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Abstract: We study finite-dimensional representations of quantum affine algebras using
q-characters. We prove the conjectures from [FR2] and derive some of their corollaries.
In particular, we prove that the tensor product of fundamental representations is reducible
if and only if at least one of the pairwise normalizedR-matrices has a pole.

Introduction

The intricate structure of the finite-dimensional representations of quantum affine alge-
bras has been extensively studied from different points of view, see, e.g., [CP1,CP2,CP3,
CP4,GV,V,KS,AK,FR2]. While a lot of progress has been made, many basic questions
remained unanswered. In order to tackle those questions, E. Frenkel and N. Reshetikhin
introduced in [FR2] a theory ofq-characters for these representations. One of the moti-
vations was the theory of deformedW-algebras developed in [FR1]: the representation
ring of a quantum affine algebra should be viewed as a deformedW-algebra, while the
q-character homomorphism should be viewed as its free field realization. The study of
q-characters in [FR2] was based on two main conjectures. One of the goals of the present
paper is to prove these conjectures and to derive some of their corollaries.

Let us describe our results in more detail. Letg be a simple Lie algebra,̂g be the
corresponding non-twisted affine Kac-Moody algebra, andUq ĝbe its quantized universal
enveloping algebra (quantum affine algebra for short). Denote byI the set of vertices of
the Dynkin diagram ofg. Let RepUq ĝ be the Grothendieck ring ofUq ĝ. Theq-character
homomorphism is an injective homomorphismχq from RepUq ĝ to the ring of Laurent
polynomials in infinitely many variablesY = Z[Y±1

i,a ]i∈I ;a∈C× . This homomorphism
should be viewed as aq-analogue of the ordinary character homomorphism.

Indeed, letG be the connected simply-connected algebraic group corresponding to
g, and letT be its maximal torus. We have a homomorphismχ : RepG → FunT
(where FunT stands for the ring of regular functions onT ), defined by the formula
(χ(V ))(t) = TrV t , for all t ∈ T . Upon the identification of RepG with RepUqg and of
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FunT with Z[y±1
i ]i∈I , whereyi is the function onT corresponding to the fundamental

weightωi , we obtain a homomorphismχ : RepUqg→ Z[y±1
i ]i∈I . One of the properties

of χq is that if we replace eachY±1
i,a by y±1

i in χq(V ), whereV is aUq ĝ-module, then
we obtainχ(V |Uqg).

The two conjectures from [FR2] that we prove in this paper may be viewed asq-
analogues of the well-known properties of the ordinary characters. The first of them,
Theorem 4.1, is the analogue of the statement that the character of any irreducible
Uqg-moduleW equals the sum of terms which correspond to the weights of the form
λ −∑i∈I niαi, ni ∈ Z+, whereλ = ∑

i∈I liωi, li ∈ Z+, is the highest weight ofV ,
andαi, i ∈ I , are the simple roots. In other words, we have:χ(W) = m+(1+∑p Mp),

wherem+ = ∏
i∈I y

li
i , and eachMp is a product of factorsa−1

j , j ∈ I , corresponding
to the negative simple roots. Theorem 4.1 says that for any irreducibleUq ĝ-module
V , χq(V ) = m+(1+∑p Mp), wherem+ is a monomial inYi,a, i ∈ I, a ∈ C

×, with
positive powers only (the highest weight monomial), and eachMp is a product of factors
A−1
j,c, j ∈ I, c ∈ C

×, which are theq-analogues of the negative simple roots ofg.
The second statement, Theorem 5.1, gives an explicit description of the image of the

q-character homomorphismχq . This is a generalization of the well-known fact that the
image of the ordinary character homomorphismχ is equal to the subring of invariants
of Z[y±1

i ]i∈I under the action of the Weyl groupW of g.
Recall that theWeyl group is generated by the simple reflectionssi, i ∈ I . The subring

of invariants ofsi in Z[y±1
i ]i∈I is equal to

Ki = Z[y±1
j ]j 
=i ⊗ Z[yi + yia

−1
i ],

and hence we obtain a ring isomorphism RepUq ĝ �
⋂
i∈I

Ki .

In Theorem 5.1 (see also Corollary 5.7) we establish aq-analogue of this isomor-
phism. Instead of the simple reflections we have the screening operatorsSi, i ∈ I ,
introduced in [FR2]. We show that Imχq equals

⋂
i∈I

KerSi . Moreover, KerSi is equal to

Ki = Z[Y±1
j,a ]j 
=i;a∈C× ⊗ Z[Yi,b + Yi,bA

−1
i,bqi
]b∈C× .

Thus, we obtain a ring isomorphism RepUq ĝ �
⋂
i∈I

Ki .

These results allow us to construct in a purely combinatorial way theq-characters of
the fundamental representations ofUq ĝ, see Sect. 5.5.

We derive several corollaries of these results. Here is one of them (see Theorem 6.7
and Proposition 6.15). For each fundamental weightωi , there exists a family ofUq ĝ-
modules,Vωi

(a), a ∈ C
× (see Sect. 1.3 for the precise definition). These are irreducible

finite-dimensional representations ofUq ĝ, which have highest weightωi if restricted to
Uqg. They are called the fundamental representations ofUq ĝ (of level 0). According to a
theorem of Chari-Pressley [CP1,CP3] (see Corollary 1.4 below), any irreducible repre-
sentation ofUq ĝ can be realized as a subquotient of a tensor product of the fundamental
representations. The following theorem, which was conjectured, e.g., in [AK], describes
under what conditions such a tensor product is reducible.

Denote byh∨ the dual Coxeter number ofg, and byr∨ the maximal number of edges
connecting two vertices of the Dynkin diagram ofg. For the definition of the normalized
R-matrix, see Sect. 2.3.
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Theorem. Let {Vk}k=1,...,n, where Vk = Vωs(k)
(ak), be a set of fundamental representa-

tions of Uq ĝ.
The tensor productV1⊗. . .⊗Vn is reducible if and only if for some i, j ∈ {1, . . . , n},

i 
= j , the normalized R-matrix RVi,Vj (z) has a pole at z = aj /ai .
In that case aj /ai is necessarily equal to qk , where k is an integer, such that 2 ≤

|k| ≤ r∨h∨.

The paper is organized as follows. In Sect. 1 we recall the main definitions and results
on quantum affine algebras and their finite-dimensional representations. In Sect. 2 we
give the definition of theq-character homomorphism and list some of its properties. In
Sect. 3 we develop our main technical tool: the restriction homomorphismsτJ . Sections
4 and 5 contain the proofs of Conjectures 1 and 2 from [FR2], respectively. In Sect. 6
we use these results to describe the structure of theq-characters of the fundamental
representations and to prove the above Theorem.

The results of this paper can be generalized to the case of the twisted quantum affine
algebras.

In the course of writing this paper we were informed by H. Nakajima that he obtained
an independent proof of Conjecture 1 from [FR2] in theADE case using a geometric
approach.

1. Preliminaries on Finite-Dimensional Representations of Uq ĝ

1.1. Root data. Let g be a simple Lie algebra of rank+. Let h∨ be the dual Coxeter
number ofg. Let 〈·, ·〉 be the invariant inner product ong, normalized as in [K], so
that the square of the length of the maximal root equals 2 with respect to the induced
inner product on the dual space to the Cartan subalgebrah of g (also denoted by〈·, ·〉).
Denote byI the set{1, . . . , +}. Let {αi}i∈I and{ωi}i∈I be the sets of simple roots and
of fundamental weights ofg, respectively. We have:

〈αi, ωj 〉 = 〈αi, αi〉
2

δij .

Let r∨ be the maximal number of edges connecting two vertices of the Dynkin diagram
of g. Thus,r∨ = 1 for simply-lacedg, r∨ = 2 forB+,C+, F4, andr∨ = 3 forG2.

In this paper we will use the rescaled inner product

(·, ·) = r∨〈·, ·〉
onh∗. Set

D = diag(r1, . . . , r+),

where

ri = (αi, αi)

2
= r∨ 〈αi, αi〉

2
. (1.1)

Theri ’s are relatively prime integers. For simply-lacedg, all ri ’s are equal to 1 andD is
the identity matrix.

Now letC = (Cij )1≤i,j≤+ be theCartan matrix of g,

Cij = 2(αi, αj )

(αi, αi)
.
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LetB = (Bij )1≤i,j≤+ be the symmetric matrix

B = DC,

i.e.,Bij = (αi, αj ) = r∨〈αi, αj 〉.
Let q ∈ C

× be such that|q| < 1. Setqi = qri , and

[n]q = qn − q−n

q − q−1 .

Following [FR1,FR2], define the+× + matricesB(q), C(q),D(q) by the formulas

Bij (q) = [Bij ]q,
Cij (q) = (qi + q−1

i )δij + (1− δij )[Cij ]q,
Dij (q) = [Dij ]q = δij [ri]q .

We have:
B(q) = D(q)C(q).

Let C̃(q) be the inverse of the Cartan matrixC(q), C(q)C̃(q) = Id. We will need
the following property of matrix̃C(q).

Lemma 1.1. All coefficients of the matrix C̃(q) can be written in the form

C̃ij (q) =
C̃′ij (q)
d(q)

, i, j ∈ I, (1.2)

where C̃′ij (q), d(q) are Laurent polynomials in q with non-negative integral coefficients,

symmetric with respect to the substitution q → q−1. Moreover,

degC̃′ij (q) < degd(q), i, j ∈ I.

Proof. We write here the minimal choice ofd(q), which we use in Sect. 3.2:

A+ : d(q) = q+ + q+−2+ · · · + q−+,
B+ : d(q) = q2+−1+ q2+−3+ · · · + q−2+−1,

C+ : d(q) = q++1+ q−+−1,

D+ : d(q) = (q + q−1)(q+−1+ q−++1),

E6 : d(q) = (q2+ 1+ q−2)(q6+ q−6),

E7 : d(q) = (q + q−1)(q9+ q−9),

E8 : d(q) = (q + q−1)(q15+ q−15),

F4 : d(q) = q9+ q−9,

G2 : d(q) = q6+ q−6.

For Lie algebras of classical series, the statement of the lemma with the aboved(q)

follows from the explicit formulas for the entries̃Cij (q) of the matrixC̃(q) given in
Appendix C of [FR1]. For exceptional types, the lemma follows from a case by case
inspection of the matrix̃C(q). ��
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1.2. Quantum affine algebras. The quantum affine algebraUq ĝ in the Drinfeld–Jimbo
realization [Dr1,J] is an associative algebra overC with generatorsx±i , k±1

i (i =
0, . . . , +), and relations:

kik
−1
i = k−1

i ki = 1, kikj = kj ki,

kix
±
j k
−1
i = q±Bij x±j ,

[x+i , x−j ] = δij
ki − k−1

i

qi − q−1
i

,

1−Cij∑
r=0

(−1)r
[

1− Cij

r

]
qi

(x±i )
rx±j (x

±
i )

1−Cij−r = 0, i 
= j.

Here(Cij )0≤i,j≤+ denotes the Cartan matrix ofĝ.
The algebraUq ĝ has a structure of a Hopf algebra with the comultiplication3 and

the antipodeS given on the generators by the formulas:

3(ki) = ki ⊗ ki,

3(x+i ) = x+i ⊗ 1+ ki ⊗ x+i ,
3(x−i ) = x−i ⊗ k−1

i + 1⊗ x−i ,

S(x+i ) = −x+i ki , S(x−i ) = −k−1
i x−i , S(k±1

i ) = k∓1
i .

We define aZ-gradation onUq ĝ by setting: degx±0 = ±1,degx±i = degki = 0, i ∈
I = {1, . . . , +}.

Denote the subalgebra ofUq ĝ generated byk±1
i , x+i (resp.,k±1

i , x−i ), i = 0, . . . , +,
byUqb+ (resp.,Uqb−).

