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Abstract: We establish the multifractal analysis of hyperbolic flows and of suspension
flows over subshifts of finite type. A non-trivial consequence of our results is that for
every Holder continuous function non-cohomologous to a constant, the set of points
without Birkhoff average has full topological entropy.

1. Introduction

Much attention has been given by physicists and applied mathematicians to the study
of chaotic behavior. Several techniques were put forward as a means to deal with the
enormous amount of data provided by the associated time series. In particular, there has
been a growing interest in the study of multifractal spectra, such as the dimension spec-
trum for pointwise dimensions. These spectra conveniently encode information about
the “multifractal” structure of complicated invariant sets. The rigorous mathematical
theory of multifractal analysis has been developed quite significantly during the last
decade. We refer the reader to the book [7] for a description of results, and for a list of
references.

We briefly describe here the main elements of multifractal analysisl’'Lef — X
be a continuous map of a compact metric spacegankl — R a continuous function.
For eachx € R, let

I .
Ka:{xeX:IIm—E g(T’x):ot}.
We also consider the set
I : .
K = {x eX: lim — E g(T"'x) does not exs}.
n—oon e
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Clearly

X=KU| K. (1)
aeR

This union is formed by pairwise disjoifit-invariant sets, and is calledraultifractal
decomposition of X.
For each € R such thatk, # @, set

D(a) = dimy K,

where dimy Z denotes the Hausdorff dimensionf GivenZ C X anda > 0, recall
thatdimy Z = inf{a : m(Z, a) = 0}, where

m(Z,a) = (!@o"&f %(ohamU) ,

and the infimum is taken over all finite or countable covérsf Z by sets of diameter
at mosts. The functionD is calleddimension spectrum for the Birkhoff averages of g,
and is one of the main elements of multifractal analysis.

By Birkhoff's ergodic theorem, ifx is a T-invariant finite ergodic measure o,
anda = fxgd,u/,u(X), thenu(K,) = w(X). That is, there exists a sét, in the
multifractal decomposition with full.-measure. Of course this does not mean that the
other sets in the multifractal decomposition are empty. In fact, for several classes of
hyperbolic dynamical systems it has been proved that:

1. if K, # @, thenkK, is a proper dense set;

2. the sefa € R : K, # @} is an interval (in particular it contains an uncountable
number of points);

3. the functionD is real analytic and strictly convex;

4. the irregular seK is everywhere dense and has full Hausdorff dimension, that is,
dimH K = dImH X.

This implies that the multifractal decomposition in (1) is composed of an uncountable
number off -invariant sets, all being everywhere dense, and all having positive Hausdorff
dimension. Thus, multifractal analysis reveals a very rich “multifractal” structure for
hyperbolic dynamical systems. In particular, this analysis has been effectegvidan
Hélder continuous function, arifl is either a subshift of finite type, an expanding map,
or an axiom A diffeomorphism. We refer to [7] for details and a list of references.

One of the main objectives of our paper is to establish a version of the multifractal
analysis for a class of hyperbolic flows and suspension flows over subshifts of finite type.
In the multifractal analysis of a flo = {¢;}, on X, the setk, andK are replaced
respectively by

t

1
Kaz{xeX: lim —/ g((pfx)dtza}
t—o00 t 0

and
1 t
K= {x € X : lim —/ g(prx) dt does not exi‘Jlt.
t—=oo t Jo

Recall that a sefA C X is ®-invariant ifg; A = A for everyr € R. Each of the set&,
andK are®-invariant.



Multifractal Analysis of Hyperbolic Flows 341

For several classes of hyperbolic flows we establish Properties 1, 2, 3, and 4 above.
For example, we can give a complete description wibeis the geodesic flow on a
compact surface with negative curvature.

Recall that a Borel finite measugeon X is ®- invariant if u(¢;A) = n(A) for
every measurable sdt ¢ X and everyr € R. Assume thaj is ergodic, i.e., that any
d-invariant measurable set has either zero or fuiineasure. By Birkhoff's ergodic
theorem, ifg: X — R is au- integrable measurable function then

lim 1/Z (prx) dT ! f d (2
— Tx —_— —_—
oot Jo £ w(x) S B

for u-almost every € X. Therefore, itis a rare event from the point of view of measure
theory that the limit in (2) does not exist for a given painte X. Property 1 above
shows that, surprisingly, for suspension flows over subshifts of finite type, and a generic
Holder continuous functiog, the set of points where the limit in (2) does not exist is
everywhere dense and Ha#l topological entropy. In particular, from the point of view

of topology itis arather common event that the limitin (2) does not exist for a given point
x € X. Our results are counterparts of the corresponding results for diffeomorphisms
on hyperbolic sets developed by Barreira and Schmeling in [3].

The main theme of our proofs is to use Markov systems and the associated symbolic
dynamics developed by Bowen [4] and Ratner [10] to reduce the setup for flows to the
setup for maps, and then apply the results that are already available in the case of maps.
This is done through a study of suspension flows over subshifts of finite type associated
to Markov systems, and a careful analysis of the relation between cohomology for flows
and cohomology for the maps associated to Markov systems.

After the completion of this draft, we learned that Pesin and Sadovskaya [8] recently
obtained results related to ours. They use a different approach, involving the construction
of Moran covers associated to Markov systems.

2. Hyperbolic Flows

2.1. Preliminaries. Let ® = {¢,}, be aC? flow of the smooth compact manifold. A
d-invariant setA C M is calledhyperbolic for @ if there exists a continuous splitting
TAM = E* @ E* @ E°, and constants > 0 andx € (0, 1) such that for each € A
the following properties hold:

4 (@:x)|1=0 generateO(x);

dy ES(x) = ES(¢;x) andd, ¢ E* (x) = E"(¢,x) for eachr € R;
ldx vl < cA'|v]| for everyv € E*(x) andt > O;

ldxp_;v| < cAf|v| for everyv € E*(x) andt > 0.

PwnNPE

For example, geodesic flows on compact Riemannian manifolds with negative sectional
curvature have the whole manifold as a hyperbolic set. Furthermore, time changes and
smallC? perturbations of flows with a hyperbolic set also possess a hyperbolic set.

A closed®-invariant setA C M is called abasic set of @ if A is hyperbolic, locally
maximal, topologically transitive, and the periodic orbitsiofre dense im\.
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2.2. Irregular sets. For each continuous function: A — R we define tharregular
set for the Birkhoff averages of g (with respect tob = {¢;},) by

B(g):{xeA: lim }/
t—oot Jy

One can easily verify thab(g) is ®-invariant. By Birkhoff's ergodic theorem, the set
B(g) has zero measure with respect to @wnvariant finite measure.

We say thag: A — R is ®-cohomologous to a functionz: A — R on A if there
exists a bounded measurable functiognA — R such that

t

g(prx)dt does not exi%l.

im q(@ix) —q(x)

g(x) —h(x) = zlao . (3

foreveryx € A. If g: A — R is ®- cohomologous to a constant R on A, then

1 s+t t
/ q(cofx)dr—/o q(prx)dt
N

1.
= —lim -

s—0s§

t

1 t
—/O 8(pex)dr —c

(4)

1. 1

= —lim -

t s—>0s

< 2supgq|
t

s+t s
/ q(wfx)dr—/o q(p.x)dt
t

for everyx € A andr > 0, and henceB(g) = @.

We now present the main result of this section. It shows that for hyperbolic flows,
if g: A — R is not®-cohomologous to a constant, théne set B(g) is non-empty, is
everywhere dense, and has full topological entropy. See Sect. 4.1 for the definition of
topological entropy: (®|Z) on an arbitrary seX (not necessarily compact nor invariant).

Theorem 1. Let A be a compact basic set of a topologically mixing C1*¢ flow &, for
somee > 0,and let g: A — R be a Hblder continuous function. Then the following
properties are equivalent:

1. g isnot ®-cohomologousto a constant on A;
2. B(g) isanon-empty proper dense set with

h(®|B(g)) = h(P[A). ®)

In [3], Barreira and Schmeling studied irregular sets with respect to diffeomorphisms
on hyperbolic sets. Theorem 1 is a counterpart of their results in the case of flows, and
follows from the more general statements formulated below.

We now show that “most” Holder continuous functions are @etohomologous to
a constant. LeC%(A) be the space of Holder continuous functions/omvith Holder
exponenty. For a functionp € C*(A) we define its norm by

lp(x) —oI

||<p||a=SUIO[|¢(X)|IXGA}+SUP{ -x,yGAandx#Y},
d(x, y)*

whered denotes the distance ad.

