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Abstract: We study finite-dimensional representations of quantum affine algebras using

g-characters. We prove the conjectures from [FR2] and derive some of their corollaries.

In particular, we prove that the tensor product of fundamental representations is reducible
if and only if at least one of the pairwise normalizRematrices has a pole.

Introduction

The intricate structure of the finite-dimensional representations of quantum affine alge-
bras has been extensively studied from different points of view, see, e.g., [CP1,CP2,CP3,
CP4,GV,V,KS,AK,FR2]. While a lot of progress has been made, many basic questions
remained unanswered. In order to tackle those questions, E. Frenkel and N. Reshetikhin
introduced in [FR2] a theory af-characters for these representations. One of the moti-
vations was the theory of deformétl-algebras developed in [FR1]: the representation
ring of a quantum affine algebra should be viewed as a defoM@dgebra, while the
g-character homomorphism should be viewed as its free field realization. The study of
g-characters in [FR2] was based on two main conjectures. One of the goals of the present
paper is to prove these conjectures and to derive some of their corollaries.

Let us describe our results in more detail. lgebe a simple Lie algebrg be the
corresponding non-twisted affine Kac-Moody algebra,@pglbe its quantized universal
enveloping algebra (quantum affine algebra for short). Denofethg set of vertices of
the Dynkin diagram of. Let RepU, g be the Grothendieck ring @f, g. Theg-character
homomorphism is an injective homomorphiggnfrom RepU, g to the ring of Laurent
polynomials in infinitely many variabley = Z[Yiil]iel;ae((lx- This homomorphism
should be viewed asg@analogue of the ordinary character homomorphism.

Indeed, letG be the connected simply-connected algebraic group corresponding to
g, and letT be its maximal torus. We have a homomorphigm RepG — FunT
(where Furfl” stands for the ring of regular functions @i, defined by the formula
(x(V))(@) = Try ¢, forallr € T. Upon the identification of Re@ with RepU, g and of
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FunT with Z[y*];c;, wherey; is the function or” corresponding to the fundamental
weightw;, we obtain a homomorphism: RepU, g — Z[y:™];;. One of the properties
of x, is that if we replace each! by y=* in x,(V), whereV is aU,g-module, then
we obtainX(V|Ugg).

The two conjectures from [FR2] that we prove in this paper may be viewed as
analogues of the well-known properties of the ordinary characters. The first of them,
Theorem 4.1, is the analogue of the statement that the character of any irreducible
U, g-moduleW equals the sum of terms which correspond to the weights of the form
A= i nici,n; € Zy, wherex = Y ., Liw;,l; € Z4, is the highest weight o,
ande;, i € I, are the simple roots. In other words, we hayéW) = m (1+ Zp Mp),

wherem = [];¢; yf", and eachV/,, is a product of factora.‘l,j € I, corresponding
to the negative simple roots. Theorem 4.1 says that for any irredubijgiemodule
V,xg(V) =mp(1+ Zp M), wherem is a monomial inY; ,,i € I,a € C*, with
positive powers only (the highest weight monomial), and edghis a product of factors
AJ‘% Jj € 1, c € C*, which are they-analogues of the negative simple rootgof

The second statement, Theorem 5.1, gives an explicit description of the image of the
g-character homomorphisiy),. This is a generalization of the well-known fact that the
image of the ordinary character homomorphigris equal to the subring of invariants
of Z[yl.il],-e, under the action of the Weyl grouly of g.

Recall that the Weyl group is generated by the simple reflections 7. The subring
of invariants ofs; in Z[y];<; is equal to

K; = Z[y;-cl]j;si ® Zly: + yia,-_l],
and hence we obtain a ring isomorphism R ~ ﬂ K;.

iel

In Theorem 5.1 (see also Corollary 5.7) we establighihanalogue of this isomor-
phism. Instead of the simple reflections we have the screening opefatore 1,
introduced in [FR2]. We show that Iy, equalsﬂ Ker S;. Moreover, Kers; is equal to

iel
Ki = ZIY ) piraccs ® LYib + YipApp, Tpecs-
Thus, we obtain a ring isomorphism REpg =~ ﬂ K.
iel

These results allow us to construct in a purely combinatorial wayttiearacters of
the fundamental representationslffg, see Sect. 5.5.

We derive several corollaries of these results. Here is one of them (see Theorem 6.7
and Proposition 6.15). For each fundamental weightthere exists a family o/, g-
modulesV,, (a), a € C* (see Sect. 1.3 for the precise definition). These are irreducible
finite-dimensional representationsi@fg, which have highest weigh; if restricted to
U, g. They are called the fundamental representatiotig,gf(of level 0). According to a
theorem of Chari-Pressley [CP1,CP3] (see Corollary 1.4 below), any irreducible repre-
sentation o/, g can be realized as a subquotient of a tensor product of the fundamental
representations. The following theorem, which was conjectured, e.g., in [AK], describes
under what conditions such a tensor product is reducible.

Denote by " the dual Coxeter number gf and byr¥ the maximal number of edges
connecting two vertices of the Dynkin diagramgof-or the definition of the normalized
R-matrix, see Sect. 2.3.
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Theorem. Let {Vj}r=1
tions of U, g.
Thetensor product V1 ®. ..® V, isreducibleif and onlyif for somei, j € {1,... ,n},
i # j,thenormalized R-matrix Ry, v, (z) hasapoleat z = a;/a;.
In that case a; /a; is necessarily equal to g¥, where k is an integer, such that 2 <
k| < rvhV.

,,,,,

n, Where Vi = V., (ax), be a set of fundamental representa-

The paper is organized as follows. In Sect. 1 we recall the main definitions and results
on quantum affine algebras and their finite-dimensional representations. In Sect. 2 we
give the definition of the-character homomorphism and list some of its properties. In
Sect. 3 we develop our main technical tool: the restriction homomorphign&ections
4 and 5 contain the proofs of Conjectures 1 and 2 from [FR2], respectively. In Sect. 6
we use these results to describe the structure ofjtbbaracters of the fundamental
representations and to prove the above Theorem.

The results of this paper can be generalized to the case of the twisted quantum affine
algebras.

In the course of writing this paper we were informed by H. Nakajima that he obtained
an independent proof of Conjecture 1 from [FR2] in th® E case using a geometric
approach.

1. Preliminaries on Finite-Dimensional Representations of U, g

1.1. Root data. Let g be a simple Lie algebra of rank Let #¥ be the dual Coxeter
number ofg. Let (-, -) be the invariant inner product an normalized as in [K], so
that the square of the length of the maximal root equals 2 with respect to the induced
inner product on the dual space to the Cartan subaldgebfa (also denoted by, -)).
Denote byl the set{l, ..., ¢}. Let{«a;};c; and{w;};c; be the sets of simple roots and
of fundamental weights af, respectively. We have:
o, o
( 12 l)(sl]
LetrY be the maximal number of edges connecting two vertices of the Dynkin diagram
of g. Thus,r¥ = 1 for simply-lacedy, r¥ = 2 for By, Cy, F4, andr” = 3 for Go.

In this paper we will use the rescaled inner product

(o, wj) =

('v ) - rV(_’ >
onh*. Set
D =diag(ry, ..., re),
where
(o) s o)
ri = 2 =r 2 (1-1)

Ther;’s are relatively prime integers. For simply-lacggdall r;'s are equal to 1 and) is
the identity matrix.
Now letC = (C;j)1<i, j<¢ be theCartan matrix of g,

Cii — 2(ei, )
Y (g )
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Let B = (B;j)1<i, j<¢ be the symmetric matrix
B =DC,
i.e.,Bij = (a;j,aj) = r¥ia;, aj).
Letg € C* be such thaly| < 1. Sety; = ¢'i, and
9" —q"
[n], = ———.
1 g—q1
Following [FR1,FR2], define thé x ¢ matricesB(q), C(q), D(g) by the formulas
Bij(q) = [Bijlg,
Cij(q) = (gi + 611-_1)5:;/ + (1 =68)ICijly,
Dij(q) = [Dijlg = 8ijlrily-
We have:
B(q) = D(q)C(q).

Let C(¢) be the inverse of the Cartan matiixq), C(¢)C(q) = Id. We will need
the following property of matri>xC(g).

Lemma 1.1. All coefficients of the matrix 5(q) can be written in the form

. i jel, (1.2)

where C; i(9),d(q) are Laurent polynomialsin g with non-negativeintegral coefficients,
symmetric with respect to the substitution ¢ — ¢ 1. Moreover,

degCl;(q) < degd(q), i jel.
Proof. We write here the minimal choice dflq), which we use in Sect. 3.2:

At d@) =q"+q" 2+ +q7",

Be: d(g) = g2 14423 4. 4421
Ce:d@) =q"+q7

Di: d(g) = (q+q g +qh,
Eg: d(g) = (¢*+1+4 % +q7®.
E7: d(g) =(q+q 4 +q7.

Eg: d(q)=(q+q )@ +q").
Fa:dq)=q+q7°

Ga: dq) =q%+qC

For Lie algebras of classical series, the statement of the lemma with the dbpve
follows from the explicit formulas for the entrigS;;(¢) of the matrixC(g) given in

Appendix C of [FR1]. For exceptional types, the lemma follows from a case by case
inspection of the matri(¢). O
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1.2. Quantum affine algebras. The quantum affine algebi, g in the Drinfeld—Jimbo

realization [Drl,J] is an associative algebra o¢mwith generators»ci kil i =
0,...,¢),and relations:

k~kil = kilk' =1, kikj = kjki,
ki xik 1= q ’/)ci
ki —k;1

)
qgi — 4;

[x;", x; 1 =38

1-G;)

Z( 1)r[1 C’f} () DT =0, i #
qi

Here(C;j)o<i, j<¢ denotes the Cartan matrix 9f
The algebral, g has a structure of a Hopf algebra with the comultiplicatioand
the antipodes given on the generators by the formulas:

A(ki) = ki ® ki,
A()c"')=)c+®1+k-®x+
Ax;) = x; ®k +1®x,

SO = —xTki,  SG) =k, SGEEH =k

1

We define &-gradation orU, g by setting: degy = +1, degx* = degk; = 0,i €
I={1,...,¢.

Denote the subalgebra of,g generated by, x (resp.k*t, x7), i =0,... . ¢,
by U,b, (resp..U,b_).

