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Abstract: We shall prove a logarithmic Sobolev inequality by means of the BMO-norm
in the critical exponents. As an application, we shall establish a blow-up criterion of
solutions to the Euler equations.

1. Introduction

The purpose of this paper is to establishiafi-estimate of functions in terms of the
BMO norm and the logarithm of a norm of higher derivatives. It is well known th&t'in
the Sobolev spac®*-” with sp > n is continuously embedded inf6°. This is not true

in the spaceV*" for kr = n. Brezis—Gallouet [3] and Brezis-Wainger [4] investigated
the relation betweefi™, W5 andW*? and proved that there holds the embedding

£l < € (1410 @+ flwen) . sp>n (L1)

provided| f|ly+- < 1 for kr = n. Then Ozawa [10,11] gave deep and systematic
treatments and clarified the relation between (1.1), the Gagliardo-Nirenberg inequality
and the Trudinger-Moser one. The estimate (1.1) was applied to prove existence of
global solutions to the nonlinear Schrddinger equation([3,5]). Similar embedding for
vector functions: with div 4 = 0 was investigated by Beale—Kato—Majda [1],

IVullpe < C (1+ [rotu|| zoo (1 + log™ |l ysr1p) + ||r0tu||L2), sp>n, (1.2)

where log a = loga if a > 1,=0if 0 < a < 1. In [1], they made use of (1.2) to give
a blow-up criterion of solutions to the Euler equations.
The difference between these two embeddings stems from the bouhdhol*"
for kr = n and that of rot in L°°. However, both of these bounds contgolnd Vu
in the common space BMO. In this paper, we will show a corresponding embedding
estimate inL° by means of the BMO-norm which covers (1.2). As an application of our
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estimate, we will extend the blow-up criterion of solutions to the Euler equations which
was originally given by Beale—Kato—Majda [1]. It is proved in [1] that Iti& norm of
vorticity controls breakdown of smooth solutions for the 3-D Euler equations. We will
generalize such a criterion to the BMO-norm. The advantage to use BMO-space consists
of the fact that Riesz transforms are bounded in BMO, but nétt This fact enables
us to prove the same criterion not only by the vorticity but also by the deformation tensor
(see Ponce [12]).

Our first result now reads:

Theorem 1. Let1l < p < coandlets > n/p. Thereisa constant C = C(n, p, s) such
that the estimate

Ifliee < € (1411 fllemo(X +log™ || fllws»)) 1.3)

holdsfor all f € W*P,

Remark. Compared with (1.2), we do not need to gdfl|; - to the right-hand side of
(1.3). This makes it easier to derive an apriori estimate of solutions to the Euler equations
than Beale—Kato—Majda [1].

We next consider the Euler equations for the incompressible fluid motiifi fior
n>2;

0 . .
{a_bt‘+u.vu+vp=0, dvu=0 inxeR"r>0, E)
Uli—0 = a.

Itis proved by Kato—Lai [7] and Kato—Ponce [8] that for every W*? fors > n/p+1
with diva = 0, there are” > 0 and a unique solutiom of (E) on the interval0, T') in
the class

u e C(0, T); WHP)y n CY([0, T); Ws=2P), (1.4)
The time intervall' of existence of the solution depends only offia|ws.». It is an

interesting question whether the solutiofa) really blows up ag 4 T.
Our result on (E) reads as follows.

Theorem 2. Let1 < p < o0, s > n/p + 1. Suppose that u isthe solution of (E) in the
class (1.4). If either

T
/o [[rotu(t)||smodt (= Mp) < oo (1.5)
or
T
/; IDefu(?)lBmodt (= M1) < 0o (1.6)

holds, then u can be continued to the solution in the class (1.4) on the interval [0, T7)
for some T’ > T, whererot u and Def u denote the vorticity and the defor mation tensor
of u, respectively.
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An immediate consequence of the above theorem is

Corollary 1. Let u be the solution of (E) in the class (1.4) on the interval [0, T') for
l<p<oo,s>n/p+1 Assumethat T ismaximal, i.e., u cannot be continued to the
solutionin the class (1.4) on [0, T’) for any T’ > T. Then both

T T
/ [rotu(t)|lsmodt = oo and / [Defu(t)llsmodt = 0o
0 0

hold. In particular, we have

lim sup|irotu(t)|lgmo = o0 and limsup|Defu(t)|smo = oo.
1T 1T

Remarks. 1. Beale—Kato—Majda [1], Ponce [12] and Kato—Ponce [8] obtained the same
continuation principle of solutions as in Theorem 2 under the stronger assumption in
L.

