be understood that this is only a bookkeeping
device. Almost all authors worked in momentum space, but this is neither necessary
nor necessarily the most convenient representation (given that the calculations are not
rigorous). Indeed, Foldy’s result was reproduced by a calculation entiretysipace
[LS]. Periodic boundary conditions are not physical, but that was always chosen for
convenience in momentum space.

We shall instead let the particle move in the whole space, i.e., the opéfatots
in the Hilbert spacd.2(R3V), or rather, since we consider bosons, in the the subspace
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consisting of theN-fold fully symmetric tensor product af2(R3). The background
potential defined in (2) is however still localized in the cudeWe could also have
confined the patrticles t@ with Dirichlet boundary conditions. This would only raise
the ground state energy and thus, for the lower bound, our setup is more general.

There is, however, a technical point that has to be considered when dealing with
Coulomb forces. The background never appears in Foldy’'s calculation; he simply re-
moves thet = 0 mode from the Fourier transform,of the Coulomb potential (which
isv(k) = 4 |k|~2, but withk taking the discrete values mentioned above, so that we are
thus dealing with a “periodized” Coulomb potential). The- 0 elimination means that
we setv(0) = 0, and this amounts to a subtraction of the average value of the potential —
which is supposed to be a substitute for the effect of a neutralizing background. It does
not seem to be a trivial matter to prove that this is equivalent to having a background,
but it surely can be done. Since we do not wish to overload this paper, we leave this
demonstration to another day. In any case the answers agree (in the sense that our rigor-
ous lower bound agrees with Foldy’s answer), as we prove here. If one accepts the idea
that settingy(0) = 0 is equivalent to having a neutralizing background, then the ground
state energy problem is finished because Girardeau shows [GM] that Foldy’s result is a
true upper bound within the context of théd) = 0 problem.

The potential energy is quartic in the operatofs In Bogolubov’s analysis only

terms in which there are four or twg operators are retained. The operatpcreates,
andag destroys particles with momentum 0 and such particles are the constituents of
the “condensate”. In general there are no terms with thg&merators (by momentum

conservation) and in Foldy’s case there is also no&émerm (because of the subtraction
just mentioned).

For the usual short range potential thereis a ﬁgwerm and this is supposed to give
the leading term in the energy, namely = 4rpa, wherea is the “scattering length”
of the two-body potential. Contrary to what would seem reasonable, this number, 4
is not the coefficient of the fouao# term, and to to prove that#pa is, indeed, correct
took some time. It was done in 1998 [LY] and the method employed in [LY] will play an
essential role here. But it is important to be clear about the fact that theffpor ‘mean
field” term is absent in the jellium case by virtue of charge neutrality. The leading term
in this case presumably comes from the wgderms, and this is what we have to prove.
For the short range case, on the other hand, it is already difficult enough to obtain the
4 pa energy that going beyond this to the twg)terms is beyond the reach of rigorous
analysis at the moment.

The Bogolubov ansatz presupposes the existence of Bose—Einstein condensation
(BEC). That is, most of the particles are in the- 0 mode and the few that are not come
in pairs with momenta and—k. Two things must be said about this. One is that the only
case (known to us) in which one can verify the correctness of the Bogolubov picture at
weak coupling is thene-dimensional delta-function gas [LLi] — in which case there is
presumablyno BEC (because of the low dimensionality). Nevertheless the Bogolubov
picture remains correct at low density and the explanation of this seeming contradiction
lies in the fact that BEC is not needed; what is really needed is a kind of condensation on
a length scale that is long compared to relevant parameters, but which is fixed and need
not be as large as the box lendthThis was realized in [LY] and the main idea there was
to decompos& into fixed-size boxes of appropriate length and use Neumann boundary
conditions on these boxes (which can only lower the energy, and which is fine since we
want a lower bound). We shall make a similar decomposition here, but, unlike the case
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in [LY] where the potential is purely repulsive, we must deal here with the Coulomb
potential and work hard to achieve the necessary cancellation.

The only case in which BEC has been proved to exist is in the hard core lattice gas
at half-filling (equivalent to the spin-1/2Y model) [KLS].

Weak coupling is sometimes said to be a “perturbation theory” regime, but this is not
really so. In the one-dimensional case [LLi] the asymptotics pear O is extremely
difficult to deduce from the exact solution because the “perturbation” is singular. Nev-
ertheless, the Bogolubov calculation gives it effortlessly, and this remains a mystery.

One way to get an excessively negative lower bounepttor jellium is to ignore
the kinetic energy. One can then show easily (by an argument due to Onsager) that the
potential energy alone is bounded belowdgy~ —p1/3. See [LN]. Thus, our goal is
to show that the kinetic energy raises the energy-td/4. This was done, in fact, in
[CLY], but without achieving the correct coefficierD.803(4x/3)1/4. Oddly, the—p1/4
law was proved in [CLY] by first showing that th®n-thermodynamic N 7/° law for a
two-component bosonic plasma, as conjectured by Dyson [D], is correct.

The [CLY] paper contains an important innovation that will play a key role here.
There, too, it was necessary to decomp@sénto boxes, but a way had to be found to
eliminate the Coulomb interactidretween different boxes. This was accomplished by
not fixing the location of the boxes but rather averaging over all possible locations of the
boxes. This “sliding localization” will play a key role here, too. This idea was expanded
upon in [GG]. Thus, we shall have to consider only one finite box with the particles and
the background charge in it independent of the rest of the system. However, a price will
have to be paid for this luxury, namely it will not be entirely obvious that the number
of particles we want to place in each box is the same for all boxespt®. wheret
is the length of box. Local neutrality, in other words, cannot be taken for granted. The
analogous problem in [LY] is easier because no attractive potentials are present there.
We solve this problem by choosing the numberin each box to be the number that
gives the lowest energy in the box. This turns out to be cloge40,¢3, as we show
and as we know from [LN] must be the casefas co.

Finally, let us remark on one bit of dimensional analysis that the reader should keep in
mind. One should not conclude from (5) that a typical particle has enéf§yand hence
momentump’/8 or de Broglie wavelength—1/8. This isnot the correct picture. Rather,

a glance at the Bogolubov-Foldy calculation shows that the momenta of importance
are of orderp—%/4, and the seeming paradox is resolved by noting that the number of
excited particles (i.e., those not in the= 0 condensate) is of ordéfp /4. This means

that we can, hopefully, localize particles to lengths as smapdg*+<, and cut off

the Coulomb potential at similar lengths, without damage, provided we do not disturb
the condensate particles. It is this clear separation of scales that enables our asymptotic
analysis to succeed.

2. Outline of the Proof

The proof of our Main Theorem 1.1 is rather complicated and somewhat hard to penetrate,
so we present the following outline to guide the reader.

2.1. Section 3. Here we localize the system whose sizd.ignto small boxes of size
£ independent of., but dependent on the intensive quantityNeumann boundary
conditions for the Laplacian are used in order to ensure a lower bound to the energy. We
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always think of operators in terms of quadratic forms and the Neumann Laplacian in a
box Q is defined for all functions iy € L2(Q) by the quadratic form

(¥, —ANeumand/) = -/.Q |V1ﬂ(X)|2dx.

The lowest eigenfunction of the Neumann Laplacian is the constant function and this
plays the role of the condensate state. This state not only minimizes the, kinetic energy,
but it is also consistent with neutralizing the background and thereby minimizing the
Coulomb energy. The particles not in the condensate will be called “excited” particles.

To avoid localization errors we take>> p~1/4, which is the relevant scale as we
mentioned in the Introduction. The interaction among the boxes is controlled by using
the sliding method of [CLY]. The result is that we have to consider only interactions
among the particles and the background in each little box separately.

The N particles have to be distributed among the boxes in a way that minimizes the
total energy. We can therefore not assume that each box is neutral. Instead of dealing with
this distribution problem we do a simpler thing which is to choose the particle numberin
each little box so as to achieve the absolute minimum of the energy in that box. Since all
boxes are equivalent this means that we take a common xvasehe particle number
in each box. The total particle number whichnisimes the number of boxes will not
necessarily equaV, but this is of no consequence for a lower bound. We shall show
later, however, that it equality is nearly achieved, i.e., the the energy minimizing number
n in each box is close to the value needed for neutrality.

2.2. Section 4. 1t will be important for us to replace the Coulomb potential by a cutoff
Coulomb potential. There will be a short distance cutoff of the singularity at a distance
and a large distance cutoff of the tail at a distaR¢withr < R « £. One ofthe unusual
features of our proof is thatare R are not fixed once and for all, but are readjusted each
time new information is gained about the error bounds.

In fact, already in Sect. 4 we give a simple preliminary bound:dwy choosing
R ~ p~ Y3, which is much smaller than the relevant scaté/4, although the choice of
R that we shall use at the end of the proof is of course much largerthdf, but less
thant.

2.3. Section 5. There are several terms in the Hamiltonian. There is the kinetic energy,
which is non-zero only for the excited particles. The potential energy, which is a quartic
terminthe language of second quantization, has various terms according to the number of
times the constant function appears. Since we do not have periodic boundary conditions
we will not have the usual simplification caused by conservation of momentum, and the
potential energy will be correspondingly more complicated than the usual expression
found in textbooks.

In this section we give bounds on the different terms in the Hamiltonian and use these
to get a first control on the condensation, i.e., a control on the number of pafticlas
each little box that are not in the condensate state.

