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Abstract: We classify integrable irreducible highest weight representations of non-
twisted affine Lie superalgebras. We give a free field construction in the level 1 case.
The analysis of this construction shows, in particular, that in the simplest case of the
s€(2|1) level 1 affine superalgebra the characters are expressed in terms of the Appell
elliptic function. Our results demonstrate that the representation theory of affine Lie
superalgebras is quite different from that of affine Lie algebras.

0. Introduction

In this paper we continue the study of integrable irreducible highest weight modules
over affine superalgebras that we began in [KW].

First, let us recall the definition of an integrable module over an ordinary affine Kac—
Moody algebrgy [K3]. Let g be a finite-dimensional simple or abelian Lie algebra over
C with a symmetric invariant bilinear forif|.). Recall that the associated affine algebra
is

§=(Clt,t "1®c 9 ®CK & Cd (0.1)
with the following commutation relations:(b € g; m,n € Z anda(m) stands for
" ®a):

la(m), b(n)] = [a, bl(m + n) + mdu,—n(alb)K,
[d,a(m)] = —ma(m), [K,g]=0. (0.2)
We identify g with the subalgebra ® g. The bilinear form(.|.) extends fromg to a
symmetric invariant bilinear form og by:
(@(m)|b(n)) = 8m.—n(alb), (C[t,t~ "] ® g|CK + Cd) =0,
(K|K) =(dld) =0, (Kl|d)=-1 (0.3)
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Choose a Cartan subalgeliyaof g and letg = h ® (Bueags) be the root space
decomposition, wherg, denotes the root space attached to a toatA C h*. Let

H=b+CK +Cd (0.4)

be the Cartan subalgebragfand, as before, lgt, (m) = t™ ® gq.
A g-moduleV is calledintegrable if the following two properties hold [K3]:

 is diagonalizable of, (0.5)
all go (m)(« aroot ofg, m € Z) are locally finite onV. (0.6)

(Property (0.6) means that dith(gy (m))v < oo for anyv € V.)
It is easy to show that these two properties imply

g is locally finite onV (i.e., dimU(g)v < oo for anyv € V). (0.7)

Here and furthet/ (a) denotes the universal enveloping algebra of a Lie (super)algebra
a. Note also that condition (0.6) is vacuougifs abelian.

Let nowg = gg + g1 be a finite-dimensional Lie superalgebra oewith an even
symmetric invariant bilinear fof.|.) (for a background on Lie superalgebras see [K1]).
Recall that “even” means thédz|g;) = 0, “symmetric” means thdt|.) is symmetric on
gpand skewsymmetric agy, and “invariant” meansthéla, bl|c) = (al[b, c]), a, b, c €
g. We shall assume, in addition, thgjis reductive:

8o = )08, (0.8)

wheregg, is abelian an@@Lwith j = 1 are simple Lie algebras.

The affine superalgebiaassociated to the Lie superalgelrand the bilinear form
(.].) is defined in exactly the same way as in the Lie algebra case by relations (0.2).
Likewise, the invariant even symmetric bilinear fotrh) ong is defined by (0.3), and
the Cartan subalgebbas defined by (0.4) after a choice of a Cartan subalgglariag;.
Note that for each € {0, 1, ..., N}, the superalgebigcontains an affine Kac—Moody
algebrag0 associated tgo

We shaII see that condltlon (0.6) of integrability is too strong in the superalgebra case,
as for most of the affine superalgebras it allows only trivial highest weight modules. This
forces us to consider weaker conditions (cf. [KW]):

Definition 0.1. Givenasubset J C {1,..., N}, ag-module V iscalled J-integrableif
it satisfies conditions (0.5) and (0.7) and if it is integrable as’j@j-modulefor aljel.

Letg = h ® (Dyeage) be aroot space decomposition of the Lie superalgglarish
respect to a Cartan subalgelyraf gz. Choose a set of positive roats, in A and let
Ny = @gea, go- FOr €acha e H* one defines airreducible highest weight module
L(A) overg as the (unique) irreduciblg-module for which there exists a non-zero
vectorv, such that

hva = A(h)va forh € B, npvy =0, gm)va = 0form > 0, (0.9)

where, as beforg(m) = " ® g. The numbek = A(K) is called thdevel of L(A) and
of A. Note thatKk = kI on L(A) and thatL(A) := U(g)v, is an irreducible highest
weight module oveg.
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In Sect. 1 we describe a general approach to the classification of irreducible integrable
highest weight modules over arbitrary Kac—Moody superalgebras, and in Sects. 2 and 6
give their complete classification in the affine (non-twisted) case, using Serganova’s odd
reflections.

In Sect. 3 we give a free field realization of all level 1 integrable highest weight
modules oveg{(m|n)”, which leads to a “quasiparticle” character formula for these
modules and to a “theta function” type character formula. This construction may be
viewed as a generalization of the classical boson-fermion correspondence based on the
oscillator algebrag¢(1)™ and of the super boson-fermion correspondence based on
g2(1]1)” [KL]. The former produces the classical vertex operators and relates represen-
tation theory ofg£(1)” to the denominator identity fo (2) ™, while the latter produces
vertex operators for the symplectic bosons and relates representation theéfli df ™
to the denominator identity for¢(2|1)” (see [K4]).

In Sect. 4 we show that the “theta function” type character formuleder|1) ™ (m >
2) is a product of a theta function, a power of the eta function, and a more “exotic” func-
tion, called a multivariable Appell function. The classical Appell function appeared in
the 1880’s in the papers by Appell [A] and by Hermite in their study of elliptic functions.
Most recently this function has been discussed in [P]. The study of asymptotics of Ap-
pell's functions gives the high temperature asymptotics of integrable lexghi 1) -
characters. We also derive here formulas for branching functions for integrable level 1
s€(m|1)”-modules restricted to the even subalgebra. They turn out to be certain “half”
modular functions.

In Sect. 5 we relate integrable level 1 modules qyé@n|n)” to the denominator
identity fors¢(m + 1|n)”, and as a result, we derive for these modules yet another, a
Weyl type, character formula.

In Sect. 7 we give a free field realization of the two level 1 integrable highest weight
modules ovebsp(m|n)”, which generalizes the constructions foXm) ™ andsp(n)™
from [KP1,F] and [FF]. These lead to character formulas and high temperature asymp-
totics of the characters.

In Sect. 8 we show that integrability is a necessary condition for an irreducible
highest weighfg-module to be a module over the associated vertex algebra, and that
in the level 1 case this condition is sufficient. We thus get examples of rational vertex
algebras for which th€-span of normalized (super)characters is$¥of2, Z)-invariant.

The latter property was proved in [Z] under certain additional assumptions, and it was
generally believed that these assumptions were superfluous.

In Sect. 9 we discuss some open problems.

Itisinteresting to note that in the “super” case a number of new interesting phenomena
occur. The level gets quantized by the integrability condition, but in almost all cases the
number of integrable modules is infinite. This is the case for the lowest, level 1, integrable
s€(m|n)”-modules which apparently causes the specialized characters and branching
functions to lose their customary modularity properties, which are so ubiquitous in the
affine Lie algebra case [KP2,K3]. However, in the cases when the number of characters
of given level is finite, like, for examplek = 1 osp(m|n)” case, the specialized
normalized characters are still modular, though tligispan is no longeSL (2, Z)-
invariant as in the affine Lie algebra case.

Itis also interesting to note that while the characters of affine Lie algebras are global
sections of line bundles on abelian varieties, the characters of affine Lie superalgebras
are related to global sections of rank 2 vector bundles on abelian varieties, as the work
of Polishchuk [P] on Appell’s function apparently indicates.
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1. Integrability of Highest Weight M odules over Kac—M oody Superalgebras
Consider the following data:
D={h, I, 11,1, 10},

where} is a vector space], is an index set/; is a subset of, ITY = {o,"};c; and
IT = {a;};c; are linearly independent sets of vectorgjiandh* respectively indexed
by I. One associates to these data a Lie superalggbradefined as the quotient of the
Lie algebra on generatoes, f;(i € I) andh, the generatorg; and f; for i € I1 being
odd and all other generators being even, andstéiadard relations (i, j € I, h € b):

[h’b]zo’ [ei’ fj]=81]alvs [h9ei]= (ai’h>ei1 [h3 .fl]:_<alsh).fla

by the maximal graded with respect to the root space decomposition ideal intersecting
b trivially (cf. [K1,K3]).

The commutative ad -diagonizable subalgebd g(D) is called the Cartan subal-
gebraJT andIT” are called the sets of simple roots and coroots respectively, elements
and f; (i € I) are called Chevalley generators, etc. One defines the notions of roots and
root spaces in the usual way (cf. [K1,K3]). Let (resp.n_) denote the subalgebra gf
generated by the's (resp.f;'s). Then, as usual, one has the triangular decomposition:

g=n_+b+ng.

Leta;; = («j, ;). The matrixA = (a;;);, je; is called the Cartan matrix of the dafa
(and ofg(D)).

Aroot of g(D) is calledeven (resp.odd) if the attached root space is even (resp. odd).
For example a simple roet is called odd iffs € 7;. An odd simple rooty, (and the
coroota,’) is calledisotropic if a;; = 0. In what follows we let

~_ ]} —1ifbothe; anda; are odd,
pij 1 otherwise.

Note thatg(D) has an anti-involutiom defined byw (e;) = fi, w(f;) = e;, 0|y = 1.
For that reason properties of thgs automatically hold for thef;’s.

Lemma 1.1. (a) An odd simpleroot «; isisotropic iff [¢;, ;] = 0.
(b) Ifi # j, then [e;, ejl = Oif'fa,-j =aj = 0.

Proof. It is clear thatf;, [e;, ;11 = Oif j # i, and one hasf;, [e;, ¢;1] = 2ajie;,
which proves (a). The proof of (b) is similarm

It is straightforward to check the following relatigh j € 1,i # j):
[lei, e;1, Lfis £ill = pijlaija} — piiajia)). (1.1)
Further on we shall always assume the following property of the Cartan na#atrix
a;j =0iffaj; =0. (1.2)

Givens € I1 such thati;; = O (i.e.,«; is an odd isotropic simple root), define a new
data

rs(D) = {b, I, rs(I1), rs(T17), rs (T}
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and new Chevalley generatotge;), rs (f;) of g(D) as follows (cf. [S,PS, KW])):

ierg(l)iff i ¢ I1incaseqs; #0, i €rg(ly) iff i € I1 otherwise;

rs(a;/) = _a;/a rs(as) = —ay,
a; .
rs(e)) = o + iasv andrg (o) = o + o if ag; # 0,
Asi

rs(e))) = ;" andry(e;) = ; in all other cases;
rs(es) = fs,  rs(fs) = —es,

1
rs(e;) = [es, €] andrs(fi) =

[fs. filif asi # 0,

silsi

rs(e;) = e;, rs(f;) = f; inall other cases.

Denote byrg(ny) (resp.rg(n_)) the subalgebra of(D) generated by thes(e;)’s
(resp.rs(f;)'s). The transformation, is called arodd reflection (with respect tay;).

Lemma1.2. (a) The data r; (D) satisfy (1.2).

(b) The new Chevalley generators satisfy the standard relations and together with b
generate g(D), so that g(ry (D)) ~ g(D).

(c) One hasthe new triangular decomposition:

9(D) =rs(m-) + b +rs(ny).
(d) The data r,(rs(D)) coincide with D, and the Chevalley generators r, (rg(e;)) (resp.
rs(rs (fi))) coincide, up to a non-zero factor, with ¢; (resp. f;).

Proof. It is straightforward using (1.1) and the relation
1 .
[a, [a, b]] = E[[a’ al, b]if aisan odd element. O
An elementp € h* such that
\% 1 .
(0, 0;") = Eaii foralli e I
is called aneyl vector for ITV.

Lemma 1.3. If p isaWeyl vector for TTY, then p + a; isaWeyl vector for ry(TTV).

Proof. It suffices to check that in the cagg # 0 one has{p + «, asiaiv +ajsa)) =
${ai + ay, agia) + ajsa), which is immediate. O
Recall that for eaclh € h* one defines an irreducible highest weight modiia )

over g(D) as the (unique) irreduciblg(D)-module for which there exists a non-zero
vectorv, such that

hvy = A(h)vy forh e h, nypvy =0. (1.3)

The vectomw, , called a highest weight vector (with respeatig, is determined uniquely
up to a (non-zero) constant factor by the conditiorw, = 0 (cf. [K3]). The linear
function A is called thehighest weight (with respect tam ) of L(A).
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Lemma 1.4. Let o, be an odd isotropic simple root and let n/, = rs(ny).

(@) If (A, ar)) = 0, then v, = v, isa highest weight vector with respect to n’, , so that
the highest weight remainsthe same: A’ = A.

(b) If (A, asv} # 0, then vy = fyva isahighest weight vector with respect to n’, , so
that the highest weight vector becomes A’ = A — «.

Proof. Itis straightforward using the facts thﬁjév,\ = %[fv, fslva = 0,andfsvp =0
iff (A,y)=0. O

As animmediate corollary of Lemmas 1.3 and 1.4 we obtain the following very useful
formulas (cf. [KW]):

N 40 = A+pif (A a))(= (A+p.a))) #0,
N4p =A+p+oasif (A, a))(=(A+p,a)) =0. (1.4)

Leta € h* be a positive even root @i D) such that there exist root vecterattached
to«a and f attached to-« satisfying the following conditions:

() ad f is locally nilpotent ong(D),
(i) [e, fl=aVeh, [avV,e]l=2e, [aY,f]l=-2f.
Then we callf anintegrable element of g(D). The following lemma is well-known
(cf. [K3]).
Lemma 1.5. Let f be an integrable element attached to a negative root «.
(a) If f islocally nilpotent on L(A) then (A, a¥) € Z...
(b) Provided that « isa simpleroot, f islocally nilpotent on L(A) iff (A, a¥) € Z.

Let B = a, be an odd isotropic simple root. It will be convenient to use notation
rg in place ofr;. Consider a sequence of rogs, S1, ..., Br such thatgp is an odd
isotropic simple root fronT1© := I1, 1 is an odd isotropic simple root frofl® =
re, (MO, ..., B is an odd isotropic simple root from® = rg,_, (T*~1). Given

A € b*, let A = A be the highest weight af(A) with respect ta? := ny, AD
be the highest weight df (A) with respect ta? := rg(n1), ... , A® be the highest
weight of L(A) with respect tmﬂf) = r,gkfl(nglf_l)). Let p® be a Weyl vector fof1®,
Proposition 1.1. Let « bea positiveroot of g(D) and let f bean integrableroot element
attached to —«. Given A € b*, let
S={iel0,1,....k—1(AD, gY) =0}
Suppose that o« € TTX), Then the element £ islocally nilpotent on L(A) if and only if
(A+p+) B a’)eN={12.}.
ieS
Proof. It follows from (1.4) that
AP 4+ p® =A+p+> B
ieS

Since(A® + p® vy = (AR V) + 1, the proposition follows from Lemma 1.5b.
O
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Proposition 1.2. If, under the assumptions of Proposition 1.1, one has:
(A +p,a”) eN,
then f isintegrableon L(A).