Theorem 2. Let A be a compact hyperbolic set of a topologically transitive C* flow
®. Then, for each o € (0, 1), the family of functions in C*(A) which are not ®-
cohomologous to a constant is open and densein C*(A).
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Theorems 1 and 2 immediately imply the following statement, whose formulation
has the advantage of not using the notion of cohomology.

Theorem 3. Let A be a compact basic set of a topologically mixing C*¢ flow @, for
some ¢ > 0. Given ¢ > 0, for an open and dense family of functions g € C%(A), the
set B(g) isa non-empty proper dense set with 1 (®|B(g)) = h(P|A).

2.3. Multifractal analysis. Letg: A — R be a continuous function. For eache R,
consider the set

1
Kaz{xeA: lim —/ g((pfx)drzoz}.
t—oo 0

One can easily verify thdt,, is ®-invariant. By (4), ifg is ®-cohomologous to a constant
ceRonA,thenkK, = A.
Givena € R, set

E(a) = h(D|Ky).

The functioné is called theentropy spectrum for the Birkhoff averages of g.
For every real numbey, letv, be the equilibrium measure gg, and write

T(q) = Po(qg),

where Py (gg) is the topological pressure gg with respect tab. It is well known that
T is a real analytic function. We denote hy(®|A) the entropy ofb|A with respect to
the ®-invariant measure. See Sect. 4.1 for the definition.

We now present a multifractal analysis of the spectfuon basic sets.

Theorem 4. Let A be a compact basic set of a topologically mixing C*¢ flow @, for
somee > 0,andlet g: A — R beaHolder continuous function with Py (g) = 0. Then
the following properties hold:

1. thedomain of € isa closed interval in [0, co), which coincides with the range of the
functiona = —T7’, and if ¢ € R then

&(a(g)) =T(q) + qa(q) = hy, (P|A);

2. if g isnot ®-cohomologousto a constant on A, then € and T arereal analytic strictly
convex functions.

See Sect. 4.2 for a more detailed description of the specfrum

2.4. Markov systems. Let A be a compact basic set of tlig flow ® = {¢,},, and let
Vi(x) ={y € B(x,¢) : d(¢ry, 9;x) — 0 ast - +oo}

and
Vix)={y € B(x,¢e) : d(gry, p:x) — 0ast - —oo}

be the local stable and unstable manifolds of gizat the pointx € A. For each
sufficiently smalle > 0, there exist$ > 0 such that ifx, y € A are at a distance
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d(x,y) < & then there is a unique time = t(x,y) € [—¢,¢] for which the set
[x, ¥] & Vi(gx) N VY (y) consists of a single point, ard, y] € A.

Let D ¢ M be an open disk of dimension dibi — 1 which is transversal to the
flow @, and letx € D. There exists a diffeomorphism froM x (—¢, &) onto an open
neighborhood’ (x) of x. The projection mapp: U(x) — D defined byrp(¢;y) = y
is differentiable. A closed s&® C A N D is called arectangleif R = int R (where the
interior is computed with respect to the topologyoh D), andrp[x, y] € R whenever
x,y € R.

Consider a collection of rectangldy, ... , Ry C A (each contained in some disk
transversal to the flow) witR; "R; = 9R; NOR; fori # j such that there exists> 0
with:

k .

LA =Ueoe o (Ui—1 Ri);

2. foreach # j either(¢p;R) N R; =@ forallt € [0, s]or (¢, Rj) N R; = & for all
t €0, ¢l

We define thdransfer function z: A — [0, co) by
k
7(x) :min{t >0:¢x € URi}'
i=1

LetT: A — Uf:l R; be thetransfer map given by Tx = ¢, (v x. We note that the

restriction of7" to (_Ji_; R; is invertible.
We say that the rectangldy, . .., R, form aMarkov systemfor @ on A if

T(Nt(VE(x) N R;)) Cint(VS(Tx) N R;)
and
T7Hint(V(Tx) N R;)) C int(V(x) N R;)

whenever € intTR; Nint R;. Any basic sei\ of aClflow possesses Markov systems
of arbitrary small diameter (see [4,10]). Furthermore, the mépHOslder continuous
on each domain of continuity, and

0 < inf T < supt < . (6)
xeA xeA
Given a Markov systemRj, ..., Ry for ® on the basic set we define & x k matrix

A with entriesa;; = 1ifint TR; Nint R; # &, andg;; = 0 otherwise. Consider the set
X c {1,..., k)2 defined by

X ={(---i-1ioi1---) : ai,,,, = 1foreveryn € Z},

and the shiftmap : X — X givenbyo(---ig---) = (--- jo---), wherej, = i,1 for
everyn € Z. The mapo|X is called a (two-sided3ubshift of finite type with transfer
matrix A. We fix 8 > 1 and equipX with the distancely defined by

dx((-+-iigin---), G-+ jotjoji-= N =Y B "lin = jul. 7

n=—0o
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We define a&odingmap 7 : X — Uf.‘zl R; for the basic set by

T(--ig---) = ﬂT_jintRi,--
JEZL

One can easily check thato 0 = T o . As observed in [4], it is always possible to
choose the constagtin such a way that the functiono 7 : X — [0, co) is Lipschitz.
Markov systems will be used in the proof of Theorem 1.

2.5. Cohomology for flows and maps. We now discuss the cohomology assumption
in Theorem 1. We show how to use a Markov system to reduce this assumption to a
cohomology assumption using the associated transfer map instead of the original flow.
This relation is crucial to our approach.

Given a continuous functiogi: A — R and a Markov system for the flo& = {¢;},
on the basic sef with transfer functiont: A — [0, c0), we define a new function
I;: A — Rby

T(x)
Ig(x) = A g(psx)ds.

In particular, ifc € R, thenl, = ct.
We say that a functiow: A — R is T'- cohomologousto a functionH : A — R on
A if there exists a bounded measurable functjorA — R such that

G—H=qoT —gonA.

Theorem 5. Let A be a basic set of the C! flow @, g: A — Rand h: A — R
continuous functions, and 7 the transfer function of some Markov system for ® on A.
Then the following properties are equivalent:

1. g is ®-cohomologousto iz on A and (3) holds for every x € A;
2. I, is T-cohomologousto 7, on A with

Io(x) — In(x) = q(Tx) — g(x) for every x € A.

Theorem 5 allows us to translate the results obtained in [3] in the setting of subshifts
of finite type and hyperbolic sets to the setting of hyperbolic flows.

Theorem 5 implies that a functiog is ®- cohomologous to a constante R if
and only if I, is T- cohomologous tet. In particular, the cohomology assumption in
Theorem 1 can be replaced by one in terms of the transferim@ssociated to some
Markov system). Therefore, it would be of interest to also describe the convergence
and the non-convergence of the Birkhoff averages of the foin terms ofT. This is
effected in the following statement.

Proposition 6. Let A be a basic set of the C1 flow ® = {¢;},, g: A — R acontinuous
function, and t the transfer function of some Markov system for ® on A. Then the
following properties hold:

1. ifg: A — RisHdlder continuous, then I, is Holder continuous on each domain of
continuity of t;
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2. ifx € A, then

1 "I (T

liminf —/ glosx)ds = I|m inf M

t—o0 0

m—oo Y " o 7(Tix)

and

. 1! I,(T
lim sup— g(goéx) ds = lim supu
t—oo [ m—00 OT(TlX)

B(g):{xeA lim Lizolg(T'x ) does not exist | (8)

m—00 Z -0 T(Tlx)

The identity (8) tells us that any irregular set for a hyperbolic flow can be described in
terms of the maff’. However, contrary to the maps considered in {3is not invertible
nor hyperbolic.

3. Suspension Flows

3.1. Preliminaries. LetT: X — X be a homeomorphism of the compact metric space
X, andz: X — (0, co) a Lipschitz function. Consider the space

Y={(x,5)e XxR:0<s <1t(x)}, 9)

with the points(x, t(x)) and(Tx, 0) identified for eaclx € X. One can introduce in a
natural way a topology ok which makes” a compact topological space. This topology
is induced by a distance introduced by Bowen and Walters in [5] (see Appendix A for
details). The metric structure shall first be used in Sect. 3.2.