The algebraUqg is defined as the subalgebra ofUq ĝ with generatorsx±i , k±1
i , where

i ∈ I .
We will use Drinfeld’s “new” realization ofUq ĝ, see [Dr2], described by the following

theorem.

Theorem 1.2 ([Dr2,KT,LSS,B]). The algebra Uq ĝ has another realization as the alge-
bra with generators x±i,n (i ∈ I , n ∈ Z), k±1

i (i ∈ I ), hi,n (i ∈ I , n ∈ Z\0) and central

elements c±1/2, with the following relations:

kikj = kj ki, kihj,n = hj,nki,

kix
±
j,nk

−1
i = q±Bij x±j,n,

[hi,n, x±j,m] = ±
1

n
[nBij ]qc∓|n|/2x±j,n+m,

x±i,n+1x
±
j,m − q±Bij x±j,mx

±
i,n+1 = q±Bij x±i,nx

±
j,m+1− x±j,m+1x

±
i,n,

[hi,n, hj,m] = δn,−m
1

n
[nBij ]q c

n − c−n

q − q−1 ,

[x+i,n, x−j,m] = δij
c(n−m)/2φ+i,n+m − c−(n−m)/2φ−i,n+m

qi − q−1
i

,
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∑
π∈6s

s∑
k=0

(−1)k
[
s

k

]
qi

x±i,nπ(1) . . . x
±
i,nπ(k)

x±j,mx
±
i,nπ(k+1)

. . . x±i,nπ(s) = 0,

s = 1− Cij ,

for all sequences of integers n1, . . . , ns , and i 
= j , where 6s is the symmetric group
on s letters, and φ±i,n’s are determined by the formula

7±i (u) :=
∞∑
n=0

φ±i,±nu
±n = k±1

i exp

(
±(q − q−1)

∞∑
m=1

hi,±mu±m
)
. (1.3)

For anya ∈ C
×, there is a Hopf algebra automorphismτa of Uq ĝ defined on the

generators by the following formulas:

τa(x
±
i,n) = anx±i,n, τa(φ

±
i,n) = anφ±i,n, (1.4)

τa(c
1/2) = c1/2, τa(ki) = ki,

for all i ∈ I, n ∈ Z. Given aUq ĝ-moduleV anda ∈ C×, we denote byV (a) the
pull-back ofV underτa .

Define new variables̃k±1
i , i ∈ I , such that

kj =
∏
i∈I

k̃
Cij

i , k̃i k̃j = k̃j k̃i . (1.5)

Thus, whileki corresponds to the simple rootαi , k̃i corresponds to the fundamental
weight ωi . We extend the algebraUq ĝ by replacing the generatorsk±1

i , i ∈ I with
k̃±1
i , i ∈ I . From now onUq ĝ will stand for the extended algebra.

Let q2ρ = k̃2
1 . . . k̃

2
+ . The square of the antipode acts as follows (see [Dr3]):

S2(x) = τ
q−2r∨h∨ (q−2ρxq2ρ), ∀x ∈ Uq ĝ. (1.6)

Let w0 be the longest element of the Weyl group ofg. Let i → ī be the bijection
I → I , such thatw0(αi) = −αī . Define the algebra automorphismw0 : Uq ĝ → Uq ĝ
by

w0(̃ki) = k̃ī , w0(hi,n) = hī,n, w0(x
±
i,n) = x±

ī,n
. (1.7)

We have:w2
0 = Id. Actually,w0 is a Hopf algebra automorphism, but we will not use

this fact.

1.3. Finite-dimensional representations of Uq ĝ. In this section we recall some of the
results of Chari and Pressley [CP1,CP2,CP3,CP4] on the structure of finite-dimensional
representations ofUq ĝ.

Let P be the weight lattice ofg. It is equipped with the standardpartial order: the
weightλ is higher than the weightµ if λ − µ can be written as a combination of the
simple roots with positive integral coefficients.

A vectorw in aUqg-moduleW is called a vector of weightλ ∈ P , if

ki · w = q(λ,αi )w, i ∈ I. (1.8)
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A representationW of Uqg is said to be of type 1 if it is the direct sum of its weight
spacesW = ⊕λ∈PWλ, whereWλ = {w ∈ W |ki · w = q(λ,αi )w}. If Wλ 
= 0, thenλ is
called a weight ofW .

A representationV ofUq ĝ is called of type 1 ifc1/2 acts as the identity onV , and ifV
is of type 1 as a representation ofUqg. According to [CP1], every finite-dimensional ir-
reducible representation ofUq ĝ can be obtained from a type 1 representation by twisting
with an automorphism ofUq ĝ. Because of that, we will only consider type 1 represen-
tations in this paper.

A vectorv ∈ V is called ahighest weight vector if

x+i,n · v = 0, φ±i,n · v = ψ±i,nv, c1/2v = v, ∀i ∈ I, n ∈ Z, (1.9)

for some complex numbersψ±i,n. A type 1 representationV is ahighest weight represen-
tation if V = Uq ĝ ·v, for some highest weight vectorv. In that case the set of generating
functions

?±i (u) =
∞∑
n=0

ψ±i,±nu
±n, i ∈ I,

is called thehighest weight of V .

Warning. The above notions of highest weight vector and highest weight representation
are different from standard. Sometimes they are called pseudo-highest weight vector
and pseudo-highest weight representation.

Let P be the set of allI -tuples(Pi)i∈I of polynomialsPi ∈ C[u], with constant
term 1.

Theorem 1.3 ([CP1,CP3]).

(1) Every finite-dimensional irreducible representation of Uq ĝ of type 1 is a highest
weight representation.

(2) Let V be a finite-dimensional irreducible representation of Uq ĝ of type 1 and highest
weight (?±i (u))i∈I . Then, there exists P = (Pi)i∈I ∈ P such that

?±i (u) = q
deg(Pi )

i

Pi(uq
−1
i )

Pi(uqi)
, (1.10)

as an element of C[[u±1]].
Assigning to V the I -tuple P ∈ P defines a bijection between P and the set of
isomorphism classes of finite-dimensional irreducible representations of Uq ĝ of type
1. The irreducible representation associated to P will be denoted by V (P).

(3) The highest weight of V (P) considered as a Uqg-module is λ =∑i∈I degPi ·ωi , the
lowest weight of V (P) is λ = −∑i∈I degPi · ωī , and each of them has multiplicity
1.

(4) If P = (Pi)i∈I ∈ P, a ∈ C
×, and if τ ∗a (V (P)) denotes the pull-back of V (P) by the

automorphism τa , we have τ ∗a (V (P)) ∼= V (Pa) as representations of Uq ĝ, where
Pa = (P a

i )i∈I and Pa
i (u) = Pi(ua).

(5) For P, Q ∈ P denote by P ⊗ Q ∈ P the I -tuple (PiQi)i∈I . Then V (P ⊗ Q) is
isomorphic to a quotient of the subrepresentation of V (P)⊗V (Q) generated by the
tensor product of the highest weight vectors.
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An analogous classification result forYangians has been obtained earlier by Drinfeld
[Dr2]. Because of that, the polynomialsPi(u) are called Drinfeld polynomials.

Note that in our notation the polynomialsPi(u) correspond to the polynomials
Pi(uq

−1
i ) in the notation of [CP1,CP3].

For eachi ∈ I anda ∈ C
×, define the irreducible representationVωi

(a) asV (P(i)
a ),

whereP(i)
a is theI -tuple of polynomials, such thatPi(u) = 1−ua andPj (u) = 1,∀j 
=

i. We callVωi
(a) theith fundamental representation of Uq ĝ. Note that in generalVωi

(a)

is reducible as aUqg-module.
Theorem 1.3 implies the following

Corollary 1.4 ([CP3]). Any irreducible finite-dimensional representation V of Uq ĝ oc-
curs as a quotient of the submodule of the tensor product Vωi1

(a1) ⊗ . . . ⊗ Vωin
(an),

generated by the tensor product of the highest weight vectors. The parameters (ωik , ak),
k = 1, . . . , n, are uniquely determined by V up to permutation.

2. Definition and First Properties of q-Characters

2.1. Definition of q-characters. Let us recall the definition of theq-characters of finite-
dimensional representations ofUq ĝ from [FR2].

The completed tensor productUq ĝ ⊗̂ Uq ĝ contains a special elementR called
the universalR-matrix (at level 0). It actually lies inUqb+ ⊗̂ Uqb− and satisfies the
following identities:

3′(x) = R3(x)R−1, ∀x ∈ Uq ĝ,

(3⊗ id)R = R13R23, (id⊗3)R = R13R12.

For more details, see [Dr3,EFK].
Now let (V , πV ) be a finite-dimensional representation ofUq ĝ. Define the transfer-

matrix corresponding toV by

tV = tV (z) = TrV (πV (z) ⊗ id)(R). (2.1)

Thus we obtain a mapνq : RepUq ĝ→ Uqb−[[z]], sendingV to tV (z).

Remark 2.1. Note that in [FR2] there was an extra factorq2ρ in formula (2.1). This factor
is inessential for the purposes of this paper, and therefore can be dropped.

Denote byUq g̃ the subalgebra ofUq ĝ generated byx±i,n, k̃i , hi,r , n ≤ 0, r < 0, i ∈ I .
It follows from the proof of Theorem 1.2 thatUqb− ⊂ Uq g̃. As a vector space,Uq g̃ can
be decomposed as follows:Uq g̃ = Uq ñ− ⊗ Uq h̃⊗ Uq ñ+, whereUq ñ± (resp.,Uq h̃) is
generated byx±i,n, i ∈ I, n ≤ 0 (resp.,̃ki, hi,n, i ∈ I, n < 0). Hence

Uq g̃ = Uq h̃⊕
(
Uq g̃ · (Uq ñ+)0 + (Uq ñ−)0 · Uq g̃

)
,

where(Uq ñ±)0 stands for the augmentation ideal ofUq ñ±. Denote byhq the projection
Uq g̃ → Uq h̃ along the last two summands (this is an analogue of the Harish-Chandra
homomorphism). We denote by the same letter its restriction toUqb−.

Now we define the mapχq : RepUq ĝ → Uq h̃[[z]] as the composition ofνq :
RepUq ĝ→ Uqb−[[z]] andhq [[z]] : Uqb−[[z]] → Uq h̃[[z]].
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To describe the image ofχq we need to introduce some more notation.
Let

h̃i,m =
∑
j∈I

C̃ji(q
m)hj,m, (2.2)

whereC̃(q) is the inverse matrix toC(q) defined in Sect. 1.1. Set

Yi,a = k̃−1
i exp

(
−(q − q−1)

∑
n>0

h̃i,−nznan
)
, a ∈ C

×. (2.3)

We assign toY±1
i,a the weight±ωi .

We have the ordinary character homomorphismχ : RepUqg → Z[y±1
i ]i∈I : if V =

⊕µVµ is the weight decomposition ofV , thenχ(V ) = ∑
µ dimVµ · yµ, where for

µ =∑i∈I miωi we setyµ =∏i∈I y
mi

i . Define the homomorphism

β : Z[Y±1
i,a ]i∈I ;a∈C× → Z[y±1

i ]i∈I

sendingY±1
i,a to y±1

i , and denote by

res: RepUq ĝ→ RepUqg

the restriction homomorphism.
Given a polynomial ringZ[x±1

α ]α∈A, we denote byZ+[x±1
α ]α∈A its subset consisting

of all linear combinations of monomials inx±1
α with positive integral coefficients.

Theorem 2.2 ([FR2]).

(1) χq is an injective homomorphism from RepUq ĝ to Z[Y±1
i,a ]i∈I ;a∈C× ⊂ Uq h̃[[z]].

(2) For any finite-dimensional representation V of Uq ĝ, χq(V ) ∈ Z+[Y±1
i,a ]i∈I ;a∈C× .

(3) The diagram

RepUq ĝ
χq−−−−→ Z[Y±1

i,a ]i∈I ;a∈C×�res

�β
RepUqg

χ−−−−→ Z[y±1
i ]i∈I

is commutative.
(4) RepUq ĝ is a commutative ring that is isomorphic to Z[ti,a]i∈I ;a∈C× , where ti,a is

the class of Vωi
(a).

