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Abstract: We study the spectral properties of one-dimensional whole-line Schrödinger
operators, especially those with Sturmian potentials. Building upon the Jitomirskaya–
Last extension of the Gilbert–Pearson theory of subordinacy, we demonstrate how to
establishα- continuity of a whole-line operator from power-law bounds on the solutions
on a half-line. However, we require that these bounds hold uniformly in the boundary
condition.

We are able to prove these bounds for Sturmian potentials with rotation numbers
of bounded density and arbitrary coupling constant. From this we establish purelyα-
continuous spectrum uniformly for all phases.

Our analysis also permits us to prove that the point spectrum is empty forall Sturmian
potentials.

1. Introduction

In this article we are interested in spectral properties of discrete one-dimensional Schrö-
dinger operators on the whole line, that is, operatorsH in `2(Z) of the form

[Hu](n) = u(n+ 1)+ u(n− 1)+ V (n)u(n) (1)

with arbitrary potentialV : Z → R.
Among the most powerful tools that have been developed for the investigation of

the spectral type of such operators are those which establish a correspondence to the
behavior of the solutions of the associated difference equation

u(n+ 1)+ u(n− 1)+ V (n)u(n) = Eu(n). (2)

In what follows we shall always assume a solution of (2) to be normalized in the sense
that

|u(0)|2 + |u(1)|2 = 1. (3)
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An elementary observation is that a support of the pure point part of a spectral measure
associated toH is given by

Mpp = {E ∈ R : ∃ solutionu of (2) which is`2 at both ± ∞}.
The following notion, introduced by Gilbert and Pearson [7], allows an analogous de-
scription of a support of the singular part. Namely, a solutionuof (2) is called subordinate
at+∞ if

lim
L→∞

‖u‖L
‖v‖L = 0 (4)

for any solutionv of (2) which is linearly independent ofu. Here‖ ·‖L denotes the norm
of the solution over a lattice interval of lengthL, that is,

‖u‖2
L =

bLc∑
n=0

∣∣u(n)∣∣2 + (L− bLc)∣∣u(bLc + 1)
∣∣2. (5)

Subordinacy of a solutionu at−∞ is defined analogously. Gilbert [6] then proves that

Msing = {E ∈ R : ∃ solutionu of (2) which is subordinate at both± ∞}
is a support of the singular part of a spectral measure associated toH . Hence the stan-
dard decomposition of a spectral measure into its pure point, singular continuous, and
absolutely continuous part can be investigated by studying solutions of (2). Recall that
by the RAGE theorem, each of these standard spectral parts is related to certain quantum
dynamical behavior.

Remark 1.Note that these support descriptions require a certain condition to hold at
both “endpoints”+∞ and−∞. That is, if one can show that for some energyE, there
is an endpoint such that no solution of (2) satisfies this condition (square-summability
and subordinacy, respectively) at this endpoint, then this energy does not belong to the
respective support. In this sense the “more continuous half-line dominates” and this
picture is consistent with heuristic quantum evolution in one dimension.

Recently, further decompositions of spectral measures have been proposed by Last
[18]. These decompositions are motivated by the goal of answering more delicate ques-
tions arising in the study of quantum dynamics in the presence of purely singular contin-
uous spectral measures. A finite positive measured3 is said to be uniformlyα-Hölder
continuous (or UαH) if the distribution function

3(E) =
∫ E

−∞
d3

is uniformlyα-Hölder continuous.A measure is said to beα-continuous if it is absolutely
continuous with respect to a UαH measure. This definition ofα-continuity is equivalent
to the more common “µ(S) = 0 for all setsS of zeroα-Hausdorff measure” [22]. On the
other hand, a measure is calledα-singular if it is supported on a set of zeroα-Hausdorff
measure. Last discusses the decomposition of a measure into itsα-continuous and its
α-singular part and he obtains explicit quantum dynamical bounds in the case where
theα-continuous part is non-trivial. Moreover, this decomposition is further motivated
as there is apparently a very nice interpolation of the Gilbert–Pearson results. Namely,
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Jitomirskaya and Last introduce in [11] the following notion:A solutionu of (2) is called
α-subordinate at+∞ if, settingβ = α

2−α ,

lim inf
L→∞

‖u‖L
‖v‖βL

= 0 (6)

for any solutionv of (2) which is linearly independent ofu. Again,α-subordinacy at
−∞ is defined analogously. In [12] these authors establish this interpolation for half-
line operators. The natural whole-line correspondence accompanying the half-line result
would be the following interpolation of the Gilbert result.