The algebraJ, g is defined as the subalgebral@fg with generators:*, k!, where
iel.

We will use Drinfeld’s “new” realization ot/ g, see [Dr2], described by the following
theorem.

Theorem 1.2 ([Dr2,KT, LSS, B). Thealgebra U, g hasanother realization asthe alge-
brawith generators x;’, (i € I,n € Z), k™ (i € I), hi, (i € I,n € Z\0) and central
elements ¢*1/2, with the following relations:

kik; =k~k,~, Kihjn = ki

] n'ti
. + Flnl/2,+
i, 6] = 0Byl
+ + +B;; .+ :I: :I:B +  + +
Xint1¥Xjm — 4 l]xj m¥iny1 =4 l]xl X jm+1 X m1%ino
Ut ] = b = [ Biyly
ins Njml = On,—m — N Djj 9 _—1°
n q—q7*
(n—m)/2 4+ —(n m)/2
[ T oxT 1=6;; ¢ ¢i,"+ ¢z n+m
xi,n’xj,m Y ?

qz'—51f
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s
Z Z k| + + + + +
=D |:k:| Kinaw * Mz im®ingary 0 Yinag = 0,
qi

neXs k=0
S==l—-CU,

for all sequences of integersny, ... ,ns, andi # j, where X; isthe symmetric group
on s letters, and ¢ ’s are determined by the formula

in

o o0
OF ) =Y ¢ ut =k exp(:l:(q - HY hi,imuim) . @3
n=0

m=1

For anya € C*, there is a Hopf algebra automorphisgnof U,g defined on the
generators by the following formulas:
w(x,) = a'xt,.  Ta(¢r,) =a"$i, (1.4)

(Y =2, k) =k,

foralli € I,n € Z. Given aU,g-moduleV anda € C*, we denote by (a) the
pull-back ofV underz,.
P
4

Define new variables=",i € I, such that

L=[]%" &k =kk. (1.5)
iel
Thus, whilek; corresponds to the simple roet, E corresponds to the fundamental
weight w;. We extend the algebr&l, g by replacing the generatov‘<$t1,i € I with
kL, i e 1. From now ont, g will stand for the extended algebra.
Letq? = kZ...k2. The square of the antipode acts as follows (see [Dr3]):

S2(¥) = 1,2 (@ Pxg?),  Vx € UgB. (1.6)

Let wo be the longest element of the Weyl groupgofLeti — i be the bijection
I — I, such thatwo(«;) = —o;. Define the algebra automorphism : U,g — U, g
by
wo(ki) = k:, wo(hin) = h; wo(x?j,) = an~ 1.7)
We have:wS = Id. Actually, wo is a Hopf algebra automorphism, but we will not use
this fact.

1.3. Finite-dimensional representations of U,g. In this section we recall some of the
results of Chariand Pressley [CP1,CP2,CP3,CP4] on the structure of finite-dimensional
representations df,g.

Let P be the weight lattice of. It is equipped with the standapértial order: the
weight is higher than the weight if A — u can be written as a combination of the
simple roots with positive integral coefficients.

A vectorw in aU,g-moduleW is called a vector of weighit € P, if

ki -w =qg* Dy, i€l (1.8)
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A representatior of U, g is said to be of type 1 if it is the direct sum of its weight
spacesV = @;cp Wy, whereW, = {w € Wlk; - w = g™ w}. If W, # 0, theni is
called a weight ofw.

Arepresentatio of U,gis called of type 1 it-Y/2 acts as the identity oW, and ifV
is of type 1 as a representationldfg. According to [CP1], every finite-dimensional ir-
reducible representation bf,g can be obtained from a type 1 representation by twisting
with an automorphism o/, g. Because of that, we will only consider type 1 represen-
tations in this paper.

A vectorv € V is called ahighest weight vector if

xl-jLn v =0, qbijfn V= ‘/ffnv’ 2y = v, Viel,neZ, (1.9
for some complex numbel;tslfn. Atype 1 representatio¥ is ahighest weight represen-

tationif V = U,g- v, for some highest weight vector In that case the set of generating
functions

oo
+ + +n .
Vi () = § :wi,inu ’ iel,
n=0

is called thehighest weight of V.

Warning. The above notions of highest weight vector and highest weight representation
are different from standard. Sometimes they are called pseudo-highest weight vector
and pseudo-highest weight representation.

Let P be the set of all-tuples(P;);c; of polynomialsP; € Clu], with constant
term 1.

Theorem 1.3 ([CP1,CP3].

(1) Every finite-dimensional irreducible representation of U, g of type 1 is a highest
weight representation.

(2) Let vV bealfinite-dimensional irreducible representation of U, g of type 1 and highest
weight (W (u));c;. Then, there exists P = (P;);c; € P such that

ceg ) Pitu; )

W) = q; :
! ! P;(ug;)

(1.10)

as an element of C[[x*1]].
Assigning to V the I-tuple P € P defines a bijection between P and the set of
isomor phism classes of finite-dimensional irreducible representations of U, g of type
1. Theirreducible representation associated to P will be denoted by V (P).

(3) Thehighest weight of V (P) considered asa U, g-moduleisi = Y, ; degP; - w;, the
lowest weight of V (P) isA = — Y ic; degP; - wz, and each of them has multiplicity
1.

(4 If P = (Pi)ier € P,a € C*, andif 7 (V(P)) denotes the pull-back of V (P) by the
automorphism ., we have 7(V(P)) = V(P“) as representations of U,g, where
P = (P,'a)iel and Pl.”(u) = P;(ua).

(5)For P, Q € P denoteby P ® Q € P the I-tuple (P;Q;)ic;- Then V(P ® Q) is
isomor phic to a quotient of the subrepresentation of V (P) ® V (Q) generated by the
tensor product of the highest weight vectors.
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An analogous classification result for Yangians has been obtained earlier by Drinfeld
[Dr2]. Because of that, the polynomiafs(«) are called Drinfeld polynomials.

Note that in our notation the polynomial’ (u) correspond to the polynomials
P; (uqi_l) in the notation of [CP1,CP3].

For each € I anda € C*, define the irreducible representativp, (a) asV(Pfj)),
WherePfj) is thel-tuple of polynomials, such th#; (v) = 1—ua andP;(u) =1,V #
i.We callV,, (a) thei th fundamental representation of U,g. Note that in general,, (a)
is reducible as &, g-module.

Theorem 1.3 implies the following

Corollary 1.4 ([CP3). Any irreducible finite-dimensional representation V of U, g oc-
curs as a quotient of the submodule of the tensor product Vo, (a1) ® ... ® Vi, (an),
generated by the tensor product of the highest weight vectors. The parameters (w;, , ax),
k=1,...,n,areuniquely determined by V up to permutation.

2. Definition and First Properties of g-Characters

2.1. Definition of g-characters. Let us recall the definition of theg-characters of finite-
dimensional representations G g fromA[FRZ]

The completed tensor produtl,g ® U,g contains a L special elemefit called
the universalR-matrix (at level 0). It actually lies i/, b, ® U,b_ and satisfies the
following identities:

A(x) = RA(X)R™, Vx € U,3,
(A Qid)R = RI3R?3, (id ®A)R = RIPR12,

For more details, see [Dr3, EFK].
Now let (V, y) be a finite-dimensional representationlgfg. Define the transfer-
matrix corresponding t& by

ty =ty(2) =Try (my ) ®id)(R). (2.1)
Thus we obtain a map, : RepU,g — U,b_[[z]], sendingV to ry (z).

Remark 2.1. Note that in [FR2] there was an extra facgéf in formula (2.1). This factor
is inessential for the purposes of this paper, and therefore can be dropped.

Denote byU, g the subalgebra df,, g generated by= ki, hi,,n <0,r <0,i €.

Ln’

It follows from the proof of Theorem 1.2 thalib C U,,g As a vector space‘.(qg can
be decomposed as follows, § = Ui ® Ugh ® Uy, whereUg i (resp.,Uy b)is
generated by:= ,i € I, n < 0 (resp. ki h in,i € I,n <0). Hence

nn’
Usg = UqE ® (Uqg8 - (Ughi)o + (Ughi-do - UgB) .

where(U,1+)o stands for the augmentation ideallgfn.. Denote byh, the projection
U,d — U,h along the last two summands (this is an analogue of the Harish-Chandra
homomorphism). We denote by the same letter its restrictidi,to._.

Now we define the map, : RepU,g — Uqﬁ[[g]] as the composition o,
RepUyg — Ugb-[[z]] andhg[[z]] : Ugb_[[z]] — Ugbllz]l.
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To describe the image of, we need to introduce some more notation.
Let

i = Z Eji(qm)hj,m, (2.2)

jel

whereE(q) is the inverse matrix t@’'(¢) defined in Sect. 1.1. Set

Yia = EleXp<—(q —q7h Zﬁi,nz"a") . aeCx (2.3)

n>0

We assign td;; the weighttw;

We have the ordinary character homomorphismRepU, g — Z[y*ic;: if V =
®,. V. is the weight decomposition df, thenx (V) = 3, dimV,, - y*, where for
pn=Y,c;miw; wesety* =[],.,; »'"'. Define the homomorphism

B: Z[Yiil]iel;ae(cx — Z[)’[il]iel
sendingy;=! to y=*, and denote by
res: RepU,g — RepU,g

the restriction homomorphism.
Given a polynomial rin@[x11yc 4, we denote b [xF1]4e 4 its subset consisting
of all linear combinations of monomials 3! with positive integral coefficients.

Theorem 2.2 ([FR2]).

(1) x4 isan injective homomorphism from RepU, g to Z[Yiil]iel;aecx C UqE[[z]].

(2) For any finite-dimensional representation V of U, g, x4 (V) € Z-i—[Yiil]ie J:qeCx -
(3) Thediagram

~ X
RepUqg s Z[Yiil]iel;ae(cx
lres lﬁ
X
RepU,g —— Z[yl-ﬂ]ia

is commutative.
(4) RepU,g is a commutative ring that is isomorphic to Z[#; 4lies.qccx, Where ; 4 is
the class of V,,, (a).

