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Abstract: Number theorists have studied extensively the connections between the dis-
tribution of zeros of the Riemanag-function, and of some generalizations, with the
statistics of the eigenvalues of large random matrices. It is interesting to compare the av-
erage moments of these functions in an interval to their counterpart in random matrices,
which are the expectation values of the characteristic polynomials of the matrix. It turns
out that these expectation values are quite interesting. For instance, the moments of or-
der 2K scale, for unitary invariant ensembles, as the density of eigenvalues raised to the
power K 2; the prefactor turns out to be a universal number, i.e. it is independent of the
specific probability distribution. An equivalent behaviour and prefactor had been found,
as a conjecture, within number theory. The moments of the characteristic determinants
of random matrices are computed here as limits, at coinciding points, of multi-point
correlators of determinants. These correlators are in fact universal in Dyson’s scaling
limit in which the difference between the points goes to zero, the size of the matrix goes
to infinity, and their product remains finite.

1. Introduction

The correlation function of the eigenvalues of lalyex N matrices are known to
exhibit a number of universal features in the largdimit. For instance in the Dyson
limit [1, 2], when the distances between these eigenvalues, measured in units of the local
spacing, becomes of ordef ¥, the correlation functions, as well as the level spacing
distribution, become universal, i.e. independent of the specific probability measure.
For finite differences, upon a smoothing of the distribution, the two-point correlation
function is again universal [3,4]. The short distance universality was also shown to
extend to external source problems [5-8], in which an external matrix is coupled to the
random matrix.

In this article, we study the average of the characteristic polynomials, whose zeros are
the eigenvalues of the random matrix. The probability distribution of the characteristic
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polynomial defr — X) of a random matrixX, a polynomial of degre&/ in A, may
be characterized by its momerﬁtket’( - X)), or better by its correlation functions

K
<]_[ det(h; — X)>.
=1

This study is motivated by various conjectures which appeared recently in number
theory for the zeros of the Riemarmfunction and its generalizations known As
functions [12]. Indeed the characteristic polynomials, as well as the zeta-fuctions, have
their zeros on a straight line, and these zeros obey the same statistical distribution.

For the ™ moment of the Riemang-function (X is a positive integer), it has been
conjectured [9,10] that

1 T 1 . 2K K2
7/ drig 5 +ir)| ~ ygag(logT)" (1)
0

whereag is a number related to the Dirichlet coefficient (the divisor functidgjn),
and

Ko
YK = ll:!) m (2

The explicit formula fou is given in the Appendix, together with summation formulae
for the Dirichlet coefficients, which are related to (1). In this work we shall compute
the equivalent of (1) for random matrices, show that the density of stéatggeplaces

log T, and that the same numbgg is universally present.

For the negative moments, similar conjectures have been proposed, with a cut-off
parametes for avoiding divergences [11], and we show here how to obtain these negative
moments for random matrices.

Several types of.-functions have been introduced [12], which correspond to the
three standard classes of random matrices. The conjecture for the average of the mo-
ments (1) has been extended to thesinctions [13]. The average is taken as a sum of
the discriminant, for instance, for the DirichleL (5, x4) function. The relations be-
tween the distributions of the eigenvalues of the random matrix theory and the statistical
distribution of the zeros of the variodsfunctions has also been studied [12, 14].

Ouraiminthis article, is to clarify the universality of the moments of the characteristic
polynomials for these three classes. The circular unitary ensemble has been studied
earlier by Keating and Snaith [10], who did obtain thein (2) from their calculation.
However this ensemble has a constant density of states, and furthermore it does not allow
to study the universality of these properties. In this work we have considered a Gaussian
ensemble and non-Gaussian extensions, instead of the circular ensemble, to verify both
the explicit dependence in the density of states and the universality of the coefficient
yk - In the process of the derivation, we have found it necessary to start with the K-point

K
functions<]_[ det(A; — X) ), which are shown to be themselves universal in the large-N
=1
Dyson limit, in whichN (&; — A;) is held fixed. The moments are then simply the limit
of these functions when all the Dyson variables vanish.
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2. Correlation Functions of Characteristic Polynomials

We consider random x M Hermitian matrices{ with a normalized probability dis-
tribution

P(X) = %exp—NTrV(X), 3)

in which V is a given polynomial. It will turn out to be convenient to distinguish hére
andN, but we later restrict ourselves to a laigeand largeM limit, with imM/N = 1.
Let us consider the correlation function &fdistinct characteristic polynomials:

K

a=1

in which the bracket denotes an expectation value with the weight (3).
Integrating as usual over the unitary group, we obtain

1 M K M
FgQ, -+, hg) = Ef]’[du(m Ay, xm) [[ [ ]G —x0)  (B)
1

a=1i=1

in which du(x) denotes the measutki(x) = dx exp—NV (x), A the Vandermonde

determinantA (x4, - -+ , xy) = 1_[ (x; — x;), andZy, the normalization constant
I<i<j<M
M
Zu =/1‘[du<xi) AP(xy, -, xp). (6)
1
We now use the obvious identity
K M
A(-xla e ,XM;)\.]_,"' 9)"[()
A(xy, -+, X Ay — Xj) = , 7
(x1 m([[l_]l(a ) AGL i (7
=1li1=
and represent the Vandermonde determinatsy, - - - , xp) and A(x1, - - -, x5 A1,

-+, Ax) as determinants of arbitrary polynomials whose coefficients of highest degree
are equal to unity (the so-called monic polynomials)

pn(x) = x" + lowerdegree (8)
Then
A(x, - xp) = detpy (xm) ©)
(n runs from zero ta¥ — 1 andm from one toM), and
A(x1, -+ XM AL -, Ag) = detp, (up) (10)

in whicha runs from zero ta + K — 1, b from one toM + K andu; stands for, if
b<M,orr,forM <b<M-+K.
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Choosing now the polynomials orthogonal with respect to the meagure

/pn(x)pnz(x)dﬂ(x) = huénm, (11)

we may easily integrate over thi¢ eigenvalues
M
/l_[du(xi) Alxg, - xpi AL - AR AL, - Xy)
1

