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Abstract: We investigatesU (3)-periodic vortices in the self-dual Chern—Simons theory
proposed by Dunne in [13,15]. At the first admissible non-zero energy vel2r,

and foreach(broken and unbrokenacuunstate g, of the system, we find a family of
periodic vortices asymptotically gauge equivalenf{s, as the Chern—Simons coupling
parametet — 0. At higher energy levels, we show the existencemailtiple gauge
distinct periodic vortices with at least one of them asymptotically gauge equivalent to
the (broken)principal embedding vacuumnwvhenk — 0.

1. Introduction

In recent years several Chern—Simons field theories [14] have been proposed largely
motivated by their possible applications to the physics of high critical temperature su-
perconductivity. In fact, the corresponding Chern—Simons vortex theory has revealed
a much richer structure compared with that described by the “classical” Yang—Mills
framework [21, 26].

The study of Chern—Simons vortices has been particularly succesful abtiian
situation, see [31,30,4,34,29,37,8,9,6] and [7], where the existence and multiplicity of
vortices with different nature (e.g. topological, nontopological, periodically constrained,
etc.) have been established for the models proposed in [18,20] and [23].

Only recently some progress has been made towards the existenoaaifelian
CS-vortices, concerning the self-dual Chern—Simons theory proposed by Dunne in [13,
15], see also [22,25] and [24].

Dunne’s model is defined in th@ + 1)-Minkowski spaceR’2, with metric tensor
guw = diag(—1, 1, 1). The gauge group is given by a compact Lie graugquipped
with a semi-simple Lie algebi@, [, 1). The relative Chern—Simons Lagrangian density

* Supported by M.U.R.S.T. 40 %"“Metodi Variazionali ed Equazioni Differenziali Non Lineari”.



600 M. Nolasco, G. Tarantello

is given by
2
L =—Tr{(D,$)"D'p} — ke *Tr{d, A, Aq + FAnAvAal =V (@, ohH, (@11

whereA = (Ag, A1, A2) is the gauge connection of the principal bundle avert with
structure groupG that, together with the Higgs field, takes values i through the
adjoint representation of. The gauge-covariant derivativ@, = 9, + [4,, - 1is
used to weakly couple the Higgs fiefdwith the gauge potentiasd = (Ao, A1, A2).
Furthermore, the Levi—Civita antisymmetric tens6t® is chosen witke%2 = 1,k > 0
is the Chern—Simons coupling parameter afid{: . . }" refers to the trace in the matrix
representation of. The gauge-invariant scalar potentiadg, ¢ ) is defined by,

1
V(@ 8" = 5Trile. 0" 61 - v2¢) (6. 6'1. 6] — v79)).
where the constanf plays the role of a mass parameter. In the following we'$et 1.

Vortices for £ correspond tcstatic solutions (with “finite” energy) for the Euler—
Lagrange equations corresponding to (1.1).

OverR?, topological and nontopological vortices (see below) have been established
in [38] and [36] respectively.

Here we look fomperiodicvortices orcondensatesiamely for those static solutions
which satisfy appropriate periodic boundary conditions to be specified according to the
gauge invariance of.

We note immediately that the Euler-Lagrange equations correspondifig(see
(5.31a-b) in [14]) are very difficult to handle directly, even when we restrict to consider
“Bogomol’nyi” type vortices, which are obtained by solving the reduced (first order)
“relativistic self-dual Chern—Simons equations”

D_¢=0
Fio = 509 — 119, 6", ¢1. 671,

whereD_ = D1 —iDoandF;_ =04 A_ —9_A; +[A4, A_],with AL = A1 +iAp
andoy = 01 iy

Solutions to (1.2) define a sort of “energy minimizers” for the system as they saturate
the lower bound:

(1.2)

1
o 2k2

(modulo some negligible surface terms) for the energy desitgprresponding taC
(see [14,15]).

From (1.2) it is easy to determine tlzeroenergy vorticesacuastates), where
the gauge field vanishes (modulo gauge transformations) while the Higgspfigld
corresponds to aeroof the potentialV, namely, it is gauge equivalent to a solution of
the algebraic equation (see [14, 15]):

£ tr(p" (¢ — 16, 011, o1) (1.3)

[p. 0", 0| = ¢. (1.4)
[16.4"1.9]

To be able to determine oth@on-zeroenergy solutions of (1.2), Dunne in [13]
has proposed a simplified form of the self-dual system (1.2) in which the fields are
algebrically restricted as follows.



Vortex Condensates for SU(3) Chern—-Simons Theory 601

Letr be the rank of the Lie algeb@ {H,} the generators of the Cartan subalgebra

and{E1,} the family of the simple root step operators (with, = E;r), normalized
according to a Chevalley basis [5,19]. Hence, they satisfy the following commutation
relations:

[Hy, Hp] =0,
[Hy, Exp]l = £Kop Exp,
[Eav Efb] = Sawa

a,b=1,...,r,and are subject to the normalization conditions:

Tr{H,Hp} = Kap,
Tr{EqE_p} = Sab,
Tr{H,E+p} =0,

a,b=1...,r,whereK = (K,p) is the Cartan matrix.
We assume that the fields take the form:
r

Ap=—iYy A%H,, (1.5)

a=1

,
o= ¢“Eq (1.6)
a=1

with A2 (@ = 1,...,r; u = 0,1, 2) real-valued functions ang® (a = 1,...,r)
complex-valued functions.

In view of (1.5) and (1.6) the gauge invariance/tan be expressed in terms of
the gauge group{ = span{€& Y=t Wa(¥)Hay (wherew, a = 1, ..., r are real-valued
smooth functions) generated by the Cartan subalgebra generatgrsn other words,
the gauge transformation laws for the components of the gauge potential and the Higgs
field take the following simplified form:

AZ — AZ—}—&Mwa, w7
¢a — el ZZ:]_ Kbllwh¢a’ )

a=1...,r.

With the algebraic restriction on the fields (1.5) and (1.6), the Lagrangian dehsity
and the potentiaV are simplified as well. The Chern—Simons term decomposes into
copies of arabelianChern—Simons term, and we have

2

r

,
Lrestricted= — Z P — i(z KbaAZ)qﬁ“
b=1

a=1

: (1.8)
—k Z ", AJAL — Viestricted
a=1
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where theestrictedpotential becomes

1

,
>z D | PKale”1?

1 r
2
Vrestricted=w2 1" —
a=1 a,b=1

(1.9)

1 d ,
+az 2 10 PKale’ PKpclo
a,b,c=1

Furthermore, the “relativistic self-dual Chern—Simons equations” (1.2) (away from the
zeroes ofp?) combine into the single set of coupled equations:

1 1 ¢ :
0:0-InIp" 2 = =75 > Kapld"l + 75 3 18" 1PKpel¢ PKae, a=1,...r.
b=1 b,c=1

(1.10)

To recover thed,,—o component of the gauge potential, we must supplement (1.2)
with the Gauss Law constraint of the system, which componentwise reads as follows:

kFi,=J§ a=1...,r, (1.11)

whereFy, = 01A5 — 02A{ and Jy define (after multiplication by-i) respectively, the
components (in the Cartan subalgebra) of the gauge curvature and the current density
Jo=—i((¢T, D] — (D9, $]). _

The selfdual equations (1.2), imply thBbd = 5 ([[¢. #T1, ¢1 — ¢) and, by direct
calculation, for the energy density (1.3) we find the expression

E=Y"Ff, (1.12)
a=1

(modulo negligible surface terms).

Therefore under the decomposition (1.5) and (1.6), the system may be described in
terms of r{abelian) Chern—Simons fielda{ coupled to r complex scalar Higgs fields
¢* with the couplings determined by the Cartan makix= (K,).

Note that, by means of (1.5) and (1.6), the algebraic equation (1.4) may be solved
explicitly in terms of the componends;, of ¢ o) in the Cartan subalgebra. Whefy, #
0, we find that,

,
61> =Y (K Nap a=1,...r, (1.13)
b=1

wherek 1 is the inverse of the Cartan matri.
Notice that, on the base of (1.3), vortex solutions of (1.2%r{with sufficiently fast
decay agx| — +o0) satisfies the energy relation:

e=[ e=on [ w(o"(6-10.0".01)). (1.14)

R2 2k2 R

Therefore, itis to be expected thain-zero energy vortex solutions R? become gauge
equivalent to the vacua states|as— +oc.
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Results in this direction have been obtained by Yang [38] and Wang-Zhang [36] when
the gauge grouwr = SU(N). Yang in [38] shows that there exist solutions for (1.2)
satisfying the ansatz (1.5) and (1.6), for evprgscribedconfiguration of zeros fop?,
and such thalip?| uniformly converges tqkl)(“o)l in (1.13) agx| - +o0,a=1,...,r.

Thus, Yang'’s vortices are asymptotically equivalent|ds— +o0) to the so called
principal embedding vacuunsually, one refers to those as ttopologicalsolutions
for (1.2) inR2. More difficult to derive are instead timentopologicakolutions, namely
those asymptotically gauge-equivalent to the other vacua states,-as+oo. A class
of nontopological solutions has been derived recently in [36]. The solutions in [36]
are shown to be asymptotically gauge-equivalent tautiterokenvacuumeg gy = 0, as
|x| = +o00. We observe that, whed = 2, theSU (N)-gauge theory corresponding£o
in (1.1) reduces to thabelianChern—Simons-Higgs theory introduced by Hong—Kim—
Pac [18] and Jackiw—Weinberg [20]. Thus, the above mentioned results [38] and [36]
extend the work of [31,30] and [6] on topological and nontopologitsdlianChern—
Simons vortices. In thebeliancontest we also mention the work of [7] on nontopological
Maxwell-Chern—Simons vortices for the Lee—Lee—Min model [23].

However, to establish condensate-type vortices whose feature more closely resemble
those of the mixed states predicted by Abrikosov in superconductivity [1], it is necessary
to derive solutions for (1.2) subject to gauge invariant periodic boundary condition.

For this purpose note that, in the stationary case, the functigna = 1,...,r)
in (1.7) expressing the gauge invariance of (1.1), depend only on the space-variables
x = (x1, x2) and the gauge transformation laws reduce to:

60— A5 Af—> A+ 9w, j=12 (1.15)
¢ —> eizzlebawb(p“, a=1,...,r. .

Therefore, following ‘t Hooft [33], for each of the-components of the fields we
require appropriate periodic boundary conditions to hold in the periodic cell domain:

I S 2 _¢ 4 2
@={r=@mx)eR?|-S=n=zz—=n=z]
as follows.