Proof. Due to Proposition 1.1, Proposition 1.2 holdsi= @. Let N = (A, aV). Itis
well-known (cf. [K3]) that f is integrable orL(A) iff

FN*+1y, lies in a maximal submodule of the Verma modieA ). (1.5)

But we have just shown that (1.5) holds for a Zariski open set @f the hyperplane
(A,aY) = N. Since (1.5) is a polynomial condition, we conclude that it holds fox all
on this hyperplane. o

Proposition 1.3. If, under the assumptions of Proposition 1.1, f isintegrableon L(A)
and

(A+p,B)#0fori =0,1,...,s5(<k),
then (A — >3] _oBi,a”) € Zy.

Proof. We have:(A, By) = (A + p, By) # 0, hence, by (1.4) we havex + p =
AD +pD etc. ThusA®D +p® = A4pfori =1,...,s. Therefore, by Lemma 1.4b,
we have:

N
AD=A=3"8.
i=0

Now the proposition follows from Lemma 1.5a0

The calculation of coroots is facilitated by the following simple fact.

Proposition 1.4. (a) There exists a non-degenerate symmetric bilinear form (.].) on b
such that, identifying b and h* via this form, we have:

Otl-v = via;, Wherev,- S (CX, (16)
if and only if
A = diag(v;);e; B, where B = (b;;) isa symmetric matrix. a.7)

Onethen has: (ailaj) = bjj.
(b) Let ITY = {o”"} = ry(ITY) and IT" = {a/} = ry(IT) where ry isan odd reflection,
and suppose that (1.6) holds. Then

VI
o = vja;.

(c) Provided that (1.7) holds and a;; = 2 or O for all i € I, one has for any non-
isotropic root o whichisobtained froma simpleroot by a sequence of odd reflections:
a¥ = 2a/(a|a).

Proof. (a) is proved in [K3], (b) and (c) are easily checked:
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Remark 1.1. A natural question is which of the Lie superalgebgg®) are of “Kac—
Moody” type? The most natural answer, in our opinion, is that they should satisfy the
following conditions:

(i) g(D);p is a (generalized) Kac—-Moody algebra,
(i) the g(D)g-moduleg(D)j; is integrable.

This definition covers the basic classical finite-dimensional Lie superalgebras and the
associated affine superalgebras (including the twisted ones). Unfortunately, a well devel-
oped theory of generalized Kac—Moody superalgebras (see [B, R] and references there)
does not cover most of the latter superalgebras (because of the crucial assumption on
the Cartan matrix that its off diagonal entries are non-positive).

2. Classification of Integrable Irreducible Highest Weight Modules over g&(m|n)

Consider the Lie superalgebgé(m|n), wherem,n > 1 (see [K1]). Lete;; (1 <i,j <
m+n) denote its standard basis. Denotdllye Cartan subalgebragf (m|n) consisting
of all diagonal matrices. Let; (1 < i < m + n) be the basis of* dual to the basis
u; := e; of h. Thengl(m|n) = g(D) for the following dataD = {h, I, I, 1Y, 1}
(cf. [K1]).Weletl ={1,2,... ,m+n—1},I1 = {m}; o' = u; —u;41 fori e I\I,
oy = Um + umi1, & = € — €41 foralli € I. Its Cartan matrix is the following

(m+n—1) x (m+n—1) matrix:

2-1 0
-1 2-1
s 1 2-1
- -1 0 1 m" row.
-1 2-1
-12

The Chevalley generators are as follows:
ei=¢eiir1, fi=eq1;, (G=1...,m+n-1.

Note thaty,, is the only odd simple root, and it is isotropic.
Consider the supertrace form @a(m|n):

(a|b) = strab.

This is a non-degenerate invariant supersymmetric bilinear forngédm|n) whose
restriction toh is non-degenerate and symmetric. Identifyingndbh* via this bilinear
form, we have:

¢ =u;fori=1... me=—ufori=m+1,..., m+n.

Hence we have:

o =a;fori=1....m, o' =—-aifori=m+1,...,m+n-1, (2.1)

i
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and we may use Proposition 1.4. In particular,
((Ol,‘|0[,')),',j€[ = diag(l, e, 1, —1, ey —1)A.
———

m

5 Likewise, the affine superalgebgd(mm) is isomorphic tog(D) where the data

= {h T, 11 o, l‘[} is an extension of the da@ for g¢(m|n) defined as follows
(cf [K3]). The spacé; is defined by (0. 4)1 =] U{0}, = {m, O} v =1nvu {ag ),
Il = I U {ao}. Here they; for i € I are extended from to h by letting o; (K) =
oi(d) =0,00=38—0,05 = K —0",wheres|y,cxk =0,(8,d) =1,0 = €1 — €t
is the highest root 0§ £(m|n), 6" = u1 + u,1,. We extend the bilinear forra|.) from
gl(m|n) to g¢(m|n)” by (0.3). Identifyingh with h* via this symmetric bilinear form,
we get:

K=68 06=0", ar=oqaf. (2.2)
We have the following expression &= K in terms of simple roots and coroots:
m+n—1 m m+n—1
Z o =Zo¢i\/— Z ajv. (2.3)
i=0 i=0 j=m+1
The Cartan matrix foD is
0-10.---01
-1
~ 0
A=\ A
0
-1
As above, we have:
((O‘i|°‘j))i,j67= diag(1,...,1,-1,...,—DA.
m—+1

The even part ogl(m|n) is gt(m) & gf(n), hence the even part @ft(m|n)” is
the sumgl(m)™ + gf(n)” with a common central elemeit and a common scaling
elementd. Note that the restriction of the supertrace formgtdm) (resp.gt(n)) is
the normalized (resp. negative of the normalized) invariant form (i) = 2 (resp.
(a]a) = —2) for any root.

The set of simple roots fqgt(m)™ (resp.gl(n) ™) is empty ifm = 1 (respn = 1),
and form > 2 (respn > 2) itis as follows:

= {a(/):S_Q/aala"' 7am—l}
m m+n—1
(resp.Tl” = {af = 8 — 0", i1, - - » Umin—1), Whered' = Zai,e’/ = Z .
j i=m+1
Assuming thatn > 2, we have(0’|6’) = 2, hence’ = 6V, and we have:
m+n—1 m+n—1
ap=ay =ag+ Z o =ag +o,, — Z o). (2.4)

i=m i=m+n
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A gl(m|n)"-moduleL(A) is calledintegrable, if its restriction togf(m)™ is inte-
grable and its restriction t@¢(m|n) is locally finite. In this section we shall classify all
such modules. R

As usual, define fundamental weights ey (i =0,1,... ,m +n —1) by

(A;,a;) :51'/'7]. =0,....m+n—1{(A;,d) =0,
andlabels of a weightA by:
ki = (A, Ollv)

The following necessary conditions of integrabilityofA) follow from Lemma 1.5a:

kieZyfori=1 ... m—1m+1 ..., m+n—1, (2.5)
m+n—1

K i=ko+kn— Y ki€l (2.6)
i=m+1

We assume in (2.6) thai > 2 and use (2.4).
We callk’ thepartial level of A since, using (2.3), we see that tleedl k& := (A, K)
is given by

m—1
k=Y ki+k. (2.7)
i=1

Hence, provided thakz > 2, the level of an integrablef(m|n)™-module is a non-
negative integer.

Lemma 2.1. Assume that m > 2. Then conditions (2.5) and (2.6) along with the condi-
tion

kK'>n (2.8)
are sufficient for integrability of the g€(m|n)”-module L(A).

Proof. The lemma follows from Lemma 1.5 applied to the simple regts =1, ...,
m — 1, and Proposition 1.2 applied &0’ = aE)V, since, due to (2.4) we have:

(p, aé)v) =—-n+1 (2.9)
O

Lemma?2.2. Let L(A) be an integrable g¢(m|n)"-module such that ¥’ < n, and let
m > 2. Then the following complementary condition holds:

*) thereexist r, s € Z such that
() K =r+s,
() ko —kman—1—kmin2— - —kmpan_r —r =0,

(i) Ky, — kmy1 —kmy2 — - —kyys — s =0.
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-~

Proof. Consider the following two sequences of root6étm|n)

Bo = ao, Br= a0+ apmin—1, B2

= 00+ Uptn—1+Unin—2,--., Bn_1=00+ U1+ ...+ Qi1
/ ’ /
’
= 0y + Upt1 +Umt2, ..., ,anl =0, + -+ ntn—1-

Itis clear by Proposition 1.4 th#&’ = f; andﬁ;V = B!. Note that(A + p, B.) (resp.
(A +p, ﬂ;v>) is equal to the left-hand side of (ii) (resp. (iii)). Note that

(Birag) =1=(B.ag).i=0,...,.n—1 (2.10)

If (A+p, B;’) # Oforalli, using (2.6) and (2.10) we would conclude, by Proposition 1.3,
thatk’ —n > 0, in contradiction with the assumption of the lemma. Hence (ii) holds for
some non-negative integern < n). Similarly, (iii) holds for some non-negative integer
s (< n). Similarly, applying Proposition 1.3 to the union of sequengeandg; , we
conclude that

r+s<Kk. (2.11)
Hence, adding up (ii) and (iii) we get

m+n—r—1
K+ Y ki=r+s. (2.12)
i=m+s+1

Now (i) follows from (2.5), (2.11) and (2.12).0

Remark 2.1. Condition (*) onA is equivalent to the following condition: there exists a
non-negative integer < &’ (< n — 1) such that:

km =kpyr+ -+ kpys + s andkn1+s+1 == km+s+n—k’—1 =0.

This conditionimplies tha lies in a union ok’ +1 hyperplanes of dimensid+m — 1.
Equivalently, there exists a non-negative integer k¥’ (< n — 1) such that

ko = km+n-1+kmtn—2+ -+ kmyn—r +r and
kman—r—1="=kpir'—r41 = 0.

Theorem 2.1. (@) A g¢(1|n)"-module L(A) isintegrableiff ko, ... , k, € Z,..
b) Provided that m > 2, a g€(m|n)”-module L(A) isintegrable iff conditions (2.5),
(2.6) hold and, inthe case k' < n, the complementary condition (*) holds.

Proof. Inthe casen = 1, the only condition of integrability is local finitenessg#f(1, n)

on L(A) which is equivalent t&,, ... , k, € Z, due to Lemma 1.5b. It follows from
Lemma 2.2 that in the case > 2, the conditions listed by Theorem 2.1b are necessary.
In view of Lemma 1.5b, it remains to show that these conditions are sulfficient for local
nilpotency Ofe_a(r). Due to Lemma 2.1, we may assume that

K <n-—1 (2.13)
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Consider the sequence of odd rofgs. . . , B,—1 introduced in the proof of Lemma 2.2
and letlt@ = 11, IV = rg (@), ..., 1™ =rg, ,(1"~D), and notice that

oy € nw,
Let A®™ be the highest weight vector d@f(A) with respect ta!” = rg, ,...rg(n).

Due to Lemma 1.5b, it remains to show that conditions listed by Theorem 2.1b imply
that

(A" ap') € Zy . (2.14)
Recall that by (1.4) we have:
A 4™ = A4 p+3 B, (2.15)
ieS

whereS = {i € [0,... ,n — 1J(A®D, BY) = O}. Lety; = (AD, BY) for short. Then
condition (*) gives for some € Z., r < n, thats, = 0. In view of Remark 2.1, we
have:

ty =tpy1 =+ =ty_s—1=0. (2.16)
Hence, due to (2.15), (2.9), (2.10) and (2.16) we get:
(A 4+ p™ o) =K'+ L —m) +|S| 2K +A-m) +(n—s—r) =1,
proving (2.14), sincép™, ay’) = 1. O

Remark 2.2. It follows from Theorem 2.1 that whem > 2, the only integrable
gl(m|n)"-modulesL(A) of level k = 0 are those for which all labels are 0, in which
case dimL(A) = 1.

Remark 2.3. If m > 2 andn > 2, then the onl\.(A) which are integrable with respect
to the whole even subalgebra are 1-dimensional. (It is becaugé the ™ -integrability
impliesk > 0 andg?(n) " -integrability impliesk < 0.)

Remark 2.4. Definee € ff* by lettinge|, = supertraces(K) = e(d) = 0. It follows
from Theorem 2.1 that whem > 2, the complete list of highest weights of integrable
gl(m|n)"-modules of level 1, up to adding an arbitrary linear combination ands,

is as follows:

As(l<s<m-1), (@a+DA, +aly,t1(a € Zy),
(@a+DAo+alAuin-1(a € Zy).

Remark 2.5. Consider the sequence of the sets of simple roB® = I1, ..., 1™ =
{ag, ... a1} introduced in the proof of Theorem 2.1. One has:
) =00+ 01, 0] =02, ..., Oy = Cy—1, Oy

=0m + Uyl + -+ Apgn—1 + @0,
a;n = —(ttpgn + -+ + yypn—1 + ap), Ol;'
=a;jform+1<j<m+n—-1
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Let A’ be the fundamental weights with respect16”. Given a weightA, denote by

A the highestweight ot (A) with respect td1® (or rathem!"”). Using Lemma 1.4, it

is easy to see that the weights listed in Remark 2.4 get changed under tewsap ™
as follows:

A;.’” = A; A<j<m),(@a+DAo+alnin1)™

(@+DAo+ ahpin—1— a0, (@ + DAy +arui)™
= (@a+DAn +aApt1+a,(a>0).

In terms of the fundamental weighztsj the mapA — A™ looks as follows:

Aj> Ay L=j=m),
(a+DAo+ Apgn-1+— (@+2Ag+ (a+ DA, ,_1(a € Zy),
(a+ DA, +arpi1— aA;n + (a — 1)A:n+1 (a € N).

It follows that all weights of level 1 listed by Remark 2.4 are conjugate to each other by
odd reflections.

3. FreeField Realization of Level 1 Integrable Modules over g((mln)A

Fix non-negative integere andn such thatn + n > 1 and denote by the vertex
algebra generated by pairs of odd fields)i (z), ¥'*(z), (i = 1,...,m) andn pairs
of even fieldsp/ (2), /*(z) (j = 1, ..., n), all pairwise local, subject to the following
operator product expansions (as usual, we list only the non-trivial OPE):

V@Y w) ~ 2 Yy () ~ 2L
¢’ (/" (w) ~ —ﬁ,}, 9" ()¢’ (w) ~ #

This is called a free fermionic vertex algebra in the book [K4] to which we refer for
foundations of the vertex algebra theory.