M-1
= M! (]‘[ h) detp,(Ag), (12)
0

in whicha runs fromM to M + K — 1 andg from 1 to K. Similarly the normalization
factor Zy, is given by

M M-1
1 0

We thus end up with

FK()\']_V-.- 7)\'1()

pm(A1) pm+1(A1) -+ pm+k-1(A1)
1 pm(A2) pm+1(A2) -+ pum+k-1(A2)

= det (14)
A(ra, -+, Ak)

pM(.)LK) pm+1(Ag) -+ pm+k-1(Ak)

If we are concerned simply with the moments of the distribution of a single characteristic
polynomial, we obtain from (14),

pr () = Fg(h, -+, 2) = ([deth — X)1¥)
pm)  pmy1i(d) - pyuyk—1(A)
(—1)K(K=D)/2 Py Pyia®) o Pk )

(15)
[T5tan

K—1 K-1 K—1
Py PG P ) - P

These expressions are all exact, but in the next section we shall be concerned with the
large N limit. Then (i) the interesting case is that of evEnsince for oddk the result
is oscillatory ( for instance foK = 1 u1(A) = pur (1)), (i) it will turn out that, even if
we are interested simply in the momeptg (1), it is more convenient to study first the
large N-limit of the Fx with distinctA; and afterwards let them approach a single

The results that will be derived later for thosg's and ux’s will be shown to be
universal in the Dyson limit, in whiclv goes to infinity, the.; — A ; goes to zero for any
pairi, j, and the productd (A; — A ;) remain finite. We first derive explicit formulae for
the Gaussian case, and show later that they do apply to any random matrix distribution
P(X) of the form (3).
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3. TheGaussian Case

We now specialize the result (14) of the previous section to the Gaussian distribution of
M x M Hermitian matrices

1 N
P(X) = 7 exp—ETrXZ, (16)

with
M=N-K, (17)

(the reason for this choice 81 will be clarified in the next section). Then the polynomials
that we have introduced, are Hermite polynomials, and with our normalizations,

-1 d\"
H,(x) = (N_n)eNxz/Z <a> e—Nx2/2 =x"4+1.d., (18)
and
n! 27
h, = VN (29)

The integral representation

H,(x) =

1! [ dz e—N@/2+x2)
( )n?g z e (20)

N© 2im Z(n+l)

over a contour which circles around the origin in the z-plane, turns out to be well adapted.
Repeated use of this formula in the result (14) yields

(—1>K TT255 71 (M + D))
A\, -+, Aok) NKQ@M+2K-1)

2K 2
% —NA
exp— (N —) det(e™""*4%). (21)
?gn(ZszH) ( 21: 2

We can expand the determinant in the r.h.s. and keep only one qRfg terms,
antisymmetrizing instead the integration variabjesThis gives

Fog(Ag, -+, A2k) =

(—1>K 12555 M + 1)
A(rg, -+, Agg) NK@M+2K=D

2K 2
2

H expl—N Y (% + Mz)IAGL, -+, 225). (22)
f (2”_[ M+2K) n 2

This expression for the expectation value of a productiotharacteristic polynomials,
as an integral overR complex variables, is exact for finifté and M.
We are now in position to study the largelimit through a saddle point integration

FZK()"la "'7)\'2K)=

. 01
over each;. Since we have choséi + K = N eachz has awelght? exp—N(z2/2+
Z
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1z+logz), which presents two saddle points, solutions of the equatiarf+iz+1 = 0,
i.e. with the parametrization

A = 2sing, (23)
whena lies on the support of the asymptotic Wigner semi-circle of the density of levels,
2y =ie? - = —ie 9. (24)
Therefore there are, a prior?® saddle-points at which the moduli of the weight
2K 2 2K 2
exp[—N Z(Z—l + Az; +logz;)] are the same. However, it is only Wh@(z—l +
1 2 1 2
Mz +1ogzy) is real (in the Dyson limit in which the differences between tfgeare
small), that the oscillations, which damp the result, are not present. Therefore we keep
2K

K
z—. We are now interested in Dyson'’s short-distance limit. Defining

only the( saddle-points in which we taki solutions of typez, andK of type

A== h, (25)
and the density of eigenvalues at this point

p(X) = i\/4 —A2= 1 coSs¢, (26)
2 T

we introduced the scaling variables
2K
X =2 Np(W)(ha — 1), With > " x, =0, (27)
a=1

which are kept finite in this limit. Then the fluctuations around a saddle-point may be
taken all at the point, and they yield a factor

2
(W)K[(l—zi)(l— 2)7K2 = (Np()) K. (28)

We must now take into account the various factors in (22) at these saddle-points. In
2K

the Dyson limit the factoﬂzl’( which remained in the denominator, may be re-

1
placed by one, since at a givénone has.z— = 1. The only delicate factor is thus
2K 2

A AR z . .
A, 22K) exp[—N Z(EI + Mz1 + log z))1, which we must first compute atone
1

A(Ag, -+, A2k)
of the saddle-points, and then take the sum 0ve<t?)§ ) saddle-points. We consider
first the saddle-point

) =z4() 1=1,--- K,
a)=z-()I=K+1,---,2K. 29)
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2K 2
If we expand in the Dyson limit the weight e{p—N Z < + Mz + Iogz;)} one
finds

exp[ Z( +)»lzl+|ogzl):|

2
= expNK (1+ %) x exp—N [Z(Al Aze(A) + Z(/\l Az ()»):| (30)

K+1

1 N
(we have usee% Ezi(k) + Az+ +log zi> = z4). Therefore at that saddle-point, in

terms of the scaling variables (27),

A2 K
exp[ Z ( + Mz + Iogz,ﬂ = expNK <1+ ?> exp—i » x. (31)
1

Let us consider now the ratio of Vandermonde determinants at that same saddle-point:

Alza, -+, 22x) 24 () — 24 () 2= () — 2= ()
A(h1, -, A2k) [1 M= Am [1 A= hm

1<l<m=<K K+1<l<m<2K
A) —z— (A
« [ et (32)
1<I<K,K+1<m<2K M= A
In the scaling limit, this factor becomes
A(za, -+, 22k) (dﬁdiy“’(‘lw (21 cos) K’ I 1
A(ry, -+, A2k) dr dx 1<l<K K+1=m=ok ~ Pm
1
= X @ K ] : (33)
X| — Xm

1<I<K,K+1<m<2K

Leaving aside for the moment the overall factors which do not change at the various
saddle-points, we note the result from this particular one which is

exp—i

ST
1<I<K,K+1<m<2K

points. The sum is best done under the form of an integral &veariables. Indeed, if

we consider

_NK(K-1)/2 K 2
I(xl,...,XZK)z%fndﬂexp ’(Z%) A“(u1, -+ ,ug)
K 1 Ha 11_[1 1(’4a—xl)

(34)

. . 2K
,and consider summing overt e

) saddle-

over acontour inwhich each, circles around the’s, we recover exactly the contribution
previous saddle-point by choosing = x1, - - - , ux = xg, Or any permutation of those
K x’s. In view of the Vandermonde in the numerator, all #fehave to be different, and
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thus there are inde Zlf poles to be added, which reconstruct exactly the sum on
the saddle-points that we needed to perform.

Collecting the various factors that came on the way, we end up with the final formula

K!

K du, K A2y, -,
X f U%exp—i (2:1140,) 0 (1 uk) (35)

K 2K '
a=1 l—[zzl(ua —x1)

2K
N —NK
exp— (E > V(M) Fag (i, -+, hax) = (e Np( K2 ERNEK)
=1

If we specialize tak = 1 one finds

sinx

N
exp{ - E(V(M) + V(?»z))}Fz(?»l, r2) =e N (2rNp()) (36)

X
with x = 7 Np () (A1 — 12), in which we recover the well-known Dyson kernel, which
characterizes the correlation between eigenvalues, whose universality has been very
much discussed over recent years. Note the dependel(use)'(lx))’{2 of this function.

This K=1 result (36) is indeed equal @re~")K (A1, A2), where the kernek (A1, 1)
is
sinfz Np(A) (A1 — A2)]

K (A1, 42) = 21— ) : (37)

(In the next section we return to the normalizations. It will be explained how the extra-
factor 2re~ is cancelled by the normalization constanpt_1.)

We can now specialize this formula to the moments of the distribution of the charac-
teristic polynomial, by letting all the’s approach each other, i.e. letting this vanish.
Before we do that, we should point out that the procedure to obtain these moments
is in fact subtle. In principle we could have set all thie equal at an early stage of
the calculation. If we returned for instance to (21) we might have replaced the limit of

det(eNa2b)
A()"ls R )"ZK)
obtain the largeV-limit becomes quite problematic. Indeed the Vandermonde af the
atthe saddle-point vanishes and itis necessary to go far beyond the Gaussian integration.
However it is now straightforward to obtain this moment from (35). We obtain

by A(z1, -+, z2x) (Up to afactor), but then the saddle-point method to

exp—(NKV () Fog (A, -+, A)

2eXp(—NK) K duy . K A(ug, -+, ug)
= (27TN,0(}\.))K T f 1;[ Z exp—z(Zua> W. (38)

Expanding the Vandermonde determinant into a sum over permutations, we find
K K 2
dug . A“(ug, -+ ,ug) _ K(K-1)/2
% 1_[ o eXp—l<Zua> W = (—1)
1 Uy

a=1 a=1
x Z(_l)(P+Q)
P,Q

a=1

1 1
(K —Po— Qo—1)! (2K —Px_1—Qk_1—1)V

(39)
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in which P and Q are permutations of the integel® - - - , K — 1). Therefore

K K 2
duOl . A (ula e auK)
fUEeXp"(Z”a> ST T

a=1 Ha—l o
1 k-1
= (—)KE=D2g)  det = =K'[] ——. (40
0<i,j<k-1 (2K —i — j — 1)! 0 (K +D!
and thus finally
k-1,
(41)

2 _ .
eXp—(NKV (1) Fax (b, -+ . 1) = @rNp()) e " l;[ (K +D!

4. Normalizations and Universality

We have studied in the previous section a Gaussian ensemble of random matrices and

found that the result (41) for the moment invoIv(al’}er()»))"f2 times a number and

one would like to see how general this result is, as far as the dependence in the density
of states is concerned as well as for the normalization. We shall see that this behaviour
is quite general, and given a proper normalization, that the prefactor is also universal.
Indeed let us recall how the K-point correlation function of the eigenvalues are defined
in an ensemble of hermitiaN x N matricesX with a probability weight proportional

to exp—NTrV(X). In [1] one finds

N
N! 1
Rx(A1, - ,Ag) = ———— | dA ceedA exp—N V(A
k(A1 K) (N—K)!ZN,/ (K+1) N{ Xp ; (Z)}

xA%(M1, - AN). (42)

Comparing with our initial definitions (5) we see that one has the relation

Rk (1 ag) = — M ZNK )y Nivo\) A2, - hg)
XFZK()\'la)"la“' a)"Ka)\'K); (43)

the r.h.s. reduces, up to a normalization, to our previous product of characteristic func-
tions of matrice§ N — K) x (N — K), each one beeing repeated twice. On the other
hand it is well known ([1]) that this K-point function may be expressed in terms of a
kernelKy as

1<i,j<K

and without entering into the precise definition&f; in terms of orthogonal polyno-

mials, one should simply recall thatM is universal in the Dyson limit ([4])

p((+w/2)
(A — u goes to zero, N goes to infinitgy (A — w) finite), i.e. it is independent of the

polynomial vV which defines the probability measure.
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Therefore we define a modified weight, and modified moments,

Dok (Ag, A2, -+, A2k)

2K
N!' Zn—k N
= - M) b Fok (A1, A, - L A 4
(N—K)! Zy !eXp 221:‘/( 1)} 2k (A1 A2, - Aok)  (45)
and
N Zy_k
Mok (L) = —(N " K\ Zn {exp—NKV A} Fog (A, A, -+, A). (46)

The universality of level correlations implies the universalityffx . Therefore we have
to return to the Gaussian case, in order to take into account this new normalization, and
then the result will be universal.