Conjecture.A support of theα-singular part of a spectral measure associated toH is
given by

Mα-sing = {E ∈ R : ∃ sol.u of (2) which isα-subordinate at both± ∞}.
We shall obtain, in Theorem 1 below, a restricted version of this statement. In view

of Remark 1 the goal is to establish the following implication: Pick some endpoint. If
for all energies in some set6, all solutions of (2) are notα-subordinate at the chosen
endpoint, then theα-singular part of a spectral measure associated toH gives zero weight
to6. There is a well-known way to prove non-existence ofα-subordinate solutions for
some fixed energyE and a fixed endpoint which has been exploited in [2,13]. Namely,
power-law bounds of the form

C1L
γ1 ≤ ‖u‖L ≤ C2L

γ2

for all normalized solutionsu of (2) imply non-existence ofα-subordinate solutions at
+∞, whereα = 2γ1

γ1+γ2
; similarly at −∞. The restriction we have to impose on the

conjecture in order to establish the desired connection is twofold. Firstly, we require
that non-existence ofα-subordinate solutions is established by this power-law criterion.
Secondly, we need that the bounds are uniform in the solutions corresponding to a fixed
energy. Under these assumptions one may conclude purelyα-continuous spectrum on6.

Theorem 1.Let6 be a bounded set. Suppose there are constantsγ1, γ2 such that for
eachE ∈ 6, every normalized solution of(2) obeys the estimate

C1(E)L
γ1 ≤ ‖u‖L ≤ C2(E)L

γ2 (7)

for L > 0 sufficiently large and suitable constantsC1(E), C2(E). Let α = 2γ1/

(γ1 + γ2). ThenH has purelyα-continuous spectrum on6, that is, for anyφ ∈ `2,
the spectral measure for the pair(H, φ) is purelyα-continuous on6. Moreover, if the
constantsC1(E), C2(E) can be chosen independently ofE ∈ 6, then for anyφ ∈ `2

of compact support, the spectral measure for the pair(H, φ) is uniformlyα-Hölder
continuous on6.

Remark 2.a) We have stated the theorem in “right half-line” form. Of course, there is
an analogous “left half-line” version.

b) In particular, the intuition embodied in Remark 1 interpolates. For example, if one
is able to establish uniform power-law bounds on the right half-line, then the resulting
α-continuity is independent of the potential on the left half-line. In this sense the more
continuous half-line dominates and bounds the dimensionality of the whole-line problem
from below. Note, however, that the naive rule “dim(whole-line) = max(dim(left half-
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line), dim right half-line))” is wrong. Indeed, using the analysis of sparse potentials
by Jitomirskaya and Last in [12], one may construct examples where the two half-line
problems have zero-dimensional spectrum (in a certain energy region) and the whole-line
problem has one-dimensional spectrum.

c) By combining the results of [12] and the ideas we present to prove Theorem 1,
one can prove analogs of this theorem for Jacobi matrices and Schrödinger operators in
L2(R).

Our application of Theorem 1 is to Schrödinger operators with Sturmian potentials.
That is, we shall consider the operators

[Hλ,θ,βu](n) = u(n+ 1)+ u(n− 1)+ λvθ,β(n)u(n), (8)

acting in`2(Z), along with the corresponding difference equation

(Hλ,θ,β − E)u = 0. (9)

Here
vθ,β(n) = χ[1−θ,1)

(
nθ + β mod 1

)
,

with coupling constantλ ∈ R \ {0}, irrational rotation numberθ ∈ (0,1), and phase
β ∈ [0,1).

The family of operators(Hλ,θ,β) is commonly agreed to model a one-dimensional
quasicrystal. It provides a natural generalization of the Fibonacci family of operators

which corresponds to rotation numberθ = θF =
√

5−1
2 , the golden mean.This model was

introduced independently by two groups in the early 1980’s [16,21] and has been studied
extensively since. The review articles [3,25] recount the history of generalizations of
the basic Fibonacci model and the results obtained for each of them.