This vertex algebra has a family of Virasoro fields [K4], from which it is convenient
to choose the following one:

L) =) Lz 2= 3) o' @y @) +: 0™ @y¥' (@) )
i=1

keZ

%Z ¢ 09/ (D9 () 1 —: 09" (D9’ 1) ). (3.D)

With respect td.(z) the fieldsy’ (), ¥'*(z), ¢/ (z) ande/*(z) are primary of conformal
weight 1/2. We therefore write all these fields in the foxfiiz) = Ykediz x\Dgk-1/2
wherex = v , ¥*, ¢ or ¢*, and we have the following conditions on the vacu@®mn

vy =0, v "0y =0, ¢10)=0 ¢*|0)=0fork > 0.
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The operatol g is called theenergy operator or (Hamiltonian) and its eigenvalues are
called theenergiesof the corresponding eigenvectors. The energy can be calculated from
the following relations:

energy|0) =0, energyy”, v, o, ") = —k. (32)

The second relation means th/qf), etc., changes the energy by, i.e.,

energy (v,"'v) = energy(v) — k, etc.

Next, for each pait, j that may occur introduce the following fields of conformal
weight 1:
at (@) = Y @Y L dTTR) = e (e () :
EV@ =y @@ EV@=¢' @y :.

Proposition 3.1. (a) Consider the affine superalgebra g¢(m|n) and let A(z) =
S iz (tF ® A)z 7L for A € gt(m|n). Then the linear map o given by

¢ij(2) > a1 (), eipm,jtn(2) > a7 (),
eij+m(2) = EVT(2), eitm (@) EV(2), K1 d~ Lo
defines a representation of g¢(m|n) (of level 1) in the space F.

(b) Consider the standard g (m|n)-module C™!" and its contragredient module C™!"*,
Consider the corresponding C[z, 1] ® g£(m|n)-modules C[z, r~1] @ C™" and
Clt, t= @ C™™*, andlet v(z) = Y ey (t* ® v)z7 ¥~ for v € C™I" or C1™*, Then
thelinear mapsv and v* givenby i =1,... ,m; j=1,...,n):

i) = Y@, Vw2 = ¢/ (2) and
V@) = Y@, V@) e e @)

are equivariant, i.e., they have the following property:

V(A@VW)) =[0(A@), vvw)], veC"",
V*(A@V* (W) = [0(A(), v: (v (w))], v*eC".
Proof. Both statements follow from the corresponding OPE, which are easily derived
from Wick’s formula. Below we give the less trivial OPE needed for the proof of (a):
8jxa™t (w) + 8;ea¥ = (w) 3iedjk

ij+ ke— -
EVF(2) EX~ (w) — E——t

N 8 ik E'E (w)
ij+ Ek@:l: ~ )
@T@ET (W) ~
—8¢i ENF ()
z—w

aiji(Z)Eké:F(w) ~
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8jka’ ™ (w) — 8" (w) 1

N T2t -
a'l* (2)a""* (w) — E—rl

a'* (2)a"*F (w) ~ 0. o
Introduce theotal charge operator
m—+n
ap = o(I), wherel = Z eii € gl(m|n).
i=1

Its eigenvalues are callagharges of the corresponding eigenvectors. It is clear from
Proposition 3.1 that the total charge can be calculated from the following relations:

charge|0) = 0, charge(l//,ii), <p,£j)) =1, charge(w,f)*, ¢,£j)*) =-1. (3.3)
Consider the charge decompositionfafi.e., its decomposition in eigenspaces:gf
F = ®sez k. (3-4)

Sinceag commutes yvith,v(ge(mmf), we conclude that (3.4) is a decomposition in a
direct sum ofg£(m|n)-modules.

It is clear thatLo commutes withag, hence eaclFy is Lg-invariant, and since all
eigenvalues of.gin F liein %ZJr, the same holds for eigenvaluedgfin Fy,s € Z. Note

also thatLo commutes withw (g£(m|n)). Itis because all fieldg/* (z) andE"/*(z) have

conformal weight 1. It follows that each eigenspacd.gfin F; is a g¢(m|n)-module.

The following proposition describes the lowest energy subs@% and the lowest

weight vectors) in eachFy.

Proposition 3.2.a) Lets € Z,. Then, asa gE(m|n)-moduIe,AFj°W is isomorphic to
A*C™I", Furthermore, any highest weight vector of g¢(m|n) in Fy liesin FI°Y and
is proportional to the vector

Is) = ¢ . w)10) with weight Ag + €1+ - - - + € — 36,
-2 2

provided that s < m, and to the vector

s—m
ls) = <(p(li) [m) withweight Ao + €1+ -+ €y + (s — m)€pt1 — %8
2

provided that s > m.

(b) Let —s € Z. Then, asa gf(m|n)-module, FS'OW isisomorphicto A~ (C™")*. Fur-
thermore, any highest weight vector of g¢(m|n) in Fy liesin FSIOW andisproportional
to the vector

)
Proof. Itis clear that, ifs (resp.—s) € Z., thenFs'OW consists of homogeneous poly-
nomials of degrees| in anticommuting operatorﬁéf(’)1 (resp.w(’)l*) and commuting
-2 2

operatorszp(ji (resp.rp(ji*), applied to|0). This proves (a) (resp. (b)), due to Proposi-
2 —2

tion3.1. O
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Remark 3.1. The lowest energy it is %|s| and the spectrum dfg in Fj is %|s| +7Zy.

Remark 3.2. Denote byA () the weight ofis). When restricted tol(mn), A is given
by the following formulas:

As—%é if0 <s <m,
A+s—m)Ap + (s —m)Apy1— 58 ifs>m,
(L—5)Ao—sAmin-1+ 58 if s <O.
We identify hereA 11 with —Ag in the caser = 1.
The following theorem is the central result of this section.

Theorem 3.1. Suppose that m > 1. Then each g¢(m|n)-module Fy, s € Z, isan irre-
ducible integrable highest weight module of level 1.

Remark 3.3. The g¢(0|n)-modulesF; are not irreducible. For example, one can show
thatinthe casén, n) = (0, 2), one has the following decompositiongg2) ~-modules
(in the standard notation of [K3]):

o0
chFy =Y chL(~(L+2j + [s) Ao+ (2] + s Ap)g/ T HBIFDI+I/2
j=0

E. Frenkel informed one of us that he had found this decomposition too.

The proof of Theorem 3.1 is based on the (super) boson-fermion correspondence,
which we shall now recall (cf. [K4]).

Foreach =1, ... ,m there exists a unique invertible odd operatorwith inverse
e~ satisfying the following three properties:

[e, ¥/ ()] =0ifi # j, [, ¢/ (x)]=0forallj, (3.5)
eplet =yl et =yl (3.6)
e“i10) = w(jyox e™4|0) = wf"’%*|0>. (3.7)
Itis easy to see thafie€i = —eiei if i # j.

We letforshorti =1,... ,m;j=1,...,n):

€(2) = d''t(z) = Zel(ci)z—k—l’ Mgy = ali(z) = Zelgﬁm)z—k—;

keZ keZ
Then we have:
lel), e = 8;;8k0¢, i=1,...,m+n; j=1..,m (3.8)
Foreach =1, ... ,m + n introduce the following fields:

oo K ) _ _yoo 7k @
]";f(z) — eh=1 E€k, 1“61_ () =e 2t & ,
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and for a linear combination with integer coefficients= >/’ ; s;¢; we IetFi(z)

I1; (l"i)sf (recall that alle,g‘) commute and alk(’) commute fork > 1, see Proposi-

tion 3.1a). The central fact of the classical boson fermion correspondence is the follow-
ing formula, seee.g. [K4li =1, ... ,m)

Ui(2) = 929 THOTL (@), ¥ () = e 9270 TF, ()2, (2). (3.9)

The key formulas of the super boson-fermion correspondence are the following [KL,
K4l (j=1,...,n):

. i ..
¢/ (2) =20 T RE (9T (2), (3.10)
. Q) ) . _
@/*@) =270 e T (QEVT (T, (2),
foreachi = 1,... ,m (we assume here that > 1).

Proof of Theorem 3.1. Since the eigenspaces b in F; are finite-dimensional and
Lo commutes withgf(m|n), it follows that F; is a direct sum of finite-dimensional
gl(m|n)-modules, hencel(m|n) acts locally finitely onFy. Furthermore, we have:

F — Ffermi ® Fbose’

where Fe™i (resp. FP°%¢) s the vertex algebra generated by h(z), ¥*(z) (resp.
0/ (2), /*(2)), and the subalgebrﬂ(m) of gf(m|n) acts onF viar ® 1, where the
representatiom of gf(m) on F'€™Mi is known to be integrable of level 1 (see [KP1]).
Thus, the representation gt(m|n) in eachF; is integrable.

The irreducibility of Fy, provided thatn > 1, is proved using (3.9) and (3.10) in
exactly the same fashion as the proof of Theorem 5.8a from [K4].

Remark 3.4. We have got along the way the following vertex operator construction of
g£(m|n) Foreachw = Y " ; si€;, s; € Z, introduce the usual vertex operator

+ —
Ty = e* 7T, .

Then the following map defines an irreducible integrable highest weight|n) -
module of level 1 in eaclf;:

eii(z) — € (2) (i=1,...,m), K1,
€ij(z) > e, ' . G,j=1...,m),

€itm, j+m(2) =1 @' (@ (@) 1 (i, j =1,... . n),

ejrmi(@) > T @¢/(z) (=L....mj=1...,n),
e j+m(2) = I (2)9/*(2) i=1,...,m;j=1,...,n).

Next, we give a standard derivation of a “quasiparticle” character formula for the
gl(m|n)-modulesFy, s € Z.

Givena = (ay,...,am), b = (b1,... ,by) € Z andc = (c1,...,cp), d =
(d1,....,dy) € 7", denote byF(a, b, ¢, d) the linear span of vectors ifA obtained
from the vacuum vectoj0) by applying all monom|als in the”, v\"*, oV, oV
which containa; factors of the formw(l), k € 2 + Z,...,a, factors of the form

w™, by factors of the fOFMZf(l)*,. , by, factors of the formp(”’)* c1 factors of the
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form o7, ... , d, factors of the formp{*.

condltlon holds

These states lie iiF; iff the following

lal — 16| + || — |d] = s, (3.11)

wherela| = )" a;, etc.
Itis clear that the state of minimal energyhtia, b, ¢, d) is (up to a constant factor)
the following vector:

va b, d) =@ Gy @l )

x (w“f; W”*) WOy w(’"”‘)

D )C:L (n) )Cn

e )M (e

x (g SOR (wi”?)‘iﬂ 0).

All other basis elements frorf(a, b, ¢, d) are obtained from (a, b, ¢, d) by adding to
the lower indices of the factors arbitrary non-negative integers. Hence we have (since
weight|0) = Ao):

chF(a,b,c,d) = VeIN@@b.cd) 114y where (3.12a)
(q) = @ar - Da @by - - - (Db (D - (D, (D - - - (@)a, - (3.12b)
Here and further we use the usual notation and assumptions:
(@a=A=¢q)...(L—¢%),qg=e¢?and|g| < L.
Noticing that
weight(y, Dy — ¢ + k8, WEIght(I/f<l)*) = —¢; + k8, (3.13)
weight(py”) = enti + k38, weight(p\"™) = —ensi + S,
we obtain from (3.11) and (3.12) the “quasiparticle” character formulafor

o ZrH @i —bi)e; 22’” 1@ +p2)+3 Y (ai+by)

chFy=e™ 3 - . (314)
a,beZ{’;*”l Hi:l (Q)a; (‘Z)b,-
lal—|bl=s

Another formula, which we call a theta function type character formula, is derived
as follows. Let

chF = Zz‘vchFS.
sel
Using (3.3) and (3.13), we obtain:

Hm 1+ ze€i k—1/2 1+Z—le—e,- k—1/2
chF = eMIE — S 7N ") (3.15)

T _1(1— zefmrigh=1/2)(1 — z=Lemmrigh=1/2)"

In order to compute the coefficient of, we use the Jacobi triple product identity

1 1 1 1.2
M, (1+2¢ DA+ 2717 = ) g, (3.16)

mez
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and also the following well-known identity which can be derived from the super boson-
fermion correspondence [K4]:

i1 1 11 qu(m+l)
M (L +2¢F ) A+ "5t = —— § "I (3.17)
) 1+ zg"+2

=@ X - ) ((—1)m+k kg FmmtD+(nt3)k)
m,k>0 m,k<0
Here and further

o(q) =TI (1 - g).
Substituting (3.16) and (3.17) in (3.15), we get:

ar= oy (s -2 ) (- %

kezm™ \ p1,a1>0  p1,a1<0 Pnsan>=0  pp,a,<0
(_1)|V\Z\k\+|P\eZi kiei+; ijerjq% Y kE+3 Z] (aj(aj+D+p; (a/+1/2))

wherek = (k1,... ,ky) € Z",p = (p1,...,pn),a = (a1,...,a,) € Z", and
k=2 ki . . . . |

The coefficient ot* is a rather complicated expression §&rFy, which, after letting
r = p+a € Z", can be written as follows:

er+sel 52/2

(LR DIl ED DD DI BN BD DD DR e it

kezm—1 \rizp1=0 ri<p1<0 "mZpnz0 ra<pp<0

X ki€ + 3 pjen+j—en) g 3K +3 X kf+3 Xy ri it D+ s pipi+Iklpl=s(ki+1pD)

(3.18)
wherek = (ka, ..., kn) € Z" 1, p,r € Z".
We rewrite (3. 18) using translation operatqrsa € h*, defined by(A € b ):
ta(M) =X+ (AS)a — (§(a|a)(k|8) + (Ala))s. (3.19)

Let M* = Zf":’ll Za;; recall thatM* acts orﬁ* viaa — t, and the image of this action
is the translation subgroup of the Weyl groupsétm)™. It is straightforward to show
that (3.18) can be rewritten as follows:

1

R I S M B S 3

r1>p1>0  ri<p1<0 rm>pn=0  rp<pn,<0

chF; =

1
(_l)lrl-leqz 2 iriit D+ pipj—Ipltas Z elot(/\(s)*Z;Llpj(flfemﬂ'))7

aeM?

(3.20)
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whereA () is the weight ofs) anda; = s(r, — p,+1) +|plif s <0, =0if0 < s < m,
and= (s —m)(ry — p1) if s > m.

In the case: = 1 formula (3.18) can be simplified by making use of the following
lemma.

