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Abstract: Number theorists have studied extensively the connections between the dis-
tribution of zeros of the Riemannζ -function, and of some generalizations, with the
statistics of the eigenvalues of large random matrices. It is interesting to compare the av-
erage moments of these functions in an interval to their counterpart in random matrices,
which are the expectation values of the characteristic polynomials of the matrix. It turns
out that these expectation values are quite interesting. For instance, the moments of or-
der 2K scale, for unitary invariant ensembles, as the density of eigenvalues raised to the
powerK2; the prefactor turns out to be a universal number, i.e. it is independent of the
specific probability distribution. An equivalent behaviour and prefactor had been found,
as a conjecture, within number theory. The moments of the characteristic determinants
of random matrices are computed here as limits, at coinciding points, of multi-point
correlators of determinants. These correlators are in fact universal in Dyson’s scaling
limit in which the difference between the points goes to zero, the size of the matrix goes
to infinity, and their product remains finite.

1. Introduction

The correlation function of the eigenvalues of largeN × N matrices are known to
exhibit a number of universal features in the large-N limit. For instance in the Dyson
limit [1,2], when the distances between these eigenvalues, measured in units of the local
spacing, becomes of order 1/N , the correlation functions, as well as the level spacing
distribution, become universal, i.e. independent of the specific probability measure.
For finite differences, upon a smoothing of the distribution, the two-point correlation
function is again universal [3,4]. The short distance universality was also shown to
extend to external source problems [5–8], in which an external matrix is coupled to the
random matrix.

In this article, we study the average of the characteristic polynomials, whose zeros are
the eigenvalues of the random matrix. The probability distribution of the characteristic
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polynomial det(λ − X) of a random matrixX, a polynomial of degreeN in λ, may
be characterized by its moments

〈
detK(λ−X)〉, or better by its correlation functions〈

K∏
l=1

det(λl −X)
〉
.

This study is motivated by various conjectures which appeared recently in number
theory for the zeros of the Riemannζ -function and its generalizations known asL-
functions [12]. Indeed the characteristic polynomials, as well as the zeta-fuctions, have
their zeros on a straight line, and these zeros obey the same statistical distribution.

For the 2K th moment of the Riemannζ -function (K is a positive integer), it has been
conjectured [9,10] that

1

T

∫ T

0
dt |ζ

(
1

2
+ it

)
|2K � γKaK(logT )K

2
, (1)

whereaK is a number related to the Dirichlet coefficient (the divisor function)dK(n),
and

γK =
K−1∏
l=0

l!
(l +K)! . (2)

The explicit formula foraK is given in the Appendix, together with summation formulae
for the Dirichlet coefficients, which are related to (1). In this work we shall compute
the equivalent of (1) for random matrices, show that the density of statesρ(λ) replaces
logT , and that the same numberγK is universally present.

For the negative moments, similar conjectures have been proposed, with a cut-off
parameterδ for avoiding divergences [11], and we show here how to obtain these negative
moments for random matrices.

Several types ofL-functions have been introduced [12], which correspond to the
three standard classes of random matrices. The conjecture for the average of the mo-
ments (1) has been extended to theseL-functions [13]. The average is taken as a sum of
the discriminantd, for instance, for the DirichletL(1

2, χd) function. The relations be-
tween the distributions of the eigenvalues of the random matrix theory and the statistical
distribution of the zeros of the variousL-functions has also been studied [12,14].

Our aim in this article, is to clarify the universality of the moments of the characteristic
polynomials for these three classes. The circular unitary ensemble has been studied
earlier by Keating and Snaith [10], who did obtain theγK in (2) from their calculation.
However this ensemble has a constant density of states, and furthermore it does not allow
to study the universality of these properties. In this work we have considered a Gaussian
ensemble and non-Gaussian extensions, instead of the circular ensemble, to verify both
the explicit dependence in the density of states and the universality of the coefficient
γK . In the process of the derivation, we have found it necessary to start with the K-point

functions

〈
K∏
l=1

det(λl −X)
〉
, which are shown to be themselves universal in the large-N

Dyson limit, in whichN(λi − λj ) is held fixed. The moments are then simply the limit
of these functions when all the Dyson variables vanish.
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2. Correlation Functions of Characteristic Polynomials

We consider randomM ×M Hermitian matricesX with a normalized probability dis-
tribution

P(X) = 1

Z
exp−NTrV(X), (3)

in whichV is a given polynomial. It will turn out to be convenient to distinguish hereM

andN , but we later restrict ourselves to a largeN and largeM limit, with limM/N = 1.
Let us consider the correlation function ofK distinct characteristic polynomials:

FK(λ1, · · · , λK) =
〈
K∏
α=1

det(λα −X)
〉
, (4)

in which the bracket denotes an expectation value with the weight (3).
Integrating as usual over the unitary group, we obtain

FK(λ1, · · · , λK) = 1

ZM

∫ M∏
1

dµ(xi)  
2(x1, · · · , xM)

K∏
α=1

M∏
i=1

(λα − xi) (5)

in which dµ(x) denotes the measuredµ(x) = dx exp−NV (x),  the Vandermonde
determinant (x1, · · · , xM) =

∏
1≤i<j≤M

(xi − xj ), andZM the normalization constant

ZM =
∫ M∏

1

dµ(xi)  
2(x1, · · · , xM). (6)

We now use the obvious identity

 (x1, · · · , xM)
K∏
α=1

M∏
i=1

(λα − xi) =  (x1, · · · , xM ; λ1, · · · , λK)
 (λ1, · · · , λK) , (7)

and represent the Vandermonde determinants (x1, · · · , xM) and (x1, · · · , xM ; λ1,
· · · , λK) as determinants of arbitrary polynomials whose coefficients of highest degree
are equal to unity (the so-called monic polynomials)

pn(x) = xn + lowerdegree. (8)

Then

 (x1, · · · , xM) = detpn(xm) (9)

(n runs from zero toM − 1 andm from one toM), and

 (x1, · · · , xM ; λ1, · · · , λK) = detpa(ub) (10)

in whicha runs from zero toM +K − 1, b from one toM +K andub stands forxb if
b ≤ M, or λb forM < b ≤ M +K.
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Choosing now the polynomials orthogonal with respect to the measuredµ:∫
pn(x)pm(x)dµ(x) = hnδnm, (11)

we may easily integrate over theM eigenvalues

∫ M∏
1

dµ(xi)  (x1, · · · , xM ; λ1, · · · , λK) (x1, · · · , xM)

= M!
(
M−1∏

0

hn

)
detpα(λβ), (12)

in whichα runs fromM toM +K − 1 andβ from 1 toK. Similarly the normalization
factorZM is given by

ZM =
∫ M∏

1

dµ(xi)  
2(x1, · · · , xM) = M!