Before stating the result, let us recall some basic notions from continued fraction
expansion theory; we mention [15,17] as general references.

Givenθ ∈ (0,1) irrational, we have an expansion

θ = 1

a1 + 1

a2 + 1

a3 + · · ·
with uniquely determinedan ∈ N. The associated rational approximantspn

qn
are defined

by

p0 = 0, p1 = 1, pn = anpn−1 + pn−2,

q0 = 1, q1 = a1, qn = anqn−1 + qn−2.

The numberθ is said to have bounded density if

lim sup
n→∞

1

n

n∑
i=1

ai < ∞.

The set of bounded density numbers is uncountable but has Lebesgue measure zero.
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Theorem 2.Let θ be a bounded density number. Then for everyλ, there existsα =
α(λ, θ) > 0 such that for everyβ and everyφ ∈ `2(Z) of compact support, the spectral
measure for the pair(Hλ,θ,β, φ) is uniformlyα-Hölder continuous. In particular,Hλ,θ,β
has purelyα-continuous spectrum.

In the course of the proof of Theorem 2 we will establish solution estimates which
allow us to exclude eigenvalues forall parameter values.

Theorem 3.For everyλ, θ, β, the operatorHλ,θ,β has empty point spectrum.

Remark 3.This is the final result on a question with a long history. Building upon Süt˝o
[23,24], the paper [1] by Bellissard et al. proves zero-measure spectrum and hence ab-
sence of absolutely continuous spectrum for all parameter values. Moreover, the authors
of [1] implicitly exclude eigenvalues forβ = 0 and arbitraryλ, α. Absence of eigenval-
ues forβ 6= 0 is listed as an open problem. Various partial results have been obtained
since; see [4] for detailed remarks on the history of the problem and the first result
that holds uniformly in the phase. The main improvement in the present article will be
discussed in Sect. 4.

Combining Theorem 3 with the results from [1] we obtain a complete identification
of the spectral type.

Corollary 11. For everyλ, θ, β, the operatorHλ,θ,β has purely singular continuous
zero- measure spectrum.

The organization of this article is as follows. Section 2 discusses the transition from
half-line eigenfunction estimates to spectral properties of the whole-line operator and so
proves Theorem 1. In Sect. 3 we present some crucial properties of Sturmian potentials.
We recall in particular the unique decomposition property and the uniform bounds on the
traces of certain transfer matrices. Section 4 provides a study of the scaling properties of
solutions to (9) with respect to the decomposition of the potentials on various levels and
shows how Theorem 3 follows from these scaling properties. Uniform upper and lower
power-law bounds on‖u‖L for certain rotation numbers are established in Sect. 4. In
Sect. 5 this information is then combined with Theorem 1 to prove Theorem 2.

2. Subordinacy Theory

In this section we demonstrate how the solution estimates discussed in the introduction
may be used to proveα-continuity of spectral measures for someα > 0. Although we
shall only be applying Theorem 1 to Sturmian potentials, we believe the result holds a
broader interest. Moreover, it will cost us nothing in clarity to treat the operator

[Hu](n) = u(n+ 1)+ u(n− 1)+ V (n)u(n)

with arbitrary potentialV :Z → R. To each such whole-line operator we associate two
half-line operators,H+ = P ∗+HP+ andH− = P ∗−HP−, whereP± denote the inclusions
P+ :`2({1,2, . . . }) ↪→ `2(Z) andP− :`2({0,−1,−2, . . . }) ↪→ `2(Z).

The spectral properties ofH,H± are typically studied via the Weylm-functions. For
eachz ∈ C \ R we defineψ±(n; z) to be the unique solutions to

Hψ± = zψ±, ψ±(0; z) = 1 and
∞∑
n=0

|ψ±(±n; z)|2 < ∞.
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With this notation we can define the Weyl functions by

m+(z) = 〈δ1|(H+ − z)−1δ1〉 = −ψ+(1; z)/ψ+(0; z),
m−(z) = 〈δ0|(H− − z)−1δ0〉 = −ψ−(0; z)/ψ−(1; z)

for eachz ∈ C \ R. Here and elsewhere,δn denotes the vector iǹ2 supported atn with
δn(n) = 1. For the whole-line problem, them-function role is played by the 2×2 matrix
M(z): [

a
b

]†
M(z)

[
a
b

] = 〈
(aδ0 + bδ1)

∣∣(H − z)−1(aδ0 + bδ1)
〉
.