The difficult point is thati, is an operator that does not commute with the Hamilto-
nian and soitdoes not have a sharp value in the ground state. We give a simple preliminary
bound on its averag@ ) in the ground state by again choosiRg~ p~1/3. In order to
control the condensation to an appropriate accuracy we shall eventually need not only a
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bound on the averagé;. ), but also on the fluctuation, i.e, qﬁi>. This will be done
in Sect. 8 using a novel method developed in Appendix A for localizing off-diagonal
matrices.

2.4. Section 6. The part of the potential energy that is most important is the part that is
guadratic in the condensate operamﬁsamd quadratic in the excited variablﬁ%with

p # 0. This, together with the kinetic energy, which is also quadratic imﬁhés the

part of the Hamiltonian that leads to Foldy’s law. Although we have not yet managed to
eliminate the non-quadratic part up to this point we study the main “quadratic” part of
the Hamiltonian. It is in this section that we essentially do Foldy’s calculation.

It is not trivial to diagonalize the quadratic form and thereby reproduce Foldy’s
answer because there is no momentum conservation. In particular there is no simple
relation between the resolvent of the Neumann Laplacian and the Coulomb kernel. The
former is defined relative to the box and the latter is defined relative to the whole of
RR3. It is therefore necessary for us to localize the wavefunction in the little box away
from the boundary. On such functions the boundary condition is of no importance and
we can identify the kinetic energy with the Laplacian in all®i. This allows us to
have a simple relation between the Coulomb term and the kinetic energy term since the
Coulomb kernel is in fact the resolvent of the Laplacian in alRdf

When we cut off the wavefunction near the boundary we have to be very careful
because we must not cut off the part corresponding to the particles in the condensate. To
do so would give too large a localization energy. Rather, we cut off only functions with
sufficiently large kinetic energy so that the localization energy is relatively small com-
pared to the kinetic energy. The technical lemma needed for this is a double commutator
inequality given in Appendix B.

2.5. Section 7. At this point we have bounds available for the quadratic part (from
Sect. 6) and the annoying non-quadratic part (from Sect. 5) of the Hamiltonian. These
dependom, R, n, (n), and(ﬁi). We avail ourselves of the bounds previously obtained
forn and(n, ) and now use our freedom to choose different valuesémidR to bootstrap

to the desired bounds onand (. ), i.e., we prove that there is almost neutrality and
almost condensation in each little box.

2.6. Section 8. In order to control(ﬁi) we utilize, for the first time, the new method

for localizing large matrices given in Appendix A. This method allows us to restrict to
states with small fluctuations in, , and thereby boundﬁ), provided we know that the
terms that do not commute with, have suffciently small expectation values. We then
give bounds on these, “off-diagonal” terms. Unfortunately, these bounds are in terms
of positive quantities coming from the Coulomb repulsion, but for which we actually
do not have independent a-priori bounds. Normally, when proving a lower bound to
a Hamiltonian, we can sometimes control error terms by absorbing them into positive
terms in the Hamiltonian, which are then ignored. This may be done even when we do
not have an a-priori bound on these positive terms. If we want to use Theorem A.1 in
Appendix A, we will need an absolute bound on the “off-diagonal” terms and we can
therefore not use the technique of absorbing them into the positive terms. The decision
when to use the theorem in Appendix A or use the technique of absorption into positive
terms is resolved in Sect. 9.
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2.7. Section 9. Since we do not have an a-priori bound on the positive Coulomb terms
as described above we are faced with a dichotomy. If the positive terms are, indeed, so
large that enough terms can be controlled by them we do not need to use the localization
technique of Appendix A to finish the proof of Foldy’s law. The second possibility is
that the positive terms are bounded in which case we can use this fact to control the
terms that do commute wit, and this allows us to use the localization technique in
Appendix A to finish the proof of Foldy’s law. Thus, the actual magnitude of the positive
repulsion terms is unimportant for the derivation of Foldy’s law.

3. Reduction to a Small Box

As described in the previous sections we shall localize the problem into smaller cubes of
sizet¢ « L. We shall in fact chooséas a function op in such a way thap/4¢ — oo
asp — oo.

We shall localize the kinetic energy by using Neumann boundary conditions on the
smaller boxes.

We shall first, however, describe how we may control the electostatic interaction
between the smaller boxes using the sliding technique of [CLY].

Lets, with 0 < ¢ < 1/2, be a parameter which we shall choose later to depend on
in such away that — 0 asp — oo.

The choice off andr as functions ofo will be made at the end of Sect. 9 when we
complete the proof of Foldy’s law.

Let x € C°(R®) satisfy supp C [(—=1+1)/2,(1—1)/2]3,0<x <1,x(x) =1
for x in the smaller boX(—1+ 2r)/2, (1 — 2t)/2]3, andx (x) = x(—x). Assume that
all m-th order derivatives of are bounded by, ", where the constants,, depend
only onm and are, in particular, independentofet x ,(x) = x (x/¢). Letn = /1 — X.
We shall assume that is defined such that is alsoC*. Let n¢(x) = n(x/¢). Using x
we define the constaptby y =1 = [ x(y)?dy, and note that k y < (1 —2r)~3. We
also introduce the Yukawa potentigl(x) = |x|~te"*I for v > 0.

As a preliminary to the following Lemma 3.1 we quote Lemma 2.1 in [CLY].

Lemma. Let K : R® — R begiven by
K(Z) — r*l {efvr _ efwrh(z)}

withr = |z] andw > v > 0. Let h satisfy (i) # isa C* function of compact support; (ii)
h(z) = 1+ ar? + O(r®) near z = 0. Let h(z) = h(—z), sothat K has a real Fourier
transform. Then there is a constant, C3 (depending on %) such that if w — v > C3 then
K has a positive Fourier transform and, moreover,

1
Z eie;jK(xj —x;) > E(U —w)N
1<i<j<N
forall x1,...xy e R3andall ¢; = +1.

Lemma 3.1 (Electrostatic decoupling of boxes using sliding). There exists a function
of theformw(r) = Ct~* (we assume that w(r) > 1for t < 1/2) and a constant y with
1<y < (1-2r)~3suchthat if we set

wx, y) = Xe(X) Yoy e(x — ) Xe(y) (7)
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then the potential energy satisfies
Upp + Upp + Upp

=3 e 30w (W + (0

reZ3 1<i<j<N
nel—3.313 !

N
—pZ/Qw(xj+(u+x)£,y+(u+x)£) dy
j=1
w ()N

#3607 [[wecs s ney+ e o dray] - 205
QxQ

Proof. We calculate

> / dpyX(x + (4 D)o lx — NXG + (1 + 1)
MeTP e1_172,1/2]3

= / YXx + )Y (x — XY +2)dz=h(x —y)Yp(x —y),

where we have sét= y x x x. Note that:(0) = 1 and that satisfies all the assumptions
in Lemma 2.1 in [CLY]. We then conclude from Lemma 2.1 in [CLY] that the Fourier
transform of the functiorF (x) = |x|~1 — h(x)Yy, ) (x) is non-negative, where is a
function such thatv(t) — oo ast — 0. [The detailed bounds from [CLY] show that
we may in fact choose (r) = Ct~4, sincew(¢) has to control the 4th derivative bf]
Note, moreover, that lim.. o F(x) = w(¢). Hence

N
Fyi —y)) — F(yj—y)d
Y. FGi—y)) ’0;/[19 (vj = dy

1<i<j<N
No(t
ST | I CERDUEECS

-1Qxe-1Q

The lemma follows by writingx| =1 = F(x) + h(y)Y, ) (x) and by rescaling from
boxes of size 1 to boxes of siZze O

As explained above we shall choose the parametarsl¢ as functions of at the
very end of the proof. We shall choose them in such a wayrthat0 andp/4¢ — oo
asp — oo. Moreover, we will have conditions of the form

o T (pY*) - 0, andt’(pY*) —

asp — oo, wherer, v are universal constants.
Consider now the-particle Hamiltonian

n
Hiy==3) 8¢ +vWi (®)
j=1
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where we have introduced the Neumann Laplaai\éé?M of the cubeQ,. , = (u +
M+ -3¢, %6]3 and the potential

Wya(xa, .o xn) = Z (xi +(u+2)Ex; + (n+ )\)K)

—pZ[ Xj A (L Y+ (1)L dy

;pz//w(x+(M+X)E,y+(/x+l)ﬁ) dxdy.
QxQ

Lemma 3.2 (Decoupling of boxes). Let Eﬁ,x be the ground state energy of the Hamil-
tonian H,, , givenin (8) considered as a bosonic Hamiltonian. The ground state energy
Eg of the Hamiltonian H in (1) isthen bounded below as

_oON

Proof. If W(xy,...,xy) € LZR3N) is a symmetric function. Then

w(t)N
20

(W, HY) = ) /(\l/,ﬁ#,,\\ll)du—

reZ3
w

where

N
(W, H, V) = Z/ |V W(x1,...,xy)|2dx1. .. dxy

XjEQM,A
+ yf Won (X1, - xn) W (X, ..., xn) % dxr ... dxy.

The lemma follows since it is clear thay, ﬁu,,\\ll) > infi<p<n EZ .- O

For givenu the Ham|lt0n|ansH” fall in three groups depending on The first kind

for which Q;, , N = ¥. They descrlbe boxes with no background. The optimal energy
for these boxes are clearly achieved o= 0. The second kind for whicl®; ,, C €.
These Hamiltonians are all unitarily equivalenttél)’, where

n

Hp =Y~ <—%ylAe,j —p/w(x]-,y)dy)

j=1 (9)

+ > w(xi,x,->+%pzf/w(x,wdxdy,

1<i<j<n

where —A, is the Neumann Laplacian for the cubet/2, ¢/2]°. Finally, there are
operators of the third kind for whicl®,, ;. intersects bott2 and its complement. In
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this case the particles only see part of the background. If we artificially add the missing
background only the last term in the potentf), , increases. (The first term does not
change and the second can only decrease.) In fact it will increase by no more than

s [[wemavay <302 [[ -y tavay < oot

xe[—/2,¢/213
ye[—t/2,0/213

Thus the operatoHlj’A of the third kind are bounded below by an operator which is
unitarily equivalent toy H;' — Cp2¢°.