The homomorphism

χq : RepUq ĝ→ Z[Y±1
i,a ]i∈I ;a∈C×

is called theq-character homomorphism. For a finite-dimensional representationV of
Uq ĝ, χq(V ) is called theq-character of V .



32 E. Frenkel, E. Mukhin

2.2. Spectra of 7±(u). According to Theorem 2.2(1), theq-character of any finite-
dimensional representationV of Uq ĝ is a linear combination of monomials inY±1

i,a with
positive integral coefficients. The proof of Theorem 2.2 from [FR2] allows us to relate
the monomials appearing inχq(V ) to the spectra of the operators7±i (u) onV as follows.

It follows from the defining relations that the operatorsφ±i,n commute with each other.
Hence we can decompose any representationV of Uq ĝ into a direct sumV = ⊕V(γ±i,n)
of generalized eigenspaces

V(γ±i,n)
= {x ∈ V | there existsp, such that (φ±i,n − γ±i,n)

p · x = 0,∀i ∈ I, n ∈ Z}.

Sinceφ±0 = k±1
i , all vectors inV(γ±i,n)

have the same weight (see formula (1.8) for the

definition of weight). Therefore the decomposition ofV into a direct sum of subspaces
V(γ±i,n)

is a refinement of its weight decomposition.

Given a collection(γ±i,n)of generalized eigenvalues, we form the generating functions

E±i (u) =
∑
n≥0

γ±i,±nu
±n.

We will refer to each collection{E±i (u)}i∈I occurring on a given representationV as
thecommon (generalized) eigenvalues of 7±i (u), i ∈ I , onV , and to dimV(γ±i,n)

as the

multiplicity of this eigenvalue.
Let BV be a Jordan basis ofφ±i,n, i ∈ I, n ∈ Z. Consider the moduleV (z) = τ ∗z (V ),

see formula(1.4). ThenV (z) = V as a vector space. Moreover, the decomposition in the
direct sum of generalized eigenspaces of operatorsφ±i,n does not depend onz, because

the action ofφ±i,n on V and onV (z) differs only by scalar factorszn. In particular,

BV is also a Jordan basis forφ±i,n acting onV (z) for all z ∈ C
×. If v ∈ BV is a

generalized eigenvector with common eigenvalues{E±i (u)}i∈I , then the corresponding
common eigenvalues onv in V (z) are{E±i (zu)}i∈I

The following result is a generalization of Theorem 1.3.

Proposition 2.3 ([FR2]). The eigenvalues E±i (u) of 7±i (u) on any finite-dimensional
representation of Uq ĝ have the form:

E±i (u) = q
degQi−degRi

i

Qi(uq
−1
i )Ri(uqi)

Qi(uqi)Ri(uq
−1
i )

, (2.4)

as elements of C[[u±1]], where Qi(u), Ri(u) are polynomials in u with constant term 1.

Now we can relate the monomials appearing inχq(V ) to the common eigenvalues
of 7±i (u) onV .

Proposition 2.4. Let V be a finite-dimensional Uq ĝ-module. There is a one-to-one cor-
respondence between the monomials occurring in χq(V ) and the common eigenvalues
of 7±i (u), i ∈ I , on V . Namely, the monomial

∏
i∈I

 ki∏
r=1

Yi,air

li∏
s=1

Y−1
i,bis

 (2.5)
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corresponds to the common eigenvalues (2.4), where

Qi(z) =
ki∏
r=1

(1− zair ), Ri(z) =
li∏

s=1

(1− zbis), i ∈ I. (2.6)

The weight of each monomial equals the weight of the corresponding generalized eigen-
space. Moreover, the coefficient of each monomial in χq(V ) equals the multiplicity of
the corresponding common eigenvalue.

Proof. Denote byUq n̂± the subalgebra ofUq ĝ generated byx±i,n, i ∈ I, n ∈ Z. LetB̃(q)

be the inverse matrix toB(q) from Sect. 1.1. The following formula for the universal
R-matrix has been proved in [KT,LSS,Da]:

R = R+R0R−T , (2.7)

where

R0 = exp

(
−
∑
n>0

∑
i∈I

n(q − q−1)2

qni − q−ni

hi,n ⊗ h̃i,−nzn
)

(2.8)

(here we use the notation (2.2)),R± ∈ Uq n̂± ⊗ Uq ñ∓, andT acts as follows: ifx, y
satisfyki · x = q(λ,αi )x, ki · y = q(µ,αi )y, then

T · x ⊗ y = q−(λ,µ)x ⊗ y. (2.9)

By definition,χq(V ) is obtained by taking the trace of(πV (z) ⊗ id)(R) overV and
then projecting it onUq h̃[[z]]using the projection operatorhq . This projection eliminates
the factorR−, and then taking the trace eliminatesR+ (recall thatUq ñ+ acts nilpotently
onV ). Hence we obtain:

χq(V ) = TrV

[
exp

(
−
∑
n>0

∑
i∈I

n(q − q−1)2

qni − q−ni

πV (hi,n)⊗ h̃i,−nzn
)
(πV ⊗ 1)T

]
.

(2.10)

The trace can be written as the sum of termsmv corresponding to the (generalized)
eigenvalues ofhi,n on the vectorsv of the Jordan basisBV of V for the operatorsφ±i,n
(and hence forhi,n).

The eigenvalues of7±i (u)on each vectorv ∈ BV are given by formula (2.4). Suppose
thatQi(u) andRi(u) are given by formula (2.6). Then the eigenvalue ofhi,n onv equals

qni − q−ni

n(q − q−1)

 ki∑
r=1

(air )
n −

li∑
s=1

(bis)
n

 , n > 0. (2.11)

Substituting into formula (2.10) and recalling the definition (2.3) ofYi,a we obtain
that the corresponding termmv in χq(V ) is the monomial (2.5). ��
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Let V = V (P), where

Pi(u) =
ni∏
k=1

(1− ua
(i)
k ), i ∈ I. (2.12)

Then by Theorem 1.3(3), the moduleV has highest weightλ =∑i∈I degPi ·ωi , which
has multiplicity 1. Proposition 2.4 implies thatχq(V ) contains a unique monomial of
weightλ. This monomial equals

∏
i∈I

ni∏
k=1

Y
i,a

(i)
k

. (2.13)

We call it thehighest weight monomial of V . All other monomials inχq(V ) have lower
weight thanλ.

A monomial inZ[Y±1
i,a ]i∈I,a∈C× is calleddominant if it does not contain factorsY−1

i,a
(i.e., if it is a product ofYi,a ’s in positive powers only). The highest weight monomial is
dominant, but in general the highest weight monomial is not the only dominant monomial
occurring inχq(V ). Nevertheless, we prove below in Corollary 4.5 that the only dominant
monomial contained in theq-character of a fundamental representationVωi

(a) is its
highest weight monomialYi,a .

Note that a dominant monomial has dominant weight but not all monomials of dom-
inant weight are dominant.

Similarly, a monomial inZ[Y±1
i,a ]i∈I,a∈C× is calledantidominant if it does not contain

factorsYi,a (i.e., if it is a product ofY−1
i,a ’s in negative powers only). The roles of dominant

and antidominant monomials are similar, see, e.g., Remark 6.19. By Corollary 6.9, the
lowest weight monomial is antidominant.

Remark 2.5. The statement analogous to Proposition 2.3 in the case of the Yangians has
been proved by Knight [Kn]. Using this statement, he introduced the notion of character
of a representation of Yangian.��

2.3. Connection with the entries of the R-matrix. We already described theq-character
ofUq ĝ moduleV in terms of universalR-matrix and in terms of generalized eigenvalues
of operatorsφ±i,n. It allows us to describe theq-character ofV in terms of diagonal entries
ofR-matrices acting on the tensor productsV⊗Vωi

(a)with fundamental representations.
We will use this description in Sect. 6.

Define

Ai,a = k−1
i exp

(
−(q − q−1)

∑
n>0

hi,−nznan
)
, a ∈ C

×. (2.14)

Using formula (2.2), we can expressAi,a in terms ofYj,b’s:

Ai,a = Yi,aqi Yi,aq−1
i

∏
Cji=−1

Y−1
j,a

∏
Cji=−2

Y−1
j,aqY

−1
j,aq−1

∏
Cji=−3

Y−1
j,aq2Y

−1
j,a Y

−1
j,aq−2. (2.15)

Thus,Ai,a ∈ Z[Y±1
j,b ]j∈I ;b∈C× , and the weight ofAi,a equalsαi .
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Let V andW be irreducible finite-dimensional representations ofUq ĝ with highest
weight vectorsv andw. LetRVW(z) ∈ End(V ⊗W) be the normalizedR-matrix,

RVW(z) = f−1
VW (z)(πV (z) ⊗ πW)(R),

wherefVW (z) is the scalar function, such that

RVW(z)(v ⊗ w) = w ⊗ v. (2.16)

In what follows we always consider the normalizedR-matrixRVW(z) written in the
basisBV ⊗BW .

Recall the definition of the fundamental representationVωi
(a) from Sect. 1.3. Denote

its highest weight vector byvωi
.

Lemma 2.6. Let v ∈ BV and suppose that the corresponding monomial mv in χq(V )

is given by

mv = m+M
∏
k

A−1
i,ak

, (2.17)

where M is a product of factors A−1
j,b, b ∈ C

×, j ∈ I , j 
= i. Then the diagonal entry of

the normalized R-matrix RV,Vωi (b)
(z) corresponding to the vector v ⊗ vωi

is

(
RV,Vωi (b)

(z)
)
v⊗vωi ,v⊗vωi

=
∏
k

qi
1− akzb

−1q−1
i

1− akzb−1qi
. (2.18)

Proof. Recall formula (2.7) forR. We have:R−(v⊗ vωi
) = 0; v⊗ vωi

is a generalized
eigenvector ofR0; andR+(v ⊗ vωi

) is a linear combination of tensor productsx ⊗
y ∈ BV ⊗ BVωi (b)

, wherey has a lower weight thanvωi
. Therefore the diagonal

matrix element ofR on v ⊗ vωi
∈ V (z)⊗ Vωi

(b) equals the generalized eigenvalue of
(πV (z) ⊗ πVωi (b)

)(R0) onv ⊗ vωi
.

On the other hand, as explained in the proof of Proposition 2.4, the monomialmv is
equal to the diagonal matrix element of(πV (z) ⊗ 1)(R0) corresponding tov. Therefore
the diagonal matrix element ofR corresponding tov⊗ vωi

equals the eigenvalue ofmv

(considered as an element ofUq h̃[[z]]) onvωi
.

In particular, ifv is the highest weight vector, then the corresponding monomialmv is
the highest weight monomialm+. Therefore we find that the diagonal matrix element of
the non-normalizedR-matrix corresponding tov⊗ vωi

equals the eigenvalue ofm+ on
vωi

. By formula (2.16) the diagonal matrix element of the normalizedR-matrix equals 1.
Therefore the eigenvalue ofm+ onvωi

equals the scalar functionfV,Vωi (b)(z). Therefore

we obtain that the diagonal matrix element of the normalizedR-matrix RV,Vωi (b)
(z)

corresponding to the vectorv⊗vωi
is equal to the eigenvalue ofmvm

−1+ onvωi
.According

to formula (2.14),Ai,a = 7−i (z−1a−1). Therefore, ifmv is given by formula (2.17), we
obtain from formula (1.10) that this matrix element is given by formula (2.18).��

Note that by Theorem 4.1 below every monomial occurring in theq-character of an
irreducible representationV can be written in the form (2.17).
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3. The Homomorphisms τJ and Restrictions

3.1. Restriction to Uq ĝJ . Given a subsetJ of I , we denote byUq ĝJ the subalgebra of
Uq ĝ generated byx±i,n, k̃

±1
i , hi,r , i ∈ J, n ∈ Z, r ∈ Z\0. Let

resJ : RepUq ĝ→ RepUq ĝJ

be the restriction map andβJ be the homomorphism

Z[Y±1
i,a ]i∈I ;a∈C× → Z[Y±1

i,a ]i∈J ;a∈C× ,

sendingY±1
i,a to itself for i ∈ J and to 1 fori 
∈J .