(
M−1∏

0

hn

)
. (13)

We thus end up with

FK(λ1, · · · , λK)

= 1

 (λ1, · · · , λK) det

∣∣∣∣∣∣∣∣
pM(λ1) pM+1(λ1) · · · pM+K−1(λ1)

pM(λ2) pM+1(λ2) · · · pM+K−1(λ2)
...

pM(λK) pM+1(λK) · · · pM+K−1(λK)

∣∣∣∣∣∣∣∣
. (14)

If we are concerned simply with the moments of the distribution of a single characteristic
polynomial, we obtain from (14),

µK(λ) = FK(λ, · · · , λ) = 〈 [det(λ−X)]K 〉

= (−1)K(K−1)/2∏K−1
l=0 (l!)

det

∣∣∣∣∣∣∣∣∣

pM(λ) pM+1(λ) · · · pM+K−1(λ)

p′
M(λ) p′

M+1(λ) · · · p′
M+K−1(λ)

...

p
(K−1)
M (λ) p

(K−1)
M+1 (λ) · · · p(K−1)

M+K−1(λ)

∣∣∣∣∣∣∣∣∣
. (15)

These expressions are all exact, but in the next section we shall be concerned with the
largeN limit. Then (i) the interesting case is that of evenK, since for oddK the result
is oscillatory ( for instance forK = 1µ1(λ) = pM(λ) ), (ii) it will turn out that, even if
we are interested simply in the momentsµK(λ), it is more convenient to study first the
largeN -limit of the FK with distinctλi and afterwards let them approach a singleλ.

The results that will be derived later for thoseFK ’s andµK ’s will be shown to be
universal in the Dyson limit, in whichN goes to infinity, theλi−λj goes to zero for any
pair i, j , and the productsN(λi −λj ) remain finite. We first derive explicit formulae for
the Gaussian case, and show later that they do apply to any random matrix distribution
P(X) of the form (3).



Characteristic Polynomials of Random Matrices 115

3. The Gaussian Case

We now specialize the result (14) of the previous section to the Gaussian distribution of
M ×M Hermitian matrices

P(X) = 1

ZM
exp−N

2
TrX2, (16)

with

M = N −K, (17)

(the reason for this choice ofM will be clarified in the next section).Then the polynomials
that we have introduced, are Hermite polynomials, and with our normalizations,

Hn(x) = (−1)n

Nn
eNx

2/2
(
d

dx

)n
e−Nx2/2 = xn + l.d., (18)

and

hn = n!
Nn

√
2π

N
. (19)

The integral representation

Hn(x) = (−1)nn!
Nn

∮
dz

2iπ

e−N(z2/2+xz)

z(n+1)
(20)

over a contour which circles around the origin in the z-plane, turns out to be well adapted.
Repeated use of this formula in the result (14) yields

F2K(λ1, · · · , λ2K) = (−1)K

 (λ1, · · · , λ2K)

∏2K−1
l=0 (M + l)!
NK(2M+2K−1)

×
∮ 2K∏
l=1

(
dzl

2iπzM+l
l

)
exp−

(
N

2K∑
1

z2l

2

)
det(e−Nλazb ). (21)

We can expand the determinant in the r.h.s. and keep only one of the(2K)! terms,
antisymmetrizing instead the integration variableszl . This gives

F2K(λ1, · · · , λ2K) = (−1)K

 (λ1, · · · , λ2K)

∏2K−1
l=0 (M + l)!
NK(2M+2K−1)

×
∮ 2K∏
l=1

(
dzl

2iπzM+2K
l

)
exp[−N

2K∑
1

(
z2l

2
+ λlzl)] (z1, · · · , z2K). (22)

This expression for the expectation value of a product of 2K characteristic polynomials,
as an integral over 2K complex variables, is exact for finiteN andM.

We are now in position to study the largeN -limit through a saddle point integration

over eachzl . Since we have chosenM+K = N eachz has a weight
1

zK
exp−N(z2/2+
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λz+logz), which presents two saddle pointsz±, solutions of the equationz2+λz+1 = 0,
i.e. with the parametrization

λ = 2 sinφ, (23)

whenλ lies on the support of the asymptotic Wigner semi-circle of the density of levels,

z+ = ieiφ, z− = −ie−iφ. (24)

Therefore there are, a priori 22K saddle-points at which the moduli of the weight

exp[−N
2K∑
1

(
z2l

2
+ λlzl + logzl)] are the same. However, it is only when

2K∑
1

(
z2l

2
+

λlzl + logzl) is real (in the Dyson limit in which the differences between theλ’s are
small), that the oscillations, which damp the result, are not present. Therefore we keep

only the

(
2K
K

)
saddle-points in which we takeK solutions of typez+ andK of type

z−. We are now interested in Dyson’s short-distance limit. Defining

λ = 1

2K

2K∑
l=1

λl, (25)

and the density of eigenvalues at this point

ρ(λ) = 1

2π

√
4 − λ2 = 1

π
cosφ, (26)

we introduced the scaling variables

xa = 2πNρ(λ)(λa − λ), with
2K∑
a=1

xa = 0, (27)

which are kept finite in this limit. Then the fluctuations around a saddle-point may be
taken all at the pointλ, and they yield a factor

(
2π

N
)K [(1 − z2+)(1 − z2−)]−K/2 = (Nρ(λ))−K. (28)

We must now take into account the various factors in (22) at these saddle-points. In

the Dyson limit the factor
2K∏
1

zKl which remained in the denominator, may be re-

placed by one, since at a givenλ one hasz+z− = 1. The only delicate factor is thus

 (z1, · · · , z2K)
 (λ1, · · · , λ2K)

exp[−N
2K∑
1

(
z2l

2
+ λlzl + logzl)], which we must first compute at one

of the saddle-points, and then take the sum over the

(
2K
K

)
saddle-points. We consider

first the saddle-point

zl(λl) = z+(λl) l = 1, · · · ,K,
zl(λl) = z−(λl) l = K + 1, · · · ,2K. (29)
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If we expand in the Dyson limit the weight exp

[
−N

2K∑
1

(
z2l

2
+ λlzl + logzl

)]
one

finds

exp

[
−N

2K∑
1

(
z2l

2
+ λlzl + logzl

)]

= expNK

(
1 + λ2

2

)
× exp−N

[
K∑
1

(λl − λ)z+(λ)+
2K∑
K+1

(λl − λ)z−(λ)
]
, (30)

(we have used
d

dλ

(
1

2
z2±(λ)+ λz± + logz±

)
= z±). Therefore at that saddle-point, in

terms of the scaling variables (27),

exp

[
−N

2K∑
1

(
z2l

2
+ λlzl + logzl

)]
= expNK

(
1 + λ2

2

)
exp−i

K∑
1

xl. (31)

Let us consider now the ratio of Vandermonde determinants at that same saddle-point:

 (z1, · · · , z2K)
 (λ1, · · · , λ2K)

=
∏

1≤l<m≤K

z+(λl)− z+(λm)
λl − λm

∏
K+1≤l<m≤2K

z−(λl)− z−(λm)
λl − λm

×
∏

1≤l≤K,K+1≤m≤2K

z+(λl)− z−(λm)
λl − λm . (32)

In the scaling limit, this factor becomes

 (z1, · · · , z2K)
 (λ1, · · · , λ2K)

=
(
dz+
dλ

dz−
dλ

)K(K−1)/2

(2i cosφ)K
2 ∏
1≤l≤K,K+1≤m≤2K

1

λl − λm

= (Ni)K2
(2πρ(λ))K+K2 ∏

1≤l≤K,K+1≤m≤2K

1

xl − xm . (33)