Or, more explicitly,

M = 1

ψ+(1)ψ−(0)− ψ+(0)ψ−(1)

[
ψ+(0)ψ−(0) ψ+(1)ψ−(0)
ψ+(1)ψ−(0) ψ+(1)ψ−(1)

]

= 1

1 −m+m−

[
m− −m+m−

−m+m− m+
]

with z dependence suppressed. We definem(z) = tr
(
M(z)

)
, that is, the trace ofM.

These definitions relate them-functions to resolvents and hence to spectral measures.
By pursuing these relations, one finds that:

m±(z) =
∫

1

t − z
dρ±(t),

m(z) =
∫

1

t − z
d3(t), (10)

wheredρ+, dρ− are the spectral measures for the pairs(H+, δ1), (H−, δ0), respec-
tively, andd3 is the sum of the spectral measures for the pairs(H, δ0) and(H, δ1). An
immediate consequence of these representations is that each of them-functions maps
C

+ = {x + iy : y > 0} to itself.
The pair of vectors{δ0, δ1} is cyclic forH ; indeed, ifφ is supported in{−N, . . . , N ,

N + 1}, then there exist polynomialsP0, P1 of degree not exceedingN such thatφ =
P0(H)δ0 +P1(H)δ1. This may be proved readily, by induction, once it is observed that
φ(−N), φ(N + 1) uniquely determine the leading coefficients ofP0, P1, respectively.

Our immediate goal is to prove thatd3 is uniformlyα- Hölder continuous. This will
follow quickly from

Theorem 4.Fix E ∈ R. Suppose every solution of(H − E)u = 0 with |u(0)|2 +
|u(1)|2 = 1 obeys the estimate

C1L
γ1 ≤ ‖u‖L ≤ C2L

γ2 (11)

for L > 0 sufficiently large. Then

sup
ϕ

∣∣∣∣sin(ϕ)+ cos(ϕ)m+(E + iε)

cos(ϕ)− sin(ϕ)m+(E + iε)

∣∣∣∣ ≤ C3ε
α−1, (12)

whereα = 2γ1/(γ1 + γ2).

Proof. This result lies within the Gilbert–Pearson theory of subordinacy [6,7,14]. A
concise proof is available in [11,12]. In this context, theϕ above corresponds to the
choice of boundary conditions.ut
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Corollary 21. Given a Borel set6, suppose that the estimate(11) holds for everyE ∈
σ(H) withC1, C2 independent ofE. Then, given any functionm− :C+ → C

+, and any
E ∈ 6,

|m(E + iε)| =
∣∣∣∣ m

+(E + iε)+m−(E + iε)

1 −m+(E + iε)m−(E + iε)

∣∣∣∣ ≤ C3 ε
α−1 (13)

for all ε > 0. Consequently,3(E) is uniformlyα-Hölder continuous at all pointsE ∈ 6.
In particular, d3 is α-continuous on6.

Proof. Fix E ∈ 6 and ε > 0. Then, by introducing new variablesz = e2iϕ and
µ = (m+ − i)/(m+ + i), we may rewrite (12) as

sup
|z|=1

∣∣∣∣1 + µz

1 − µz

∣∣∣∣ ≤ C3ε
α−1.

Note that Im(m+) > 0 implies|µ| < 1 and so(1 + µz)/(1 − µz) defines an analytic
function on{z : |z| ≤ 1}. The pointz = (i−m−)/(i+m−) lies inside the unit disk since
Im(m−) > 0. The estimate (13) now follows from the maximum modulus principle and
a few simple manipulations. This estimate and the representation (10) provide

3
([E − ε, E + ε]) ≤ 2εIm

(
m(E + iε)

) ≤ 2C3 ε
α for all E ∈ 6, ε > 0,

from which3(E) is uniformlyα-Hölder continuous on6. ut
Remark 4.If we permitC1, C2 to depend onE, the only consequence is that nowC3
depends onE and so3need not beuniformlyHölder continuous. However,α- continuity
is still guaranteed.