Lemma3.l. Leta,b € Z. Then (j, k,n € Z):

(a) (Zk>]>a_2k<]<a)( 1)j+kqubqu(k+l)/2
= T P@ML 1+ 271" H (L 4 xg" ).
(b) T3, (A+x" 1" H (A4 xg"P) = x~0g=PETD/2II% (14 x7 1" (L +xq")

_ x—h lq—b(b+1)/21-[20=1(1+x—1qn)(1+an 1)_
Proof. If k > a (resp.k < a), we have:

a—1

Z( Dkl (resp.— Y (=D Hxd) =

j=a Jj=k+1

_ (_1)kxa
1+x

Hence the LHS of (a) is equal to

1
Z kL bh+k(eD)/2

1+xkeZ

( 1)/{ bk+k(k+1)/2
D

Noticing that the second summand is zero and applying to the first summand the Jacobi
triple product identity (3.16), we obtain (a). In the proof of (b) we assumeithatO,
the casé < 0 being similar:

Ml (L4277 ") = Mpa b(1+x—1qm—1>
= A+x"Yg"Hnl_, @+ xtgm .

The second product on the RHS is equal to

Mo_ (A +x7tg™) =Ty g (A4 xq") = x g P CHV2I0_ (1 + xq™).
Next, we have:

My (L+xq") = T, (L 4+ xg™) = Ty (L+ xg™)/T1),_y (1 + xg™).
These equalities prove (b).o

Let nown = 1. Then (3.18) reads:

eA0+S€1q52/2 o 1 3 1 2
chFy = pPYE Z U (kyeXikii—en) g 3lkl(kI=29+3 3 k2 (3.21)
kezm-1
where
w(k) — Z _ Z (_1)/+I <q\k|—seém+1—61>j qt(t+l)/2.

t>j>0 t<j<0
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By Lemma 3.1a for = ¢/¥I=S¢m+17€1 b = 0, we have:

[k|=s ,€m+1—€1
q=e ®(q) _ lkls— _ _
(k) = T q\k\—seemu—él l'[;il (1 4 L emiLgh |k|+s l) <1+ efm+l Elqﬂ+|k| s) ]

By Lemma 3.1b forx = e“n+17€1 b = |k| — s, we rewrite this as follows:

—b_—b(b—1)/2
X
I//(k) _ q <P(6]) H,ﬁl(l‘l‘x_lqn)(l‘i‘an_l)«

1+ gbx
Substituting this in (3.21), we obtain:

er+sem+1q -3

p(g)m+t
ez:-":z ki(ei—€m+1)

x D %
regmet 1+ q| |—=5 p€m1—€1
czm—

chF, = M52 (14 et m+g™y (1 + es”’“*elq”*l) (3.22)

g3 XiakitkitD)

This formula agrees with the one obtained in [KL] (see also [K4])gfoil]|1) .

In the next section we use this formula in the case 2 in order to derive character
formulas for all integrable level 4¢(m|1) ~-modules in terms of the theta function and
the (multivariable) Appell’'s functions, and to obtain their high temperature asymptotics.

4. Theta Function Type Character Formula for Integrable Level 1
s€(m|1)"-Modules and Appell’s Function

Recall that Appell’s function is defined by the following series (cf. [A] and [P]):
3k% k
2

q2" z
Az =) T
keZ 1+xq

which converges to a meromorphic function in the domain, g € C, |¢| < 1. The
classical theta function in one variable is a special case of this function:

O() =0(z;q9) = A0, z,9).
Note that by (3.16) we have a product expansion:
O(zg"% ) = p(@ T2 (1+ 2g) A+ 275D, (4.1)

We shall need also the following multivariable generalization of Appell’s function.
Let B be anN x N symmetric matrix such that RB is positive definite and let be a
linear function ofC". We define the series

1,7 k k
Bt » <1, » AN 1 E(k) ’

kezZN

which converges to a meromorphic function provided thak 1. Again, lettinge = O,
we get the multivariable theta function.
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Consider now thez£(m|1)”"-modulesFy, s € Z, and assume in this section that
m > 2. We have (see Remark 3.2):

As — 58 fOo<s<m
Ay =1 —G6—-—mAo+L+s—mAy,—355 ifs>m
(L—s)Ao+sAm + 36 if s <0

Form > 2, we havegl(m|1)™ = s€(m|1)™ + g€(1)” (sum of ideals), hence:
chFy = chL(A)p(g) ™,

where L(A()) denotes the irreducible¢(m|1)”-module with highest weight\ ().
Hence formula (3.22) gives us the following expressioncdioL (Ay)) in terms of the
theta function®(z; ¢) (we use (4.1)) and the (multivariable) Appell’s function:

Ao+s€m+1 _%

@(g)m+t

wherez; = e “m+1 (i = 1,...,m), B = I isthe(m — 1) x (m — 1) identity matrix
andl(k)y = ) ki, k € 71, (Note that in the simplest case = 2 we get in this
expression the classical Appell’s function.)

Next, we derive yet another character formula for #6n|1) ~-module L(Ao) in
the casen > 2, in terms of classical theta functions and certain “half” modular forms.
We use for this (3.20) fot = 1:

1 1 _ 1 1
chL(A()) = O(192; ALz 0™ 2292, ... Zmq2: @),  (4.2)

1 + _ _ 1
- - _ _ P la(Ao—ple1—€m+1)) , 57 (r+1)
chL(Ag) = (p(q)’"+1 E E E (-1 e 0 1mem+1)) g2 .
r=p=0  r<p<0/) gem# (4.3)

Introduce the following elements af*:
k
Bk =k€1—Z€,‘, k=1, ...,m,
i=1

and the element = ¢,,41 — %(61 +---+€,) € b*, which is orthogonal tas*. The
even part ok£(m|1)” is a sum of ideals¢(m)”™ and(Cu) .
Write p = jm — k, wherej € Z, 1 < k < m and note that

Ao — pler — mt1) + jBm — Br = Ax + pue, (4.4)

whereA, denote fundamental weights of(m) ™ and we identifyA,,, with Ao. Adding
to «a the elementiB,, — B in (4.3), and using (4.4), we rewrite (4.3) as follows:

>-3)

1 m
hL(Ag) = ———
b0 = gy ,;(

= Jj.reZ JrezZ
r+k>jm r+k<jm
j>0 j=<0

i A i 4D _ (m=K)(jm—k—j) _ k(-1
I S e

aeM?
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Denoting byL(A, a) the irreducibles¢(m)™ + (Cp)~-module with highest weight
A + ap, and recalling that ([K3], Proposition 12.13):

chi(hg.a) = Z em(Ak)ﬂm’ (4.5)
Pl —,
we obtain:
m
chL(Ao) =Y Y bip(g)chL(Ay, p), (4.6)
k=1 peZ
p+klm
where
g a Pt gk gk
bi,p(q) =
g 9(q)
% Z(_l)rqu%r(ﬂrl)(resp' « Z(_l)rfpflq%r(rkl))’
I‘Z]) r<p

if p>0(resp.p <0).

Thus, the branching functiortg ,(¢) are “half” modular functions, in a sharp con-
trast with the case of affine Lie algebras [K3]. Recalling that the serigs, ela )
converges to a classical theta function [K3], we see that the character of the “basic”
s£(m|1)”-module is a finite linear combination of classical theta functions with coeffi-
cients “half” modular functions.

The basic specialization of (3.22) gives the specialized character formulas for
s€(m|1)”-modulesL (A )):

2)2 33 ki(ki+1)

Lo~ -3 9(q q
ITL(AG)Y °=2 Z(p(q)m+2 Z 1+q|k| s (4.7)
kezm—1

where, as beforegk| = ), k;. In the remainder of this section we discuss asymptotics
of (4.7).

Given a positive definite quadratic forB(x) onR", an affine linear functiord (x)
onR" and an element of R", consider the following series, wheje= ¢%%i7:

_ q?
fBea(t) = Z m
y€ZN +a

3B()

This series converges on the upper half planerins- 0 to a specialization of the
multivariable Appell’s function. From the transformation properties of theta series one
gets (see e.g. [K3]):

fi0uif) = S(detB) 25N Lop asp >0 (Rep>0.  (48)

In order to get the asymptotics of the functiofis, (), let

1 1
+ — = 2 : 5B()
fB’g’a(T) =3 q2 .

yeZN +a
+2(y)>0



654 V. G. Kac, M. Wakimoto

It is easy to derive from (4.8) by induction arthe following asymptotics:

f50aliB) = %(detB)*l/Zﬂ*N/2 +p(B7Y%) + o), (4.9)

asp — 0, 8 € Ry, wherepy(x) is a polynomial inv of degree strictly less than.
The idea of the following lemma is due to A. Polishchuk.

Lemma4.l. | f5.r.q(iB) — fB.0a(B)| < p(B~Y?) for B € R,0 < B < a, Wherea is
a positive number and p(x) isa polynomial in x of degree strictly lessthan N.

Proof. Letg(B) = fp,e.a(iB) — fB,0.(iB). We haveg(B) = g*(B) — g~ (B), where

2 8L
@ = Y e =TT
pre 1+ e:F27T/3K(V)
€ “+a
J:/I:/Z()/)>O

Furthermore, we have:
O<g*B) = Y B - 3 ABmEA),

yezN +a yezN +a
+4(y)>0 +4(y)>0

The first sum on the right |SJu$tB 0.8, which has asymptotics (4.9). But the second
sum on the right has asymptotlcs of this form too since it can be written as a product
of a power ofg and a functlonfB ¢ «(iB) for some other affine linear functiofi, by
“completing the squares”. The lemma is proved

We shall write f(t) ~ g(t) if im g0 f(iB)/g(ip) = 1. Lemma 4.1 and (4.8)

imply: pefts
fB.0.a(T) ~ %(detBrl/zﬁ—N/Z. (4.10)
Since
n(r) ~ p~H2e /P, (4.11)

we deduce from (4.10) and (4.7) the following asymptotics along the imaginary axis
T = lﬂ, ‘B (S R+:

Bretm Y, (4.12)

NI =

L
trL(A(S))q 0~

5. A Weyl Type Character Formula for Integrable Level 1 g€(m|n)”™-Modules

In this section we derive a Weyl type character formula (5.12) for principal integrable
level 1-modules ovegl(m|n)” provided thatn > n. We use for that formula (3.15)
for ch F and the denominator identity fo¢(m + 1|n)”". In order to compare these two
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formulas, we consider the labelings of simple rootg6m|n)™ andsf(m + 1|n)™
given below:

0
029
// \
o—0——0—® — -~ —0
1 2 m—1 m min—1
0
b2

Putting

z= —e_élq_%y andy = e %, (5.1)
we can rewrite formula (3.15) as follows:

H:-’L_()l(l—ea*+ul+"'+ai qk)(l_e—a* —a)——a qk—l)

e MochF =TI, (5.2)

V(L e™ T ] gy (1™ 7o gy

Denote byw? (resp.W#) the subgroup of the Weyl group of (m|n) (resp.s€(m +
1|n)) generated by reflectiong in rootsa = a1, ... , ay—1 (resp.oy, a1, ... , 0y—1)
and byM* (resp.M*) the groups generated by translationsn integral linear combi-
nations of these roots. Lgtdenote a Weyl vector fort (m + 1|n) ™ and letR denote the

denominator fog¢(m|n)". Itis clear by (5.2) that the denominat®rof s¢(m + 1jn)™
is given by

R = ¢ “°RchF. (5.3)

In order to write down the denominator identity fof(m + 1jn)”, introduce the
rootsfi; = aj +aiy1+ - +oa;, 1 <i < j <m+n—2(hereg; = «;), and let
Bi = Bn—n+tim+i-1,i =1,... ,n. Let
pl=p+ > Bij- (5.4)

m—n+2<i<m<j<m+n—-2
j—i<n—-2

Then the denominator identity fe¢(m + 1|n)” looks as follows:

~/
eP

_ . 55
H?:1(1+€7ﬂ-i) (5.5)

e 20eP Reh F = Z e(w)w

weW#x M¥#

This identity can be derived from the denominator identity given in [KW] by making
use of odd reflections as follows.
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The denominator identity faré(m + 1|jn)”~ in [KW] is given for the choice of the
set of simple roots with a maximal number of grey nodes:

/(%\

2n—1
Let y1, ...y, be the (unique subset) of the set of simple roots withausuch that
(yilyj) = Oforalli, j, and lets” be its Weyl vector. Then the identity reads:

eﬁ//

"' R = Z e(Ww—————. (5.6)

n -7
weW#x M# HJ=1(1+6 )

In order to derive (5.5) from (5.6), we apply a sequence of odd reflections which trans-
forms the initial diagram with two grey nodes to the above final diagram witgr2y
nodes. In order to explain this sequence, denotd by’ a set of simple roots containing
Bi.m+; and by[1@-/+D the set of simple roots obtained from it by the odd reflection in

Bi.m+ - Denoting byIT andIT’ the initial and the final sets of simple roots, we have the
following sequence:
1:[ — H(m,O) - l—[(m,l) — e l—[(m,n—Z) - I—I(m,n—l)
— H(m—l,O) — H(m—l,l) e I—I(m—l,n—Z)
— H(m72,0) N n(m72,1) ... H(m72,n73)
— H(WL*&O) — H(m73,1) —
— H(m—n+2,0) — H(m—n+2,l) — 1:[/_

Using Lemma 1.3, one sees that and 5 are related by formula (5.4) and using
Lemma 1.4a, we see that

Ag = Ao. (5.7)

Using the decompositions
WH = WH U (W W e, tar v ta,) ANAMT = Za, + MP,

we obtain from (5.5):
m—1
e ™RchF =Io— Y _ II;, (5.8)
i=0
where

=/
eP

Ip = e*ﬁ/z Z Z e(w)tka*tawm,

keZ aeM# weW*
eﬂ

-5
II =e Z Z Z G(W)tka*l‘awra*+al+ ‘o T Hn 1(1—|—e ﬁ,)

keZ aeM* weW#*
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In order to computei L(Ag) of thegé(m|n)”-moduleL (Ag) we compare the con-
stant terms (i.e.y%-terms) in the decomposition of both sides of (5.8) as the series in
powers ofy.

We will show that

constant term ofl; = 0 for all ;, (5.9)
e
constant term ofg = € —_. 5.10
0 D, cww m_ (1+ e Pi) (5.10)
weW#x M¥# J=

Using thats’ when restricted to the Cartan subalgebragéfm|n)™ coincides with
Ao+ p’, wherep’ is related to the Weyl vectar of g€(m|n)” by (5.4) with~ removed,
we obtain from (5.5), (5.9) and (5.10):

’
er+,0

¢”RchL(Ao)= Y eww (5.11)

Applying to this formula odd reflections as above, we obtain an equivalent character
formula for the choice of the diagram witl grey nodes as above (whesds a Weyl
vector for this choice of the diagram):

ehoto

I (L + e7Om-mt2i-1) .