We now note that the number of boxes of the third kind is bounded abog¢byr)?.
The total number of boxes of the second or third kind is bounded abaiie-by)3/¢3 =
1+ L/0)5.

We have therefore proved the following result.

Lemma 3.3 (Reduction to one small box). The ground state energy Eo of the Hamil-
tonian H in (1) is bounded below as

w(t)N

Eo> (1+L/0)% _inf inf SpecH;' — C(L/0)*p%e® — TR

where H;! isthe Hamiltonian defined in (9).

In the rest of the paper we shall study the Hamiltonian (9).

4. Long and Short Distance Cutoffsin the Potential

The potential in the Hamiltonian (9) is given in (7). Our aim in this section to replace
w by a function that has long and short distance cutoffs.
We shall replace the function by

Wy, rR(X, ¥) = Xe(X) Vi r(Xx — ) Xe(y), (10)
where

e~ XI/R _ o=Ixl/r
V() = Y () = ¥, () = ————— (11)

Here O< r < R < w(¢)~¢. Note that forx « r thenV, g(x) ~ r~—* — R~1 and for
x| > R thenV, z(x) ~ |x| e~ *I/R,

In this section we shall bound the effect of replacindy w, r. We shall not fix
the cutoffsr and R, but rather choose them differently at different stages in the later
arguments.

We first introduce the cutofk alone, i.e., we bound the effect of replacingby
wr(x, y) = Xe(X)VR(x — y)Xe(y), whereVr(x) = [x|~te W/R = yp 1(x). Thus,
sinceR < w(r)~1¢, the Fourier transforms satisfy

. ~ 1 1
Yose(k) = Ve (k) = 4m (kz +(@)/0)2 K2+ R2) =0
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(We use the convention thﬁft(k) = f(x)e ** dx.) Hencew(x, y) — wg(x, y) =
Xe(x) (Yore — V) (x — y)X¢(y) defines a positive semi-definite kernel. Note, more-
over, that(Y,,;. — V) (0) = R~* — w/¢ < R~ Thus,

> w(xl',xj')—pZ/w(xjny)dy+%pZ// w(x, y)dx dy
j=1

1<i<j<n

n
- Z wR (X, Xj) —PZ/WR(xj,y)dy-i-%pZ/[ wgr(x, y)dxdy
j=1

1<i<j<n
1 n n
-5/ [Za(x —x) - p] (w — wp)(x. y) [Za(y —xi) - p} dxdy
1 n
-5 > e (Yose = VR) (0) = —3n (Yo — Vg) () = —3nR™L. (12)

We now bound the effect of replacingg by w, . |.e., we are replacin§z (x) =
lx|~te=¥I/R by |x| =1 (e=*I/R — ¢=II/7) This will lower the repulsive terms and for
the attractive term we get

n n
—pZ/wR(xj,y)dy > —pZ/wr,R(xj,y)dy
j=1 j=1

e lv=yl/r

—np sup/ Xe(x)————x¢(y)dy (13)
X lx —yl

n
> — pZ/wr,R(xj,y)dy — Cnpr?.
=1

If we combine the bounds (12) and (13) we have the following result.

Lemma 4.1 (Long and short distance potential cutoffs). Consider the Hamiltonian

n

H}, p = Z(—%y‘lAe,j —p/wr,R(xj,y)dy) + ) wer(x,x))

j=1 l<i<j<n (14)
4307 [ [ wente. vy axay.

where w, g isgivenin (10) and (11) with0 < » < R < w(r)~1¢ and —A, asbeforeis
the Neumann Laplacian for the cube [—¢/2, £/2]3. Then the Hamiltonian Hy' defined
in (9) obeys the lower bound

H} > Hln,r,R — %nR_:L — Cln,orz.
A similar argument gives the following result.

Lemma 4.2. With the same notation as above we havefor 0 < ' <r < R < R’ <
(1)1 that
Hf\ = Hy g — inR™t - Cinpr?.
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Proof. Simply note tha, g/ (x) =V, r(x) = Yp-1(x) = Yg-1(x) +Y,-1(x) =Y ,-1(x)
and now use the same arguments as before.

Corollary 4.3 (The particle number n cannot be too small). There exists a constant
C > Osuchthatif w(r)~1p%3¢ > C then H}' > 0ifn < Cpt3.

Proof. ChooseR = p~Y/3 andr = 3R. Then we may assume that< w(r)~1¢ since
o (1)~ 1p1/3¢ is large. From Lemma 4.1 we see immediately that

n
H} > —Zp/wr,R(Xj,y)dy + %pZ// wy.g(x,y)dxdy — CnpR?
j=1

> —n Supp‘/wr,R(x, y)dy + %pZ// wrRr(x,y)dxdy — Cn,oRz.
X

The corollary follows since sqpf wyr(x, y)dy < 47 R? and with the given choice of
R andr itis easy to see tha} [ w, g (x, y) dxdy > cR%3. O

5. Bound on the Unimportant Part of the Hamiltonian

In this section we shall bound the Hamiltoniat}, . given in (14). We emphasize that

we do not necessarily have neutrality in the cube, i.@ndp¢3 may be different. We
are simply looking for a lower bound tH;r r» that holds for al. The goal is to find a
lower bound that will allow us to conclude that the optimal.e., the value for which
the energy of the Hamiltonian is smallest, is indeed close to the neutral value.

We shall express the Hamiltonian in second quantized language. This is purely for
convenience. We stress that we are not in any way changing the model by doing this and
the treatment is entirely rigorous and could have been done without the use of second
guantization.

Letu,,tp/m € (NU {012 be an orthonormal basis of eigenfunctions of the Neumann
Laplacian—A, such that-Agu, = |p|2u,. |.e.,

3
up 51 2 53) = 02 [ | COS(M) ,
j=1

where the normalization satisfies = 1 and in general k ¢, < +/8. The function

uo = £=3/2 is the constant eigenfunction with eigenvalue 0. We note that fgr0 we
have

(p, —Agu,) > w2072, (15)

We now express the HamiltoniaH;’,  in terms of the creation and annihilation
operators:, = a(up )anda =aup)*.
Define

B o = / / R (2, ¥t ()it (Dt Oty () dx dy.

We may then express the two-body repulsive potential as

1
Z wr, R (X, xj) =3 Z Wpy, ;wapaqava;u

l<i<jzn Pq.mv
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where the right-hand side is considered restricted taitparticle subspace. Likewise
the background potential can be written

n
—p Z wr,R(xjv y) dy = _p€3 Z wOp,Oqa;aq

j=1 pq

and the background-background energy

%,02 // wrr(x, y)dxdy = %0256@00,00

We may therefore write the Hamiltonian as

n 1 -1 2 x 1
Hyrr =37 Z pPaja, +3 Y B mapaga,,
Pq. v

(16)
—pt wa 0g9pty + 30°0%Wo0,00-

We also introduce the operatoig = aja, andny = Zméo. These operators
represent the number of particles in the condensate state creatgdiby the number
of particlenot in the condensate. Note that on the subspace where the total particle
number isz, both of these operators are non-negativerane= n — np.

Using the bounds on the long and short distance cutoffs in Lemma 4.1 we may
immediately prove a simple bound on the expectation valug of

Lemma 5.1 (Simple bound on the number of excited particles). Thereis a constant
C > Osuchthatif w(r)~1p/3¢ > C thenfor any state such that the expectation (H}') <

0, the expectation of the number of excited particles satisfies (i) < Cnp =6 (p/ 42)2.

Proof. We simply choose = R = p~1/3in Lemma 4.1. This is allowed since <
o (1)~ is ensured from the assumption that) ~1p1/3¢ is large. We then obtain

H} > Z y_lAg i—3 Cn,or > Z y‘lAg,j - Cn,ol/3

The bound orfi, ) follows since the bound on the gap (15) implies t{rﬁf}zl —Aygj) =
(my)ym2e2. o

Motivated by Foldy’s use of the Bogolubov approximation it is our goal to reduce the
HamiltonianH',  so that it has only what we call quadratic terms, i.e., terms which

contain premsely twa# with p # 0. More precisely, we want to be able to ignore all
terms containing the coefﬂments

° woooo
20.g0 = wo 0 ,Wherep, g # 0. These terms are in fact quadratic, but do not appear

|n the Foldy Ham|lton|an We shall prove that they can also be ignored.
° pO 0= wOp 00 = woo p0 = woo op» Wherep # 0.

Wy 10 = W0, pg = Wgp,0p = Wopuqpr WhETEP. g, pt # 0.
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o~

® Wy iy , Wherep, g, u, v # 0. The sum of all these terms form a non-negative con-
tri utlon to the Hamiltonian and can, when proving a lower bound, either be ignored
or used to control error terms.

We shall consider these cases one at a time.