From (13) we have

N Zn_k 1
(N—K) Zy L’ (47)
N—-K "*n

and, given the explicit expression (19)/gf for the Gaussian case, we find, in the large
N limit,

N! ZN*K
(N—K)! Zy

= (2n) KNK, (48)

With this normalization the universal momelbk (1) is given by

K-1
Mok () = @m) K @xNp( )X [
0

I
(K +D!

(49)

In fact this connection between the usual correlation functions and the expectation
values of a product of characteristic functions, (43) and (44), allows one to recover
directly the momend ok (1), by using the universal expression for the kerkigl;, A ;)
in the Dyson limit,

sinNft Np(A; — Al

KQhi, hj) = T

(50)

The integral representation, ovek 2/ariables describing contours around #tigooles
A,

deti<i<j<x K(Ai, Aj)
AZ()"]_7 I} )"K)

_1 %ﬁd”lflf[ dv; A<u1,~-,uK>A<v1,~--,vK>ﬁK(u w61
- o o i Vi
KA 2ni JA R 2 TT T = 2 i = 49) iy
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allows one to write easily the limit in which all thiés are equal:

detl§i<j51< K()»i, Aj)
Az()\'la Tt

K K
1 % dl/l[ \% dvl A(Ml, o 7uK)A(vla Tt 5UK)
— x | | K(ui,v;). (52)
K! l:[ 2mi H 2mi 1(141‘ — VK@ — 0K lzl_ll o
Since the kernel is a Toeplitz matrix, i.&€(};, »;) = K(A; — 1), one can shift tha’s

and theuv's of A and the r.h.s. becomes mdependenx fo 4 the case of the sine kernel
we obtain, in the limit in which all thé's are equal,

K K
1 d'xl dU] A(U_‘]_, ) UK)A(-xla R In(ﬂNlO'xl
K!%UZTL’I%‘HZJU 1_[

ol + xi)KU,K] im1

lim

@S

@k LI+ Kr

(53)

We have indeed recovered, for any functidrdefining the probability distribution, the
universal moment (49)

5. Large N Asymptotics

Rather than starting, as in the previous sections, with an exact expression for the correla-
tion functions of characteristic functions, and at the end letgp to infinity, we may
use a different method to investigate directly the large N limit for the moments of their
distribution. This method applies for a general probability distribution of the form (3)
and it may also be used to the more general case of an external matrix source coupled
to the matrixX [7] in this distribution. It turns out that here again it is neccessary to
consider firstFox for differenta ;’s, and let all thek ;’'s approach the sanieat the end
of the calculation.

From (5), we have

dln Fog
—— = MG,; (X)), 54
3)\,‘ A( l) ( )
whereG, (1) is the resolvent,
G, (A) = 1 Tr (55)
M=\ =X

The bracket here denotes an expectation value with a weight which includeB ©6ih
2K

andl_[ det(; — X). We assume that the asymptotic spectrum of the eigenva)uzfs

1
X fill a single intervalle, 8] in the large M limit. (It is sufficient to consider the single

cut case, since we are interested in Dyson short distance universality, which involves
only the local statistics). Therefofe, (z) is also analytic in a plane cut from the interval

[, B], and

Gi(x £i0) = G, (x) F inps(x), (56)
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whereG; (x) = [G;.(x +i0) + G, (x — i0)]/2. The saddle point equation in the large
M limit becomes

2K

2MG.(2) = NV'(@) + )
j=1

1
Z—)uj

— 0. (57)

The last term of (57) is of relative ordef N and thus we have to solve this Riemann-

Hilbert problem to this order. At leading order, we havg@) = V'(x), and up to order
1/N,

1 2K
i) =G@) + (CG @+ C (z)) : (58)

i=1

From the saddle point equation (57), we hayg(x) = (N — M)G (x) andC;, (x) =
1
2(Aj — x)
determined from their analyticity in a plane cut franto 8, and their fall-off as 1z2
for largez (since bothG, (z) andG(z) behave as [ at infinity). The result is

. We now setM = N — K. The functionsC¢(z) andCj,(z) are unigquely

K
C6(2) =KG(R) — e,
6(2) (2) I
1 1 JE—DG =P — VO — )0 —ﬂ))
C;. = — 1— . (59
e N T Y] ( 2 — A (59)

These expressions lead to

1d
(N = K)G;.(hi) = NG(%i) — LV logy/(Ai —a)(2i — B)

2K
1 1 I el )
2 2 (1 \/w—a)(xi—ﬂ))' ©0

j=1j#

Since there is a branch cut betwaeeand 8, one must specify whether approaches

the real axis from above or from below. The sign of the square root on both sides of the
cut will be denoted;. There are then a priori’2 saddle points corresponding to the
different choices o§;. For each choice of the’s, we have

0 ~ . 1d
™ log Fe = € Nimp(X;) + —5=— 109/ (A —a)(B — A;)

2dh;
2K

_% 3 1» (1_61\/@/—0[)(/9—/\,-))’ o
=1, i j €iv/ (i —a)(B —Ai)

1

whereF, means the value d for givene ;'s multiplied by a factor exp—% STV (A)).
Introducing the parametrizatiap(x), defined byx = 2(a + ) — (8 — @) cosp (x)
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and3(B — @) sing(x) = V/(x — @)(B — x), we have

d . (€idp(Ai) —€jp(A))

d—)\flogsm( 5 )
_ 6 1 € —a)(B—2) +€j\/(hj —a)(B—1)) 62)
200 —a) B — ) Ai —Aj '

Thus we obtairF, by integration,

2K Sin(s’ )= ej¢<k ))

Fo=c] s
i<j A —Aj sing (A;)
2K

A
xHeXp(eiiNn/k p(x)dx). (63)

i=1 0

We have to sum over all the saddle-point contributions, i.e. sum over all the different
choices ok ;’s. We focus now on the Dyson limit in which the differenegs- A ; are all

of order 1/N. Among theZ possibilities, we retain only th Zé( solutions in which

half of K amonge; are positive, and the remaining halves are negative. Otherwise, the
exponential factor in the final result gives very rapid oscillations in the large N limit.
This situation is thus exactly similar to that of the previous section.