According to Theorem 3(3) of [FR2], the diagram

RepUq ĝ
χq−−−−→ Z[Y±1

i,a ]i∈I ;a∈C×�resJ

�βJ
RepUq ĝJ

χq,J−−−−→ Z[Y±1
i,a ]i∈J ;a∈C×

is commutative.
We will now refine the homomorphismsβJ and resJ .

3.2. The homomorphism τJ . Consider the elements̃hi,n defined by formula (2.2) and
k̃±1
i defined by formula (1.5).

Lemma 3.1.

k̃ix
±
j,nk̃

−1
i = q±ri δij x±j,n,

[̃hi,n, x±j,m] = ±δij
[nri]q
n

c∓|n|/2x±j,n+m,

[̃hi,n, hj,m] = δi,j δn,−m
[nri]q
n

cn − c−n

q − q−1 .

In particular, k̃±1
i , h̃i,n, i ∈ J , n ∈ Z\0, where J = I−J , commute with the subalgebra

Uq ĝJ of Uq ĝ.

Proof. These formulas follow from the relations given in Theorem 1.2 and the formula
B(q)C̃(q) = D(q). ��

Denote byUq ĥ
⊥
J the subalgebra ofUq ĝ generated bỹk±1

i , h̃i,n, i ∈ J , n ∈ Z\0. Then
Uq ĝJ ⊗ Uq ĥ

⊥
J is naturally a subalgebra ofUq ĝ. We can therefore refine the restriction

from Uq ĝ-modules toUq ĝJ -modules by considering the restriction fromUq ĝ-modules
toUq ĝJ ⊗ Uq ĥ

⊥
J -modules.

Thus, we look at the common (generalized) eigenvalues of the operatorsk±1
i , hi,n, i ∈

J , and̃k±1
i , h̃i,n, i ∈ J . We know that the eigenvalues ofhi,n have the form (2.11). The

corresponding eigenvalue of̃hi,n equals

[n]q
n

∑
j∈I

C̃ji(q
n)[rj ]qn

 kj∑
r=1

(ajr )
n −

lj∑
s=1

(bjs)
n

 , n > 0. (3.1)
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According to Lemma 1.1,̃Cji(x) = C̃′ji(x)/d(x), whereC̃′ji(x) andd(x) are certain
polynomials with positive integral coefficients (we fix a choice of suchd(x) once and
for all). Therefore formula (3.1) can be rewritten as

[n]q
nd(qn)

 ui∑
m=1

(cim)
n −

ti∑
p=1

(dip)
n

 , (3.2)

wherecim anddip are certain complex numbers (they are obtained by multiplyingajr

andbjs with all monomials appearing iñC′ji(q)[rj ]q ).
According to Proposition 2.4, to each monomial (2.5) inχq(V ) corresponds a gen-

eralized eigenspace ofhi,n, i ∈ I, n ∈ Z \ 0, with the common eigenvalues given by
formula (2.11) (note that the eigenvalues ofki, i ∈ I , can be read off from the weight of
the monomial). Using formula (3.1) we find the corresponding eigenvalues ofh̃i,n, i ∈ J

in the form (3.2). Now we attach to these common eigenvalues the following monomial
in the lettersY±1

i,a , i ∈ J , andZ±1
j,c , j ∈ J :

∏
i∈J

ki∏
r=1

Yi,air

li∏
s=1

Y−1
i,bis

 ·
∏

k∈J

uk∏
m=1

Zk,ckm

tk∏
p=1

Z−1
k,dkp

 .

The above procedure can be interpreted as follows. Introduce the notation

Y = Z[Y±1
i,a ]i∈I,a∈C× , (3.3)

Y(J ) = Z[Y±1
i,a ]i∈J,a∈C× ⊗ Z[Z±1

k,c]k∈J ,c∈C× . (3.4)

Write

(D(q)C̃′(q))ij =
∑
k∈Z

pij (k)q
k.

Definition 3.2. The homomorphism τJ : Y→ Y(J ) is defined by the formulas

τJ (Yi,a) = Yi,a ·
∏
j∈J

∏
k∈Z

Z
pij (k)

j,aqk
, i ∈ J, (3.5)

τJ (Yi,a) =
∏
j∈J

∏
k∈Z

Z
pij (k)

j,aqk
, i ∈ J . (3.6)

Observe that the homomorphismβJ can be represented as the composition ofτJ and
the homomorphismY(J ) → Z[Y±1

i,a ]i∈J,a∈C× sending allZk,c, k ∈ J , to 1. Therefore
τJ is indeed a refinement ofτJ , and so the restriction ofτJ to the image of RepUq ĝ in
Y is a refinement of the restriction homomorphism resJ .



38 E. Frenkel, E. Mukhin

3.3. Properties of τJ . The main advantage ofτJ overβJ is the following.

Lemma 3.3. The homomorphism τJ is injective.

Proof. The statement of the lemma follows from the fact that the matrixC̃′(q) is non-
degenerate. ��
Lemma 3.4. Let us write χq(V ) as the sum

∑
k PkQk , where Pk ∈ Z[Y±1

i,a ]i∈J,a∈C× ,

Qk is a monomial in Z[Z±1
j,c ]j∈J ,c∈C× , and all monomials Qk are distinct. Then the

restriction of V to Uq ĝJ is isomorphic to ⊕kVk , where Vk’s are Uq ĝJ -modules with
χJ
q (Vk) = Pk . In particular, there are no extensions between different Vk’s in V .

Proof. The monomials inχq(V ) ∈ Y encode the common eigenvalues ofhi,n, i ∈ I

onV . It follows from Sect. 3.2 that the monomials inτJ (χq(V )) encode the common
eigenvalues ofhi,n, i ∈ J , andh̃j,n, j ∈ J , onV .

Therefore we obtain that the restriction ofV toUq ĝJ ⊗Uq ĥ
⊥
J has a filtration with the

associated graded factorsVk⊗Wk, whereVk is aUq ĝJ -module withχJ
q (Vk) = Pk, and

Wk is a one-dimensionalUq ĥ
⊥
J -module, which corresponds toQk. By our assumption,

the modulesWk overUq ĥ
⊥
J are pairwise distinct. BecauseUq ĥ

⊥
J commutes withUq ĝJ ,

there are no extensions betweenVk ⊗ Wk andVl ⊗ Wl for k 
= l, asUq ĝJ ⊗ Uq ĥ
⊥
J -

modules. Hence the restriction ofV toUq ĝJ is isomorphic to⊕kVk. ��
Write

d(q)[ri]q =
∑
k∈Z

si(k)q
k.

Set
Bi,a =

∏
k∈Z

Z
si(k)

i,aqk
.

Lemma 3.5. We have:

τJ (Ai,a) = βJ (Ai,a), i ∈ J, (3.7)

τJ (Ai,a) = βJ (Ai,a)Bi,a, i ∈ J . (3.8)

Proof. This follows from the formulaD(q)C̃′(q)C(q) = D(q)d(q). ��
In the case whenJ consists of a single elementj ∈ I , we will write Y(J ), τJ andβJ

simply asY(j), τj andβj . Consider the diagram (we use the notation (3.3), (3.4)):

Y
τj−→ Y(j)

↓ ↓ A
−1
j,x

Y
τj−→ Y(j)

(3.9)

where the map corresponding to the right vertical row is the multiplication by
βj (Aj,x)

−1⊗ 1.
The following result will allow us to reduce various statements to the case ofUq ŝl2.
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Lemma 3.6. There exists a unique map Y → Y, which makes the diagram (3.9) com-
mutative. This map is the multiplication by A−1

j,x .

Proof. The fact that multiplication byA−1
j,x makes the diagram commutative follows

from formula (3.7). The uniqueness follows from the fact thatτj and the multiplication
by βj (Aj,x)

−1⊗ 1 are injective maps. ��

4. The Structure of q-Characters

In this section we prove Conjecture 1 from [FR2].
LetV be an irreducible finite-dimensionalUq ĝmoduleV generated by highest weight

vectorv. Then by Proposition 3 in [FR2],

χq(V ) = m+(1+
∑
p

Mp), (4.1)

where eachMp is a monomial inA±1
i,c , c ∈ C

× andm+ is the highest weight monomial.

In what follows, by a monomial inZ[x±1
α ]α∈A we will always understand a monomial

in reduced form, i.e., one that does not contain factors of the formxαx
−1
α . Thus, in

particular, if we say that a monomialM containsxα, it means that there is a factorxα in
M which can not be cancelled.

Theorem 4.1. The q-character of an irreducible finite-dimensional Uq ĝ module V has
the form (4.1), where each Mp is a monomial in A−1

i,c , i ∈ I , c ∈ C
× (i.e., it does not

contain any factors Ai,c).

Proof. The proof follows from a combination of Lemmas 3.3, 3.6 and 1.1.
First, we observe that it suffices to prove the statement of Theorem 4.1 for fundamen-

tal representationsVωi
(a). Indeed, then Theorem 4.1 will be true for any tensor product

of the fundamental representations. By Corollary 1.4, any irreducible representationV

can be represented as a quotient of a submodule of a tensor productW of fundamental
representations, which is generated by the highest weight vector. Therefore each mono-
mial in aq-character ofV is also a monomial in theq-character ofW . In addition, the
highest weight monomials of theq-characters ofV andW coincide. This implies that
Theorem 4.1 holds forV .

Second, Theorem 4.1 is true forg = Uq ŝl2. Indeed, by the argument above, it suffices
to check the statement for the fundamental representationV1(a). But itsq-character is
known explicitly (see [FR2], formula (4.3)):

χq(V1(a)) = Ya + Y−1
aq2 = Ya(1+ A−1

aq ), (4.2)

and it satisfies the required property.
For general quantum affine algebraUq ĝ, we will prove Theorem 4.1 (for the case of

the fundamental representations) by contradiction.
Suppose that the theorem fails for some fundamental representationVωi0

(a0) = V

and denote byχ its q-characterχq(V ). Denote bym+ the highest weight monomial
Yi0,a of χ .

Recall from Sect. 1.3 that we have a partial order on the weight lattice. It induces a
partial order on the monomials occurring inχ . Letm be the highest weight monomial
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in χ , such thatm can not be written as a product ofm+ with a monomial inA−1
i,c , i ∈ I ,

c ∈ C
×. This means that

any monomialm′ in χ , such thatm′ > m, is a product ofm+ andA−1
i,c ’s. (4.3)

In Lemmas 4.2 and 4.3 we will establish certain properties ofm and in Lemma 4.4
we will prove that these properties can not be satisfied simultaneously.

Recall that a monomial inZ[Y±1
i,a ]i∈I,a∈C× is called dominant if does not contain

factorsY−1
i,a (i.e., if it is a product ofYi,a ’s in positive powers only).

Lemma 4.2. The monomial m is dominant.

Proof. Supposem is not dominant. Then it contains a factor of the formY−1
i,a , for some

i ∈ I . Considerτi(χ). By Lemma 3.4, we have

τi(χ) =
∑
p

χqi (Vp) ·Np,

whereVp ’s are representation ofUqi ŝl2 = Uq ĝ{i} andNp ’s are monomials inZ±1
j,a, j 
= i.

We have already shown that Theorem 4.1 holds forUqi ŝl2, so

τi(χ) =
∑
p

(
mp(1+

∑
r

Mr,p)

)
·Np, (4.4)

where eachmp is a product ofYi,b’s (in positive powers only), and eachMr,p is a product

of several factorsA
−1
i,c = Y−1

i,cq−1Y
−1
i,cq (note thatMr,p = τi(Mr,p).