2. Theorem 2 also holds for the Navier—Stokes equations. However, in the Navier—
Stokes equations, on account of the viscosity term, a sharper estimate of solutions holds
than for (2.17) below. Moreover, we can formulate the continuation principle itself
in L2(0, T; BMO). For details, see [9].

2. Proof of the Theorems

2.1. Proof of Theorem 1. We shall make use of the Littlewood-Paley decomposition;
there exists a non-negative functipne S (S; the Schwartz class) such that supc

o0
{271 < |€] < 2} and such thatZ @(27%g) = L for& £ 0. See Bergh-Lofstrom [2,

k=—o00
Lemma 6.1.7]. Let us defingy and¢; as
-1

go€) =Y 926 and ¢16)= Y ¢(2%),

k=1 k=—o00

respectively. Then we have thgg(¢) = 1 for|&| < 1/2,¢0(€) = 0 for|&| > 1 and that
¢1(6) = 0for|&] < 1,¢1(§) = 1for|&| > 2. Itis easy to see that for every positive
integerN there holds the identity

N

gV + Y p@FH + @ Ve) =1, £#£0. (2.2)

k=—N

SinceC” is dense il¥*” and sincéV*-? is continuously embedded in BMO, it suffices
to prove (1.3) forf e C3°. For suchf we have the representation

R
nwy |y" ’

f) = / K(x—y)-Vf(ydy with  K(y)=
yeR”
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for all x € R", wherew, denotes the volume of the unit ball R*. By (2.1) we
decomposg into three parts:

Fx)
= / K(x—y)x
yeR?

N
x <¢o<2N<x —+ D e@Fx—y)+ ¢V - y))) -V f(dy

k=—N
= fo(x) +g) + fix)
(2.2)

for all x € R".

Sep 1. Estimate of fp. Let us first consider the case> 1. Sinces > n/p, we can take
g andg’sothat¥p — (s —1)/n <1/q < 1/n,1/q' = 1 — 1/q. Then there holds the
Sobolev embeddin®/*? ¢ W24, so we have by integration by parts that

1 1
[ fo)| = (f K (x — y)po2" (x — y))lq/dy> ' (f IVf(y)quy) '
yeR”? yeR”

1
do2V (x —y)?  \¢
¢ (fyR T
1 q
c 1,
(/X—YSZN |_x — y|(nfl)q y) ”f”W P

2N , q
sc([° o) e
0

= C27NAD| £y (2.3)

IA

[

IA

for all x € R”.

We next consider the caggp < s < 1. Let H(y) = K(y)¢o(y). Forr > 0, we
defineH, (y) = H(,y). Then we have

folx) = / KO3V =y
yeR”
_ oM@ / K@ y)po@V Y)ot_xV f()dy
yeR?

= 2N (Hpy, Vor_. f)

forall x € R", where(z;, f)(y) = f(y —h), (6f)(y) = f(—y) and(., -) .2 denotes the
inner product inL2(R"). By integration by parts, from the above identity we obtain the
identity

folx) = 2V@=D (div (—A)"2 How, or_x(—A)%f)Lz, xeR.  (2.4)
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On the other hand, there holds

V(-A)"2H e L? forp' = p/(p — D). (2.5)
Indeed, since
, 1
(—A)EH(x) = C/| T KOy, xR 26
yi= -
we have forx| > 2,
_s X =y
IV(=A)"2H(x)| =C ‘/ —————— K (y)po(y)dy
yl<t [x = y[rs+2
5 C/ 1 1
=5 L =yt
c
< e (2.7)

with C = C(n, s). For|x| < 1, we make use of another representation of (2.6) such as

(—A) 2H(x) = ———— - h(x) with (2.8)
|x|nflfs
1 y
h(x)=C s o Pollxy)dy.
veRr I = "7 1yl
For each O< |x| < 1, we denote by, the 2-dimensional plane spanned.byand
e1 = (1,0,---,0). Let e, be a unit vector inll, with e; - ¢, = 0 so that the pair
{e1, e, } is the orthonormal basis @1,. Furthermore, taking another— 2 unit vectors
e e we may assume thde, e, ¢ ... ™} is an orthonormal basis in

