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Abstract: We investigateSU(3)-periodic vortices in the self-dual Chern–Simons theory
proposed by Dunne in [13,15]. At the first admissible non-zero energy levelE = 2π ,
and foreach(broken and unbroken)vacuumstateφ(0) of the system, we find a family of
periodic vortices asymptotically gauge equivalent toφ(0), as the Chern–Simons coupling
parameterk → 0. At higher energy levels, we show the existence ofmultiple gauge
distinct periodic vortices with at least one of them asymptotically gauge equivalent to
the (broken)principal embedding vacuum, whenk → 0.

1. Introduction

In recent years several Chern–Simons field theories [14] have been proposed largely
motivated by their possible applications to the physics of high critical temperature su-
perconductivity. In fact, the corresponding Chern–Simons vortex theory has revealed
a much richer structure compared with that described by the “classical” Yang–Mills
framework [21,26].

The study of Chern–Simons vortices has been particularly succesful in theabelian
situation, see [31,30,4,34,29,37,8,9,6] and [7], where the existence and multiplicity of
vortices with different nature (e.g. topological, nontopological, periodically constrained,
etc.) have been established for the models proposed in [18,20] and [23].

Only recently some progress has been made towards the existence ofnonabelian
CS-vortices, concerning the self-dual Chern–Simons theory proposed by Dunne in [13,
15], see also [22,25] and [24].

Dunne’s model is defined in the(2 + 1)-Minkowski spaceR1,2, with metric tensor
gµν = diag(−1,1,1). The gauge group is given by a compact Lie groupG equipped
with a semi-simple Lie algebra(G, [ , ]). The relative Chern–Simons Lagrangian density

� Supported by M.U.R.S.T. 40 %“Metodi Variazionali ed Equazioni Differenziali Non Lineari”.
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is given by

L = −T r{(Dµφ)
†Dµφ} − kεµναT r{∂µAνAα + 2

3
AµAνAα} − V (φ, φ†), (1.1)

whereA = (A0, A1, A2) is the gauge connection of the principal bundle overR
2,1 with

structure groupG that, together with the Higgs fieldφ, takes values inG through the
adjoint representation ofG. The gauge-covariant derivativeDµ = ∂µ + [Aµ, · ] is
used to weakly couple the Higgs fieldφ with the gauge potentialA = (A0, A1, A2).
Furthermore, the Levi–Civita antisymmetric tensorεµνα is chosen withε012 = 1,k > 0
is the Chern–Simons coupling parameter and “T r{. . . }” refers to the trace in the matrix
representation ofG. The gauge-invariant scalar potentialV (φ, φ†) is defined by,

V (φ, φ†) = 1

4k2T r{([[φ, φ†], φ] − v2φ)†([[φ, φ†], φ] − v2φ)},

where the constantv2 plays the role of a mass parameter. In the following we setv2 = 1.
Vortices forL correspond tostatic solutions (with “finite” energy) for the Euler–

Lagrange equations corresponding to (1.1).
OverR2, topological and nontopological vortices (see below) have been established

in [38] and [36] respectively.
Here we look forperiodicvortices orcondensates, namely for those static solutions

which satisfy appropriate periodic boundary conditions to be specified according to the
gauge invariance ofL.

We note immediately that the Euler-Lagrange equations corresponding toL (see
(5.31a-b) in [14]) are very difficult to handle directly, even when we restrict to consider
“Bogomol’nyi” type vortices, which are obtained by solving the reduced (first order)
“ relativistic self-dual Chern–Simons equations”:{

D−φ = 0
F+− = 1

k2 [φ − [[φ, φ†], φ], φ†], (1.2)

whereD− = D1 − iD2 andF+− = ∂+A− − ∂−A+ + [A+, A−], with A± = A1 ± iA2
and∂± = ∂1 ± i∂2.

Solutions to (1.2) define a sort of “energy minimizers” for the system as they saturate
the lower bound:

E = 1

2k2 tr(φ†(φ − [[φ, φ†], φ])) (1.3)

(modulo some negligible surface terms) for the energy densityE corresponding toL
(see [14,15]).

From (1.2) it is easy to determine thezero-energy vortices (vacuastates), where
the gauge field vanishes (modulo gauge transformations) while the Higgs fieldφ(0)
corresponds to azeroof the potentialV , namely, it is gauge equivalent to a solution of
the algebraic equation (see [14,15]):[

[φ, φ†], φ
]

= φ. (1.4)

To be able to determine othernon-zeroenergy solutions of (1.2), Dunne in [13]
has proposed a simplified form of the self-dual system (1.2) in which the fields are
algebrically restricted as follows.
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Let r be the rank of the Lie algebraG, {Ha} the generators of the Cartan subalgebra
and{E±a} the family of the simple root step operators (withE−a = E

†
a ), normalized

according to a Chevalley basis [5,19]. Hence, they satisfy the following commutation
relations:

[Ha,Hb] = 0,

[Ha,E±b] = ±KabE±b,

[Ea,E−b] = δabHa,

a, b = 1, . . . , r , and are subject to the normalization conditions:

T r{HaHb} = Kab,

T r{EaE−b} = δab,

T r{HaE±b} = 0,

a, b = 1, . . . , r, whereK = (Kab) is the Cartan matrix.
We assume that the fields take the form:

Aµ = −i

r∑
a=1

Aa
µHa, (1.5)

φ =
r∑

a=1

φaEa (1.6)

with Aa
µ (a = 1, . . . , r;µ = 0,1,2) real-valued functions andφa (a = 1, . . . , r)

complex-valued functions.
In view of (1.5) and (1.6) the gauge invariance ofL can be expressed in terms of

the gauge groupH = span{ei
∑r

a=1 wa(x)Ha } (wherewa a = 1, . . . , r are real-valued
smooth functions) generated by the Cartan subalgebra generators{Ha}. In other words,
the gauge transformation laws for the components of the gauge potential and the Higgs
field take the following simplified form:

Aa
µ −→ Aa

µ + ∂µwa,

φa −→ ei
∑r

b=1 Kbawbφa,
(1.7)

a = 1, . . . , r.
With the algebraic restriction on the fields (1.5) and (1.6), the Lagrangian densityL

and the potentialV are simplified as well. The Chern–Simons term decomposes intor

copies of anabelianChern–Simons term, and we have

Lrestricted= −
r∑

a=1

∣∣∣∣∣∂µφa − i(

r∑
b=1

KbaA
b
µ)φ

a

∣∣∣∣∣
2

− k

r∑
a=1

εµνρ∂µA
a
νA

a
ρ − Vrestricted,

(1.8)
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where therestrictedpotential becomes

Vrestricted= 1

4k2

r∑
a=1

|φa|2 − 1

2k2

r∑
a,b=1

|φa|2Kab|φb|2

+ 1

4k2

r∑
a,b,c=1

|φa|2Kab|φb|2Kbc|φc|2.
(1.9)

Furthermore, the “relativistic self-dual Chern–Simons equations” (1.2) (away from the
zeroes ofφa) combine into the single set of coupled equations:

∂+∂−ln|φa|2 = − 1

k2

r∑
b=1

Kab|φb|2 + 1

k2

r∑
b,c=1

|φb|2Kbc|φc|2Kac, a = 1, . . . r.

(1.10)

To recover theAµ=0 component of the gauge potential, we must supplement (1.2)
with the Gauss Law constraint of the system, which componentwise reads as follows:

kF a
12 = J a

0 a = 1, . . . , r, (1.11)

whereFa
12 = ∂1A

a
2 − ∂2A

a
1 andJ a

0 define (after multiplication by−i) respectively, the
components (in the Cartan subalgebra) of the gauge curvature and the current density
J0 = −i([φ†,D0φ] − [(D0φ)†, φ]).

The selfdual equations (1.2), imply thatD0φ = i
2k ([[φ, φ†], φ] − φ) and, by direct

calculation, for the energy density (1.3) we find the expression

E =
r∑

a=1

Fa
12 (1.12)

(modulo negligible surface terms).
Therefore under the decomposition (1.5) and (1.6), the system may be described in

terms of r-(abelian)Chern–Simons fieldsAa
µ coupled to r complex scalar Higgs fields

φa with the couplings determined by the Cartan matrixK = (Kab).
Note that, by means of (1.5) and (1.6), the algebraic equation (1.4) may be solved

explicitly in terms of the componentsφa
(0) of φ(0) in the Cartan subalgebra. Whenφa

(0) =
0, we find that,

|φa
(0)|2 =

r∑
b=1

(K−1)ab a = 1, . . . r, (1.13)

whereK−1 is the inverse of the Cartan matrixK.
Notice that, on the base of (1.3), vortex solutions of (1.2) inR

2 (with sufficiently fast
decay as|x| → +∞) satisfies the energy relation:

E =
∫

R2
E = 1

2k2

∫
R2

tr
(
φ†
(
φ − [[φ, φ†], φ]

))
. (1.14)

Therefore, it is to be expected thatnon-zero energy vortex solutions inR2 become gauge
equivalent to the vacua states as|x| → +∞.
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Results in this direction have been obtained byYang [38] and Wang-Zhang [36] when
the gauge groupG = SU(N). Yang in [38] shows that there exist solutions for (1.2)
satisfying the ansatz (1.5) and (1.6), for everyprescribedconfiguration of zeros forφa ,
and such that|φa| uniformly converges to|φa

(0)| in (1.13) as|x| → +∞, a = 1, . . . , r.
Thus, Yang’s vortices are asymptotically equivalent (as|x| → +∞) to the so called

principal embedding vacuum. Usually, one refers to those as thetopologicalsolutions
for (1.2) inR

2. More difficult to derive are instead thenontopologicalsolutions, namely
those asymptotically gauge-equivalent to the other vacua states, as|x| → +∞. A class
of nontopological solutions has been derived recently in [36]. The solutions in [36]
are shown to be asymptotically gauge-equivalent to theunbrokenvacuumφ(0) = 0, as
|x| → +∞. We observe that, whenN = 2, theSU(N)-gauge theory corresponding toL
in (1.1) reduces to theabelianChern–Simons–Higgs theory introduced by Hong–Kim–
Pac [18] and Jackiw–Weinberg [20]. Thus, the above mentioned results [38] and [36]
extend the work of [31,30] and [6] on topological and nontopologicalabelianChern–
Simons vortices. In theabeliancontest we also mention the work of [7] on nontopological
Maxwell–Chern–Simons vortices for the Lee–Lee–Min model [23].

However, to establish condensate-type vortices whose feature more closely resemble
those of the mixed states predicted byAbrikosov in superconductivity [1], it is necessary
to derive solutions for (1.2) subject to gauge invariant periodic boundary condition.

For this purpose note that, in the stationary case, the functionswa (a = 1, . . . , r)
in (1.7) expressing the gauge invariance of (1.1), depend only on the space-variables
x = (x1, x2) and the gauge transformation laws reduce to:

Aa
0 → Aa

0 Aa
j → Aa

j + ∂jwa, j = 1,2,

φa −→ ei
∑r

b=1 Kbawbφa, a = 1, . . . , r.
(1.15)

Therefore, following ‘t Hooft [33], for each of ther-components of the fields we
require appropriate periodic boundary conditions to hold in the periodic cell domain:

( =
{
x = (x1, x2) ∈ R

2 | −a

2
≤ x1 ≤ a

2
,−b

2
≤ x2 ≤ b

2

}
,

as follows.
Let e1 = (a,0) ande2 = (0, b) and decompose the boundary of( by setting

∂( = *1 ∪ *2 ∪ {e1 + *2} ∪ {e2 + *1} ∪ {0, e1, e2, e1 + e2},
with

*1 =
{
x ∈ R

2 | x = 1

2
(se1 − e2) |s| < 1

}
,

*2 =
{
x ∈ R

2 | x = 1

2
(se2 − e1) |s| < 1

}
.

We require that each componentAa
µ andφa (a = 1, . . . , r) of the vortex condensates

(A, φ) satisfies:


ei
∑r

b=1 Kbaξ
b
k (x+ek)φa(x + ek) = ei

∑r
b=1 Kbaξ

b
k (x)φa(x), (a)

Aa
0(x + ek) = Aa

0(x), (b)
(Aa

j + ∂j ξ
a
k )(x + ek) = (Aa

j + ∂j ξ
a
k )(x), j = 1,2, (c)

x ∈ *1 ∪ *2 \ *k, k = 1,2, a = 1, . . . , r,

(1.16)
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whereξa
1 , ξ

a
2 (a = 1, . . . , r) are smooth functions defined in a neighborhood of*2 ∪

{e1 + *2} and*1 ∪ {e2 + *1}, respectively.
Notice that, in analogy to the abelian case, the set of boundary conditions (1.16)

produce a “quantization” effect on the “charges” (see [4] and [35]).
In fact, in view of (1.16)-(a), to any vortex condensate we can associate r-integers

Na ∈ Z (a = 1, . . . , r) (vortex numbers), corresponding to the phase shift ofφa around
∂(. More precisely, fora = 1, . . . , r andk = 1,2, set

ξ̂ a
k

(
s1, s2

)
=

r∑
b=1

Kbaξ
b
k

(
s1e1 + s2e2

)
sj ∈ (0,1) , j = 1,2,

we have:

ξ̂ a
1

(
1,0+)− ξ̂ a

1

(
0,0+)+ ξ̂ a

2

(
0+,0

)− ξ̂ a
2

(
0+,1

)
+ ξ̂ a

1

(
0,1−)− ξ̂ a

1

(
1,1−)+ ξ̂ a

2

(
1−,1

)− ξ̂ a
2

(
1−,0

) = 2πNa.