Lete; = (a, 0) andez = (0, b) and decompose the boundarys@by setting

AR =TTUT?U{e1 + T2 U fea + T U0, e1, €2, e1 + €3],

with
rt :{x CR?|x = S(se1—en) 5| < 1}
2 9
1
2 _ 2,,_ * _
r _{x €R?|x=S(sea—en) sl < 1}.
We require that each compone&tﬁ and¢“® (a =1, ..., r) ofthe vortex condensates
(A, ¢) satisfies:
g Lh-1 Kbaé/i)(x+fk)¢u(x +ep) = g X1 Kbaékb(X)qga(x)’ @
AG(x + e) = A(), b
(A +0;5) (x +er) = (AT +9;5) (), j=12 ©

x€F1UF2\Fk, k=12, a=1 ..., r,
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where&f, &5 (a = 1,..., r) are smooth functions defined in a neighborhood fJ
{e1 + %} andI't U {ep + 'Yy, respectively.

Notice that, in analogy to the abelian case, the set of boundary conditions (1.16)
produce a “quantization” effect on the “charges” (see [4] and [35]).

In fact, in view of (1.16)-(a), to any vortex condensate we can associate r-integers
N, €Z(a=1,...,r)(vortex numbers), corresponding to the phase shifadiround
Q2. More precisely, fou =1, ...,r andk = 1, 2, set

,
é,? (sl, s2) = Z K;mf,ﬁ’ (slel +szez) s/ e©0,1), j=1,2,
b=1

we have:
E¢(1,07) — & (0,07) + & (0", 0) — & (0%, 1)
+E(0.17) — & (L17) +&5 (17.1) — &5 (17.0) = 27 N,.

Consequently, by means of (1.16)-(c) and (1.11), for the “magnetic flux"-component
®, = [, Fi,and the “electric charge™-componegt, = [, J§ we obtain the relations,

r
ZKbaq)b =277Na’ Qa chba-
b=1

Hence, they obey to the following “quantization” rules:

r

O, =21y (K’l)ba Np,  Qu =21k }; (K’1>ba Np. (1.17)

b=1

Accordingly, for theenergy

Y S tgp — t
= [ o= g5 [ w(e’@—11s.0M0). (1.18)

we may use (1.14) to derive

E= X_‘;/g Fhp=2r Y (k7)) Np= 271];|¢€’0)|2Nb, (1.19)

a,b=1

Where¢€’0) expresses the components (in the Cartan subalgebra) of the principal embed-
ding vacuum as given in (1.13).

SinceD_¢ = 0, or equivalentlyo_In¢* =i}, 4 AP Ky (a=1,...,r),asin
[4] and [34], each vortex numbe¥, has the (topological) interpretation of counting the
number of zeroes (according to their multiplicity) of the Higgs scalar compapféent
in Q.

By virtue of (1.18), we now expect doubly periodic vortex solutions to become
asymptotically gauge-equivalent to the vacua-states, whenOt.

Thus, in the same spirit of the results [38] and [36] mentioned above, we are going to
establish periodic vortex condensatesfowhere the asymptotic behavior of the Higgs
field, ask — 0T, is prescribed according tmyfixed zero of the gauge potentiul
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For this purpose, we shall focus our attention on the simplest non-abelian case of
physical relevance and take the gauge grGup SU (3). Our results should be compared
with those obtained in [4,34] for the abelian case (e= SU(2)) and in [29] for the
Maxwell-Chern—Simons-Higgs model of Lee—Lee—Min [23].

2 -1

Note that for the Lie grougU (3) the Cartan matrix i = <_1 2> . Thus, the

restrictedpotential takes the form:

1
Vrestricted(|¢l|7 |¢2|> = m

+ 4lpH% + 4107 — 49t 2162 + 161 + 1)

1 2 2
(|¢1|2 (21612 = 1622 — 1) + 1922 (2072 - 9" - 1) )

(4161 1° + 41g21° — 3161922 - 3" 21"

;2
(1.20)

whose zeroes coincide with the paifél|2, |$2%) = (0, 0) unbroken vacuum,
(1912, 1¢%1>) = (1, 1) principal embedding vacuuntj¢?|?, |¢??) = (0, ) and
(3.0).
Thus, fork > 0 small, we will be interested in derivin§lU (3)- vortex solutions for
(1.2) - (1.16), under the ansatz (1.5) and (1.6), such that the compaffeats= 1, 2)
of the Higgs field satisfy one of the following:

e |91 — 1 and|¢?| — 1 (type )
e |91 — 0and|¢?| — O (type I)
1
. {|¢1| — & and |;/>2| ~0 @
1 — 0 and [¢% > 75 (b)

in some suitable norm @s— 0.

In this direction, we prove that there existo gauge distinct family of solutions
for any prescribed pair of “vortex number#/, and relative set ofortex pointsZ, =
{p1.--., py,} C Qcorresponding to theeroef the componenp“ of the Higgs field
(a = 1, 2), provided we také > 0 sufficiently small.

Only one of these two families of solutions we can characterize as having the pre-
scribed asymptotic behavior of type I, /as> O.

The existence of solutions of type Il and Ill is proved only whén+ N, = 1, that
is, a single vortex point is prescribed. In particular, we may conclude that at the energy
level E = 2 (see (1.19)) there existJ (3)- periodic vortices for each of the prescribed
type I, Il and IIl. More precisely, we obtain the following results.

(type 111)

Theorem 1.1. Let N, be a nonnegative integer angl, = {p{, ..., p“Na} C Q be an
assigned set oiV,-points (not necessarily distinct) if2, a = 1,2. For0 < k <
\/871 max{2N13B\|72,2N2+N1} sufficiently small, there exist two gauge distingt/ (3)-

periodic vortex solutions dfL.2){(1.16)satisfying the ansafd..5)(1.6)and such that:

(i) the componert“ of the Higgs field satisfiegp?| < 1in 2, and¢“ vanishes exactly
at eachp’;. € Z, with the multiplicity given by the repetition gt:f; inZ,,a=1,2.
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(i) Theinduced “magnetic flux’-componedt, and “electric charge”-componeng,,,
satisfy:

1 2
d)az%Qa:%T(ZNathb) atb=12

(iii) The energyE satisfies:
E = 27(N1+ Na).

Furthermore, one of these two solutions is always of type I, in the sense that the
componentgﬂ) (a = 1, 2) of the Higgs field satisfy:

G| — 1, ask — o, (1.21)
pointwise a.e. irf2 and strongly inL?(2),V p > 1.
While, whenV; + N> = 1, then the other solution is of type I, and the corresponding
component&fz) (a = 1, 2) of the Higgs field satisfy:

¢, | — 0, ask — 0, uniformly in€. (1.22)
For k > \/&T maX{ZNfJ‘S\',Z NN it is not possible to hav8U (3)-periodic vortex

solutions for(1.2)+(1.16) satisfying the ansat{l.5){(1.6) together with the properties
(i) and (iii).

Remark 1.2In the statement above, it is understood that in csige= O for some

a = 1, 2 then the corresponding set of vortex poifgis taken to be the empty set.
Furthermore, a bootstrap argument shows that, in fact, the convergence in (1.22) holds
C™(Q2)-uniformly, for everym € N, and in any other relevant norm.

Theorem 1.1 may be considered as the complete analogue of the resaitis|iam
Chern—-Simons periodic vortices (correspondingte: SU (2)) obtained by Caffarelli—

Yang [4] and Tarantello [34].

In fact, if G = SU(2) thenr = 1, and the restricted gauge-potential takes the form
V(lp)) = Elz|¢|2(1 — 2|$|%)2. So, in this case, only type | and ll-vortices are allowed.

To insure the existence of type Il-vortices, the given restriction on the vortex numbers
not to exceed the value 1 appears as a technical condition, which is required also in the
abelian case [34].

Indeed, in the spirit of [34], we derive our results by considering different “con-
strained” variational principles for each type I, Il and IlI-vortex.

This point of view was inspired by a “constrained” variational approach introduced by
Caffarelli-Yang [4] to treat 1-periodic vortices in the abelian situation. The restriction
on the vortex numbeN = 1 was needed in [4] in order to derive the existence of a
minimum for the relative variational problem, as a direct consequence of the Moser—
Trudinger inequality (see [3,16]). On the other hand, our variational problems take a
system-form for which Moser—Trudinger’s inequality no longer suffices to yield directly
the existence of a minimizer even under the given restriction on the vortex numbers.
Instead, we show (see also [27]) that, on the constrained set, an “improved” form of the
Moser—Trudinger inequality holds, which enables us to obtain a minimum for all the
variational problems under examination regardless of the values of the vortex numbers.
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However, for type Il (and even more so for type Ill) vortices we need to restrict the
sum of the vortex numbers, as above, in order to insure that these minima actually lie
on the “interior” of the constrained set, and thus yield to the desired vortex-solution. At
the moment, it is not clear how to remove such a restriction even for the simpler abelian
situation where only recently some progress has been made in this direction, see [28,
12] and [10].

Concerning the type lll-vortices, specific §&/ (3)-theory, we have the following:

Theorem 1.3. For each fixed poinp € Q and0 < k < %,/3@ sufficiently small,

there exists arsU (3)-periodic-vortex solution fo1.2){1.16) satisfying the ansatz
(1.5)1.6) such that for the componest (a = 1, 2) of the Higgs field the following
holds:

(i) (first component)l¢?| < 1; $* never vanishes i® and,

1
1 +
— —, ask— 0", 1.23
o 73 (1.23)
pointwise a.e. if2 and strongly inH1($).

The corresponding induced first-component of the “magnetic fi@lgdnd “electric

charge” Q1 satisfy:®1 = 01 = &;

(i) (second component)p?| < 1; $2 admits a simple zero at € Q and,

|¢?| - 0, ask — 0T, (1.24)

pointwise a.e. ir2 and strongly inH(Q).
The corresponding induced second-component of the “magnetic fiejJdand
“electric charge” Q> satisfy: @, = 0, = .

(iii) The energyE = 2.

Remark 1.4In words, Theorem 1.3 states the existence of a type Il (a) vortexfirsth
vortex numbeV; = 0 andsecondvortex N, = 1.

Due to the complete symmetry of (1.10) with respect to the indicesl, 2, we can
also claim the existence of$J (3)-periodic vortex of type 11 (b) simply by exchanging
the role between the indices. Thus, Theorem 1.3 may be completed with the existence
of anotherSU (3)-periodic vortex whose componept of the Higgs field satisfy:

(i) (firstcomponent)ipl| < 1; ¢! admits a simple zero at €  and,
16l - 0 ask — O, (1.25)

pointwise a.e. irf2 and strongly irt{().
The corresponding induced first component of the “magnetic fidld= %" and
“electric charge’Q1 = 4 ;

(i) (seconcdcomponent){p?| < 1; $2 nevervanishes ir2 and,

1
% — T sk o, (1.26)

pointwise a.e. if2 and strongly irf{1($2).
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The corresponding induced second component of the “magnetic fieldihd “elec-
tric charge” Q> satisfy®, = %QZ = %ﬂ
(i) The energyE = 2.