Thesuspension flow over T with height function t is the flow¥ = {y;}; onY, where
Yy Y — Y is defined by

Yr(x,s) = (x,5 +1). (10)
We extendr to a functiont: ¥ — R by
t(y) =minft > 0: ¢,y € X x {0},
and extend’ toamaprl': ¥ — X x {0} by

T(y) =Y.

Since there is no danger of confusion we continue to use the symlaold T for the
extensions. Given a continuous functignY — R we define a functiod,: ¥ — R

by

(y)
1,() = /O (W) ds. (11)
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Theorem 7. If & = {y,}; isasuspensionflowonY over 7: X — X,andg: ¥ — R
and i: Y — R are continuous functions, then the following properties are equivalent:

1. g is W-cohomologousto i on Y with

moq(wty)t— q(y) for every y € Y

gy) —h(y) = ;IL

2.1, is T-cohomologous to 7; on Y with

I (y) — In(y) =q(Ty) — q(y) forevery y € Y;

3. I,|X x {0} is T-cohomologous to 7| X x {0} on X x {0} with

I, (y) = In(y) = q(Ty) — q(y) for every y € X x {0}.

By Theorem 7 (see Properties 2 and 3), each cohomology class in the base space
X induces a cohomology class in the whole spacand all cohomology classes ih
appear in this way.

We also obtain a version of Proposition 6 for suspension flows.

Proposition 8. Let ¥ = {v,}, be a suspension flowon Y over T: X — X with height
functionr,and g: Y — R acontinuous function. If x € X and s € [0, T(x)], then

I s Y I(T x)

||m'orlf ;/0 g (x,s))dt = ||HETL|QJ S () (12)
and

. 1 , Yoo lg(Thx)

lim sup= c(x,8)dt =limsup =28 __—~ 13

msupy |, g (x,8)dt Im sup ST T (Tix) (13)

Note that for a fixed: € X the limits in (12) and (13) are independentsof

One can also consider the case wlienX — X is continuous but not necessarily a
homeomorphism. More precisely, [Etbe a local homeomorphism in an open neighbor-
hood of each point of the compact metric spaAce : X — (0, co) a Lipschitz function,
andY asin (9). Note that even X is a topological manifold andis a constant function,
thenY may not be a topological manifold. Tisaspension semi-flow over T with height
function 7 is the semi-floolr = {y,}, onY, wherey,: Y — Y is defined by (10). The
statements in Theorem 7 and Proposition 8 also hold for suspension semi-flows.

3.2. Suspension flows over subshifts of finite type. Let nowW¥ = {;}, be a suspension
flowonY overT: X — X. The space’ is equipped with the Bowen—Walters distance
(see Appendix A for the definition). Let: Y — R be a continuous function. For each
a € R, set

E(a) = h(V|Kq),

where

.1t
K, = {xeY: lim —/ g(lﬁ,x)drzoz}.
t—oot Jo
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The topological entropy is computed with respect to (the topology induced by) the
Bowen—Walters distance on. The function€ is called theentropy spectrum for the
Birkhoff averages of g. For every real numbey, let v, be the equilibrium measure of
qg, and write

T(q) = Py(qg).

The following is a version of Theorem 4 for suspension flows over subshifts of finite
type.

Theorem 9. Let W be a suspension flow on Y over a topologically mixing two-sided
subshift of finite type, and ¢g: ¥ — R a Hdélder continuous function with Py (g) = 0.
Then the following properties hold:

1. thedomain of € isa closed interval in [0, oo), which coincides with the range of the
functiona = —T7’, and if ¢ € R then

E(a(g)) =T (q) + qa(q) = hy, (¥);

2. if g isnot W-cohomologousto a constant on Y, then € and T arereal analytic strictly
convex functions.

Given a continuous functiog: ¥ — R we consider the irregular set

t
B(g) = {y eY: }/ g, y)dt does not exi%{.
0

lim
t—oo t

Set

"ol (T
C=1xeX: lim wdoesnotexi :
m— o0 Zi:OT(Tlx)

For a suspension flow and a continuous functiopon, it follows from Proposition 8
that

B(g) ={(x,s) €Y :x e Cands € [0, T(x)]}.

We now formulate a version of Theorem 1 for suspension flows over subshifts of
finite type.

Theorem 10. Let ¥ be a suspension flow on Y over a topologically mixing two-sided
subshift of finite type, and g: ¥ — R a Holder continuous function. Then the following
properties are equivalent:

1. g isnot W-cohomologousto a constant on Y;
2. B(g) isanon-empty proper dense set with

h(¥|B(g)) = h(¥). (14)
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Abramov’s entropy formula shows that

h(W) = sup hu(T)  _ hv(T)’
w [ytdn  fytdy

where the supremum is taken overBlinvariant probability measures. Hevg,(T) is
the entropy off" with respect tqu, andv is the equilibrium measure efh(V)z.

One can also consider one-sided subshifts of finite fpeX — X. It is easy to
verify that in this casd’ is a local homeomorphism in an open neighborhood of each
point. The statements in Theorem 10 hold for suspension semi-flows over one-sided
subshifts of finite type. See also Sect. 5.1 below.

Given a basic set of a hyperbolic flow, each Markov system has naturally associated
a suspension flow over a two-sided subshift of finite type. In fact these are the primary
examples of suspension flows. We now describe this constructian.idfa basic set
of the C® flow ® = {¢,};, then given a Markov system there is an associated transfer
functiont: A — R (which is Holder continuous on each domain of continuity), and an
associated two-sided subshift of finite type X — X with codingmapr: X — A (see
Sect. 2.4). Therefore, to each Markov system one can naturally associate the suspension
flow W = {y}; onY overo with Lipschitz height functiorr o 7 (see Sect. 2.4). We
extendr to a finite-to-one surjection: Y — A by 7(x, s) = (¢, o w)(x) for every
(x,s) € Y.Then

T oY, =q;om. (15)

Observe that the functiogio 7 : Y — R is Holder continuous whenever A — R
is Holder continuous. Using (15) one can show that

B(g) = n(B(gom)).
This can be used to establish the identity in (5) from the identity in (14).

4. Multifractal Analysisand Irregular Sets

4.1. A new Carathéodory dimension for flows. We introduce here a new Carathéodory
dimension characteristic for flows. It is a generalization of the topological entropy, and
is a flow version of a Carathéodory dimension characteristic introduced in [3] in the case
of maps.

Letw = {y}, be a continuous flow of the compact metric spécel). Givenx € Y,
t > 0, ande > 0, we write

B(x,t,e) ={y €Y :d(y, ¥:x) < e whenever 0< t < t}.

Letu: Y — R be a strictly positive continuous function. We write

t
U(x,t,e) = Sup{/ u(Yry)dr 1y € B(x, t, 8)}
0

if B(x,t,¢) # @,andU (x,t, ) = —oco otherwise.
For each sef c Y and eaclw € R, we define

M(Z,a,u,e):TIm inf Z exp(—aU(x, 1, €)),

i
—o0 I’
(x,n)el
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where the infimum is taken over all finite or countable déts- {(x;, ;)}; such that
(xi, 1) € Y x [T, oo) for eachi, and J; B(x;, t;, ¢) D Z. We define the number

dim, . Z =inf{a: M(Z,«, u, ¢) = 0}.

The limit

. def ,- .
dim, Z £ lim dim, . Z
e—0

exists, and is called the-dimension of Z (with respect tob).

If u is the constant function equal to 1, then difhis calledtopological entropy of
W on Z, and is denoted bk (V¥ |Z). If Z is compact andl-invariant, then we recover
the well-known notion of topological entropy

... logNz(t, L log Nz(t,
h(¥|Z) = lim liminf M = lim lim supm,
e—>0 t—00 t e—>0 1500 t
whereNy(t, ¢) is the least number of sef¥(x, 7, ¢) needed to cover.
For every Borel probability measureon Y, let

dim, . v = inf{dim, . Z: v(Z) = 1}.
The limit

dim, v £ lim dim, . v
e—0
exists, and is called the-dimension of v. If u = 1, then dim, u is called theentropy

of W with respect to v, and is denoted by, (¥). We also define théower andupper
u-pointwise dimensions of v at the pointx € Y by

C—lvu(x) = lim liminf _w
’ e—>0 1—00 U(x,t,¢)
and

— . . logv(B(x,1t, ¢
() = i sup- SR
- t—00 o,

4.2. SQuspension flows over subshifts of finite type. Let & = {y,}, be a suspension flow
onY over a homeomorphisfi: X — X of the compact metric space, andu aT-
invariant Borel probability measure . It is well known thatu induces aV-invariant
probability measure in Y such that

T(x)
fgdv:// g(x,s)dsdu(x)// tdu (16)
Y x Jo X

for every continuous functiop: ¥ — R, and that any-invariant measure in Y is
of this form for somer’-invariant Borel probability measugein X. We remark that the
identity in (16) is equivalent to
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/Ygdvzfxlgd,u//xtd,u, (17)

where the functior, is defined by (11).
We now consider the spadeequipped with the Bowen—Walters distance (see Ap-
pendix A). For every real numbet, set

Ky={yeY: C_lv,u(y) = 3v,u(y) = a}.