Consequently, by means of (1.16)-(c) and (1.11), for the “magnetic flux”-component
.a = ∫

(
Fa

12 and the “electric charge”-componentQa = ∫
(
Ja

0 we obtain the relations,

r∑
b=1

Kba.b = 2πNa, Qa = k.a.

Hence, they obey to the following “quantization” rules:

.a = 2π
r∑

b=1

(
K−1
)
ba

Nb, Qa = 2πk

r∑
b=1

(
K−1
)
ba

Nb. (1.17)

Accordingly, for theenergy

E =
∫
(

E = 1

2k2

∫
(

tr
(
φ†(φ − [[φ, φ†], φ]

)
, (1.18)

we may use (1.14) to derive

E =
r∑

a=1

∫
(

Fa
12 = 2π

r∑
a,b=1

(
K−1
)
ba

Nb = 2π
r∑

b=1

|φb
(0)|2Nb, (1.19)

whereφb
(0) expresses the components (in the Cartan subalgebra) of the principal embed-

ding vacuum as given in (1.13).
SinceD−φ = 0, or equivalently∂−lnφa = i

∑r
b=1 Ab−Kab (a = 1, . . . , r), as in

[4] and [34], each vortex numberNa has the (topological) interpretation of counting the
number of zeroes (according to their multiplicity) of the Higgs scalar componentφa

in (.
By virtue of (1.18), we now expect doubly periodic vortex solutions to become

asymptotically gauge-equivalent to the vacua-states, whenk → 0+.
Thus, in the same spirit of the results [38] and [36] mentioned above, we are going to

establish periodic vortex condensates forL, where the asymptotic behavior of the Higgs
field, ask → 0+, is prescribed according toanyfixed zero of the gauge potentialV .
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For this purpose, we shall focus our attention on the simplest non-abelian case of
physical relevance and take the gauge groupG = SU(3). Our results should be compared
with those obtained in [4,34] for the abelian case (i.e.G = SU(2)) and in [29] for the
Maxwell-Chern–Simons-Higgs model of Lee–Lee–Min [23].

Note that for the Lie groupSU(3) the Cartan matrix isK =
(

2 −1
−1 2

)
. Thus, the

restrictedpotential takes the form:

Vrestricted

(
|φ1|, |φ2|

)
= 1

4k2

(
4|φ1|6 + 4|φ2|6 − 3|φ1|4|φ2|2 − 3|φ1|2|φ2|4

+ 4|φ1|4 + 4|φ2|4 − 4|φ1|2|φ2|2 + |φ1|2 + |φ2|2
)

= 1

4k2

(
|φ1|2

(
2|φ1|2 − |φ2|2 − 1

)2 + |φ2|2
(
2|φ2|2 − |φ1|2 − 1

)2
)

(1.20)

whose zeroes coincide with the pairs(|φ1|2, |φ2|2) = (0,0) unbroken vacuum,
(|φ1|2, |φ2|2) = (1,1) principal embedding vacuum,(|φ1|2, |φ2|2) = (0, 1

2) and
(1

2,0).
Thus, fork > 0 small, we will be interested in derivingSU(3)- vortex solutions for

(1.2) - (1.16), under the ansatz (1.5) and (1.6), such that the componentsφa (a = 1,2)
of the Higgs field satisfy one of the following:

• |φ1| → 1 and|φ2| → 1 (type I)
• |φ1| → 0 and|φ2| → 0 (type II)

•
{|φ1| → 1√

2
and |φ2| → 0 (a)

|φ1| → 0 and |φ2| → 1√
2

(b)
(type III)

in some suitable norm ask → 0+.
In this direction, we prove that there existtwo gauge distinct family of solutions

for any prescribed pair of “vortex numbers”Na and relative set ofvortex pointsZa =
{pa

1, . . . , p
a
Na

} ⊂ ( corresponding to thezeroesof the componentφa of the Higgs field
(a = 1,2), provided we takek > 0 sufficiently small.

Only one of these two families of solutions we can characterize as having the pre-
scribed asymptotic behavior of type I, ask → 0.

The existence of solutions of type II and III is proved only whenN1 + N2 = 1, that
is, a single vortex point is prescribed. In particular, we may conclude that at the energy
levelE = 2π (see (1.19)) there existSU(3)- periodic vortices for each of the prescribed
type I, II and III. More precisely, we obtain the following results.

Theorem 1.1. Let Na be a nonnegative integer andZa = {pa
1, . . . , p

a
Na

} ⊂ ( be an
assigned set ofNa-points (not necessarily distinct) in(, a = 1,2. For 0 < k <√

3|(|
8π max{2N1+N2,2N2+N1} sufficiently small, there exist two gauge distinctSU(3)-

periodic vortex solutions of(1.2)–(1.16)satisfying the ansatz(1.5)–(1.6)and such that:

(i) the componentφa of the Higgs field satisfies:|φa| < 1 in(, andφa vanishes exactly
at eachpa

j ∈ Za with the multiplicity given by the repetition ofpa
j in Za , a = 1,2.
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(ii) The induced “magnetic flux”-component.a and “electric charge”-componentQa ,
satisfy:

.a = 1

k
Qa = 2π

3
(2Na + Nb) a = b = 1,2.

(iii) The energyE satisfies:

E = 2π(N1 + N2).

Furthermore, one of these two solutions is always of type I, in the sense that the
componentsφa

(1)
(a = 1,2) of the Higgs field satisfy:

|φa
(1)

| → 1, ask → 0+, (1.21)

pointwise a.e. in( and strongly inLp((), ∀ p ≥ 1.
While, whenN1+N2 = 1, then the other solution is of type II, and the corresponding

componentsφa
(2)

(a = 1,2) of the Higgs field satisfy:

|φa
(2)

| → 0, ask → 0+, uniformly in(. (1.22)

For k >

√
3|(|

8π max{2N1+N2,2N2+N1} it is not possible to haveSU(3)-periodic vortex

solutions for(1.2)–(1.16)satisfying the ansatz(1.5)–(1.6) together with the properties
(ii) and (iii).

Remark 1.2.In the statement above, it is understood that in caseNa = 0 for some
a = 1,2 then the corresponding set of vortex pointsZa is taken to be the empty set.
Furthermore, a bootstrap argument shows that, in fact, the convergence in (1.22) holds
Cm(()-uniformly, for everym ∈ N, and in any other relevant norm.

Theorem 1.1 may be considered as the complete analogue of the results onabelian
Chern–Simons periodic vortices (corresponding toG = SU(2)) obtained by Caffarelli–
Yang [4] and Tarantello [34].

In fact, if G = SU(2) thenr = 1, and the restricted gauge-potential takes the form
V (|φ|) = 1

4k2 |φ|2(1 − 2|φ|2)2. So, in this case, only type I and II-vortices are allowed.
To insure the existence of type II-vortices, the given restriction on the vortex numbers

not to exceed the value 1 appears as a technical condition, which is required also in the
abelian case [34].

Indeed, in the spirit of [34], we derive our results by considering different “con-
strained” variational principles for each type I, II and III-vortex.

This point of view was inspired by a “constrained” variational approach introduced by
Caffarelli–Yang [4] to treat 1-periodic vortices in the abelian situation. The restriction
on the vortex numberN = 1 was needed in [4] in order to derive the existence of a
minimum for the relative variational problem, as a direct consequence of the Moser–
Trudinger inequality (see [3,16]). On the other hand, our variational problems take a
system-form for which Moser–Trudinger’s inequality no longer suffices to yield directly
the existence of a minimizer even under the given restriction on the vortex numbers.
Instead, we show (see also [27]) that, on the constrained set, an “improved” form of the
Moser–Trudinger inequality holds, which enables us to obtain a minimum for all the
variational problems under examination regardless of the values of the vortex numbers.
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However, for type II (and even more so for type III) vortices we need to restrict the
sum of the vortex numbers, as above, in order to insure that these minima actually lie
on the “interior” of the constrained set, and thus yield to the desired vortex-solution. At
the moment, it is not clear how to remove such a restriction even for the simpler abelian
situation where only recently some progress has been made in this direction, see [28,
12] and [10].

Concerning the type III-vortices, specific toSU(3)-theory, we have the following:

Theorem 1.3. For each fixed pointp ∈ ( and 0 < k < 1
4

√
3|(|
π

sufficiently small,
there exists anSU(3)-periodic-vortex solution for(1.2)–(1.16) satisfying the ansatz
(1.5)–(1.6) such that for the componentφa (a = 1,2) of the Higgs field the following
holds:

(i) (first component):|φ1| < 1; φ1 never vanishes in( and,

|φ1| → 1√
2
, ask → 0+, (1.23)

pointwise a.e. in( and strongly inH1(().
The corresponding induced first-component of the “magnetic field”.1 and “electric
charge” Q1 satisfy:.1 = 1

k
Q1 = 2π

3 ;
(ii) (second component):|φ2| < 1; φ2 admits a simple zero atp ∈ ( and,

|φ2| → 0, ask → 0+, (1.24)

pointwise a.e. in( and strongly inH1(().
The corresponding induced second-component of the “magnetic field”.2 and
“electric charge” Q2 satisfy:.2 = 1

k
Q2 = 4π

3 .
(iii) The energyE = 2π .

Remark 1.4.In words, Theorem 1.3 states the existence of a type III (a) vortex withfirst
vortex numberN1 = 0 andsecondvortexN2 = 1.

Due to the complete symmetry of (1.10) with respect to the indicesa = 1,2, we can
also claim the existence of aSU(3)-periodic vortex of type III (b) simply by exchanging
the role between the indices. Thus, Theorem 1.3 may be completed with the existence
of anotherSU(3)-periodic vortex whose componentφa of the Higgs field satisfy:

(i) (first component):|φ1| < 1; φ1 admits a simple zero atp ∈ ( and,

|φ1| → 0 ask → 0+, (1.25)

pointwise a.e. in( and strongly inH1(().
The corresponding induced first component of the “magnetic field”.1 = 4π

3 and
“electric charge”Q1 = 4π

3 k;
(ii) (secondcomponent):|φ2| < 1; φ2 nevervanishes in( and,

|φ2| → 1√
2
, ask → 0+, (1.26)

pointwise a.e. in( and strongly inH1(().
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The corresponding induced second component of the “magnetic field”.2 and “elec-
tric charge”Q2 satisfy.2 = 1

k
Q2 = 2π

3 .
(iii) The energyE = 2π .

For such a solution the corresponding vortex numbers are given byN1 = 1 and
N2 = 0.

Thus, in caseN1 + N2 = 1, we can combine the results above and conclude:

Corollary 1.5. For givenp1, p2 ∈ ( and 0 < k < 1
4

√
3|(|
π

sufficiently small, at the
energy levelE = 2π there exists aSU(3)-periodic vortex, satisfying(1.2)–(1.16)and
the ansatz(1.5)–(1.6), for each of the asymptotic behaviors prescribed by the type I, II
and III (a), (b), ask → 0+. Furthermore, either the first component of the Higgs field
φ1 admits a simple zero atp1 and the second componentφ2 never vanishes; orφ1 never
vanishes andφ2 admits a simple zero atp2.

Note that, at the moment, no existence result is available concerning vortices inR
2

with the asymptotic behavior of the type III, as|x| → +∞.
To establish the results above, we take advantage of the equationD−φ = 0, which

we may write componentwise as follows:

∂−lnφa = i

r∑
b=1

Ab−Kba, a = 1, . . . , r. (1.27)

In fact, by virtue of (1.27), we can follow an approach introduced by Taubes ([35]) for
the study of self-dual Ginzburg–Landau vortices, and derive from (1.10) a system of
nonlinear elliptic equations for the real variable functionsua = ln |φa|2 (a = 1,2) of
the following form (see also [38]):{

5ua = − 1
k2

(∑r
b=1 Kabeub −∑r

b,c=1 eubKbceucKac

)+ 4π
∑Na

j=1 δpa
j

on(,

ua doubly periodic on∂(, a = 1, . . . , r
(1.28)

where the pointspa
1, . . . , p

a
Na

∈ ( are the prescribed zeroes of the scalar fieldsφa

(a = 1, . . . , r) repeated according to their multiplicity.
In fact, from each solutionua (a = 1, . . . , r) of (1.28) we may recover, under the

ansatz (1.5) and (1.6), the whole vortex-solution for (1.2), by setting:

φa (x) = e
1
2ua(x)+i

∑Na
j=1 Arg

(
x−pa

j

)
,

Aa
1 − iAa

2 = −i

r∑
b=1

∂−ln φb
(
K−1
)
ba

,

Aa
0 = − 1

2k

(
|φa|2 −

r∑
b=1

(
K−1
)
ba

)
,

(1.29)

whereK−1 is the inverse of the Cartan matrixK. Clearly, from (1.29) we have thatφa

vanishes exactly at eachpa
j with the multiplicity corresponding to the repetition ofpa

j

in Za .
We shall devote the following sections to the analysis of the elliptic system (1.28) in

caseG = SU(3).
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2. Variational Formulation and Preliminary Results

We study the system (1.28) when the gauge group considered isSU(3). Recalling that

the Cartan matrix forSU(3) is given byK =
(

2 −1
−1 2

)
, the system (1.28) takes the

following form:

5u1 = λ(4e2u1 − 2e2u2 − 2eu1 + eu2 − eu1+u2) + 4π

∑N1
j=1 δp1

j
on(

5u2 = λ(4e2u2 − 2e2u1 − 2eu2 + eu1 − eu1+u2) + 4π
∑N2

j=1 δp2
j

on(

u1, u2 doubly periodic on∂(.