¢’RchL(Ao) = Y e(ww

weW#x M#

(5.12)

The proof of (5.9) and (5.10) is straightforward, and we explain it in the casel.
We have:

5 eb e—mka*e—m(oz*+oz1+-~-+ocm71)qkzm—k+mk
e "Ik Votar++om_1 =

1 + e %m 1 =+ e_(a*+(xl+'“+am)qk
Hence:
—p e’ k+1
e P Z t_ka*ra*+a1+...+am71 (m) = Z - Z (_1)Sym( + )+X(, .. )1
keZ k,s>0 k,s<0

where(...) doesn’t involvey. But the constant term of the last expression is O since
mk+1)+s>0ifk,s >0andn(k+1)+s <s <0ifk,s < 0. Thus, constant term
of I1,,_1 = 0. Furthermore, we have for8i <m — 2:

eP

eiptka*ra*+a1+-~v+ai 1— =Yy

7mk+i+1( )
T o—an o)

Since—mk+i+1#0if0 <i <m — 2, we see that constant term&f is O for all:.
Finally:

3 5 k2m-+k
e_ptka*e— — y_mkq—’
1 + e %m 1 + e %m
hence the constant term of this expression is eduall + ¢~*»)~1, which proves
(5.10).
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Using odd reflections one may derive from (5.11) or (5.12) the Weyl-type character
formulas for all other level 1 principal integrable modules. For example, in the case
g =sLm|1)", we letk = mj +s € Z4, wherej € Z; and 0< s < m — 1; then

) AP
e’ Rch((k + D)Ag — kAy) = Z e(w)w TR Erm—— (5.13)
weW
) eAtp
e’ Reh(—kAo+ (k+ DAy) = Z W)W T (5.14)
weW
and for 1< j <m — 1 we have:
) eA_,'+P
e RC]”l(A]) = ZE(W)wm. (515)

weW

6. Classification of Integrable Highest Weight M odules over Affine Superalgebras

In this section we consider affine superalgebras of type, n)”™, B(m,n)”, C(n)™
D(m,n)",D(2,1;a)”, F(4 ™, G(3)". We shall exclude from consideration the well
understood case d(0, n)” (see [K2] and Sect. 9.5). In all cases exceptdon, n) ™
these are the affine superalgebfadefined by (0.1), (0.2) foy = A(m,n)(m #

n), B(m,n), C(n), D(m,n), D(2, 1; a), F(4) andG (3) respectively (see [K1]foracon-
struction of the simple finite-dimensional Lie superalgelgasn the A(n, n)™ case it

is more convenient to take= s¢(n + 1|n + 1) in order not to lose the most interesting
modules. The Lie superalgebgacarries a unique, up to a constant factor, non-zero in-
variant bilinear form(.|.). This form extends t@ by formula (0.3)and it is normalized
by the values of¢; |«;), given in Table 6.1 (see below).

It is convenient to depict Cartan matrices of affine (super)algebras by (generalized)
Dynkin diagrams (cf. [K1]). We shall assume that the diagonal entries of a Cartan matrix
A are always 2 or 0 (one can achieve this by rescaling simple coroots). The Dynkin
diagram ofA is a graph whose nodes label the mdexlsei {0,1,2,...} and are of
the form 0, or @ corresponding to cases = 2,i ¢ 11, a; =0 (thenz € 11) and

ajj = 2,i € I, respectively. These nodes are called white, grey and black respectively,
SO tha’rIl consists of non-white nodes. We let= I\{O} L= Il\{O} As usual/ labels
simple rootsws, a2, ... of g, I1 labels odd simple roots af, andeg = § — 6, where

0 is the highest root of. In the cases;; = aj; = 0,i # j, thei™ and j™ nodes are

not connected. In the cases = a;; = 2,i # j, the nodes are, as usual, connected by
la;;aj;| edges with an arrow pointing 8" node iflaj;] > 1. In the remaining cases the
nodes are joined as follows:

®—O:(_2%>, ®:O=<_g;>=®:0,

Oa 2-1
®_®:(b0>’ O=>.=<_2 2).

In Table 6.1 below we list the Dynkin diagrams of the symmetrizable Cartan matrices
of the affine Lie superalgebrgaunder consideration. The labels against the nodes
(aile;), and the labels against the edges conneatiagd j are («;]« ;). Recall that
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o) = 20 /(i|o) if a;; # 0; we lete)” = «; if @;; = 0. We also give the coefficients

of the decomposition of the roétin terms of simple roots. The nodes are numbered by
I =1{0,1,...}inincreasing order from left to right, except when it is impossible to do,
in which case nodes are numbered by the subscripts of their labels.

Table6.1.
F] Dynkin diagram 8
0
-1 1
m+n+1
A(m,n)”~ —1~—1 =111~ 1 Ip o
2y 2 2 Opy1 -2 —Zm4n+1 i=0
-2-1 -1-1 n
BO,n)" O=0-0-..-0=@ ag+2 Zai
4 2 2 2 1 i=1
21111-1-1-1-1 m+n
B(m,n)™ O=0-0-. - O0Q-0-...—O=0 a+2) e
—4-2-2 20, 2 2 1 i=1
m >0
—%]El n—=1
C(n)™ @ 1 1 ZO 0‘0+‘11+220‘i+0¢n
O-0O-.0O& Pt
0p —2-2 -2 -4, !
Ozm+n
2 1 1 1 -1 -1|-1 m+n—2
D(m,n)”~ 91:927779 %ni(z)i “.727 2 ag +2 Z @ +Uppp—1+ Amtn
i=1
—2(a+1)
a+1
~ -1 -
D2 1;a) 0—®~—20 @0+ 201 +ap +a3
2 01 2a3
3 o1
F(&~™ 03 0 7?:02702 ag + 201 + 3o + 203 + ag
4 _1
R 3 31
G@3) O—Q—0O&0 g + 201 + dap + 203
-§ o 32

Remark 6.1. Recall the definition of the orthosymplectic Lie subalgebsa(M|N)

[K1]. Let V = V; ® Vj be a superspace, where difp = M, dimVz = N, and let
(.|.) be a non-degenerate bilinear form ®nsuch that(V3|V;) = 0, the restriction
of (.|.) to Vj is symmetric and td/; is skewsymmetric, so thal = 2» is even; let
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m = [M/2]. Then(a = 0, 1):
osp(M|N)z = {a € g¢(M|N)z|(a(x)|y) + (=1’ (x]a(y)) =0, x,y e V}.

For the definition in a matrix form, consider the followitdf + N) x (M + N) matrices:

_(C10 _(In 0
C—<o c2>’ F—(o —IN)’

whereC1 (resp.C2) isaM x M (resp.N x N) symmetric (resp. skewsymmetric) matrix.
Then

osp(M|N)g = {a € gb(M|N)z|F*aTC+Ca =0}, a=0,1.

RecallthatB(m, n) = osp(2m+1|2n),C(n) = osp(2|2n) andD (m, n) = osp(2m|2n).
The invariant bilinear form oesp(M|N) that is used in Table 6.1 and throughout the
paper is

(alb) = § strab.

Table 6.2,
g 95 g 99
Am,n) An+A,+C | D2, La) D2+ A;
C(n) C+Cp F(4) B3+ Aq
B(m,n) By +Cy G®3) Go+ Ay

D(m, n) Dy, + Cy

The even partgg of the Lie superalgebragare listed in Table 6.2. In the case of
D(2, 1; a), the subalgebr®, corresponds ta, andas (see Table 6.1). We denote by
gé-) (resp.gg) the first (resp. second) non-zero summanggin the decomposition of
Table 6.2. Note that the invariant bilinear fofth) (which can be read off from Table 6.1)
is normalized in such a way that it is positive definiteggrand negative definite ogg
(except that forD(2, 1; a) we should assume that € R.), and the maximal square
length of a root is 2, except for the case€l, n) when itis 1 andD (2, 1; a) when it is
max (2, 2a). If the Killing form on g is non-degenerate, then the fofh) is a positive
(resp. negative) multiple of the Killing form, in the cages s€(m|n) with m > n,
osp(m|n) withm > n + 2, F(4) andG(3) (resp.s¢(m|n) with m < n andosp(m|n)
withm < n + 2).

An irreducible highest weight module ovgis calledprincipal (resp.subprincipal)
integrable module if it is integrable with respect tg% (resp.gg) and locally finite
with respect tog (cf. Definition 0.1). As we shall see, the non-trivial principal (resp.
subprincipal) highest weight modules have positive (resp. negative) level, except for the
case§yy = A(0,n)” andC(n)” (resp.A(n, 0)7). Itis easy to see that in these cases the
only conditions of integrability aré; € Z, if i € I\I1; we shall exclude these cases
from further considerations.

Let®’ be the highest root of-; in casesD(2, n) andD(2, 1; a), which are the only

cases whe% is notsimple, we havg’(-) = A1+A1, andthe highestroots a#¢ = o,,11
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andd” = a,42 (Wheren = 1 for D(2, 1; a)). The rootd’ (resp. roo’,) gives rise to
a simple rootrg = § — 0’ (resp. simple roota, = 6 — 60..) of g5. The corresponding
coroot isa” = 201/ (erglorg).

In all cases except fad(m,n)” andC(n)” there is a (unique) simple root’ of
gy (which is a simple Lie algebra), which is not a simple roogdK1]. As we have
seen in Sect. 2, the principal integrability in the caseloh, n)” follows from local
nilpotency of the root vectoy” attached to the root«y. In all other cases one has to
check in addition the local nilpotency of the root vecidrattached to the rocta” (in
order to ensure the local finiteness with respqutothat with respect t% follows

automatically from the integrability with respectgAS)). For that reason, as we have seen
in Sect. 1, it is important to introduce the following numbers, wheig a Weyl vector
forg:

//\/>'

b/:_<105a6v)ﬂ b;::_<p,aé)i), b//:_<107a

The values of the numbet$ andd/, (resp.b”) are given in Table 6.3 (resp. 4), the first
line for D(2,...)” in Table 6.3 being fob/, and the second far_. Table 6.3 contains
also the formula for theartial levels (k/. being on the same line &§)

K = (A, ap), Ky = (A, aph),

and the levek = (A, K) of a weightA in terms of its label&; and’, k.. Table 6.4
contains also a formula for

k// — <A a//V)
and the levek in terms of thek; andk”.

Theorem 6.1. For an affine superalgebrafromTable6.1 (recall that A(0, n)™, B(0, n) ™
and C(n) "~ areexcluded) thelabels{k; }; _; of thehighest weight of a principal integrable
irreducible highest weight module L(A) are characterized by the following four series
of conditions:

(D) k; € Zy ifi € I\I4,

(2) k' (resp. k/_incase D(2,...)") € Z4+, k" € Z4 (see Tables 6.3 and 6.4),

(3) ifk’ (resp. oneof thek!,) < b’ (see Table6.3), therearethe supplementary conditions:
A(m,n)",m > 1 thereexistss € Z, s < k/, such that:

km+l = km+2 R km+l+s + s, km+s+2 == km+s+l+n7k/ =0,

B(m,n)",m > 2,and D(m,n)", m > 3: one of the four possibilities hold:
(i) thereexistr,s € Z,,r < s, suchthat

K =r+s, ki=0forr+1<j<m+nandj#s, ky=1,

(i) thereexistr,s € Z4,r < s, such that

K=r+s, kj=0forr+1<j<m+n, k #0,
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Table 6.3.
) % b k
m+n+1 m
A(m,n)" ko + k1 — Z ki n K+ Zki
i=m+2 i=1
(m=>1)
n—1
B(1,n)™ Yhn +knp1—4Y ki 4n—1 K + kg1
i=0
n—1 n+m—1
B(m, n) 2kn +hn1—2Y ki -1 K +knr1+2 > ki +kntm
i=0 i=n+2
(m>2)
n—1
D(2.n) Zn thknr1=2) ki 2,-1 Ky +knt2
i=0
n—1
2%kn +kn2 =2 ki -1 K 4 kyy1
i=0
n—1 m+n—2
D(m,n)~ 2%kn +kny1—2) ki -1 K4kiy1+2 Y ki +kngm-1+kntm
i=0 i=n+2
D(2,1;a)" —(a + Dkg + 2k1 + ak3 1 K+ ko
a=Y(—(a + Dko + 2k1 + kp) 1 a(k’_ +kz)
F(4)™ —3ko + 2k1 + 3ko 1 K + ko + 2k3 + kg4
G®3)™ — ko +2k1 + 3ko 1 K +ky+k3
Table6.4.
/g\ K b Kk
n+m—1 n—1
Bm,n)",m > 1 —kn = Y ki = Zkmtn m—3% =20+ k)
i=n+1 i=0
n
cmy™ —3ko+ k1) 0 —20k" + Y ki)
i=2
n+m—2 n—1
Don,m)™  —kn— Y ki= 3kmin-1thmen) m—1 20"+ k)
i=n+1 i=0
D@2, La)” —(a+ 1) Y(2k1 + ko + akg) 1 —(a+ DK + ko)
F(4)™ —%k1 — ko — %k3 — 5ks 3 S + ko)
GE)”™ —3k1 — ka2 — 3k3 3 —3K" + ko)
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(iii) thereexist r € Z such that
kK'=n+r, kj=0forr+1<j<n-1 ky#0, ky +kyp1+1=0,
(iv) thereexist r € Z such that

K'>n+r, kj=0forj>r+1 k #0.

B(1,n)": thesameasfor B(m,n)” withm > 1 with the following changes: k' is
replaced by %k’ everywhere and k,, 11 is replaced by %knﬂ in (iii),

D(2,n)": thesameasfor D(m, n)” withm > 2 with the following additions:

Ky =k, kn+knp2 + 1= 0in i),

D(2, 1; a)”": one of the four possibilities holds:

(i) kK k_ =0, thenall k; =0,

(i) @ € Q-0,a,a™! ¢ Nandoneof k. equals 1, thenk’, = k¥ = 1 and one has:
(*) ko= —(a+1D)"Yr—1 ki = —r kp =r—1, k3 = a~r—1for somer € NNaN,
(i) =1 € Nand k!, = 1, then either (*) holds or kg = —(a + DLk =k =

k3 =0,
(iv) a e Nandk” = 1, theneither (*) holdsor ko = —a(a+ 1)1, k1 = ko = ks =
01

F(4)”: one of the two possibilities holds:
(i) k¥ =0,thenall k; =0,
(i) K =1 thenko=—%. ki =ko=ks=ka =0,
G (3)"": one of the two possibilities holds:
(i) ¥ =0,thenall k; =0,
(i) k¥ =1thenko=—3, k1 =ko =k3 =0,
(4) ifk” < b" (see Table 6.4), there are the supplementary conditions:

B(m,n)":kj=0forall j >n+k"+1,

D(m, n)”": one of the two possibilities holds:

() " <m—2andm > 2(resp.m = 2),thenk; = Oforall j > n+k"+ 1 (resp.
j=n),

(||) k// =m — 1, then km+n_1 = kn1+n,

D(2, 1; a)”": one of the two possibilities holds:

() k" =0,thenky = ko = k3 =0,

(i) ¥/ =1,thena € Qandkz + 1 = |a|(k3 + 1),

F(4)”: one of the three possibilities holds:

(i) k" =0,thenky = kp = ks =ks =0,

(i) k" =2,thenky; = k4 =0,

(iii) k" = 3,thenky = 2kq + 1,

G (3)"": one of the two possihilities holds:

() k" =0,thenky = kr = k3 =0,

(iii) ¥” = 2,thenky = 0.
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Proof. In the cas&@ = A(m, n)”, the theorem follows from Theorem 2.1. In general,
the proof is based on similar arguments. Below we shall give details in thegcase
B(1,n)”; in the rest of the cases arguments are the same.