Lemma 5.2 (Control of termswith @y, o0). The sumof thetermsin H;', . containing
Woo,00 IS €QUaAl to

2
300,00 [(ﬁo - P€3> - 71\0}
2

Proof. The terms containingy o are

I\)ll—‘

[

2
~ . 3« 26\ _ 1 3 1~ ,
300,00 (aoaoaoao — 2pliagag + pt ) 3W00,00 (“oao pt ) — 5Wop,00%0%0

using the Ocommutation relatign,,, a;] = 8,4. O

Lemma 5.3 (Control of termswith @ 4). Thesumof thetermsin H;', , containing
W 0,40 OF W, o, With p., g # Oisbounded below by
—4n(p —nl 3474 R? — 4wt 3R?,
where [¢t]+ = max{z, 0}.
Proof. The terms containing , o O Wy, o, are
Z (%@po’qoa;aéaoaq + %@OP‘Oana;aqao — pﬁ?’ﬂ)‘opgoqa;aq)

p#0
970

e 3 -~ *
= (o — pt%) Y 0,005

p#0
q#0
Note thatip commutes with}_ w ,, ,qaja
i
We have that
@pquo = £_3// wy R (x, y) dyu,(x)ug(x) dx.
Hence
*
Z W0, qoapaq =" 3// wrr(x, y)dy Z up(x)a;‘7 Z up(x)a;‘7 dx.
p#0 p#0 p#0
q#0
*
<¢3 su{p/ wy g(x, y) dy/ Z up(x)a; Z u,,(x)a; dx.
* p#0 p#0

= SUP/ wr g (x', )’)dyzapap _3sup/ we g(x', y)dyny.
p#0 ¥
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Since

SUD/ wrr(x, y)dy < f V.r(y)dy < 4r R?
X
we obtain the operator inequality

3 p2-
0< E wpoqoa a, <4rl 7 R°ny,
p#0
970

and the lemma follows.

Before treating the last two types of terms we shall need the following result on the

structure of the coefficients ,,, ,, .

Lemmab5.4. For all p/,q’ € (/£) (NU{0})® and « € N there exists J%, € Rwith
J% = J%, suchthatfor all p, g, u,v € (/&) (NU {0} we have

Wpg. v Z JguJ;v A7)

Moreover we have the operator inequalities

~ % _ ~ —3 52~
0< Z W, 008 pdy = Z wpo’op,apap <4l °Rny (18)
p.p'#0 p,p'#0

and

0< Z W, mp/apap < r*1ﬁ+.
p,p',m#0

Proof. The operato with integral kernelv, g (x, y) is anon-negative Hilbert—-Schmidt

operator onL2(R3) with norm less than syp/,. g (k) < 47 R2. Denote the eigenvalues
of Abyry, 0 = 1,2,... and corresponding orthonormal eigenfunctionsghy We
may assume that these functions are real. The eigenvalues satisfy, 6< 47 R%. We
then have

pq o Z)‘ /Mp(X)MM(X)%(X)dx/Mq(y)uu(y)%(y)dy-

The identity (17) thus follows with'?, = 35/% [ 1 (), (x)¢a (x) dx.

If P denotes the projection onto the constant functions we may also consider the
operator(l — P)A(I — P). Denote its eigenvalues and eigenfunctionsipyandgy,.

Then again 0< 1), < 47 R2. Hence we may write

Dygop =LY M, / 1y (X)L, (x) dx / (N, () dy.
o
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Thus, since al,, are orthogonal to constants we have

Z wpo O[)/a a

p,p'#0

_Z_SZA Z/up(x)goa(x)dxa Z/u,,(x)(pa(x)dxa

p#0 p#0

£3ZAa (pa a).

The inequalities (18) follow immediately from this.

The fact thatzp 'm0 Apm mp,apa , > 0 follows from the representation (17).

Moreover, since the kernelg , (x, y) is a continuous function we have that g (x, x) =
Y ow raa (x)2 for almost allx and hence

Z fﬁpm’mp/ = ‘/up(x)up/(x)wr,R(x,x) dx — a}p0,0p"
m#0

We therefore have

Z W Ap @y = Z [up(x)up/(x)WrR(x x)dxaya,

p.p' \m#0 p,p'#0
*
= / wr g(x, X) Z up(x)a; Z up(x)a;‘7 dx
p#0 p#0

*

< Supwr R, x )/ up(x)a;'; Z ul,(x)a;’; dx
p#0 p#0
= supw, g (x, x4
x/

and the lemma follows since spyp, z(x’,x") <r~1. O

Lemma 5.5 (Control of termswith @po,oo)- Thesumof thetermsin H;' . , containing
W ,0,00' Wop,00Wo0, por OF Woq 0p» With p 7 Oiis, for all & > 0, bounded below by
—e M ¢3RNy — elgg go(fo + 1 — pl3)?, (19)
and by
Yo ((n — ol®a*ag +ata (n — 53))
10,00 o po 04y o
p#0
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Proof. The terms containing ,, oo, W, 00:Woo, por OF Woo,0p ar€

1~ * * ok 3 % 3 %
Ziwpo,oo <2a;aoaoao + 2agagaga, — 2pLaga, — 2pt apao)
p#0

=Y Wy000 (G0 — p)ayaq + aga, o — pt?)

p#0
= Z Z J 0700 (a;ao(ﬁo +1—p+@o+1— p€3)a5ap) )
@ p#0

In the last term we have used the representation (17) and the commutation relation
[0, ao] = ap. For alls > 0 we get that the above expression is bounded below by

-1 o go o~k a\2 o~ 3\2
£ Z Z Jpon,Onoapap, - EZ (JOO) (mo+1— pt°)
o« p.p'#0 o
-1 ~ ~ —~ ~ 3.2
€ Z W ,0,0p/7100,a, — EWgq got0 + 1 — p€*)“.
p.p'#0

The bound (19) follows from (18).

The second bound (20) follows in the same way if we notice that the terms containing
pO 00" wOp 00 W0 0 OF Woo, op May be written as

Z W 0,00 ((” - p(3)a;ao + aga,(n — pK3))
p#0
+ 3D Tt (ahao =) + A= Aaga,) . o

o p#0

Lemma5.6 (Control of termswithw ,, o). Thesumof thetermsin ', , containing

Wm0 Wy 0m oW po.gm» OF Wop. gm» With p, g, m 7 0 is bounded below by

—14_p-3p2~ ~ ~ -1
—& Al PR nony —enyr T —¢ Z Wy, pm/amap ' Gps

p.m,p’,m'#0

for all ¢ > 0.
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Proof. The terms containing . .0, W, 0% p0.gm+ OF Wop, gm aT€
= * % * %k
Z W gm0 (apaqamao + aoamaqap>

pqm+#0
Z Z J;Oa:;ao Z nga;;am

a q7#0 pm#0

%
o * o *
+ Z S pm@pm ZJquqao
pm#0 q7#0

=2 e 2 e | | 22 Jioasey
o

q#0 q#0

*

v

a % a %
te | Do Tomanay | | 22 Tomapan
pm#0 pm#0

Using that/;,, = J;, we may write this as

-1 2 : = * * 2 : = * *
—& wqoyoq,aqaq/aoao — & wmp/,pm/amapap,am/

qq'#0 p.m,p’ ,m'#0
_ -1 E : = * * E : -~ * %
= — & wqo)oq/aqaq/aoao — & wmp/’pm/amap,am/ap
qq9'#0 p.m,p',m'#0
—& E w a’a
mp,pm’“m“m’*
p.m,m'#0

The lemma now follows from Lemma 5.40

6. Analyzing the Quadratic Hamiltonian

In this section we consider the main part of the Hamiltonian. This is the “quadratic”
Hamiltonian considered by Foldy. It consists of the kinetic energy and all the terms with
the coefficientsv . 4o, Woq ,; W 0,0, ANAWg, ,oWith p. g # 0, i.e.,

1.,-1 2
Hroldy = 5v Z [Pl a;ap
p

1 -~ k ok * ok * % * %
+3 Z W 4,00 (apaoaoaq +apaya,ag +a,azapaq + aoaoapaq) (21)
pq#0
1,,-1 2 % - * * 1 % x 1 % %
=2r ) IplPaga, +3 W, 00 (apaqa0a0+Qapaqaoao—i-zaoaoapaq) :
p pq#0
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In order to compute all the bounds we found it necessary to include the first term in (20)
into the “quadratic” Hamiltonian. We therefore define

Hp = %y‘lz |p|2a;§ap + Z W 0,00 ((n — pZS)a;ao +aga,(n — pﬁs))
p

P70 22)

+ Z @pq,oo (a;aqaéao + %a;a;aoao + %aéaéapaq) .
pq#0

Note thatHroiqy = Hyp in the neutral case = p£3. Our goal is to give a lower bound
on the ground state energy of the Hamiltonp.

For the sake of convenience we first enlarge the one-particle Hilbert space
L? ([—6/2, 5/2]3). In fact, instead of considering the symmetric Fock space over
L2 ([—2/2, 5/2]3) we now consider the symmetric Fock space over the one-particle
Hilbert spaceL? ([—2/2, £/2]3) @ C. Note that the larger Fock space of course con-
tains the original Fock space as a subspace. On the larger space we have a new pair of
creation and annihilation operators that we defagtanda,. These operators merely
create vectors in th€ component of.? ([—6/2, 5/2]3) @ C, and so commute with all

other operators.
We shall now write

a, ifp#0 a,, ifp#0
a, = and @, = ) (23)
ag, ifp=0 as, ifp=0
We now define the Hamiltonian
Ho = 3y™" > IpPasa, + Y @000 ((n = pE3T5a0 + g, n - pt3)
P 14 (24)

-~ ks I 1 % s~ ~
+ Z Wp4.00 (apaqaoao + 3a,a,a0a9 + anaoapaq) ,
pq

where we no longer restrigt, ¢ to be different from 0. Note that for all states on the
larger Fock space for whicfaa,) = 0 we have(Hgp) = (Hyp).
For any functiony € L? ([—5/2, 6/2]3) we introduce the creation operator

@) =) (up, 9)T5.
p

Note that the sum includgs= 0. the difference from*(¢) is given bya™* (¢) —a* (¢) =
(ug, @) (ES - aé).