Sincem containsY−1
i,a by our assumption, the monomialτi(m) is not among the

monomials{mp ·Np}. Hence

τi(m) = mp0Mr0,p0 ·Np0,

for somep0, r0 andMr0,p0 
= 1. There exists a monomialm′ in χ , such thatτi(m′) =
mp0 ·Np0. Therefore using Lemma 3.6 we obtain that

m = m′Mr0,p0,

whereMr0,p0 is obtained fromMr0,p0 by replacing allA
−1
i,c byA−1

i,c . In particular,m′ > m

and by our assumption (4.3) it can be written asm′ = m+M ′, whereM ′ is a product
of A−1

k,c. But thenm = m′Mr0,p0 = m+M ′Mr0,p0, and som can be written as a product

of m+ and a product of factorsA−1
k,c. This is a contradiction. Thereforem has to be

dominant. ��
Lemma 4.3. The monomial m can be written in the form

m = m+M
∏
p

Aj0,ap , (4.5)

where M is a product of factors A−1
i,c , i ∈ I , c ∈ C

×. In other words, if m contains
factors Aj,a , then all such Aj,a have the same index j = j0.
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Proof. Suppose thatm = m+M, whereM contains a factorAi,c. LetVm be the gener-
alized eigenspace of the operatorsk±1

j , hj,n, j ∈ I , corresponding to the monomialm.
We claim that for allv ∈ Vm we have:

x+j,n · v = 0, j ∈ I, j 
= i, n ∈ Z. (4.6)

Indeed, letτj (m) = βj (m) ·N (recall thatβj (m) is obtained fromm by erasing allYs,c
with s 
= j andN is a monomial inZ±1

s,c , s ∈ I , s 
= j ). By Lemma 3.4,x+j,n · v belongs
to the direct sum of the generalized eigenspacesVm′p , corresponding to the monomials
m′p in χ such thatτj (m′p) = βj (m

′
p) · N (with the sameN as inτj (m) = βj (m) · N ).

By formula (3.8),

τj

(
m+

∏
A±1
ik,ck

)
= τj (m+)

∏
βj (Aik,ck )

±1
∏
ik 
=j

B±1
ik,ck

.

In particular,N contains a factorBi,c, and therefore all monomialsm′p with the above
property must contain a factorAi,c. By our assumption (4.3), the weight of eachm′p can

not be higher than the weight ofm. But the weight ofx+j,n · v should be greater than the
weight ofm. Therefore we obtain formula(4.6).

Now, if M contained factorsAi,c andAj,d with i 
= j , then any non-zero eigenvector
(not generalized) in the generalized eigenspaceVm corresponding tom would be a
highest weight vector (see formula (1.9)). Such vectors do not exist inV , becauseV is
irreducible. The statement of the lemma now follows.��
Lemma 4.4. Let m be any monomial in the q-character of a fundamental representation
that can be written in the form (4.5). Then m is not dominant.

Proof. We say a monomialM ∈ Y (see (3.3)) haslattice support with base a0 ∈ C
× if

M ∈ Z[Y±1
i,a0qk

]i∈I,k∈Z.

Any monomialm ∈ Y can be uniquely written as a productm = m(1) . . . m(s), where
each monomialm(i) has lattice support with a baseai , andai/aj 
∈ qZ for i 
= j . Note
that a non-constant monomial inA±1

i,bqk
, i ∈ I, k ∈ Z, can not be equal to a monomial in

A±1
i,cqk

, i ∈ I, k ∈ Z if b/c 
∈ qZ. Therefore ifm can be written in the form(4.5), then

eachm(i) can be written in the form(4.5), wherem+ = Yi0,a if ai = a, andm+ = 1 if
a/ai 
∈ qZ (note that the product overp in (4.5) may be empty for somem(i)). We will
prove that none ofm(i)’s is dominant unlessm(i) = m+ orm(i) = 1.

Consider first the case ofm(1), which has lattice support with basea. Then

m(1) =
∏
i∈I

∏
n∈Z

Y
pi(n)
i,aqn .

Define Laurent polynomialsPi(x), i ∈ I by

Pi(x) =
∑
n∈Z

pi(n)x
n.

If m(1) can be written in the form(4.5), then

Pi(x) = −
∑
j∈I

Cij (x)Rj (x)+ δi,i0, ∀i ∈ I, (4.7)
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whereRj (x)’s are some polynomials with integral coefficients. All of these coefficients
are non-negative ifj 
= j0. Now suppose thatm(1) is a dominant monomial. Then each
Pi(x) is a polynomial with non-negative coefficients. We claim that this is possible only
if all Ri(x) = 0.

Indeed, according to Lemma 1.1, the coefficients of the inverse matrix toC(x), C̃(x),
can be written in the form(1.2), whereC̃′jk(x), d(x) are polynomials with non-negative

coefficients. Multiplying(4.7) by C̃′(x), we obtain∑
j∈I

Pj (x)C̃
′
jk(x)+ d(x)Rk(x) = C̃′i0,k(x), ∀k ∈ I. (4.8)

Given a Laurent polynomial

p(x) =
∑

−r≤i≤s
pix

i, p−r 
= 0, ps 
= 0,

we will say that the length ofp(x) equalsr + s. Clearly, the length of the sum and of
the product of two polynomials with non-negative coefficients is greater than or equal
to the length of each of them. Therefore ifk 
= j0, and ifRk(x) 
= 0, then the length of
the LHS is greater than or equal to the length ofd(x), which is greater than the length
of C̃′i0,k by Lemma 1.1. This implies thatRk(x) = 0 for k 
= j0.

Hencem(1) can be written in the form

m(1) = Yi,a
∏
n∈Z

A
cn
j0,aqn

.

But such a monomial can not be dominant because its weight isωi−nαj0, wheren > 0,
and such a weight is not dominant. This proves the required statement for the factorm(1)

of m (which has lattice support with basea).
Now consider a factorm(i) with lattice support with baseb, such thatb/a 
∈ qZ. In

this case we obtain the following equation: the LHS of formula (4.8)= 0. The previous
discussion immediately implies that there are no solutions of this equation with non-
zero polynomialsRk(x) satisfying the above conditions. This completes the proof of the
lemma. ��

Theorem 4.1 now follows from Lemmas 4.2, 4.3 and 4.4.��

Corollary 4.5. The only dominant monomial in χq(Vωi
(a)) is the highest weight mono-

mial Yi,a .

Proof. This follows from the proof of Lemma 4.4.��

5. A Characterization of q-Characters in Terms of the Screening Operators

In this section we prove Conjecture 2 from [FR2].
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5.1. Definition of the screening operators. First we recall the definition of the screening
operators onY = Z[Y±1

i,a ]i∈I ;a∈C× from [FR2] and state the main result.
Consider the freeY-module with generatorsSi,x, x ∈ C

×,

Ỹi = ⊕
x∈C×

Y · Si,x .

Let Yi be the quotient of̃Yi by the relations

Si,xq2
i
= Ai,xqi Si,x . (5.1)

Clearly,
Yi � ⊕

x∈(C×/q2Z

i )

Y · Si,x,

and soYi is also a freeY-module.
Define a linear operator̃Si : Y→ Ỹi by the formula

S̃i (Yj,a) = δij Yi,aSi,a

and the Leibniz rule:̃Si(ab) = bS̃i(a)+ aS̃i(b). In particular,

S̃i (Y
−1
j,a ) = −δij Y−1

i,a Si,a.

Finally, let
Si : Y→ Yi

be the composition of̃Si and the projectioñYi → Yi . We call Si the ith screening
operator.

The following statement was conjectured in [FR2] (Conjecture 2).

Theorem 5.1. The image of the homomorphism χq equals the intersection of the kernels
of the operators Si, i ∈ I .

In [FR2] this theorem was proved in the case ofUq ŝl2. In the rest of this section we
prove it for an arbitraryUq ĝ.

5.2. Description of KerSi . First, we describe the kernel ofSi onY. The following result
was announced in [FR2], Proposition 6.

Proposition 5.2. The kernel of Si : Y→ Yi equals

Ki = Z[Y±1
j,a ]j 
=i;a∈C× ⊗ Z[Yi,b + Yi,bA

−1
i,bqi
]b∈C× . (5.2)

Proof. A simple computation shows thatKi ⊂ KerY Si . Let us show that KerY Si ⊂ Ki .
Forx ∈ C

×, denote byY(x) the subringZ[Y±1
j,xqn ]j∈I,n∈Z of Y. We have:

Y � ⊗
x∈(C×/qZ)

Y(x).

Lemma 5.3.
KerY Si = ⊗

x∈(C×/qZ)

KerY(x) Si .
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Proof. Let P ∈ Y, and suppose it containsY±1
j,a for somea ∈ C

× andj ∈ I . Then
we can writeP as the sum

∑
k RkQk, whereQk ’s are distinct monomials, which are

products of the factorsY±1
s,aqn, s ∈ I, n ∈ Z (in particular, one of theQk ’s could be equal

to 1), andRk ’s are polynomials which do not containY±1
s,aqn, s ∈ I, n ∈ Z. Then

Si(P ) =
∑
k

(Qk · Si(Rk)+ Rk · Si(Qk)).

By definition ofSi , Si(Qk) belongs toY · Si,a , while Si(Rk) belongs to the direct sum
of Y · Si,b, whereb 
∈ aqZ.

Therefore ifP ∈ KerY Si , then
∑

k Qk ·Si(Rk) = 0. SinceQk ’s are distinct, we obtain
thatRk ∈ KerY Si . But thenSi(P ) = ∑

k Rk · Sk(Qk). ThereforeP can be written as∑
l RlQ̃l , where each̃Ql is a linear combination of theQk ’s, such that̃Ql ∈ KerY Si .

This proves that
P ∈ KerY(
=a) Si ⊗ KerY(a) Si,

whereY(
=a) = Z[Y±1
j,b ]j∈I,b 
∈aqZ . By repeating this procedure we obtain the lemma

(because each polynomial contains a finite number of variablesY±1
j,a , we need to apply

this procedure finitely many times).��
According to Lemma 5.3, it suffices to show that KerY(x) Si ⊂ Ki (x), where

Ki (x) = Z[Y±1
j,xqn ]j 
=i;n∈Z ⊗ Z[Yi,xqn + Yi,xqnA

−1
i,xqnqi

]n∈Z.

DenoteYj,xqn by yj,n, Aj,xqn by aj,n, andAj,xqnY
−1
j,xqnqj

Y−1
j,xqnq−1

j

by aj,n. Note that

aj,n does not contain factorsy±1
j,m,m ∈ Z.

Let T be the shift operator onY(x) sendingyj,n to yj,n+1 for all j ∈ I . It follows
from the definition ofSi thatP ∈ KerY(x) Si if and only ifT (P ) ∈ KerY(x) Si . Therefore
(applyingT m with large enoughm toP ) we can assume without loss of generality that
P ∈ Z[yi,n, y−1

i,n+2ri
]n≥0⊗ Z[y±1

j,n]j 
=i,n≥0.
We find from the definition ofSi :

Si(yj,n) = 0, j 
= i,

Si(yi,2rin+ε) = yi,ε

n∏
k=1

y2
i,2rik+εai,ri (2k−1)+ε · Si,xqε , (5.3)

whereε ∈ {0,1, . . . ,2ri − 1}. Therefore eachP ∈ KerY(x) Si can be written as a sum
P =∑Pε , where eachPε ∈ KerY(x) Si and

Pε ∈ Z[yi,2rin+ε, y−1
i,2ri (n+1)+ε]n≥0⊗ Z[y±1

j,n]j 
=i,n≥0.

It suffices to consider the caseε = 0. Thus, we show that if

P ∈ Y
≥0
i (x) = Z[yi,2rin, y−1

i,2ri (n+1)]n≥0⊗ Z[y±1
j,n]j 
=i,n≥0,

then
P ∈ K

≥0
i (x) = Z[tn]n≥0⊗ Z[y±1

j,n]j 
=i,n≥0,
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where
tn = yi,2rin + yi,2rina

−1
i,ri (2n+1) = yi,2rin + y−1

i,2ri (n+1)a
−1
i,ri (2n+1).