The homomorphism
Xq ' RepUq§—> Z[Yiil]ie[;ae(cx

is called theg-character homomorphism. For a finite-dimensional representatignof
U,8, x4(V) is called theg-character of V.
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2.2. Spectra of ®*(u). According to Theorem 2.2(1), the-character of any finite-
dimensional representatiohof U, g is a linear combination of monomials K= with
positive integral coefficients. The proof of Theorem 2.2 from [FR2] allows Us to relate
the monomials appearing ji (V) to the spectra of the operatab$ (z) on'V as follows.

It follows from the defining relations that the operat(bﬁ commute with each other.
Hence we can decompose any representatiafi U, g into a direct sun¥V = @V, v

of generalized eigenspaces
Vi) = {x € V| there existsp, such that (¢;, — )7 -x =0,Vi € I.n € Z}.

Slncegﬁ0 = kil all vectors inV(y.i) have the same weight (see formula (1.8) for the

definition of weight). Therefore the decompositionlointo a direct sum of subspaces

V(yi) is a refinement of its weight decomposition.

Givena collectior(yii) of generalized eigenvalues, we form the generating functions

+ + o+
() = Zyi,:tnu 8

n>0

We will refer to each collectior{\l“f(u)}ie, occurring on a given representatidhas
the common (generalized) eigenval ues of CIDii(u),i e I,onV,andto dimV(y_i) as the

multiplicity of this eigenvalue.

LetBy be a Jordan basis ¢fh i € I,n € Z. Consider the modul®& (z) = 7(V),
see formula1.4). ThenV (z) = V as a vector space. Moreover, the decomposmon inthe
direct sum of generalized eigenspaces of operaitﬁ,gsjoes not depend af) because

the action 0f¢>iin on V and onV (z) differs only by scalar factors”. In particular,
By is also a Jordan basis faﬁfn acting onV(z) forall z € C*. If v € By is a
generalized eigenvector with common eigenval{lé%(u)},-el, then the corresponding

common eigenvalues anin V (z) are{Fii (zu)}ier
The following result is a generalization of Theorem 1.3.

Proposition 2.3 ([FR2]). The eigenvalues I':"(u) of @3 () on any finite-dimensional
representation of U, g have the form:

deng degR; 0i (MQ, )R (ugi)
Qi (ugi)Ri(ug; ™)’

aselements of C[[u*1]], where Q; (1), R; (1) are polynomialsin u with constant term 1.

) = (2.4)

Now we can relate the monomials appearingiV) to the common eigenvalues
of ®Fu)onV.

Proposition 2.4. Let V be afinite-dimensional U, g-module. There is a one-to-one cor-
respondence between the monomials occurring in x, (V) and the common eigenvalues

of ®F(u),i € I, on V. Namely, the monomial

l;

]‘[ HY, u”]_[ fbi (2.5)

iel \r=1 s=1
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corresponds to the common eigenvalues (2.4), where

ki l,‘
0i@=[]0-za), R@=[]a-z2b), el (2.6)
r=1 s=

The weight of each monomial equalsthe weight of the corresponding generalized eigen-
space. Moreover, the coefficient of each monomial in x, (V) equals the multiplicity of
the corresponding common eigenvalue.

Proof. Denote by, n.. the subalgebra df, g generated by ,ielnel. LetE(q)
be the inverse matrix t®(¢) from Sect. 1.1. The foIIowmg formula for the universal
R-matrix has been proved in [KT,LSS, Da]:

R =RTRORT, (2.7)
where
1)2

_exp< Zzn(q 1 hin ®h —nZ) (2.8)

n>0iel ql _ql

(here we use the notation (2.2 ¢ Uy ® Ugnig, andT acts as follows: ifx, y
satisfyk; - x = g*®)x ki -y = g%y, then
T xQy=qg *"x®y. (2.9)
By definition, x, (V) is obtained by taking the trace ¢ty ) ® id)(R) overV and
then projecting it o/, h[[z]] using the projection operathy . This projection eliminates

the factorR ~, and then taking the trace eliminaf®$ (recall thatt, 1, acts nilpotently
on V). Hence we obtain:

xg(V) =Try [exp( ZZ nq -

n>0iel ql ql

71)2
ﬂv(/’l, n) ®h ,—n% ) (my ® 1)T:| .

(2.10)

The trace can be written as the sum of tesmscorresponding to the (generahzed)
eigenvalues of; , on the vectors of the Jordan basi®y of V for the operatoras
(and hence fok; ).

The eigenvalues obf(u) oneachvector € By are given by formula (2.4). Suppose
thatQ; (u) andR; (u) are given by formula (2.6). Then the eigenvalué of onv equals

nig —q=1)

n —n ki l;
4 —4; n n
— 1, (Z(air) - Z(biS) ) , n>0. (2.11)
r=1 s=1

Substituting into formula (2.10) and recalling the definition (2.3Yof we obtain
that the corresponding term, in x, (V) is the monomial (2.5). O
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LetV = V(P), where
P =[]@-ua). iel (2.12)

Then by Theorem 1.3(3), the modutehas highest weight = )", _; degP; - w;, which
has multiplicity 1. Proposition 2.4 implies thgt (V) contains a unique monomial of
weighti. This monomial equals

n;

1_[ 1_[ Yi)alii). (2.13)

iel k=1

We call it thehighest weight monomial of V. All other monomials iny, (V) have lower
weight tham..

A monomial mZ[Y ],E, aeC> is calleddominant if it does not contain factor;”, 1
(i.e., ifitis a product oﬂ’l «'S in positive powers only). The highest weight monomial is
domlnant butin general the highest weight monomial is not the only dominant monomial
occurringiny, (V). Nevertheless, we prove belowin Corollary 4.5 that the only dominant
monomial contained in thg-character of a fundamental representatigQn(a) is its
highest weight monomid; ,.

Note that a dominant monomial has dominant weight but not all monomials of dom-
inant weight are dominant.

Similarly, a monomial iriZ[Yil],e, accx is calledantidominant if it does not contain
factorsY; , (i.e., ifitisa product 01Y 'sin negative powers only). The roles of dominant

and anudommant monomials are S|m|Iar see, e.g., Remark 6.19. By Corollary 6.9, the
lowest weight monomial is antidominant.

Remark 2.5. The statement analogous to Proposition 2.3 in the case of the Yangians has
been proved by Knight [Kn]. Using this statement, he introduced the notion of character
of a representation of Yangiano

2.3. Connection with the entries of the R-matrix. We already described tliecharacter
ofU,g moduIeV in terms of universak-matrix and in terms of generalized eigenvalues
of operatoraﬁ . Itallows us to describe thecharacter o¥/ in terms of diagonal entries
of R-matrices actmg onthetensor produ€i® V,,, (a) with fundamental representations.
We will use this description in Sect. 6.

Define

Aia = k,-leXp<—(q —q7 Zhi,_nz"a"> . aeC* (2.14)

n>0

Using formula (2.2), we can expreds, in terms ofY; ;,’s:

R -1 1y 1 y-ly-1
Aia = Yiag Yi,aq,«_l l—[ Y l_[ YJ aq / ag~1 1_[ Y/ anY] a Y/ ag=2 (2.15)
Cji=—1 Cji=—2 Cji=—3

Thus,A;, € Z[Y h],el pecx, and the weight of4; , equalsy;.
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Let V.andW be irreducible finite-dimensional representationg/g§ with highest
weight vectors andw. Let Ryw (z) € End(V ® W) be the normalize®-matrix,

Ryw (@) = fyw@ (v @ mw)(R),
where fyw (z) is the scalar function, such that

Ryw(@@®w) =wv. (2.16)

In what follows we always consider the normalizRematrix Ry w (z) written in the
basisBy @ By .

Recall the definition of the fundamental representatigria) from Sect. 1.3. Denote
its highest weight vector by, .

Lemma 2.6. Let v € By and suppose that the corresponding monomial mz, in x, (V)
isgiven by

My =m+M1_[A_l (2.17)

i,ag’

where M isa product offactorsAl ,1, beC*, jel,j#i.Thenthediagonal entry of
the normalized R-matrix ?v, Vi (b) (z) corresponding to the vector v ® v, is

1—axzb™ ‘L
. 2.18
]_[q T ao e (2.18)

(ﬁv, Vo (0) (Z))

V@V, , V@V,

Proof. Recall formula (2.7) fofR. We haveR™ (v ® vy,) = 0; v @ vy, iS a generalized
eigenvector ofR%; and R+ (v ® Vy,;) IS @ linear combination of tensor produats®

y € By ® %Vwi ), wherey has a lower weight tham,,. Therefore the diagonal
matrix element ofR onv ® v,, € V(2) ® V,, (b) equals the generalized eigenvalue of
(v () @ 7y, 1)) (R®) 0NV & vy, -

On the other hand, as explained in the proof of Proposmon 2.4, the monamial
equal to the diagonal matrix element(@fy ;) ® 1) (R%) corresponding te. Therefore
the diagonal matrix element & corresponding te ® v,, equals the eigenvalue of,
(considered as an elementl@JH[[z]]) 0N vy, .

In particular, ifv is the highest weight vector, then the corresponding monomji&
the highest weight monomial ... Therefore we find that the diagonal matrix element of
the non-normalize®-matrix corresponding to ® v, equals the eigenvalue gf;. on
vy, - By formula (2.16) the diagonal matrix element of the normaliRemhatrix equals 1.
Therefore the eigenvalue af, onv,, equals the scalar functiofy, Vo (b) (z). Therefore

we obtain that the diagonal matrix element of the normaliRechatrix ﬁv,vw,- (@)
corresponding to the vecto®wv,,, is equal to the eigenvaluemfvm;l onwv,, . According

to formula (2.14)A; , = CDI-_(z_la_l). Therefore, ifm, is given by formula (2.17), we
obtain from formula (1.10) that this matrix element is given by formula (2.18).

Note that by Theorem 4.1 below every monomial occurring ingttetaracter of an
irreducible representatiovi can be written in the form (2.17).



36 E. Frenkel, E. Mukhin

3. The Homomor phisms z; and Restrictions

3.1. Restriction to Uqﬁj. Given a subsef of 1, we denote by/, g, the subalgebra of
U, g generated by kY ;i € J,n € Z,r € Z\0. Let

nn’
resy : RepU,§ — RepU,g,
be the restriction map argl, be the homomorphism

Z[Yz a ]ZEI ;aeCx = Z[Y ]tel;ae(CXa

sending? ! to itself fori € J and to 1 fori ¢J.
Accordlng to Theorem 3(3) of [FR2], the diagram

~ X
RepUqg —s Z[Y,':’I:al]iel;ae(CX

lresj lﬂ,

~ Xq.J +1
RepUqu R Z[Yi’a ]ie];ae(CX

is commutative.
We will now refine the homomorphisngly and reg.