Again the sum over th{ZK

% ) saddle-points is conveniently written as a contour

integral

2
~_i7§ ?gdulduz-ndu,( [y ttn =) XK:” Ziu
_ . i .,
K! CLOLE | 11—[] 1(un = A ;) j=1 n=1

(64)
When we set all the ; = 1, this becomes
K
= Hdul 1_[1</ _uj)z
F = cos| 2 u,mNp 65
T v €

and we recover the result (38). However in this method, since we re-integrated the
logarithmic derivative ofF>k, the constant of integration remains undetermined. We
may fix this constant by the same requirement that we have used in the previous section,
and the final result agrees then with the previous calculation.

6. Symplectic Group Sp(N)

We have studied up to now unitary invariant measures, characterized for the probability
law of the eigenvalues by the factpn(xy, -- -, xp)|?. We could also consider the
Gaussian orthogonal ensemble (GOE, vtk 1) or Gaussian symplectic (GSE, with

B = 4). If we took the GOE for instance, we could immediately relate the correlation
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functions of characteristic determinants, to the correlations of the eigenvalues, as in
(43) (except that sincg is one no doubling of thé’s is needed), and therefore relate
the moments universality to the Dyson universal limit. Remaining still with the unitary
B = 2 class, in Cartan’s classification of symmetric spaces, we find ensembles which
are invariant undefp(N) or O (N). One of the physical applications of randdim(N)
matrices, is the statistics of the energy levels inside a superconductor vortex [8]. In
number theory, it is known that some generalizations of Riemapfisictions, such
as the DirichletL-function L(s, x4), where x, is a quadratic Dirichlet character of
mod |d|, present a spectrum of low lying zeros on the linesRe 1/2, which agrees
with the statistics of the eigenvalues of the Sp(N) random matrix theory [12,14]. In this
Sp(N) invariant symmetric space, the eigenvalues appear always in pairs of positive and
negative real numbers. Due to this fact, a new universality class governs the correlations
of the eigenvalues near the origin, i.e. neat 1/2 (whereas in the bulk one recovers
the previous unitary class).

Therefore we study now the new universality class, which governs the new scaling
near the origin. We thus consider random Hermitian matriceshich are 2/ x 2M
and satisfy the condition

xTr+7x =0, (66)

J= <_(1)M 16”) . 67)
The unitary symplectic group is the subgrougéf(2M) consisting of 21 x 2M unitary
matrices, satisfying the symplectic constraint
ul =—Juts. (68)
The integration over this unitary symplectic group fg¢ (A1, - - - , Ax) gives [8]

(floos )

whereJ is

FK()\'la' 7)\'K)

a=1
1 M M K M
-~ / [Tdne 2262, ) [[2 [ [[62 - D (69)
M-Sy i=1  a=li=1
Repeating the analysis of Sect. Bk (A1, - -+ , Ag) iS given again by a determinantal

form as (14). Changing; to x? = y; and denotinge; = 12, we have

o K K K K
Fg(pua, -+, pg) = / [Tavi [T2T]0r =0? TT] Jse — yide ™ 22
0 =1 =1 i<j a=1i=1
(70)
The orthogonal monic polynomials for this measure are the Laguerre polynomials
1
L2 (y), which is defined by

(=" ey d 1
ﬁ N7 (@)n()’H—Z@ N))
1
_ D fdu Ay,
N 27i untl ’

)
an (y) =

(71)
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1
normalized as required tbf,z)(y) = y" + lowerdegree. The orthogonality condition is
Ny~ B, B
0 dye ﬁLn (y)Lm (y) = hnsn,m (72)

with 1, = n!T'(n + g)/NZ”*%, andhy_1 >~ 2re 2N in the large N limit.
From (14), we have

K (14552 )H]K()l(M-i-l)' 1
NK(M+2 3 A(w)

%1—[ dZ, (1—i—Zl)MJr ,szwaﬁ i (73)
ZIIWJ'_K i<j 1+Zi 1+ZJ ’

K-1

We now setM = N — K, and the factor| [ (M + 1)/ N¥M+K/271/2) s equal to
0

(2rN)Xe=KN " up to corrections of relative ordey AV in the large N limit. The large

N limit is governed by the saddle-point equatlaﬁsi— 2 + = = 0. In the following we

study the scaling vicinity of the origin, in which all thg’s scale as IN?. Thenzl at

the saddle-point may be expanded

i€]

N

=

1

wheree; = +1.
Noting that itz ~ (KEK-D2TT(cn; —
g l_!<1+z, 1+Z/) ,-1:[( Fui +25u)) [

€;j1j) (¢, = £1), and combining it with the Vandermonde(12), we are left with a
factor [T, _; ﬁ in this scaling limit. We have also the exponential’ 2 /e =
e—i Zei)‘i .

We have again to sum over all the saddle-points, which are characterized by the sign
of ¢, = +£1, and to include the factor due to the fluctuations near the saddle-point.
The Gaussian fluctuations yield a fact@r/(—2ie;A3N))Y2. Then(1 + z,)~Y2 ~
(Ai/(€ii)Y2. There is a 1(27i)X in addition. We have an extra due to the contour
direction, which goes through two saddle points; one is in the positive imaginary plane
and the other in the negative half-plane. Whénr= 2, andx1 anda; are of order IN,
we obtain

2me 2N
Fo(r1, Ap) = /\—KSP(M, 12), (75)
122
with the kernelK gp (11, A2) given by
iN[N(A1 — A in[N (A A
Ksp(hs ho) = SINLN (A1 — A2)] _ SININ (A1 + 22)] (76)

2 (A1 — A2) 27 (A1 + A2)

The coefficient(2r)e=2V is cancelled by the normalization factoy dy_1. Putting
A1 = A2 = 0, we have, neglecting the factar 22", F,(0) =~ 5 2 N°.
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For general KFk (A1, - - - , Ax) becomes in the scaling limit