WheneveK,, # @ andy € Ky, the common value ofd,, ,(y) andEW(y) is denoted
byd, . (y), and is called:-pointwise dimension of v at y. We set

Dy (a) = dim, K,

The functionD,, is called thex-dimension spectrum for u-pointwise dimensions (with
respect to the measurg.
We now consider the special case wieis a subshift of finite type.

Proposition 11. Let ¥ = {y,}, be a suspension flow on Y over a topologically mixing
two-sided subshift of finite type, v is an equilibrium measure for ¥ with Hélder contin-
uous potential, and u: ¥ — R isa Hdlder continuous positive function. If y € Y and
g > 0, then

logv(B(y. 1, €))

You ) t—00 fé u(Pry)dr

and

pi - logv(B(y, t, &))
dv,u(y) =lim sup———————.
t—oo fou(¥ry)dr

Notice that the limits in the proposition are independent.of
Letg: Y — R be a continuous function. By (17) and Abramov’s entropy formula,
we obtain

hU(\II)+/gdv= h(T)+ [y Igd/*’ (18)
Y Jxtdn

whenevey is aT -invariant probability measure X, andv is theW-invariant probability
measure induced hy in Y. Sincer > 0, we conclude from (18) thaty (g) = O if and
only if Pr(Iy) = 0, wherePr(I) is the topological pressure éf with respect tar.
Therefore, wherPy (g) = 0 the measure is an equilibrium measure gf(with respect
to W) if and only if 4 is an equilibrium measure df | X (with respect tdl").

For every real numbey, we define the functiog, : Y — R by

&g = —Tu(qu+qg,

where the numbeT, (¢) is chosen so thaPy (g,) = 0. The above discussion shows
that7,(q) is equivalently specified by the equati® (I,,) = 0, wherePr (I, 0 is the
topological pressure df, with respect tdl'. We denote by)q andm,,, respectlvely, the
equilibrium measures (gfq and— dim, X - u with respect tol.

The following is a complete multifractal analysis of the spectfyfor suspension
flows over subshifts of finite type.
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Theorem 12. Let ¥ be a suspension flow on Y over a topologically mixing two-sided
subshift of finite type, u: ¥ — R a Hdlder continuous positive function, and v an
equilibrium measure for ¥ with Holder continuous potential g: ¥ — R such that
Py (g) = 0. Then the following properties hold:

1. for v-almost every y € Y,

By (W)

dv,u()’) = mv
Y

2. T, isreal analytic, and satisfies T)(¢) < Oand T (¢q) > O for every ¢ € R, with
T,(0) =dim, Y and 7, (1) = O;

3. thedomain of D, isa closed interval in [0, co), which coincides with the range of
thefunction o, = —T7,, andif ¢ € R, then

Dylau(q)) = Tu(g) + qou(q);

4. for every g € R, v;(Kq,(q) = 1, and

dvq,u(x) = TM(Q) + CIOlu(CI)

for v -almost all x € Ky, (4); Moreover,

qu,u(x) < Tu(q) +qa,(q)

for every x € K, (), and Dy (o, (q)) = dim, v, for every g € R;
5. ifv #m,, then D, and T, arereal analytic strictly convex functions.

Theorem 12 is a flow version of Theorem 6.6 in [3], which in turn follows from work
of Pesin and Weiss [9], and Schmeling [11].

Settingu = 1 in Theorem 12 we obtain a complete multifractal analysis of the
spectrum

E() =h(W[{y €Y :hy(y) =a}),
where

1
) = fim ~PERLD i 2 [ gyyan o)

t t—o0

The function€ is calledentropy spectrumfor local entropies (with respect to the mea-
surev), and coincides with the entropy spectrum for the Birkhoff averages f the
case of axiom A diffeomorphisms this spectrum was studied in [1].

We note that the statements in Proposition 11 and Theorem 12 also hold for suspension
semi-flows over one-sided subshifts of finite type.
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4.3. Irregular sets. In this section we establish a version of the results in Sect. 3 for
u-dimension. Consider again a continuous fléw= {,}, on Y. Given continuous
functionsgsy, ..., gx: Y — Randu: Y — R, with u positive, we define tharegular
set F (g1, ..., gk u) by

t
i\Ws d .
:er: lim Mdoesnotemstfoy‘:l,...,k . (20)

=00 [Cu(ysy) ds

One can show that
Flg1,...,gu) ={(x,s) :x € C(g1, ..., g;u)ands € [0, T(x)]}, (22)

whereC(g1, ..., g; u) is the set

m I, (Tix
xeX: lim % does notexistfoj = 1,...,k¢ . (22)
m— 00 Zi:O I,(T'x)

The proof is a modification of the proof of Proposition 6.

Theorem 13. Let ¥ be a suspension flow on Y over a topologically mixing two-sided
subshift of finite type, and g1, ..., gk, u: ¥ — R Holder continuous functions, with u
positive. Then the following properties are equivalent:

1. thefunction g; is not W-cohomologousto a multipleof w on Y for each j =1, ...,
k;
2. dim, F(g1,...,g;u) =dim, Y.

Settingu = 1, we have

k
T ....exx D = m B(gj)-
j=1

Hence, under the hypotheses of Theorem 13, if the fungtjda notW-cohomologous
to a constant ofy foreachj = 1,...,k, then

k
h(W] () Bg)) = h(W).

j=1

One can also consider suspension semi-flows over one-sided subshifts of finite type,
and obtain a corresponding version of Theorem 13. An application of this is given in the
following section.
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5. Suspensions over Hyperbolic Dynamical Systems

5.1. Suspension semi-flows over expanding maps. Let7: M — M be aC! map of a
smooth compact manifoltf, andA C M aT-invariant set such thét is expanding on
A. This means that there exist constants 0 andg > 1 such that|d, T"v|| > cB8"||v||
forall x € A,v € TyM, andn € N. We say thatA is arepeller of T. It is well
known that repellers admit Markov partitions of arbitrarily small diameter. Each Markov
partition has associated a one-sided subshift of finitedéyp®& — X, and a coding map
m: X — A forthe repeller, which is Holder continuous, onto, finite-to-one, and satisfies
Tom=moo.

Consider a Markov partition foA, and the associated coding map X — A. Let
W be the associated suspension semi-flow aver the one-sided subshift of finite type
o: X — X, with Y equipped with the Bowen—Walters distance. We define a function
u: X - Rby

u(x) = loglldr Tl (23)

One says thal is conformal on A if d, T is a multiple of an isometry for eache A.
One can show that if' is conformal onA, then

dimy Z = 1+ dim, =1z

for everyW-invariant setZ C A. This follows from work of Schmeling [12].
Let v be av-invariant probability measure dn. For every real number, set

r—0 logr

whereB(y,r) C Y is the Bowen—Walters ball with radiuscentered ay € Y. The
function

D(e) =dimy K,

is called thedimension spectrum for pointwise dimensions (with respect to the mea-
surev). Let 4 be the measure iX associated t@ as in Sect. 4.2. By Proposition 17
in Appendix A, for eachy = (x, s) € Y there existg > 1 such that ifr is sufficiently
small, then

Bx(x,r/c) x (s —r/c,s +r/c) C B(y,r) C Bx(x,cr) x (s —cr,s + cr).

Therefore,

Ka={(x,s)eY;|imw=a_l}.

24
r—0 logr (24)

Since each set, is W-invariant, ifu is as in (23), then
D) =14+ D, (x —1).