Leaving aside for the moment the overall factors which do not change at the various
saddle-points, we note the result from this particular one which is

exp−i
K∑
1

xl
∏

1≤l≤K,K+1≤m≤2K

1

xl − xm , and consider summing over the

(
2K
K

)
saddle-

points. The sum is best done under the form of an integral overK variables. Indeed, if
we consider

I (x1, · · · , x2K) = (−1)K(K−1)/2

K!
∮ K∏

1

duα

2iπ
exp−i

(
K∑
l=1

uα

)
 2(u1, · · · , uK)∏K
α=1

∏2K
l=1(uα − xl)

(34)

over a contour in which eachuα circles around thex’s, we recover exactly the contribution
previous saddle-point by choosingu1 = x1, · · · , uK = xK , or any permutation of those
K x’s. In view of the Vandermonde in the numerator, all theu’s have to be different, and
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thus there are indeed

(
2K
K

)
poles to be added, which reconstruct exactly the sum on

the saddle-points that we needed to perform.
Collecting the various factors that came on the way, we end up with the final formula

exp−
(
N

2

2K∑
l=1

V (λl)

)
F2K(λ1, · · · , λ2K) = (2πNρ(λ))K2 exp(−NK)

K!

×
∮ K∏

1

duα

2π
exp−i

(
K∑
α=1

uα

)
 2(u1, · · · , uK)∏K
α=1

∏2K
l=1(uα − xl)

. (35)

If we specialize toK = 1 one finds

exp

{
− N

2
(V (λ1)+ V (λ2))

}
F2(λ1, λ2) = e−N (2πNρ(λ))sinx

x
(36)

with x = πNρ(λ)(λ1 − λ2), in which we recover the well-known Dyson kernel, which
characterizes the correlation between eigenvalues, whose universality has been very
much discussed over recent years. Note the dependence in(Nρ(λ))K

2
of this function.

This K=1 result (36) is indeed equal to(2πe−N)K(λ1, λ2), where the kernelK(λ1, λ2)

is

K(λ1, λ2) = sin[πNρ(λ)(λ1 − λ2)]
π(λ1 − λ2)

. (37)

(In the next section we return to the normalizations. It will be explained how the extra-
factor 2πe−N is cancelled by the normalization constanthN−1.)

We can now specialize this formula to the moments of the distribution of the charac-
teristic polynomial, by letting all theλ’s approach each other, i.e. letting thex’s vanish.
Before we do that, we should point out that the procedure to obtain these moments
is in fact subtle. In principle we could have set all theλ’s equal at an early stage of
the calculation. If we returned for instance to (21) we might have replaced the limit of

det(e−Nλazb )
 (λ1, · · · , λ2K)

by (z1, · · · , z2K) (up to a factor), but then the saddle-point method to

obtain the largeN -limit becomes quite problematic. Indeed the Vandermonde of thez′s
at the saddle-point vanishes and it is necessary to go far beyond the Gaussian integration.
However it is now straightforward to obtain this moment from (35). We obtain

exp−(NKV (λ))F2K(λ, · · · , λ)

= (2πNρ(λ))K2 exp(−NK)
K!

∮ K∏
1

duα

2π
exp−i

( K∑
α=1

uα

)
 2(u1, · · · , uK)∏K

α=1 u
2K
α

. (38)

Expanding the Vandermonde determinant into a sum over permutations, we find

∮ K∏
1

duα

2π
exp−i

( K∑
α=1

uα

)
 2(u1, · · · , uK)∏K

α=1 u
2K
α

= (−1)K(K−1)/2

×
∑
P,Q

(−1)(P+Q) 1

(2K − P0 −Q0 − 1)! · · · 1

(2K − PK−1 −QK−1 − 1)! , (39)
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in whichP andQ are permutations of the integers(0, · · · ,K − 1). Therefore

∮ K∏
1

duα

2π
exp−i

( K∑
α=1

uα

)
 2(u1, · · · , uK)∏K

α=1 u
2K
α

= (−1)K(K−1)/2K! det
0≤i,j≤K−1

1

(2K − i − j − 1)! = K!
K−1∏

0

l!
(K + l)! , (40)

and thus finally

exp−(NKV (λ))F2K(λ, · · · , λ) = (2πNρ(λ))K2
e−NK

K−1∏
0

l!
(K + l)! . (41)

4. Normalizations and Universality

We have studied in the previous section a Gaussian ensemble of random matrices and
found that the result (41) for the moment involved(2πNρ(λ))K

2
times a number and

one would like to see how general this result is, as far as the dependence in the density
of states is concerned as well as for the normalization. We shall see that this behaviour
is quite general, and given a proper normalization, that the prefactor is also universal.
Indeed let us recall how the K-point correlation function of the eigenvalues are defined
in an ensemble of hermitianN × N matricesX with a probability weight proportional
to exp−NTrV (X). In [1] one finds

RK(λ1, · · · , λK) = N !
(N −K)!

1

ZN

∫
dλ(K+1) · · · dλN

{
exp−N

N∑
1

V (λl)

}

× 2(λ1, · · · λN). (42)

Comparing with our initial definitions (5) we see that one has the relation

RK(λ1, · · · , λK) = N !
(N −K)!

ZN−K
ZN

{
exp−N

K∑
1

V (λl)

}
 2(λ1, · · · λK)

×F2K(λ1, λ1, · · · , λK, λK); (43)

the r.h.s. reduces, up to a normalization, to our previous product of characteristic func-
tions of matrices(N − K) × (N − K), each one beeing repeated twice. On the other
hand it is well known ([1]) that this K-point function may be expressed in terms of a
kernelKN as

RK(λ1, · · · , λK) = det
1≤i,j≤K KN(λi, λj ), (44)

and without entering into the precise definition ofKN in terms of orthogonal polyno-

mials, one should simply recall that
KN(λ,µ)

ρ((λ+ µ)/2)) is universal in the Dyson limit ([4])

(λ − µ goes to zero, N goes to infinity,N(λ − µ) finite), i.e. it is independent of the
polynomialV which defines the probability measure.
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Therefore we define a modified weight, and modified moments,

12K(λ1, λ2, · · · , λ2K)

= N !
(N −K)!

ZN−K
ZN

{
exp−N

2

2K∑
1

V (λl)

}
F2K(λ1, λ2, · · · , λ2K) (45)

and

M2K(λ) = N !
(N −K)!

ZN−K
ZN

{exp−NKV (λ)}F2K(λ, λ, · · · , λ). (46)

The universality of level correlations implies the universality ofM2K . Therefore we have
to return to the Gaussian case, in order to take into account this new normalization, and
then the result will be universal.

From (13) we have

N !
(N −K)!

ZN−K
ZN

= 1∏N−1
N−K hn

, (47)

and, given the explicit expression (19) ofhn for the Gaussian case, we find, in the large
N limit,

N !
(N −K)!