R”". Let us define an orthogonal linear transformatiprin such a way that

Sye1 = COSH, - e1 — Sinby, - ey,
Syex = SinG, - e1 + COSH, - ey,

Seet) =ei, j=3-n,

wheref, is the angle betweenande;. Sincegg is a radial symmetric function, we have
by changing the variable — y’ = S,y that

1 Sty
hix) = / L S ki,
yeRn lex — "5 |y|*

and hence there holds

1 1
lh(x)] < C/ dy<C (2.9)
yerr ler — y"=s |yl

forall0 < |x| < 1withC = C(n, s). Since co¥, = x1/|x|,sind, = £ Z;’.:zsz./|x|,
there holds

0 ¥ c 1
—(Ly)‘f— 7. =L ,n, forall0O< |x| <1l yeR"
dx; \ |yl x| [yl*=
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with C = C(n) independent of, y, which yields

1 Sty 1
VA()| s/ —(v SV 9o )|>d

e ter =y [V | Tzl Vool ) dy

- C 1 1 J +C/ 1 1 d

= — y y
x| Jyern lex — y["=5 |y[n—1 Ashyi=d len =yl |y|"—2
C

< — (2.10)
x|

forall 0 < |x| < 1 with C = C(n, 5). Notice that supF¢o C {1/2 < || < 1}. Theniit
follows from (2.8), (2.9) and (2.10) that

IV(=A) 2H(x)| < ——
[

forall |x] < 1. (2.11)

Sincen/p < s < 1, from (2.7) and (2.11) we obtain (2.5). Since

1-s —s—n/p 1-s
1(—=A)Z Hon | — oN(l-s n/p)”(_A) Z H|,y

— oNQ@+n/p—n—s) I (_A)l%s Hl, .
it follows from (2.4) and the Hélder inequality that

| fo)| < 28D idiv (—A) "2 Hon ||, |0 T—x (= A)2 f I 1o
N(n—1) Ls s
<cC2 I(=A)Z Hon ||, I (=A)2 fllzo
< C27NCP £l ys.p (2.12)

for all x € R”. Now, by (2.3) and (2.12) we have in both cases
I follzee < C27NF| fllws.r  with B =Min{1—n/q.s —n/p}, (2.13)

whereC = C(n, p, s) is independent oN.
Sep 2. Estimate of g. For eache € R”, we takeby (x) so that

1

b, =
e) |B(x, 26+5)| Jpx 2k+1

f(y)dy7 k=07:l:1’"'a:l:Na

whereB(x, R) denotes the ball centeredxatvith radiusR and|B]| is the volume ofB.
Since supw (2€(x — ) C {y € R"; 2k-1 < |y — x| < 21} we have by integration
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by parts
N
gl =] / K(x = y)p@* (x = )V, (f(») = be(x)) dy
k=—nN ¢ YER"
N
=2 [ v, (K= ne@ =) ()~ bl dy
f=—N v YER"
al 1 2k
<cy / ( - n_1>|f(y)—bk(x)|dy
c Ty J2t<y—x <2kt \x =y [x — vl
AR |
¢ om R AT
al 1
< ck;v TG 2] Jyge ey 1) T Iy
< CN| fliemo
for all x € R", which implies that
lgllLe < CNIl fllemo (2.14)

with C = C(n) independent oN.
Sep 3. Estimate of f1. Integrating by parts, we have by a direct calculation

[ f1(x0)]
/ div (K(x - V@ N x - y))) f(y)dy'
yeR?

=<

f div K (x — a2 (x - y))f(y)dy‘
yeR"

+27N

/ K=y V@ y))f(y)dy'
)ye n
< cf X — 1 f )y

2N <|x—y|

+c27V / Ix — ¥ F)Idy
2N5|x_y|52N+1

, 1/p'
< c(f =y dy) 1 f il
2V <y

RN
+c27" ( fz e g I dy) I£llLr
=l—yl=

00 l/P/ oN+1 1/[’,
<C </ Fop +n1dr> + 2-N (/ p—(=Dp +n1dr> £l
2N 2N

<27V flILy
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for all x € R", which yields

I falle < 27V 5| fllLe (2.15)

with C = C(n, p) independent oN.
Now it follows from (2.2) and (2.13)-(2.15) that

Il < C@7N| fllws.r + N fllsmo) (2.16)

withy = Min.{1—n/q,s —n/p,n/p}, whereC = C(n, s, p) is independent o and
f. 0| fllwsr < 1,thenwe may tak&/ = 1; otherwise, we také&/ so large that the first

I

term of the right-hand side of (2.16) is dominated by 1, e = [%} +1
14

([-]; Gauss symbol) and (2.16) becomes

101 f 1w
Il < C {1+ I fllemo (W + 1)}

In both cases, (1.3) holds. This proves Theorem 1.