Proof of Theorem 1.Given φ ∈ `2(Z) with compact support, the remarks preceding
Theorem 4 show that the spectral measure forφ is bounded byf (E)d3(E) for some
polynomially bounded functionf (E). If C1, C2 are independent ofE, then, by the above
corollary,d3 is uniformlyα-Hölder continuous, and as6 is bounded, this implies that
f d3 is also UαH.

In the case thatC1, C2 are permitted to depend onE, the remark above shows that
d3 isα-continuous. Given anyφ ∈ `2, its spectral measure may be written asf d3 and
so must beα-continuous. ut

3. Basic Properties of Sturmian Potentials

In this section we recall some basic properties of Sturmian potentials. For further infor-
mation we refer the reader to [1,3,4,19,20]. We focus, in particular, on the decompo-
sition of Sturmian potentials into canonical words, which obey recursive relations, and
on known results on the traces of the transfer matrices associated to these words.

Fix some rotation number,θ , and letan denote the coefficients in its continued fraction
expansion. Define the wordssn over the alphabetA = {0,1} by

s−1 = 1, s0 = 0, s1 = s
a1−1
0 s−1, sn = s

an
n−1sn−2, n ≥ 2. (14)

In particular, the wordsn has lengthqn for eachn ≥ 0. By definition,sn−1 is a prefix of
sn for eachn ≥ 2. For later use, we recall the following elementary formula [4].
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Proposition 31.For eachn ≥ 2, snsn+1 = sn+1s
an−1
n−1 sn−2sn−1.

Thus, the wordsnsn+1 hassn+1 as a prefix. Note that the dependence ofan, pn, qn, sn
on θ is left implicit. Fix coupling constantλ and energyE; then, for eachw =
w1 . . . wn ∈ An, we define the transfer matrixM(λ,E,w) by

M(λ,E,w) =
[
E − λwn −1

1 0

]
× · · · ×

[
E − λw1 −1

1 0

]
. (15)

If u is a solution to (9), we have

U(n+ 1) = M
(
λ,E, vθ,β(1) . . . vθ,β(n)

)
U(1),

where

U(n) =
[
u(n)

u(n− 1)

]
.

When studying the power-law behavior of‖u‖L, one can investigate as well the behavior
of

‖U‖L =

 bLc∑
n=1

∥∥U(n)∥∥2 + (L− bLc)∥∥U(bLc + 1)
∥∥2




1
2

, (16)

where
‖U(n)‖2 = |u(n)|2 + |u(n− 1)|2,

since

1
2‖U‖2

L ≤ ‖u‖2
L ≤ ‖U‖2

L. (17)

Now, the spectrum ofHλ,θ,β is independent ofβ [1] and can thus be denoted by6λ,θ .
Let us define

xn = tr
(
M(λ,E, sn−1)

)
,

yn = tr
(
M(λ,E, sn)

)
,

zn = tr
(
M(λ,E, snsn−1)

)
,

with dependence onλ andE suppressed.

Proposition 32.For everyλ, there existsCλ ∈ (1,∞) such that for every irrationalθ ,
everyE ∈ 6λ,θ , and everyn ∈ N, we have

max{|xn|, |yn|, |zn|} ≤ Cλ.

Proof. This result follows implicitly from [1]. It can be derived from the analysis in [1]
by combining their bound on|xn| and|yn| with the fact that the traces obey the Fricke-
Vogt invariant

x2
n + y2

n + z2
n − xnynzn = λ2 + 4,

which was also shown in [1]. ut
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The wordssn are now related to the sequencesvθ,β in the following way. For each
pair (θ, n), every sequencevθ,β may be partitioned into words such that each word is
eithersn andsn−1. This uniform combinatorial property, together with the uniform trace
bounds given in Proposition 3.2, lies at the heart of the results contained in this paper
and its precursors [4,5]. Let us make this property explicit.