For such a solution the corresponding vortex numbers are giveN;by 1 and
No = 0.

Thus, in cas&Vi + N> = 1, we can combine the results above and conclude:

Corollary 1.5. For givenpt, p? € 2 and0 < k < 3,/32 sufficiently small, at the
energy levelE = 27 there exists &U (3)-periodic vortex, satisfyingl.2){(1.16)and

the ansat£1.5)1.6), for each of the asymptotic behaviors prescribed by the type I, Il
and Ill (a), (b), ask — O*. Furthermore, either the first component of the Higgs field
¢ admits a simple zero at' and the second componestt never vanishes; ap! never
vanishes ang? admits a simple zero ai°.

Note that, at the moment, no existence result is available concerning vortigés in
with the asymptotic behavior of the type Ill, g — +oc.

To establish the results above, we take advantage of the equatipn= 0, which
we may write componentwise as follows:

dIng* =iy A’ Kps, a=1...r (1.27)
b=1
In fact, by virtue of (1.27), we can follow an approach introduced by Taubes ([35]) for
the study of self-dual Ginzburg—Landau vortices, and derive from (1.10) a system of

nonlinear elliptic equations for the real variable functiaps= In |¢¢|? (a = 1, 2) of
the following form (see also [38]):

Aug = =35 (Lhoy Kap€" — 3 1 € Kpe€' Kac) +4m j41 8,0 0N,
u, doubly periodicondQ, a=1,...,r

(1.28)
where the pointgf, ..., py, € S2are the prescribed zeroes of the scalar fielfls
(a=1,...,r) repeated according to their multiplicity.

In fact, from each solution, (a = 1,...,r) of (1.28) we may recover, under the
ansatz (1.5) and (1.6), the whole vortex-solution for (1.2), by setting:
P T e )
r
A —iAY = —i _Ing? (Kt
1! ’;3 ne’ (K72, (1.29)
Aa:_i |¢a|2_i<K—l)
0T % prt ba ]’

whereK ~1 is the inverse of the Cartan matrk. Clearly, from (1.29) we have that'
vanishes exactly at eaqf? with the multiplicity corresponding to the repetition pfl}
in Z,.

We shall devote the following sections to the analysis of the elliptic system (1.28) in
caseG = SU(3).
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2. Variational Formulation and Preliminary Results
We study the system (1.28) when the gauge group considedd (). Recalling that

the Cartan matrix foSU (3) is given byK = (_21 _21> , the system (1.28) takes the

following form:

Aup = M4 — Qg2 — Dl 4 g2 _ gtz 4 A Zivil 8,1 ong
i

Aup = A(4¥2 — 2¢%1 — 22 + @1 —@atiz) 4 SN2 5, one (2.1)
J

u1, up doubly periodic ono<2.

where we have set
A= —>0. (2.2)

Concerning problem (2.1) we shall prove the following results:

Theorem 2.1. (a) For0 < A < % max{2N1 + N2, 2N» + N1} problem(2.1) admits
no solutions .
(b) Every solution(u1, up) for (2.1) satisfies :

gr<1l inQ (a@=1,2. (2.3)

(c) There exists.g > 0 sufficiently large such tha¥/A > Ag problem(2.1) admits, at
least, two distinct solutions, one of which always satisfies:

gv — 1 asi— +o0 (2.4)
pointwise a.e. if2 and strongly inL?(Q2),V p > 1.

We point out that, contrary to part (a) of Theorem 2.1 where the estimate on the
non-existenceange ofA’s is given independently of the position of the vortex points,
the range(Ao, +00) of existence as established in part (c), depends on the position of
such points as can be seen already by the rough estimate given in (2.21).

Clearly, (2.4) insures the existence of a periodic vortex solution of type I. Concerning
the existence of type Il and Il vortices, we have to limit our attention to consider the
case where the vortex-numbérg;, No) satisfy: N1 + No = 1.

Thus, we consider problem (2.1) in the simpler form:

Aug = )(4€?1 — 2e2 — 2¢t + @2 — @1142) + AT N1§ 1 ONQ
Aup = )(4e?2 — 271 — 2¢2 + @1 — @1142) + AT Np5 2 ONQ (2.5)
u1, up doubly periodic ono2
with assigned pointp? € Q,a =1, 2.
We prove:
Theorem 2.2. For Ny + N> = 1andx > % sufficiently large, probler2.10)admits
a (weak) solutior(uy , u; ) satisfying:

g« - 0 asi — +oo, uniformly inQ (a =1, 2), (2.6)

(and in any other relevant norm).
Furthermore, there always exists a second solufigi u3) such that,
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(i) if Ny =0andN2 =1, then
* l *
1 — > g2 — 0 asi — +oo (2.7

pointwise a.e. ir2 and strongly inH1(Q);
(i) if Ny =1andN2 =0, then

. 5 1
e¢1—-0, €2 > asi — +oo (2.8)

pointwise a.e. if2 and strongly in1(<).

Itis clear that, by means of the transformations in (1.29) and (2.2), we obtain Theo-
rem 1.1, 1.3 as well as Corollary 1.5 as an immediate consequence of Theorem 2.1 and
2.2.

To establish Theorem 2.1 and 2.2, it will be convenient to distinguish between the
singular and regular part of the solutions in (2.1). For this purpose denofgby= 1, 2)
the unique solution for the problem (see [3])

€2

Auf = —AmNa 4 4y Zyil 8,,;; onQ 2.9)
fqué =0 uf doubly periodic ond< '

a=1,2.
As is well knownug € C*(Q\ {p] ... Py and ifn‘; is the multiplicity ofpj? then

ug behaves like: Inx — pjf|2".7, asx — pj.

Settingu, = ug + v, andh, = €0 we have thatu1, u2) is a solution for (2.2) if
and only if (v1, v2) is asmoothsolution for the following system:

Avy = ). (4h3€?t — 2h3€22 — 2h1€"t + hp€'2 — hiho€"tt12) + F0L onQ

Avy = ). (4h3€?2 — 2h2€2t — 2hp€"2 + h1€"t — h1ho€"tt12) + H22 onQ

v1, v2 doubly periodic orf 2.

(2.10)
As a preliminary result, we start to derive part (b) of Theorem 2.1.

Proof of (2.3). First of all notice that, in view of (2.9) and (2.10), chrnpc; Ug = —00

fora =1,2andj =1,..., N,. Thereforeu, attains its maximum value at some point
Xq € Q\{pg, ..., p‘;\,a}. Setu, = maxqu, = uy(x,) (@ =1, 2). By symmetry, we can
assume without loss of generality, that> ip. Since(u1, u2) is a solution of (2.1), we
derive

0> 4e2t71 _ 2e2u2()?1) _ Zeﬁl + euz()?l) _ et71+142()?1) >
> 2l _ ot + gte(¥1) _ girtua(¥) (2.11)
— odi (eﬁl _ 1) _ g2 (eal _ 1) _ (Zeﬁl _ euz(il)) (eﬁl _ 1)
Thus, é — 1 < 0 and consequently

g«® <1 foranyx € Q, anda=1,2. 0O (2.12)
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We notice that (2.10) admits a variational formulation Bh(2) x H1(Q). Here
H1(Q) denotes the space of doubly periodic functions HZ_(R?) with periodic cell
domaing. It defines an Hilbert space equipped with the stand&f2)-scalar product.

We shall denote by- || the usual norm o () as given byjv||? = | Vvl|3+|v]3 =

Jo IVVI2+ [ v]2.
It is easy to check that (weak) solutions for (2.10) correspond to critical points in
HL(Q) x H1(Q) for the (unbounded) functional

1
I (v1, v2) = 3 (||Vvl||2 + ||Vv2||2 —l—f Vg - sz) —i—)»/ W (v1, v2)
Q Q

4 4 1
+ 3 (2N1+ Np) | vi+ 3 (2N2 + N1) | v2, wvi,v2 € H (RQ)
Q Q

(2.13)
with W (v1, v2) given by
W (v1, v2) = h3€™ + h3e?? — h1€"t — hp€"? — h1hp€" "2 4 1
1 3
= J(@he" — hpe 12+ 7 (h2e" — 1)2 (2.14)

1 3
= 7 (2h2€"” — e — 1) + 2 (e — D > 0.

To simplify notations, from now on we shall assume, without loss of generality, that
Q| = 1.

Integrating (2.10) ovef2, we find that any solutioifvy, v2) for (2.10) satisfies the
following constraint conditions:

{4 Jo W32 — 2 [ €22 — 2 [ ha€ + [ ho€? — [o hahoett 2 4 1M1 — 0

4 [o h3€72 — 2 [o h3EP — 2 [ ho€? + [ hae™t — [ hahpe't 2 4 4102 :(O. )
2.15

Conditions (2.15) may be more clearly interpreted if we set= ¢; + w;
with [ w; = 0ande; = [ov; (i = 1,2). Indeed, after some simple algebraic ma-
nipulation, from (2.15) we get a quadratic system for the variablesie= 1, 2) as
follows:

{2e201 Jo h3€?Wt — &1( [ h1€"t + €2 [ hihpe®t+2) + FL(2Ny + Np) = 0

2672 [ h3ePW2 — e2( [, ho€"2 + €1 [ hiho€"1T¥2) 4+ 2L (2N, + Np) = o£ |
2.16

Consequently, a solutiagy = u6 + ¢ +w; (i =1, 2,) for (2.1) must satisfy:

(Jghie" +€/ [ohihae"t72)® 327 (2N + N))
Jo h2e2wi - 3
Thus, taking into account (2.12), by (2.17) and Hélder inequality we obtain,

i#£j=12 (217

321 (2N +N;) _ 4(fghie")’
3u T [qhZew

<4Q, i#£j=12 (2.18)
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Hence, the condition

8
A= ngl max(2N1 + Na: 2N2 + N1} (2.19)

is necessary for the solvability of (2.1), and part (a) of Theorem 2.1 follows.
Set

E={weHQ) : /w:O}.
Q

We shall see that, for each fixed péiry, wy) € E x E satisfying:

2 32
(/ hfew") > =~ (2Ni + N;) / W2V, i, i j=12  (220)
Q 31 Q

the system (2.16) admits four distinct solutiqag, c2).
For this purpose, from now on, we take

32r h? h?
> max{(2N1 + No) fﬂ—lz; (2N2 + N1) Jo 2 (2.21)
th) (fsz h2)

and define the set
Ay = {(w1,w2) € E x E : w; satisfies (2.2Q) i =1, 2}. (2.22)

Note that(0, 0) € A,.
For given(w1, w2) € A,, we introduce the smooth functimg% : [0, +00) — R
(i =1, 2) defined as follows:

h1e¥t + X [ hihoev1tw2

2o
+ \/(fsz hie”t + X [q hlh?ew1+w2)2 - % (2N1+ N2) [q hie2v
OGET
£ (X) = fQ hoe"2 + X fQ hihpewitw2
2= 4 Jq hgeP2
+ \/(fsz hoev2 + X [o hlhzew1+w2)2 — ?’3—2)\” (2N2+ Ny) [, h%ezwz
ORGEE |
(2.23)
and set

FrX) =X —gf(g5(X)), F (X)=X-—g(g;(X))
FEX) =X —gf (g, (X)), FT(X)=X - g (g5(X))

Itis easyto check that solutions of (2.16) correspond to the zeroes of the smooth functions
F*: [0, +00) - R, with* = +, —, &, F.
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Notice thag"(X) > OforanyX > 0(i = 1, 2)andsaF*(0) < O(x = +, —, =+, F).
Moreover,

lim ¢ (X)=0 (=12, (2.24)
X—>+00
while
+ w1+w?2
g (X)  [qhiho€"t .
= +0(1), asX — +oo =1,2). 2.25
< YT (i=12) (2.25)
Therefore,
FH(X hihoetrtw2)?
PO _ (- (fﬁzlz 2) +o(l), asX — +oo.
X 4 [o hyes [ hsewe
For the remaining*, (x = —, £, F) we have
F*(X)
= 1+0(1), asX — +oo.