3.2. The homomorphism ;. Consider the elemenfs)n defined by formula (2.2) and
k! defined by formula (1.5).

Lemma3.1.

1 :l:r,B,J +
kxjnkl Xy

> [nri]
Ui, X = 83— =L TV2E

~ [nrily " —c7"
[hin, hjm]l=26ii6n—m—————.

i,nsttjm i,j91,—m q— C[ﬁl
Inparticular, k1, h; i € J,n € Z\0,where J = I —J, commutewith the subalgebra
Uqaj of Uqﬁ.
Proof. These formulas follow from the relations given in Theorem 1.2 and the formula
B(9)C(q) = D(q). O

Denote b)Uth the subalgebra df, g generated byi h, a0 € J,neZ\0.Then

U,8; ®U, b} is naturally a subalgebra @f,g. We can therefore refine the restriction
from U, g- modules toU, g, -modules by considering the restriction frdjg-modules

to U,8; ® U,hr-modules.

Thus, we look at the common (generalized) eigenvalues of the opeﬁfﬁﬂom,n, i€
J,andk, iy, i€ 7. We know that the eigenvalues bf,, have the form (2.11). The
corresponding eigenvalue bf ,, equals

[n]l] chl(q )[r]]q” Z(a]r) - Z(b”)n s n > 0. (3.1)

jel
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According to Lemma 1.1G j; (x) = 53i(x)/d(x), Whereﬁ}i(x) andd (x) are certain
polynomials with positive integral coefficients (we fix a choice of sd¢h) once and
for all). Therefore formula (3.1) can be rewritten as

nl, [< d
im)’ — di))" |, 3.2
e > (cim) 1;( ») 3.2)

m=1

wherec;,, andd;, are certain complex numbers (they are obtained by multiplying
andb ;; with all monomials appearing iﬁ}i(q)[rj]q).

According to Proposition 2.4, to each monomial (2.5)j(V) corresponds a gen-
eralized eigenspace @f ,,i € I,n € Z\ 0, with the common eigenvalues given by
formula (2.11) (note that the eigenvalueskofi € 7, can be read off from the weight of
the monomial). Using formula (3.1) we find the corresponding eigenvalugs,of € J
in the form (3.2). Now we attach to these common eigenvalues the following monomial
in the lettersy; ., i € J, andZ 7, j € J:

ki l; Uk 1
Yi vl z z:
L,dir i,bis k,cim k,dyp
ieJr=1 s=1 keJ m=1 p=1

The above procedure can be interpreted as follows. Introduce the notation

Y = ZIY;ier.aec (3.3)

YU = 2V N e ® ZIZiE T cecx - (3.4)

Write
(D@)C'(@))ij =Y pijk)g*.

keZ

Definition 3.2. The homomorphismt; : Y — Y/) isdefined by the formulas

pij (k) .
1y (Yia) =Yia- Hk sz,;q,{ . i€l (3.5)
jeJ ke
ij (k) .=
ua=[[]1200, ielT. (3.6)
jeJ keZ

Observe that the homomorphigin can be represented as the compositiotyaind
the homomorphis) — Z[Y=1; ¢ 4ecx sending allZy ., k € 7, to 1. Therefore

7y is indeed a refinement af;, and so the restriction af; to the image of Rep/,g in
Y is a refinement of the restriction homomorphism;res
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3.3. Properties of ;. The main advantage af; over g; is the following.
Lemma 3.3. The homomorphism t; isinjective.

Proof. The statement of the lemma follows from the fact that the maﬁqu) is non-
degenerate. O

Lemma 3.4. Let us write x, (V) asthe sum Y, P Ok, where Py € Z[Y iy qec.
QO isa monomial in Z[Z;—f]jej,ce(cx, and all monomials Q; are distinct. Then the
restriction of V to U, g, isisomorphic to @ Vi, where V;’s are U, g;-modules with

qu(Vk) = P;. In particular, there are no extensions between different V;'sin V.

Proof. The monomials iny, (V) € Y encode the common eigenvalueshgf,, i € 1
on V. It follows from Sect. 3.2 that the monomials #i(x,(V)) encode the common

eigenvalues of; ,,i € J,andh,, j € J,onV.

Therefore we obtain that the restrictioniéto U, g ® Uq’b} has a filtration with the
associated graded factdrs ® Wy, whereV is aU,g;-module Withxq](Vk) = P, and
Wy is a one-dimensiondllq’h}-module, which corresponds 9. By our assumption,
the modules¥; over Uq’h} are pairwise distinct. Becauﬁ%ﬁ} commutes withU, g,

there are no extensions betweBn® Wy andV; ® W, for k # 1, asU,g; ® Uq’h}-
modules. Hence the restriction &fto U, gy is isomorphic tad; Vi. O

Write
d(lrily =Y sitkg".
keZ
Set ©
Si
Bia=1]] Z} ok
keZ
L emma 3.5. We have:
77 (Aia) = Bi(Aia), i€l (3.7)
7 (Aia) = Bs(Aia)Bia, iel. (3.8)

Proof. This follows from the formuld)(q)é’(q)C(q) = D(q)d(q). O

In the case whed consists of a single elemepte 7, we will write Yy ¢; andg,
simply asy /), 7; andg;. Consider the diagram (we use the notation (3.3), (3.4)):

y I, yo)
VoL A (3.9)
Y l) Yy

where the map corresponding to the right vertical row is the multiplication by
ﬁj(Aj,x)i:L@l- R
The following result will allow us to reduce various statements to the cagg <.
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Lemma 3.6. There exists a unique map Y — Y, which makes the diagram (3.9) com-
mutative. This map is the multiplication by Aj_)lc

Proof. The fact that multiplication by4 makes the diagram commutative follows
from formula (3.7). The uniqueness foIIows from the fact thaand the multiplication
by B;(A; )1 ® 1 are injective maps. O

4. The Structure of g-Characters

In this section we prove Conjecture 1 from [FR2].
LetV be anirreducible finite-dimensioni), g moduleV generated by highest weight
vectorv. Then by Proposition 3 in [FR2],

Xg(V) =my(1+ Y My), (4.2)
p
where each, is a monomial mAlicl, ¢ € C* andm is the highest weight monomial.
In what follows, by a monomial @[xa 14ea we will always understand a monomial
in reduced form, i.e., one that does not contain factors of the ﬁergl. Thus, in
particular, if we say that a monomiad containsx,, it means that there is a factey in
M which can not be cancelled.

Theorem 4.1. The g-character of an irreducible finite-dimensional U, g module V has

the form (4.1), where each M, is a monomial in A;C,l, i €l,ceC*(ie,itdoesnot
contain any factors A; ).

Proof. The proof follows from a combination of Lemmas 3.3, 3.6 and 1.1.

First, we observe that it suffices to prove the statement of Theorem 4.1 for fundamen-
tal representation®,, (a). Indeed, then Theorem 4.1 will be true for any tensor product
of the fundamental representations. By Corollary 1.4, any irreducible represeritation
can be represented as a quotient of a submodule of a tensor pigdchfdundamental
representations, which is generated by the highest weight vector. Therefore each mono-
mial in ag-character oV is also a monomial in theg-character ofW. In addition, the
highest weight monomials of thgcharacters of/ andW coincide. This implies that
Theorem 4.1 holds fov'. N

Second, Theorem 4.1 is true fpe= U, sl>. Indeed, by the argument above, it suffices
to check the statement for the fundamental represent&tiar). But its g-character is
known explicitly (see [FR2], formula (4.3)):

xXg(Vi(@)) =Y, + Ya_ =Y, (14 A, ) (4.2)

and it satisfies the required property.

For general quantum affine algelivag, we will prove Theorem 4.1 (for the case of
the fundamental representations) by contradiction.

Suppose that the theorem fails for some fundamental represent@;@)((o) =V
and denote by its g-charactery, (V). Denote bym . the highest weight monomial
Yio,a of X

Recall from Sect. 1.3 that we have a partial order on the weight lattice. It induces a
partial order on the monomials occurringin Let m be the highest weight monomial
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in x, such thatn can not be written as a productsmf, with a monomial inAl.fCl, iel,
¢ € C*. This means that

any monomiak:’ in x, such thain’ > m, is a product ofn andA;Cl’s. (4.3)

In Lemmas 4.2 and 4.3 we will establish certain properties @nd in Lemma 4.4
we will prove that these properties can not be satisfied simultaneously.
Recall that a monomial ilz[Yil]iez,aecx is called dominant if does not contain

factorsYi:ll (i.e., ifitis a product oft; ,'s in positive powers only).
Lemma 4.2. The monomial m is dominant.