Then[a(p), a*(¥)] = (¢, ¥). We have introduced the “dummy” operalgrin order
for this relation to hold. One could just as well have stayed in the old space, but then the
relation above would hold only for functions orthogonal to constants.

For anyk € R3 denotex ¢« (x) = ¢/** x,(x) and define the operators

by =a*(Xex)ag and b, =a(Xex)ag
They satisfy the commutation relations
[by. b1 = adag (Xex, Xex) — A(Xe0)a* (X e x)

% o270 5 a* (25)
=agagXj(k' — k) —a(Xex)a (Xex)
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We first consider the kinetic energy part of the Hamiltonian. We shall bound it using
the double commutator bound in Appendix B. First we need a well known comparisson
between the Neumann Laplacian and the Laplacian in the whole space.

Lemma 6.1 (Neumann resolvent is bigger than free resolvent). Let P, denote the
projection in L2(R3) that projects onto L2([—¢/2, £/2]%) (identified as a subspace).
Then if — A denotes the Laplacian on all of R3 and — A, isthe Neumann Laplacian on
[—£/2, £/2]° we have the operator inequality
(—Ac+a) t = P(-A+a) Py,

for all a > 0.
Proof. Itis clear that for allf € L2(R3)

1Pe(—=Ae + )2 Pi(—=A +a) V2 £12 < |1 £11%,

and hence
I(=A+ @) Y2P(=Ac+ V2P I < |1 f12,

Now simply use this withf = (—A¢ +a) " Y2u. O

Lemma 6.2 (The kinetic energy bound). There exists a constant C’ > 0 such that if
C’t < 1, where isthe parameter used in the definition of x, in Sect. 3, we have

~~ — / — k4 *
<Z|p| na >z(2n) 31— C'ty’n 1/3mwkbk>d;¢

R

~ge~

2
for all states with (aja,) = 0 and particle number equal to n, i.e, < pa;’;ap> =

(S, 050,)") =2

Proof. Lets, with 0 < s < ¢, be a parameter to be chosen below. Recall thathe
parameter used in the definition of in Section 3. Then since? + n? = 1 we have

(—A¢)? 1 o (A2 1 (A2
A T T ()2 =307 +m) ALt ()2 T 2TA T ) = (+ )
(—A¢)? (—Ag)?

K A

(=202 (=An)?
= ][ w5 ]

(—=A)? (—Ap)?

> S — -
XA T sy 2 T TN ) 2

- —Ag 22 4
—CU 22— v =,
() —Ag+ (£s)—2 s
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where the last inequality follows from Lemma B.1 in Appendix B. We can now repeat
this calculation to get

(—Ap)?

—Ay > e o 1 P S S
L= <—A[ T2 TN (es)—Z) e
(—Ap)? 2 A 224
oY cuni——2 Yy — e
e <—Ag+(€s)—2 o T2 )™ g

—C(Zl)2< _—AE_,X( , Xe |+ _—Al_»’%],w})
—A¢+ (Ls)~2 —Ag+ (£s)72

If we therefore use (53) in Lemma B.1 and recall that + we arrive at

(—A)?

—Ay > - < —Ct *2_—2
(= <—Ag T2 (IR (Es)—2> *e
(—Ap)? 2 Ay —2.2,-4
—_—— — Ct _ —CY .
+ Ne <—Ag T (ZS)_Z ( ) _A( + (ES)_z Ne N

Note that fore > 0 we have

(—=Ap)? 2 Ay —1.2,—4,-2
_—— —Cty " —————— = > —C el
R T A e 2
Thus if we also assume that< 1 we have
(—Ap)?

—Ap=>(1— X — Ca rsH 2,
e=( ot)Xz_AH_(ZS)_2 ¢—Cavs

Thus ifu is a normalized function ofi2(R3) which is orthogonal to constants we have
according to the bound on the gap (15) that for a# @ < 1

1.~y = A= &)@ —a) (0 10— 20
- —Ag+ (Ls)—2
—CQA-8)a %2 4 sn202,
We chooser = § = C’st~2 for an appropriately large constafit > 0 and assume that
s andt are such that is less than 1. Then

(—A)? )

= A) > (L= C'st™2 (u, xp—
(u, =Agu) = ( st°) MXZ_AE+(£S)_2XZM

If we now use Lemma 6.1 we may write this as

1
— A
“A+ (6s) 2 W”)

, (—A)?
=(1-C'st 2)2 (u, XZT(ZS)_ZXZM) s

(u, —Apu) > (L— C'st )2 <u XeAg

where in the last inequality we have used that = Ay x andx A = x Ay.
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We now choose = 13 and we may then write this inequality in second quantized
form as
k|

<Z|p|2~*“‘>><2n> 31— C'ry? Rgm(a*w,k)am,k))dk

e~

using thafaga,) = 0. Since we consider only states with particle numidtée inequality
still holds if we insert:~1agaj as in the statement of the lemmaz

With the same notation as in the above lemma we may write

wrr(x,y) = (277)_3/ Ve ) X e (X)X ek (y) dk.

The last two sums in the Hamiltonian (24) can therefore be written as

@) [ Vno [0 - S (et + Tty )

+ 1 (bpby + b b + bb, + bkb_k)] dk =" B, 0005,
Pq

Note that it is important here that the potentig|z contains the localization function
Xe-

Thus, sinceV, z(k) = V, g(—k) and X¢(k) = X¢(—k) we have for states with
(agag) = 0 that

(HQ>Z/ (hQ(k) dk prq OO< apa q> (26)
Pq
where
1— C/ 2 k4
hoty = S C0° W ey bt b )

42m)3yn |k|2 + (£13)2

r,R(k)
2(27113)3[ (n

— P2 (Re B +b_y) + @by + b)) (@7)

+ (biby + b7 b + Db + bkb—k)]'

Theorem 6.3 (Simplecaseof Bogolubov’'smethod). For arbitrary constants A > 5 >
0 and x € C we havethe inequality

Ay + b*b_y) + BBib™  + byb_y) + k(bf + b_y) + k(b + b))
2k |?

Z—%(A m)([bkvbk 1+1b_ k’b*k])_A_|_B
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Proof. We may complete the square
Abiby + b*  b_y) 4 Bbpb™  +byb_) + k(b] +b_;) + (b + b))

= Db} +ab_; +a)(b, +ab*, +a) + DO, +ab, +a)(b_, +ab’; +a)
~ Da®(Iby. b1+ [b_. b* 1) — 2Dlal?,

DA+a®)=A, 2Da=B, aDA+a)=«.
We choose the solution = A/B — \/A2/B2 — 1. Hence

2 2
D 2: 2:1‘ — 2 _ R2 D 2= |K| _ |K| .
o? = Bo/2=3(A—VA2—B2), Dia| el i

Usually when applying Bogolubov's method the commutdtgr b;] is a positive
constant. In this case the lower bound in the theorem is actually the bottom of the
spectrum of the operator. If moreovet, > B the bottom is actually an eigenvalue. In
our case the commutatf¥, , b;] is not a constant, but according to (25) we have

[by, byl < /Xg(x)2 dxajag < E3a8ao. (28)

From this and the above theorem we easily conclude the following bound.

Lemma 6.4 (Lower bound on quadratic Hamiltonian). On the subspace with » par-
ticleswe have

2
Hp > —In54 34 _ 1 (n - pe3) Boo.00 — drn®/4e 4 ney =14,

where I = 3(21) 73 [ps f(K) — (f(K)? — g(k)H)Y/? dk with

1 1
K2+ (nt/A0-34R)-2 a3 T (04342

g(k) = 4n

and
|k[*
|k|2 + (nl/4ﬂl/4t3)72.

fl)=gk) + 3y A - C'n?

Proof. We consider a state witliiia,) = 0. Then(Hp) = (ﬁQ). We shall use (26).
Note first that

N A —~ % < —3p2~  _ -1
<Z wpq!ooapaq> < Z wpo’oqapaq> <4nl °Rny <4nl n
rq p,q#0

by (18) and the fact thak < ¢. We may of course rewrité1n = n%4¢=3/4(ne)~1/4,
By Theorem 6.3, (27) and (28) we have

Ve r(K)2(n — pt3)?
ho(k) > —(A — /A2 — B2yne3 — 2(2’;)6(9% B Gl
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where
vy g (k) 1-cn?  k*
frnd 2 N = B .
k= 20203 Ai=Bic+ 421)3yn k2 + (€13)2

SinceA; > B; we have that

Vi) —pt32 o
ho(k) = —(Ac — /A2 — BAne® — R2(2n)3z6 |Xe(h)|°.

Note that

/ V. r(K)(n — pt®)?

2o R |? dk

n 2 2
=1 (55 -r) [[ eVt = nxedrdy = § (n = o) Bono
The lemma now follows from (26) by a simple change of variables ik tinéegral. O

As a consequence we get the following bound for the Foldy Hamiltonian.

Corollary 6.5 (Lower bound on the Foldy Hamiltonian). The Foldy Hamiltonian in
(21) satisfies

Hrolgy > —In¥40~3*% — agn®4¢=3/4(ne) V4, (29)

Thereis constant C > 0 such that if p1/*R > C, p¥/4¢t3 > C,andt < C~1 then the
Foldy Hamiltonian satisfies the bound

Hroldy > § ) |plPata, — Cn®%e~3/4, (30)
p

Proof. Lemma 6.4 holds for alp hence also if we had replacedby n/¢2 in this case
we get (29).
The integrall satisfies the bound

< 3om /R max g, 32/ ) — g0 ak.