Therefore, for any choice = +, —, &, T, it follows:
lim F*(X) = +oo,
X—>+
and hence, by continuity*(X*) = 0, for someX* > 0 andx = +, —, &+, F.
Furthermore, fo¥, j =1,2,i # j,
dg* fQ hhoeWrt2

8 +
— (X) = :I:gl. (X) ’
- \/(fsz hi@" + X [ hahoevez)® — 35 (2N +Nj) [, h2e?
(2.26)

and so,F* and F ¥ are strictly increasing. Moreover, fow, wy) € A, (i = 1, 2) and
X > 0, we have

E(X) - _ fQ hlhzewﬁwzgf(g;(x))
dX JUah1em + g5 (X) fo hahgeritua)2 — 2L@N; + Ny) [, he2
Jo o€t 2eF (X)

+1

U 282 + X [ hihgentuz)? — 321N, 4 Ny [, h3e2ve

_q 8 X)) FrX)

’

X X
and, analogously,
F~ ; (g5 (X -
d (X)>1_gl(g2( )):F (X).
dX X X

So,FT* is strictly increasing, fox = +, —, andX > 0.

613
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In conclusion, for anywi, w2) € A, andx = +, —, £, F there exists a unique
X* > 0 such thatF*(X*) = 0. Set é1¥1.¥2) — x* and observe that, by the strict
monotonicity ofg;r andg; ,i = 1, 2 (see (2.26)), there exists a unigtfe= ¢} (w1, w2)
(i=12;,%«=+, —, £, F) satisfying

N

€1 = gf (€2), &% = g5 (&)
€1 =gl (€2), €7 =g, (e);
el = g7 (), e = gf (&),
€1 =gy (€2), €2 =g, (€1).

Consequently, for giverws, wz) € A;, settingv] = w; + ¢/ (w1, wp), i = 1,2,
* = +, —, £, F we have that the paiwy, v) satisfy (2.15).

Our goal will be to derive solutionév1, v2) for (2.10) which decompose ags =
w; + ¢; With [o w; = 0,¢; = [ov; ande; = ¢ (w1, w2) (0 = 1, 2) with prescribedk
to coincide with either-, —, & or .

This will yield to solutions of (2.10) with specific asymptotic behaviokas +oco.

Note that, by the complete symmetry of the problem, the easet andx = F are
similarin nature. So, we shall limit our attention to the case & with the understanding
that, by changing the role between the indices, analogous considerations hold also when
* = F.
We start with the following:

(2.27)

s
N

Lemma 2.3. For every(w1, w2) € A; we have
() e Johi€" <1fori=1,2
(i) e [y hie’ <8 @N; + Nj)fori=1,2,i # j;
(iii) €1 [, h1e"t < I + L8 2N, + Ny) ande? [, hoe”2 < BL(2N; + Ny) .
Proof. (i) In view of (2.23), from (2.27) foi, j = 1,2i # j we have
o Johie" + €7 [y hahgerive
- 2 [ h2e2wi
Iterating such an inequality, by means of Holder inequality, we get,
w1 W1-+w2
¢l < Jahe® + Jo hihze (/ hzew2+eCT/
2 [gh3e" " 4 Jgnien oz \Jo 2
fQ hie"t fQ hihoewitw2 fQ hoe"2 1_ Ir
T 2fghien Ao hien [ohEez 4

€

hlhzewl+w2>

By symmetry, an analogous estimate holds for. d¢lence,

, 4 hiei)?2 hiho€¥1tW2 [ pietl [ hoe2
eL[*/hiew,-S_ (o 12 ). Johih2 . Ja 12fs2 2 Ci=12
Q 3\ 2 [ heewi 4 [, h5e?wt [ h5e?w?

and, using Hoélder inequality, we derive the desired estimate.
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To obtain (ii), we use again (2.27) together with (2.23). Thus;j ferl, 2,i # j, we
have

o < 87 (2N; + Nj) 1
3 Johi€i + € [ hihpewitwe

(2.29)

and (ii) easily follows.
As above, to obtain (iii), note that from (2.27) and (2.23), we have

+ 8w (2N2 + Nyp) 1
€2 < T ,
32 [ ho&"2 + €1 [ hihpewitwz

(2.30)

and so,
. 87 (2N; + N;
gi L ST@Ni+ N)) (2.31)
)\.fg hoew2

On the other hand,
W1 & W1-+w2
£ Jo h1€"t + €2 [ h1ho€ ,
- 2 [ hye
while from (2.30) we also have,
eczi < 87 (2N2 + N1) § 1 .
3A €1 [ hihpewrtw2

e

(2.32)

(2.33)

Furthermore, from (2.27) and (2.23) it is easy to check that

ecli>M

T afphiEn
Combining (2.33) with (2.34), from (2.32) we get

(2.34)

2 2 /g hietn 2 Jo hietn
_(Jghe™)® | 4 @N2+ Ny o hae
= 2 [, h3e2n 311 [, h2ew
_ (s h1€"1)? 16w (2N2 + N1)

T 2 [, h3e2n 31 ’

(2.35)

and the desired estimate follows by Holder inequalits

Remark 2.4Note that, by Jensen’s inequaliyﬁf2 h;evi > 1(i =1, 2), which combined
with the estimates in Lemma 2.3, gives in particular that,

. 1
& <1, ¢ 50(%)’ i=12

(2.36)
ecf§%+0<)—%) and ézigo(%)
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This suggests that solutions of (2.10) with the prescribed asymptotic behavior of type I,
II'and Il (see the Introduction) should correspond to those with mean-values as given
by ¢, ¢;” andc;", respectively.

With this aim, we consider the functionals’, J,~, J:¥ andJ;T defined on4; and
obtained by inserting the constraint (2.27) irito More precisely, fo w1, w2) € Aj,
define

J¥ (w1, wo) = L (w1 + ] (w1, w2), wo + c5(w1, w2)), Withx =+, — £, F.
Using (2.16) we find:

(w1, wz)—3 [Vwi]l + [[Vw2||” + Qle-sz
A PN N
+§/Q(1 &ine )+§/Q(1 &2 he ) 47t (N1 + N2)

4 4
+ 5 (@N1+ N2) e+ = (@N2+ Ny €3
(2.37)
with x = +, —, &+ and=.
Remark 2.5t is easy to check that; is Frechét differentiable in the interior of;.

Moreover if(wz, we) (in the interior ofA, ) is a critical point for/*, then(w1 +c7, w2+
c3) defines a critical point fof;.

Concerning the existence of critical points &, we will show that such a functional
is bounded below and attains its infimum dr. However, only whern = 4, we can
prove that the corresponding minimum point belongs to the interiot,gffor » > 0
large (see Proposition 3.4 below). In the other cases—, £+ and=, we can prove that
this occurs only whemv; + N2 = 1 (see Sect. 5). It is an interesting open question to
know what happens for the remaining cases.

3. Multivortex Solutions of the | Type

In this section we analyze the function@‘, and the corresponding minimization prob-
leminA,;.
We start with a preliminary lemma already derived in [27]:

Lemma3.1. If (w1, w2) € A;, thenvr € (0, 1] we have

1-t

1
3 ' T
hei<| ——— htetWi , ,j=12 i i 3.1

Proof. Lett € (0,1) and leta = 2%{ so thatra + 2(1 — a) = 1. By the interpolation
inequality we have

a 1-a
/hie’”f < </ hl?e””i> (/ hl-zezw")
Q Q Q
- </ h-[e-[w.)a 3)\’ 1-a (/ h ew.>2(1—a) ) # )
[ ! A T AT\ i ! ) 4 )
=" 327 (2N; + N)) o /
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Consequently, for # j,i, j =1, 2,

2a—-1 l-a a
3x
() < (o) (fen)
Q 327 (ZN,'-l-Nj) Q
1t

= 1
/hie’”i < > (/ hl?ef“’f) . O
Q 327 (ZNi + Nj) Q

In view of Lemma 3.1 we derive the coercivenesgpfas follows:

Proposition 3.2. For A > 0 sufficiemtly large, there exist constaatsC > 0 (indepen-
dent ofi) such that

that is,

I (i, w) = @ (Vw2 + [ Viz)?) = € (nx+ 1) (32)
for all (w1, wo) € A,.
Moreover,J;r attains its infimum omd,,.
Proof. From (2.23) and (2.27) it follows immediately that
iJr > fQ hiewi ,
D

Hence, from (2.20) we find a suitable constént- 0, independent of, such that for
every(wi, w2) € A,, we have

€ i=12

c;r(wl, w2) > —Inx — In/ hie"n—-C, i=12 (3.3)
Q
Whence, using Lemma 3.1, for fixede (0, 1) and any(w1, wz) € A,, we obtain:
1 4r
5 wnwe) = g Y UVwlE - Y T @M+ N) n [ et
i=1 i#j=12
2
47 1
— 2 F @i N) A=z 23 IVwi
i#j=12 i=1
=4 1
4 3 ' i\ ©
— Z _7'[ (2N,‘ -I—Nj) In[(—) </ ef(wiJr”O)) ]
P 3 167 (2Ni + Nj) Q
4
_ ?”(2Ni+Nj) Ina—cC
i#j=12
1 y .
>— ||Vw,-||§ — Z — (ZN,- +Nj) (In/ e + max%)
6 “ A 3t Q Q
i=1 i#j=12

4 1
_. Z %(;) (2Ni+Nj)|nA—C,
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for some constant’ > 0 independent of.
Recall that, by Moser—Trudinger’s inequality [3](see [16,11] and [27], for alternative
proofs) we have that

1
/Qew < Cexp(EIIVwH%) Yw e E, (3.4)

with C a positive constant depending only@nThus, for anywi, w2) € A, , we obtain

1 T (2N; + Nj)
I (wy, wp) > 5 Z (1— #) IVw; |3
i#j=12 (3 5)
2N; +Nj)

4 (

itj=1,2

with C; > 0 a suitable constant independent.of

Hence, it suffices to take & 7 < T 2N FN N (3.5), to derive (3.2) and

conclude that/;" is coercive onA;. SinceJ," is weakly lower semicontinuous on the

weakly closed set;, we immediately conclude that the infimum g is attained on
A)L. O

Our next goal is to prove that, farsufficiently large, such a minimum point lies in
the interior of A,
To this purpose we will estimate the functiongl on the boundary.A; of A;.