ZN−K
ZN

= (2π)−KeNK. (48)

With this normalization the universal momentM2K(λ) is given by

M2K(λ) = (2π)−K(2πNρ(λ))K2
K−1∏

0

l!
(K + l)! . (49)

In fact this connection between the usual correlation functions and the expectation
values of a product of characteristic functions, (43) and (44), allows one to recover
directly the momentM2K(λ), by using the universal expression for the kernelK(λi, λj )

in the Dyson limit,

K(λi, λj ) = sin[πNρ(λi − λj )]
π(λi − λj ) . (50)

The integral representation, over 2K variables describing contours around theK poles
λl ,

det1≤i<j≤K K(λi, λj )
 2(λ1, · · · , λK)

= 1

K!
∮ K∏

1

dul

2πi

∮ K∏
1

dvl

2πi

 (u1, · · · , uK) (v1, · · · , vK)∏K
i=1
∏K
j=1(ui − λj )(vi − λj )

K∏
i=1

K(ui, vi) (51)



Characteristic Polynomials of Random Matrices 121

allows one to write easily the limit in which all theλ’s are equal:

lim
det1≤i<j≤K K(λi, λj )
 2(λ1, · · · , λK)

= 1

K!
∮ K∏

1

dul

2πi

∮ K∏
1

dvl

2πi

 (u1, · · · , uK) (v1, · · · , vK)∏K
i=1(ui − λ)K(vi − λ)K

×
K∏
i=1

K(ui, vi). (52)

Since the kernel is a Toeplitz matrix, i.e.K(λi, λj ) = K(λi − λj ), one can shift theu’s
and thev’s of λ and the r.h.s. becomes independent ofλ. In the case of the sine kernel
we obtain, in the limit in which all theλ’s are equal,

1

K!
∮ K∏

1

dxl

2πi

∮ K∏
1

dvl

2πi

 (v1, · · · , vK) (x1, · · · , xK)∏K
i=1[(vi + xi)KvKi ]

K∏
i=1

sin(πNρxi)

πxi

= (2πρN)K
2

(2π)K

K−1∏
l=0

l!
(l +K)! . (53)

We have indeed recovered, for any functionV defining the probability distribution, the
universal moment (49)

5. Large N Asymptotics

Rather than starting, as in the previous sections, with an exact expression for the correla-
tion functions of characteristic functions, and at the end lettingN go to infinity, we may
use a different method to investigate directly the large N limit for the moments of their
distribution. This method applies for a general probability distribution of the form (3)
and it may also be used to the more general case of an external matrix source coupled
to the matrixX [7] in this distribution. It turns out that here again it is neccessary to
consider firstF2K for differentλj ’s, and let all theλj ’s approach the sameλ at the end
of the calculation.

From (5), we have

∂ lnF2K

∂λi
= MGλ(λi), (54)

whereGλ(λi) is the resolvent,

Gλ(λi) = 1

M

〈
Tr

1

λi − X

〉
. (55)

The bracket here denotes an expectation value with a weight which includes bothP(X)

and
2K∏
1

det(λl − X). We assume that the asymptotic spectrum of the eigenvaluesxi of

X fill a single interval[α, β] in the large M limit. (It is sufficient to consider the single
cut case, since we are interested in Dyson short distance universality, which involves
only the local statistics). ThereforeGλ(z) is also analytic in a plane cut from the interval
[α, β], and

Gλ(x ± i0) = Ĝλ(x)∓ iπρλ(x), (56)
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whereĜλ(x) = [Gλ(x + i0) +Gλ(x − i0)]/2. The saddle point equation in the large
M limit becomes

2MGλ(z)−NV ′(z)+
2K∑
j=1

1

z− λj = 0. (57)

The last term of (57) is of relative order 1/N and thus we have to solve this Riemann-
Hilbert problem to this order. At leading order, we have 2Ĝ(x) = V ′(x), and up to order
1/N ,

Gλ(z) = G(z)+ 1

N

(
CG(z)+

2K∑
i=1

Cλi (z)

)
. (58)

From the saddle point equation (57), we haveĈG(x) = (N −M)Ĝ(x) andĈλi (x) =
1

2(λi − x) . We now setM = N − K. The functionsCG(z) andCλi (z) are uniquely

determined from their analyticity in a plane cut fromα to β, and their fall-off as 1/z2

for largez (since bothGλ(z) andG(z) behave as 1/z at infinity). The result is

CG(z) = KG(z)− K√
(z− α)(z− β),

Cλi (z) = 1

2

1√
(z− α)(z− β)

(
1−

√
(z− α)(z− β)− √

(λi − α)(λi − β)
z− λi

)
. (59)

These expressions lead to

(N −K)Gλ(λi) = NG(λi)− 1

2

d

dλi
log
√
(λi − α)(λi − β)

−1

2

2K∑
j=1,j �=i

1

λi − λj

(
1 −

√
(λj − α)(λj − β)
(λi − α)(λi − β)

)
. (60)

Since there is a branch cut betweenα andβ, one must specify whetherλi approaches
the real axis from above or from below. The sign of the square root on both sides of the
cut will be denotedεi . There are then a priori 22K saddle points corresponding to the
different choices ofεi . For each choice of theεi ’s, we have

∂

∂λi
log F̃ε = εiNiπρ(λi)+ −1

2

d

dλi
log
√
(λi − α)(β − λi)

−1

2

2K∑
j=1,j �=i

1

λi − λj

(
1 − εj

√
(λj − α)(β − λj )

εi
√
(λi − α)(β − λi)

)
, (61)

whereF̃ε means the value ofF2K for givenεj ’s multiplied by a factor exp(−N
2

∑
V (λi)).

Introducing the parametrizationφ(x), defined byx = 1
2(α + β) − 1

2(β − α) cosφ(x)
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and 1
2(β − α) sinφ(x) = √

(x − α)(β − x), we have

d

dλi
log sin

(
εiφ(λi)− εjφ(λj )

2

)

= εi

2

1√
(λi − α)(β − λi)

εi
√
(λi − α)(β − λi)+ εj

√
(λj − α)(β − λj )

λi − λj . (62)

Thus we obtainF̃ε by integration,

F̃ε = Cε
2K∏
i<j

sin
(
εiφ(λi )−εj φ(λj )

2

)
λi − λj

2K∏
i=1

1√
sinφ(λi)

×
2K∏
i=1

exp

(
εiiNπ

∫ λi

λ0

ρ(x)dx

)
. (63)

We have to sum over all the saddle-point contributions, i.e. sum over all the different
choices ofεj ’s. We focus now on the Dyson limit in which the differencesλi−λj are all

of order 1/N. Among the 22K possibilities, we retain only the

(
2K
K

)
solutions in which

half ofK amongεl are positive, and the remaining halves are negative. Otherwise, the
exponential factor in the final result gives very rapid oscillations in the large N limit.
This situation is thus exactly similar to that of the previous section.

Again the sum over the

(
2K
K

)
saddle-points is conveniently written as a contour

integral

F̃ = 1

K!
∮

· · ·
∮
du1du2 · · · duK

(2πi)K

∏
n<m(un − um)2∏K

n=1
∏2K
j=1(un − λj )

cos


 2K∑
j=1

λj − 2
K∑
n=1

un


 .
(64)

When we set all theλj = λ, this becomes

F̃ = 1

K!
∮ ∏

dui

(2πi)K

∏
i<j (ui − uj )2∏K

i=1 u
2K
i

cos

(
2
K∑
n=1

unπNρ

)
(65)

and we recover the result (38). However in this method, since we re-integrated the
logarithmic derivative ofF2K , the constant of integration remains undetermined. We
may fix this constant by the same requirement that we have used in the previous section,
and the final result agrees then with the previous calculation.