Proceeding in a similar way to that in Sect. 4.2 one can now effect a multifractal
analysis of the spectru®. We use the same notation as in Sect. 4.2. The following
is an immediate consequence of Theorem 12 and the above discussion, together with
the appropriate versions of Propositions 17 and 19 in Appendix A for locally invertible
maps.
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Theorem 14. For a repeller A of a topologically mixing C* map which is conformal
on A, let W be the suspension semi-flow on Y over the one-sided subshift of finite type
associated to some Markov partition of A, and v an equilibrium measure for & with
Hélder continuous potential g: ¥ — R such that Py (g) = 0. Then the following
properties hold:

1. for v-almostevery y € Y,

logv(B(y,r)) hy(T) )
r—0 logr - [x(oglldT || om)dp’

2. ifT=T,+1,a=-T',andqg € R, then D(a(qg)) = T(g) + qa(q);
3. for every g € R, vy (Ky(g)) = 1, and

logvg (B(y, r))

fim, logr =T(g) +qalq)

for vg-almost all x € Ky (4); moreover,

im suplog Vg (B(y, 7))

T
nst logr <T(q) +qalq)

for every x € Kq(g), and D(a(g)) = dimy v, for every g € R;
4. ifv #m,,then D and T are real analytic strictly convex functions.

The following statement follows easily from a version of Theorem 13 for suspension
semi-flows over one-sided subshifts of finite type.

Theorem 15. Under the hypothesis of Theorem 14, if v # m,, then

dimH{er: lim 1290 1)

does not exist} =dimgyY.
-0 logr

5.2. Suspension flows over axiom A diffeomorphisms. Let A be a basic set of @* flow
®. Given a Markov system, we consider the associated two-sided subshift of finite type
o: X — X,and coding magr: X — A (see Sects. 2.4 and 3.2).

LetB;: X — RandpB,: X — R be Holder continuous positive functions. For each
cylinder set

Ci_poiyy ={C--Jo--+): jk =ix for —n <k < m},
write
m
Bs(Ci_yviny) = SUP{ l_[ Bs(o*x) i x € Cinmim}
k=0
and

Bu(Ci_,.i)) = sup{ [[Butc™x):x e c,-n...,-m} .

k=0
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Givena € R, consider the function

M(Z,e) = lim inf CZGF exp(—afs (C) — afu(C)),

where the infimum is taken over all covdrof Z by cylindersC; _, ...;, withm > ¢ and
n > £. We define the€g;, B,)-dimension of Z by

dimg, g, Z = inf{e : M(Z, a) = O}.

Let againA be a basic setof@! flow ® = {¢,};. We say that the flowb is conformal
on A if the maps

de@r|E*(x): E*(x) > E*(¢rx)  and dyg|E*(x): E*(x) = E*(¢x)

are multiples of isometries for eaghe A andr € R. We give two examples af;, B,)-
dimension:

1. LetA be a basic set of €1 flow ® such thatd is conformal onA. Let T be the
transfer map associated to some Markov systemidfan A, andz: Y — A be
the associated coding map. Consider the functigymsX — R andg,: X — R
defined by

Bs(x) = Iog”dﬂx(pr(nxﬂES(ij)” (25)
and
:Bu(x) = - IOg||dnx(pr(ﬂx)|Eu(nx)||~ (26)
Note that
n—1
[ ] B:(c*x) = l0glldzcpx, ) | ES ().
k=0
n—1
[ ] Buto™ %) = 10glldr vz, (e | E*“ (),
k=0
where
n—1
T, (Tx) = Z r(n(akx)).
k=0
Then
dimy Z = 1+ dimg, 4, 7712 (27)

for everyW-invariant setZ C A.
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2. LetA be a basic set of @1 axiom A diffeomorphismf such thaw, f|E*(x) and
d, f|E*(x) are multiples of isometries for eaghe A. Consider a Markov partition
for A, and the associated coding map X — A. Define functiong8;: X — R
andg,: X — R by

Bs(x) = log|ldzx fIE*(wx)|l and B, (x) = —loglldxx fIE" (mx)]l.
Then
dimy Z = dimg, 5, 712 (28)
for every setZ C A.

The identities in (27) and (28) follow from work of Schmeling [12]. In what follows
we shall only consider the first situation. A straightforward modification applies to the
second one.

We briefly presentanother description of tise, 8,,)- dimension. WheKX is equipped
with the distance in (7), the mapis in general only Holder continuous. We will introduce
a new distancéy in X (inducing the same topology dg) such that for a certain class
of flows (the flows which are conformal ak; see the definition below in this section)
the mapr : (X, dy) — = (X) is locally Lipschitz with Lipschitz inverse, and thus it
preserves the Hausdorff dimension. We define a new distanae X by

dx((--+ig- ), (- jo- D) = lio = jol + Be(Ci_,wuin,) + Bu(Ci_ i),
where
ng = maxn € N: iy = j, forall k < n}
and
n, =maxn € N: i, = ji forallk > —n}.
Since
diamgx C = B;(C) + Bu(C)

for every cylinderC, the (85, B,)-dimension coincides with the Hausdorff dimension
with respect taly. The distancely induces a new Bowen—Walters distanc&’inOne
can easily verify that this distance induces the same topologwasithe original Bowen—
Walters distance obtained frodty .

Let A be a basic set of @' flow ®, andv be ad-invariant probability measure on
A. Foreveryx € R, let

Kaz{yeA:Iimw=a}.
r—0 logr

With the help of a Markov system, one can show that theksesatisfies an identity
similar to that in (24). It follows from work of Barreira, Pesin, and Schmeling [2] that
U(UaeR Ky) =1.

Consider now thelimension spectrum for pointwise dimensions (with respect to the
measure) defined by

D(e) = dimg K.
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In a similar way to that in Sect. 5.1, @ is conformal onA, then
D) = 1+dimg, g, (X N7 1K, 1),

with 8; andg, as in (25) and (26).
Given a continuous functiop: A — R, lett;(¢) andz,(¢) be the unique numbers
such that

Pr(—ts(q)Bs +qg o) = Pr(—t.(q)pu +qg om) =0.

We write

T(q) =1+t(q) + t.(q).
One can also formulate a version of Theorem 14 for basic sets.

Theorem 16. Let A be a compact basic set of a topologically mixing C1*¢ flow &,
for some e > 0, such that ® is conformal on A, and v an equilibrium measure for ®
with Holder continuous potential g: A — R such that Pg(g) = 0. Then the following
properties hold:

1. for v-almost every y € A,

lim logv(B(y,r)) _ 1 @ hu(T)

r—0  logr 7 [yBsdu [y Budi’

2. ifa = —T"then D(a(q)) = T(q) + qa(q) for every q € R;
3. if u is not a measure of maximal dimension on X, then D and T are real analytic
strictly convex functions.

Theorem 16 was established by Pesin and Sadovskaya in [8].

6. Proofs

6.1. Proofs of the results in Section 3.

Proof of Theorem 7. Assume thag is ¥-cohomologous té onY. If x € Y then

q(sx) — q(Psx) d
: S

7(x)
L(x) — Iy (x) =/ lim
0

t—0

1 ( T(x)+t T(x)
—im ([ s - [ g as
t—>0t ' 0

1 T+ ()
= lim - / q(sx)ds —/ q(sx)ds
=01 \Jo 0

1t
—}@0;/0 q(Ysx)ds
=q(Yr0x) —qx)
=q(Tx) —qx).

Therefore /, is T-cohomologous td, onY.
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Assume now thal, is 7-cohomologous t@, onY. If x € Y thent (y;x) = t(x) —t
for every sufficiently smalt > 0 (depending on). Thus,T (,;x) = Tx, and

Io(Uex) — In(Yex) = q(Tx) — q(rx).
Since

lim Ig(l/ftx) - Ig(x)

t—0t t

t
— lim = / (W) ds = —g(x),
t—0 t 0

we obtain

g(x) — h(x) = ,i”(L (_ Ty (Yrx) : I (Yrx) N Lo (x) ; Ih(x)>

— lim (_CI(Tx) —q(Yrx) n q(Tx) — q(x)> 29)
t—0F t P

— lim W) Z )

N t—0t t :

We also have

t(x)+¢t if x ¢ X x {0}

T(Wr) = it if x € X x {0}

for every sufficiently smalk > 0 (depending orx). Whenx ¢ X x {0} we have
T (y—;x) = Tx and one can proceed in a similar fashion to the one above to show that

2() — h(x) = lim 1Y) =4 (30)
t—0~ 1
Whenx € X x {0} we haveT (y_;x) = x, and
Te(W_rx) — In(Y—1x) = q(x) — qg(Y—1x).
Since
o Lx) 10 B
i B = i [ s = o
we obtain
2(x) — h(x) = lim I (Yex) — In(Yrex) _ lim q(x) — (IWC). (31)
t—0— —t t—0— —t

By (29), (30), and (31), it € Y then

() — hx) = lim LY — 40
t—0 t

Thereforeg is W-cohomologous té onY.