The even part ofB(1,n) is A1 + C, and its simple roots are,; for A; and
{ag, 02, ... ay_1, @” = 2(a, + ap41)} fOr C,. The simple roots ofA; are {ay =
§—an+1, ay41}. DuetoLemma 1.5a, the local finiteness (resp. integrability) with respect
to C, (resp.Aj) implies thatks, ... , ky—1, k" € Z4 (resp.kn+1, k" € Z4). Hence,
conditions (1) and (2) are necessary. Furthermore, it follows from Proposition 1.2, that
inthe case&’ > b’ = 4n — 1 (respk” > b’ = %) the elementf’ (resp.f”) is locally
nilpotent. It remains to show that in the case of inequality

K <dn—1 (6.1)

the elementf’ is locally nilpotent iff condition (3) holds, and in the case= 0, f” is
locally nilpotent iff (4) holds. We shall concentrate on the first claim, the second being
easier (cf. also [K1]).

Introduce the following isotropic roots:

n

J
Bi= Y ai(G=0....n). fuyj=Put D 0 G=1....n—1).

i=n—j i=1

We have:ﬁ}/ = g, forall j, and

. 1if0<i<n-2,
(Bilant1) = —1foralli, (BilBi+1) = {2 T —— (6.2)
Let11© = 11, thenpp € TI© and we letlT™® = rg, 1@, Similarly ; € I® and
we letl® = rg, IV, ... 1@ = rg,  T1?=D We have:
ah € I, o = 2ap. (6.3)

Let AU) denote the highest weight f( A) with respect tcnﬁrj). It can be computed by
making use of Lemma 1.4. Introduce the following numbers:

uj= (A o)y (j=0,...,2n), t;=(AY,8;) (j=0,...,2n—1).

Using (6.2),(A, ap’) = k" and Lemma 1.4, we get the following recurrent formula for
theu;’s:

ug=k', ujq1=uj—2(resp.=u;j)if t; # 0(resp. = 0). (6.4)

In view of Lemma 1.5, the local nilpotency gf follows fromuy, € Z. . This, clearly,
holdsifk” > 4n (by (6.4)), which again shows that in this case there are no supplementary
conditions.

From now on we may assume théat< 4n — 1. We may also assume that conditions
(1), (2) and (4) hold. We shall derive a recurrent formula for theJsing that, by
Lemma 1.4AD = A®D — g; (resp.= AD) if 1; # 0 (resp.= 0) and thatr,_;_1 €
1%, we obtain:

P ti —kp_ji—1—1ift; #0 )
= {ti —k, ;4 =0 (©O=i=n-2, (6.5a)
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ty = ty—1 — 2kg — 2 (resp. = t,—1 — 2ko) if t,_1 # 0 (resp. = 0). (6.5b)
Fort;, j > n, the recurrent formula involves numbers
si=(APla)forl<i<n—1 sy =(A"lan + i),

which, using the above arguments, can be expressed in terms of the labelasof
follows:

—k; if ty_j_1thi #00rty_j1=1,;=0 (1<i=<n-1),
si={ —ki—21ift, ;i 1#0,,; =0, (6.6a)
—ki +1 if th—i-1=0, ty—; # 0,

sn = —k" + 1(resp. — k"), wherek” = —k, — 3kn41, if ky # O (resp. = 0).

(6.6b)
Thenwe have0 <i <n — 1):
ititl = tati + Si41 — 1 (r€SPyyi + si41) if 1y # 0 (resp. = 0), (6.7a)
where we let
ton = Su2n. (6.7b)
Note thatrg = k, < 0 since
k' = —ky — 3kns1 € Z andkyi1 € Zy.
Sincek; € Z4 fori # 0, n, formulae (6.5) imply
0>10>1n2>"2t-1 (6.8)
Furthermore, we have
ty > tyg1 > -0 > toy = Suz, . (6.9)

In order to show this, it suffices to prove that< 0, 1 < i < n. But, due to (6.6a),
s; > Ocantakeplacefork i <n—1onlywhery,_;,_1 =0, 1,_; # 0, k; = 0, which
is impossible by (6.5a). Also,, = —k” + 1(resp.—k") if k,, # O (resp.= 0) cannot
be positive since in this cag€ = 0, which implies thak, = 0 (see supplementary
conditions (4)).

Suppose now that’ is locally nilpotent. Themy, > 0 (by Lemma 1.5), hence we
have from (6.4):

tj =0forsomeO< j <2n -1 (6.10)

Due to (6.10), (6.8) and (6.9), we have the following three possibilities for some
O<ip<n—landn < jp<2n-—1:

(o{)to:...:tiozo, tio+17é0,...,t2n71;£0,
B)to#0, ..., tjj-1#0, tjy=---=12,=0,
Wto=-=tig=0, tigz17#0,... tjj—1#0, tjy=...=1,=0.
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The possibilities (i), (i), (iii) and (iv) of the supplementary conditions (3) correspond
respectively to the following cases:

(i) (y)whenig+ jo<2n—1,whereweputp=n—s—1, jo=n+r,
(i) (y)whenig+ jo>2n—1,whereweputp=n—r—1,jo=n+s,
(i) (B), where we putjp =n +r,

(iv) (@), wherewe putg =n —r — 1.

We consider in detail only case (ii), the treatment of all other cases being similar. We
have:

fo=-=ty1=0, t, #* 0,..., Ints—1 7 0, Ings = =lIm-1= 0
for some integes such that O< r < s < n — 1. Hence, by (6.5a) we have:
kr #0, kyy1=---=k, =0, (6.11)

and, by (6.6a), we have:
si=—kiifi£r, 1l<i<n-1 s, =—k+1 s,=0.
The recurrent formulas (6.5) and (6.7) can be now rewritten respectively as follows:

ther = —k,
bh—r41 =ln—r — kp—1—1,

Il =th—2—k1—1,
Iy =ty—1— 2ko— 2,
iyl =1ty — k1 —1,

nqr—1 = In4r—2 — kr—1—1,
Intr =Tpgr—1— kr,
Intr+1 = Intr —krp1 — 1,

0= s = Ipys—1 — ks — 1+ (Sr,s-

Summing up these equalities, we getz% ki = —(r +s), which, in view of (6.11),
impliesk’ = 2(r + ). i=0

Suppose now that conditions (1)—(4) hold. We have to showithat 0. As before,
we may assume that < 4n — 1, hence, due to (3), (6.10) holds. Since (6.8) and
(6.9) hold, we again have only the possibiliti@s, (8) and(y). In caseqg) and(y),
ug, = 2t2, = 0, hence only cas@x) remains. This case corresponds to (3)iv when we
haveiro = k, = 0,1 =10 —ky-1 =0,... ,thy—p—1 = th—r—2 — k.41 = 0. Hence
vi=#0<j<2n—1t; #0} <n+randuz, =ug—2v >k —2(n+r) > 0 (we
have used here (6.4) and (3)iv)O

Theorem 6.2. For an affine superalgebra g from Table 6.4 the labels {k;};_; of the
highest weight of a subprincipal integrable irreducible highest weight module are char-
acterized by the following conditions:

(L) ki € Z4 ifi e NI, k" € Z,
(2) if ¥ < b” (see Table 6.4), there are supplementary conditions described by (4) of
Theorem 6.1, and alsointhe C(n)™ case: kg = k1 = 0.
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Proof. The only simple root ogAg which is not simple fofg is «”. Hence the proof of
Theorem 6.1 proves Theorem 6.2 as welh

Remark 6.2. It follows from Theorem 6.1 that the levél of a principal integrablég-
module L(A) is a non-negative number which is an integer in all cases, except for
B(1,n)”, when itis a half-integer; moreover jif= 0, then all labels ofA are 0, hence
L(A) is 1-dimensional; also, # > 0, thenk > 1.

Remark 6.3. It is easy to see that, when restricted to the derived subalggbgaof g
the moduleL (A) remains irreducible. Tw@-modules are calleessentially equivalent

if they are equivalent &%, g]-modules. For example, the module&A ) andL (A + aé)
are essentially equivalent for anye C. Theorem 6.1 gives the following complete list
of principal integrable modules of level 1 up to essential equivalence:

@) Am,n) ", m > LA A < s <m), (a+ DAps1+aAyui2(a € Zy), and
(a+DAo+alAmintila € Zy),

(2) B(m, 1)~ andD(m, 1) —3Agand—3 Ao — A1,

(3) B(m,n)” andD(m,n) ", n > 2: —%Ao and—%’Ao + A1,

@) D2 1La)",a e N —(a+ D7 TAoand—L2Ag — A1 + 44,

(5) F(9™: =5 A0,

(6) G(3)™: =2 Ao.

One can show (cf. Remark 2.5) that in all cases, all weights are conjugate to each other by
odd reflections. Thus, for each of the affine superalgebtas n) ™ (m > 1), B(m,n) ",
D(m,n)", D(2,1,a) (a € Q.), F(4™ andG(3)™ all, up to essential equivalence,
principal integrable modules of level 1, can be obtained from one of them by making
different choices of the set of positive roots. Note also that in all cases the “basic” module
L(uAo), whereu is such thaitAg has level 1, is a principal integrable module.

Remark 6.4. Using the symmetry ofA(m, n)” which exchanges the subalgebrag
andA,, one gets the classification of the subprincipal integrable modw(&$ for this
affine subalgebra:

m+1
ki€Ziforie\l, k':=-Y kel
i=0
and there exists € Z, s < k”, such that
ko+ki+-- +ks+s=0andks 1 =" =ksym_grs1=0.
m+n+1
One hask = — (k" + Z ki).
i=m-+2

Remark 6.5. All principal integrable highest weights of level 2 (up to essential equiva-
lence) forB(1,2)” are—(1+ a)Ag + aA1, wherea € Z,. Thus, in sharp contrast to

the level 1 case, there are infinitely many essentially inequivalent principal integrable
highest weight modules of level 2.
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Remark 6.6. It follows from Theorem 6.2 and Remark 6.3 that the levedf a sub-
principal integrablg-module L(A) is a non-positive number, provided that> —1
for D(2, 1; a); moreover, dim_L(A) = 1 if kK = 0. Thus, in view of Theorem 6.1, the
only L(A) overg # A(m,0)™, A(0,n)” or C(n)~, which are integrable ovey are
1-dimensional.

Remark 6.7. Using the same arguments, one can show thatthe non-symmetrizable “twist-
ed” affine superalgebra of typ@ (which is the universal central extension of the Lie
superalgebrd ~(Q(n)st®" + Q(m)3t*"*1), with the Cartan matrix

nez

010.--- -1

has no non-trivial integrable (with respect to its even part) highest weight modules.

Remark 6.8. Consider the /2Z-gradation ofF (4) of type(0, 0, 0, 1, 0) and that ofG (3)

of type (0, 0, 0, 1), cf. Table 6.1 and [K3]. The'®piece in the first (resp. second) case
is isomorphic toD(2, 1; 1/2) & A1 (resp. toD(2, 1; 1/3)), and its representation on
the B! piece is the modul€10 X C2 (resp.C14), whereC0 (resp.C1?) is the lowest-
dimensional non-trivial module ove?d(2, 1; 1/2) (resp.D(2, 1; 1/3)). This reduces to
some extent the construction of the principal integrable level 1 modulero¥gi and
G(3)” to that of D(2, 1; a)”. The free field construction of the principal integrable
level 1 modules oveosp(m,n)” (covering theB — C — D cases) will be given in
Sect. 7.

7. Free Field Realization of Level 1 Integrable Modulesover osp(M|N)™

Let V be the superspace and(gt) be the bilinear form ofv considered in Remark 6.1.
Recall an equivalent definition ofp(M|N) via the Clifford superalgebra:

CLv =T(V)/{lx,y] — x|y)1lx,y € V).

The Lie superalgebrasp(M|N) is identified with theC-span of all quadratic elements
of C¢V of the form:

cafi=af + (=)POPB By wherea, B € V.
Such an element is identified with an operator fraqp(M|N) by the formula:
CaByv=[aB:;v], veV. (7.2)

Denote by®y the vertex algebra generated by pairwise local fiel¢s), wherey €
Vp U Vi andy () is even (resp. odd) if € V; (resp.Vy), subject to the following OPE:

(rly")
z—w

Y@y (w) ~

This is called the vertex algebra of free superfermions in [K4].
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Remark 7.1. The vertex algebra considered in Sect. 3 is isomorphic ®@,, where
dim Vg = 2n, dim V3 = 2m and the bilinear form is given by:

@"*lo)) = —(@'le™) =8 (,j=1,...,n),

W™y = W'Y =8 (i, j =1,...,m), all other inner products= 0.
Furthermore, in the case when difp = 2m + 1 the vertex algebréy is isomorphic
to F ® ®, Where<I> is a vertex algebra generated by one odd field) with the OPE
Y)Y (w) ~ Z— This corresponds to adding an odd vectomwith (y|¢) =
orthogonal to all the above basis vectors.

As in Sect. 3, we construct the Virasoro fieldz) = Y, L;jz~/~2 with respect

to which all y (z) are primary of conformal weight/2. Choose a basig’, ¢'* (i =
,...,n) of V5, and a basis/’, y* (i = 1,...,m) andy if M is odd, with inner

products described by Remark 7.1. THe@) is glven by formula (3.1) it is even. In

the caseM is odd, one should add to the expression (3.1) the E}rrﬁw(z)wz) .As

in Sect. 3, we shall writg (z) = Z wz F Y2y e VU v
ke3+Z
We shall need also the following well-known fact (see e.g. [K4], formula (5.1.5)).
Lemma7.l Let ¥ *,¢¥~ e Vi besuch that (v*|y*) = 0, (¥ H|y~) = 1. Let
a(x) =Y ozt =y ()Y (2) :. Then one has:
nez
ra@a(z) =0y @Y T (@) i+ YT @Y T (R) -
Consequently, thefields v+ (z) are primary of conformal weight 1/2 with respect to the
Mirasoro field £(z) = ZE =2 — i s a(z)a(z) :. In particular, we have
nez
[lo, ¥ 5] = —ny . (7.2)
Note that
yjl0) =0forj >0, yeV.

Hence®y is obtained by applying polynomials in the ;, y € V, j > 0, to the
vacuum vectof0). We have the decomposition

Py = o) @ Dy, (7.3)
wheredf‘; (resp.®),) is obtained by applying even (resp. odd) degree polynomials in
they_; to |0).

