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Abstract: We study the spectral properties of one-dimensional whole-line Schrédinger
operators, especially those with Sturmian potentials. Building upon the Jitomirskaya—
Last extension of the Gilbert—Pearson theory of subordinacy, we demonstrate how to
establishw- continuity of a whole-line operator from power-law bounds on the solutions
on a half-line. However, we require that these bounds hold uniformly in the boundary
condition.

We are able to prove these bounds for Sturmian potentials with rotation humbers
of bounded density and arbitrary coupling constant. From this we establish jurely
continuous spectrum uniformly for all phases.

Our analysis also permits us to prove that the point spectrum is emgtly turmian
potentials.

1. Introduction

In this article we are interested in spectral properties of discrete one-dimensional Schro-
dinger operators on the whole line, that is, operaténs ¢2(Z) of the form

[Hul(n) =u(m+1) +un—1)+ V(n)un) )

with arbitrary potentiaV : Z — R.

Among the most powerful tools that have been developed for the investigation of
the spectral type of such operators are those which establish a correspondence to the
behavior of the solutions of the associated difference equation

u(n+1)+umn—1)+ Vin)u(n) = Eu(n). (2)

In what follows we shall always assume a solution of (2) to be normalized in the sense
that

()% + lu(D))? = 1. ®)
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An elementary observation is that a support of the pure point part of a spectral measure
associated td@f is given by

Mpp = {E € R : 3 solutionu of (2) which is¢? at both & co}.

The following notion, introduced by Gilbert and Pearson [7], allows an analogous de-
scription of a support of the singular part. Namely, a soluiiof (2) is called subordinate
at+oo if
lull _
L—oo [[uliL

4

for any solutiorv of (2) which is linearly independent af Here|| - ||, denotes the norm
of the solution over a lattice interval of length that is,

L]
lal2 =" Jum)|® + (L — (LD[u(IL] + D] (5)
n=0

Subordinacy of a solution at —oo is defined analogously. Gilbert [6] then proves that
Msing = {E € R : 3 solutionu of (2) which is subordinate at both oo}

is a support of the singular part of a spectral measure associatédHence the stan-

dard decomposition of a spectral measure into its pure point, singular continuous, and
absolutely continuous part can be investigated by studying solutions of (2). Recall that
by the RAGE theorem, each of these standard spectral parts is related to certain quantum
dynamical behavior.

Remark 1Note that these support descriptions require a certain condition to hold at
both “endpoints™-oco and—oo. That is, if one can show that for some enefgythere

is an endpoint such that no solution of (2) satisfies this condition (square-summability
and subordinacy, respectively) at this endpoint, then this energy does not belong to the
respective support. In this sense the “more continuous half-line dominates” and this
picture is consistent with heuristic quantum evolution in one dimension.

Recently, further decompositions of spectral measures have been proposed by Last
[18]. These decompositions are motivated by the goal of answering more delicate ques-
tions arising in the study of quantum dynamics in the presence of purely singular contin-
uous spectral measures. A finite positive meagutds said to be uniformlye-Holder
continuous (or ldH) if the distribution function

E

A(E) = / dA
—0o0

is uniformly-Hdélder continuous. A measure is said tabeontinuous if itis absolutely

continuous with respect to adtH measure. This definition ef-continuity is equivalent

to the more commongi(S) = 0 for all setsS of zerow-Hausdorff measure” [22]. On the

other hand, a measure is callegingular if it is supported on a set of zereHausdorff

measure. Last discusses the decomposition of a measure int@aistinuous and its

a-singular part and he obtains explicit quantum dynamical bounds in the case where

the ¢-continuous part is non-trivial. Moreover, this decomposition is further motivated

as there is apparently a very nice interpolation of the Gilbert—Pearson results. Namely,
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Jitomirskaya and Last introduce in [11] the following notion: A soluticof (2) is called
a-subordinate at-oo if, setting = =,

lim inf ”””g —0 (6)
L=oo |7

for any solutionv of (2) which is linearly independent af. Again, «-subordinacy at

—oo is defined analogously. In [12] these authors establish this interpolation for half-
line operators. The natural whole-line correspondence accompanying the half-line result
would be the following interpolation of the Gilbert result.

Conjecture.A support of thex-singular part of a spectral measure associatefd i
given by

My.sing={E € R : 3 sol.u of (2) which isa-subordinate at botht oo}.