(2.1)

where we have set

λ = 1

k2 > 0. (2.2)

Concerning problem (2.1) we shall prove the following results:

Theorem 2.1. (a) For 0 < λ < 8π
3|(| max{2N1 + N2,2N2 + N1} problem(2.1)admits

no solutions .
(b) Every solution(u1, u2) for (2.1)satisfies :

eua ≤ 1, in ( (a = 1,2). (2.3)

(c) There existsλ0 > 0 sufficiently large such that,∀λ > λ0 problem(2.1) admits, at
least, two distinct solutions, one of which always satisfies:

eua → 1, asλ → +∞ (2.4)

pointwise a.e. in( and strongly inLp((), ∀ p ≥ 1.

We point out that, contrary to part (a) of Theorem 2.1 where the estimate on the
non-existencerange ofλ’s is given independently of the position of the vortex points,
the range(λ0,+∞) of existence as established in part (c), depends on the position of
such points as can be seen already by the rough estimate given in (2.21).

Clearly, (2.4) insures the existence of a periodic vortex solution of type I. Concerning
the existence of type II and III vortices, we have to limit our attention to consider the
case where the vortex-numbers(N1, N2) satisfy:N1 + N2 = 1.

Thus, we consider problem (2.1) in the simpler form:

5u1 = λ(4e2u1 − 2e2u2 − 2eu1 + eu2 − eu1+u2) + 4πN1δp1 on(

5u2 = λ(4e2u2 − 2e2u1 − 2eu2 + eu1 − eu1+u2) + 4πN2δp2 on(

u1, u2 doubly periodic on∂(
(2.5)

with assigned pointspa ∈ (, a = 1,2.
We prove:

Theorem 2.2. For N1 + N2 = 1 andλ > 16π
3|(| sufficiently large, problem(2.10)admits

a (weak) solution(u−
1 , u−

2 ) satisfying:

eu
−
a → 0 asλ → +∞, uniformly in( (a = 1,2), (2.6)

(and in any other relevant norm).
Furthermore, there always exists a second solution(u∗

1, u
∗
2) such that,
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(i) if N1 = 0 andN2 = 1, then

eu
∗
1 → 1

2
, eu

∗
2 → 0 asλ → +∞ (2.7)

pointwise a.e. in( and strongly inH1(();
(ii) if N1 = 1 andN2 = 0, then

eu
∗
1 → 0, eu

∗
2 → 1

2
asλ → +∞ (2.8)

pointwise a.e. in( and strongly inH1(().

It is clear that, by means of the transformations in (1.29) and (2.2), we obtain Theo-
rem 1.1, 1.3 as well as Corollary 1.5 as an immediate consequence of Theorem 2.1 and
2.2.

To establish Theorem 2.1 and 2.2, it will be convenient to distinguish between the
singular and regular part of the solutions in (2.1). For this purpose denote byua

0 (a = 1,2)
the unique solution for the problem (see [3]){

5ua
0 = −4πNa|(| + 4π

∑Na

j=1 δpa
j

on(∫
(
ua

0 = 0 ua
0 doubly periodic on∂(

(2.9)

a = 1,2.
As is well known,ua

0 ∈ C∞(( \ {pa
1 . . . pa

Ni
}) and ifna

j is the multiplicity ofpa
j then

ua
0 behaves like: ln|x − pa

j |2na
j , asx → pa

j .

Settingua = ua
0 + va andha = eu

a
0 we have that(u1, u2) is a solution for (2.1) if

and only if(v1, v2) is asmoothsolution for the following system:

5v1 = λ

(
4h2

1e2v1 − 2h2
2e2v2 − 2h1ev1 + h2ev2 − h1h2ev1+v2

)+ 4πN1|(| on(

5v2 = λ
(
4h2

2e2v2 − 2h2
1e2v1 − 2h2ev2 + h1ev1 − h1h2ev1+v2

)+ 4πN2|(| on(

v1, v2 doubly periodic on∂(.

(2.10)

As a preliminary result, we start to derive part (b) of Theorem 2.1.

Proof of (2.3). First of all notice that, in view of (2.9) and (2.10), limx→pa
j
ua = −∞

for a = 1,2 andj = 1, . . . , Na . Thereforeua attains its maximum value at some point
x̄a ∈ (\ {pa

1, . . . , p
a
Na

}. Setūa = max( ua = ua(x̄a) (a = 1,2). By symmetry, we can
assume without loss of generality, thatū1 ≥ ū2. Since(u1, u2) is a solution of (2.1), we
derive

0 ≥ 4e2ū1 − 2e2u2(x̄1) − 2eū1 + eu2(x̄1) − eū1+u2(x̄1) ≥
≥ 2e2ū1 − 2eū1 + eu2(x̄1) − eū1+u2(x̄1)

= 2eū1
(
eū1 − 1

)
− eu2(x̄1)

(
eū1 − 1

)
=
(
2eū1 − eu2(x̄1)

) (
eū1 − 1

). (2.11)

Thus, ēu1 − 1 ≤ 0 and consequently

eua(x) ≤ 1 for anyx ∈ (, anda = 1,2. �� (2.12)
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We notice that (2.10) admits a variational formulation onH1(() × H1((). Here
H1(() denotes the space of doubly periodic functionsv ∈ H 1

loc(R
2) with periodic cell

domain(. It defines an Hilbert space equipped with the standardH 1(()-scalar product.
We shall denote by‖ · ‖ the usual norm onH1(()as given by‖v‖2 = ‖∇v‖2

2+‖v‖2
2 =∫

(
|∇v|2 + ∫

(
|v|2.

It is easy to check that (weak) solutions for (2.10) correspond to critical points in
H1(() × H1(() for the (unbounded) functional

Iλ (v1, v2) = 1

3

(
‖∇v1‖2 + ‖∇v2‖2 +

∫
(

∇v1 · ∇v2

)
+ λ

∫
(

W (v1, v2)

+ 4π

3
(2N1 + N2)

∫
(

v1 + 4π

3
(2N2 + N1)

∫
(

v2, v1, v2 ∈ H1 (()

(2.13)

with W(v1, v2) given by

W(v1, v2) = h2
1e2v1 + h2

2e2v2 − h1ev1 − h2ev2 − h1h2ev1+v2 + 1

= 1

4
(2h1ev1 − h2ev2 − 1)2 + 3

4
(h2ev2 − 1)2

= 1

4
(2h2ev2 − h1ev1 − 1)2 + 3

4
(h1ev1 − 1)2 ≥ 0.

(2.14)

To simplify notations, from now on we shall assume, without loss of generality, that
|(| = 1.

Integrating (2.10) over(, we find that any solution(v1, v2) for (2.10) satisfies the
following constraint conditions:{

4
∫
(
h2

1e2v1 − 2
∫
(
h2

2e2v2 − 2
∫
(
h1ev1 + ∫

(
h2ev2 − ∫

(
h1h2ev1+v2 + 4πN1

λ
= 0

4
∫
(
h2

2e2v2 − 2
∫
(
h2

1e2v1 − 2
∫
(
h2ev2 + ∫

(
h1ev1 − ∫

(
h1h2ev1+v2 + 4πN2

λ
= 0.

(2.15)

Conditions (2.15) may be more clearly interpreted if we setvi = ci + wi

with
∫
(
wi = 0 andci = ∫

(
vi (i = 1,2). Indeed, after some simple algebraic ma-

nipulation, from (2.15) we get a quadratic system for the variables eci (i = 1,2) as
follows:{

2e2c1
∫
(
h2

1e2w1 − ec1(
∫
(
h1ew1 + ec2

∫
(
h1h2ew1+w2) + 4π

3λ (2N1 + N2) = 0

2e2c2
∫
(
h2

2e2w2 − ec2(
∫
(
h2ew2 + ec1

∫
(
h1h2ew1+w2) + 4π

3λ (2N2 + N1) = 0.
(2.16)

Consequently, a solutionui = ui
0 + ci + wi (i = 1,2,) for (2.1) must satisfy:(∫

(
hiewi + ecj

∫
(
h1h2ew1+w2

)2∫
(
h2
i e2wi

≥ 32π
(
2Ni + Nj

)
3λ

i = j = 1,2. (2.17)

Thus, taking into account (2.12), by (2.17) and Hölder inequality we obtain,

32π
(
2Ni + Nj

)
3λ

≤ 4
(∫

(
hiewi

)2∫
(
h2
i e2wi

≤ 4|(|, i = j = 1,2. (2.18)



612 M. Nolasco, G. Tarantello

Hence, the condition

λ ≥ 8π

3|(| max{2N1 + N2; 2N2 + N1} (2.19)

is necessary for the solvability of (2.1), and part (a) of Theorem 2.1 follows.
Set

E = {w ∈ H1(() :
∫
(

w = 0}.

We shall see that, for each fixed pair(w1, w2) ∈ E × E satisfying:

(∫
(

hie
wi

)2

≥ 32π

3λ

(
2Ni + Nj

) ∫
(

h2
i e2wi , i = j, i, j = 1,2, (2.20)

the system (2.16) admits four distinct solutions(c1, c2).
For this purpose, from now on, we take

λ >
32π

3
max

{
(2N1 + N2)

∫
(
h2

1(∫
(
h1
)2 ; (2N2 + N1)

∫
(
h2

2(∫
(
h2
)2
}

(2.21)

and define the set

Aλ = {(w1, w2) ∈ E × E : wi satisfies (2.20), i = 1,2}. (2.22)

Note that(0,0) ∈ Aλ.
For given(w1, w2) ∈ Aλ, we introduce the smooth functionsg±

i : [0,+∞) → R

(i = 1,2) defined as follows:

g±
1 (X) ≡

∫
(
h1ew1 + X

∫
(
h1h2ew1+w2

4
∫
(
h2

1e2w1

±
√(∫

(
h1ew1 + X

∫
(
h1h2ew1+w2

)2 − 32π
3λ (2N1 + N2)

∫
(
h2

1e2w1

4
∫
(
h2

1e2w1

g±
2 (X) ≡

∫
(
h2ew2 + X

∫
(
h1h2ew1+w2

4
∫
(
h2

2e2w2

±
√(∫

(
h2ew2 + X

∫
(
h1h2ew1+w2

)2 − 32π
3λ (2N2 + N1)

∫
(
h2

2e2w2

4
∫
(
h2

2e2w2
,

(2.23)

and set{
F+(X) ≡ X − g+

1 (g+
2 (X)), F−(X) ≡ X − g−

1 (g−
2 (X))

F±(X) ≡ X − g+
1 (g−

2 (X)), F∓(X) ≡ X − g−
1 (g+

2 (X))
.

It is easy to check that solutions of (2.16) correspond to the zeroes of the smooth functions
F ∗ : [0,+∞) → R, with ∗ = +,−,±,∓.
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Notice thatg±
i (X) > 0 for anyX ≥ 0(i = 1,2)and soF ∗(0) < 0(∗ = +,−,±,∓).

Moreover,

lim
X→+∞ g−

i (X) = 0 (i = 1,2), (2.24)

while

g+
i (X)

X
=
∫
(
h1h2ew1+w2

2
∫
(
h2
i e2wi

+ o(1), asX → +∞ (i = 1,2). (2.25)

Therefore,

F+ (X)

X
=
(

1 −
(∫

(
h1h2ew1+w2

)2
4
∫
(
h2

1e2w1
∫
(
h2

2e2w2

)
+ o (1) , asX → +∞.

For the remainingF ∗, (∗ = −,±,∓) we have

F ∗(X)

X
= 1 + o(1), asX → +∞.

Therefore, for any choice∗ = +,−,±,∓, it follows:

lim
X→+∞ F ∗(X) = +∞,

and hence, by continuity,F ∗(X∗) = 0, for someX∗ > 0 and∗ = +,−,±,∓.
Furthermore, fori, j = 1,2, i = j ,

dg±
i

dX
(X) = ±g±

i (X)

∫
(
h1h2ew1+w2√(∫

(
hiewi + X

∫
(
h1h2ew1+w2

)2− 32π
3λ

(
2Ni +Nj

) ∫
(
h2
i e2wi

,

(2.26)

and so,F± andF∓ are strictly increasing. Moreover, for(w1, w2) ∈ Aλ (i = 1,2) and
X > 0, we have

dF+

dX
(X) = −

∫
(
h1h2ew1+w2g+

1 (g+
2 (X))√

(
∫
(
h1ew1 + g+

2 (X)
∫
(
h1h2ew1+w2)2 − 32π

3λ (2N1 + N2)
∫
(
h2

1e2w1

·
∫
(
h1h2ew1+w2g+

2 (X)√
(
∫
(
h2ew2 + X

∫
(
h1h2ew1+w2)2 − 32π

λ
(2N2 + N1)

∫
(
h2

2e2w2

+ 1

>1 − g+
1 (g+

2 (X))

X
= F+(X)

X
,

and, analogously,

dF−

dX
(X) > 1 − g−

1 (g−
2 (X))

X
= F−(X)

X
.