£ 1
2ri)k

Fi G, ) = (CDF VKD @uny VK (i 26D (1)
o—iN Y €iki

X Z - . (77)

[lica€iri [Tic(eini +€j2))

The sum over all the saddle-points, characterizeg; ly 1, is conveniently written as a
contour integral,

1 .
I — e—lNZe,')\;
Z [licjCeiri +e€nj) [1eiri)

_ (- 1)27§ 7§1—[<du,> A@W?) A(w) —iN(Shin) (7g)

K 2,2
oni ) ;- 11_[1':1(”1' =A%

where the contour encloses = £ ;. We may now sek; = 1, and keeping track of
various coefficients, we obtain tH&" momentFx (1, - - - , 1). For general, the result
has a complicated form, but whén= 0, it becomes a number

2k/2 —NK
Fk(0,---,0) = _N2<K+1>(,)2<K (kW=D

du; A(uz)A(u) iy
fl_[(2m> 4 2K i, (79)

Thisrepresentation allows one to computeltﬁ'émoment atthe origin. By the expansion
of the VanderMonde determinants, similarly to (39), (79) is reduced to a determinant

form. We have by the normalizatioi (0) = 21)~ % KN Fr (0),

Il (2N)zK+D

ban L% ©

Fg(0) = (- 1)”1"[

Comparing to the result of the unitary case in (49), we notice that the exponent of N
is different and the universal coefficient is given also by the product of the ratio of the
factorizations.

For Fog (A1, A1, - -+ , Ak, Ak), the even X moment may be obtained again from
Fog (A, M, -+, Ak, Ak) = defK (A, 27)1/(A%(22) []22); using the expression for
the kernel (76), we have for thek2" moment,

def{K (A;, A;)]
A2(2) ] A2

_2* y§ ] & f = AW?)AW?)
K! 2mi 2mi [TE, H§=1(’4i2 - kf) 15, Hj'{zl(viz - )‘f)

1 & sin[N(u: — )]
x (2m)K 111 ui —vi (81)

i — U
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For general, the result has a complicated form, but again here one can compute from
there the values at = 0. The result agrees with the previous expressiofgf(0) in

(80). One may also use the large N asymptotic analysis as in Sect. 5 and rederive the
results as the same sum (78) over the saddle points.

7. Orthogonal Group O(N)

We discuss here th@ (2N) case, which is different fromip(N) (whereasO (2N + 1)

has a structure which is similar & (N) [8]). In number theory, for example, the twisted
L-function, L (s, xq), presents a spectrum of low lying zeros, which agrees with the
statistics of the eigenvalues of tig2N) random matrix theory [12,14]. Then in terms
of eigenvalues

Fg(a, -+, Ag) =< l_[det(/\a -X) >
a=1

1 M K M
Zu / l_[du(xi) Az(xf, e ,x/%,,) 1_[ H(Ag — Xiz)- (82)
1

a=1i=1

The difference between the symplectic and orthogonal case is due to the absence of the
factor[| xl.z. Using the analysis of Sect. Bk (A1, - - - , Ag) is given by the determinantal

form as in (14). Changing? to y; and denotings; = A2, we have

Fi(u, - ,uk)=f ]_[dyl]_[y, 1_[()71 - ) ]_[]_[(ua—yl)e N2,

i<j a=1li=1
(83)

_1
The orthogonal polynomials for this case are Laguerre polynorﬂfalé) (y), which is
defined by

Ny

LS =~ 5 -
=S B 02

1
" Ze™)

N 2ri unt1 (84)
_1
normalized aif, 2)(y) = y" + lowerdegree. The orthogonality condition is
o ay 1 L& CAPNNICE )
| ave i P OLT 0 =t (85)

with h, = n'T'(n + %)/NZ”JF%, andhy_1 >~ 2re 2N in the large N limit. From (14),
we have similar to thép(N) case,

[T M +D! 1

NK(M+7—*) A(w)
K

dz; (1+Zl) M+K N T 2t Zi Zj
fl_[( ) M+K E 1+Z,'_1+Zj - (86)

i

Fruns - s i) = (1)K (4



128 E. Brézin, S. Hikami

K-1

We setM = N — K, and the factor| [ (M + )i/NKM+K/271/2) s equal to
0

(2nN)Xe=KN up to corrections of relative ordey &V in the large N limit. The saddle

pointz; is same as (74). The only difference is the extra fattor z;) 1 ~ fgl When
K=2, we obtain

Fa(h1, h2) = 2me N Ko (A1, A2), (87)
with the kernelK ¢ (A1, A2) given by

_ SIN[N(h1 —22)] | SIN[N (1 +42)]
Ko do) == e Gat ) (88)

The factor(27)e=2V is cancelled by the normalization factof iy _1 ~ (27) 1e?N.
Puttingr1 = A2 = 0, we have neglecting the factor2 =2V, F»(0) ~ —(2N)
For general KFg (A1, - -+ , Ax) becomes in the scaling limit

[Nt

1
2ri)k

Fx(A, -+, ag) = (=KW= K+554 )(27-[N)2€ NK(Z)Z(K 3)(N)

71NZ €idi
X
ZH[</(61)" +€])")

(89)

The sum over all the saddle-points, characterizeg; ly 1, is conveniently written as a
contour integral,

1 .
I — e*lNZE,')\i
Z [licj(eiri +€j2j) [1(eini)

= (15 &~ 2 yg fl—[(d”l> AW AG) [Ty ui ~N(Zm) | (90)

2mi ) [T [T @f =33
where the contour encloses = £ ;. We may now sek; = A, and keeping track of
various coefficients, we obtain tieh momentFx (1, - - - , 1). For general, the result
has a complicated form, but whén= 0, it becomes a humber
2k/2 —NK
Fg(0,---,0) = —NZ(K 1)(1)2(1( 9 (—1)KN-D
du; A(uZ)Aw) >
fﬂ(z,”) (e T e

The normalization factor |(;271) eXN for Fx (1). Denoting the normalize# ™ mo-
ment byFK (1), we have

K-1 Kk-1)
Fr© = (~1F [ - B0 (92)
1

a4
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We haveFok (A1, A1, -+, Ak, Ax) = defK (A;, A;)1/A?(1?). Using the expression for
the kernel (88), we obtain for thek2" moment in the orthogonad (2N) case,

def K (A, A;)]
A2()02)

B g % 1_[ ﬂ %‘ 1_[ ﬂ A(uz)A(UZ) HlK:l(uivi)
K! 2mi 2mi [1X, ]_[le(u.z - AZ.) ]_[K_l Hf_l(v? - )»?)