Consider a homomorphismK≥0
i (x)⊗ Z[yi,2rin]n≥0 → Y

≥0
i (x) sendingy±1

j,n, j 
= i

to y±1
j,n, yi,2rin to yi,2rin, andtn to yi,2rin + y−1

i,2ri (n+1)a
−1
i,ri (2n+1). This homomorphism is

surjective, and its kernel is generated by the elements

(tn − yi,2rin)ai,ri (2n+1)yi,2ri (n+1) − 1. (5.4)

Therefore we identifyY≥0
i (x) with the quotient ofK≥0

i (x)⊗ Z[yi,2rin]n≥0 by the ideal
generated by elements of the form (5.4).

Consider the set of monomials

tn1 . . . tnk yi,2rim1 . . . yi,2riml

∏
j 
=i,pj≥0

y±1
j,pj

,

where alln1 ≥ n2 ≥ . . . nk ≥ 0,m1 ≥ m2 ≥ . . . ml ≥ 0, and alsomj 
= ni + 1 for
all i andj . We call these monomialsreduced. It is easy to see that the set of reduced
monomials is a basis ofY≥0

i (x).

Now let P be an element of the kernel ofSi on Y
≥0
i (x). Let us write it as a linear

combination of the reduced monomials. We representP asyai,2riNQ + R. HereN is
the largest integer, such thatyi,2riN is present in at least one of the basis monomials
appearing in its decomposition;a > 0 is the largest power ofyi,2riN in P ; Q 
= 0 does
not containyi,2riN , andR is not divisible byyai,2riN . Recall that here bothyai,2riNQ and
R are linear combinations of reduced monomials.

Recall thatSi(tn) = 0,Si(y
±1
j,n) = 0, j 
= i, andSi(yi,2rin) is given by formula (5.3).

Suppose thatN > 0. According to formula (5.3),

Si(P ) = aya+1
i,2riN

N−1∏
k=1

yi,2rik

N∏
l=1

ai,ri (2l−1)yi,0 Q · Si,x + . . . , (5.5)

where the dots represent the sum of terms that are not divisible byya+1
i,2riN

. Note that the

first term in (5.5) is non-zero because the ringY
≥0
i (x) has no divisors of zero.

The monomials appearing in (5.5) are not necessarily reduced. However, by construc-
tion,Q does not containtN−1, for otherwiseyai,2riNQ would not be a linear combination
of reduced monomials. Therefore when we rewrite (5.5) as a linear combination of re-
duced monomials, each reduced monomial occurring in this linear combination is still
divisible by ya+1

i,2riN
. On the other hand, no reduced monomials occurring in the other

terms ofSi(P ) (represented by dots) are divisible byya+1
i,2riN

. Hence forP to be in the
kernel, the first term of (5.5) has to vanish, which is impossible. ThereforeP does not
containyi,2rim’s with m > 0.

But thenP =∑k y
pk
i,0Rk, whereRk ∈ Ki≥0(x), andSi(P ) =∑k pky

pk−1
i,0 Rk · Si,x .

SuchP is in the kernel ofSi if and only if all pk = 0 and soP ∈ Ki≥0(x). This
completes the proof of Proposition 5.2.��

Set

K =
⋂
i∈I

Ki =
⋂
i∈I

(
Z[Y±1

j,a ]j 
=i;a∈C× ⊗ Z[Yi,b + Yi,bA
−1
i,bqi
]b∈C×

)
. (5.6)

Now we will prove that the image of theq-character homomorphismχq equalsK.
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5.3. The image of χq is a subspace of K. First we show that the image of RepUq ĝ in Y
under theq-character homomorphism belongs to the kernel ofSi .

Recall the ringY(i) = Z[Y±1
i,a ]a∈C× ⊗ Z[Z±1

j,c ]j 
=i,c∈C× and the homomorphismτi :
Y→ Y(i) from Sect. 3.2.

Let Yi be the quotient of⊕
x∈C×

Z[Y±1
i,a ]a∈C× · Si,x by the submodule generated by the

elements of the formSi,xq2
i
−Ai,xqi Si,x , whereAi,xqi = Yi,xYi,xq2

i
. Define a derivation

Si : Z[Y±1
i,a ]a∈C× → Yi by the formulaSi(Yi,a) = Yi,aSi,a . Thus,Yi coincides with the

moduleYi in the case ofUqi ŝl2 andSi is the corresponding screening operator.
Set

Y
(i)
i = Z[Z±1

j,c ]j 
=i,c∈C× ⊗ Yi .

The mapSi can be extended uniquely to a mapY(i) → Y
(i)
i by Si(Zj,c) = 0 for all

j 
= i, c ∈ C
× and the Leibniz rule. We will also denote it bySi . The embeddingτi

gives rise to an embeddingYi → Y
(i)
i which we also denote byτi .

Lemma 5.4. The following diagram is commutative

Y
τi−−−−→ Y(i)�Si �Si

Yi
τi−−−−→ Y

(i)
i

Proof. Sinceτi is a ring homomorphism and bothSi , Si are derivations, it suffices to
check commutativity on the generators. Let us choose a representativex in eachq2Z

i -
coset ofC×. Then we can write:

Yi = ⊕
x∈C×/q2Z

i

Y · Si,x, Y
(i)
i = ⊕

x∈C×/q2Z

i

Y(i) · Si,x .

By definition,

Si(Yj,xq2n
i
) = δij Yi,x

∏
m

A±1
i,xq2m+1

i

Si,x,

Si(Yi,xq2n
i
) = Yi,x

∏
m

A
±1
i,xq2m+1

i
Si,x,

Si(Zj,c) = 0, ∀j 
= i.

Recall from formula (3.5) thatτi(Yi,x) equalsYi,x times a monomial inZ±1
j,c , j 
= i, and

from formula (3.8) thatτi(A
±1
i,b ) = A

±1
i,b . Using these formulas we obtain:

(τi ◦ Si)(Yi,xq2n
i
) = (Si ◦ τi)(Yi,xq2n) = τi(Yi,x)

∏
A
±1
i,xq2m+1

i
Si,x .

On the other hand, whenj 
= i, τi(Yj,x) is a monomial inZ±1
k,c, k 
= i, according to

formula (3.6). Therefore

(τi ◦ Si)(Yj,x) = (Si ◦ τi)(Yj,x) = 0, j 
= i.

This proves the lemma.��
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Corollary 5.5. The image of the q-character homomorphism χq : RepUq ĝ → Y is
contained in the kernel of Si on Y.

Proof. Let V be a finite-dimensional representation ofUq ĝ. We need to show that
Si(χq(V )) = 0. By Lemma 3.4, we can writeχq(V ) as the sum

∑
k PkQk, where

eachPk ∈ Z[Y±1
i,a ]a∈C× is in the image of the homomorphismχ(i)

q : RepUqi ŝl2 →
Z[Y±1

i,a ]a∈C× , andQk is a monomial inZ±1
j,c , j 
= i.

The image ofχ(i)
q lies in the kernel of the operatorSi (in fact, they are equal, but

we will not use this now). This immediately follows from the fact that RepUq ŝl2 �
Z[χq(V1(a))] andSi(χq(V1(a))) = 0, which is obtained by a straightforward calcu-
lation. We also have:Si(Zj,c) = 0,∀j 
= i. Therefore(Si ◦ τi)(χq(V )) = 0. By
Lemma 5.4,(τi ◦ Si)(χq(V )) = 0. Sinceτi is injective by Lemma 3.3, we obtain:
Si(χq(V )) = 0. ��

5.4. K is a subspace of the image of χq . LetP ∈ K. We want to show thatP ∈ Im χq .
A monomialm contained inP ∈ Y is calledhighest monomial (resp.,lowest mono-

mial), if its weight is not lower (resp., not higher) than the weight of any other monomial
contained inP .

Lemma 5.6. Let P ∈ K. Then any highest monomial in P is dominant and any lowest
weight monomial in P is antidominant.

Proof. First we prove that the highest monomials are dominant.
By Proposition 5.2,

P ∈ Ki = Z[Y±1
j,a ]j 
=i;a∈C× ⊗ Z[Yi,b + Yi,bA

−1
i,bqi
]b∈C× .

The statement of the lemma will follow if we show that a highest weight monomial
contained in any element ofKi does not contain factorsY−1

i,a .

Indeed, the weight ofYi,a is ωi , and the weight ofYi,bA
−1
i,bqi

is ωi − αi . Denote

tb = Z[Yi,b + Yi,bA
−1
i,bqi
]b∈C× . Given a polynomialQ ∈ Z[tb]b∈C× , letm1, . . . , mk be

its monomials (intb) of highest degree. Clearly, the monomials of highest weight inQ

(considered as a polynomial inY±1
j,a ) arem1, . . . , mk, in which we substitute eachtb by

Yi,b. These monomials do not contain factorsY−1
i,a .

The statement about the lowest weight monomials is proved similarly, once we ob-
serve that

Ki = Z[Y±1
j,a ]j 
=i;a∈C× ⊗ Z[Y−1

i,b + Y
i,bq−2

i
A
i,bq−1

i
]b∈C× . ��

Let m be a highest monomial inP , and suppose that it entersP with the coefficient
νm ∈ Z \ 0. Thenm is dominant by Lemma 5.2. According to Theorem 1.3(2) and
formula (2.13), there exists an irreducible representationV1 of Uq ĝ, such thatm is the
highest weight monomial inχq(V1). Sinceχq(V1) ∈ K by Corollary 5.5, we obtain that
P1 = P − νm · χq(V1) ∈ K.

For P ∈ Y, denote byJ(P ) the (finite) set of dominant weightsλ, such thatP
contains a monomial of weight greater than or equal toλ. By Proposition 5.2, ifP ∈ K
andJ(P ) is empty, thenP is necessarily equal to 0.



48 E. Frenkel, E. Mukhin

Note that for any irreducible representationV ofUq ĝ of highest weightµ,J(χq(V ))

is the set of all dominant weights which are less than or equal toµ. ThereforeJ(P1) is
properly contained inJ(P ). By applying the above subtraction procedure finitely many

times, we obtain an elementPk = P −
k∑

i=1

χq(Vi), for whichJ(Pk) is empty. But then

Pk = 0.
This shows thatK ⊂ Im χq . Together with Lemma 5.5, this gives us Theorem 5.1

and the following corollary.

Corollary 5.7. The q-character homomorphism,

χq : RepUq ĝ→ K,

where K is given by (5.6), is a ring isomorphism.

5.5. Application: Algorithm for constructing q-characters. Consider the following
problem: Give an algorithm which for any dominant monomialm+ constructs theq-
character of the irreducibleUq ĝ-module whose highest weight monomial ism+. In this
section we propose such an algorithm. We prove that our algorithm produces theq-
characters of the fundamental representations (in this casem+ = Yi,a). We conjecture
that the algorithm works for any irreducible module.

Roughly speaking, in our algorithm we start fromm+ and gradually expand it in all
possibleUqi ŝl2 directions. (Here we use the explicit formulas forq-characters ofUq ŝl2
and Lemma 3.6.) In the process of expansion some monomials may come from different
directions. We identify them in the maximal possible way.

First we introduce some terminology.
Let χ ∈ Z≥0[Y±1

i,a ]i∈I,a∈C× be a polynomial andm a monomial inχ occurring with
coefficients ∈ Z>0. By definition, acoloring of m is a set{si}i∈I of non-negative
integers such thatsi ≤ s. A polynomialχ in which all monomials are colored is called
a colored polynomial.

We think ofsi as the number of monomials of typemwhich have come from direction
i (or by expanding with respect to theith subalgebraUqi ŝl2).