6. Symplectic Group Sp(N)

We have studied up to now unitary invariant measures, characterized for the probability
law of the eigenvalues by the factor| (x1, · · · , xM)|β . We could also consider the
Gaussian orthogonal ensemble (GOE, withβ = 1) or Gaussian symplectic (GSE, with
β = 4). If we took the GOE for instance, we could immediately relate the correlation
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functions of characteristic determinants, to the correlations of the eigenvalues, as in
(43) (except that sinceβ is one no doubling of theλ’s is needed), and therefore relate
the moments universality to the Dyson universal limit. Remaining still with the unitary
β = 2 class, in Cartan’s classification of symmetric spaces, we find ensembles which
are invariant underSp(N) orO(N). One of the physical applications of randomSp(N)
matrices, is the statistics of the energy levels inside a superconductor vortex [8]. In
number theory, it is known that some generalizations of Riemann’sζ -functions, such
as the DirichletL-function L(s, χd), whereχd is a quadratic Dirichlet character of
mod |d|, present a spectrum of low lying zeros on the line Res = 1/2, which agrees
with the statistics of the eigenvalues of the Sp(N) random matrix theory [12,14]. In this
Sp(N) invariant symmetric space, the eigenvalues appear always in pairs of positive and
negative real numbers. Due to this fact, a new universality class governs the correlations
of the eigenvalues near the origin, i.e. nears = 1/2 (whereas in the bulk one recovers
the previous unitary class).

Therefore we study now the new universality class, which governs the new scaling
near the origin. We thus consider random Hermitian matricesX, which are 2M × 2M
and satisfy the condition

XT J + JX = 0, (66)

whereJ is

J =
(

0 1M
−1M 0

)
. (67)

The unitary symplectic group is the subgroup ofSU(2M) consisting of 2M×2M unitary
matrices, satisfying the symplectic constraint

UT = −JU†J. (68)

The integration over this unitary symplectic group forFK(λ1, · · · , λK) gives [8]

FK(λ1, · · · , λK) =
〈
K∏
α=1

det(λα −X)
〉

= 1

ZM

∫ M∏
1

dµ(xi)  
2(x2

1, · · · , x2
M)

M∏
i=1

x2
i

K∏
α=1

M∏
i=1

(λ2
α − x2

i ). (69)

Repeating the analysis of Sect. 2,FK(λ1, · · · , λK) is given again by a determinantal
form as (14). Changingx1 to x2

i = yi and denotingµi = λ2
i , we have

FK(µ1, · · · , µK) =
∫ ∞

0

K∏
i=1

dyi

K∏
i=1

y
1
2
i

∏
i<j

(yi − yj )2
K∏
α=1

K∏
i=1

(µα − yi)e−N
∑
yi .

(70)

The orthogonal monic polynomials for this measure are the Laguerre polynomials

L
( 1

2 )
n (y), which is defined by

L
( 1

2 )
n (y) = (−1)n√

y

eNy

Nn
(
d

dy
)n(yn+

1
2 e−Ny)

= (−1)n

Nn
n!
∮
du

2πi

(1 + u)n+ 1
2

un+1 e−Nuy, (71)
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normalized as required toL
( 1

2 )
n (y) = yn + lowerdegree. The orthogonality condition is∫ ∞

0
dye−Ny√yL(

1
2 )
n (y)L

( 1
2 )
m (y) = hnδn,m (72)

with hn = n!<(n+ 3
2)/N

2n+ 3
2 , andhN−1 � 2πe−2N in the large N limit.

From (14), we have

FK(µ1, · · · , µK) = (−1)
K
(
M+K−1

2

)∏K−1
l=0 (M + l)!
NK(M+K

2 − 1
2 )

1

 (µ)

×
∮ K∏
i=1

(
dzi

2πi

) K∏
l=1

(1 + zl)M+K− 1
2

zM+K
l

e−N
∑
zαµα

K∏
i<j

(
zi

1 + zi − zj

1 + zj
)
. (73)

We now setM = N − K, and the factor
K−1∏

0

(M + l)!/NK(M+K/2−1/2) is equal to

(2πN)Ke−KN , up to corrections of relative order 1/N in the large N limit. The large
N limit is governed by the saddle-point equationsz2l + zl + 1

µl
= 0. In the following we

study the scaling vicinity of the origin, in which all theµl ’s scale as 1/N2. Thenz2l at
the saddle-point may be expanded

zl � iεl√
µl

− 1

2
+O(√µl), (74)

whereεl = ±1.

Noting that
∏
i<j

(
zi

1 + zi − zj

1 + zj
)

=
∏
i<j

(−z2i µi + z2jµj ) � iK(K−1)/2
∏
(εiλi −

εjλj ) (εi = ±1), and combining it with the Vandermonde (λ2), we are left with a
factor

∏
i<j

1
εiλi+εj λj in this scaling limit. We have also the exponentiale−N

∑
zαµα =

e−i
∑
εiλi .

We have again to sum over all the saddle-points, which are characterized by the sign
of εi = ±1, and to include the factor due to the fluctuations near the saddle-point.
The Gaussian fluctuations yield a factor(2π/(−2iεiλ3

i N))
1/2. Then(1 + zl)−1/2 �

(λi/(εi i))
1/2. There is a 1/(2πi)K in addition. We have an extraεi due to the contour

direction, which goes through two saddle points; one is in the positive imaginary plane
and the other in the negative half-plane. WhenK = 2, andλ1 andλ2 are of order 1/N ,
we obtain

F2(λ1, λ2) = 2πe−2N

λ1λ2
KSP (λ1, λ2), (75)

with the kernelKSP (λ1, λ2) given by

KSP (λ1, λ2) = sin[N(λ1 − λ2)]
2π(λ1 − λ2)

− sin[N(λ1 + λ2)]
2π(λ1 + λ2)

. (76)

The coefficient(2π)e−2N is cancelled by the normalization factor 1/hN−1. Putting
λ1 = λ2 = 0, we have, neglecting the factor 2πe−2N , F2(0) � 1

2π
4
3!N

3.
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For general K,FK(λ1, · · · , λk) becomes in the scaling limit

FK(λ1, · · · , λK) = (−1)K(N−K+K−1
2 )(2πN)

K
2 e−NK(i)

K
2 (K−1)

( π
N

)K
2 1

(2πi)K

×
∑
ε

e−iN
∑
i εiλi∏K

i=1 εiλi
∏
i<j (εiλi + εjλj )

. (77)

The sum over all the saddle-points, characterized byεi ± 1, is conveniently written as a
contour integral,

I =
∑
ε

1∏
i<j (εiλi + εjλj )

∏
(εiλi)

e−iN
∑
εiλi

= (−1)
K
2 (K−1) 2

k

k!
∮

· · ·
∮ k∏
i=1

(
dui

2πi

)
 (u2) (u)∏k

i=1
∏k
j=1(u

2
i − λ2

j )
e
−iN
(∑k

i=1 ui

)
, (78)

where the contour enclosesui = ±λj . We may now setλj = λ, and keeping track of
various coefficients, we obtain theK th momentFK(λ, · · · , λ). For generalλ, the result
has a complicated form, but whenλ = 0, it becomes a number

FK(0, · · · ,0) = 2k/2e−NK

k! N
K
2 (K+1)(i)

K
2 (K−3)(−1)K(N−1)

×
∮ k∏
i=1

(
dui

2πi

)
 (u2) (u)∏k

i=1 u
2K
i

e−i
∑k
i=1 ui . (79)

This representation allows one to compute theK th moment at the origin. By the expansion
of the VanderMonde determinants, similarly to (39), (79) is reduced to a determinant

form. We have by the normalization;̃FK(0) = (2π)−K
2 eKNFK(0),

F̃K(0) = (−1)KN
K∏
l=1

l!
(2l)!