Lemma 3.3. For A > O sufficiently large,

. A
inf  JF (w1, wp) > 5= C(Wr+Ini+1), (3.6)

(w1, w2)€0.A;,
with C > 0 a suitable constant independentiof

Proof. For (w1, wp) € 3.4,, we have that the identity

2
(/ hiewi> - ﬁ(ZN,»JrNj)/ R2Vi, i £ (3.7)
Q 31 Q

necessarily holds far = 1 or 2. Without loss of generality assume that (3.7) holds for
i=2.
Using (3.7) into (2.28), by means ofidttler’s inequality, we find

a T 3\2fgh5e o memb(fyiient) gy
1

1
C(=+ ),
= (A \/X)

for some constar€’ > 0 independent of.
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Hence, forr > 0 sufficiently large, we have
2C
ef2+/ hoe"? < —. (3.9)
Q Vi

Using (2.37) withx = +, the arguments of Proposition 3.2 with=

2
) max;«j—12(2N;+N;)’
Lemma 2.3-(i) and (3.9), we get

A + A +
+ - _C w1 - e w2
JT (wy, wp) > > /Q (1 €1 hq1€ ) + 5 /Q (1 €2 h€ )
2

2
—— max (2N;+N;) " Inr-C
3 i,j=l,2;i;éj( i +N))

z%—c(ﬁJr Inx+1),

for any (w1, wp) € 9.A4;, with C > 0 a suitable constant independentof O

In order to find suitable test-functions in the interiotdf, where the reverse estimate
in (3.6) holds, we recall here some results obtained in [34] concerning the Abelian Chern—
Simons—Higgs equation.
~In [34] (Proposition 3.} it is proved that foru > 0 sufficiently large there exist

v, =¢c, +wl,with & = [, 9, and thef, w!, =0 (i = 1, 2) solution of

_ el vl .
Av = ij,e o(e" ™o — 1) + 4 N; (3.10)
ve H(Q),

such thatg + v/, < 1inQ, ¢, — 0andw!, — —u{ pointwise a.e., ag — +oo (i =

1, 2). Sinceh; = g0 e L*°(R2), by dominated convergence, we have Mnm"_’ft -1
strongly inL?(2) for any p > 1. In particular,

f hiho€7i P 5 1, asu — +oo. (3.11)
Q

Hence, for fixed.o > 0 large and € (0, 1), we can findu. > 0 sufficiently large to
insure that, setting; = W), (i =1, 2), we havg(w,, wae) € A, for everyr > Ag
and

2 [ ho&Pie +1
max - . >
j=12 4 [, hieZwl,e Jo hgesze -1

1—e. (3.12)
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Recalling that, by Jensen’s inequalitf, 1146”1« %2 > 1 and [, h?ezu_)fte >
(g hje¥ie)? > 1, j = 1,2, by means of (2.27) and (2.23) we obtain,

(fQ ewlE +e,(wle w2€)f h]_h2€wl€+w1€>

+o- _
eC,- (wl,eaw2.s) >
- 2 i€
4 [ h2ei

321 Jo h2e2Pie
1 1—- —(@2N;
X +\/ 3)\( l+ )(fghele)Z
>1_"_ej(w1€w2€) f hew,e
T2 [, h?ePic 2 [o h2e?ic
Jo hiZeZw,;e
(fgz hie@i,e)z

327
1-—@N;+N;
X \/ 3)»( + /)

14 ¢ Premao _ 87(2N;i + N))

- fori,j=1,2 andi B
2 [, h2ePie 3 ! #

(3.13)

)

Thus, setting:;; = ¢ (W1, W2,) i = 1, 2, aniteration of the estimate above yields
to

o > 1 N 1 1+ ecj;)
T 2 g hfehie 4 o hi€2Me [, hiePTe |

1 8w (2N; + N;) 8m(2N; + Nj)

2, h2ePiie 3k 31
_ 2 h2ic +1 . eie 47 (4N + 5N;)
T A4 [, h3eiie [ h3ehae 4 [ h2€2ie [ h3ePi2e 3 '
fori £j=12.
Consequently, fof £ j =1, 2,
i 2 [ o€ +1 47 (4N + 5N;)
T4, h2e2wn [ W32 — 1 N '

In view of (3.12), we conclude that
4
e >1-¢e— = maxnN;, i=12,
A j=12
that gives

' ] 4
(1— e‘fe/ hieic) < e+ — maxN;, =12 (3.14)
Q A j=12

forall A > Aq.
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Now, we are ready to prove:

Proposition 3.4. For A > 0 sufficiently large,

inf I (w, inf  JT (w1, wo). 3.15
(w1, wp)ed A, (w1, w2) > (wi,wp)ed, " (w1, w2) ( )
Proof. Fix ¢ € (0, %) and considetws ., wa ) satisfying (3.14) fon. > Aq.
Sincec” < 0,i = 1,2 (see Remark 2.4), by (2.37) (with= +) and (3.14), we
have:
T (e, 2.6) < [Vibrell® + [ Vig.el® + Ae < Ce + Ae, (3.16)

with C. > 0 a suitable constant dependingcanly.
Comparing with Lemma 3.3, it follows

inf I (wr, wo) — inf T (we, wo) > inf JT (w1, wo)
(w1,w2)€d.Ay A (w1, w2)eA; » (w1, w2)€d.A; »

1
— (W1, W) > Mz =€) - C(WA+1Ind) — Cc — +oo,

as\ — +o0, and the proposition is proved.n

From Proposition 3.2 and 3.4 we may conclude thatifer O sufficiently large and
(N1, N2) € N x N, there existgwi 3, wz.,) in the interior ofA,, wherejj attains its
infimum. Consequently,J;") (w15, wz,) = 0, and

”Ix = w1, + ¢ (Wi, w23)

3.17
”Zx = w2, + Cﬁr(wu, w2 3) ( )

defines a critical point fof, , namely a (weak) solution of (2.10).

Next we prove that, as in the Abelian Chern—Simons-Higgs theory (see [34]), the
solution characterized by the choice of the “plus” sign in (2.23), nar(m]fx, v{k),
give rise to a periodic vortex of type I.

More precisely, we prove

Proposition 3.5. For A sufficiently large, Ie(vf’k, v{k) be the solution of2.10)as given
by (3.17) then,

. e“f)*”fk — lasi — +oo, pointwise a.e. if2 and inL?(Q),V p > 1(G =1, 2).
In order to prove Proposition 3.5 we start with the following lemma:

Lemma 3.6. Let (v}, v3,) be given by3.17) then,
/ Wy ,,vs,) > 0, asi— +oo. (3.18)
o a0 V2,

Proof. In view of (3.16) we may conclude th&t > 03A, > 0 andC, > 0 such that
VA > A we have

inf J;t < e+ Ce. (3.19)
Ay
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On the other hand, following the argument of Proposition 3.2 (with 2 (max £;—12
(2N; + N;))~1) we obtain

. 4
inf S = JF(w],, wy,) > x/ Wi, v5,) — — max2N; + Nj)Ani — C,
A e Q e 3 i#
(3.20)
for C > 0 a suitable constant independent.of
So putting together (3.19) and (3.20), we obtain that
limsup [ Wi, vJ,) <€, Ve>0
r——+o00 JQ ’ ’
and the conclusion follows. O

Proof of Proposition 3.5Recalling (2.14), by Lemma 3.6 we hah',ee”;rA — 1inL%(Q)
as) — +oo andi = 1, 2. Since(vy, + ug, v3, + u§) is a solution of (2.1), by (2.3),
we have that

+ i . .
gintho <1 inQ, i=12

Hence, & Huo 5 1 pointwise a.e., and, by dominated convergence, strondly (),
Vp>1ash— +oo. O

We conclude this section by observing that the type | multivortex solutipy, v3 ;)
can be characterized variationally as follows:

Lemma3.7. Let(v],, v3,) be given by(3.17) Then(v;, , v3,) is alocal minimum for
the functionall,.

Proof. For any(w1, w2) € A, observe that
3¢, [ (w1 + ¢ (w1, w2), wo + ¢ (w1, w2)) =0, i=12 (3.21)

Moreover, fori = 1,2,i # j we have
362_21)L (w1 +c1, w2+ c2) = )\/ <4h12e2(w;+c;) — hjevite hlhge“””ewl*wz) ,
i Q

92 ., (w1 + c1, w2 + c2) = —k/ hyho€1te2g" 112,
Q

In view of (2.23) we have

32r
051, (v],. v3,) = A(( / hihs + hihaeh 502 — L @N; + N)) f n2e?in)z,
' Q Q
(3.22)

and sincqwsi., wz,,) lies in the interior of4;,

4ot
30221A(Ufp Uz_,\) > )»/ hiho€'tr 12 =1, 2,
i ' ' Q
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Therefore, at the poir(tvifx, ”zx)’ the Hessian matrix af, (w1 + c1, wa + c2) W.I.t. the
variables(c1, ¢) is strictly positive defined. Let; = w; + ¢; (i = 1, 2); by continuity,
there existg > 0 such that for anEi:Lszi — v;,Lx” < 8, we have(w1, wp) € A, and

L, (v1, v2) = Li(wi + cf (w1, w2), w2 + ¢ (w1, w2)) = J;5 (w1, wo). (3.23)
Therefore,
Lo(v1,v2) > P (wi, wp) > inf L (wr, wo) = 1 (vfk, vgk), (3.24)
(w1, w2)eA; ’ ’

and so(v;,, v3,) defines a local minimum fok,. O

4. The Mountain Pass Solution

In this section we prove the existence of a second solution of “mountain pass” type and
obtain the proof of Theorem 2.1.

We start to show that the functionB] satisfies the compactness condition of Palais—
Smale.