So, F
∗

X
is strictly increasing, for∗ = +,−, andX > 0.
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In conclusion, for any(w1, w2) ∈ Aλ and∗ = +,−,±,∓ there exists a unique
X∗ > 0 such thatF ∗(X∗) = 0. Set ec

∗
1(w1,w2) = X∗, and observe that, by the strict

monotonicity ofg+
i andg−

i , i = 1,2 (see (2.26)), there exists a uniquec∗
i = c∗

i (w1, w2)

(i = 1,2; ∗ = +,−,±,∓) satisfying

ec
+
1 = g+

1 (ec
+
2 ), ec

+
2 = g+

2 (ec
+
1 );

ec
±
1 = g+

1 (ec
±
2 ), ec

±
2 = g−

2 (ec
±
1 );

ec
∓
1 = g−

1 (ec
∓
2 ), ec

∓
2 = g+

2 (ec
∓
1 );

ec
−
1 = g−

1 (ec
−
2 ), ec

−
2 = g−

2 (ec
−
1 ).

(2.27)

Consequently, for given(w1, w2) ∈ Aλ, settingv∗
i = wi + c∗

i (w1, w2), i = 1,2,
∗ = +,−,±,∓ we have that the pair(v∗

1, v
∗
2) satisfy (2.15).

Our goal will be to derive solutions(v1, v2) for (2.10) which decompose asvi =
wi + ci with

∫
(
wi = 0, ci = ∫

(
vi andci = c∗

i (w1, w2) (i = 1,2) with prescribed∗
to coincide with either+,−,± or ∓.

This will yield to solutions of (2.10) with specific asymptotic behavior asλ → +∞.
Note that, by the complete symmetry of the problem, the case∗ = ± and∗ = ∓ are

similar in nature. So, we shall limit our attention to the case∗ = ± with the understanding
that, by changing the role between the indices, analogous considerations hold also when
∗ = ∓.

We start with the following:

Lemma 2.3. For every(w1, w2) ∈ Aλ we have

(i) ec+
i

∫
(
hiewi ≤ 1 for i = 1,2;

(ii) ec−
i

∫
(
hiewi ≤ 8π

λ
(2Ni + Nj) for i = 1,2, i = j ;

(iii) ec±
1
∫
(
h1ew1 ≤ 1

2 + 16π
3λ (2N2 + N1) andec

±
2
∫
(
h2ew2 ≤ 8π

λ
(2N2 + N1) .

Proof. (i) In view of (2.23), from (2.27) fori, j = 1,2 i = j we have

ec
+
i ≤

∫
(
hiewi + ec

+
j
∫
(
h1h2ew1+w2

2
∫
(
h2
i e2wi

.

Iterating such an inequality, by means of Hölder inequality, we get,

ec
+
1 ≤

∫
(
h1ew1

2
∫
(
h2

1e2w1
+

∫
(
h1h2ew1+w2

4
∫
(
h2

1e2w1
∫
(
h2

2e2w2

(∫
(

h2ew2 + ec
+
1

∫
(

h1h2ew1+w2

)

≤
∫
(
h1ew1

2
∫
(
h2

1e2w1
+
∫
(
h1h2ew1+w2

∫
(
h2ew2

4
∫
(
h2

1e2w1
∫
(
h2

2e2w2
+ 1

4
ec

+
1 .

By symmetry, an analogous estimate holds for ec+
2 . Hence,

ec
+
i

∫
(

hie
wi ≤ 4

3

(
(
∫
(
hiewi )2

2
∫
(
h2
i e2wi

+
∫
(
h1h2ew1+w2

∫
(
h1ew1

∫
(
h2ew2

4
∫
(
h2

1e2w1
∫
(
h2

2e2w2

)
, i = 1,2,

(2.28)

and, using Hölder inequality, we derive the desired estimate.



Vortex Condensates for SU(3) Chern–Simons Theory 615

To obtain (ii), we use again (2.27) together with (2.23). Thus, fori = 1,2, i = j , we
have

ec
−
i ≤ 8π(2Ni + Nj)

3λ

1∫
(
hiewi + ec

−
j
∫
(
h1h2ew1+w2

(2.29)

and (ii) easily follows.
As above, to obtain (iii), note that from (2.27) and (2.23), we have

ec
±
2 ≤ 8π(2N2 + N1)

3λ

1∫
(
h2ew2 + ec

±
1
∫
(
h1h2ew1+w2

, (2.30)

and so,

ec
±
2 ≤ 8π(2Ni + Nj)

λ
∫
(
h2ew2

. (2.31)

On the other hand,

ec
±
1 ≤

∫
(
h1ew1 + ec

±
2
∫
(
h1h2ew1+w2

2
∫
(
h2

1e2w1
, (2.32)

while from (2.30) we also have,

ec
±
2 ≤ 8π(2N2 + N1)

3λ

1

ec
±
1
∫
(
h1h2ew1+w2

. (2.33)

Furthermore, from (2.27) and (2.23) it is easy to check that

ec
±
1 ≥

∫
(
h1ew1

4
∫
(
h2

1e2w1
. (2.34)

Combining (2.33) with (2.34), from (2.32) we get

ec
±
1

∫
(

h1ew1 ≤
(∫

(
h1ew1

)2
2
∫
(
h2

1e2w1
+ ec

±
2
∫
(
h1h2ew1+w2

∫
(
h1ew1

2
∫
(
h2

1e2w1

≤
(∫

(
h1ew1

)2
2
∫
(
h2

1e2w1
+ 4π (2N2 + N1)

∫
(
h1ew1

3λec
±
1
∫
(
h2

1e2w1

≤
(∫

(
h1ew1

)2
2
∫
(
h2

1e2w1
+ 16π (2N2 + N1)

3λ
,

(2.35)

and the desired estimate follows by Hölder inequality.��
Remark 2.4.Note that, by Jensen’s inequality,

∫
(
hiewi ≥ 1 (i = 1,2), which combined

with the estimates in Lemma 2.3, gives in particular that,

ec
+
i ≤ 1, ec

−
i ≤ O

(
1

λ

)
, i = 1,2;

ec
±
1 ≤ 1

2
+ O

(
1

λ

)
and ec

±
2 ≤ O

(
1

λ

)
.

(2.36)
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This suggests that solutions of (2.10) with the prescribed asymptotic behavior of type I,
II and III (see the Introduction) should correspond to those with mean-values as given
by c+

i , c−
i andc±

i , respectively.

With this aim, we consider the functionalsJ+
λ , J−

λ , J±
λ andJ∓

λ defined onAλ and
obtained by inserting the constraint (2.27) intoIλ. More precisely, for(w1, w2) ∈ Aλ,
define

J ∗
λ (w1, w2) = Iλ(w1 + c∗

1(w1, w2), w2 + c∗
2(w1, w2)), with ∗ = +,−,±,∓.

Using (2.16) we find:

J ∗
λ (w1, w2) = 1

3

(
‖∇w1‖2 + ‖∇w2‖2 +

∫
(

∇w1 · ∇w2

)

+ λ

2

∫
(

(
1 − ec

∗
1h1ew1

)
+ λ

2

∫
(

(
1 − ec

∗
2h2ew2

)
− 4π (N1 + N2)

+ 4π

3
(2N1 + N2) c

∗
1 + 4π

3
(2N2 + N1) c

∗
2,

(2.37)

with ∗ = +,−,± and∓.

Remark 2.5.It is easy to check thatJ ∗
λ is Frechét differentiable in the interior ofAλ.

Moreover if(w1, w2) (in the interior ofAλ) is a critical point forJ ∗
λ , then(w1+c∗

1, w2+
c∗

2) defines a critical point forIλ.

Concerning the existence of critical points forJ ∗
λ , we will show that such a functional

is bounded below and attains its infimum onAλ. However, only when∗ = +, we can
prove that the corresponding minimum point belongs to the interior ofAλ, for λ > 0
large (see Proposition 3.4 below). In the other cases∗ = −,± and∓, we can prove that
this occurs only whenN1 + N2 = 1 (see Sect. 5). It is an interesting open question to
know what happens for the remaining cases.

3. Multivortex Solutions of the I Type

In this section we analyze the functionalJ+
λ , and the corresponding minimization prob-

lem inAλ.
We start with a preliminary lemma already derived in [27]:

Lemma 3.1. If (w1, w2) ∈ Aλ, then∀τ ∈ (0,1] we have

∫
(

hie
wi ≤

(
3λ

32π
(
2Ni + Nj

)
) 1−τ

τ (∫
(

hτ
i eτwi

) 1
τ

, i, j = 1,2 i = j. (3.1)

Proof. Let τ ∈ (0,1) and leta = 1
2−τ

so thatτa + 2(1 − a) = 1. By the interpolation
inequality we have∫

(

hie
wi ≤

(∫
(

hτ
i eτwi

)a (∫
(

h2
i e2wi

)1−a

≤
(∫

(

hτ
i eτwi

)a
(

3λ

32π
(
2Ni + Nj

)
)1−a (∫

(

hie
wi

)2(1−a)

, i = j,
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Consequently, fori = j , i, j = 1,2,(∫
(

hie
wi

)2a−1

≤
(

3λ

32π
(
2Ni + Nj

)
)1−a (∫

(

hτ
i eτwi

)a

,

that is,

∫
(

hie
wi ≤

(
3λ

32π
(
2Ni + Nj

)
) 1−τ

τ (∫
(

hτ
i eτwi

) 1
τ

. ��

In view of Lemma 3.1 we derive the coerciveness ofJ+
λ as follows:

Proposition 3.2. For λ > 0 sufficiemtly large, there exist constantsα,C > 0 (indepen-
dent ofλ) such that

J+
λ (w1, w2) ≥ α

(
‖∇w1‖2 + ‖∇w2‖2

)
− C (ln λ + 1) (3.2)

for all (w1, w2) ∈ Aλ.
Moreover,J+

λ attains its infimum onAλ.

Proof. From (2.23) and (2.27) it follows immediately that

ec
+
i ≥

∫
(
hiewi

4
∫
(
h2
i e2wi

, i = 1,2.

Hence, from (2.20) we find a suitable constantC > 0, independent ofλ, such that for
every(w1, w2) ∈ Aλ, we have

c+
i (w1, w2) ≥ −ln λ − ln

∫
(

hie
wi − C, i = 1,2. (3.3)

Whence, using Lemma 3.1, for fixedτ ∈ (0,1) and any(w1, w2) ∈ Aλ, we obtain:

J+
λ (w1, w2) ≥ 1

6

2∑
i=1

‖∇wi‖2
2 −

∑
i =j=1,2

4π

3

(
2Ni + Nj

)
ln
∫
(

hie
wi

−
∑

i =j=1,2

4π

3

(
2Ni + Nj

)
ln λ − C ≥ 1

6

2∑
i=1

‖∇wi‖2
2

−
∑

i =j=1,2

4π

3

(
2Ni + Nj

)
ln[
(

3λ

16π
(
2Ni + Nj

)
) 1−τ

τ (∫
(

eτ
(
wi+ui

0

)) 1
τ ]

−
∑

i =j=1,2

4π

3

(
2Ni + Nj

)
ln λ − C

≥ 1

6

2∑
i=1

‖∇wi‖2
2 −

∑
i =j=1,2

4π

3τ

(
2Ni + Nj

) (
ln
∫
(

eτwi + max
(

ui
0

)

−
∑

i =j=1,2

4π

3

(
1

τ

) (
2Ni + Nj

)
ln λ − C,
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for some constantC > 0 independent ofλ.
Recall that, by Moser–Trudinger’s inequality [3](see [16,11] and [27], for alternative

proofs) we have that

∫
(

ew ≤ C exp

(
1

16π
‖∇w‖2

2

)
, ∀w ∈ E, (3.4)

with C a positive constant depending only on(. Thus, for any(w1, w2) ∈ Aλ, we obtain

J+
λ (w1, w2) ≥ 1

6

∑
i =j=1,2

(
1 − τ

(
2Ni + Nj

)
2

)
‖∇wi‖2

2

− 4π

3

∑
i =j=1,2

(
2Ni + Nj

)
τ

ln λ − Cτ ,

(3.5)

with Cτ > 0 a suitable constant independent ofλ.
Hence, it suffices to take 0< τ < 2

maxi =j=1,2(2Ni+Nj )
in (3.5), to derive (3.2) and

conclude thatJ+
λ is coercive onAλ. SinceJ+

λ is weakly lower semicontinuous on the
weakly closed setAλ, we immediately conclude that the infimum ofJ+

λ is attained on
Aλ. ��

Our next goal is to prove that, forλ sufficiently large, such a minimum point lies in
the interior ofAλ.

To this purpose we will estimate the functionalJ+
λ on the boundary∂Aλ of Aλ.

Lemma 3.3. For λ > 0 sufficiently large,

inf
(w1,w2)∈∂Aλ

J+
λ (w1, w2) ≥ λ

2
− C(

√
λ + ln λ + 1), (3.6)

with C > 0 a suitable constant independent ofλ.

Proof. For (w1, w2) ∈ ∂Aλ, we have that the identity

(∫
(

hie
wi

)2

= 32π

3λ
(2Ni + Nj)

∫
(

h2
i e2wi , i = j (3.7)

necessarily holds fori = 1 or 2. Without loss of generality assume that (3.7) holds for
i = 2.