Remark. There is a simple alternative proof for (2.14). Indeed, we have

N
g)= Y (divW¥)eix f(x), xeR",
k=—N

whereV (x) = K(x)e(x) andy,(x) = t "y (x/t) fort > 0. Since¥ € S with the
property that

div ¥(x)dx =0,
Rn
it follows from Stein [13, Chap. IV, 4.3.3] that

N
lgllzee < Y l(div W)ge * fllLx
k=—N
N
> supli(div W), # £l

k—_n >0
CN| fllsmo.

IA

IA

which yields (2.14).

2.2. Proof of Theorem 2. 1t is proved by Kato—Lai [7] and Kato—Ponce [8] that for the
given initial dataa € W*? for s > 1+ n/p, the time intervall’ of the existence of

the solutioru to (E) in the class (1.4) depends only | ws.». Hence by the standard
argument of continuation of local solutions, it suffices to establish an apriori estimate
for u in W*? in terms ofa, T, Mg or a, T, M1 according to (1.5) or (1.6). Indeed, we
shall show that the solutian(z) in the class (1.4) is subject to the following estimate:
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sup Nlu(®)llws.r < (lallwsr + )% expCTa;) witha; =M, j=0,1,

O<r<T
(2.17)

whereC = C(n, p, s) is a constant independentofandT .
We shall first prove (2.17) under (1.5). It follows from the commutator estimate in
L? given by Kato—Ponce [8, Proposition 4.2] that

1
lu(@llws.» < llallws.r exp(C/ IIW(T)IILoodf), O<r<T, (2.18)
0

whereC = C(n, p, s). In casep = 2, i.e., in theW*-2-estimate, this can be done more
directly as in Beale—Kato—Majda [1, p. 64, Eq. (14)].
By the Biot-Savard law, we have a representatioW nfin terms ofw = rotu as

0
L _RRxw), j=1--.n, (2.19)
8)6]'
ad . L
whereR = (Ry, .-+, Ry), Rj = a—(—A)*% denote the Riesz transforms. Sinkes
Iy

a bounded operator in BMO, this i/ields
[Vullemo < Cllwllemo (2.20)
with C = C(n). Hence it follows from (2.20) and Theorem 1 that
IVu@®)lize < C (1+ lleo@)llamo (L + log™ u(@)[lwsr)) (2.21)
forall0 <t < T with C = C(n, p, s). Substituting (2.21) to (2.18), we have
lu@)llws» +e

t
< (lallws.» + ) EXP<C/O {1+ llo()lIBmo log(llu(T) [ ws.r +6)}df)

forall 0 <t < T. Definingz(¢t) = log(Jlu(t)|lws.» + €) , we obtain from the above
estimate

'
72(t) <z(0)+CT + C/ lo@)lBmoz(t)dr, O0<t <T.
0

Now (1.5) and the Gronwall inequality yield

t
z(t) < (z(0) +CT) EXP<C/O IIw(T)IIBMOdT>
< @zO)+CT)ag

forall 0 <t < T with C = C(n, p, s), which implies (2.17) forj = 0.
Next, assume (1.6). Instead of (2.19) we make use of another representation

u' " . auk  ou!
— =Rj(ZRkDefuk]), j,l=1---,n, whereDefuy = — +—.
0x; P ax; Xy
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Hence again by the boundedness of Riesz transforms in BMO, there holds

[Vullemo < ClIDefullgmo- (2.22)

Then by (2.22) and Theorem 1 we have similarly to (2.21) that
IVu(@®)|lr < C (1+ [IDefu(@)llamo (L + log™ [|u(t)[|ws.r))

forall0 < < T with C = C(n, p, s). Itis easy to see that the rest of the argument is
parallel to that of the case when (1.5) holds, so we get also (2.17)#ot. This proves
Theorem 2.
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