(2N)
K
2 (K+1)

π
K
2

. (80)

Comparing to the result of the unitary case in (49), we notice that the exponent of N
is different and the universal coefficient is given also by the product of the ratio of the
factorizations.

ForF2K(λ1, λ1, · · · , λK, λK), the even 2K th moment may be obtained again from
F̃2K(λ1, λ1, · · · , λK, λK) = det[K(λi, λj )]/( 2(λ2)

∏
λ2
i ); using the expression for

the kernel (76), we have for the 2K th moment,

det[K(λi, λj )]
 2(λ2)

∏
λ2
i

= 2K

K!
∮ ∏ dui

2πi

∮ ∏ dvi

2πi

 (u2) (v2)∏K
i=1
∏K
j=1(u

2
i − λ2

j )
∏K
i=1
∏K
j=1(v

2
i − λ2

j )

× 1

(2π)K

K∏
i=1

sin[N(ui − vi)]
ui − vi . (81)
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For generalλ, the result has a complicated form, but again here one can compute from
there the values atλ = 0. The result agrees with the previous expression ofF̃2K(0) in
(80). One may also use the large N asymptotic analysis as in Sect. 5 and rederive the
results as the same sum (78) over the saddle points.

7. Orthogonal Group O(N)

We discuss here theO(2N) case, which is different fromSp(N) (whereasO(2N + 1)
has a structure which is similar toSp(N) [8]). In number theory, for example, the twisted
L-function,Lτ (s, χd), presents a spectrum of low lying zeros, which agrees with the
statistics of the eigenvalues of theO(2N) random matrix theory [12,14]. Then in terms
of eigenvalues

FK(λ1, · · · , λK) = <
K∏
α=1

det(λα −X) >

= 1

ZM

∫ M∏
1

dµ(xi)  
2(x2

1, · · · , x2
M)

K∏
α=1

M∏
i=1

(λ2
α − x2

i ). (82)

The difference between the symplectic and orthogonal case is due to the absence of the
factor

∏
x2
i . Using the analysis of Sect. 2,FK(λ1, · · · , λK) is given by the determinantal

form as in (14). Changingx2
i to yi and denotingµi = λ2

i , we have

FK(µ1, · · · , µK) =
∫ ∞

0

K∏
i=1

dyi

K∏
i=1

y
− 1

2
i

∏
i<j

(yi − yj )2
K∏
α=1

K∏
i=1

(µα − yi)e−N
∑
yi .

(83)

The orthogonal polynomials for this case are Laguerre polynomialsL
(− 1

2 )
n (y), which is

defined by

L
(− 1

2 )
n (y) = (−1)n

√
y
eNy

Nn
(
d

dy
)n(yn−

1
2 e−Ny)

= (−1)n

Nn
n!
∮
du

2πi

(1 + u)n− 1
2

un+1 e−Nuy (84)

normalized asL
(− 1

2 )
n (y) = yn + lowerdegree. The orthogonality condition is∫ ∞

0
dye−Ny 1√

y
L
(− 1

2 )
n (y)L

(− 1
2 )

m (y) = hnδn,m (85)

with hn = n!<(n + 1
2)/N

2n+ 1
2 , andhN−1 � 2πe−2N in the large N limit. From (14),

we have similar to theSp(N) case,

FK(µ1, · · · , µK) = (−1)
K
(
M+K−1

2

)∏K−1
l=0 (M + l)!
NK(M+K

2 − 1
2 )

1

 (µ)

×
∮ K∏
i=1

(
dzi

2πi

) K∏
l=1

(1 + zl)M+K− 3
2

zM+K
l

e−N
∑
zαµα

K∏
i<j

(
zi

1 + zi − zj

1 + zj
)
. (86)
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We setM = N − K, and the factor
K−1∏

0

(M + l)!/NK(M+K/2−1/2) is equal to

(2πN)Ke−KN , up to corrections of relative order 1/N in the large N limit. The saddle
point zl is same as (74). The only difference is the extra factor(1 + zl)−1 � λl

iεl
. When

K=2, we obtain

F2(λ1, λ2) = 2πe−2NKO(λ1, λ2), (87)

with the kernelKO(λ1, λ2) given by

KO(λ1, λ2) = sin[N(λ1 − λ2)]
2π(λ1 − λ2)

+ sin[N(λ1 + λ2)]
2π(λ1 + λ2)

. (88)

The factor(2π)e−2N is cancelled by the normalization factor 1/hN−1 � (2π)−1e2N .
Puttingλ1 = λ2 = 0, we have neglecting the factor 2πe−2N , F2(0) � 1

2π (2N).
For general K,FK(λ1, · · · , λk) becomes in the scaling limit

FK(λ1, · · · , λK) = (−1)K(N−K+K−1
2 )(2πN)

K
2 e−NK(i)

K
2 (K−3)

( π
N

)K
2 1

(2πi)K

×
∑
ε

e−iN
∑
i εiλi∏

i<j (εiλi + εjλj )
. (89)

The sum over all the saddle-points, characterized byεi ± 1, is conveniently written as a
contour integral,

I =
∑
ε

1∏
i<j (εiλi + εjλj )

∏
(εiλi)

e−iN
∑
εiλi

= (−1)
K
2 (K−1) 2

k

k!
∮

· · ·
∮ k∏
i=1

(
dui

2πi

)
 (u2) (u)

∏K
i=1 ui∏k

i=1
∏k
j=1(u

2
i − λ2

j )
e
−iN
(∑k

i=1 ui

)
, (90)

where the contour enclosesui = ±λj . We may now setλj = λ, and keeping track of
various coefficients, we obtain theK th momentFK(λ, · · · , λ). For generalλ, the result
has a complicated form, but whenλ = 0, it becomes a number

FK(0, · · · ,0) = 2k/2e−NK

k! N
K
2 (K−1)(i)

K
2 (K−5)(−1)K(N−1)

×
∮ k∏
i=1

(
dui

2πi

)
 (u2) (u)∏k
i=1 u

2K−1
i

e−i
∑k
i=1 ui . (91)

The normalization factor is(2π)−K
2 eKN for FK(λ). Denoting the normalizedK th mo-

ment byF̃K(λ), we have

F̃K(0) = (−1)KN
K−1∏
l=1

l!
(2l)!