Theorem 7.1. a) Consider the affine superalgebra osp(M|N)™ and let: o : (z) =
Y (@@ :ap )z for : ap :e osp(M|N). Then the linear map o given by
keZ
(a, B eV):

af ()i a(Bi):, K—1 d— Lo

defines a principal integrable representation of osp(M|N)™ of level 1 in the space
@y for which @}, and @}, are submodules.
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b) Theosp(M|N)™-modules <I>‘+, and @}, areirreducible highest weight modulesiso-
morphic to L(—3Aq) and L(—3Ao — 3a0) respectively, provided that (M, N) #
(1,0) or (2,0).

Proof. The proof thab is a representation is, as usual, a straightforward use of Wick’s
formula. The proof of integrability of is the same as in the proof of Theorem 3.1. This
establishes (a).

Note that, as beford,o commutes wittvsp(M|N), and the spectrum dfg on d>(§
(resp.®y) is Z (resp.% + 7Z.), the lowest eigenvalue eigenspace besfig= C|0)
(resp.S™ = {y_%|0)|y € V1), which is the trivial 1-dimensional (resp. the standard)

representation ofsp(M|N). Provided thatbff are irreducibleosp(M|N)™-modules,
(b) follows.

In order to prove irreducibility of6¥, pick elementsy*, ¢~ € VijasinLemma7.1
and define the field(z) as in that lemma. Leir € V; be an element orthogonal to
both ¢+ andy —, and consider the fielg(z) =: ¢ T (2) v (z) := Zﬂnz—"_l, so that

nez

By = Z : wjﬁp,,_j .. Sincelp commutes with/ (z), we have by (7.2):
1
Jj€3+Z

[Co, Bl =Y Jiv) vy (7.4)

1
JES+L

LetU C <I>§,E be an invariant with respect p(M|N)~ subspace. It follows from
Lemma 7.1 and (7.4) that € U implies that((ad ¢0)*8,)v € U, s € Z4. Hence
U is invariant with respect to all operatoas;rl/fk, wherey ™, ¢ e V are such that
WHyH) =0= (@ |y)andj. k €  +Z.

Hence, provided tha¥ > 3, U contains a non-zero purely bosonic element, i.e., an
element obtained by applying a polynomial in the(y € Vj) to |0). Thus we reduced
the problem to the purely bosonic case, i.e., the case wer 0. In this case the
irreducibility was proved in [L] using the character formula for modular invariant rep-
resentations of’,, from [KW1] and formula (12.13) from [K3] (the reference to (13.13)
in [L] is a misprint).

The remaining cases, whedf = 1 or 2 andN = 2x is even> 2 can be reduced
again to the purely bosonic case by a direct calculation. We give below details in the
M = 1 case, the/ = 2 case being similar.

The simple root vectors afsp(1, N)™ = B(0,n)" are as follows:

1 1
eo = (Y@M @1 = ez ‘P(—s)il/zﬁ"giﬁ 2

ei = (9" @@ =Y ez ‘Pg_l/z@g:rl/)z* (i=1....,n=0D,
en=@" QY@ =X en0") 101172

Then the simple root vectors 8p(N)™ = C,, areeo, e1, ... e,_1 ande, = [e,, ¢,] =
Z (n) (n)

seZ P—s—1/2%s+1/2: . o

Any vectorv of ®y can be uniquely written in the form:

v= Z Wi1~-~1//ikuil,...,ik,

i1<--<ig
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whereu;,, . ;, are purely bosonic elements (i.e., obtained by applying polynomials in
theg’s to |0)). Now, if v is a singular vector, i.ee;v = O foralli =0, ..., n, then, in
particular,e;,v = 0, and since ak1, ... , e,_1, ¢, commute with the)’s, we get:

Do Vi Vieii, i) =0, > Wiy Wi €y, i) =0.

i1<--<ig 1< <ik

It follows that allu;, .. ;, are purely bosonic singular with respecﬁpvectors, hence,
due to irreducibility ofdﬁi for M = 0 mentioned above, we obtain thata| ; are

linear combinations of elemeni3) and<p 1/2|0) Hence

1
Yo i iV VRO Y bW Ui e ,l0).

i1 <<y i1 <<

Using thate,,v = 0, we obtain:

k
Yoy Y a Vi Wi Vil 10)

r=1i1<--<iy

k
_ -~ 1
+3N Y iy Ty el 0 10) = 0,
r=li1<...<iy
which implies thaty;, .. ;, (resp.b;,,.. ;) = 0if k > 0. Thus, the only singular vectors
in d)J‘; (resp.®;,) are scalar multiples dD) (resp.go 1/2|0))

To conclude that the (0, n)A—moduIescb‘jE are irreducible, note thaby carries a
unique non-degenerate Hermitian for#(., .) such that the square length |8 is 1
and the adjoint operators gf’ ) and Yk arego(’ * and ¥_g, respectively. The absence
of non-trivial singular vectors i}, (resp.®;,) implies that theB(0, n) ~-submodules
CIF;/ (resp.®}’) generated byo) (resp. <p(l{/2|0)) is irreducible, hence the restriction

of H to it is non-degenerate. Hence the orthogonal compleme@¢fdresp.¢;/) is
aco flementary submodule which has no non-zero singular vectors, hence it is zero,
and®;, are irreducible. o

Remark 7.2. The irreducibility in the purely fermionic case was established in [KP1] by
making use of the Weyl-Kac character formula. An argument, using Virasoro operators,
was given in [F]. The method of using Virasoro operators to prove irreducibility appar-
ently works only in the presence of fermions (cf. Remark 3.3). It is shown in [L] that
the irreducibility claims of [FF], based on the use of Virasoro operators, are false for the

constructions oﬂgill andA;?-modules.

Using Theorem 7.1, it is straightforward to write down the characters and superchar-
acters for the integrable leveldkp(M|N)™-modules. We have:

ch®} £ ch®),
1+ qk—l/Z)p(M)H;_nzl(l + ee,-qk—l/Z)(l + e—é,-qk—l/Z)
k=1 1-[;[=1(1 F eEj+m qk—l/z)(l T e—€j+mqk—l/2)

. (7.9)



672 V. G. Kac, M. Wakimoto

wherep(M) = 0 (resp. 1) ifM is even (resp. odd). A similar formula for supercharacters
is obtained by reversing signs in the numerator of the right-hand side of (7.5).
Letting alle; andAg equal O in (7.5), we obtain:

1+ k—% M
tr¢+qL° + trqquO = H,ﬁlu. (7.6)
Y Y LFq* 2V
Noticing that
1 2
2 1
M1 — g3 = 292 andmee a4 g3y = — 297 (7.9)
¢(q) 0(q2)p(q?)

and using the asymptotics (4.11)gfr), we obtain the following asymptotics as|, 0:

1 i (1
Lo 7 (5 M+N)
trqﬁq on Telx 2 . (7.8)

Remark 7.3. The right-hand side of (7.6) multiplied yY =*)/48is a modular function
equal to a product of powers of functioné3t)/5(z) andn(r)?/5(37)n(27), and the
same holds if we replage by s¢r. Itis well known (and easy to see) that the above two
modular functions along with the modular functigt®z) /() are transitively permuted
(with some constant factors) under the actionS@f(2, Z). Thus, the normalized by
g N =M)/48 characters and supercharacters of integrable levebgr@/|N) ~-modules
are modular functions, but thei-span is notSL (2, Z)-invariant.

8. On Classification of Modules over the Associated Vertex Algebras
Define numbera andi" (the dual Coxeter number) by
level (kuAg) = k, level (o) = h". (8.1)

Their values for all affine superalgebras are given in Table 8.1.

Table 8.1.

A(m,n)" B(m,n)" C(n)™ D(m,n)” D2, 1) F®~ GO3~

)

u 1 —1/2 —1/2 -1/2 —@+1pt —2/3 -3/4
h m-—n 2m—n) —1 n—1 2m—n—1) 0 3 2

The following proposition is an immediate corollary of Theorems 6.1 and 6.2.

Proposition 8.1. @) If g = A(m,n)” withm > 1, B(m,n)™ withm > 2, D(m,n)",
F(®™ or G(3)™, then theg-module L (kuAo) isprincipal integrableiff k € Z, .
The B(1, n)"-module L (kuAg) isprincipal integrableiff k € Z, U {2n — % +7Z4}.
The D(2, 1; a)”-module L (kuAg) isprincipal integrableiff k € Z. N aZ..

b) fg = Bm,n)", C(n)", D(m,n)", D(2,1;a)", F(4~ or G(3)", then the g-
module L (koAo) issubprincipal integrableiff kg € Z.
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Recall that thg-moduleV; := L(kuAg) has a canonical structure of a vertex algebra
for anyk € C (see e.g. [K4]). It is well known that any irreduciblg-module is one
of the (irreduciblefj-modulesL (A) of levelk, and it is an important problem of vertex
algebra theory to find out which of thegg€A) are actuallyV,-modules. A necessary
condition is given by

Proposition 8.2. Supposethat k issuchthat L (kuAg) isaprincipal (resp. subprincipal)
integrable g-module. If a’g-module L(A) of level k is a V,-module, then it must be a
principal (resp. subprincipal) integrable.

Proof. Denote byg® the subalgebr’g‘% (resp.’j’é) of g (see Sect. 6). This is an affine Lie

algebra. Denote by the vertex subalgebrla((’go)vkuA0 of V. Since, by definition,

VO is an integrablg®-module, it follows that it isg®-irreducible [K3], henceV? is a
simple affine vertex algebra of non-negative integral level. But one knows [Z] that all
irreducible modules over such a vertex algebra are integ@bteodules. Using the
complete reducibility of§°-modules [K3], we deduce that ar§-module, viewed as

a VO-module, is a direct sum of irreducible integragfmodules, which proves the
proposition. O

Letg, = C[t] ®c g + Cd and consider a 1-dimensional moddlg (k € C) over
P+ + CK on whichg, acts trivially andK = k. ThenL(kuAo) is a quotient of the
inducedg-moduleV, = U(3) ®u g, +ck) Ck by aleftideally of U (g) applied to 1 1.
Suppose thak is such thatL (kuAg) is a principal integrabl@-module. As we have
seen in the proof of Proposition 8.2, viewed aganodule,L (kuAo) is a direct sum of
irreducible integrable highest weight modules. All these modules have the samé level
(resp.£y, £— Wheng%) has two simple components) given in terms@fs follows:

¢=1t, =kifg#B(Ln), €=2kifg= B n),
(_=kifg=D@2n), (_=akifg=D2 1 a).

In particular,l; contains the element
e_g (D) (resp. elements_g; L)+ ande_g (1. (8.2)

If elements (8.2) generate the left iddq] it follows that ag-moduleL(A) of level k

is a Vi-module iff the fielde g (z)“+* (resp. fieldse " (z) ande" ™ (2)) annihilate

" .
L(A). The latter property implies that, viewed a’g”@module,L(A) is a direct sum of
irreducible integrable modules and therefdr@\) is a principal integrablg-module.

We thus established a sufficient condition faj-enoduleL (A) to be aV;-module:

Proposition 8.3. Let k be such that L(kuAg) is a principal integrable g-module and
suppose that the left ideal I is generated by (8.2). Let L(A) be a principal integrable
g-module of level k. Then L(A) isa Vi-module.

Proposition 8.4. Let k be such that L(kuAg) isa principal integrableg-module.

a) Suppose that the highest weight kuAg is the only singular weight of the g-module
Vi whichis principal integrable. Then elements (8.2) generate the left ideal 1.
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b) The assumption of (a) holds if
k+h" #0, (8.3)
and for any principal integrable weight A of level k one has:
A —kuho € O\Z3, (8.4)
where O = ¥, 7 Za; istheroot lattice of §.

Proof. LetI; (C Iy) denote the leftideal i/ (g) generated by elements (8.2). Then the
g-moduleV, = \7;(/(1,2(1® 1)) is principal integrable, hence each of its singular weights
A is integrable. Hence, if the condition of (a) holds, famoduleV/ is irreducible, and
thereforel, = I.

Furthermore, obviouslyA — kuAg € Q hence (8.4) implies that = kuAg + jé
for somej e Z. Using the Casimir operator [K3], we obtain:

(kuto+ plkuro+ p) = (kuho+ p — jélkuAo+ p — jb),

which is equivalent tg (k + £¥) = 0. But then (8.3) implies that = 0, proving (b).
O

Theorem 8.1. Letg beoneof the affine superalgebras A(m, n) ™ withm > 1, B(m, n)”™
withm > 1, D(m,n)”~, D(2,1; a) " witha=1 € N, F(4)~or G(3)".Thenall integrable
‘g-modules L(A) of level 1 are V;-modules (the complete list of these A’s is given by
Remark 6.3).

Proof. Note that inthed(m, n)™ caseV is a subalgebra of the vertex subalgebgaf

F (constructed in Sect. 3), while the highest component ofgieoduleF; restricted

to V1 is L(A)). Since theA ) exhaust all integrable highest weights of level 1, by
Proposition 8.1, they give a complete list of irreduciblemodules.

In the B(m,n)” and D(m,n)” cases we note thaf; is isomorphic to the vertex
algebraclf‘; (see Theorem 7.1)p;, is its irreducible module, and these two modules
produce all integrable highest weights of level 1.

The cased(4)~ andG(3)” are obvious sincé&; is the only irreducible integrable
module of level 1 (see Remark 6.3).

It remains to show that (—Z—ﬁAo — A1+ 1;—“A3) isaVi-module intheD (2, 1; @)™
case. But- 2 Ag— A1+ 12 A3 = — 1 Ao— (30 + % as), hence the difference of
this weight and: Ao does not lie in the root lattice; we also have= 1 and levek” = 0.
Hence we may apply Propositions 8.4 and 8.8.

Remark 8.1. The lowest energyD(2, 1; a)-submodule of the modula‘;(—g—ﬁAo—

A1+ 1;—”A3) is the moduleL(—A1 + (@~ 1 — 1)A3). It has dimension &1 + 2.

Fora = 1 this is the defining module aP(2, 1); for a = 1 (resp.3) this is the 10-
(resp. 14-) dimensional module mentioned in Remark 6.8. A%3 1; a)-module, the
even (resp. odd) part of this module isisomorphic to the irredusgl® + s £(2) +s£(2)-
module

CRCY R C2(resp.C2RC +1 R C).



Integrable Highest Weight Modules over Affine Superalgebras 675

Remark 8.2. Let V be a vertex algebra with a conformal vector such thgis diagoniz-

able with finite-dimensional eigenspaces and rational eigenvalues. It is a general belief
that if V has finitely many irreducible modules, then the charactgrgto of each of

these moduled/ becomes a modular function when normalized, i.e., multiplied by a
suitable power ofy. The example of the vertex algebvafor B(m, n)”™ andD(m, n)™
confirms this conjecture and leads to believe that the same is tru®d; @)~ (with
aleN), F(4)~ andG®3)~

The vertex algebr¥ is called rational if_Lg has integral eigenvalues, the number of ir-
reducibleV-modules is finite and any-module is completely reducible. It follows from
the above discussion that the vertex algetyrdor B(m,n)”™, D(m,n)”, D(2, 1; a),

F(4)~ andG(3)” is a rational vertex algebra, and that, moreover, the corresponding
Zhu algebra [Z] is finite-dimensional semisimple (and even 1-dimensional iR @™
andG(3)” cases).