Using (3.7) into (2.28), by means of Hölder’s inequality, we find

ec
+
2

∫
(

h2ew2 ≤ 4

3

(
(
∫
(
h2ew2)2

2
∫
(
h2

2e2w2
+

∫
(
h1ew1

∫
(
h2ew2

4(
∫
(
h2

1e2w1)
1
2 (
∫
(
h2

2e2w2)
1
2

)

≤ C(
1

λ
+ 1√

λ
),

(3.8)

for some constantC > 0 independent ofλ.
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Hence, forλ > 0 sufficiently large, we have

ec
+
2

∫
(

h2ew2 ≤ 2C√
λ
. (3.9)

Using (2.37) with∗ = +, the arguments of Proposition 3.2 withτ = 2
maxi =j=1,2(2Ni+Nj )

,
Lemma 2.3-(i) and (3.9), we get

J+
λ (w1, w2) ≥ λ

2

∫
(

(
1 − ec

+
1 h1ew1

)
+ λ

2

∫
(

(
1 − ec

+
2 h2ew2

)

− 2π

3
max

i,j=1,2;i =j

(
2Ni + Nj

)2 ln λ − C

≥ λ

2
− C
(√

λ + ln λ + 1
)
,

for any(w1, w2) ∈ ∂Aλ, with C > 0 a suitable constant independent ofλ. ��

In order to find suitable test-functions in the interior ofAλ, where the reverse estimate
in (3.6) holds, we recall here some results obtained in [34] concerning theAbelian Chern–
Simons–Higgs equation.

In [34] (Proposition 3.1) it is proved that forµ > 0 sufficiently large there exist
v̄i
µ = c̄iµ + w̄i

µ, with c̄iµ = ∫
(
v̄i
µ and the

∫
(
w̄i

µ = 0 (i = 1,2) solution of

{
5v = µev+ui

0(ev+ui
0 − 1) + 4πNi

v ∈ H 1((),
(3.10)

such thatui
0 + v̄i

µ < 1 in (, c̄iµ → 0 andw̄i
µ → −ui

0 pointwise a.e., asµ → +∞ (i =
1,2). Sincehi = eu

i
0 ∈ L∞((), by dominated convergence, we have thathie

w̄i
µ → 1

strongly inLp(() for anyp ≥ 1. In particular,

∫
(

h1h2ew̄
1
µ+w̄2

µ → 1, asµ → +∞. (3.11)

Hence, for fixedλ0 > 0 large andε ∈ (0,1), we can findµε > 0 sufficiently large to
insure that, settinḡwi,ε = w̄i

µε
(i = 1,2), we have(w̄1,ε, w̄2,ε) ∈ Aλ for everyλ ≥ λ0

and

max
j=1,2

2
∫
(
h2
je2w̄j,ε + 1

4
∫
(
h2

1e2w̄1,ε
∫
(
h2

2e2w̄2,ε − 1
> 1 − ε. (3.12)
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Recalling that, by Jensen’s inequality,
∫
(
h1h2ew̄1,ε+w̄2,ε ≥ 1 and

∫
(
h2
je2w̄j,ε ≥

(
∫
(
hje2w̄j,ε )2 ≥ 1, j = 1,2, by means of (2.27) and (2.23) we obtain,

ec
+
i (w̄1,ε ,w̄2,ε ) ≥

(∫
(
hiew̄1,ε + ec

+
j (w̄1,ε ,w̄2,ε )

∫
(
h1h2ew̄1,ε+w̄1,ε

)
4
∫
(
h2
i e2w̄i,ε

×

1 +

√
1 − 32π

3λ
(2Ni + Nj)

∫
(
h2
i e2w̄i,ε

(
∫
(
hiew̄i,ε )2




≥ 1 + ec
+
j (w̄1,ε ,w̄2,ε )

2
∫
(
h2
i e2w̄i,ε

+
∫
(
hiew̄i,ε

4
∫
(
h2
i e2w̄i,ε

×


√

1 − 32π

3λ
(2Ni + Nj)

∫
(
h2
i e2w̄i,ε

(
∫
(
hiew̄i,ε )2

− 1




≥ 1 + ec
+
j (w̄1,ε ,w̄2,ε )

2
∫
(
h2
i e2w̄i,ε

− 8π(2Ni + Nj)

3λ
, for i, j = 1,2 andi = j.

(3.13)

Thus, settingc+
i,ε = c+

i (w̄1,ε, w̄2,ε) i = 1,2, an iteration of the estimate above yields
to

ec
+
i,ε ≥ 1

2
∫
(
h2
i e2w̄i,ε

+ 1

4
∫
(
h2

1e2w̄1,ε
∫
(
h2

2e2w̄2,ε
(1 + ec

+
i,ε )

− 1

2
∫
(
h2
i e2w̄i,ε

8π(2Nj + Ni)

3λ
− 8π(2Ni + Nj)

3λ

≥ 2
∫
(
h2
je2w̄j,ε + 1

4
∫
(
h2

1e2w̄1,ε
∫
(
h2

2e2w̄2,ε
+ ec

+
i,ε

4
∫
(
h2

1e2w̄1,ε
∫
(
h2

2e2w̄2,ε
− 4π(4Nj + 5Ni)

3λ
,

for i = j = 1,2.
Consequently, fori = j = 1,2,

ec
+
i,ε ≥ 2

∫
(
h2
je2w̄j,ε + 1

4
∫
(
h2

1e2w̄1,ε
∫
(
h2

2e2w̄2,ε − 1
− 4π(4Nj + 5Ni)

9λ
.

In view of (3.12), we conclude that

ec
+
i,ε ≥ 1 − ε − 4π

λ
max
j=1,2

Nj , i = 1,2,

that gives

(1 − ec
+
i,ε

∫
(

hie
w̄i,ε ) ≤ ε + 4π

λ
max
j=1,2

Nj , i = 1,2 (3.14)

for all λ ≥ λ0.
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Now, we are ready to prove:

Proposition 3.4. For λ > 0 sufficiently large,

inf
(w1,w2)∈∂Aλ

J+
λ (w1, w2) > inf

(w1,w2)∈Aλ

J+
λ (w1, w2). (3.15)

Proof. Fix ε ∈ (0, 1
2) and consider(w̄1,ε, w̄2,ε) satisfying (3.14) forλ ≥ λ0.

Sincec+
i ≤ 0, i = 1,2 (see Remark 2.4), by (2.37) (with∗ = +) and (3.14), we

have:

J+
λ (w̄1,ε, w̄2,ε) ≤ ‖∇w̄1,ε‖2 + ‖∇w̄2,ε‖2 + λε ≤ Cε + λε, (3.16)

with Cε > 0 a suitable constant depending onε only.
Comparing with Lemma 3.3, it follows

inf
(w1,w2)∈∂Aλ

J+
λ (w1, w2) − inf

(w1,w2)∈Aλ

J+
λ (w1, w2) ≥ inf

(w1,w2)∈∂Aλ

J+
λ (w1, w2)

− J+
λ (w̄1,ε, w̄2,ε) ≥ λ(

1

2
− ε) − C(

√
λ + lnλ) − Cε → +∞,

asλ → +∞, and the proposition is proved.��
From Proposition 3.2 and 3.4 we may conclude that, forλ > 0 sufficiently large and

(N1, N2) ∈ N × N, there exists(w1,λ, w2,λ) in the interior ofAλ, whereJ+
λ attains its

infimum. Consequently,(J+
λ )′(w1,λ, w2,λ) = 0, and{
v+

1,λ = w1,λ + c+
1 (w1,λ, w2,λ)

v+
2,λ = w2,λ + c+

2 (w1,λ, w2,λ)
(3.17)

defines a critical point forIλ, namely a (weak) solution of (2.10).
Next we prove that, as in the Abelian Chern–Simons-Higgs theory (see [34]), the

solution characterized by the choice of the “plus” sign in (2.23), namely(v+
1,λ, v

+
2,λ),

give rise to a periodic vortex of type I.
More precisely, we prove

Proposition 3.5. For λ sufficiently large, let(v+
1,λ, v

+
2,λ) be the solution of(2.10)as given

by (3.17), then,

• eu
i
0+v+

i,λ → 1 asλ → +∞, pointwise a.e. in( and inLp((), ∀ p ≥ 1 (i = 1,2).

In order to prove Proposition 3.5 we start with the following lemma:

Lemma 3.6. Let (v+
1,λ, v

+
2,λ) be given by(3.17), then,∫
(

W(v+
1,λ, v

+
2,λ) → 0, asλ → +∞. (3.18)

Proof. In view of (3.16) we may conclude that∀ε > 0 ∃λε > 0 andCε > 0 such that
∀λ ≥ λε we have

inf
Aλ

J+
λ ≤ ελ + Cε. (3.19)
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On the other hand, following the argument of Proposition 3.2 (withτ = 2 (maxi =j=1,2

(2Nj + Ni))
−1) we obtain

inf
Aλ

J+
λ = J+

λ (w+
1,λ, w

+
2,λ) ≥ λ

∫
(

W(v+
1,λ, v

+
2,λ) − 4π

3
max
i =j

(2Ni + Nj)
2ln λ − C,

(3.20)

for C > 0 a suitable constant independent ofλ.
So putting together (3.19) and (3.20), we obtain that

lim sup
λ→+∞

∫
(

W(v+
1,λ, v

+
2,λ) ≤ ε, ∀ε > 0

and the conclusion follows.��
Proof of Proposition 3.5.Recalling (2.14), by Lemma 3.6 we havehie

v+
i,λ → 1 inL2(()

asλ → +∞ andi = 1,2. Since(v+
1,λ + u1

0, v
+
2,λ + u2

0) is a solution of (2.1), by (2.3),
we have that

ev
+
i,λ+ui

0 ≤ 1, in (, i = 1,2.

Hence, ev
+
i +ui

0 → 1 pointwise a.e., and, by dominated convergence, strongly inLp((),
∀ p ≥ 1, asλ → +∞. ��

We conclude this section by observing that the type I multivortex solution(v+
1,λ, v

+
2,λ)

can be characterized variationally as follows:

Lemma 3.7. Let(v+
1,λ, v

+
2,λ) be given by(3.17). Then(v+

1,λ, v
+
2,λ) is a local minimum for

the functionalIλ.

Proof. For any(w1, w2) ∈ Aλ observe that

∂ci Iλ(w1 + c+
1 (w1, w2), w2 + c+

2 (w1, w2)) = 0, i = 1,2. (3.21)

Moreover, fori = 1,2, i = j we have

∂2
c2
i

Iλ (w1 + c1, w2 + c2) = λ

∫
(

(
4h2

i e2(wi+ci ) − hie
wi+ci − h1h2ec1+c2ew1+w2

)
,

∂2
c1c2

Iλ (w1 + c1, w2 + c2) = −λ

∫
(

h1h2ec1+c2ew1+w2.

In view of (2.23) we have

∂2
c2
i

Iλ(v
+
1,λ, v

+
2,λ) = λ((

∫
(

hie
v+
i,λ + h1h2ev

+
1,λ+v+

2,λ )2 − 32π

3λ
(2Ni + Nj)

∫
(

h2
i e2v+

i,λ )
1
2 ,

(3.22)

and since(w1,λ, w2,λ) lies in the interior ofAλ,

∂2
c2
i

Iλ(v
+
1,λ, v

+
2,λ) > λ

∫
(

h1h2ev
+
1,λ+v+

2,λ , i = 1,2.
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Therefore, at the point(v+
1,λ, v

+
2,λ), the Hessian matrix ofIλ(w1 + c1, w2 + c2) w.r.t. the

variables(c1, c2) is strictly positive defined. Letvi = wi + ci (i = 1,2); by continuity,
there existsδ > 0 such that for any

∑
i=1,2‖vi − v+

i,λ‖ ≤ δ, we have(w1, w2) ∈ Aλ and

Iλ(v1, v2) ≥ Iλ(w1 + c+
1 (w1, w2), w2 + c+

2 (w1, w2)) = J+
λ (w1, w2). (3.23)

Therefore,

Iλ (v1, v2) ≥ J+
λ (w1, w2) ≥ inf

(w1,w2)∈Aλ

J+
λ (w1, w2) = Iλ

(
v+

1,λ, v
+
2,λ

)
, (3.24)

and so(v+
1,λ, v

+
2,λ) defines a local minimum forIλ. ��

4. The Mountain Pass Solution

In this section we prove the existence of a second solution of “mountain pass” type and
obtain the proof of Theorem 2.1.

We start to show that the functionalIλ satisfies the compactness condition of Palais–
Smale.

Lemma 4.1. Let {(v1,n, v2,n)} be a sequence inH1(() × H1(() satisfying:

(1) Iλ(v1,n, v2,n) → α asn → +∞,
(2) ‖I ′

λ(v1,n, v2,n)‖ → 0 asn → +∞, then{(v1,n, v2,n)} admits a convergent subse-
quence inH1(() × H1(().

Proof. Setvi,n = wi,n + ci,n (i = 1,2), where
∫
(
wi,n = 0 andci,n = ∫

(
vi,n.

For any(ψ1, ψ2) ∈ H1(() × H1((),

I ′
λ

(
v1,n, v2,n

)[ψ1, ψ2] = 2

3

(∫
(

∇w1,n∇ψ1 +
∫
(

∇w2,n∇ψ2

)

+ 1

3

(∫
(

∇w1,n∇ψ2 +
∫
(

∇w2,n∇ψ1

)

+ λ

∫
(

(
2h2

1e2v1,n − h1ev1,n − h1h2ev1,n+v2,n + 4π

3
(2N1 + N2)

)
ψ1

+ λ

∫
(

(
2h2

2e2v2,n − h2ev2,n − h1h2ev1,n+v2,n + 4π

3
(2N2 + N1)

)
ψ2.