Definition 33. Let n ∈ N0 be given. An(n, θ)-partition of a functionf : Z −→ {0,1}
is a sequence of pairs(Ij , zj ), j ∈ Z such that:

i) the setsIj ⊂ Z partitionZ;
ii) 1 ∈ I0;
iii) each blockzj belongs to{sn, sn−1}; and
iv) the restriction off to Ij is zj . That is,fdj fdj+1 . . . fdj+1−1 = zj .

Notice thatdj is defined implicitly to be the left-hand endpoint of the intervalIj .

We will suppress the dependence onθ if it is understood to whichθ we refer. In
particular, we will writen-partition instead of(n, θ)-partition.The unique decomposition
property is now given in the following lemma which was proved in [4].

Lemma 34.For everyn ∈ N0 and everyβ ∈ [0,1), there exists a uniquen-partition
(Ij , zj ) of vθ,β . Moreover, ifzj = sn−1, thenzj−1 = zj+1 = sn. If zj = sn, then
there is an intervalI = {d, d + 1, . . . , d + l − 1} ⊂ Z containingj and of length
l ∈ {an+1, an+1 + 1} such thatzi = sn for all i ∈ I andzd−1 = zd+l = sn−1.

We finish this section with a short discussion of symmetry properties of the words
vθ,β . This will show that the considerations below, based on a study of the operators
Hλ,θ,β on the right half-line, could equally well be based on a study of the operators on
the left half-line. This particularly implies that for all parameter values, given an energy
in the spectrum, both at+∞ and−∞ every solution of (9) does not tend to zero.

For a finite wordw = w1 . . . wn over {0,1}, define the reverse wordwR by wR =
wn . . . w1 and for a wordw ∈ {0,1}Z, define the reverse wordwR by wR = v with
vn = w−n for n ∈ Z. It is not hard to show that everyvθ,β allows a uniquen-R-
partition [19]. Here, ann-R-partition is defined by replacingsn−1 andsn by sRn−1 and
sRn , respectively, in the definition ofn-partition. Mimicking the proof of Lemma 5.1
in [5] with the norm replaced by the trace, immediately givesxRn = xn, yRn = yn
andzRn = zn. Here,xRn , y

R
n andzRn are defined by replacingsn−1, sn andsnsn−1 with

their reverse words in the definition ofxn, yn andzn, respectively. Thus, the analog of
Proposition 3.2 holds forxRn , y

R
n , z

R
n (in fact, this can also be established by remarking

that the underlying trace map system is essentially unchanged by passing fromsn to sRn ).
Then-R-partitions and the bound on the traces allow one to study the operators on the
left half-line in exactly the same way as the operators on the right half-line are studied in
the following two sections. Alternatively, it is possible to show that the mapR leaves the
set{vθ,β : β ∈ [0,1)} ⊂ {0,1}Z invariant, where the bar denotes closure with respect
to product topology [19]. This could also be used to show that the two half-lines are
equally well accessible.

4. Scaling Behavior of Solutions

In this section, we use the trace bounds and the partition lemma to study the growth of
‖U‖L for energies in the spectrum and normalized solutions to (9). For our purposes it
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will be sufficient to consider this quantity only forL = q8n, n ∈ N. In Lemma 4.1 below
it is shown that this growth has a lower bound which is exponential inn. In particular,
this will imply absence of eigenvalues as claimed in Theorem 3 and it will also be used
in our proof of power-law (inL) lower bounds for certain rotation numbers which will
be given in the next section.

Lemma 41.Let λ, θ, β be arbitrary,E ∈ 6λ,θ , and letu be a normalized solution to
(9). Then, for everyn ≥ 8, the inequality

‖U‖qn ≥ Dλ‖U‖qn−8

holds, where
D2
λ = 1 + [ 1

2Cλ

]2
.

Proof of Theorem 3.It follows immediately from Lemma 4.1 that for all parameter
valuesλ, θ, β, the operatorHλ,θ,β has no eigenvalues.ut

Before giving the proof of Lemma 4.1, let us recall a basic definition: A wordw =
w1 . . . wn is conjugate to a wordv = v1 . . . vn if for some i ∈ {1, . . . , n}, we have
w1 . . . wn = vi . . . vnv1 . . . vi−1, that is, ifw is obtained fromv by a cyclic permutation
of its symbols.