A monomialm is calledi-dominant if it does not contain variablesY−1
i,a , a ∈ C

×.
A monomialm occurring in a colored polynomialχ with coefficients is called

admissible if m is j -dominant for allj such thatsj < s. A colored polynomial is called
admissible if all of its monomials are admissible.

Given an admissible monomialmoccurring with coefficients in a colored polynomial
χ , we define a new colored polynomialim(χ), called thei-expansion ofχ with respect
tom, as follows.

If si = s, thenim(χ) = χ . Suppose thatsi < s and letm be obtained fromm by
settingY±1

j,a = 1, for all j 
= i. Sincem is admissible,m is a dominant monomial.

Therefore there exists an irreducibleUqi ŝl2 moduleV , such that the highest weight
monomial ofV is m. We have explicit formulas for theq-characters of all irreducible
Uq ŝl2-modules (see, e.g., [FR2, Sect. 4.1]). We writeχqi (V ) = m(1+∑p Mp), where

Mp is a product ofA
−1
i,a . Let
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µ = m(1+
∑
p

Mp), (5.7)

whereMp is obtained fromMp by replacing allA
−1
i,a byA−1

i,a .
The colored polynomialim(χ) is obtained fromχ by adding monomials occurring in

µ by the following rule. Let monomialn occur inµ with coefficientt ∈ Z>0. If n does
not occur inχ then it is added with the coefficientt (s− si) and we set theith coloring of
n to bet (s − si), and the other colorings to be 0. Ifn occurs inχ with coefficientr and
coloring{ri}i∈I , then the new coefficient ofn in im(χ) is max{r, ri + t (s − si)}. In this
case theith coloring is changed tori + t (s − si) and other colorings are not changed.

Obviously, thei-expansions ofχ with respect tom commute for differenti. To
expand a monomialm in all directions means to compute+m(. . .2m(1m(χ)) . . . ), where
+ = rk(g).

Now we describe the algorithm. We start with the colored polynomialm+ with all
colorings set equal zero. Let theUqg-weight ofm+ beλ. The set of weights of the form
λ −∑i aiαi , ai ∈ Z≥0 has a natural partial order. Choose any total order compatible
with this partial order, so we haveλ = λ1 > λ2 > λ3 > . . . .

At the first step we expandm+ in all directions. Then we expand in all directions all
monomials of weightλ1 obtained at the first step. Then we expand in all directions all
monomials of weightλ2 obtained at the previous steps, and so on. Since the monomials
obtained in the expansion of a monomial ofUqg-weightµ have weights less thanµ, the
result does not depend on the choice of the total order.

Note that for any monomialm except form+ occurring with coefficients at any step,
we have maxi{si} = s. This property means that we identify the monomials coming
from different directions in the maximal possible way.

The algorithm stops if all monomials have been expanded. We say that the algorithm
fails at a monomialm if m is the first non-admissible monomial to be expanded.

Letm+ be a dominant monomial andV the corresponding irreducible module.

Conjecture 5.8. The algorithm never fails and stops after finitely many steps. Moreover,
the final result of the algorithm is the q-character of V .

Theorem 5.9. Suppose that χq(V ) does not contain dominant monomials other than
m+. Then Conjecture 5.8 is true. In particular, Conjecture 5.8 is true in the case of
fundamental representations.

Proof. For i ∈ I , letDi be a decomposition of the set of monomials inχq(V ) with mul-
tiplicities into a disjoint union of subsets such that each subset forms theq-character of
an irreducibleUqi ŝl2 module. We refer to this decompostionDi as theith decomposition
of χq(V ). DenoteD the collection ofDi , i ∈ I .

Consider the following colored oriented graphKV (D). The vertices are monomials
in χq(V ) with multiplicities. We draw an arrow of colori from a monomialm1 to a
monomialm2 if and only if m1 andm2 are in the same subset of theith decomposition
andm2 = A−1

i,am1 for somea ∈ C
×.

We call an oriented graph a tree (with one root) if there exists a vertexv (called root),
such that there is an oriented path fromv to any other vertex. The graphKW(D), where
W is an irreducibleUq ŝl2-module is always a tree and its root corresponds to the highest
weight monomial.

Consider the full subgraph ofKV (D) whose vertices correspond to monomials from
a given subset of theith decomposition ofχq(V ).All arrows of this subgraph are of color
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i. By Lemma 3.6, this subgraph is a tree isomorphic to the graph of the corresponding
irreducibleUqi ŝl2-module. Moreover, its root corresponds to ani-dominant monomial.
Therefore if a vertex ofKV (D) has no incoming arrows of colori, then it corresponds to
ani-dominant monomial. In particular, ifm has no incoming arrows inKV (D), thenm
is dominant. Since by our assumptionχq(V ) does not contain any dominant monomials
except form+, the graphKV (D) is a tree with rootm+.

Choose a sequence of weightsλ1 > λ2 > . . . as above. We prove by induction onr
the following statementSr :

The algorithm does not fail during the firstr steps. Letχr be the resulting polynomial
after these steps. Then the coefficient of each monomialm in χr is not greater than that
in χq(V ) and the coefficients of monomials of weightsλ1, . . . , λr in χr andχq(V ) are
equal. Furthermore, there exists a decompositionD of χq(V ), such that monomials in
χr can be identified with vertices inKV (D) in such a way that all outgoing arrows from
vertices withUqg-weightsλ1, . . . , λr go to vertices ofχr . Finally, thej th coloring of a
monomialm in χr is just the number of vertices of typem in χr which have incoming
arrows of colorj in KV (D).

The statementS0 is obviously true. Assume that the statementSr is true for some
r ≥ 0. Recall that at the(r + 1)st step we expand all monomials ofχr of weightλr+1.

Let m be a monomial of weightλr+1 in χr , which enters with coefficients and
coloring{si}i∈I .

Then the monomialm entersχq(V ) with coefficients as well. Indeed,KV (D) is
a tree, so all verticesm have incoming arrows from vertices of larger weight. By the
statementSr theses arrows go to vertices corresponding to monomials inχr .

Suppose thatsj < s for somej ∈ I . Thenm is j -dominant. Indeed, otherwise each
vertex of typem in KV (D) has an incoming arrow of colorj coming from a vertex of
higher weight. Then by the last part of the statementSr , sj = s.

Therefore the monomialm is admissible, and the algorithm does not fail atm.
Consider the expansionjm(χr). Let µ be as in(5.7). In the j th decomposition of

χq(V ),m corresponds to a root of a tree whose vertices can be identified with monomials
in µ. We fix such an identification. Then monomials inµ get identified with vertices in
KV (D).

Let v be the vertex inKV (D), corresponding to a monomialn in µ. Denote the
coefficient ofn in χr by p and the coloring by{pi}i∈I . We have two cases:

a) pj = p. Then the last part of the statementSr implies that the vertexv does not
belong toχr . We add the monomialn toχr and increasepj by one (we have already
identified it withv).

b) pj < p. Then bySr there exists a vertexw in χr of typen with no incoming arrows
of color j . We change the decompositionDj by switching the verticesv andw and
identify n with the newv. We also increasepj by one. (Thus, in this case we do not
addn to χr .)

In both cases, the statementSr+1 follows.
Since the set of weights of monomials occurring inχq(V ) is contained in a finite set

λ1, λ2, . . . , λN , the statementSN proves the first part of the theorem.
Corollary 4.5 then implies the second part of the theorem.��
We plan to use the above algorithm to compute explicitly theq-characters of the

fundamental representations ofUq ĝ and to obtain their decompositions underUqg.
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Remark 5.10. There is a similar algorithm for computing the ordinary characters of finite-
dimensionalg-modules (equivalently,Uqg-modules). That algorithm works for those
representations (called miniscule) whose characters do not contain dominant weights
other than the highest weight (for other representations the algorthim does not work).
However, there are very few miniscule representations for a general simple Lie algebra
g. In contrast, in the case of quantum affine algebras there are many representations
whose characters do not contain any dominant monomials except for the highest weight
monomials (for example, all fundamental representations), and our algorithm may be
applied to them.

6. The Fundamental Representations

In this section we prove several theorems about the irreducibility of tensor products of
fundamental representations.

6.1. Reducible tensor products of fundamental representations and poles of R-matrices.
In this section we prove that the reducibility of a tensor product of the fundamental
representations is always caused by a pole in theR-matrix.

We say that a monomialm haspositive lattice support with base a if m is a product
Y±1
i,aqn with n ≥ 0.

Lemma 6.1. All monomials in χq(Vωi
(a)) have positive lattice support with base a.

Proof. ForUq ŝl2, the statement follows from the explicit formula(4.2) for χq(V1(a)).
Theq-character of any irreducible representationV of Uq ŝl2 is a subsum of a product
of theq-characters ofV1(b)’s. Moreover, this subsum includes the highest monomial.
Hence if the highest weight monomial ofχq(V ) has positive lattice support with base
a, then so do all monomials inχq(V ).

Now consider the case of generalUq ĝ. Suppose there exists a monomial inχ =
χq(Vωi

(a)), which does not have positive lattice support with basea. Letm be a highest
among such monomials (with respect to the partial ordering by weights).

By Corollary 4.5, the monomialm is not dominant. In other words, if we rewritem
as a product ofY±1

i,b , we will have at least one generator in negative power, sayY−1
i0,b0

.
Writeτi0(χ) in the form(4.4). The monomialτi0(m) can not be among the monomials

{mpNp}, sincem containsY−1
i0,b0

. Thereforeτi0(m) = mp0Np0Mr0,p0 for someMr0,p0 
=
1, which is a product of factorsA

−1
i,c . Letm1 be a monomial inχ , such thatτi0(m1) =

mp0Np0. Then by Lemma 3.6,m = m1Mr0,p0, whereMr0,p0 is obtained fromMr0,p0

by replacing allA
−1
i,c with A−1

i,c .
By construction, the weight ofm1 is higher than the weight ofm, so by our assumption,

m1 has positive lattice support with basea. But thenmp0 also has positive lattice support
with basea. Therefore all monomials inmp0(1+

∑
r Mr,p) have positive lattice support

with basea. This implies thatMr0,p0, and hencem = m1Mr0,p0, has positive lattice
support with basea. This is a contradiction, so the lemma is proved.��
Remark 6.2. From the proof of Lemma 6.1 is clear that the only monomial inχq(Vωi

(a))

which containsY±1
j,aqn with n = 0 is the highest weight monomialYi,a .
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LetV be aUq ĝ-module with theq-characterχq(V ). Define the oriented graphEV as
follows. The vertices ofEV are monomials inχq(V ) with multiplicities. Thus, there are
dimV vertices. We denote the monomial corresponding to a vertexα by mα. We draw
an arrow from the vertexα to the vertexβ if and only if mβ = mαA

−1
i,x for somei ∈ I ,

x ∈ C
×.

If V is an irreducibleUq ŝl2-module, then the graphEV is connected. Indeed, every
irreducibleUq ŝl2-module is isomorphic to a tensor product of evaluation modules. The
graph associated to each evaluation module is connected according to the explicit for-
mulas for the correspondingq-characters (see formula (4.3) in [FR2]). Clearly, a tensor
product of two modules with connected graphs also has a connected graph.

Lemma 6.3. Let α ∈ EV be a vertex with no incoming arrows. Then mα is a dominant
monomial.

Proof. Let α containY−1
i,b for somei ∈ I , b ∈ C

×. We write the restrictedq-character

τi(χq(V )) in the form(4.4), where eachmp(1+∑r Mr,p) is aq-character of an irre-
ducibleUqi ŝl2 module.

The monomialτi(m) containsY−1
i,b and therefore can not be among the monomials

{mpNp}. But the graphs of irreducibleUq ŝl2-modules are connected. So we obtain that
τi(m) = τi(A

−1
i,c )τi(m

′) for some monomialm′ in χq(V ), and somec ∈ C
×. By Lemma

3.6, we havem = A−1
i,c m

′ which is a contradiction. ��
Now Corollary 4.5 implies:

Corollary 6.4. The graphs of all fundamental representations are connected.