It remains to prove that Property 7 implies Property 7. Assume that Property 7 holds
with the functiong : X x {0} — R. We can exteng to a functiong: ¥ — R by

t
q(Wry) = q(y) —fo [e(Wsy) — h(Psy)]ds
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for everyy = (x, 0) andt € [0, t(x)). For everyr € [0, t(x)) we haveT Y,y = Ty
and by (11) we obtain

q(Tyy) —qy) = q(Ty) — q(¥)

T(y)

_ / e (W) — h(Ws )] ds
t
=I;(Yry) — In(Yry).

This completes the proof of the theorenm

Proof of Proposition 8. The proof is a straightforward modification of the corresponding
arguments in the proof of Proposition 6 (see Sect. 6.2 belom).

Proof of Theorem 9. By (19), the desired statements follow immediately from Theo-
rem 12 by setting =1. O

Proof of Theorem 10. This follows immediately from Theorem 13 by settikg= 1,
gi=g,andu =1. O

6.2. Proofs of the resultsin Section 2.

Proof of Theorem 1. If g is ®-cohomologous to a constant, thBiig) =

Assume now thag is not®-cohomologous to a constant. Consider a Markov system,
and the associated suspension flw= {v,}, and coding mapr: ¥ — A satisfying
(15). The mapr can be used to transfer the results from the symbolic dynamics to the
dynamics on the manifold.

By (15), we obtaint (B(gom)) C B(g). A priori one cannot discard that there exists
a pointx € X such that

I|m |nf - (g om)(Yrx)dt < lim sup (g om)(Wx)dt (32)
11— o0
and
1 1/
liminf —/ gWr(mx))dr =limsup— [ g (wx))dr. (33)
t—>o0 t Jo t—>o0 I Jo

With slight changes to the proof of Theorem 7.4 in [3] (see also the proof of Theorem 21.1
in [7], and in particular that of Lemmas 2 and 3 inside Theorem 21.1) one can prove the
following.

Lemma 1. We have
1/ 1/
liminf — / (gom)(Wrx)dr =limsup— | (gom)(WYrx)dt =«
t—oo t Jo t—oo 1 Jo

if and only if

t

!
I|m |nf —/ g (tx))dt = I|m Sup g(tpr(nx)) dt = a.
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The lemma shows that (32) and (33) cannot hold simultaneously, and H&igoe;
7 (B(g o )). Therefore,
B(g) = n(B(gom)). (34)

We now proceed as in [3]. L&t C A be the “boundary” of the Markov system, i.e.,
the set of pointy € A such that,x is in the boundary of some element of the Markov
system for some € R. Note thatr is ®-invariant, and that : 7 =1(A \ R) — A\ R
is a homeomorphism. Furthermore, since there exist cylindersX such thatr (C) is
disjoint from R, we have

h¥ |t IR) < h(¥) and h(®|R) < h(D|A).
By (34), we conclude that
h(®|B(g)) = h(¥|B(g o 7)).
By Theorem 10, we obtain
h(PIA) = h(¥) = h(V|B(g o 7)) = h(P|B(g)).
This completes the proof of the theorenm

Proof of Theorem 2. Let

GE {g € C*(A) : g is not®- cohomologous to a constant

andg € G. By Livschitz’s theorem for flows (see, for example, Theorem 19.2.4 in [6]),
there exist two points; = ¢7,x; fori = 0, 1 such that

£0.

1 [T 1 (n
6=‘— f ¢(gex0)dT — — / ¢(gex) de
To Jo T1 Jo

Foranyf € C*(A) such that] f — gll« < 8/2 we have

)
=suflf () =gl :x € A} = [If = glla < 5.

1 T;
71_/0 (f — &)(grxi)dr

fori =0, 1, and hence,

1 7o 1 (h

= | flexo)dt # = |  fleexp)dr.

To Jo Ty Jo

This implies thatf is not ®-cohomologous to a constant. Henceis open.

LetI'g andI'1 be two distinct periodic orbits, and choose a funcfioa C%(A) such
thath|r, = ifori =0, 1. Letg ¢ G.Foranye > 0, thefunctiorg, = g+¢eh € C*(A)is
not®-cohomologous to a constant, because averageg andrl"; differ by e. Moreover,
llge — glla < €llhlle, and hence the functioncan be arbitrarily well approximated by
functions inG. ThereforeG is dense inC¥*(A). O

Proof of Theorem 4. Consider a Markov system, and the associated suspension flow
v = {y,}, and coding mapr: ¥ — A satisfying (15). By Lemma 1 (see the proof of
Theorem 1), we havé(«) = D, («) for everya, withu = 1, andD,, as in Sect. 4.2.
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Therefore, the desired statements follow immediately from Theorem 12 by settirnty
i

Proof of Theorem 5. The proof is a straightforward modification of the corresponding
arguments in the proof of Theorem 7 (see Sect. 6.1 above).

Proof of Proposition 6. Givenm € N, define a functior,,,: A — R by

m—1

T (x) = Z (T x). (35)

i=0

If x € A andm € N then

T () m=1 g0
/ glpsx)ds = E / glpsx)ds
0 i—0 7i (x)

m=-1 .r(Tix) .
= / 2o T'x) ds (36)
i=0 0

m—1 -
= Z I,(T"x).
i=0

Givent > 0 there exists a unique € N such that,, (x) <t < 1,,+1(x). One can write
t = 1 (x) + k for somex e (inf r, supr) and thus

}/tg((p o ds = Ofm(x)g(%x) ds +/c)r,n(x)+x 2(gyx) ds
0 ' T (x) + &

and

1 r! 1 T (X)
-/0 g(psx)ds — ./o g(psx)ds

t Tin (X)
1 1 o (X) K supg|
— X dS + _—
@+ k) /o gl +
K Kk Sudg|

S @ oo sl

- 2 supr supg]|
- T (X) .

By (6), if t — oo, thenm — oo andzt,, (x) — oo. Hence, by (36),

m—1

L )d ! I,(T'
t/O g(psx S_Tm(x); g( X)

— 0 ast — oo.

This immediately implies Statements 2 and 3.
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Assume now thag is Hoélder continuous. Ifc and y lie in the same domain of
continuity ofr, then

T(x) ()
/ glpsx)ds + / [g(psx) — g(@sy)]ds
(y) 0
<supgl-lt(x) — ()l

+supt - sup [g(@sx) — g(@sy)l
5€(0,7(»))

<ecd(x,y)*+c sup ;s 11*d (x, ¥)*,
s € (0,supr),ze M

[ (x) = I;(»)| =

for some positive constantsande. This shows thaf, is Holder continuous on each
domain of continuity off. O

6.3. Proofs of the results in Section 4.

Proof of Proposition 11. For eachn € N, let1,,: X — R be the function defined by
(35). Givenx € X, letm = m(x,t) € N be the unigue integer satisfying,_1(x) <

t < 1, (x). By Proposition 19 in Appendix A there exists a constant 1 such that if
y=(x,s) €Y,t > 0,ands > 0is sufficiently small, then

Bx(x,m e)x(s—E s—i-i)CB(y t,€)
X 9 9 C? C‘ 9 9 (37)
CBx(x,m—1,¢) x (s —ce,s +ce),
where
Bx(x,m,e) = {x € X : dx(T*x", T*x) < efork =0,...,m)}. (38)

By Proposition 18 in Appendix A the functiafy is Hélder continuous oX . Sincey is
an equilibrium measure df, it has the Gibbs property. Therefore, the limit

logv(B(y.17,€)) _ _logu(Bx (x, m, ¢))

Iitrgiorlf — Ut o) Iitnliorgf Uoto) (39)
is independent of. Let
8(e) = supl|u(yr) — u(y2)| : dy(y1, y2) < €}
and observe that
UGnte)  _ folutey) +3@1dT | - 5() (40)

B féu(l/fr)’)df B féu(l/fry)dt - rinfu’
By (39) and (40), we conclude that

d,,(y) = Iitrliorgf —w — liminf _|Ogv(B(y, t,¢€))