(4.1)

Choosingψi = 1 andψj = 0 (i, j = 1,2; i = j) in (4.1) we get, asn → +∞,∣∣∣∣λ
∫
(

(2h2
i e2vi,n − hie

vi,n − h1h2ev1,n+v2,n ) + 4π

3
(2Ni + Nj)

∣∣∣∣ ≤ o(1). (4.2)

By (2.14), it implies:

2λ
∫
(

W(v1,n, v2,n) + λ

∫
(

h1ev1,n + λ

∫
(

h2ev2,n ≤ 2λ + o(1).
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Hence, asn → +∞, we have∫
(

W(v1,n, v2,n) ≤ 1 + o(1);∫
(

hie
vi,n ≤ 2 + o(1) i = 1,2.

(4.3)

From (4.3), and Jensen’s inequality, we also get

eci,n ≤ 2 + o(1), asn → +∞. (4.4)

Furthermore, using (2.14) together with (4.3) we derive, asn → +∞, that∫
(

(hie
vi,n − 1)2 ≤ 2 + o(1), i = 1,2, (4.5)

∫
(

h2
i e2vi,n ≤ C, i = 1,2, (4.6)

with C > 0 a suitable constant.
Set(w1,n + w2,n)

+ = max{w1,n + w2,n,0} and take (4.1) withψ1 = ψ2 = (w1,n +
w2,n)

+, then

I ′
λ

(
v1,n, v2,n

) [ψ1, ψ2] = ‖∇ (w1,n + w2,n
)+‖2

+ λ

∫
(

(
2h2

1e2v1,n + 2h2
2e2v2,n − 4h1h2ev1,n+v2,n

) (
w1,n + w2,n

)+
+ 2λ

∫
(

h1h2ev1,n+v2,n
(
w1,n + w2,n

)+ − λ
∑
i=1,2

∫
(

hie
vi,n
(
w1,n + w2,n

)+

+ 4π (N1 + N2)

∫
(

(
w1,n + w2,n

)+ ≥ 2λ
∫
(

h1h2ev1,n+v2,n
(
w1,n + w2,n

)+
− λ

(∫
(

((
w1,n + w2,n

)+)2
) 1

2 ∑
i=1,2

(∫
(

h2
i e2vi,n

) 1
2

.

(4.7)

Therefore, by (4.6) and assumption(2) we get,∫
(

h1h2ev1,n+v2,n (w1,n + w2,n)
+ ≤ C‖(w1,n + w2,n)

+‖2 + εn‖(w1,n + w2,n)
+‖

≤ C(‖∇w1,n‖2 + ‖∇w2,n‖2),

(4.8)

with εn → 0 asn → +∞ andC > 0 a suitable constant independent ofn ∈ N. Note
that in (4.8) we have used the well known estimate:

‖(w1,n + w2,n)
+‖2 ≤ ‖(w1,n + w2,n)

+‖ ≤ ‖w1,n + w2,n‖2

≤ C0(‖∇w1,n‖2 + ‖∇w2,n‖2),

with a suitable constantC0 > 0 (independent ofn ∈ N).
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Now, takeψ1 = w1,n, ψ2 = w2,n in (4.1) and use (4.6), (4.8), and the Poincaré
inequality to derive

I ′
λ(v1,n, v2,n)[w1,n, w2,n] ≥ 1

3
(‖∇w1,n‖2 + ‖∇w2,n‖2)

+ λ

∫
(

2∑
i=1

(2h2
i e2vi,n − hie

vi,n )wi,n

− λ

∫
(

h1h2ev1,n+v2,n (w1,n + w2,n)
+

≥ 1

3
(‖∇w1,n‖2+‖∇w2,n‖2) + 2λ

2∑
i=1

∫
(

h2
i e2ci,n (e2wi,n − 1)wi,n

+2λ
2∑

i=1

∫
(

h2
i e2ci,nwi,n − λ

2∑
i=1

( ∫
(

h2
i e2vi,n

) 1
2 ‖wi,n‖2

−C(‖∇w1,n‖2+‖∇w2,n‖2) ≥ 1

3

∑
i=1,2

‖∇wi,n‖2
2 − C

∑
i=1,2

‖∇wi,n‖2,

where we used that(e2wi,n − 1)wi,n ≥ 0, i = 1,2 a.e. in(.
Hence, by assumption(2), we conclude that‖∇w1,n‖ and‖∇w2,n‖ are bounded

sequences. Moreover, from assumption(1), Iλ(v1,n, v2,n) is bounded below uniformly
onn ∈ N and we get a constantC > 0, independent ofn ∈ N, such that

4π(N1 + N2)min{c1,n, c2,n} ≥ − 1

6
(‖∇w1,n‖2 + ‖∇w2,n‖2)

− λ

∫
(

W(v1,n, v2,n) + Iλ(v1,n, v2,n) ≥ −C,

(4.9)

that is, the sequenceci,n (i = 1,2) is also bounded from below.
Therefore, after passing to a subsequence, we get

vi,n ⇀ v̄i, (i = 1,2) asn → +∞, (4.10)

weakly inH1((), strongly inLp((), p ≥ 1 and pointwise a.e. in(. Moreover, evi,n →
ev̄i strongly inLp(() p ≥ 1, andci,n → ∫

(
v̄i = c̄i .

Consequently, for any(ψ1, ψ2) ∈ H1(() × H1(() we derive

I ′
λ

(
v1,n, v2,n

) [ψ1, ψ2] → I ′
λ (v̄1, v̄2) [ψ1, ψ2] = 0, (4.11)

namely(v̄1, v̄2) defines a critical point forIλ.
In order to obtain strong convergence inH1(()× H1(() we chooseψ1 = v1,n − v̄1

andψ2 = v2,n − v̄2 into (4.1). By assumption(2) and (4.11), we obtain

|(I ′
λ(v1,n, v2,n) − I ′

λ(v̄1, v̄2))[v1,n − v̄1, v2,n − v̄2]|
≤ εn(‖v1,n − v̄1‖ + ‖v2,n − v̄2‖) = o(1), (4.12)

asn → +∞.
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Consequently,

1

3

2∑
i=1

‖∇ (wi,n − w̄i

)‖2 ≤ −2λ
2∑

i=1

∫
(

h2
i

(
e2vi,n − e2v̄i

) (
vi,n − v̄i

)

+ λ

2∑
i=1

∫
(

hi

(
evi,n − ev̄i

) (
vi,n − v̄i

)+

+ λ

∫
(

h1h2

(
ev1,n+v2,n − ev̄1+v̄2

) (
v1,n + v2,n − (v̄1 + v̄2)

)+ o (1) = o (1) ,

asn → +∞, and the desired conclusion follows.��
Proof of Theorem 2.1(c).In Sect. 3 we proved, forλ > 0 sufficiently large, the existence
of a solution of problem (2.10) with the desired asymptotic behavior (2.4) asλ → +∞
(see Proposition 3.5). Moreover, in Lemma 3.7, we have shown that such a solution
(v+

1,λ, v
+
2,λ) defines a local minimum forIλ, namely

∃ δ0 > 0 : Iλ(v1, v2) ≥ Iλ(v
+
1,λ, v

+
2,λ), provided

∑
i=1,2

‖vi − v+
i,λ‖ ≤ δ0. (4.13)

In order to find a second solution for (2.10), we observe thatIλ admits a “mountain
pass” structure. In fact, there exists a constantCλ > 0 (depending only onλ) such that
for c ∈ R we have:

Iλ(v
+
1,λ, w2,λ + c) − Iλ(v

+
1,λ, v

+
2,λ) ≤ Cλ + 4π

3
(2N2 + N1)c. (4.14)

We distinguish two cases.

(i). If (v+
1,λ, v

+
2,λ) is not a strict local minimum forIλ, namely

∀ 0 < δ < δ0 inf∑
i=1,2‖vi−v+

i,λ‖=δ

Iλ = Iλ(v
+
1,λ, v

+
2,λ), (4.15)

then, by an application of Ekeland’s lemma (see [17], Corollary 1.6 ), we obtain a local
minimum (vδ

1,λ, v
δ
2,λ) for Iλ, such that

∑
i=1,2‖vδ

i,λ − v+
i,λ‖ = δ for everyδ ∈ (0, δ0).

Therefore, in this case, we find a one-parameter family of (weak) solutions for (2.10).
Otherwise,

(ii). if (v+
1,λ, v

+
2,λ) is a strict local minimum forIλ, then

∃ δ1 ∈ (0, δ0) : inf∑
i=1,2‖vi−v+

i,λ‖=δ1

Iλ(v1, v2) > Iλ(v
+
1,λ, v

+
2,λ). (4.16)

Moreover, in view of (4.14), there existsc̄ < 0 such that|c̄ − c+
2 (w1,λ, w2,λ)| > δ1 and

Iλ(v
+
1,λ, w2,λ + c̄) < Iλ(v

+
1,λ, v

+
2,λ). (4.17)

We introduce the class of paths

*λ ={γ ∈C([0,1],H1(() × H1(()) : γ (0) = (v+
1,λ, v

+
2,λ); γ (1)=(v+

1,λ, w2,λ + c̄)}
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and define

αλ = inf
γ∈*

max
t∈[0,1] Iλ(γ (t)) > Iλ(v

+
1,λ, v

+
2,λ).

In view of Lemma 4.1, (4.16) and (4.17), we can apply the Mountain Pass Theorem of
Ambrosetti–Rabinowitz [2] to conclude thatαλ defines a critical level forIλ. Namely,
there exists(v̄1,λ, v̄2,λ) ∈ H1(() × H1(() such that

I ′
λ(v̄1,λ, v̄2,λ) = 0 and Iλ(v̄1,λ, v̄2,λ) = αλ > Iλ(v

+
1,λ, v

+
2,λ).

Hence(v̄1,λ, v̄2,λ) defines a (weak) solution of (2.10) distinct from the local minimum
(v+

1,λ, v
+
2,λ). ��

5. Vortex Solutions of the II and III-Type

In this section we are going to establish Theorem 2.2, by proving the existence of one-
vortex solutions from minima onAλ of the functionalsJ−

λ , J±
λ andJ∓

λ (see remark
2.5).

We start to discuss the minimization problem forJ−
λ .

To this purpose we prove a preliminary lemma:

Lemma 5.1. There exists a constantC > 0, independent ofλ, such that for any
(w1, w2) ∈ Aλ,

ec
−
i ≥ C

λ
∫
(
hiewi

, i = 1,2. (5.1)

Proof. By symmetry, it suffices to show (5.1) fori = 1.
From (2.27) and (2.23), we have

ec
−
1 ≥ 4π(2N1 + N2)

3λ(
∫
(
h1ew1 + ec

−
2
∫
(
h1h2ew1+w2)

. (5.2)

On the other hand, by the Hölder inequality, (2.20) and Lemma 2.3 (ii) we have

ec
−
2

∫
(

h1h2ew1+w2 ≤ ec
−
2

(∫
(

h2
1e2w1

) 1
2
(∫

(

h2
2e2w2

) 1
2

≤ 3λ

32π
√
(2N1 + N2) (2N2 + N1)

ec
−
2

∫
(

h2ew2

∫
(

h1ew1

≤ 3

4

√
2N2 + N1

2N1 + N2

∫
(

h1ew1.

(5.3)

Combining (5.2) and (5.3), we obtain

ec
−
1 ≥ 4π(2N1 + N2)

3(1 + 3
4

√
2N2+N1
2N1+N2

)

1

λ
∫
(
h1ew1

,

and the desired estimate is established.��
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Lemma 5.1 permits to obtain the following:

Proposition 5.2. If N1 + N2 = 1, then there exists a constantC > 0, independent ofλ,
such that for all(w1, w2) ∈ Aλ we have:

J−
λ (w1, w2) ≥ 1

30
(‖∇w1‖2 + ‖∇w2‖2) + λ − 4π ln λ − C. (5.4)

Moreover,J−
λ attains its infimum onAλ.

Proof. Recalling (2.37), from Lemma 5.1 we get

J−
λ (w1, w2) ≥ 1

3

(
‖∇w1‖2 + ‖∇w2‖2 +

∫
(

∇w1∇w2

)
+ λ

+ 4π

3
(2N1 + N2) ln

1

λ
∫
(
h1ew1

+ 4π

3
(2N2 + N1) ln

1

λ
∫
(
h2ew2

−C,

(5.5)

for any(w1, w2) ∈ Aλ and for some constantC > 0 independent ofλ.
Using the estimate

∫
(

|∇w1||∇w2| ≤ 1
2ε ‖∇w1‖2 + ε

2‖∇w2‖2, valid for anyε > 0,
and the Moser–Trudinger inequality (3.4), for some constantC > 0 (independent ofλ),
we obtain

J−
λ (w1, w2) ≥ 1

3

(
1 − 1

2ε
− 2N1 + N2

4

)
‖∇w1‖2

+ 1

3

(
1 − ε

2
− 2N2 + N1

4

)
‖∇w2‖2

+ λ − 4π (N1 + N2) ln λ − C

≥ 1

12

(
3 − 2

ε
− N1

)
‖∇w1‖2

+ 1

12
(3 − 2ε − N2) ‖∇w2‖2 + λ − 4π ln λ − C,

providedN1 + N2 = 1.
Thus (5.4) follows by choosingε = 5

4(1 − N2) + 4
5(1 − N1).