(2N)
K
2 (K−1)

π
K
2

. (92)
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We haveF̃2K(λ1, λ1, · · · , λK, λK) = det[K(λi, λj )]/ 2(λ2). Using the expression for
the kernel (88), we obtain for the 2K th moment in the orthogonalO(2N) case,

det[K(λi, λj )]
 2(λ2)

= 2K

K!
∮ ∏ dui

2πi

∮ ∏ dvi

2πi

 (u2) (v2)
∏K
i=1(uivi)∏K

i=1
∏K
j=1(u

2
i − λ2

j )
∏K
i=1
∏K
j=1(v

2
i − λ2

j )

× 1

(2π)K

K∏
i=1

sin[N(ui − vi)]
ui − vi . (93)

Insertingλi = 0, we find the consistent result with (91).

8. Negative Moments

In number theory literature one finds various moments in which powers of the zeta-
functions appear in the denominator [11]. The equivalent for random matrices would

be to consider expectation values of the form

〈
K∏
1

det(λl −X)εl
〉

in which theε’s

are±1. One cannot use the techniques introduced hereabove any more but, at least in
the Gaussian case, it is easy to obtain exact expressions through the use of auxiliary
integrations, over both commuting and anti-commuting variables.

We first rederive our previous results for positive moments (i.e.εl = +1 for all l’s) .
Let us introduceM Grassmann variables̄ca, ca and an integration normalized to∫

dc̄dc

π
c̄c = 1. (94)

Then, for an hermitianM ×M matrixX, one has

det(λ−X) = N−M
∫ M∏

1

dc̄adca

iπ
expiN

∑
a,b

[c̄a(λδa,b −Xa,b)cb]. (95)

A product
K∏
1

det(λl − X) is represented by a product ofK integrals of the type (95).

At the end the random matrixX appears in an expression of the form

exp−iN
K∑
l=1

M∑
a,b=1

Xabc̄
(l)
a c

(l)
b . (96)

With the Gaussian probability weight (16) we have

〈 expiNTrAX 〉 = exp−N
2

TrA2, (97)
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and thus〈
K∏
1

det(λl −X)
〉

= N−M
∫ M∏

1

dc̄adca

π
exp


N K∑

l=1

iλlγll + N

2

K∑
l,m=1

γlmγml



(98)

with

γlm =
N∑
a=1

c̄(l)a c
(m)
a . (99)

We can use an auxiliaryK ×K hermitian matrixB to replace the quadratic terms inγ
by

exp
N

2
Trγ 2 =

(
N

2π

)K2/2 ∫
dK

2
B exp

(
NTrγB − N

2
TrB2

)
. (100)

We are left with an integral over the Grassmannian variables

N−MK
∫ M∏
a=1

K∏
l=1

dc̄a
(l)dc

(l)
a

iπ
expN

K∑
l,m=1

(iλlδlm + Blm)
M∑
a=1

c̄a
(l)c(m)a

=
(

det
1≤l,m≤K(λlδlm − iBlm)

)M
. (101)

We end up with an integral over aK ×K hermitian matrixB:〈
K∏
1

det(λl −X)
〉

=
(
N

2π

)K2/2 ∫
dK

2
B {det(λlδlm − iBlm)}M exp−N

2
TrB2.

(102)

Therefore, from this method as well, we have reduced the correlations of the charac-
teristic functions of the matrix, to an integral overK2 variables. If one is interested in
the moments, i.e.λl = λ for all l’s, one may take as variables the eigenvaluesbl of
B (which yields a factor 2(λ1, · · · , λK)), and recover the previous expressions. For
theλl ’s non-equal, one must first shift the matrixB of the diagonal matrixiλlδlm, and
then integrate out the unitary groupSU(K) by the Itzykson–Zuber formula [15–17],
to reduce it, as before, to an integral overK variables (a slightly different integral, but
which may be handled in the largeN -limit in an identical fashion).

In case of negative moments the method is identical, except that we need now ordinary
commuting variables, instead of Grassmannian. Indeed starting from

1

det(λ−X ± iε)

= NM
∫ M∏

1

dφ∗
adφa

±iπ exp±iN
∑
a,b

[φ∗
a (λδa,b −Xa,b ± iεδa,b)φb], (103)
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one can introduce, for each factor(det(λl−X))εl an integration overM complex variables
(φ∗
a , φa) if εl = −1, or overM complex Grassmannian variables(c̄a, ca) if εl = +1. The

expectation value with the Gaussian weightP(X) is then immediate. Of course for the
negative moments, one must pay attention to the sign of the infinitesimal imaginary part
of theλ’s since there is a cut on the real axis along the support of Wigner’s semi-circle.

Although the method is obvious and elementary, the notations can become cumber-
some and, rather than working out the most general case, and arbitrary choices for the
signs of the imaginary parts, we restrict ourselves to an example. If we consider only
negative powers, we may follow identical steps as hereabove with positive powers, and
we find

〈
K∏
1

1

det(λl −X + iε)

〉
=
(
N

2π

)K2
2
∫
dK

2
B {det(λlδlm − Blm + iεδlm)}−M

× exp−N
2

TrB2. (104)

When all theλ’s are equal the r.h.s. simplifies to an integral overK variables

∫ K∏
1

dbl
 2(b1, · · · , bK)∏K
1 (λ− bl + iε)M

exp−
(
N

2

K∑
1

b2
l

)
.

For theλl ’s non-equal, after a shift of the matrixB and the integration overSU(K), one
obtains

〈
K∏
1

1

det(λl −X + iε)

〉
=
(
N

2π

)K(K+1)/2

exp−N
2

K∑
1

λ2
l

×
∫ K∏

1

dbl

(bl − iε)M
 (b1, · · · , bK)
 (λ1, · · · , λK) exp−N

K∑
1

(
1

2
b2
l + blλl

)
, (105)

from which one could repeat easily the analysis of Sect. 3.

9. Discussion

We have discussed the universal expressions for the moments of the characteristic poly-
nomials in a random matrix theory, where the ensembles belong to the unitary family
(β = 2).

We have shown that these universalities are related to the universality of the kernel
in Dyson’s short distance limit. Since the statistics of the zeros of theζ -function follows
the universal behavior of the Gaussian unitary ensemble (GUE) [12,19], the power
moment of theζ -function also has to follow the universal behavior of GUE. We have
studied here the characteristic polynomial, which corresponds to theζ -function on the
critical line, and we have found a universal behavior for the moments of the characteristic
polynomial. The universal number (49) appears indeed in the average of the moment of
theζ -function, which was conjectured as (2),γK =∏K−1

0 l!/(K + l)!.
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Our method of splitting the singularity by the introduction of the distinctλi may be
applied directly to the average of the power moment of the Riemannζ -function. We
consider the average of the product ofζ(si), si = 1

2 ± i(λi + t),

F = 1

T

∫ T

0

2K∏
i=1

ζ(si)dt, (106)

where we chooseK positiveλi ’s andK negative ones. If, at the end of the calculation,
we set all the positiveλi ’s equal toλ and the negative ones to−λ, one recovers the 2K th

moment of the modulus of theζ -function. WhenT is large, the leading and the next
leading terms of the derivative of lnF with respect toλi , are presumably given by

∂ lnF

∂λi
∼ ±i ln T −

∑
j �=i

1

λi − λj , (107)

where the pole in the second term appears when two distinctλi coincide, one of theλi ’s
with a plus sign and the other one with a minus sign. In the Appendix a discussion of
the assumptions leading to (107) is given. Then, after integration, we have, following a
line of arguments similar to those of Sect. 5,

F = c

K!
∮ K∏
i=1

dui

2πi

 2(u)∏K
i=1
∏2K
j=1(ui − λj )

e−i
∑
ui ln T . (108)

Therefore, if we let theλi ’s coincide, we recover the integral (39), which provides the
universal coefficientγK . The coefficientc is not determined by this method, which starts
with the logarithmic derivative of F, and an extra normalization condition is needed. In
(A.7) it will be argued that a coefficientaK is present in the result, which is the residue at
s = 1 of a functiongK(s) defined in theAppendix; it is thus plausible that the coefficient
c in (108) is nothing butc = aK .