Proof. Supposen is not dominant. Then it contains a factor of the onml, for some
i € I.Considerr;(x). By Lemma 3.4, we have

50 =Y xa(Vp) - Np,
P

whereV,'s are representation quﬂg = U, gy andN,,’s are monomials ilzﬁ, j#i.
We have already shown that Theorem 4.1 holddigsl,, so

()= <m,,(1+ ZE,,)) N, (4.4)

p

where eaclm , is a product of; ;,'s (in positive powers only), and eaﬁr,p isaproduct
of several factors;&T,-fCl =y v} (note thaiM, , = ©; (M, ,).

i,cq=17icq
Sincem containsYl.‘a1 by our assumption, the monomigl(m) is not among the
monomials{m , - N,}. Hence

Ti(m) = mpoM o, po * Npos

for somepyg, ro andﬁro,po # 1. There exists a monomial’ in x, such that; (im’) =
mpy - Npy. Therefore using Lemma 3.6 we obtain that

m = m’Mrpro,
whereM,, ,, is obtained fromd ,, ,, by replacing alﬁlfcl by A; L. Inparticularm’ > m
and by our assumption (4.3) it can be writterwas= m_ M’, whereM’ is a product
of Ak"%. But thenm = m'M,, p, = mM'M,, p,, and son can be written as a product

of my and a product of factorakf%. This is a contradiction. Therefore has to be
dominant. O

Lemma 4.3. The monomial m can be written in the form

m=miM[]Ajoa, (4.5)
P

where M is a product of factors Ajcl, i € I,c € C*. Inother words, if m contains

factors A; 4, thenall such A , have the sameindex j = jo.
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Proof. Suppose thai: = m M, whereM contains a facton, .. Let V,, be the gener-
alized eigenspace of the operatb?‘sl, hjn, j €1, corresponding to the monomial.
We claim that for alv € V,,, we have:
xf,v=0, jelj#i, nel. (4.6)
Indeed, letr;(m) = B;(m) - N (recall thatﬂj (m) is obtained fromn by erasing allr; .
with s # j andN is a monomial |nZY -sel, s # j).BylLemma 3.4x;.f” -v belongs
to the direct sum of the generalized elgenspal;,es corresponding to the monomials
p in x such that; (m ) = ﬂj(m ) - N (with the sameN asint;(m) = B;(m) - N).
By formula (3.8),

Tj <m+ HAlk CA) 7j(my) l_[,B/ (Aj)™ 1_[ Bu o

iK#J

In particular,V contains a factoB; ., and therefore all monomiarlz#p with the above
property must contain a facta; .. By our assumption (4.3), the weight of eatzp can
not be higher than the weight of. But the weight oijfn - v should be greater than the
weight of m. Therefore we obtain formulét.6).

Now, if M contained factord; . andA ; ;s with i # j, then any non-zero eigenvector
(not generalized) in the generalized eigenspgecorresponding ton would be a
highest weight vector (see formula (1.9)). Such vectors do not exiét becausé’ is
irreducible. The statement of the lemma now follows1

Lemma 4.4. Let m beany monomial inthe g-character of a fundamental representation
that can be written in the form (4.5). Then m is not dominant.

Proof. We say a monomiall € Y (see (3.3)) hakattice support with base ag € C* if

Mez[y ! aggk Vi€l ez

Any monomialn € Y can be uniquely written as a produet= m ... m®), where
each monomiak ) has lattice support with a basg anda; /aj & g% fori # j. Note

that a non-constant monomlalmtb w1 € 1,k € Z, can not be equal to a monomial in

Aliclqk,z €I,k eZif b/c ¢ q”. Therefore ifm can be written in the forng4.5), then

eachm(’) can be written in the forni.5), wherem . = Y;, , if a; = a, andm = 1 if
a/a; ¢ g7 (note that the product overin (4.5) may be empty for some?). We will
prove that none of)’s is dominant unlesg: ¥ = m orm® = 1.

Consider first the case of P, which has lattice support with baseThen

1 pi(n)
m® = l_[ 1_[ Y agn -
iel neZ
Define Laurent polynomial®; (x), i € I by
Pix) =) pimx".
nez
If m® can be written in the forn¥.5), then

Pi(x) ==Y Cij(0)Rj(x)+8ip.  Viel (4.7)
jel
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whereR (x)’s are some polynomials with integral coefficients. All of these coefficients
are non-negative if # jo. Now suppose that? is a dominant monomial. Then each
P; (x) is a polynomial with non-negative coefficients. We claim that this is possible only
ifall R;(x) =0.

Indeed, according to Lemma 1.1, the coefficients of the inverse matfixtp é(x),
can be written in the formil.2), whereC}k(x), d(x) are polynomials with non-negative

coefficients. Multiplying(4.7) by C'(x), we obtain

> Pix)Cly(x) + d(x) Re(x) = Cl, (), Vk e l. (4.8)

Jjel
Given a Laurent polynomial

py= Y pix',  p,#0,p; #0,

—r<i<s

we will say that the length op(x) equalsr + s. Clearly, the length of the sum and of
the product of two polynomials with non-negative coefficients is greater than or equal
to the length of each of them. Therefor& it jo, and if Ri(x) # 0, then the length of

the LHS is greater than or equal to the lengthiof), which is greater than the length

of Cl.’o’k by Lemma 1.1. This implies that; (x) = O fork # jo.

Hencem™® can be written in the form

m(l) — Yi,a 1_[ AC:II

Jo.aq™*
nez

But such a monomial can not be dominant because its weightis:« j,, wheren > 0,
and such a weight is not dominant. This proves the required statement for the/f&¢tor
of m (which has lattice support with basg

Now consider a factom® with lattice support with bask, such thab/a ¢ ¢%. In
this case we obtain the following equation: the LHS of formula (4&). The previous
discussion immediately implies that there are no solutions of this equation with non-
zero polynomialsRy (x) satisfying the above conditions. This completes the proof of the
lemma. O

Theorem 4.1 now follows from Lemmas 4.2, 4.3 and 4.4.

Corollary 4.5. The only dominant monomial in x, (V. (a)) isthe highest weight mono-
mial Yi,a-

Proof. This follows from the proof of Lemma 4.4.0

5. A Characterization of g-Charactersin Terms of the Screening Operators

In this section we prove Conjecture 2 from [FR2].
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5.1. Definition of the screening operators. First we recall the definition of the screening
operators ofY = Z[Y;:l;c/.qec+ from [FR2] and state the main result.
Consider the fre§-module with generators; ., x € C*,

gi:z ) y 'SLx-

xeCx
LetY, be the quotient ofj; by the relations
Sixg? = Aixg; Six- (5.1)
Clearly,
yi = @ y : Si,xa
xE(CX/q?Z)

and say; is also a fre¢)-module.
Define a linear operatd; : Y — Y; by the formula

gi(Yj,a) =3ijYi4Sia
and the Leibniz ruleS; (ab) = bS; (a) + aS; (b). In particular,
Si(Y;a) = =8iY,/Sia.

Finally, let
Si:Y— Y

be the composition o§,~ and the projectiorgi — Y;. We call §; theith screening
operator.
The following statement was conjectured in [FR2] (Conjecture 2).

Theorem 5.1. Theimage of the homomor phism x, equalstheintersection of the kernels
of the operators S;,i € I.

In [FR2] this theorem was proved in the casell;;fﬁz. In the rest of this section we
prove it for an arbitraryU, g.

5.2. Description of Ker S;. First, we describe the kernel §fonY. The following result
was announced in [FR2], Proposition 6.

Proposition 5.2. The kernel of S; : Y — Y; equals
Ki = ZIY 1 jisaccs ® ZWYip + YinArp, Tpecs - (5.2)

Proof. A simple computation shows th#; C Kery S;. Let us show that KerS; C X;.
Forx € C*, denote by (x) the subringZ[YjEl wljernez OF Y. We have:

Jjsxq
Y~ @ Y.
xe(Cx/q%)
Lemmab.3.
Kery S; = ® Keryy S;.

xe(C*/q?)
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Proof. Let P € Y, and suppose it contalriéil for somea € C* andj € I. Then
we can writeP as the sund_, Ry Ok, wherer s are distinct monomials, which are
products of the factorg™! , . sel,neZ (in particular, one of th@;’s could be equal

s,aq
to 1), andR;’s are polynomials which do not cont s €l,neZ.Then

aqn’

Si(P) =) (Qk - Si(Ry) + Ry - 5i(Q)).
k

By definition of S;, S; (Qx) belongs tdy - S; 4, while S; (Rx) belongs to the direct sum
of Y-S, ,, whereb ¢ ag”.

ThereforeifP € Kery S;,then) ", Ox-Si(Rx) = 0. SinceQy's are distinct, we obtain
that Rk € Kery ;. But thenS,(P) = >, Rk - Sx(Qy). ThereforeP can be written as
>R Q,, where eacth is a linear combination of th@;’s, such thath € Kery §;.
This proves that

P e Kery(#d) Si ® Kery@ Si,

whereY(#a) = Z[Y ]]el beaq?- BY repeating this procedure we obtain the lemma

(because each polynomlal contains a finite number of varlazg‘féswe need to apply
this procedure finitely many times).o

According to Lemma 5.3, it suffices to show that Kgr S; C X;(x), where

Ki(x) = Z[Y:

-1
j, an]j;ﬁi;neZ by Z[Yi,xq" + Yi,xq”Ai’anqi]neZ-

-1 -1
DenoteY g BY yjn: Ajxgn BY ajn, @ndAj gnY; - o 4 Y, o by a; .. Note that
a;.» does not contain factors;,,, m € Z.

Let T be the shift operator od(x) sendingy; , to y; .41 for all j e I. It follows
from the definition ofS; thatP € Kery,, S; ifand only if T'(P) € Kery,, S;. Therefore
(applyingT™ with large enouglw to P) we can assume without loss of generality that
P € ZlYin: Yjpszn 020 ® ZIyExljin0.

We find from the definition of;:

Si(yjn) =0, J#i
n

Si (Vi 2rin+e) = Yire H yiz,zr,-k+eai,r,~(2kfl)+e - i xqe (5.3)
k=1
wheree € {0, 1, ..., 2r; — 1}. Therefore eactP € Kery(,) S; can be written as a sum

P =" P., where eacltP. € Kery, S; and
Pe € ZLyi2rn+e, yiTeri (n41)+eln=0 ® Z[yji’i]j;ﬁi,nzo
It suffices to consider the case= 0. Thus, we show that if
P € YZ°x) = ZLyi 2im- Y1 30, (1) 1020 ® ZIY T 2 im0,

then
P € K7%(x) = Zltalnz0 ® ZIyFalj #in=0.
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where
oy . 1 . 1 71
n = Yi,2rin t Yi,2rin; ; opq1) = Yi2rin Vi 5 (n+1) ir(2n+1)"

Consider a homomorphism (x) ® Z[y, 2rinln=0 —> y— (x) sendmgy] e E

+1 __1
to Yinr Yi2rn t0 ¥ 21,0, @Ndty, 1O yj 2 + yi,2r, )iy 2n41)" This homomorphism is

surjective, and its kernel is generated by the elements
(tn = Yi.2rin) @i r;(2n+1) Vi 2 (n+1) — 1. (5.4)

Therefore we identifyj (x) with the quotient ofK— (x) ® Zlyi,2r;nIn>0 by the ideal
generated by elements of the form (5.4).
Consider the set of monomials

tn]_ e tﬂkyi,zriml yl 2}’ mj 1_[ y] P}
Jj#i,pj=0

where allny > np > ...ng > 0,m1 > mp > ...m; > 0, and alson; # n; 4+ 1 for
all i andj. We call these monomialeduced. It is easy to see that the set of reduced
monomials is a basis (zfizo(x).