By Corollary 4.3 we may assume that> cp¢3. Hencel is bounded by a constant as
long asp/4R and p/4¢r3 are sufficiently large andis sufficiently small (which also
ensures thay is close to 1). Note that we do not have to make any assumptions on
Moreover, if this is true we also have thet > cp¢? is large and hencei¢) 1 is small.

This would give the bound in the corollary except for the first positive term. The above
argument, however, also holds (with different constants) if we replace the kinetic energy
in the Foldy Hamiltonian by; (y X — 3) 3, |pl?aja,, (assuming thay < 2). This
proves the corollary. O
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Note that if
nY473/4R = oo, n*734 = 0, n4Y43 > o0, andr — 0 (32)

it follows by dominated convergence thiatonverges to

_ B B -~ 1/2
1@2n) 3434n|k| 2+%|k|2—((471|k| 2+ 31k®)? — (4 |k| 2)2> dk

0o 1/2 1/4
_ (2/71)3/4/ 14 x%— 2 <x4 + 2) 2 dr=— (4_”> A,
0 3

where A was given in (6). Thus if we can show that~ p¢3 we see that the term
—In®%¢=3/% ~ —1pY*n agrees with Foldy’s calculation (5) for the little box of size

Our task is now to show thatindeed~ p¢3, i.e., that we have approximate neutrality
in each little box and that the term above containing the intagigindeed the leading
term.

7. Simple Boundson r and 724

The Lemmas4.1,5.2,5.3,5.5, and 5.6 together with Lemma 6.4 or Corollary 6.5 control
all terms in the Hamiltoniaif/;' except the positive term

1 2 : -~ * %k
5 wmp/,pm/amap/am/ap.
p.m,p’,m'#0

If we use (30) in Corollary 6.5 together with the other bounds we obtain the following
bound if p¥/4R andp/4¢r° are sufficiently large andis sufficiently small

= 3 Y Infaja, - Cn4 k=t Crpr?
p

1~ N 3\2
+ zwoo’oo (Vlo — ,OE ) —no
—4n(p — nl 3174 R? — 4nns ¢ 3R?
— 8_1877.'6_3R27’l\07’l\+ — 8@00’00(71\0 +1-— ,0£3)2
—enyr 4 (% —¢) Z @mp,,pm,a;kna:,am,ap.

p.m,p’,m'#0

The assumptions op'/4R, p1/4¢¢3, andt are needed in order to bound the integral
above by a constant. If we choose= 1/4, useidy, oo < 47 R2¢~3 and ignore the last
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positive term in the bound above we arrive at
2
1 2 5/4,-3/4 1 _p—1 2, 1~ PN 3
H > 3 IplPaja, — Cn¥% %% — 3nR™Y — Cnpr? + 21'1)00,00(”0—:0‘Z )

—4rx[p —nt 3 A R? — 4nﬁ2 ¢3R?
— 3274 3R%ngny — 4w R%4™ 3( 2,0£3 ) — %17[+r_1

v

2
ey o oo g~ )

— 4870~ 3R2nn+ — A7 R%¢3 (ﬁo + %) — 1—1171]_;’71,
(32)

where in the last inequality we have used th&t < 2n, 7o < n andiy. < n.

Lemma 7.1 (Simple bound on n). Let w(¢) be the function described in Lemma 3.1.
There is a constant C > 0 such that if (p/40)r3 > C and (p¥/40)p=1/12 ¢, and
w(t)(pY4¢)~aresmaller than €~ thenfor any statewith (H") < OwehaveC~1p¢3 <
n< C,oZg.
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Proof. The lower bound follows from Corollary 4.3. To prove the upper bound: on

we chooseR = w(r)~1¢ (the maximally allowed value) and= bw (1) ~1¢, where we
shall choose sufficiently small, in particulab < 1/2. We then have thags'/*R =

o () 1p/4¢ is large. Moreoveis > CR2¢73 = Cw(r)~2¢1 for some constant
00,00 =

C>0 and we get from (32) and Lemma 5.1 that

(HP') > 67 —Cn®4Y% — Lno(r) — CHPo(t) 202 + Co (1) 2 (<ﬁ0> _ p€3>2
— 48t w () 2p Yo pM*2n? — drw ()% (n + 3) — Fnbtw ()],
where we have again used that® < n, 7y < n andii; < n. Note that
n®40Y4 < Cor(t)~2n2(pY40) 20~ Y40 (1)

andnw(t) < Co(t) 2nplw(r)3. From Lemma 5.1 we know thdfip) > n(l —
Cp~Y8(¢p**)?). By choosingy small enough we see immediately that Cp¢3. O

Using this result as an input in (32) we can get a better boundtban above and

a better bound o) than given in Lemma 5.1. In particular, the next lemma in fact

implies that we have near neutrality, i.e., thas nearlyp¢2.

Lemma 7.2 (Improved bounds on »n and (n4.)). There exists a constant C > 0 such
that if (p2/40)t3 > C and (p¥/40)p=Y12 ¢, and w(1)(p¥/*¢)~1 are smaller than C~1
then for any statewith (H}') < Owehave (}_ , |p|?a}a,) < Co>*¢3(p%*¢) and

2
— o3

L) < Cnp~Y4pY%0)% and (n Zg ) < Cp~VA(pY4)3,
P

For any other state with (H, 0 /R,)/ < 0 we have the same bound on () if r' <
p~38(p40)Y2 and R’ > a(pl/“ﬁ) 2¢ wherea > 0isan appropriate constant.
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Proof. Inserting the bound < Cp¢3 into (32) gives
HY = 3 IplPaa, — Cp¥/* = §peR™ = Cp2e3r? + §igg oo (0 - pz3>2
— CR?pity — CR? (p+ ¢7°) = Jr ™.

We now choose = p~3/8(p¥40)Y/2 andR = a(p/*¢)~2¢, where we shall choose

below, independently of, p1/4¢, andz. Note that since (1) (p1/4¢) =2 is small we may

assume thak < w ()¢ as required and sindg/4¢) p~1/12is small we may assume

thatr < R. Moreoverr—1 = p=Y8(p1/4¢)3/2¢=2 and R%p = a?(pY*0)~*¢2p
a?¢~2. Hence, sincd_, |p|%ata, > ¢~ %1, (see 15), we have

H(n > %Z |p| apap + ( az — %p_l/S(,Ol/‘lﬁ)S/Z) Z_ZA
p

2
+ 30000 (”0 - PZs)
L 4 OB — Ca? TR0 5L+ (pM4e) 3o,

By choosingz appropriately (independently of p1/4¢, andr) we immediately get the
bound on(}_ , |p|?aja,) and the bound—2(ny) < Cp**¢3(p"/*¢), which implies the

stated bound oriz, ). The bound on(n — p£3)2(p£3)~2 follows since we also have
~ - 2

Woo.00! (0 — p€3)7) < Cp>*¢3(p/*¢) and

2
@oo,oo<(ﬁo - pe3) ) > CR20~3 ((no) — ot )
2
> Ca?(pY*0)~4¢? (n — 3~ nCp*1/4(£p1/4)3> 7

where we have used the bound @n ) which we have just proved.

The case WhenHZw,R/)/ < 0 follows in the same way because we may everywhere
replaceH; by H”r, & and use Lemma 4.2 instead of Lemma 4.1. Note that in this case
we already know the bound onsince we still assume the existence of the state such
that(H}') <0. O

8. Localization of n

Note that Lemma 7.2 may be interpreted as saying that we have neutrality and condensa-
tion, in the sense thdf ) is a small fraction of:, in each little box. Although this bound
on (n, ) is sufficient for our purposes we still need to know t@) ~ (714)2. We shall
however not prove this for a general state with negative energy. Instead we shall show that
we may change the ground state, without changing its energy expectation significantly,
in such a way that the possibte values are bounded lynp=1/4(p/4¢)3. To do this
we shall use the method of localizing large matrices in Lemma A.1 of Appendix A.

We begin with any normalizea-particle wavefunction of the operatord;. Since
W is ann-particle wave function we may writd = Y _ ¢,y \U,,, where for allm =
1,2 ...,n,V¥,,isanormalized eigenfunctions®f with eigenvaluen. We may now
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consider the(n + 1) x (n + 1) Hermitean matrix4 with matrix elements4,,,, =
(s HE, x07)

We shall use Lemma A.1 for this matrix and the vecfor= (co, ..., c,). We
shall choose&V in Lemma A.1 to be of the order of the upper bound(@n) derived in
Lemma7.2, e.gM isthe integer part ofp~1/4(p1/4¢)3. Recall that with the assumption
inLemma7.2we havaf > 1. Withthe notationin LemmaA.1we hake= (¢, Ay) =
(W, Hg‘ R\IJ) Note also that because of the structureﬂqf, & We have, again with the
notation in Lemma A.1, that;, = Oifk > 3. We conclude from Lemma A.1 that there
exists a normalized wavefunctioh with the property that the corresponding values
belong to an interval of length/ and such that

(W, HY, W) > (U, H, p ) — CM™2(|da| + |da)).

We shall discusds, d2, which depend on’, in detail below, but first we give the result
on the localization ofi;. that we shall use.