To prove Lemma 4.1 we shall employ the mass-reproduction technique that was used
in [2]. This technique is based on the two-block version of the Gordon argument from
[8]. More explicitly we have

Lemma 42.Fixλ, θ, β. Suppose thatvθ,β(j) . . . vθ,β(j+2k−1) is conjugate to(sn−1)
2,

(sn)
2, or (sn−1sn)

2 for somen ∈ N, l ≤ k, and everyj ∈ {1, . . . , l}. LetE ∈ 6λ,θ .
Then every normalized solutionu to (9) satisfies

‖U‖l+2k ≥ Dλ‖U‖l .
Proof. Consider somej ∈ {1, . . . , l}. By definition, we have

U(j + k) = M
(
λ,E, vθ,β(j) . . . vθ,β(j + k − 1)

)
U(j),

and U(j + 2k) = M
(
λ,E, vθ,β(j) . . . vθ,β(j + 2k − 1)

)
U(j).

Sincevθ,β(j) . . . vθ,β(j + 2k − 1) is conjugate to a square, it is itself a square, and

U(j + 2k) = [
M

(
λ,E, vθ,β(j) . . . vθ,β(j + k − 1)

)]2
U(j).

Hence, applying the Cayley–Hamilton theorem,

U(j + 2k)− tr
[
M

(
λ,E, vθ,β(j) . . . vθ,β(j + k − 1)

)]
U(j + k)+ U(j) = 0. (18)

Moreover, ∣∣tr[M(
λ,E, vθ,β(j) . . . vθ,β(j + k − 1)

)]∣∣ ≤ Cλ. (19)

Combining (18) and (19), we obtain

max
{‖U(j + k)‖, ‖U(j + 2k)‖} ≥ 1

2Cλ
‖U(j)‖ (20)
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for all 1 ≤ j ≤ l. We can therefore proceed as follows,

‖U‖2
l+2k =

l+2k∑
m=1

‖U(m)‖2

=
l∑

m=1

‖U(m)‖2 +
l+2k∑
m=l+1

‖U(m)‖2

≥
l∑

m=1

‖U(m)‖2 + [ 1
2Cλ

]2
l∑

m=1

‖U(m)‖2

=
(
1 + [ 1

2Cλ

]2
)
‖U‖2

l .

This proves the assertion.ut

Proof of Lemma 4.1.We make use of the information provided by Lemma 3.4 and exhibit
squares in the potentials which are suitable in the sense that they satisfy the assumption
of Lemma 4.2. In fact, we shall show

‖U‖2(qn+1+qn)+qn−1 ≥ Dλ‖U‖qn−4 (21)

for all λ, θ, β, allE ∈ 6λ,θ , all solutionsu, and alln ≥ 4. Sinceqn+4 ≥ 2(qn+1+qn)+
qn−1, this proves the assertion.

Fix λ, θ, β and somen ≥ 4 and consider then-partition ofvθ,β . Since we want to
exhibit squares close to the origin, we consider the following cases.

Case 1.z0 = sn−1. Applying (14) and Proposition 3.1, we see that this block is followed
by s2

n−1sn−4. We can therefore apply Lemma 4.2 withl = qn−4 andk = qn−1. This
yields (21) and we are done in this case.

Case 2.z0 = sn andz1 = sn. Proposition 3.1 yields that these two blocks are followed
by snsn−3. Lemma 4.2 now applies withl = qn−3 andk = qn.

Case 3.z0 = sn andz1 = sn−1. Let z′j label the blocks in the(n+ 1)-partition ofvθ,β .
By uniqueness of then-partition we therefore havez′0 = sn+1. Let us consider the
following subcases.

Case 3.1.z′1 = sn+1. Similarly to Case 2, this implies thatz′0z′1 is followed bysn+1sn−2
and hence Lemma 4.2 applies withl = qn−2 andk = qn+1.