Sln[N(ul vi)]
@mKH ' . (93)

Insertingx; = 0, we find the consistent result with (91).

8. Negative Moments

In number theory literature one finds various moments in which powers of the zeta-
functions appear in the denominator [11]. The equivalent for random matrices would
K

be to consider expectation values of the f ﬂdet(k, — X)) in which thee’s

1
are+1. One cannot use the techniques introduced hereabove any more but, at least in
the Gaussian case, it is easy to obtain exact expressions through the use of auxiliary
integrations, over both commuting and anti-commuting variables.

We first rederive our previous results for positive momentsdj.es +1 for allI’s) .
Let us introduceV Grassmann variable$, ¢, and an integration normalized to

déd
/CC&=L (94)
T

Then, for an hermitiad/ x M matrix X, one has
dc,
dethn — X) =N~M fl_[ C” % expiN > [¢a(t8ap — Xap)epl.  (95)
a,b

K
A productl_[ det(A; — X) is represented by a product &f integrals of the type (95).

1
At the end the random matriX appears in an expression of the form

exp— zNZ Z XapeDed. (96)

I=1a,b=1

With the Gaussian probability weight (16) we have

N
(expiNTIAX ) = exp—ETrAz, 97)
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and thus
K M dcydc
<l_[ det(, — X)> =NM / I1 % exp NZMZVU + = Z VimYmi
1 1 lm 1
(98)
with
N
=3 e, (99)
a=1

We can use an auxiliarf x K hermitian matrixB to replace the quadratic termsjin
by

2
N N K*</2 N
expETryz = (Z) / dX’B exp(NTryB — ETr|32). (100)

We are left with an integral over the Grassmannian variables

dca(l)dc() K S
N-MEK / 1—[]—[ XN Y (k18 + Bin) D ¢ Ve
a=11=1 lm=1 a=1

1<l,m<

M
=< det (A[S[m—iBlm)) . (101)

We end up with an integral over& x K hermitian matrixB:

K K22
<]‘[ det(h;, — X)> = (%) / d%® B {det(y8m — i Bim)}M exp— TrB2
1

(102)

Therefore, from this method as well, we have reduced the correlations of the charac-
teristic functions of the matrix, to an integral ovkP variables. If one is interested in
the moments, i.er; = A for all I's, one may take as variables the eigenvalbesf
B (which yields a factorA?(A1, - - - , Ak)), and recover the previous expressions. For
the A;’s non-equal, one must first shift the matixof the diagonal matrixA;s;,,, and
then integrate out the unitary groi/ (K) by the Itzykson—Zuber formula [15-17],
to reduce it, as before, to an integral ovéwariables (a slightly different integral, but
which may be handled in the largé-limit in an identical fashion).

In case of negative moments the method is identical, except that we need now ordinary
commuting variables, instead of Grassmannian. Indeed starting from

1
det(h — X £ ie)

ey ﬂ O et N 3 1058 — X Eichun)n], (103)

a,b
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one canintroduce, for each factdet(A;— X)) anintegration ove¥ complex variables
(@F, ¢q) if ¢ = —1, or overM complex Grassmannian variables, c,) if ¢ = +1. The
expectation value with the Gaussian weightX) is then immediate. Of course for the
negative moments, one must pay attention to the sign of the infinitesimal imaginary part
of theA’s since there is a cut on the real axis along the support of Wigner’s semi-circle.
Although the method is obvious and elementary, the notations can become cumber-
some and, rather than working out the most general case, and arbitrary choices for the
signs of the imaginary parts, we restrict ourselves to an example. If we consider only
negative powers, we may follow identical steps as hereabove with positive powers, and
we find

| —— / d* B (detCyim — Bun + iesim)) ™
< ! det(AI—X+le)> <27t>

x exp—%TrBz. (104)

When all ther’s are equal the r.h.s. simplifies to an integral okevariables

K 2 K
/l:[dbz exp <§ El bl>.

X —b +ieM

For the;’s non-equal, after a shift of the matrixand the integration ove§U (K ), one
obtains

K K(K+1)/2 K

1 N N
Mg )= (1) ooy s

I det(h; — X +ie¢) 27 2

K K
db  A(by, - . bk) 1,

—N b7 +bir |, (105
X/U(bl—iewml,---,AK)eXp ;(2’+ l 1) (109)

from which one could repeat easily the analysis of Sect. 3.

9. Discussion

We have discussed the universal expressions for the moments of the characteristic poly-
nomials in a random matrix theory, where the ensembles belong to the unitary family
B =2).

We have shown that these universalities are related to the universality of the kernel
in Dyson’s short distance limit. Since the statistics of the zeros aof thmction follows
the universal behavior of the Gaussian unitary ensemble (GUE) [12,19], the power
moment of thez -function also has to follow the universal behavior of GUE. We have
studied here the characteristic polynomial, which corresponds to-faection on the
critical line, and we have found a universal behavior for the moments of the characteristic
polynomial. The universal number (49) appears indeed in the average of the moment of

the ¢-function, which was conjectured as (2 = ]'[g‘ll!/(K + D



132 E. Brézin, S. Hikami

Our method of splitting the singularity by the introduction of the distipatnay be
applied directly to the average of the power moment of the Riengafumction. We
consider the average of the productaf;), s; = % £ i(A; + 1),