Lemma 8.1 (Localization of 7). Thereisa constant C > 0 with the following prop-
erty. If (0740)r2 > C and (p¥40)p=1/12, ¢, and w (1) (p/*¢)~! arelessthan C~1 and
r < p38(pY40)Y2 R > C(pV*¢)~2¢ , and ¥ is a normalized wavefunction such that

(W, H, pW) <0 and (W, Hy, W) < —Cnp~Y*(p"*0)3)%(1d1| + |d2l) (33)

then there exists a normalized wave function ¥, which isa linear combination of eigen-
functions of 77, with eigenvalueslessthan Cnp~/4(p%/4£)3 only, such that

(V. Hf, g ¥) = (U, Hy, g V) — Cnp~ V(M 0%) 2 (d1] + |dal).  (34)
Here d1 and d», depending on W, are given as explained in Lemma A. 1.

Proof. As explained above we choos£to be of ordenp~1/4(p/4¢)3. We then choose
T as explained above. Then (34) holds. We also know that the pogsihlelues of¥
range in an interval of lengt . We do not know however, where this interval is located.
The assumption (33) will allow us to say more about the location of the interval.

In fact, it follows from (33), (34) tha(ffl, ng,R@) < 0. Itis then a consequence

of Lemma 7.2 tha{¥, 7 W) < Cnp~Y4(pY4¢)3. This of course establishes that the
allowedn . values are less that/np—1/4(p/4¢)3 for some constant’ > 0. O

Ourfinaltaskinthis sectionisto boudgdandd,. We have thai; = (¥, H;YrYR(l)lﬂ),
whereH;', (1) is the part of the Hamiltonia#/;', . containing all the terms with the
coefflcentsw for which precisely one or three indices are 0. These are the terms
bounded in femmas 5.5 and 5.6. These lemmas are stated as one-sided bounds. It is
clear from the proof that they could have been stated as two sided bounds. Alternatively
we may observe thaﬂf gy is unitarily equivalent to- H, R(l) This follows by
applying the unitary transform which maps all operatcyanda with p # 0to —aj
and—a,. From Lemmas 5.5 and 5.6 we therefore immediately get the following bound
ondi.
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Lemma 8.2 (Control of d1). With the notation above we havefor all ¢ > 0

ldv| < e~ 180 3 R2 (W, Tighs W) + ¢ (\p <ﬁ+r_1 + Wog.00(0 + 1 — pe3)2) xy)

—i—s(‘l’, E Wy pm,amap,am,ap‘{l)

psm,p',m'#0

Likewise, we have that, = (¥, H g . r(2V), whereH, z - z(2) is the part of the Hamil-
tonlanH;r & containing all the terms with precisely twg or twoag. i.e., these are the
terms in the Foldy Hamiltonian, which do not commute with

Lemma 8.3 (Control of dp). There exists a constant C > 0 such that if (o1/4¢)r3 > €
and (pY40)p=112 ¢, and w(t)(p*¢)~1 arelessthan C~1 and W is a wave function
with (W, H}'W) < 0 then with the notation above we have

lda| < Cp®4e3(pY40) + 4n 073R? (W, 7T pW) .

Proof. If we replace all the operatos, anda,, with p # 0 in the Foldy Hamiltonian by
—iajy, andia, we geta unitarily equivalent operator. This operator however differs from
the HamlltonlanH|:0|dy only by a change of sign on the part that we dend#/d (2).
Since both operators satisfy the bound in Corollary 6.5 we conclude that

|d2| < (‘IJ’ [%y_lz |p| apap + 2 Z wpq 00 (a aoaoa +aoa a0>i|\ll>
p

pq#0
+ Cn®4e3/4,

Note that both sums above define positive operators. This is trivial for the first sum. For
the second it follows from (18) in Lemma 5.4 singg:, commutes with alky, anda,
with p # 0. The lemma now follows from (18) and from Lemma 7.21

9. Proof of Foldy'sLaw

We first prove Foldy’s law in a small cube. L&t be a normalized:-particle wave
function. We shall prove that with an appropriate choicé of

(v, H} W) > (4n)1/3A Z3( 1/4+0<p1/4)), (35)
whereA is given in (6). Note that < 0. It then follows from Lemma 3.3 that
1/3 w(t)N
EO> (1+L/E)3 (?n) / ApZS (p1/4+0(,01/4>)—C(L/f)szES— T )

Thus, sinceV = pL3 we have
. Eo 1/3 -1
lim =2 >y (42)"° 4 (pl/“ Yo (p1/4)> — cpY4w () (pl/“z)
Foldy’s law (5) follows since we shall choose (see belowhd? in such a way that as

p — oo we haver — 0 and hencer — 1 andw(1)(p¥/4¢)~1 — 0 (see condition (41)
below).
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It remains to prove (35). First we fix the long and short distance potential cutoffs
R=w@) "%, and r=p 3842 (36)

We may of course assume tdt, H)'¥) < 0. Thus: satisfies the bound in Lemma 7.2.
We proceed in two steps. In Lemma 9.1 Foldy’s law in the small boxes is proved under
the restrictive assumption given in (37) below. Finally, in Theorem 9.2 Foldy’s law in
the small boxes is proved by considering the alternative case that (37) fails. Let us note
that, logically speaking, this could have been done in the reverse order. l.e., we could,
instead, have begun with the case that (37) fails. At the end of the section we combine
Theorem 9.2 with Lemma 3.3 to show that Foldy’s law in the small box implies Foldy’s
law Theorem 1.1.

At the end of this section we show how to chodsd: so that Theorem 9.2 implies
(35) and hence Theorem 1.1, as explained above.

Lemma9.1 (Foldy's law for H/': restricted version). Let R and r be given by (36).
There exists a constant C > 0 such that if (p¥/4¢)3 > € and (p¥4¢)p~Y12, ¢, and
o) (pY*¢)~1 arelessthan C~1 then, whenever

ne 3R% (U, 7, W) (37)
< C_l(‘-p, <1’l}00’00(ﬁ0 - '053)2 + Z mp pm’amap m p)\lj>
p,m,p’,m'#0
we have that

+ +pfl/8(pl/4£)7/2)7

with 7 asin Lemma 6.4.

Proof. We assumgW, H;'W) < 0. We proceed as in the beginning of Sect. 7, but we
now use (29) of Corollary 6.5 instead of (30). We then get

H} > — In®%¢=3% — 4z >4 (o)~ 1/4 — %nR_l — Cnpr?

2

+ 300,00 [(”0 - P33) - ”0i|
—47[p — nt 3 AL R? — 47'(71\3_6_3R2

— ¢~ 18n 3 R%pn, — eﬁoo,oo(ﬁo +1—pe3?

~ -1
—enyr ~ + (% —€) Z Wy, pm,amap m'@p-
p.m,p',m'#0

If we now use the assumption (37) and the facts fhat< n, g < n, andwyg og <
47 R2¢—3 we see with appropriate choicess0&ndC that

H} > — In®%¢3% — 4gn®*¢¥4ne)~Y* — InR™1 — Cnpr® — CR*3(n + 1)
—CR*7 3 — pl®|(iy +1) — Ciyr?

If we finally insert the choices aR andr and use Lemma 7.2 we arrive at the bound in
the lemma. O
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Theorem 9.2 (Foldy's law for H}"). There existsa C > 0 such that if (pY/4¢)r3 > C
and (pY40)p=112 ¢, and w (1) (pY/*¢)~1 are less than C~1 then for any normalized
n-particle wave function ¥ we have

(v, H'W) > 5434 _ Cp5/4£3<a)(t)(p1/4£)‘1 F ()"t Y18(pl/4g)29/4
+p VB 0)712),  (38)
where I isdefined in Lemma 6.4 with » and R asin (36).

Proof. According to Lemma 9.1 we may assume that
nt3R? (W, 7, W)

2 C1<\p, (@00’00(;1\0 - ,063)2 + Z mp pm/amap m’ [7) lll>’ (39)

p,m,p’,m'#0
where C is at least as big as the constant in Lemma 9.1. We still assume that
(v, H'W) < 0.
We begin by boundingd; andd, using Lemmas 8.2 and 8.3. We have from Lemmas 7.2
and 8.3 that
\da| < Cp¥4e3(pY40) + Ct7rw ()22 p~Y4(p 40)®
< C[np‘1/4(pl/4£)3]2p5/4€3 <(p1/4£)—11+w(t)—z(p1/4£)—7)
< Clnp=Y4(pY40)312p5/4 03w (1) ~2(pM40) 7.