Case 3.2.z′1 = sn. It follows thatz′2 = sn+1. Again we consider two subcases.
Case 3.2.1.z′3 = sn. Of course, this case can only occur ifan+2 = 1. We infer that
z′4 = sn+1. But this implies that we have squares conjugate tosnsn+1 and Lemma 4.2 is
applicable withl = qn−1 andk = qn + qn+1. Hence, (21) also holds in this case.
Case 3.2.2.z′3 = sn+1. Let us consider the consequences of this particular case for the
blocks in then- partition. We have

z0z1 . . . z2an+1+4 = snsn−1sns
an+1
n sn−1s

an+1
n sn−1. (22)

Sincesn is a prefix ofsn+1, this must be followed bysn. We therefore have the sequence
of blocks

snsn−1sns
an+1
n sn−1s

an+1
n sn−1sn,
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where the site 1∈ Z is contained in the leftmost block. Using Proposition 3.1 this can
be rewritten as

snsn−1sns
an+1
n sn−1s

an+1
n sns

an−1−1
n−2 sn−3sn−2,

which can as well be interpreted as

snsn−1sns
an+1
n sn−1sns

an+1
n s

an−1−1
n−2 sn−3sn−2.

Thus, Lemma 4.2 is applicable withl = qn−3 andk = qn+qn+1 which closes Case 3.2.2.

Between Cases 1, 2, and 3 we have covered all possible choices ofz0, z1. ut

Remark 5.While our analysis is similar in spirit to the analysis performed in [4], we want
to note here that we were able to improve upon essential aspects. Not only are we now
able to treat an arbitrary rotation numberθ ([4] had to exclude the case lim supan = 2),
we are also able to restrict our attention to one half-line which is of course crucial
since we are aiming at an application of Theorem 1. The improvement stems from our
considering the triple{sn−1, sn, sn−1sn} as being the set of “good” words. This allows
us to conclude as in Case 3.2.2 which is not possible when one is only working with the
pair {sn−1, sn} of “good” words as was done in [4].

5. Power-Law Upper and Lower Bounds on Solutions

In this section we provide power-law bounds for‖u‖L in the case where the rotation
numberθ has suitable number theoretic properties. Recall thatan denote the coefficients
in the continued fraction expansion ofθ andqn denote the denominators of the canonical
continued fraction approximants toθ .

Proposition 51.Letθ be such that for someB < ∞, qn ≤ Bn for everyn ∈ N. Then for
everyλ, there exist0 < γ1, C1 < ∞ such that for everyE ∈ 6λ,θ and everyβ, every
normalized solutionu of (9) obeys

‖u‖L ≥ C1L
γ1 (23)

for L sufficiently large.

Remark 6.The set ofθ ’s obeying the assumption of Proposition 5.1 has full Lebesgue
measure [15].

Proof. The bound (23) can be derived from the exponential lower bound on‖U‖q8n ,
n ∈ N, given the exponential upper bound onqn, n ∈ N. Lemma 4.1 established the
power-law bound forL = q8n. It can then be interpolated to other values ofL (see [2]
for details). ut
Proposition 52.Let θ be a bounded density number. Then for everyλ, there exist0 <
γ2, C2 < ∞ such that for everyE ∈ 6λ,θ and everyβ, every normalized solutionu of
(9) obeys

‖u‖L ≤ C2L
γ2 (24)

for all L.
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Proof. The proof is based upon local partitions and results by Iochum et al. [9,10]. Up
to interpolation to non-integerL’s, it was given in [5]. ut
Remark 7.It is easy to see that bounded density numbers obey the assumption of Propo-
sition 5.1. Thus, ifθ is a bounded density number, we have

C1L
γ1 ≤ ‖u‖L ≤ C2L

γ2

with λ-dependent constantsγi, Ci , uniformly for all energies from the spectrum, all
phasesβ, and all normalized solutions of (9).

We are now fully prepared for the

Proof of Theorem 2.We employTheorem 1. Propositions 5.1 and 5.2 provide the estimate
(11) for eachE in the spectrum6λ,θ ofHλ,θ,β . This set is bounded because the potential
is bounded and hence, so is the operatorHλ,θ,β . Of course, the spectral measure for the
pair (Hλ,θ,β, φ) is supported by6λ,θ and so must be uniformlyα-Hölder continuous.
ut
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