We have also investigated negative moments as (105). This result may apply to the
mean value of negative moments of theζ -function. Indeed, the exponentK2 of logT
for the negative integerK, has been conjectured [11].

For the symplectic and orthogonal case,Sp(N) andO(2N) ensembles, there may be
also be a correspondence between the random matrix results (80), (92) and the average
values of the certainL-functions, with the sameγK , as far as there is a universality.
Existing conjectures [13] for the moment of theL function shows the same exponent
K
2 (K + 1)andK2 (K−1) for the symplectic and the orthogonal cases, and the conjectured
values ofγK agree with our results (80) and (92).

Acknowledgement. This work was supported by the CREST of JST, and one of us (E.B.) is happy to thank
the organizers of the third CREST meeting for the invitation extended to him.

Appendix: Summation Formula for the Riemann Zeta-Function

The Riemannζ -function is given by

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1

1 − 1
ps

)
, (A.1)
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wherep is a prime number. TheK th power of this function is written as

[ζ(s)]K =
∞∑
n=1

dK(n)

ns

=
∏
p

(
1 + dK(p)

ps
+ dK(p

2)

p2s + · · ·
)
, (A.2)

wheredK(n) is theK th Dirichlet coefficient. Whenn is a power of the prime number,
dK(p

j ) = <(K + j)/<(K)j ! (this follows easily from the definition of the Dirichlet
coefficientdK(n) =

∑
n1···nK=n

1).

We consider now the average of (A.2) on the critical lines = 1
2 + it over a large

intervalT ,

1

T

∫ T

0
dt

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣
2K

= 1

T

∫ T

0
dt

∣∣∣∣∣
∞∑
n=1

dK(n)

n
1
2+it

∣∣∣∣∣
2

. (A.3)

Expanding the sum|
∞∑
n=1

dK(n)

ns
|2, which appears in (A.3), we first examine the diagonal

terms ,

∞∑
n=1

d2
K(n)

ns
=
∏
p

(
1 + d2

K(p)

ps
+ d2

K(p
2)

p2s + · · ·
)

=
∏
(1 − p−s)−K2

(
1 − K2(K − 1)2

4
p−2s + · · ·

)

= [ζ(s)]K2
gK(s), (A.4)

where

gK(s) =
∏
p

[
(1 − p−s)K2

∞∑
j=0

d2
K(p

j )

pjs

]
. (A.5)

The functiongK(s) is an analytic function ofs, including the points = 1.
Let us examine the contribution of these diagonal terms given by (A.4) to (A.3). Their

contribution is conveniently found, if we apply the following inversion formula (Perron
formula):

B(s) =
∞∑
n=1

bnn
−s ,

f (x) =
∑
n≤x
bn. (A.6)

Then, we have

f (x) = 1

2πi

∫ c+i∞

c−i∞
B(s)xss−1ds, (A.7)
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in whichc is some arbitrary real positive number. Substitutingbn = d2
K(n), andB(s) =

ζK
2
(s)gK(s), we obtain, from the residue of the singularity ats = 1,

∑
n≤x
d2
K(n) = gK(1)

<(K2)
x logK

2−1 x +O(x logK
2−2 3x). (A.8)

By a partial summation, this approximate calculation yields,

∑
n≤T

d2
K(n)

n
∼ aK

<(K2 + 1)
logK

2
T , (A.9)

whereaK = gK(1).
From these formulae, it is seen that the contribution of the diagonal terms to the

average of theK th power moment of theζ -function does take the asymptotic form
of (1). However, neglecting the off-diagonal terms, we failed to reproduce the proper
coefficientγK , whose understanding clearly requires the off-diagonal products in (A.4)
as well.

A lower bound for the 2K th moment is known [18]

∫ T+Y

T−Y
|ζ
(

1

2
+ it

)
|2Kdt � Y logK

2
Y, (A.10)

where logε T ≤ Y ≤ T . An upper bound seems difficult to obtain, and (1) remains as a
conjecture, except for theK = 1 andK = 2 cases, for which it has been derived.

We note here the results and the conjecture of Montgomery [19] about the density of
the zeros of Riemannζ -function and their correlation. Whenγ is a zero on the critical
line, ζ(1

2 + iγ ) = 0,

∑
0<γ≤T

1 ≥
(

2

3
+ o(1)

)
T

2π
logT , (A.11)

∑
0<γ,γ ′≤T ,α/L≤γ−γ ′≤β/L

1 = (1 + o(1))
[∫ β

α

(
1 − (sinπu

πu
)2
)
du+ δ(α, β)

]
T L,

(A.12)

whereL = logT/(2π), andδ(α, β) = 1 for 0 ∈ [α, β], and otherwise zero. Then (A.11)
is equivalent to the average density of state in (1), with forK = 1, γK = aK = 1 and
(A.12) is equivalent to the pair correlation function in random matrix theory.

Let us present the arguments which lead to the conjectured formula (107); we first
assume thatλ1 − λ2 ∼ O((ln T )−1) for largeT . The diagonal approximation for the
product ofζ(s1)andζ(s2), which earlier gave the expected behaviour for the moment, but
with a wrong coefficient, may thus be applied here again, since we are taking a logarith-
mic derivative, which is unsensitive to overall normalizations. Within this assumption,
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we obtain

∂

∂λ1
logF = ∂

∂λ1
ln

[
1

T

∫ T

1
dt

( ∞∑
n=1

1

n
1
2+iλ1+it

)( ∞∑
n=1

1

n
1
2−iλ2−it

)
ζ(s3) · · · ζ(s2K)

]

∼ ∂

∂λ1
ln

[(∑
n<T

1

n1+i(λ1−λ2)

)
1

T

∫ T

1
dtζ(s3) · · · ζ(s2K)

]

∼ ∂

∂λ1
ln

[∫ T

T0

dx
1

x1+i(λ1−λ2)

]

∼ −i ln T − 1

λ1 − λ2
. (A.13)

We have considered up to now what happens whenλ1−λ2 is small, but we should repeat
the same arguments for the Dyson limit in which all pairsλ1−λj are of order(logT )−1.
Therefore, when one sums over all possible combinations, one obtains (107).
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