Now let P be an element of the kernel 6f on H>O(x) Let us write it as a linear
combination of the reduced monomials. We represierJSyl 2;y@ + R. HereN is
the largest integer, such that,., x is present in at least one 'of the basis monomials
appearing in its decomposition;> 0 is the largest power of; 2.,y in P; QO # 0 does
not containy; 2, v, andR is not divisible byyf, .. Recall that here botk’, . O and
R are linear combinations of reduced monomials.

Recall thatS; (z,) = 0, S; (yj’n) =0, j # i, andS; (yi 2,») is given by formula (5.3).

Suppose tha¥ > 0. According to formula (5.3),

N-1
Si(P) = ay;fgr:;N l_[ Yi,2rik Hal ri (21-1)Yi,0 0- Sl x+- (55)
k=1 =1

where the dots represent the sum of terms that are not divisibl’ggtj)(]. Note that the
first term in (5.5) is non-zero because the ryfé)(x) has no divisors of zero.

The monomials appearing in (5.5) are not necessarily reduced. However, by construc-
tion, Q does not containy 1, for otherwisey;',, , © would not be a linear combination
of reduced monomials. Therefore when we rewrite (5.5) as a linear combination of re-
duced monomials, each reduced monomial occurring in this linear combination is still
divisible byy‘“rl On the other hand, no reduced monomials occurring in the other

terms ofS; (P) (represented by dots) are divisible b§i; 2r ~- Hence forP to be in the
kernel, the first term of (5.5) has to vanish, which is |mpossible. Therdfalees not
containy; 2,,m's with m > 0.

ButthenP =Y, y;'ngk, whereRy € K;>o(x), ands;(P) = Y, pkyi[fg_le - Six
Such P is in the kernel ofS; if and only if all p, = 0 and soP € XK;>o(x). This
completes the proof of Proposition 5.20

Set
% = (%Ki = (207 jizaccr @ ZYip + YinArf, hecs) . (5.6)
iel iel

Now we will prove that the image of the-character homomorphisgy, equalsX.
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5.3. Theimage of x, isa subspace of K. First we show that the image of R&jgin Y
under theg-character homomorphism belongs to the kerned;of

Recall the ringy? = [Yil]aecx R 7Z[Z ,]#i’cecx and the homomorphisn :

Y — Y9 from Sect. 3.2.

LetY; be the quotient of @ Z[Yi luecx - Six by the submodule generated by the
xe(C

elements of the forns; — Aj xg; Siixs whereXi,xq, =Y;,Y, 2. Define aderivation

i Xt] i,xq}
S;: Z[Yi’a leecx — Y; by the formulaS; (Y; o) = Y;.4Si.4. Thus,Y; coincides with the
moduley; in the case OUql.sA[z ands; is the corresponding screening operator.

Set
Y9 = ZIZ7 s cecr @ Ui

The mapS; can be extended uniquely to a mgfy — yfi) by S; (Zj,) = 0forall
Jj # i,c € C* and the Leibniz rule. We will also denote it [8y. The embedding;
gives rise to an embeddiy — 95’) which we also denote by .

Lemma 5.4. The following diagram is commutative
y ", y®
b b
Y —— Yy

Proof. Sincer; is a ring homomorphism and both, S; are derivations, it suffices to
check commutativity on the generators. Let us choose a represeradeili\ﬂﬁachql.ZZ
coset ofC*. Then we can write:

Y= @ Y-S Y= @ Yo.s5,.
xeCx /q?E xeCx /g
By definition,
1
SZ(YquZ”)_(Sl]lel_[Ai 2m+1 Si,xs

Si(Y; y2) = Y,XHA 2+ Sicxs

Si(Zj) =0, Vj # i
Recall from formula (3.5) that; (Y;, x) equaIsY, + times a monomial |rZiC, Jj #i,and
from formula (3.8) that; (Ail) = A; b. Using these formulas we obtain:

—+1
(T 0 SH(Y; y20) = (Si 0 T (Y rg2) = T (Yix) HAl.’xqiszrl Six-

On the other hand, whey # i, 7;(¥; ) is @ monomial inZ;;, k # i, according to
formula (3.6). Therefore

(ti 0 8)(Yjx) = (Sio)(Yjx) =0, j#i

This proves the lemma.o
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Corollary 5.5. The image of the g-character homomorphism x, : RepU,g — Y is
contained in the kernel of S; on Y.

Proof. Let V be a finite-dimensional representation @fg. We need to show that
Si(xq(V)) = 0. By Lemma 3.4, we can writg, (V) as the sumzk P, O, where

eachp, e Z[Y ]ae(cx is in the image of the homomorph|sm§ RepUq,ﬁz —
Z[Y.jE lacc anko is a monomial |nZ] LAl

The image ofy,” lies in the kernel of the operatd; (in fact, they are equal but
we will not use this now). This immediately follows from the fact that F&lgp
Zlxg(Vi(an] ands; (xg(V1(a))) = 0, which is obtained by a straightforward calcu—
lation. We also haveE(Zj,c) = 0,Vj # i. Therefore(S; o 1) (xq(V)) = 0. By
Lemma 5.4,(7; o S;)(x4(V)) = 0. Sincer; is injective by Lemma 3.3, we obtain:
Si(xq(V))=0. O

5.4. K isasubspace of theimage of x,. Let P € X. We want to show thaP < Im .

A monomialm contained inP € Y is calledhighest monomial (resp.,lowest mono-
mial), if its weight is not lower (resp., not higher) than the weight of any other monomial
contained inP.

Lemmab.6. Let P € K. Then any highest monomial in P is dominant and any lowest
weight monomial in P is antidominant.

Proof. First we prove that the highest monomials are dominant.
By Proposition 5.2,

P e K; = LIV iiaecx ® ZUYip + YinAf g, Ipers -

The statement of the lemma will follow if we show that a highest weight monomial
contained in any element 6; does not contain factoﬂgf1

Indeed, the weight of; , is w;, and the weight of; ;,Al by is w; — «;. Denote

th =7Z[Yip+ Yi,bA,-,bq,.]bGCX- Given a polynomialD € Z[ty]pecx, letma, ..., my be
its monomials (iry,) of highest degree. Clearly, the monomials of highest weiglg in
(considered as a polynomial H}ﬂ) arems, ... , mg, in which we substitute eaah by

Y ». These monomials do not contain factafgsl
The statement about the lowest weight monomials is proved similarly, once we ob-
serve that

Ki = ZIY M jsisaccr @ LIV + Y, g2 Aipgtlecx. O

Letm be a highest monomial iR, and suppose that it entePswith the coefficient
vy € Z '\ 0. Thenm is dominant by Lemma 5.2. According to Theorem 1.3(2) and
formula (2.13), there exists an irreducible representaipof U, g, such thain is the
highest weight monomial in, (V1). Sincey, (V1) € X by Corollary 5.5, we obtain that
Py=P —vy - xs(V1) e X.

For P € Y, denote byA(P) the (finite) set of dominant weights, such thatP
contains a monomial of weight greater than or equal. tBy Proposition 5.2, ifP € K
andA (P) is empty, thenP is necessarily equal to 0.
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Note that for any irreducible representatidrof U, g of highest weightt, A (x4 (V))
is the set of all dominant weights which are less than or equal ithereforeA (Py) is
properly contained ia (P). By applying the above subtraction procedure finitely many
k

times, we obtain an elemeRf = P — Z xq(Vi), for which A(Py) is empty. But then
=1
P, =0. l
This shows thafC C Im yx,. Together with Lemma 5.5, this gives us Theorem 5.1
and the following corollary.

Coroallary 5.7. The g-character homomorphism,
xq : RepU,g — X,

where X isgiven by (5.6), isa ring isomor phism.

5.5. Application: Algorithm for constructing g-characters. Consider the following
problem: Give an algorithm which for any dominant mononmial constructs they-
character of the irreduciblé, g-module whose highest weight monomiakis.. In this
section we propose such an algorithm. We prove that our algorithm producegs the
characters of the fundamental representations (in thisigase: Y; ;). We conjecture
that the algorithm works for any irreducible module.

Roughly speaking, in our algorithm we start framand gradually expand it in all
possibleU,, s> directions. (Here we use the explicit formulas fecharacters ot/ sl
and Lemma 3.6.) In the process of expansion some monomials may come from different
directions. We identify them in the maximal possible way.

First we introduce some terminology.

Lety € Zzo[Yiil],-e,,aer be a polynomial and: a monomial iny occurring with
coefficients € Z-.o. By definition, acoloring of m is a set{s;};c; of non-negative
integers such that < s. A polynomial x in which all monomials are colored is called
acolored polynomial.

We think ofs; as the number of monomials of typewhich have come from direction
i (or by expanding with respect to th# subalgebrd/,, 5[2)

A monomialm is calledi-dominant if it does not contain vanablelél ya € Cx.

A monomial m occurring in a colored polynomigt with coeff|C|ents is called
admissibleif m is j-dominant for allj such that; < s. A colored polynomial is called
admissible if all of its monomials are admissible.

Given an admissible monomialoccurring with coefficient in a colored polynomial
X, we define a new colored polynomial(x), called the-expansion ofy with respect
tom, as follows.

If s; = s, theni,,(x) = x. Suppose that; < s and letmm be obtained fromn by
settinngjfal = 1, forall j # i. Sincem is admissiblen is a dominant monomial.
Therefore there exists an irreducillg, s{ sl, module V, such that the highest weight
monomial of vV is m. We have explicit formulas for the-characters of all irreducible
qulz -modules (see, e g., [FR2, Sect. 4.1]). We wgita(V) = m(1+Z p) where

M, is a product ofA Let
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w=ml+> My, (5.7)
p

whereM,, is obtained fronM by replacing allA; by Al‘a1

The colored polynomial, (X) is obtained frony by adding monomials occurring in
u by the following rule. Let monomiat occur inu with coefficientr € Z- . If n does
not occur iny then it is added with the coefficients —s;) and we set the" coloring of
n to bet (s — s;), and the other colorings to be 0.dfoccurs iny with coefficientr and
coloring{r;};cs, then the new coefficient ef in i,,,(x) is maxr, r; + t(s — s;)}. In this
case the™ coloring is changed tg + 7 (s — s;) and other colorings are not changed.