Lemma4.1. Let{(v1,, v2,)} be a sequence iH1(Q) x H1(Q) satisfying:

(1) I (vin, v2,0) = @ @SR — +00,
(2) 11 (i, v2,0)|l = 0asn — +oo, then{(vy,, v2,)} admits a convergent subse-
quence ifH1(Q) x H1(Q).

Proof. Setv;, = wi, + cin (i =1, 2), where [, w;, =0ande; , = [ vin.

For any(y1, ¥2) € HY(Q) x HL(Q),

2
I (vin, v2.n) (Y1, Y2l = 3 (/Q Vw1,V + /Q sz,nwz)

1
+= (/ le,nvwﬁ/ sz,an)
3 Q Q

4
+ A/ (Zh%ezvlﬂ — h1€"n — hyhoe'tntvan 4 %T (2N1 + N2)> Y1
Q

4
+ A / (Zh%ezvzv" — ho€"2n — hyhoe'tntvan 4 ?” (2N2 + N1)> v2.
Q
(4.1)

Choosingy; = landy; =0, j = 1,2;i # j)in (4.1) we get, ag — +oo,

4
'/\ / (2h2€Vin — pieVin — hyhgeltntvany 4 %(ZN,- + Nj)| < o(D). (4.2)
Q

By (2.14), it implies:

2)»/ W(vl,,,,vz,n)—i—)»/ hqe¥tn —i—)»/ ho€"2n < 20 + o(1).
Q Q Q
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Hence, ass — 400, we have

/S;W(Ul,nv UZ,n) <14 0(1);

(4.3)
/ hiein <240 i=12
Q
From (4.3), and Jensen’s inequality, we also get
gin <2+0(1), asn— +oo. (4.4)
Furthermore, using (2.14) together with (4.3) we derive; as +o0, that
/ (hi€'n — 12 <2+0(l), i=12, (4.5)
Q
f h2ein < C, i=1,2, (4.6)
Q

with C > 0 a suitable constant.
Set(ws,, + w2,n)+ = max{wy , + w2,,, 0} and take (4.1) with = Y2 = (w1, +
wz2.,) T, then

L (vin, von) (W1, Y2l = IV (win + w2,) 12
+ A f (2h§e2”1-ﬂ + 2h%eP2n — 4h1h2e”11"+”2v"> (win +w2n) "
Q

+ ZAf haha€ 2 (w4 wz,) T =2 Y f hi€ (w1 + wan) "

@ i=1,2"¢ 4.7
+ 4 (N1 + Nz)/ (wl,n + w2’”)+ > 2)»[ hlhze"l-“"zv" (wl,n + w2,n)+

Q Q
2\ 8 ;

— A </ ((wl,n + wz,n)+) ) Z </ hl-zezvi’"> .

Q@ =12 W&

Therefore, by (4.6) and assumpti®) we get,

/ haho€"tntV2n (wy y + w2 )T < Cll(way +w2n) T2 + €nll(win + w2,) Tl
Q

= CUIVwyallz + IVwzull2),
(4.8)

with ¢, — 0 asn — +o0 andC > 0 a suitable constant independent:oé N. Note
that in (4.8) we have used the well known estimate:

I +w2) 2 < Wi +w2,) Tl < lwin + w22
< Co(IVwanll2 + [Vwznll2),

with a suitable constart@p > 0 (independent of € N).
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Now, takey1 = w1,, ¥2 = wa, in (4.1) and use (4.6), (4.8), and the Poincaré
inequality to derive

1
B, v2 m)[wan, wan] 2 51V 12+ IVwa,, 12

2
[ Y@ e,
S i=1
— Af hyhopeitntvan (w1, + w2,n)+
Q

1
> (Vw1 [P+ Vwzl >+2AZ/ hEein (€Vin — Dwi p

2 1
Lo Z/thzezc-i,n Wi — A Z (/thzgv,-,n>z Jwinllo
i=1 i=1

1
—C(IVwLnl2+IVwaalla) > 3 _lenwi,n I3—C .lelwwi,nuz,
1=1, =41,

where we used thae?”i» — Dyw;,, > 0,i = 1,2 a.e. inQ.

Hence, by assumptio(®), we conclude thajVwi | and||Vwy,,|| are bounded
sequences. Moreover, from assumpti@n 7, (v1.,, v2,,) is bounded below uniformly
onn € N and we get a constant > 0, independent of € N, such that

. 1
47 (N1 + N2) minfeg n, c2.0) > — é(nwl,nnz + Vw2, 11%)

(4.9)
- )‘/ W(Ul,ns UZ,n) + IA(Ul,nv U2,n) > —C,
Q
that is, the sequeneg,, (i = 1, 2) is also bounded from below.
Therefore, after passing to a subsequence, we get
vin — v, (=12 asn— +oo, (4.10)

weakly inH1(), strongly inL? (), p > 1 and pointwise a.e. if2. Moreover, & —
e’ strongly inL?(Q) p > 1, andc; , — [ Ui = &;.
Consequently, for ang/1, ¥2) € H1(Q) x H1(L2) we derive

I (vin, v2.0) (Y1, Y2l = 1 (01, U2) [Y1, ¥2] =0, (4.11)

namely(v1, v2) defines a critical point fof;,.
In order to obtain strong convergencelif () x H1(2) we choose); = V1, — U1
andyr = v, — U2 into (4.1). By assumptio2) and (4.11), we obtain

[(1; (v, v2,0) — 15 (U1, D2))[V1n — U1, V2.0 — 2]
< €x(llvyn — V1l + vz, — 02) = 0(1), (4.12)

asn — +0o0.
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Consequently,

1 2 _

S IV (i — )12 = -2 /Q w2 (S — &%) (vi — 1)
i=1 i=1

2
+ )\.Z/ hi (e”"’" - eﬁi) (vi,,, - l_)i) +
=17
+ 1 / haha (2720 — €172) (g, + w3 — (51 + 52) + 0 (D) =0 (1),
Q

asn — +o0o, and the desired conclusion followso

Proof of Theorem 2.1(c)n Sect. 3 we proved, for > 0 sufficiently large, the existence

of a solution of problem (2.10) with the desired asymptotic behavior (2.4)-as+oo

(see Proposition 3.5). Moreover, in Lemma 3.7, we have shown that such a solution
(v1,. v3,) defines a local minimum fok,, namely

360> 0 : Li(vi,v2) = Li(v],,vf,), provided [l — vl <do. (4.13)
i=1,2

In order to find a second solution for (2.10), we observe thadmits a “mountain
pass” structure. In fact, there exists a constgnt- 0 (depending only on) such that
for ¢ € R we have:

47
IA(UI)L, w2 +c¢) — Ix(vfk, UZA) <Cy+ ?(ZNz + N1)c. (4.14)

We distinguish two cases.
(i). If (v{,.v3,) is not a strict local minimum fof;,, namely

V0 <8 <o inf L= Lv),,v3,), (4.15)
iz ollvi—vi, =8 ' ’

then, by an application of Ekeland’s lemma (see [17], Corollary 1.6 ), we obtain a local
minimum (v§ ,, v3 ,) for I, such thatzizl,zﬂvf,x - v;,rx” = § for everys e (0, 8p).
Therefore, in this case, we find a one-parameter family of (weak) solutions for (2.10).
Otherwise,

(ii). if (v7,.v3,) is astrict local minimum fot;, then

381 € (0. %) : inf L,(v1, v2) > L], v5,). (4.16)
Zi:l,zllvi—va”:al , i

Moreover, in view of (4.14), there exisfs< 0 such thatc — c3 (w15, w2)| > 81 and
L) w2a +0) < L(v];,v3,). (4.17)
We introduce the class of paths

M={y €C(0, 11, H'(2) x HN(Q)) : ¥(0) = (v];, v1,): ¥ (D =], was + &)
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and define

= inf max I (y(t L(vi,,vl,).

o) jnt, max 2y (@) > L(vy;, vz;)

In view of Lemma 4.1, (4.16) and (4.17), we can apply the Mountain Pass Theorem of
Ambrosetti—-Rabinowitz [2] to conclude thaj, defines a critical level for, . Namely,

there existgvy 5, 12.1) € HH(Q) x H1(Q) such that

L[ (1,,02,) =0 and L (01, 02,) = ) > IA(UI)\, UIA)‘

Hence(v1,,, v2,,) defines a (weak) solution of (2.10) distinct from the local minimum
(vIA, vzk). 0O

5. Vortex Solutions of thell and I11-Type

In this section we are going to establish Theorem 2.2, by proving the existence of one-
vortex solutions from minima ond;, of the functionals/, ", J;t and J;F (see remark
2.5).

We start to discuss the minimization problem $or.

To this purpose we prove a preliminary lemma:

Lemmab.1. There exists a constar@ > 0, independent of, such that for any
(w1, w2) € Ay,

- C
> =12 (5.1)
)“fQ h;eWi

Proof. By symmetry, it suffices to show (5.1) for= 1.
From (2.27) and (2.23), we have

- 4 (2N N
€1 > 77 ( J;+ 2) ' (52)
3)‘(f9 h1e%1 4 2 fgz hihpew1+tw2)

On the other hand, by the Holder inequality, (2.20) and Lemma 2.3 (ii) we have

1 1
_ _ 2 2
€2 / hihpe"1t¥2 < &2 ( f h§e2w1> ( f h§e2w2)
Q Q Q

3 -
< e2 hoeW2 / hqe"?
= 320N ¥ N2 2N T VD) /sz €7 e 63

§§ 2N2+Nl/h1ew1.
4\ 2N1 + N2 Jq

Combining (5.2) and (5.3), we obtain

g o AT@Ni+ V) ”i _
3 /2N2+N-. ew1
3+ 3y o) o™

and the desired estimate is established.
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Lemma 5.1 permits to obtain the following:

Proposition 5.2. If N1 + N2 = 1, then there exists a constafit> 0, independent of,
such that for all(w1, w2) € A; we have:

1
I (w1, wp) > @wwluz + IVwzl|?) + & — 4zln A — C. (5.4)

Moreover,J, attains its infimum o4,

Proof. Recalling (2.37), from Lemma 5.1 we get

_ 1
T (w,wp) > 2 (||Vw1||2+ Vwa||? + / lewz) + A
Q

47 4
+?(2N1+N2) In +?(2N2+N1) In ,

*Johet *Johae'

(5.5)
for any (w1, wp) € A, and for some constait > 0 independent of.
Using the estimatg, |[Vw|[Vwa| < 4 [[Vwil|2 + §[|Vwz||?, valid for anye > 0,

and the Moser—Trudinger inequality (3.4), for some congfast 0 (independent of),
we obtain

_ 1 1 2N1+ N2
S, (w1, w) > 5 (1— Y —) IVws|?