In order to boundi; we shall use (39). Together with Lemma 8.2 this gives (choosing
e = 1/2 say)

] < CE3R%n (W, 7, W) + 1 (\If (ﬁ+r_1 + Bog.00n — P+ 1)) \p) .
Inserting the choices forand R and using Lemma 7.2 gives
|d1] < Clnp™*(pM*0)*17p> ¢ (a><r)—2<p1/“fz>‘7 + p‘1/8<p1/4er”/2) ,

where we have also used that we may assume ghat®(p1/4¢)=%2 is small. The
assumption (33) now reads

(\If, HZr,R\I') < —Cp5/4€3 (w(t)72(pl/4£)77+p71/8(p1/4€)717/2)‘

If this is not satisfied we see immediately that the bound (38) holds.
_ ThusfromLemma8.1itfollows thatwe can find anormalizeghirticle wavefunction
W with

(\TJ,@\TJ) < Cnp_1/4(,01/4ﬂ)3 and (@,ﬁi@) < anp‘l/z(,ol/“IZ)6 (40)
such that

(‘D’ Hzr,R‘I’) (‘lf Hz R ) C,o5/4£3 (a)(t)_z(pl/4£)_7+,0_1/8(,01/42) 17/2)
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In order to analyze(\fl, Hén,r,R{i;) we proceed as in the beginning of Sect. 7. This

time we use Lemmas 4.1, 5.2, 5.3, 5.5, and 5.6 together with Lemma 6.4 instead of
Corollary 6.5. We obtain

n 1 N2, o~ 2 N~ o~
Hy, r = 3Wo0,00 (” —pt ) + ()" =2 (” —pt )”+ — 1o
—4n[p —nt 3 ny R? — 4nﬁiﬁ_3R2 —engpr t — e 18r 03 R%0n,

— eWoooor — D2+ (3=8) D Wy sy
p,m,p’,m'#0

2
~1 (n - pe3) Doo.00 — drn®/4e 34 (ney~Y4 — [543/

This time we shall however not choogesmall, but rather big. Note that since

wrr(x,y) <r -wehave Y wmp/)pm,a:;a;,am,ap < r~*ny(my — 1), which
p,m,p’,m'#0

follows immediately from

F k%
E wmp/’pm/amap/am/ap
p.m,p'.m'#0

- f / wr,R(x,y>( 3 um<x)up(y)ama,,> S @up(aya, dx dy.

p,m#0 p.m#0

We therefore have

H g > — In>%73% — amn®4=34 o)~ — CR% 370
— CU3R?|pl® — njfy — 4nns € 3R? — enyr ™t — e 7183 R0
— eCR2€7371\_2‘_ — sh\_zkrfl.

If we now insert the choices of and R, take the expectation in the state giveanay
and use (40) and the bound erirom Lemma 7.2 we arrive at

(q,, Hgl,r,RE/) > _ [n5/434 _ C,o5/4£3[(p1/4€)*1 +a)(t)*2(pl/4£)*l
F o) 20~ Y8(oY40) Y2 4 (1) "2~ VA (pY40)8 4 o~ Y8 (Y 4e) T/
+ e Y0 2(0Y40)° + s (1) 2p~ Y4 (o408 + 8,071/8(/)1/4@19/2].

If we now choose = w(r)~1pY/16(p1/4¢)=94 we arrive at (38). O

Completion of the proof of Foldy’slaw, Theorem 1.1. We have accumulated various errors

and we want to show that they can all be made small. There are basically two parameters
that can be adjusted,and:. Instead of? it is convenient to us& = p/4¢. We shall
chooseX as a function of such thatX — co asp — oo. From Lemma 7.1 we know

that for some fixed > 0 C~1p¢3 < n < Cpt3. Hence according to (31) withandR
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given in (36) we have that — — (%”)USA asp — oo if
()X — oo, (41)
oYX — oo, (42)
13X — oo, (43)
t — 0. (44)
The hypotheses of Theorem 9.2 are valid if (41), (43), (44), and
o Y12x -0 (45)

hold. From Lemma 7.2, for which the hypotheses are now automatically satisfied, we
have that: = p£3(1 + 0(p~Y8x%?) and from (45) we see thatis p¢3 to leading
order.

With these conditions we find that the first term on the right side of (38) is, in the
limit p — oo, exactly Foldy’s law. The conditions that the other terms in (38) are of
lower order are

(X/o(1)Y?5p~11%0x 5 0, (46)
o Y28x 0 (47)

together with (41).

It remains to show that we can satisfy the conditions (41-47). Condition (42) is
trivially satisfied since botl and X tend to infinity. Sinceo(t) ~ r~* for smalltr we
see that (43) is implied by (41). Condition (45) is implied by (47), which is in turn
implied by (41) and (46). The remaining two conditions (41) and (46) are easily satisfied
by an approriate choice of and: as functions forp with X — oo andtr — 0 as
p — oo. In fact, we simply nee@?/116;=16/29 5, x ~, =4,

The bound (35) has now been established. Hence Foldy’s law Theorem 1.1 follows
as discussed in the beginning of the section.

Appendix
A. Localization of Large Matrices

The following theorem allows us to reduce a big Hermitean maixto a smaller
principal submatrix without changing the lowest eigenvalue very much. (ftsipra-
(resp. infra-) diagonal of a matrid is the submatrix consisting of all elemeiats «
(resp.aitk.i)-)
Theorem A.1 (L ocalization of largematrices). Supposethat Aisan N x N Hermitean
matrixand let A¥, withk = 0, 1, ..., N — 1, denote the matrix consisting of the k™ supra-
and infra-diagonal of A. Let v € CV be a normalized vector and set d; = (v, AXy)
and A = (, Ay) = YN "3 dy. ( need not be an eigenvector of A.)
Choose some positiveinteger M < N. Then, with M fixed, thereissomen € [0, N —
M and some normalized vector ¢ € CV with the property that ¢; = O unlessn + 1 <
j<n+ M (i.e, ¢ haslength M) and such that

C M-1 N-1
@ Ap) <ht o5 > Kodd +C ) ldel, (48)
k=1 k=M

where C > Oisauniversal constant. (Note that the first sum startswith k = 1.)
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Proof. It is convenient to extend the matrig; ; to all —co < i, j < +oo by defining

A;; = 0unless 1< i, j < N. Similarly, we extend the vectaf and we define the
numbersd; and the matrix4* to be zero wherk ¢ [0, N — 1]. We shall give the
construction forM odd, theM even case being similar.

Fors € Zsetf(s) = Ay[M + 1 — 2|s|]if 2|s| < M and f(s) = 0 otherwise.
Thus, f (s) # 0 for preciselyM values ofs. Also, f(s) = f(—s). Ay is chosen so that
ZS f(S)Z =1

For eachn e Z define the vectop™ by ¢§m> = f(j — m)yj. We then define
KM = (™ Ap™) — (A + o) (0™, ™). (The numbew will be chosen later.)
After this, we definek = 3", K. Using the fact tha}_, f(s)? = 1, we have that

Z(¢(m)’ Ap™) = ZZW’(M)’ Akpmy = ZZf(s)f(k + ), Ay)
m $ k

m k=0
=YY f6)fk+5)d
s k=0
and
=2 @™, ") =" f@OW A ) =D Y f()%d (49)
m s k=0 s k
Hence
N-1
K:ZK(m)z—U—dej/k (50)
m k=1
with
1
ve=5) lF&) - fes+R]% (51)

Letus choose = — Y~ ' diyx. Then,Y", K = 0. Recalling that not all of the
»™ equal zero, we conclude that there is at least one valuesafch that (i)™ # 0
and (ii) ("), Ap"™) < (L +0) (¢, o).

This concludes the proof of (48) except for showing thak C% forall M and
k. This is evident from the easily computable latgeasymptotics in (51). O

B. A Double Commutator Bound

LemmaB.1. Let — Ay be the Neumann Laplacian of some bounded open set O. Given
6 € C*(0)withsupp| V| C O satisfying [|3;0] < Ct7L,118;9,;6] < Ct=2,1|3;9; 0|l
< Ct73 for some0 < randall i, j, k = 1, 2, 3. Thenfor all s > 0we havethe operator

inequality
—AN)? —A
AT ol g s e DAY o2 (52)
—Ay 4572 —Ay +s572
We also have the norm bound
—An 2.-2 | 4.-4
[[m,@],@} < C(S t + 57t ) (53)
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Proof. We calculate the commutator

[ (—AN)2

—AnN + 572’

0 —S_Z;[—A 9];(—A)
N —AN + 572 N —AN +572 N

AN [—Aw.6].
_A_i_fz N

Likewise we calculate the double commutator

(—Ap)? —Ay —Ay

AN ale|l= - ——2N  ([—Ay.0]0] — =N
|:|:—AN+S_2 —AN+s 2[[ N, 619] —Ay 452

—ApN
—AN+S_2+ —AnN +

_ 1 1
—2s 4m [-An. 0] TAyts2 [0, —AN]

+[[—An.0106] — [[—An.0]6] (54)

1
—Ay +572

Note thaf[— Ay, 6] 8] = —2 (V6)? and thus the first term above is positive.
We claim that

[—AN.01[0, —AN] < —Ct2Ay + Ct 74 (55)

To see this we simply calculate

3
[—An, 0110, —AN] = — Z (4ai(ai9)(aj9)aj + (070)(3%0) + 2(8i9)(8i8]29))
i,J
The last two terms are bounded By 4. For the first term we have by the Cauchy-

Schwarz inequality for operator®A* + AB* < s 1AA* 4+ ¢BB*, for all ¢ > 0,
that

3 3 3
— D 0:(36)(0;6)9; = Y (:(3:6)) (9;(3;0))" < =3 3(3:6)(3:6)9;
i,j i,j i

and this is bounded above by8r ~2A y and we get (55). Inserting (55) into (54), recalling
that the first term is positive, we obtain

_Ap)? _ _
H& 9} ,9} > Ve oN o AN (ypy2

—Ay 4572 —Ay 4572 —AN + 5
—A
—or2 TN g4
—AN +572
Again using the Cauchy—Schwarz inequality, we have

—A —A
N +2 N
—AN+52 T —AN+s”

1/2 1/2

—A —A —A

< 22 __TAN (V0)4 __TON 4+ 2172 __TON
—AN +572 —AN +572 —AN +s572

2(V0)?

5(VO)?
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and (52) follows.
The bound (53) is proved in the same way. Indeed,

AN plle] = —sm2 1 [[—Aw, 6], 0] 1
—AN—i-S_z, ’ = —AN+S_2 N> T —AN+S_2

L, 1 1 1

+ 2s —AN O] ————= [0 = AN] ——,
—AN+S’2[ N ]—AN+S’2[ v —Ay 4572

and (53) follows from{[— Ay, 6] 6] = —2(V6)? and (55). O
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