Let a monomialm have lattice support with basea. We callm right negative if the
factorsYi,aqk appearing inm, for whichk is maximal, have negative powers.

Lemma 6.5. All monomials in theq-character of the fundamental representationVωi
(a),

except for the highest weight monomial, are right negative.

Proof. Let us show first that from the highest weight monomialm+ there is only one
outgoing arrow to the monomialm1 = m+A−1

i,aqi
. Indeed, the weight of a monomial that

is connected tom+ by an arrow has to be equal toωi−αj for somej ∈ I . The restriction
of Vωi

(a) to Uq ĝ is isomorphic to the direct some of itsith fundamental representation
Vωi

and possibly some other irreducible representations with dominant weights less than
ωi . However, the weightωi − αj is not dominant for anyi andj . Therefore this weight
has to belong to the set of weights ofVωi

, and the multiplicity of this weight inVωi
(a)

has to be the same as that inVωi
. It is clear that the only weight of the formωi − αj that

occurs inVωi
is ωi − αi , and it has multiplicity one. By Theorem 4.1, this monomial

must have the formm1 = m+A−1
i,aqi

.
Now, the graphEVωi (a)

is connected. Therefore each monomialm in χq(Vωi
(a)) is

a product ofm1 and factorsA−1
j,b. Note thatm1 is right negative and allA−1

j,b are right
negative (this follows from the explicit formula (2.15)). The product of two right negative
monomials is right negative. This implies the lemma.��
Remark 6.6. It follows from the proof of the lemma that the rightmost factor of each
non-highest weight monomial occurring inχq(Vωi

(a)) equalsY−1
j,aqn , wheren ≥ 2ri .

Moreover, the equality holds only for the above monomialm1 (in that casej = i).
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Recall the definition of the normalizedR-matrixRV,W (z) from Sect. 2.3. The fol-
lowing theorem was conjectured, e.g., in [AK].

Theorem 6.7. Let {Vk}k=1,...,n, where Vk = Vωs(k)
(ak), be a set of fundamental repre-

sentations of Uq ĝ. The tensor product V1⊗ . . .⊗ Vn is reducible if and only if for some
i, j ∈ {1, . . . , n}, i 
= j , the normalized R-matrix RVi,Vj (z) has a pole at z = aj /ai .

Proof. The “if” part of the theorem is obvious. Let us explain the case whenn = 2. Let
σ : V1⊗V2 → V2⊗V1 be the transposition. By definition ofRV1,V2(z), the linear map
σ ◦ RV1,V2(z) is a homomorphism ofUq ĝ-modulesV1 ⊗ V2 → V2 ⊗ V1. Therefore if
RV1,V2(z) has a pole atz = a2/a1, thenV1⊗V2 is reducible. It is easy to generalize this
argument to generaln.

Now we prove the “only if” part.
If the productV1 ⊗ · · · ⊗ Vn is reducible, then the product of theq-characters∏n
i=1χq(Vi) contains a dominant monomialm that is different from the product of

the highest weight monomials. Thereforem is not right negative andm is a product of
some monomialsm′i from χq(Vi). Hence at least one of the factorsm′i = mi must be
the highest weight monomial and it has to cancel with the rightmostY−1

i,b appearing in,
say,m′j .

According to Lemma 6.1,m′j = mjM whereM is a product ofA−1
s,aj q

n . By our

assumption, the maximaln0 occurring amongn is such thatajqn0 = aiq
−1
i . Using

Lemma 2.6 we obtain that one of the diagonal entries ofRVi,Vj has a factor 1/(1−
aia

−1
j z), which can not be cancelled. ThereforeRVi,Vj has a pole atz = aj /ai . This

proves the “only if” part. Moreover, we see that the pole necessarily occurs in a diagonal
entry. ��

6.2. The lowest weight monomial. Our next goal is to describe (see Proposition 6.15
below) the possible values of the spectral parameters of the fundamental representations
for which the tensor product is reducible.

First we develop an analogue of the formalism of Sect. 4 from the point of view of the
lowest weight monomials. Recall the involutionI → I, i → ī from Sect. 1.2.According
to Theorem 1.3(3), there is a unique lowest weight monomialm− in χq(Vωi

(a)), and its
weight is−ωī .

Lemma 6.8. The lowest weight monomial of χq(Vωi
(a)) equals Y−1

ī,aqr
∨h∨ .

Proof. By Lemma 5.6,m− must be antidominant. Thus, by Lemma 6.1,m− = Y−1
ī,aqni

for someni > 0.
Recall the automorphismw0 defined in(1.7). The moduleVωī

(a) is obtained from
Vωi

(a) by pull-back with respect tow0. From the interpretation of theq-character in
terms of the eigenvalues of7±i (u), it is clear that theq-character ofVωī

(a) is obtained

from theq-character ofVωi
(a) by replacing eachY±1

j,b by Y±1
j̄ ,b

. Therefore we obtain:
ni = nī .

Consider the dual moduleVωi
(a)∗. By Theorem 1.3(3), its highest weight equalsωī .

HenceVωi
(a)∗ is isomorphic toVωī

(b) for someb ∈ C
×. SinceUq ĝ is a Hopf algebra,

the moduleVωi
(a)⊗Vωi

(a)∗ contains a one–dimensional trivial submodule. Therefore
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the product of the correspondingq-characters contains the monomialm = 1. According
to Lemma 6.5, it can be obtained only as a product of the highest weight monomial in
oneq-character and the lowest monomial in another. Therefore,b = aq±ni .

In the same way we obtain thatVωī
(a)∗ is isomorphic toVωi

(aq±ni ).
From formula(1.6) for the square of the antipode, we obtain that the double dual,

Vωi
(a)∗∗, is isomorphic toVωi

(aq−2r∨h∨). Sinceni > 0, we obtain thatni = r∨h∨. ��
Having found the lowest weight monomial in theq-characters of the fundamental

representations, we obtain using Theorem 1.3 the lowest weight monomial in theq-
character of any irreducible module.

Corollary 6.9. Let V be an irreducible Uq ĝ-module. Let the highest weight monomial
in χq(V ) be

m+ =
∏
i∈I

sk∏
k=1

Y
i,a

(i)
k

.

Then the lowest weight monomial in χq(V ) is given by

m− =
∏
i∈I

sk∏
k=1

Y−1
ī,a

(i)
k qr

∨h∨ .

We also obtain a new proof of the following corollary, which has been previously
proved in [CP1], Proposition 5.1(b):

Corollary 6.10.

Vωi
(a)∗ � Vωī

(aq−r∨h∨).

Now we are in position to develop the theory ofq-characters based on the lowest
weight and antidominant monomials as opposed to the highest weight and dominant
ones.

Proposition 6.11. The q-character of an irreducible finite-dimensional Uq ĝ module V

has the form

χq(V ) = m−(1+
∑

Np),

where m− is the lowest weight monomial and each Np is a monomial in Ai,c, i ∈ I ,
c ∈ C

× (i.e., it does not contain any factors A−1
i,c ).

Proof. First we prove the following analogue of formula (4.1):

χq(V ) = m−(1+
∑
p

Np),

where eachNp is a monomial inA±1
i,c , c ∈ C

×. The proof of this formula is exactly the
same as the proof of Proposition 3 in [FR2]. The rest of the proof is completely parallel
to the proof of Theorem 4.1.��
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Lemma 6.12. The only antidominant monomial of q-character of a fundamental repre-
sentation is the lowest weight monomial.

Proof. The proof is completely parallel to the proof of Lemma 4.5.��
Lemma 6.13. All monomials in a q-character of a fundamental representation are prod-
ucts Y±1

i,aqn with n ≤ r∨h∨.

Proof. The proof is completely parallel to the proof of Lemma 6.1.��
The combination of Lemmas 6.1 and 6.13 yields the following result.

Corollary 6.14. Let the highest weight monomialm+ of theq-character of an irreducible
Uq ĝ-module V be a product of monomials m(i)

+ which have positive lattice support with

bases ai . Let si be the maximal integer s, such that Yk,aiqs is present in m
(i)
+ for some

k ∈ I . Then any monomial m in χq(V ) can be written as a product of monomials m(i),
where each m(i) is a product of Yj,aiqn with n ∈ Z,0 ≤ n ≤ si + r∨h∨

6.3. Restrictions on the values of spectral parameters of reducible tensor products of
fundamental representations. It was proved in [KS] thatVωi

(a)⊗Vωj
(b) is irreducible

if a/b does not belong to a countable set.As M. Kashiwara explained to us, one can show
that this set is then necessarily finite. The following proposition, which was conjectured,
e.g., in [AK], gives a more precise description of this set.

Proposition 6.15. Let ai ∈ C, i = 1, . . . , n, and suppose that the tensor product of
fundamental representations Vωi1

(a1) ⊗ . . . ⊗ Vωin
(an) is reducible. Then there exist

m 
= j such that am/aj = qk , where k ∈ Z and 2 ≤ k ≤ r∨h∨.

Proof. If Vωi1
(a1) ⊗ . . . ⊗ Vωin

(an) is reducible, thenχq(Vωi1
(a1)) . . . χq(Vωin

(an))

should contain a dominant term other than the product of the highest weight terms.
But for that to happen, for somem andj , there have to be cancellations between some
Y−1
p,amqn

appearing inχq(Vωim
(am)) and someYp,aj ql appearing inχq(Vωij

(aj )). These

cancellations may only occur ifam/aj = q±k, k ∈ Z, and 0≤ k ≤ r∨h∨, by Lemmas
6.1 and 6.13. Moreover,k ≥ 2 according to Remark 6.6.��

Note that combining Theorem 6.7, Proposition 6.15 and Remark 6.6 we obtain:

Corollary 6.16. The set of poles of the normalizedR-matrixRVωi (a),Vωj (a)
(z) is a subset

of the set {qk|k ∈ Z,2ri ≤ |k| ≤ r∨h∨}, if i = j ; {qk|k ∈ Z,2ri < k ≤ r∨h∨ or 2rj <

−k ≤ r∨h∨}.

6.4. The q-characters of the dual representations. In this subsection we show a simple
way to obtain theq-character of the dual representation.

Recall thatK is given by(5.6).

Lemma 6.17. Let χ1, χ2 ∈ K. Assume that all dominant monomials in χ1 are the same
as in χ2 (counted with multiplicities). Then χ1 = χ2.
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Proof. Considerχ = χ1 − χ2. We haveχ ∈ K andχ has no dominant monomials.
Thenχ = 0 by Lemma 5.6. ��

Note that the similar statement is true for antidominant monomials.

Proposition 6.18. Let Vωi
(a) be a fundamental representation. Then the q-character of

the dual representation Vωi
(a)∗ � Vωī

(aq−r∨h∨) is obtained from the q-character of

Vωi
(a) by replacing each Y±1

i,aqn by Y∓1
i,aq−n .

Proof. Let χ1 = χq(Vωī
(aq−r∨h∨)) andχ2 is obtained fromχ(Vωi

(a)) by replacing

Y±1
i,aqn by Y∓1

i,aq−n . Thenχ1 andχ2 are elements inK with the only dominant monomial
Y
ī,aq−r∨h∨ by Corollary 4.5 and Lemma 6.12. Thereforeχ1 = χ2 by Lemma 6.17. ��

Remark 6.19. One can define a similar procedure for obtaining theq-character of the
dual to any irreducibleUq ĝ-moduleV . Namely, by Theorem 1.3,χq(V ) is a subsum in
the product ofq-characters of fundamental representations. In particular, any monomial
m in χq(V ) is a product of monomialsm(i) from theq-characters of these fundamental
representations and Proposition 6.18 tells us what to do with eachm(i). This procedure
is consistent becauseχq((V ⊗W)∗) = χq(V

∗) · χq(W ∗).
Note that under this procedure the dominant monomials go to the antidominant mono-

mials and vice versa.
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