ThereforeJ−
λ is coercive onAλ. By its weak lower semicontinuity on the weakly

closed setAλ, we immediately conclude thatJ−
λ attains its infimum onAλ. ��

Let (w1,λ, w2,λ) ∈ Aλ satisfyJ−
λ (w1,λ, w2,λ) = infAλ

J−
λ , in order to prove that{

v−
1,λ = w1,λ + c−

1 (w1,λ, w2,λ)

v−
2,λ = w2,λ + c−

2 (w1,λ, w2,λ)
(5.6)

defines a (weak) solution of (2.10), it suffices to show that(w1,λ, w2,λ) lies in the interior
of Aλ. Indeed, we have

Proposition 5.3. For N1 + N2 = 1 andλ > 0 sufficiently large, we have

inf
(w1,w2)∈∂Aλ

J−
λ (w1, w2) > inf

(w1,w2)∈Aλ

J−
λ (w1, w2). (5.7)
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Proof. For (w1, w2) ∈ ∂Aλ the identity

(∫
(

hie
wi

)2

= 32π
(
2Ni + Nj

)
λ

∫
(

h2
i e2wi , i = j (5.8)

holds fori = 1 or 2.
Now let (w1,λ, w2,λ) satisfiesJ−

λ (w1,λ, w2,λ) = infAλ
J−
λ and by contradiction

assume that(w1,λ, w2,λ) ∈ ∂Aλ. W.l.o.g. we may suppose that (5.8) holds fori = 2.
By Jensen’s inequality it follows that,∫

(

h2
2e2w2,λ → +∞, asλ → +∞,

and, by the Moser–Trudinger inequality (3.4), necessarily

‖∇w2,λ‖ → +∞, asλ → +∞. (5.9)

Furthermore, by Proposition 5.2 we get

J−
λ (w1,λ, w2,λ) ≥ 1

30
(‖∇w1,λ‖2 + ‖∇w2,λ‖2) + λ − 4π ln λ − C, (5.10)

with C > 0 a suitable constant independent ofλ.
On the other hand, by Lemma 2.3 (ii) and Lemma 5.1 there exist constantsC1, C2 > 0,

independent ofλ, such that

J−
λ (0,0) ≤ λ

2

(
1 − C1

λ

)
+ λ

2

(
1 − C1

λ

)
+ 4π

3
(2N1 + N2) ln

C2

λ

+ 4π

3
(2N2 + N1) ln

C2

λ
≤ λ − 4π (N1 + N2) lnλ + C,

(5.11)

with C > 0 a suitable constant independent ofλ.
Thus, ifN1 + N2 = 1, from (5.10) and (5.11) we obtain a contradiction since,

0 ≥ J−
λ (w1,λ, w2,λ) − J−

λ (0,0) ≥ 1

30
‖∇w2,λ‖2 − C → +∞, asλ → +∞.

Hence,(w1,λ, w2,λ) must belong to the interior ofAλ. ��
Remark 5.4.Note that, if we use estimate (3.1) into (5.5) we can derive, as in Proposition
3.2, that the functionalJ−

λ is bounded below and attains its infimum onAλ for all integers
N1 andN2. However, in the general situation, the estimate (5.4) gets worse with respect
to λ and becomes:

J−
λ (w1, w2) ≥ α

(
‖∇w1‖2

2 + ‖∇w2‖2
2

)
+ λ − 4πcα ln λ − C, (5.12)

for someα > 0 and some constantcα = cα(N1, N2) ≥ 0, depending onN1 andN2 in
such a way that cα

N1+N2
→ +∞, asN1 + N2 → +∞.

Thus, the estimate (5.12) is no longer sufficient for the arguments in the proof of
Proposition 5.3 to yield (5.7).
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So we have established that (5.6) defines a solution for (2.10) providedλ > 0 is
sufficiently large. Next, we show that(v−

1,λ, v
−
2,λ)exhibits a different asymptotic behavior

asλ → +∞ w.r.t. the family(v+
1,λ, v

+
2,λ) obtained in Proposition 3.5 above. Indeed, we

have

Proposition 5.5. LetN1 + N2 = 1 and(v−
1,λ, v

−
2,λ) be given by(5.6). Then,

(i) c−
i (w1,λ, w2,λ) → −∞, asλ → +∞.

(ii) There exists a constantC > 0 (independent ofλ) such that‖∇wi,λ‖ ≤ C (i = 1,2).

Furthermore, any sequenceλn → +∞ admits a subsequence (still denoted byλn) such
that forwi,n = wi,λn (i = 1,2) we have

wi,n → w̄i strongly inH1((), (i = 1,2)

and(w̄1, w̄2) satisfies:


−5w1 = 4πN1

(
4
3

h1ew1∫
( h1ew1

− 1
3

h2ew2∫
( h2ew2

− 1
)

+ 8π
3 N2

(
h1ew1∫
( h1ew1

− h2ew2∫
( h2ew2

)
−5w2 = 4πN2

(
4
3

h2ew2∫
( h2ew2

− 1
3

h1ew1∫
( h1ew1

− 1
)

+ 8π
3 N1

(
h2ew2∫
( h2ew2

− h1ew1∫
( h1ew1

)
∫
(
wi = 0, wi ∈ H1 (() i = 1,2.

(5.13)

Proof. By Remark 2.4 and Lemma 5.1 we have

ec
−
i (w1,λ,w2,λ) = O

(
1

λ

)
, i = 1,2,

and (i) immediately follows.

(ii). Recalling (5.10) and (5.11) we have

0 ≥ J−
λ (w1,λ, w2,λ) − J−

λ (0,0) ≥ 1

30

(
‖∇w1,λ‖2 + ‖∇w2,λ‖2

)
− C,

hence, we immediately derive‖∇wi,λ‖ ≤ C (i = 1,2) for some suitable constantC > 0
independent ofλ.

Therefore, passing to subsequences if necessary, we derivewi,n = wi,λn → w̄i

weakly inH1((), strongly inLp(() ∀p ≥ 1 and pointwise a.e. in(. Furthermore, by
dominated convergence, we also have∫

(

eα(u
i
0+wi,n) →

∫
(

eα(u
i
0+w̄i ), i = 1,2, andα > 0. (5.14)

Consequently, taking into account (i), and the definition ofc−
i,n = c−

i,n(w1,n, w2,n) in
(2.27), asn → +∞, we get

λnec
−
i,n → 4π

3

2Ni + Nj∫
(
hiew̄i

, i, j = 1,2, i = j. (5.15)

The weak convergence inH1((), together with (5.14) and (5.15), yield the conclusion
that(w̄1, w̄2) is a weak solution for (5.13).
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Finally, to prove thatwi,n → w̄i (i = 1,2) strongly inH1((), notice that

∫
(

|∇wi,n − ∇w̄i |2 = −
∫
(

(
5wi,n − 5w̄i

) (
wi,n − w̄i

) =
∫
(

hi,n

(
wi,n − w̄i

)
,

where

h1,n = λnec
−
1,n

(
2h1ew1,n − 2h1ew̄1

)
+ 2h1ew̄1

(
λnec

−
1,n − 4π

3

2N1 + N2∫
(
h1ew̄1

)

− λnec
−
2,n

(
h2ew2,n − h2ew̄2

)
− h2ew̄2

(
λnec

−
2,n − 4π

3

2N2 + N1∫
(
h2ew̄2

)

− λn

(
4e2c−

1,nh2
1e2w1,n − 2e2c−

2,nh2
2e2w2,n − ec

−
1,nec

−
2,nh1ew1,nh2ew2,n

)
,

(5.16)

andh2,n is given by the symmetric expression. Hence,‖hn‖p is uniformly bounded for
anyp ≥ 1 and

∫
(

|∇wi,n − ∇w̄i |2 ≤ ‖hn‖2‖wi,n − w̄i‖2 → 0. ��

Corollary 5.6. Let (v−
1,λ, v

−
2,λ) be given by(5.6). Then asλ → +∞,

• ev
−
i,λ → 0 uniformly inCk((), ∀k > 0, i=1,2.

Proof. In view of (i) in Proposition 5.5 it is enough to prove that any sequenceλn → +∞
admits a subsequence (which we still denote byλn ) such thatwi,n = wi,λn → w̄i in
Ck(() for anyk ≥ 0.

This is readily established since,−5(wi,n − w̄i) = hi,n, with hi,n given in (5.16),
and‖hi,n‖p → 0 asn → +∞ for anyp ≥ 1. Consequently,‖wi,n − w̄i‖C1,α → 0 as
n → +∞ andα ∈ (0,1). A bootstrap argument then gives‖wi,n − w̄i‖Ck → 0, for any
k ∈ N. ��

To conclude the proof of Theorem 2.2, we consider the analogous minimization
problem forJ±

λ andJ∓
λ onAλ. We start with the following:

Proposition 5.7. Let N1 + N2 = 1 and ∗ = ± or ∓, there exists a constantC > 0,
independent ofλ, such that

J ∗
λ (w1, w2) ≥ 1

30

(
‖∇w1‖2 + ‖∇w2‖2

)
+ 3

4
λ − 4π ln λ − C, (5.17)

for all (w1, w2) ∈ Aλ .
Moreover,J ∗

λ attains its infimum onAλ.

Proof. It suffices to prove (5.17) with∗ = ±, the other case∗ = ∓ follows analogously
by exchanging the role between the indices.

In view of (2.23), from (2.27) it follows immediately that

ec
±
1 ≥

∫
(
h1ew1

4
∫
(
h2

1e2w1
,≥ 8π (2N1 + N2)

3λ

1∫
(
h1ew1

; (5.18)
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while,

ec
±
2 ≥ 8π

3λ
(∫

(
h2ew2 + ec

±
1
∫
(
h1h2ew1+w2

) ≥ 4π

3λmax
{∫

(
h2ew2,

∫
(
h1h2ew1+w2

} ,
(5.19)

where we have used that ec±
1 ≤ 1 (see Remark 2.4).

In case
∫
(
h2ew2 ≥ ∫

(
h1h2ew1+w2, by (2.37) we can use Lemma 2.3 (iii), (5.18),

(5.19) and the Moser–Trudinger inequality (3.4), to derive

J±
λ (w1, w2) ≥ 1

3

(
‖∇w1‖2 + ‖∇w2‖2 +

∫
(

∇w1∇w2

)
+ 3

4
λ

− 4π

3
(2N1 + N2) ln

∫
(

h1ew1 − 4π

3
(2N2 + N1) ln

∫
(

h2ew2

− 4π (N1 + N2) ln λ − C

≥ 1

3

(
1 − 1

2ε
− 2N1 + N2

4

)
‖∇w1‖2

+ 1

3

(
1 − ε

2
− 2N2 + N1

4

)
‖∇w2‖2

+ 3

4
λ − 4π (N1 + N2) ln λ − C

(5.20)

for everyε > 0 andC > 0 independent ofλ. SinceN1 +N2 = 1, as in Proposition 5.2,
we can certainly make a choice ofε > 0 in (5.20) in order to insure (5.17).

Now suppose that
∫
(
h2ew2 <

∫
(
h1h2ew1+w2, proceeding as above, in this case we

get

J±
λ (w1, w2) ≥ 1

3

(
‖∇w1‖2 + ‖∇w2‖2 +

∫
(

∇w1∇w2

)
+ 3

4
λ − 4π (N1 + N2) ln λ

− 4π

3
(2N1+N2) ln

∫
(

h1ew1 − 4π

3
(2N2+N1) ln

∫
(

h1h2ew1+w2 −C

≥ 1

6

(
‖∇w1‖2 + ‖∇w2‖2 + ‖∇w1 + ∇w2‖2

)
− (2N1 + N2)

12
‖∇w1‖2

− (2N2 + N1)

12
‖∇w1 + ∇w2‖2 + 3

4
λ − 4π (N1 + N2) ln λ − C

≥ 1

24

(
‖∇w1‖2 + ‖∇w2‖2

)
+ 3

4
λ − 4π ln λ − C,

(5.21)

providedN1 + N2 = 1.
In any case we get the desired estimate (5.17). ThusJ±

λ is coercive onAλ. Since it
is weakly lower semicontinuous on the weakly closed setAλ, we immediately conclude
thatJ±

λ attains its infimum onAλ. ��
Remark 5.8.By similar considerations to those of Remark 5.4, we can assert that, in
fact, the functionalJ ∗

λ , ∗ = ± or ∓, is bounded below and attains its infimum onAλ

for all integersN1 andN2. However, we need to restrict to the caseN1 + N2 = 1 in
order to insure a sharp form of estimate (5.17) (see (5.36) below), which is crucial for
the existence of a minimizer in theinterior of Aλ.
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Let ∗ = ± or ∓ and denote by(w∗
1,λ, w

∗
2,λ) ∈ Aλ a minimum ofJ ∗

λ in Aλ, namely
J ∗
λ (w1,λ, w2,λ) = infAλ

J ∗
λ . Define{
v∗

1,λ = w∗
1,λ + c∗

1(w
∗
1,λ, w

∗
2,λ)

v∗
2,λ = w∗

2,λ + c∗
2(w

∗
1,λ, w

∗
2,λ),

(5.22)

∗ = ± or ∓.
To show that(w∗

1,λ, w
∗
2,λ) lies in the interior ofAλ, and hence that(v∗

1,λ, v
∗
1,λ) defines

a (weak) solution of (2.10), we prove the following preliminary result which holds for
any choice ofN1, N2 ∈ N.

Lemma 5.9. (i) Let (v±
1,λ, v

±
2,λ) be given by(5.22), then∫

(

h1ev
±
1,λ → 1

2
.