It was proved by Zhu [Z] under certain technical assumptions thaCtspan of
normalized characters of irreducible modules over a rational vertex algefigdsz,)-
invariant, and it was believed by many that the technical assumptions may be removed.
However, the above mentioned rational vertex algérshows that this is not the case.

Remark 8.3. There are only two cases where there exists only a finite number of essen-
tially inequivalent subprincipal integrabfemodules of a given non-zero leviel

§=F@® k=-3andg=G©O) ", k=—3.

In both cases the only subprincipal integra@tenodule isL(Ag). In both cases the
associated vertex algebra is rational with a unique irreducible module and the Zhu
algebra is 1-dimensional.

9. Some Remarks and Open Problems

9.1. The calculation of characters of integrable highest weight modules of arbitrary
level k over affine superalgebras seems to be a very difficult problem. One may expect
that the case of the “critical” levétl = —h" should be rather different from other levels

(as for the affine Lie algebras). However, the construction of level 1 integrable modules
overosp(m|n)” givenin Sect. 7 is the same for all valuesindr though 1 is the critical

level iff m —n = 1.

Formula (5.12) leads us to believe in the following conjecture:

Consider a principal integrable highest weight modiié\) over an affine superal-
gebrag and suppose that one can choose a set of simple Fbstsch that it contains a
maximal A + p-isotropic subses, of roots (i.e., all roots frons, are pairwise orthog-
onal and orthogonal ta. + p [KW]). Let w* be the Weyl group of the integrable part
90 of gg. We conjecture that the following character formula holds:

A+
RAL(A) = Y e(wyw—on0 ’

Y T 9.1
HﬁesA(l"'eiﬁ) ( )

weW#

Note that the assumptions of this conjecture exclude the critical level, and include the
level 1 integrable modules over exceptional affine superalgebras.
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9.2. In the papers [KW1] and [KW2] we proved character formulas for a class of
modulesL(A) over affine Lie algebras, called admissible modules, which includes
integrable modules. These character formulas imply that the normalized specialized
characters of admissible modules are modular functions (and we conjecture that this
property characterizes admissible modules). Of course, these character formulas break
down in the Lie superalgebra case. However, in certain exceptional situations, when
the character admits a simple product expansion in the Lie algebra case (see [KW2],
Theorem 3.2), it seems that a similar product formula holds in the Lie superalgebra case
as well.

Concretely, let: be a positive integer and let

k=h"wt-1 (9.2)

(recall that in general the levelof an admissible module is hY (=1 —1)). Lety be

an automorphlsm of the root Iatnc@ such that all rooty; = y((u — 1)8;0K +«;’) are
positive(i € 7). The weights of the forny.k Ao, where, as usual.x = y(A + p) —

are calledadmissible. We conjecture that the following analog of formula (3.3) from
[KW2] holds:

(p(qu)>e ) 1— ginere ) 1+ ginere

@) e aeAiWX 3)

chL(y.(kAg)) = e¥ kA0 (
1—gre”

neN neN

where is the rank ofg, Ag, Aj are the sets of even and odd rootgpéndg = e~°.

This conjecture agrees with formula (7.5) in the cgse osp(2|2)” = s£(2|11)™
In this casek = —1/2 andh” = 1, so that (9.2) holds faz = 2. All the admissible
weights of Ievel—% are as follows:

_%Al(l = 07 15 2)5 _%AO - %0{07

where the Dynkin diagram is chosen such thainda, are odd roots (andg is even).
Character formula (7.5) gives:

1 1
Ch(_; ) 1, Vg2 q) | W(-uTvg2iq) ©9.4)
ch(——Ao— ao) -2 w(—uvq%;q) \If(uvq%;q)

Whereu = ¢~ 3%1, y = ¢~ 292 and
W(zq) = M2 (L+2¢" (L + 2745, (9.5)
whereas formula (9.3) gives:

o Y W2q: 4V (v2q; 42)p(q?)?
W (—uvg; g2)p(q)?

ch(—3Ag) = ™2 , (9.6a)

Y (u?; g2V (% ¢2eg?)?

ch(——Ao —Llog)=e —280-300
2 Y (—uvg; g2)¢p(q)?

(9.6b)
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However, the seemingly different expressions in the right-hand sides of (9.4) and (9.6)
actually coincide due to one of the addition theta function formulas (cf. [M], formula (6.6)
and notation on p. 17):

Boo(t, z1)600(7, 22) = B00(27, 21 + 22)000(27, 21 — 22)

9.7
+ 610(27, z1 + 22)010(27, 21 — 22), ®.7)

if we letu = 271y = ¢27iz2,

Using [KW], formula (6.1), it is immediate to show that the span of supercharacters
of the four admissible¢(2|1) ~-modules of level-1/2 is SL(2, Z)-invariant. Thus, it
is natural to conjecture that this modular invariance property of admissible characters
holds for any affine superalgeliaand anyk given by (9.2).

Two other very interesting examples are provided by Remarkgg=3:F (4)~ with
u=2,y=1landg=G@R) " withu =3,y = 1.

9.3. The first case not covered in Sect. 5, that whera- n — 1, is very interesting. It
connects the level 1 modules oygi(n — 1|n)” (or, equivalently the “critical” level-1

modules ovegl(n|n—1)") to the denominator identity fa® (n|n) ™, which is unknown.
Analyzing this connection, we arrived at the following(2|2) ™ denominator identity:

e’R = Z e(w)w

weW#

ep
L+ e )%, (1 +gie2) L+ g7 le2)’

(9.8)

where, as beforg, = ¢% andW* = (r1, 1,,,). Here we use the Dynkin diagram with the
grey nodesyg andws. If all four nodes are grey we get the same |dent|ty vaitteplaced
by 0; in yet another form (9.8) can be written as follows (WhWt’”é (For+azs tag+an)):

— T2 (1= g™ (L4 ¢ L) (14 g2 e 73) (9.9)
¢(q)
= Y e (14 ¢"e* )L+ ¢q"e*) A+ g" e )L+ ¢q" e )~
weW#
The latter identity is equivalent to the following identityin= e %!, x = e7%2,v =
e~ * andg (whereW is defined by (9.5)):
WY(uvg; qz)\IJ(—ux; QY (—vx; q)
= Vv g ¢HV(x: @)W uvx; ¢) — xV(uvx’q; ¢V (u; )V (v; q).

In the notation of [M] this identity can be rewritten in terms of theta functions as follows
(ifwe letu = 2Tty = e2Miz2 e27”23):

Boo(27, z1 + z2)011(7, 21 + 23)011(7, 22 + 23) (9.10)

+600(27, z1 — 22)010(7, 23)011(7, 21 + 22 + 23)
= 600(27 + z1 + 22 + 223)010(7, 21)010(T, 22).

Identity (9.10) can be derived from (9.7) as follows. Replacingy z; + %r (resp.z; +
$(1+ 1)) in (9.7), we obtain:

010(7, z1)010(7, 22) = Boo(27, 21 + 22)010(27, 21 — 22)

9.11a
+ 010(27, z1 + 22)600(27, 21 — 22), ( )
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011(7, z1)011(7, 22) = Boo(27, 21 + 22)010(27, 21 — 22)

9.11b
— 610(27, 21 + 22)600(27, 21 — 22). ( )

Substituting (9.11b) (resp. (9.11a)) in the first (resp. second) summand of the left-
hand side of (9.10), we obtain the producbed(2z, z1 + z2 + 2z3) and the right-hand
side of (9.11a), and, substituting its left-hand side, we obtain the left-hand side of (9.10).
We also have a conjectural formula for af(3|3)” denominator identity, but it is
too cumbersome to be reproduced here. We have no conjectures as hdinthe ™
denominator identity should look far > 3.
Using the connection of the/(2|2)™ denominator identity to level 1 modules over
s£(2]1)” we deduce from (9.8k € Z,):

chL(kAo — (k + 1)A1)
¢(q) et
_ 3 b . (912
oR 2 WD A+ g e dsgen O

we(ro) JEZy

Here the Dynkin diagram is chosen in such a way thais even andy1, a2 are odd
simple roots.

9.4. Letk be such thav, = L(ukAg) is a (principal or subprincipal) integrabfe
module of levek. Is it always true that any integraliienodule of levek can be extended
to a module over the vertex algebrg? Of course, this question is closely related to the
description of generators of the left iddal In the principal integrable cadg contains
elements (8.2), and the answer to the above question in this case would be po#itive if
were generated by these elements.

Is it true that the normalized (by a power gf charactersrq’© (whereLg is given
by the Sugawara construction [K4]) of irreducibfg-modules are modular functions,
provided that there are finitely many of them ang #¥ # 07? Is it true that fok of the
form (9.2), allV,-modules are admissible modules?

9.5. A few examples that we have worked out in the paper indicate that the theory of
integrable highest weight modules over affine Lie superalgebras is dramatically different
from that in the Lie algebra case. The only exception is the cage-of3(0, n)”". The
integrability conditions are (see Table 6.1 for its Dynkin diagram).

ki € Zy foralli, k, e2Z,,

hence the level = 2ko+. ..+ 2k,—1+k, IS a non-negative even integer and the number

of integrable highest weigh& (0, n)~-modules is finite for each. Moreover, each of

these modules extends to an irreduciflemodule sincd is generated by_g (1)kt1

for eachk, and these are all irreducible modules over the vertex algébta € 27, ).
Furthermore, the character formula for all integralBléd, n) ™ -modulesL(A) is

known (see [K2]), and it is given by the same expression as that for the twisted affine

aIgebraA(zi) (replacing the black node by a white one). In order to derive the transfor-
mation formula ofB(0, n) ™ supercharacters from that Aﬁ) characters, we need to go

from theAgl) coordinates, which we cald-coordinates, to th& (0, n)”™ coordinates,
which we will call B-coordinates. This calculation is explained below.
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The B-coordinatest, zg, ug) of h € Hare defined by
h = 2ri(—t3 Ao+ zp + upd), wherezg € .
Let p = 33125(n — j)a}. Thentg(A;)) = A; fori = 1,....n — 1 and

(t_p(3A0), @) = 8o,, hence we may take, = t_g(3A0) for the 0" fundamen-
tal weight ofA(Zi). Hence theA-coordinates are expressed Wacoordinates by

h=1t_g(h) =27i (=T Ap + 24 + uad). (9.13)
Recall thatSL (2, Z) acts on functions in, z, u by the formula [K3, Chapter 13]:

at+b Z "y c(z]z)
ct+d ct+d’ 2ct+d))’

F(t,z, u)l(a b) =j(@™"F (

cd
Furthermore, defining a new functidgif-# by
FoP(h) = F(1g(h) + 27ia — mi(a|B)8),
we have [KP2]:
Fot,ﬁ ; = (F ; da—bﬂ,aﬂ—ca' 9.14
()= ey o

We shall use the following connection between supercharactebgpf:)~ and char-
acters ong), which follows from (9.13) and definitions:

schL(A)(h) = chL(A)(h) PP = (=1)"*2chL(A)(h)PP. (9.15)

Recall that the normalizeﬂgl) charactery, and the normalize® (0, n)”™ superchar-
actery are defined by:

i =q" chL(A), xa = ¢ schL(A),
where inB-coordinates:

IA+p2  [pl? (A+20/A) k sdim B(0, n)
= = -, cp = ——""7",
2k + 1Y) 20V 20+ hv) 24 * k+ hv

ma

andm , is defined by a similar formula iA-coordinates. (Hencga (¢, 0, 0) = strpa)
glo—c/24 as it should be.)

LetS = (2 ) € SL(2, Z). We shall denote b4 (resp.Sz) the action ofS in A-
(resp.B-coordinates). We have by (9.15):

xalsy = 3PP = Gals)?®, (9.16)

where the last equality holds due to (9.14).
But one has (see [KP2], [K3, Theorem 13.8a]):

Anls, = Z SAMXM
MeP¥ modCs
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where(Sa ) is an explicitly known matrix. Hence, continuing the calculation (9.16),
we get, using (9.15):

Xalss = Samiy” = LY Saming”.
MeP¥ mod Cs M

Using again (9.15), we obtain the final transformation formula:

Xalsy = (—1)"/? Z SaMXM- (9.17)
MeP¥ modCs

It is clear from the above calculation that tl§é.(2, Z)-invariance of normalized
B(0, n)” characterg s does not hold, but the span gf,, )Zfi’o, )22"3}1\6% mod Cs 1S
SL(2, Z)-invariant.

9.6. We use this opportunity to make some corrections to [KW].
Due to computer error the following lines disappeared from the paper:

(1) Bottom of page 418:
and 4n + 1)?, respectively (given by Theorem 4.2; see also Examples 5.3 and
(2) Bottom of page 421:
(this is independent of the choice &), and letW# denote the subgroup 6¥
generated by reflectiong with respect to allx € Ag. Denote by(.|.) the even

Also, the diagrams(0, n), D(m, n) andD(2, 1; «) on p. 429 should be as follows:

B(O,n) O-0-...mO0-0O=e
/Ol
D(m,n),mZZO—O—...—@Z—Oz—...—oz\
O1
/Ol
D2, 1; ) ’®
N
O1

Furthermore, the following corrections should be made:

— page 417, line 18 O(—q)

— page 432, line 12 M, := {a € Agla L Sp},

— page 434, lines 5J7 a2 should be replaced hy;,

— page 435, line §: (P, 1/ ® 9),

— page 438, linet: : (x1]a1) =0,

— page 449, line B: (x2]az) = 2,

— page 450, line 4: R = R, I, ..., whereR,, is the denominator of,,, not the
one defined by (7.1),
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— page 453: Theorem 8.1(a) as stated holds for the subprincipal integrable modules
(cf. Theorem 6.2 of the present paper).
It is appropriate to mention here that the specialization (7.2) of Conjecture 7.2 has
been proved recently independently by S. Milne (by combinatorial methods) and
by D. Zagier (using cusp forms). D. Zagier also proved Conjecture 7.2 in the first
unknown casen = 2.

In a slightly different form than in [KW], Conjecture 7.2 reads:

2 s
1- an 1— qulea
e = . .
1,21 (1 — q2"1> HaeA—l ey Z chL Zk,yl, An
n,...,ng>0 i=1
k1>...>kg>0
> ki(2ni+ 1) m—2i+2)n;
x qi=t .
Here A is the set of roots oft,,, s = [“41] and{y1, ..., ¥} is the set of positive

pairwise orthogonal roots; being the highest root.
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