Uy, t,e) = [u(Yey)dr

A similar argument applies td, ,(y). O
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Proof of Theorem 12. We shall reduce our setup to the case of maps.
Lemma2. If y = (x,s) € Y, then
"o L (T
., = Iminf — =0T
’ m—00 Zi:O I,(T'x)
and
- : Yol (Tix)
d =limsup—=t——>——.
() m—>oop Z;n:o 1,(T'x)

Proof of the lemma. Let 7,,: Y — R be the function defined by (35). Given> 0, let
m € N be the unique integer such thgt(x) < ¢ < t,,+1(x), and writer = 7,,,(x) + «
with « € (inf 7, supt). Proceeding as in the proof of Proposition 6 we obtain

1 [t 1 m—1 ,'
‘;/O u(yry)dr — o) ; I,(T'y)| > 0 ast — oo. (41)
Let Bx(x, m, ¢) be as in (38). By (37),
_Iog\J(lj(y,t, €)) + |09u(§x((x),m,8)) L 0ast - oo, (42)
m (X

Note that7T/ (x, s) = T (x, 0) for everyi € N, and hence,

m—1 m—1
Do LTy =) LT,
i=0 i=0

Write
A — —10gv(B(y.1.e)) | logu(Bx(x,m, )
Jyu(Wey)dr Yo L(Tix)
Since O< inf u < supu < oo, by (41) and (42) we obtain

. (—Iogme(x,m,s)) +0(¢)> '

T () Jou@ey)dr
log u(Bx (x, m, €)) t
+ (D) (f(; ORSYE —l—o(t)) ,

and hence,

IAls( ! +h“(T))o(t).

inf u inf 7
This completes the proof of the lemman
GivenZ C X andg € R, set

m(C)—1
Ng(2Z) = Zli_)mooirgf > exp (—,3 sup[ Y L(T'x):xe C}) , (43)
Cell

i=0
with the infimum taken over all cover§ of Z by cylindersC;_,..;, such that
m(C )=m > {.

i
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Lemma3. If Z C X isT-invariant, then
dim{(x,s) €Y :x € Zands € [0, t(x)]} = inf{f : Ng(Z) = O}.
Proof of the lemma. We use the same notation as in the proof of Lemma 2. The inequality

m—1

f e de— 3 1)
0

i=0

< Kk supu

implies the desired statemento

By Lemmas 2 and 3 we have

Ky ={(x,s) €Y :x € Z,ands € [0, t(x)]},

where
m—1 j
. o I (T'x
Zy=1x€X: lim —’_f]l—gU=a ,
m— 00 ZT:O Iu(T’x)
and

D, () = inf{B : Ng(Z,) = 0}.

h, (T L,dp =h,(¥ dv.
( )//X iz ( )//Yu v
Proof of the lemma. By (11),
T(x)
/ od / rdy = / / u(sx) dsdpu(x)
X X x Jo

T(x)
:// u((x,s))dv(x,s)
X JO

= | udv.
Y

Lemma 4. We have

Abramov’s entropy formula shows that

hM(T)//;(Iudu:hv(\ll)/;(rdu//xludu:hv(\ll)//yudv.

This establishes the desired identityx

By Lemmas 2 and 4, we obtaify , (y) = hv(\IJ)/fY u dv for v-almost every € Y.
We can now apply Theorem 6.6 in [3] to obtain the remaining properties in the theorem.
O

Proof of Theorem 13. Proceeding as in the proof of Theorem 12, one can reduce our
setup to the case of maps. More precisely, Lemma 2 establishes the identity (21), with
F(g1,..- .8 u)andC(g1, ..., g; u) asin (20) and (22). Furthermore, by Lemma 3
we have

dim, Y =inf{8 : Ng(X) = 0} (44)
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and

dim, F(g1,..., gx;u) =inf{B : Ng(C(gy, ..., g u)) =0}, (45)

with Ng(Z) as in (43). Note that the s€i(g1, ... , gk; u) is defined entirely in terms
of the mapT’, and the functionsg, and,; for eachj. By Theorem 7, the functiop;
is W-cohomologous to a multiple ef on Y if and only if /,; is T- cohomologous to a
multiple of 7, on X, and hence, if and only if,; is T-cohomologous tdy ;, = «; I, on
X, whereq; is the unique number such th8j (I;) = Pr(e;l,). Therefore we have
the setup of Theorem 7.1 in [3], which implies that

inf{g : Ng(C(g1, ..., gk;u)) = 0} = inf{B : Ng(X) = 0}.
The desired result follows from (44) and (45)a

Appendix A. Bowen—Walter s Distance for Suspension Flows

We recall here a distance introduced by Bowen and Walters in [5] for suspension flows
with an arbitrary height function. We also establish several properties which are needed
in the proofs of the statements in Sects. 2-5. We would like to thank Valentin Afraimovich
and Jean-René Chazottes for bringing the paper [5] to our attention.

As in Sect. 3.1, lef": X — X be a homeomorphism of the compact metric space
(X,dyx),andr: X — (0, c0) a Lipschitz function. Without loss of generality one can
assume that the diameter dighof X is at most 1. If this is not the case then silcés
compact one can simply consider the new distafigediamX on X.

We also consider the spatein (9) with the points(x, t(x)) and(T x, 0) identified
foreachy € X. The suspension flow ov@&rwith height functiorr is the floww = {v,},
onY with ¢, : ¥ — Y defined as in (10).

We firstassume that= 1 onX, and introduce the Bowen—Walters distard¢en the
corresponding spacé. We shall first consider horizontal and vertical segments. Given
x,y € X andt € [0, 1] we define the length of thorizontal segment [(x, 1), (y, t)] by

en((x, ), (v, 1)) = (L —=0dx(x,y) +tdx(Tx, Ty). (46)
Note that

or((x,0), (y,0) =dx(x,y) and pu((x,1),(y,1)) =dx(Tx, Ty).

Furthermore, giverix, t), (v,s) € Y on the same orbit we define the length of the
vertical segment [(x, 1), (y, s)] by

pu((x, 1), (v, ) =inf{|r| : ¥, (x, 1) = (y,s) andr € R}. 47)

Finally, given two pointgx, 1), (v, s) € Y the distancdi((x, 1), (y, s)) is defined as the
infimum of the lengths of paths between ¢) and(y, s) composed by a finite number
of horizontal and vertical segments.
More precisely, for each € N we consider all finite chaing = (x, t), z2,.. ., 2,—1,
zn = (v, s) of points inY such that for eacheitherz; andz; ;1 are on the same segment
X x {t} for somer € [0, 1] (in which casdz;, z;+1] is called ahorizontal segment), or
z; andz; 1 are on the same orbit of the flow (in which cdsg z;+1] is called avertical
segment). The lengths of horizontal and vertical segments are defined respectively in (46)
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and (47). We remark that whép;, z;1] is simultaneously a horizontal and a vertical
segment, since by hypothesis the sp&deas diameter at most 1, the lengtHof z;41]
is computed thinking of it as a horizontal segment. The length of the chainfgdm
zy is finally defined as the sum of the lengths of the segmients; 1] fori =0, ...,
n—1.

We now consider the case of an arbitrary Lipschitz height funatioX — (0, co),
and introduce the Bowen—Walters distadgeon Y. Given two pointsx, ¢), (v, s) € Y,
we set

dy((x, 1), (y,8)) = da((x, 1/T(x)), (v, 5/T(5))),

whered; is the Bowen—Walters distance wheis the constant 1. Note that a horizontal
segment is now of the fornv = [(x, r7(x)), (y, tT(y))], and that its length is

Lrh(w) = (1 —0dx(x,y) +tdx(Tx, Ty).
The length of a vertical segment= [(x, t), (x, s)] now becomes
Ly(w) = [t —sl/T(x),

provided thatr ands are sufficiently close (or otherwise whenis not a fixed point
of T).

We shall from now on assume thatis an invertible Lipschitz map with Lipschitz
inverse. We consider a number> max{1/ min t, supr, 1} which is simultaneously a
Lipschitz constant fof", 71, andr.

Given(x, t), (v, s) € Y we define

(48)

dX(x’)’)‘Hf_SL
dx(x, Ty)+t(y) —s+t

dz((x,1), (y,5)) = min [ dx(Tx,y)+t(x)—t+s,

Note thatd, need not be a metric. Nevertheless, the following statement relateih
the Bowen—Walters distanck .