(ii) Let (v∓
1,λ, v

∓
2,λ) be given by(5.22), then∫

(

h2ev
∓
2,λ → 1

2
.

Proof. By symmetry, we only need to establish (i).
As in the proof of Lemma 3.3, let̄v1

µ = c̄1
µ + w̄1

µ, with c̄1
µ = ∫

(
v̄1
µ and

∫
(
w̄1

µ = 0
be the solution of {

5v = µev+u1
0(ev+u1

0 − 1) + 4πN1

v ∈ H1(()

satisfyingw̄1
µ → −u1

0 pointwise a.e. in( and

h1ew̄
1
µ → 1, in Lp((), ∀p ≥ 1, (5.23)

asµ → +∞ (see [34, Proposition 3.1]).
Observe that, from (2.27) and (2.23), we have

ec
±
1

∫
(

h1ew1 ≥
(∫

(
h1ew1

)2
4
∫
(
h2

1e2w1


1 +

√√√√1 − 32π (2N1 + N2)

3λ

∫
(
h2

1e2w1(∫
(
h1ew1

)2



≥ 1

2

(∫
(
h1ew1

)2∫
(
h2

1e2w1
− 8π

3λ
(2N1 + N2) .

(5.24)

Recalling (5.23) and Lemma 2.3 (iii), we findλ0 > 0 sufficiently large andc0 > 0
such that for anyε > 0 there existµε > 0 with the property that(w̄1

µε
,0) ∈ Aλ and

e
c±

1

(
w̄1

µε
,0
) ∫

(

h1ew̄
1
µε ≥ 1

2
− ε − 8π

3λ
(2N1 + N2) ,

e
c±

2

(
w̄1

µε
,0
) ∫

(

h2 ≥ c0

λ
,

(5.25)

for everyλ ≥ λ0.
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Consequently,

J±
λ

(
w̄1

µε
,0
)

≤ 1

3
‖∇w̄1

µε
‖2 + λ

(
1 − 1

4
+ ε

2

)
+ O (ln λ) , asλ → +∞. (5.26)

On the other hand, we have

J±
λ

(
w1,λ, w2,λ

) ≥ λ

2

(
1 − ec

±
1

∫
(

h1ew1,λ

)
+ λ

2
+ O (ln λ) , asλ → +∞. (5.27)

Therefore,

0 ≥ J±
λ

(
w1,λ, w2,λ

)− J±
λ

(
w̄1

µε
,0
)

≥ λ

2

(
1 − ec

±
1

∫
(

h1ew1,λ

)
+ λ

2

−
(

1

3
‖∇w̄1

µε
‖2 + λ

(
1 − 1

4
+ ε

2

))
+ O (ln λ) ,

from which we derive

lim sup
λ→+∞

(
1

2
− ec

±
1

∫
(

h1ew1,λ

)
≤ ε, ∀ ε > 0.

At this point, taking into account Lemma 2.3 (iii), we conclude∫
(

h1ev
±
1,λ → 1

2
, asλ → +∞. ��

Remark 5.10.Putting together (2.35) and (5.24), we have that necessarily(∫
(
h1ew1,λ

)2∫
(
h2

1e2w1,λ
→ 1, asλ → +∞. (5.28)

Using Lemma 5.9, we derive:

Proposition 5.11. (i) If N1 = 0 andN2 = 1 then, forλ > 0 sufficiently large,

inf
(w1,w2)∈∂Aλ

J±
λ (w1, w2) > inf

(w1,w2)∈Aλ

J±
λ (w1, w2). (5.29)

(ii) If N1 = 1 andN2 = 0 then, forλ > 0 sufficiently large,

inf
(w1,w2)∈∂Aλ

J∓
λ (w1, w2) > inf

(w1,w2)∈Aλ

J∓
λ (w1, w2). (5.30)

Proof. Again by symmetry we only need to establish (i). Let us suppose that(w1,λ, w2,λ)

satisfiesJ±(w1,λ, w2,λ) = infAλ
J± and(w1,λ, w2,λ) ∈ ∂Aλ. In view of Remark 5.10

necessarily (∫
(

h2ew2,λ

)2

= 32π (2N2 + N1)

λ

∫
(

h2
2e2w2,λ . (5.31)

As a consequence of (5.31) we get∫
(

h2
2e2w2,λ → +∞ asλ → +∞
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and, by the Moser–Trudinger inequality (3.4), necessarily

‖∇w2,λ‖ → +∞ asλ → +∞. (5.32)

Now, note that ifN1 = 0 thenu1
0 = 0, and in particularh1 = eu

1
0 = 1. By explicit

calculation we see that,

ec
±
1 (0,0) = 1

2
+ O

(
1

λ

)
,

ec
±
2 (0,0) = O

(
1

λ

)
, asλ → +∞.

(5.33)

Therefore, in view of (2.14) and (5.33) we get

J±
λ (0,0) ≤ λ

2

(
1 − ec

±
1 (0,0)

)
+ λ

2

(
1 − ec

±
2 (0,0)

∫
(

h2

)
− 8π

3
ln λ + C

≤ 3

4
λ − 8π

3
ln λ + C asλ → +∞.

(5.34)

for a suitable constantC > 0, independent ofλ.
On the other hand, by Lemma 5.9, forλ sufficiently large, we can insure that,

c±
1 (w1,λ, w2,λ) ≥ −ln

∫
(

ew1,λ − ln 4. (5.35)

Thus, using the same arguments of Proposition 5.7, by Lemma 2.3 (iii) we find constants
α,C > 0 (independent ofλ) such that

J±
λ

(
w1,λ, w2,λ

) ≥α
(
‖∇w1,λ‖2 + ‖∇w2,λ‖2

)
+ λ

2

∫
(

(
1 − ec

±
1 ew1,λ

)

+ λ

2

∫
(

(
1 − ec

±
2 h2ew2,λ

)
− 8π

3
ln λ − C

≥α
(
‖∇w1,λ‖2 + ‖∇w2,λ‖2

)
+ 3

4
λ − 8π

3
ln λ − C.

(5.36)

Combining (5.34) and (5.36) we conclude that,

0 ≥ J±
λ (w1,λ, w2,λ) − J±

λ (0,0) ≥ α(‖∇w1,λ‖2
2 + ‖∇w2,λ‖2

2) − C, (5.37)

and, in view of (5.32), we reach a contradiction.��
To conclude we determine the asymptotic behavior, asλ → +∞, of the family of

solutions given by (5.22).

Proposition 5.12. Let (v∗
1,λ, v

∗
2,λ) be given by(5.22)with ∗ = ± or ∓. We have

• (case∗ = ±): c±
1 (w±

1,λ, w
±
2,λ) → ln 1

2, c±
2 (w±

1,λ, w
±
2,λ) → −∞ w±

1,λ → 0 strongly

in H1(() asλ → +∞; along any sequencesλn → +∞, there exists a subsequence
(still denoted byλn) such thatw±

2,λn
→ w± strongly inH1(() with w± satisfying:

−5w = 4π

(
h2ew∫
(
h2ew

− 1

|(|
)

in (∫
(
w = 0.

(5.38)
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In particular,

ev
±
1,λ → 1

2
and ev

±
2,λ → 0, strongly inH1((), asλ → +∞. (5.39)

• (case∗ = ∓): c∓
1 (w∓

1,λ, w
∓
2,λ) → −∞, c∓

2 (w∓
1,λ, w

∓
2,λ) → ln 1

2, w∓
2,λ → 0 strongly

in H1(() asλ → +∞; along any sequencesλn → +∞, there exists a subsequence
(still denoted byλn) such thatw∓

1,λn
→ w∓ strongly inH1(() with w∓ satisfying:

−5w = 4π

(
h1ew∫
(
h1ew

− 1

|(|
)

in (∫
(
w = 0.

(5.40)

In particular,

ev
∓
1,λ → 0 and ev

∓
2,λ → 1

2
, strongly inH1((), asλ → +∞. (5.41)

Proof. As usual we only need to prove the result in case∗ = ±, the other case follows
by exchanging the role between the indices. Recall that in this caseN1 = 0, and hence
h1 = 1,N2 = 1. By (5.37) we have

‖∇w±
i,λ‖2

2 ≤ C, (5.42)

for suitableC > 0 (independent ofλ) andi = 1,2. Consequently,

1 ≤
∫
(

hie
w±

i,λ ≤ C (i = 1,2) (5.43)

with C > 0 independent ofλ.
Thus, by settingc±

i,λ = c±
i (w±

1,λ, w
±
2,λ), we have:

c±
2,λ = 8π

9λ

(2N2 + N1)∫
(
h2ew

±
2,λ

+ o

(
1

λ

)
(5.44)

and

c±
1,λ = 1

2

∫
(

ew
±
1,λ∫

(
e2w±

1,λ

+ 4π

9λ
(N1 + N2)(N2 − 9N1) + o

(
1

λ

)
(5.45)

asλ → +∞.
From (5.43) we derive immediately thatc±

2,λ → −∞, asλ → +∞.
Furthermore, in view of (5.28) and (5.42), along any sequenceλn → +∞, we find

a subsequence (still denoted byλn) such that,

w1,n := w±
1,λn

→ 0 weakly inH1((),

strongly inLp((), p ≥ 1 and pointwise a.e. in(.

Analogously, for suitablew± ∈ H1((), we may claim that,

w2,n := w±
2,λn

→ w± weakly inH1((),

strongly inLp((), p ≥ 1 and pointwise a.e. in(,
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Note in particular that ew1,n → 1, ew2,n → ew± in Lp((), ∀ p ≥ 1.
Thus, using (2.10) (with|(| = 1 ) together with (5.44)–(5.45), we find:

−5(w1,n + 2w2,n) = 3λnh2ec
±
2,new2,n (1 + ec

±
1,new1,n − 2ec

±
2,new2,n ) − 4π(2N2 + N1)

= 4π(2N2 + N1)

(
h2ew2,n∫
(
h2ew2,n

− 1

|(|
)

+ φn in (

with c±
i,n := c±

i,λn
(i = 1,2) andφn → 0 strongly inLp((), ∀ p ≥ 1.

Consequently, by elliptic regularity theory, we obtain (after taking a subsequence if
necessary)

1

2
w1,n + w2,n → w± stronglyin C1,α((), α ∈ (0,1) (5.46)

andw± satisfies:
−5w = 2π(2N2 + N1)

(
h2ew∫
(
h2ew

− 1

|(|
)

in (∫
(
w = 0.

(5.47)

with N2 = 1 andN1 = 0, namely (5.40).
On the other hand, if we insert (5.44)-(5.45) into the first equation in (2.10) (with

N1 = 0 andN2 = 1) we get:

5w1,n = λn

(
∫
(

ew1,n )2∫
(

e2w1,n

(
e2w1,n∫
(

e2w1,n
− ew1,n∫

(
ew1,n

)
+ 8π

9

h2ew2,n∫
(
h2ew2,n

(2 − ew1,n )

+ 8π

9
ew1,n (2ew1,n − 1) + ψn in (

with ψn → 0 strongly inLp((), ∀p ≥ 1.
Therefore,

‖∇w1,n‖2
2 = −λn

(
∫
(

ew1,n )2∫
(

e2w1,n

∫
(

(
e2w1,n∫
(

e2w1,n
− ew1,n∫

(
ew1,n

)
w1,n −

∫
(

fnw1,n, (5.48)

with fn → 8π
9 (1 + h2ew±∫

( h2ew± ) in Lp((), ∀ p ≥ 1.

Note that the functionh(t) := ∫
(

etw1,n∫
( etw1,n w1,n is increasing int ∈ R, since

h′(t) =
∫
(

etw1,n∫
(

etw1,n
w2

1,n − (

∫
(

etw1,n∫
(

etw1,n
w1,n)

2

=
∫
(

etw1,n∫
(

etw1,n
(w1,n −

∫
(

etw1,n∫
(

etw1,n
w1,n)

2 ≥ 0 ∀ t ∈ R.

Thus, ∫
(

(
e2w1,n∫
(

e2w1,n
− ew1,n∫

(
ew1,n

)w1,n = h(2) − h(1) ≥ 0,
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and from (5.48) we derive

‖∇w1,n‖2 → 0, asn → +∞; (5.49)

λn

∫
(

(
e2w1,n∫
(

e2w1,n
− ew1,n∫

(
ew1,n

)
w1,n → 0 asn → +∞. (5.50)

Taking into account (5.46), we can also assert that,

w2,n → w± strongly inH1(().

Since (5.49) holds along any sequenceλn → +∞, we may conclude that,w±
1,λ → 0

strongly inH1(() asλ → +∞.
Finally, from (5.45) we getc±

1,λ → ln 1
2, asλ → +∞.

This concludes the proof.��
Clearly, Theorem 2.2 it is now an immediate consequence of Corollary 5.6 and

Proposition 5.12.

Final remarks. It is an interesting open problem to know if Theorem 2.2 remains valid
without the restrictionN1 + N2 = 1.

To test whether or not our approach could be generalized for a more general choice
of N1, N2 ∈ N, we could start by investigating the existence question for problems
(5.13) and (5.47). While problem (5.47) has appeared already in abelian theory, see
[34], and it has been studied in [32] and [11], the elliptic system (5.13) is a novelty of
theSU(3)-theory and it is certainly worthwhile investigating.

Acknowledgements.The authors wish to express their gratitude to G. Dunne for useful comments.
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