T 2K

1
F = 7/0 Eg(s,-)dt, (106)

where we choos& positivel;’s and K negative ones. If, at the end of the calculation,
we set all the positive;'s equal tox and the negative ones ta\, one recovers theRt"
moment of the modulus of theg-function. WhenT is large, the leading and the next
leading terms of the derivative of If with respect ta.;, are presumably given by

alnF 1
~&ilnT -3
oA Z Ai — A
where the pole in the second term appears when two digtiredtincide, one of thg;’s
with a plus sign and the other one with a minus sign. In the Appendix a discussion of
the assumptions leading to (107) is given. Then, after integration, we have, following a
line of arguments similar to those of Sect. 5,

: (107)

K 2

du; A -

F=— ygl [ o= — ZK(”) etxunT, (108)
KT 2 T T2 (i = )

Therefore, if we let the,;’s coincide, we recover the integral (39), which provides the
universal coefficienyx . The coefficient is not determined by this method, which starts
with the logarithmic derivative of F, and an extra normalization condition is needed. In
(A.7) itwill be argued that a coefficienty is presentin the result, which is the residue at

s = 1 ofafunctiongg (s) defined in the Appendix; itis thus plausible that the coefficient
¢ in (108) is nothing but = ak.

We have also investigated negative moments as (105). This result may apply to the
mean value of negative moments of théunction. Indeed, the expone#t? of log T
for the negative integek’, has been conjectured [11].

For the symplectic and orthogonal caSg(N) andO (2N) ensembles, there may be
also be a correspondence between the random matrix results (80), (92) and the average
values of the certaiL-functions, with the sameg, as far as there is a universality.
Existing conjectures [13] for the moment of tliefunction shows the same exponent
% (K+1 and% (K —1) forthe symplectic and the orthogonal cases, and the conjectured
values ofyg agree with our results (80) and (92).
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the organizers of the third CREST meeting for the invitation extended to him.

Appendix: Summation Formula for the Riemann Zeta-Function

The Riemanrt -function is given by

é‘(S):Zn—lSZH<1_%>, (A.l)
n=1 14 p*
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wherep is a prime number. Th&'" power of this function is written as

= d
ek =3 K
n=1 n

2
Zl—[<1+d1<(xl7)+d1<(2[j)+“_)’ "2
. P P

wheredg (n) is the K" Dirichlet coefficient. Whem: is a power of the prime number,
dg(p?) = T(K + j)/T'(K)j! (this follows easily from the definition of the Dirichlet
coefficientdx (n) = > 1).
ni---ng=n
We consider now the average of (A.2) on the critical line- % + it over a large

interval T,
_/ dt < +n) - —/ dK(”) (A3)
n2+tt
Expandmgthesumz K() 2 which appears in (A.3), we first examine the diagonal
terms, .
dg <n> dg (p) dz (p®)
[
n=1
20K _ 102
_ H(l—pfs)iKz <1_ K (K4 1 p,zs +)
= (L& gk (). (A4)
where
00 dz j
gx) =[] [(1 —p Y %] (A.5)
j=0

p

The functiongk (s) is an analytic function of, including the point = 1.

Let us examine the contribution of these diagonal terms given by (A.4) to (A.3). Their
contribution is conveniently found, if we apply the following inversion formula (Perron
formula):

B(s) =) bun”",
n=1
f) =3 ba. (A.6)

Then, we have

1 c+ioo
fx) = —/ B(s)x*s Yds, (A7)
27 Je—ico
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in whichc is some arbitrary real positive number. Substitutipg= d,z( (n), andB(s) =
;Kz(s)gK(s), we obtain, from the residue of the singularitysat 1,

ZdK( ) = ﬁf]éz)) log K2-1 + O0(x |OgK2_2 3x). (A.8)

n=<x

By a partial summation, this approximate calculation yields,

d,z( (n) ag K2
> . FRP D logk” T, (A.9)

n<T

whereag = gg (D).

From these formulae, it is seen that the contribution of the diagonal terms to the
average of thek™ power moment of the -function does take the asymptotic form
of (1). However, neglecting the off-diagonal terms, we failed to reproduce the proper
coefficientyg, whose understanding clearly requires the off-diagonal products in (A.4)
as well.

A lower bound for the ™ moment is known [18]

T+Y 1 2
/ 15 < + lt) 12Kdt > YlogX“ v, (A.10)
T-Y

wherelog T <Y < T.An upper bound seems difficult to obtain, and (1) remains as a
conjecture, except for th€ = 1 andK = 2 cases, for which it has been derived.

We note here the results and the conjecture of Montgomery [19] about the density of
the zeros of Riemang-function and their correlation. Whenis a zero on the critical
line,¢(3 +iy) =0

> 1>< +0(1))—IogT (A.11)
O<y<T
ﬂ -
3 1:(1+0(1))|:/ (1—(S|;Zu)2>du+8(a,,3)}TL

O<y,y'<T,a/L<y—y'<B/L
(A.12)

whereL = logT/(2r), ands (o, B) = 1for0 € [«, 8], and otherwise zero. Then (A.11)
is equivalent to the average density of state in (1), withKoe 1, yx = ax = 1 and
(A.12) is equivalent to the pair correlation function in random matrix theory.

Let us present the arguments which lead to the conjectured formula (107); we first
assume that; — x> ~ O((InT)~1) for large T. The diagonal approximation for the
product of; (s1) and¢ (s2), which earlier gave the expected behaviour for the moment, but
with a wrong coefficient, may thus be applied here again, since we are taking a logarith-
mic derivative, which is unsensitive to overall normalizations. Within this assumption,
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we obtain
9 1 > 1
—Io F=—In| = _
oAl g oAl / 2+n\1+zt ;n%—ixz—it ¢(s3)--- ¢ (s2k)
9 1 1 /T
~a—Mln Zm Fﬂ dtf(s3) - - (s2k)
L \n<T
a  [rr 1
~ 3_)»1 In _/To dx—x1+i(xlxz):|
1
~—iinT — ——. (A.13)
AL — A2

We have considered up to now what happens when is small, but we should repeat
the same arguments for the Dyson limit in which all paigs- 1 ; are of ordelog 7)1
Therefore, when one sums over all possible combinations, one obtains (107).
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