Obviously, thei-expansions ofy with respect ton commute for different. To
expand a monomiak in all directions means to computg(. . . 2,,(1,,(x))...), where
0 =rk(g).

Now we describe the algorithm. We start with the colored polynomialwith all
colorings set equal zero. Let tlig g-weight ofm . bei. The set of weights of the form
A — Y ;aiai, a; € Z=o has a natural partial order. Choose any total order compatible
with this partial order, so we have= A1 > A2 > Az > ....

At the first step we expand ., in all directions. Then we expand in all directions alll
monomials of weighk, obtained at the first step. Then we expand in all directions all
monomials of weight., obtained at the previous steps, and so on. Since the monomials
obtained in the expansion of a monomiallgfg-weight. have weights less than the
result does not depend on the choice of the total order.

Note that for any monomiak except forn_ occurring with coefficient at any step,
we have mayxs;} = s. This property means that we identify the monomials coming
from different directions in the maximal possible way.

The algorithm stops if all monomials have been expanded. We say that the algorithm
fails at a monomiatn if m is the first non-admissible monomial to be expanded.

Letm, be a dominant monomial and the corresponding irreducible module.

Conjecture 5.8. Thealgorithm never failsand stops after finitely many steps. Moreover,
the final result of the algorithmis the ¢-character of V.

Theorem 5.9. Suppose that x, (V) does not contain dominant monomials other than
m.. Then Conjecture 5.8 is true. In particular, Conjecture 5.8 is true in the case of
fundamental representations.

Proof. Fori € I, let D; be a decomposition of the set of monomialgjr{V') with mul-
tiplicities into a disjoint union of subsets such that each subset formg tharacter of
an irreduciblel/,, s[> module. We refer to this decompostidn as the'™™ decomposition
of x4 (V). DenoteD the collection ofD;,i € I.

Consider the following colored oriented gra@y (D). The vertices are monomials
in x, (V) with multiplicities. We draw an arrow of colar from a monomiabn; to a
monomialmy if and only if m1 andms are in the same subset of tHe decomposition
andmz = A; Ymy for somea € C*.

We call an oriented graph a tree (with one root) if there exists a vertexlled root),
such that there is an oriented path froro any other vertex. The gragby (D), where
W is anirreducibld/, sl>-module is always a tree and its root corresponds to the highest
weight monomial.

Consider the full subgraph 6ty (D) whose vertices correspond to monomials from
a given subset of thd decomposition 0o, (V). All arrows of this subgraph are of color
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i. By Lemma 3.6, this subgraph is a tree isomorphic to the graph of the corresponding
irreducibleU,, sl,-module. Moreover, its root corresponds toiasiominant monomial.
Therefore if a vertex of2y (D) has no incoming arrows of colérthen it corresponds to
ani-dominant monomial. In particular, # has no incoming arrows ity (D), thenm
is dominant. Since by our assumptign(V) does not contain any dominant monomials
except form, the graph2y (D) is a tree with rootn ..

Choose a sequence of weights> A2 > ... as above. We prove by induction en
the following statemens, :

The algorithm does not fail during the fisssteps. Lely, be the resulting polynomial
after these steps. Then the coefficient of each monomialy, is not greater than that
in x, (V) and the coefficients of monomials of weights ..., A, in x, andx, (V) are
equal. Furthermore, there exists a decompositioof x,(V), such that monomials in
xr can be identified with vertices @y (D) in such a way that all outgoing arrows from
vertices withU, g-weightsi, ..., A, go to vertices ofy,.. Finally, thejth coloring of a
monomialm in yx, is just the number of vertices of type in x, which have incoming
arrows of colorj in Qy (D).

The statemen§y is obviously true. Assume that the statem8&nis true for some
r > 0. Recall that at thér + 1) step we expand all monomials gf of weighta, ;1.

Let m be a monomial of weighk, .1 in x,, which enters with coefficiend and
Coloring {si}ier-

Then the monomiak: entersy, (V) with coefficients as well. IndeedQy (D) is
a tree, so all vertices have incoming arrows from vertices of larger weight. By the
statemens, theses arrows go to vertices corresponding to monomiagts.in

Suppose that; < s for somej € 1. Thenm is j-dominant. Indeed, otherwise each
vertex of typem in Qy (D) has an incoming arrow of colgrcoming from a vertex of
higher weight. Then by the last part of the statem®nt; = s.

Therefore the monomiak is admissible, and the algorithm does not faitat

Consider the expansiof, (x,). Let u be as in(5.7). In the jth decomposition of
xq(V), m corresponds to aroot of a tree whose vertices can be identified with monomials
in u. We fix such an identification. Then monomialsirget identified with vertices in
Qv (D).

Let v be the vertex iy (D), corresponding to a monomialin . Denote the
coefficient ofn in x, by p and the coloring by p;};c;. We have two cases:

a) p; = p. Then the last part of the statemefitimplies that the vertex does not
belong toy,. We add the monomiad to x, and increasg; by one (we have already
identified it withv).

b) p; < p. Then bys, there exists a vertex in x, of typen with no incoming arrows
of color j. We change the decompositi@n; by switching the vertices andw and
identify » with the newv. We also increasg; by one. (Thus, in this case we do not
addn to x,.)

In both cases, the statemeft, ; follows.

Since the set of weights of monomials occurring(V') is contained in a finite set
A1, A2, ..., AN, the statemensy proves the first part of the theorem.

Corollary 4.5 then implies the second part of the theorem.

We plan to use the above algorithm to compute explicitly gheharacters of the
fundamental representationsi@fg and to obtain their decompositions undgyyg.
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Remark 5.10. There is a similar algorithm for computing the ordinary characters of finite-
dimensionalg-modules (equivalentlyl/, g-modules). That algorithm works for those
representations (called miniscule) whose characters do not contain dominant weights
other than the highest weight (for other representations the algorthim does not work).
However, there are very few miniscule representations for a general simple Lie algebra
g. In contrast, in the case of quantum affine algebras there are many representations
whose characters do not contain any dominant monomials except for the highest weight
monomials (for example, all fundamental representations), and our algorithm may be
applied to them.

6. The Fundamental Representations

In this section we prove several theorems about the irreducibility of tensor products of
fundamental representations.

6.1. Reducibletensor products of fundamental representations and poles of R-matrices.
In this section we prove that the reducibility of a tensor product of the fundamental
representations is always caused by a pole inRttmeatrix.

We say that a monomiak haspositive lattice support with base a if m is a product
YL, withn > 0.

Lemma 6.1. All monomialsin x, (V,, (a)) have positive lattice support with base a.

Proof. For Uqgfz, the statement follows from the explicit formuld.2) for x, (Vi(a)).
The g-character of any irreducible representatiorof quAlz is a subsum of a product
of the g-characters o¥/1(b)’s. Moreover, this subsum includes the highest monomial.
Hence if the highest weight monomial @f (V) has positive lattice support with base
a, then so do all monomials ig, (V).

Now consider the case of genef@}g. Suppose there exists a monomialin=
xq (Vo (@)), which does not have positive lattice support with badeetm be a highest
among such monomials (with respect to the partial ordering by weights).

By Corollary 4.5, the monomiak is not dominant. In other words, if we rewrite
as a product oYlﬁl, we will have at least one generator in negative powerﬁ;%%.

Write 7;, () in the form(4.4). The monomiat;, (m) can not be among the monomials

{m,N,}, sincem containst; ;. Thereforer,(m) = m o N po My, po fOr SOMeEM 1, o #

1, which is a product of factorZi_’cl. Letm, be a monomial iry, such that;,(m1) =
m poNpo- Then by Lemma 3.6 = m1M,, »,, WhereM,, ,, is obtained fromM ,, ,,
by replacing aIIZl-_’Cl with AL

By construction, the weight @ is higher than the weight e, so by our assumption,
m1 has positive lattice support with baseBut thervn ,, also has positive lattice support

with basez. Therefore all monomials im , (1+ ), M,,,,) have positive lattice support
with basea. This implies thatM,, ,,, and hencen = m1M,, ,,, has positive lattice
support with base. This is a contradiction, so the lemma is proved

Remark 6.2. From the proof of Lemma 6.1 is clear that the only monomigljav,, (a))
which containszalqn with n = 0 is the highest weight monomi#] ,.



52 E. Frenkel, E. Mukhin

Let V be aU, g-module with the;-character, (V). Define the oriented gradhy as
follows. The vertices of 'y are monomials i, (V) with multiplicities. Thus, there are
dim V vertices. We denote the monomial corresponding to a vertexm,. We draw
an arrow from the vertex to the vertexs if and only if mg = my, A 1 for somei € I,
x e C*. R

If V is an irreduciblel/, sl>-module, then the graphy is connected. Indeed, every
irreducibIqusAtz—moduIe is isomorphic to a tensor product of evaluation modules. The
graph associated to each evaluation module is connected according to the explicit for-
mulas for the correspondingcharacters (see formula (4.3) in [FR2]). Clearly, a tensor
product of two modules with connected graphs also has a connected graph.

Lemma6.3. Let o € I'y be a vertex with no incoming arrows. Then m,, is a dominant
monomial.

Proof. Letw containYl.’_b1 for somei € I, b € C*. We write the restricteg¢-character
7i(xg(V)) irlthe form(4.4), where eachw ,(1+ )", Mr,p) is ag-character of an irre-
ducibleU,,;sl; module.

The monomiak; (m) containsY,.jj1 and therefore can not be among the monomials
{m,N,}. But the graphs of irreduciblg ;2 modules are connected. So we obtain that
7;(m) =1 (A‘l)r, (m") for some monomiak’ in x,(V), and some € C*. By Lemma
3.6, we haven = Ai,c "which is a contradiction. O

Now Corollary 4.5 implies:
Corollary 6.4. The graphs of all fundamental representations are connected.

Let a monomialn have lattice support with bage We callm right negative if the

factorsy; ,.« appearing inn, for whichk is maximal, have negative powers.

Lemma 6.5. All monomialsintheg-character of thefundamental representation V., (a),
except for the highest weight monomial, are right negative.