-3 2¢ 4
1 € 2N+ N; 2
“{1-=——)|V
+3< 5 7 >|| wa2||
+A—47 (N1 + N2)Inx - C

1 2
>—(3== =Ny ) |[Vwr)?
_12< . 1>I| w|

1
+ 5 (32— No) [Vwall? + A — 4nlni — C,

providedN; + Np = 1.

Thus (5.4) follows by choosing= 3(1 — N2) + #(1 — Ny).

ThereforeJ,” is coercive onA,. By its weak lower semicontinuity on the weakly
closed set4;, we immediately conclude thatf" attains its infimum ond,. O

Let (w1, wz,) € A, satisfyJ, (w5, wz,3) = inf 4, J,~, in order to prove that

:Ul,k = w1 +cp (Wi, w2,n) (5.6)

Uy, = w2+ (Wi, w2)

defines a (weak) solution of (2.10), it suffices to show that, , wy ;) lies in the interior
of A,. Indeed, we have

Proposition 5.3. For N1 + N2 = 1and > 0 sufficiently large, we have

inf Jo(wy, wp) > inf J(wy, wo). 5.7
(w1, w2)€d A, » (w1, w2) (wrw)ed, ) (w1, w2) (5.7)
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Proof. For (w1, w2) € 3.4, the identity

2

327 (2N; + N;

(/ hl-e“"‘) _ 32 (2Nt Ny) ")/h,.zez““, i#j (5.8)
Q A Q

holds fori = 1 or 2.

Now let (wq,;, wp,;) satisfies], (w1, wa,n) = inf 4, J, and by contradiction
assume thatwi ., w2,) € 9.4,. W.l.o.g. we may suppose that (5.8) holds for 2.
By Jensen’s inequality it follows that,

/ h%ezw“ — 400, asi — 400,
Q

and, by the Moser—Trudinger inequality (3.4), necessarily
[Vwa |l = +o00, asi — +oo. (5.9

Furthermore, by Proposition 5.2 we get
_ 1
I (wys, wp) > %(”V‘ULXHZ +IVwz,[1?) + A —4xlna — C, (5.10)

with C > 0 a suitable constant independent.of
Onthe other hand, by Lemma 2.3 (ii) and Lemma 5.1 there exist conétards > 0,
independent of, such that

A C A C 4 C
5700 <2(1-2)+2(1-2) + Z @2n + Ny In=2
2 A 2 A 3 (5.11)

4 c
+ %(ZNz—i—Nl) InTZ < — 47 (Ny+ No)Ini + C,

with C > 0 a suitable constant independent.of
Thus, if Ny + N2 = 1, from (5.10) and (5.11) we obtain a contradiction since,

1
0> J; (w1, wz) — J; (0,0) > %nvw,xnz —C — +00, asi — +oo.

Hence, (w1 3, wz,,) must belong to the interior ofl,. O

Remark 5.4Note that, if we use estimate (3.1) into (5.5) we can derive, as in Proposition
3.2, thatthe functional,” is bounded below and attains its infimum.dpfor all integers

Ny andN». However, in the general situation, the estimate (5.4) gets worse with respect
to A and becomes:

I (wiwo) > o (||Vw1||% + ||sz||§) 4 —dre dna—C. (5.12)

for somea > 0 and some constant = ¢, (N1, N2) > 0, depending oWV, and N in
such a way tha% — +oo,.asN1 + Ny — +oo _

Thus, the estimate (5.12) is no longer sufficient for the arguments in the proof of
Proposition 5.3 to yield (5.7).
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So we have established that (5.6) defines a solution for (2.10) prowidedO is
sufficiently large. Next, we showthatlf 3o V2.1) exhibits a different asymptotic behavior

asi — +oo W.r.t. the family(vy,, v5 ) obtained in Proposition 3.5 above. Indeed, we
have o

Proposition 5.5. Let N1 + N2 = 1and(vy;, v, ;) be given by5.6). Then,

() ¢ (w1, w2,) = —00, aSA — +00.
(i) There exists a constagt > 0 (independent of) such thal|Vw; , || < C (i =1, 2).

Furthermore, any sequengg — +oo admits a subsequence (still denotedhysuch
that forw; , = w; », (i =1, 2) we have

wi, — w; strongly in#Y(Q), (=12
and (w1, wy) satisfies:

_ _ 4 hie®l 1 hoe¥2 8 hi€”1  _hpe"2
Au}l - 47[ Nl (3 /Q h]_e“"l 3 fﬂ hzewz l + 3 N2 fﬂ hleu)l fQ hzewz

W W' )
Cdwpm ey (47922 1) s (e e )

3 [Q hoeP2 -3 /Q h1€"1 fQ 12672 /Q h1e¥l

Jqwi=0, wieH Q) i=12
(5.13)

Proof. By Remark 2.4 and Lemma 5.1 we have

i Wiaw2) o) (E) i=12
)\‘ 9 bl 9

and (i) immediately follows.
(ii). Recalling (5.10) and (5.11) we have

= (VP + 19w, 02) - .
30 ’ ’
hence, we immediately deri& w; ;|| < C (i = 1, 2) for some suitable constafit> 0
independent of..

Therefore, passing to subsequences if necessary, we defive= w;;, — w;
weakly inH1(), strongly inL?(Q) Vp > 1 and pointwise a.e. if. Furthermore, by
dominated convergence, we also have

O Z J)T(wl,)w WZ,A) - J;(Ov O) 2

/ o) _y / Wot®)  j—12 anda > 0. (5.14)
Q Q

Consequently, taking into account (i), and the definitiom9f = ¢, (w1,n, w2,») i
(2.27), as1 — 400, we get

i,j=12 i#]j. (5.15)

The weak convergence #H(£2), together with (5.14) and (5.15), yield the conclusion
that (w1, w») is a weak solution for (5.13).
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Finally, to prove thaiv; , — w; (i = 1, 2) strongly in%1(2), notice that

/ IVw; n le| = / (Awl n Awl) (wi,n - u_)i) = ./S;hiﬂ (wi,n - u_)i) )

where
1 ; ; - 4w 2N+ N
hl n =)\'necl’n (Zhlewl’" — Zhlewl) + 2hlew1 ()\_necl,n T 1+ 2)
’ 3 fQ hqie¥1
— A€ (hzew2~" - hze"_)z) etz (e AT 2N2E N1\ (516)
3 fQ hoe2

— )‘n (4e20£,1h%e2w1ﬂ _ e2L2 nh2e2w2 n __ Ll n e o "h]_ewl "hzewz ,1) ,

andhy , is given by the symmetric expression. Henjgig, || , is uniformly bounded for
anyp > landfq [Vw; , — Vi |? < [|hyll2llwi, — willz — 0. O

Corollary 5.6. Let (v ,, v, ;) be given by(5.6). Then ast — +o0,
e €% — O uniformly inC*(Q), ¥k > 0, i=1,2.

Proof. Inview of (i) in Proposition 5.5 itis enough to prove that any sequepce +oo
admits a subsequence (which we still denoterpy such thatw; , = w;;, — w; in
Cc*() for anyk > 0.

This is readily established sinceA(w; , — w;) = h; , with h; , given in (5.16),
and||h; »|l, — 0 asn — +oo for any p > 1. Consequently|w; , — w;|lc1« — O as
n — +o0 andu € (0, 1). A bootstrap argument then givge; , — w; |-« — 0, for any
keN. O

To conclude the proof of Theorem 2.2, we consider the analogous minimization
problem forJi andJ," on A, . We start with the following:

Proposition 5.7. Let Ny + N> = 1 and* = + or F, there exists a constarit > O,
independent of, such that

1 3
* - 2 2 e _
T w) = = (||Vw1|| + Vs )+ - —drina—C, (5.17)

for all (wy, wp) € A, .
Moreover,J;* attains its infimum o4,

Proof. It suffices to prove (5.17) with = +, the other case =  follows analogously
by exchanging the role between the indices.
In view of (2.23), from (2.27) it follows immediately that

fQ hie?t - 8 (2N1 + N») 1

+
€1 , ;
T 4 [, h2e2m’ T 3 Jo haem

(5.18)
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while,
+ 8 4
€2 > - > ,
3 (fgz hoev2 + €1 o h1hzew1+w2) 3 max{ [, hoev2, [o hahoevitvz]
(5.19)

where we have used thaftfes 1 (see Remark 2.4).
In casef, hoe"2 > [, hihpe"112, by (2.37) we can use Lemma 2.3 (iii), (5.18),
(5.19) and the Moser—Trudinger inequality (3.4), to derive

+ 1 2 2 3
Sy (wi, w2) = S [Vwall” + [Vwz||" + | VwiVwz | + 74
Q

4 4
— 2Ny + No) In/ hiet — X 2Ny + Ny) In/ hoe?
3 Q 3 Q

— 47 (N1 + No)In, —C

1 1 2N1+ N2 2 (5.20)
= (1— - T) Vs
1 € 2N>+ Ng 2
-1-=-- \%
+3( > 7 ) [Vwa|
3

+ 34— 4m (N1 + No)Ini — €

for everye > 0 andC > 0 independent of. SinceN1 + N> = 1, as in Proposition 5.2,
we can certainly make a choiceof> 0 in (5.20) in order to insure (5.17).

Now suppose thaf, 72€"2 < [, h1h2€"17"2, proceeding as above, in this case we
get

1 3
JE (w1, wp) > 3 <||Vw1||2 + [IVwa||? + / Vw1Vw2> + 34— 4T (N1 + No)Ini
Q

4 4
_ §(2N1+N2)|n/ hlewl—?n(ZNz-l—Nl) |n/ hlhzewﬁﬂ)z_c
« Q

1 (2N1+ N2)
= = (1wl + 1wl + 1V + Vwg|?) - =2 =2 Vw2
2N2 + N 3
- %nvm + Vwo||? + Zk — 47 (N1 +No)Inx—C
1 3
= o (1Vwal? + 1 Vwa)?) + 33— 4rina - C.

(5.21)

providedN; + Np = 1.

In any case we get the desired estimate (5.17). 'mjhis coercive on4, . Since it
is weakly lower semicontinuous on the weakly closed4gtwe immediately conclude
thatJ* attains its infimum omd;. O

Remark 5.8By similar considerations to those of Remark 5.4, we can assert that, in
fact, the functional/;*, x = £ or F, is bounded below and attains its infimum dn

for all integersN; and N». However, we need to restrict to the cagge+ N, = 1 in
order to insure a sharp form of estimate (5.17) (see (5.36) below), which is crucial for
the existence of a minimizer in theterior of A, .
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Let+ = + or  and denote byw? ,, w3 ,) € A, @ minimum ofJ;* in A;, namely
J(w, w2,) = inf 4, J. Define

* ook k0K *

vy, = wyy +cg(wy,, wy,) (5.22)

* ook % (0o * :
Vg, = Wa, + (W, w3 ),

* = & Or F.