Proposition 17. There existsa constant ¢ > 1 such that for each p, ¢ € Y thefollowing
property holds:

¢ Ydr(p.q) < dy(p,q) < cdr(p, q). (49)
Proof. Let (x, 1), (v,s) € Y. We easily obtain
% 1)
We now consider the chain formed by the poiatst), (y, tt(y)/T(x)), and(y, s),
which is composed of a horizontal and a vertical segment. We obtain
dy ((x,1), (y,5))
< Lp((x, 1), (v, tr(y)/T(x))) + Lo ((y, 1T(¥)/T(x)), (¥, 5))
t
1-—)d + —d Tx,Ty)+
( ()>x( y) ()x(x y)
< Ldx(x,y) + LIt — s| + L?dx(x, y),

Y — 5| — L2%dx(x,y) <

< L|t —s| + L?dx (x, y). (50)

N

) ()

(51)
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using (50). Therefore
dy((x, 1), (y,$)) < cldx(x,y) + |t —sl] (52)

whenever: > L + L2. Considering the chain formed by the poilits 1), (x, T(x)) =
(Tx,0), (y,0), and(y, s) we obtain

dy (e, 1), (0, 9)) < 20 =1 (T, ) 4 ——
) =) (53)

< Lldx(Tx,y)+t(x)—t+s].

By (52), (53), and the symmetry @f we conclude that

dY(()C, t)9 (yv S)) < Cdﬂ((-x’ t)s (yv S))

whenever > L + L2.

Consider now a chaig, ... , z, between(x, t) and(y, s), and denote its length by
£(zo, ... , zn). Assume further that the chain does not intersect the robf bkt # and
V denote the set of indices in the chain corresponding respectively to horizontal and
vertical segments, and write

by =) Gzt and &y =) Ly, 2i41).
ieH eV
Letusdenote; = (x;, r;) € Y. Since the chain does not cross the roof, for the horizontal
length we have

ty =Y (1= ri)dx(xi, xi41) + ridx (Tx;, Txi11)

ieH1 . (54)
> LY (A= r)dx (xi, xig1) + ridx (xi, xig1) = L7Hx (x, y).
ieH
For the vertical length, using (50) we obtain
by = |t/t(x) — s/t = LY —s] = L2dx(x, ). (55)
It follows from (54) and (55) that
2L%(z1, ...y z0) = (LY 4+ L)y + Ly > dx(x,y) + |t —s]. (56)

Itis easy to see that for any chain of lengtthere exists another chain with the same
endpoints and of length at makt, such that at most one segment intersects the roof of
Y. Notice that if a chain crosses the roof¥ofat least two times in the same direction
then its length is at least 2, which is always larger than the length of the chain used
to establish (51). Henckdy ((x, 1), (y, s)) is bounded from below by the infimum of
the length of all chains betweédn, r) and(y, s) which intersect the roof at most once.

Let thenzo, ... , z, be a chain intersecting the roof Bfexactly once. Without loss of
generality one can assume that there exists < » such that; = t(x;), where
zj = (xj,rj), and thalz;_1, z;] is a vertical segment. I; is afterz;_; along the orbit
then by (56) we obtain

2L0(z0. . ,2)) +€(zj - s z)] = dx(x, xj) + T(x) — 1 + dx(Tx}, y) + 5.
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Since
Ld(x,xj) +d(Txj,y) >d(Tx,Txj) +d(Txj,y) >d(Tx,y),
we conclude that
2L5(z1, ... ,zp) = dx(Tx,y) +1(x) — 1 +35. (57)

If z; is beforez; ;1 along the orbit then a similar computation gives

2L%0(z1, ... ,z0) > dx(x, Ty) + t(y) — s + 1. (58)
By (56), (57), and (58) we conclude that

dn ((x, 1), (y,8)) < cdy((x,1), (y,9)),

provided that > 2L5.
Settinge = 2L% we obtained the desired inequalities in (49

Given a continuous functiop: ¥ — R we define a new functio, : X — R by
(11).

Proposition 18. If g isa Holder continuousfunctionon Y, then 7, isHGlder continuous
onX.

Proof. We proceed in a similar way to that in the proof of Proposition 6.4,et € X
and assume without loss of generality that) > 7 (y). We obtain

7(x) 7(y)
[g(x) — Ig(y)| = / g(psx)ds +/0 [g(psx) — g(psy)lds

)
<sugg|-|t(x) —T(y)|

(59)
+supt - sup [g(psx) — g(esy)l
s€(0,7(y))
Esung|LdX(-x7 )’)"‘b Sup dY((-xvs)s(yvs))as

s€(0,7(y)

for some positive constantsandb. It follows from Proposition 17 and (59) (see also
(48)) that

[Ig(x) — Io(y)| < supgl- Ldx(x,y) + b (cdr((x,5), (y,5))*
<[supg| - L+ bc*ldx(x, y)*.

This shows thal, is Holder continuous oX. O

We now consider Bowen balls iKi andY, defined respectively by

Bx(x,m.e) € (| T"Bx(T"x,e),

0<n<m

By(y.p.&) = () v—iBr(¥y. o).

0<r=p
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We say thaf" hashounded distortion if for each Holder continuous functiogn: X — R
there exists a constalt > 0 such thatifc € X, m € N, ¢ > 0, andy € Bx(x,m, ¢)
then

m—1 m—1

Y 8(Thx) =) g(T*y)| < De.
k=0 k=0

Recall also the definition of the functiap, in (35).

Proposition 19. Assumethat 7 has bounded distortion. Thereexistsk > 0 such that for
everyx € X,0 < s < t(x),andm € N, if ¢ > Oissufficiently small then

1
By ((x,5), tu(x), —&) C Bx(x,m, &) x (s —¢,5 +¢) C By((x, ), tm(x), k€).
K
(60)
Proof. Let ¢ € (O, 2—16) with ¢ as in Proposition 17. Let alsx,t) € Y with ¢ €

(ce, t(x) — ce), and(y, t) € By ((x,s), tu(x), €).
If m = 0 then by Proposition 17 we hawg ((x, t), (y, 5)) < ce. Since

t(x)—t+s>t(x)—t>ce and t(y)—s+t>t>ce
we must have
dX(.X, y)+ |l—S| zdﬂ((xst)v(y’s)) S ce,

which implies that/x (x, y) < ce and|t — s| < ce. This establishes the first inclusion
whenm = 0.

Forany 1< n < m sett, = 1,(x) — r ands, = 7,(y) — s. It is easy to see that
Y, (x, 1) = (T"x, 0) andyy, (v, s) = (T"y, 0). By Proposition 17 we obtain

dx(T"x, T"y) < cdy (Y, (x, 1), ¥, (, 5))
< CdY(an (-xv t)’ ¢tn (yv S)) + CdY(wln (y7 S)’ an (yv S)) (61)

<ce+cl|ty — snl.
Furthermore, by (48) we have

dr (Yri, (x, 1), Yz, (¥, 8)) < ce.

Thus there existy, € X andr, € (1, — ce, 1, + ce) such thaty,, (y,s) = (yn, 0).
Moreover the sequeneg is strictly increasing, sincg,1 —t, > 2ce. Hences, <r, <
t, + ce. By symmetry we obtaim, < s, + ce, and henceér, — s,| < ce. By (61) we
conclude that

dx(T"x, T"y) < c(1+c)e.

This establishes the first inclusion in (60) provided that c(1+ ¢).

Letnowy € Bx(x,m,¢e)ands € (t — e, t + ¢). Taker € (0, 17,,(x)) and choose
such thatr, (x) <r +1t < t,41(x). Writer’ = r + 1 — 7,(x) > 0. By Proposition 17,
the bounded distortion property, and (48) we obtain

dy (Yr (X, ), Yr (y,5)) <dy(T"x, "), (T"y,r")) +dy (T"y,r"), ¥, (y.5))
<cde (T"x, 1), (T"y, 1)) + cdz (T"y, "), ¥, (3, 5))
<cdx(T"x, T"y) +c|r' + 1, (y) —r — 5|
<cdx(T"x, T"y) + clt — 5| + clta(x) — T ()]
<c¢(2+ D)e.



Multifractal Analysis of Hyperbolic Flows 371

This establishes the second inclusion in (60) providedihatc(2 + D).

Settingk = maxX{c(1+ ¢), c(2+ D)} we obtain the desired inclusionso
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