Proof. Let us show first that from the highest weight mononial there is only one
outgoing arrow to the monomial; = m+A;{11qi. Indeed, the weight of a monomial that

is connected tex by an arrow has to be equaldp—«; for somej € I. The restriction

of V,, (a) to U, g is isomorphic to the direct some of it¥ fundamental representation

V; and possibly some other irreducible representations with dominant weights less than
w;. However, the weight; — «; is not dominant for any and j. Therefore this weight

has to belong to the set of weightsdj,, and the multiplicity of this weight itV,, (a)

has to be the same as thatliy, . It is clear that the only weight of the foray — o; that
occurs inV,, is w; — «;, and it has multiplicity one. By Theorem 4.1, this monomial

must have the forme = my A7} .
Now, the graph‘vm (@) is connected. Therefore each monomiain Xq(le (a)) is
a product ofm1 and factorsA]_1 Note thatm1 is right negative and a7t ;pare right

negative (this follows from the explicit formula (2.15)). The product oftwo right negative
monomials is right negative. This implies the lemma

Remark 6.6. It follows from the proof of the lemma that the rightmost factor of each
non-highest weight monomial occurring j3 (V,, (a)) equaIsY‘1 wheren > 2r;.

,aq™’

Moreover, the equality holds only for the above monomial(ln that casg =1i).
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Recall the definition of the normalize®l-matrix ﬁv,w(Z) from Sect. 2.3. The fol-
lowing theorem was conjectured, e.qg., in [AK].

Theorem 6.7. Let {Vi}k=1,...n, Where Vi = V,,, (ar), be a set of fundamental repre-
sentations of U, g. The tensor product V1 ® ... ® V,, isreducibleif and only if for some

i,jef{l,...,n},i # j,thenormalized R—rrlatrixﬁwvj(z) hasapoleatz = a;/a;.

Proof. The “if” part of the theorem is obvious. Let us explain the case when2. Let
o : V1® Vo — Vo ® Vi be the transposition. By definition ﬁvl,vz (z), the linear map
o o Ry, v,(z) is @ homomorphism o/, g-modulesVy ® Vo — V> ® Vi. Therefore if
ﬁvl,vz (z) has a pole at = ap/a1, thenVy ® V> is reducible. Itis easy to generalize this
argument to general.

Now we prove the “only if” part.

If the productVs ® --- ® V, is reducible, then the product of thecharacters
[T/_1 x4(Vi) contains a dominant monomial that is different from the product of
the highest weight monomials. Therefereis not right negative ang: is a product of
some monomials:; from x,(V;). Hence at least one of the factors = m; must be
the highest weight monomial and it has to cancel with the rightrﬂg,%tappearing in,
say,m’j.

According to Lemma 6.]m/j = m;M whereM is a product ofA 2

s,ajq"’
assumption, the maximaly occurring among: is such thatz;¢"° = aiqi_l. Using
Lemma 2.6 we obtain that one of the diagonal entrie?quj has a factor A(1 —
aiaj_lz), which can not be cancelled. Therefcﬁ@i,vj has a pole at = a;/a;. This
proves the “only if” part. Moreover, we see that the pole necessarily occurs in a diagonal
entry. O

By our

6.2. The lowest weight monomial. Our next goal is to describe (see Proposition 6.15
below) the possible values of the spectral parameters of the fundamental representations
for which the tensor product is reducible.

First we develop an analogue of the formalism of Sect. 4 from the point of view of the
lowest weight monomials. Recall the involutién— I,i — i from Sect. 1.2. According
to Theorem 1.3(3), there is a unique lowest weight monomialn yx, (V,, (a)), and its
weight is—wy.

L emma 6.8. The lowest weight monomial of x, (V,, (a)) equals Y;alqrvhv .

Proof. By Lemma 5.6/n_ must be antidominant. Thus, by Lemma 6iil, = Y{alqm
for somen; > 0. ’

Recall the automorphismvg defined in(1.7). The moduIve; (a) is obtained from
V; (@) by pull-back with respect tag. From the interpretation of the-character in
terms of the eigenvalues df (u), it is clear that they-character oin;, (a) is obtained
from the g-character ofV,, (a) by replacing each’fbl by in;. Therefore we obtain:
n; =n;. ’

Corllsider the dual modulé,, (a)*. By Theorem 1.3(3), its highest weight equajs
HenceV,, (a)* is isomorphic toVe, (b) for someb € C*. SinceU, g is a Hopf algebra,
the moduleV,, (a)®V,, (a)* contains a one—dimensional trivial submodule. Therefore
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the product of the correspondigegcharacters contains the monomiak= 1. According
to Lemma 6.5, it can be obtained only as a product of the highest weight monomial in
oneg-character and the lowest monomial in another. Theretote ag™":.

In the same way we obtain thHg)lf (a)* is isomorphic toV, (ag™™).

From formula(1.6) for the square of the antipode, we obtain that the double dual,
V., (@)™, is isomorphic td/,, (ag=2"""). Sincen; > 0, we obtain that; = rVhY. 0O

Having found the lowest weight monomial in thecharacters of the fundamental
representations, we obtain using Theorem 1.3 the lowest weight monomial iz the
character of any irreducible module.

Corollary 6.9. Let V be an irreducible U,g-module. Let the highest weight monomial
in x,(V) be

Sk
me =TT

iel k=1
Then the lowest weight monomial in x, (V) is given by

S

za
iel k=1 7

We also obtain a new proof of the following corollary, which has been previously
proved in [CP1], Proposition 5.1(b):

Coroallary 6.10.
Vi (@)* = Vi (ag™ ).

Now we are in position to develop the theorypfharacters based on the lowest
weight and antidominant monomials as opposed to the highest weight and dominant
ones.

Proposition 6.11. The g-character of an irreducible finite-dimensional U, g module vV
has the form

Xg(V)=m_(1+ Y Np),

where m_ is the lowest weight monomial and each N, isa monomial in A; ., i € I,
¢ € C* (i.e, it does not contain any factors Aifcl).

Proof. First we prove the following analogue of formula (4.1):

Xg(V)=m_(1+) Ny,
)4

where eaclhv,, is a monomial mAjEcl ¢ € C*. The proof of this formula is exactly the
same as the proof of Proposition 3 in [FR2]. The rest of the proof is completely parallel
to the proof of Theorem 4.1.0
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Lemma 6.12. The only antidominant monomial of g-character of a fundamental repre-
sentation is the lowest weight monomial.

Proof. The proof is completely parallel to the proof of Lemma 4.0

Lemma 6.13. All monomialsin a ¢-character of afundamental representation are prod-

ucts Y;L, withn < rVhY,

Proof. The proof is completely parallel to the proof of Lemma 6.1
The combination of Lemmas 6.1 and 6.13 yields the following result.

Corollary 6.14. Let thehighest weight monomial m . of theg-character of anirreducible
U,g-module V be a product of monomials m(l) which have positive lattice support with
bases a;. Let s; be the maximal integer s, such that Yy 4,4 iS present in mﬁf) for some
k € I.Then any monomial m in x, (V) can be written as a product of monomials m®,
where each m'") isa product of Y; 4,42 Withn € Z,0 <n <s; +rVh"

6.3. Redtrictions on the values of spectral parameters of reducible tensor products of
fundamental representations. It was proved in [KS] thaV,, (a) ® V,, : (b) is irreducible

if a/b does not belong to a countable set. As M. Kashiwara explained to us, one can show
that this set is then necessarily finite. The following proposition, which was conjectured,
e.g., in [AK], gives a more precise description of this set.

Proposition 6.15. Let ¢; € C,i = 1, ..., n, and suppose that the tensor product of
fundamental representations Vo, (a1) ® ... ® Vy, (ay) isreducible. Then there exist

m # j suchthat a,, /a; = q*, wherek € Zand2 < k < rVh".

Proof. If V,, (a1) ® ... ® V,, (a,) is reducible, theny, (Vy, (a1) ... xg (Ve (an))

i1, . in i1 . in
should contain a dominant term other than the product of the highest weight terms.
But for that to happen, for some and, there have to be cancellations between some

Yp_jmqn appearing in¢, (Ve,, (am)) and SOME’, 441 appearing iryq(vwij (aj)). These

cancellations may only occurdf, /a; = gt* k € Z,and 0< k < rVh", by Lemmas
6.1 and 6.13. Moreovek, > 2 according to Remark 6.6.0

Note that combining Theorem 6.7, Proposition 6.15 and Remark 6.6 we obtain:

Corollary 6.16. The set of poles of the normalized R—matrixﬁvwi @,V @) (2) isasubset

of theset {g¥|k € Z, 2r; < |k| < rVhVY,ifi = j; {gFlk € Z,2r; <k <rVhY Or 2rj <
—k <rVhV}.

6.4. The g-characters of the dual representations. In this subsection we show a simple
way to obtain they-character of the dual representation.
Recall thatX is given by(5.6).

Lemma 6.17. Let x1, x2 € K. Assume that all dominant monomialsin x; arethe same
asin x2 (counted with multiplicities). Then x1 = x».
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Proof. Considery = x1 — x2. We havey € X and x has no dominant monomials.
Theny = 0byLemma5.6. O

Note that the similar statement is true for antidominant monomials.

Proposition 6.18. Let V,, (a) be a fundamental representation. Then the ¢-character of
the dual representation V,, (a)* = V., (ag™"""") is obtained from the g-character of
V., (a) by replacing each Y=1, by y ¥ s

1 aq" 1,aq

Proof. Let x1 = xq(Vi, (ag™""")) and x2 is obtained fromy (V. (a)) by replacing
Ylia{] by Y¢1 Pt Theny1 andx, are elements itk with the only dominant monomial

YLM VRV by Corollary 4.5 and Lemma 6.12. Therefore= x2 by Lemma 6.17. O

Remark 6.19. One can define a similar procedure for obtaining gheharacter of the
dual to any irreduciblé/, g-moduleV. Namely, by Theorem 1.3, (V) is a subsumin
the product of;-characters of fundamental representations. In particular, any monomial
m in x,(V) is a product of monomiala®) from theg-characters of these fundamental
representations and Proposition 6.18 tells us what to do with&¢hThis procedure
is consistent becaugg (V ® W)*) = x, (V) - xq(W¥).

Note that under this procedure the dominant monomials go to the antidominant mono-
mials and vice versa.
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