Toshowthatwy ;, w3 ;) liesin the interior o4, and hence thavy ; , v7 ;) defines
a (weak) solution of (2.10), we prove the following preliminary result which holds for
any choice ofV1, N2 € N.

Lemma5.9. () Let(vi;,.v5;) be given by5.22) then

/helA 1
— —.
o 2

(i) Let(v],,v3,) be given by5.22) then

/hzeﬂ — 1.
Q 2

Proof. By symmetry, we only need to establlsh (|)
As in the proof of Lemma 3.3, let} = ¢, + w?

_ with &t = [, v} and [ w! =0
be the solution of

w

Av = pe" e — 1) + 4 Ny
veHYQ)
satisfyingw® — —ug pointwise a.e. i and

he¥i 1, inLP(Q), Vp > 1, (5.23)

asu — +oo (see [34, Proposition 3.1]).
Observe that, from (2.27) and (2.23), we have

w1 2 h2e2wl
ec*f Byt > (Jo 12eeZu))1 1+J 132 (21;/;4-1\’2) Johi 2)
o el Uahie)") (6 5
1 (/g hlewl)z 8
> EW - 37(2N1+N2)-

Recalling (5.23) and Lemma 2.3 (iii), we find > 0 sufficiently large andg > 0
such that for any > 0 there exisft. > 0 with the property tha(uDL, 0) € A, and

ci( 1 0)/ -1 1 87
e? h1€"ne > = —e — — (2N1 + N»),
. 187 = 5 —€ 3)\( 1+ N2)
ecét(wie’o)/‘hzzc_o’
Q

for everya > Ao.

(5.25)
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Consequently,

_ 1 1 ¢
JE (wi 0) < §||Vw11LE 1%+ A (1 -7+ §> +0(ny), asi— +oo. (5.26)

On the other hand, we have

A . A
J;‘E (win, w2,) > > <1— e‘li/ hlew“> + > +0(nx), asi— +oo. (5.27)
Q

Therefore,

A A
on;'E(w“,wu)—Jf@l ,0)3— 1—ecli/hlew1’)‘ +2
3 y Me 2 Q 2

from which we derive

1
lim sup (§ — e”li/ hlewlfA) <€, Ve>D0.
Q

A—400

At this point, taking into account Lemma 2.3 (iii), we conclude
+ 1
/ h1€’tr — = asi — 4o0. O
Q 2

Remark 5.10Putting together (2.35) and (5.24), we have that necessarily

(/o hlew“)z
o

Using Lemma 5.9, we derive:

— 1, asir — +oo. (5.28)

Proposition 5.11. (i) If N1 = 0and N2 = 1then, forx > 0 sufficiently large,

inf  JEwi,wp) > inf I (wi, wo). 5.29
(wa,w2)€dA; i (wn,w2) (w1, w2)eA; » (w1, w2) ( )

(i) If Ny =1andN> = 0then, forr > 0 sufficiently large,

inf JF (w1, wp) > inf LT (wq, wy). 5 30
(w1, w2)€d.A, 3 (w1, w2) (wr.wp)e A, (w1, w2) ( )

Proof. Again by symmetry we only need to establish (i). Let us supposé&idhat, w. )
satisfies/* (wy 5, wz3) = inf 4, J* and(wy s, w2,;) € 3.A;. In view of Remark 5.10
necessarily

2

2

hpev2i ) = SN2+ N [0 us; (5.31)
Q A o

As a consequence of (5.31) we get

/ h2e?2: — 400 asi — +00
Q
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and, by the Moser—Trudinger inequality (3.4), necessarily

[Vwo || = 400 asi — +oo. (5.32)

Now, note that ifN1 = 0 thenu% = 0, and in particulaki = g6 = 1. By explicit
calculation we see that,

eT00 % +0 <}> :

A
1 (5.33)
+
200 = o <X> ,  asi — +00.
Therefore, in view of (2.14) and (5.33) we get
A A
JE0.0 = 2 (1-e109) 4 > (1 ef§‘<°~°>/ he) = ina+ C
2 2 o 3 (5.34)

3 8m
< Z’\_?IMJFC asi — +oo.

for a suitable constan® > 0, independent of.
On the other hand, by Lemma 5.9, fosufficiently large, we can insure that,

(w1, wpy) > —In/ e’lr —[n4. (5.35)
Q

Thus, using the same arguments of Proposition 5.7, by Lemma 2.3 (jii) we find constants
a, C > 0 (independent of) such that

A +
s , > v 24|V 2 +—/ 1—e1eht?
(s was) e (19w +19u20%) + 5 | ( )
A E s 8
+ E /;2 (1— e‘2 hze 2)‘> - ?In)\. - C (536)

3 8
2 2\ . 2, _°T .
> (Vw2 + 1Vw,1?) + - ini-c.
Combining (5.34) and (5.36) we conclude that,
0> Ji (wap, w23) — J;5(0,0) = a(Vwills + Vw2, 13) — C, (5.37)
and, in view of (5.32), we reach a contradictiort

To conclude we determine the asymptotic behavioi, as +oo, of the family of
solutions given by (5.22).

Proposition 5.12. Let (vy ;, v3 ;) be given by(5.22)with x = & or . We have
o (Casex = &4): cit(wf)\, wix) — In %, czi(wli’)\, wfk) — —00 wli’k — 0 strongly

in #1(Q) asx — +o0; along any sequences, — +oo, there exists a subsequence
(still denoted by.,,) such thatwgfkn — wx strongly in71(2) with w satisfying:

hoe” 1 .
—Aw:47r< 2 — ) in Q

fohoe” 19l (5.38)
fQ w = 0.
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In particular,

v 1 vt R 1
e'tr — > and e2» — 0, strongly inH*(2), asi — +oo. (5.39)

e (casex = F): cf (wf,, wF,) - —oo, ¢ (wf,,w3,) — In %, w3, — 0strongly
in H1(Q) asx — +o0; along any sequences, — +o0, there exists a subsequence
(still denoted by,,) such thatwa — wx Strongly in#1(2) with wx satisfying:

h1e” 1 .
—Aw=47t< L ) in Q

Johier 19| (5.40)
Jow=0.

In particular,
1 .
eir 0 and €%+ — > strongly inH1(Q), asi — +oo. (5.41)

Proof. As usual we only need to prove the result in case +, the other case follows
by exchanging the role between the indices. Recall that in thisXEase 0, and hence
h1 =1, N> = 1. By (5.37) we have

Vw5 115 < C. (5.42)
for suitableC > 0 (independent of) andi = 1, 2. Consequently,

1< f helis <C (i=12) (5.43)
Q

with C > 0 independent of.

Thus, by setting;’, = ¢;"(wy,. w5;), we have:

8t (2No+ N 1
x, = Sr(@Nat+ M), (—) (5.44)
and
1 [ e ax 1
+ Q )
=Zd2° L (Ny 4 No)(Np — ON = 5.45
€1 2/ ezwa+9k( 1+ N2)(N2 DJFO(A) (5.45)
Q
asi — +o0.

From (5.43) we derive immediately thazk — —00, ask — +o0.
Furthermore, in view of (5.28) and (5.42), along any sequence> +oo, we find
a subsequence (still denoted k) such that,

wi, = wy, — 0weaklyinH(<),
strongly inL?(€2), p > 1 and pointwise a.e. if.
Analogously, for suitablev.. € #1(€2), we may claim that,

wo, = wZi,)\,, — wy weakly inH(Q),
strongly inL?(2), p > 1 and pointwise a.e. if2,
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Note in particular that'et» — 1, 20 — ¥+ in L’(Q),V p > 1.
Thus, using (2.10) (with2| = 1) together with (5.44)—(5.45), we find:

+ +
—A(w1, + 2w2,) = 3r,he27e"21 (1 + € lne“l" 2e2ngv2n) — A7 (2No> + Nq)
hoe"2n 1

= 47 (2N; N-: _—
7T (2N2 + 1)(f9h2ew2ﬂ 2l

)+¢n in Q

with c =t i, = 1, 2) and¢g,, — 0 strongly inL?(2),V p > 1.
Consequently, by elliptic regularity theory, we obtain (after taking a subsequence if
necessary)

1 .
SWin+ W2 = Wi stronglyin C1%(Q), « € (0,1) (5.46)

andw4 satisfies:

—Aw = 21 (2N2 + N1) (

Jow=0

with N2 = 1 andN1 = 0, namely (5.40).
On the other hand, if we insert (5.44)-(5.45) into the first equation in (2.10) (with
N1 =0andN2 = 1) we get:

hoe¥ 1 .
2 —) in

[ohe” 19l (5.47)

Awiy =My

n 2 n n W1
(IQ W, ) ( e2w1, ewi, ) 8 I’lzewz (2 _ ewl,,,)

fQ ezwl,n fQ ezwl,n - ./Q ewl,n E ]SZ hzewZn

8 .
+ gewm @€ — 1)+, inQ

with ¢, — 0 strongly inL”(2),Vp > 1.
Therefore,

(f ewl,n )2 ezwl,n ewl,n
v 2_ _, Mo / _ — / , (5.48
Il wl,n”z n fQ 2wl o (fQ 2uin /-Q ewl,n) W1, n o fnwl,n ( )

with f, — % (14 5255) in LP(@),¥ p = 1.
dWin

Note that the function(¢) := [, A

w1, iSincreasing in € R, since

efufl
wl,, etwln
B (1) = )2
( ) f éwln 1n (/ f éwln 1’ )
etwl,n etwl,n

(w1, — win)?>0 VieR.

Q Jo €Mt a [oer

Thus,

ezwl n W1 n
/ (f W1, - € o w1, = h(2) —h(1) >0,
Q 8
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and from (5.48) we derive

IVwi,llz2 — 0, asn — +4o0; (5.49)

92w1,n ewl,n
A - 0 as . 5.50
S (o e )0 o 650

Taking into account (5.46), we can also assert that,
wa, — w  strongly inH1(€).

Since (5.49) holds along any sequenge— +oco0, we may conclude tha’u,;fA -0
strongly in#1(2) asi — 4oo.

Finally, from (5.45) we gety, — In3, asi — +oo.

This concludes the proof.o

Clearly, Theorem 2.2 it is now an immediate consequence of Corollary 5.6 and
Proposition 5.12.

Final remarks Itis an interesting open problem to know if Theorem 2.2 remains valid
without the restrictionvVy + N = 1.

To test whether or not our approach could be generalized for a more general choice
of N1, N2 € N, we could start by investigating the existence question for problems
(5.13) and (5.47). While problem (5.47) has appeared already in abelian theory, see
[34], and it has been studied in [32] and [11], the elliptic system (5.13) is a novelty of
the SU (3)-theory and it is certainly worthwhile investigating.

AcknowledgementsThe authors wish to express their gratitude to G. Dunne for useful comments.
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