We shall obtain, in Theorem 1 below, a restricted version of this statement. In view
of Remark 1 the goal is to establish the following implication: Pick some endpoint. If
for all energies in some sé&t, all solutions of (2) are nat-subordinate at the chosen
endpoint, then the-singular part of a spectral measure associatéfigoves zero weight
to X. There is a well-known way to prove non-existencexesubordinate solutions for
some fixed energ¥ and a fixed endpoint which has been exploited in [2,13]. Namely,
power-law bounds of the form

C1L™ < |lu|lp < C2L”?

for all normalized solutions of (2) imply non-existence af-subordinate solutions at

+00, Wherea = Vlzjr’;z; similarly at —co. The restriction we have to impose on the
conjecture in order to establish the desired connection is twofold. Firstly, we require
that non-existence ef-subordinate solutions is established by this power-law criterion.
Secondly, we need that the bounds are uniform in the solutions corresponding to a fixed

energy. Under these assumptions one may conclude prHagdytinuous spectrum an.

Theorem 1.Let = be a bounded set. Suppose there are constantg such that for
eachFE € X, every normalized solution ¢2) obeys the estimate

C1E)L™ < |lulL < C2(E)L"? ()

for L > 0 sufficiently large and suitable constant§ (E), C2(E). Leta = 2y1/

(y1 4 y2). ThenH has purelyx-continuous spectrum oR, that is, for anyg € €,

the spectral measure for the pdif, ¢) is purelya-continuous orx. Moreover, if the
constantsC1(E), C2(E) can be chosen independentlyofe %, then for anyp e ¢2

of compact support, the spectral measure for the gair ¢) is uniformly a-Hoélder

continuous ork.

Remark 2a) We have stated the theorem in “right half-line” form. Of course, there is
an analogous “left half-line” version.

b) In particular, the intuition embodied in Remark 1 interpolates. For example, if one
is able to establish uniform power-law bounds on the right half-line, then the resulting
a-continuity is independent of the potential on the left half-line. In this sense the more
continuous half-line dominates and bounds the dimensionality of the whole-line problem
from below. Note, however, that the naive rule “dim(whole-line) = max(dim(left half-
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line), dim right half-line))” is wrong. Indeed, using the analysis of sparse potentials
by Jitomirskaya and Last in [12], one may construct examples where the two half-line
problems have zero-dimensional spectrum (in a certain energy region) and the whole-line
problem has one-dimensional spectrum.

c) By combining the results of [12] and the ideas we present to prove Theorem 1,
or21e can prove analogs of this theorem for Jacobi matrices and Schrodinger operators in
L2(R).

Our application of Theorem 1 is to Schrddinger operators with Sturmian potentials.
That is, we shall consider the operators

[Hy0,pul(n) =u(n +1) +u@m — 1) + Avg g(m)u(n), (8)
acting in¢2(Z), along with the corresponding difference equation
(H)L_p’ﬁ — E)u =0. (9)

Here
vo,8(n) = X[1-,1)(n0 + B mod 1),

with coupling constant € R \ {0}, irrational rotation numbef# € (0, 1), and phase
B €10,1).

The family of operatorgH, ¢ g) is commonly agreed to model a one-dimensional
quasicrystal. It provides a natural generalization of the Fibonacci family of operators

which corresponds to rotation numises 6r = I5T*1 ,the golden mean. This modelwas
introduced independently by two groups in the early 1980's [16, 21] and has been studied
extensively since. The review articles [3,25] recount the history of generalizations of
the basic Fibonacci model and the results obtained for each of them.

Before stating the result, let us recall some basic notions from continued fraction
expansion theory; we mention [15,17] as general references.

Giveno € (0, 1) irrational, we have an expansion

1
0 =

al +
az +

1
az+--

with uniguely determined, € N. The associated rational approximalgi:csare defined
by

po=0, pr=1  py=aypa-1+ pro,
g=1 q=a1, ¢=angn-1+qu-2.

The numbep is said to have bounded density if

. 1¢
lim sup= Z“i < o0.

— n -
n—00 i1

The set of bounded density numbers is uncountable but has Lebesgue measure zero.
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Theorem 2.Let 6 be a bounded density number. Then for everyhere existsx =

a (%, 8) > 0such that for everyg and everyp € £2(Z) of compact support, the spectral
measure for the paifH,. o g, ¢) is uniformlya-Holder continuous. In particulaid;, ¢, g
has purelyx-continuous spectrum.

In the course of the proof of Theorem 2 we will establish solution estimates which
allow us to exclude eigenvalues falt parameter values.

Theorem 3.For everyi, 6, 8, the operatorH,, ¢ g has empty point spectrum.

Remark 3This is the final result on a question with a long history. Building uporoSiit”
[23,24], the paper [1] by Bellissard et al. proves zero-measure spectrum and hence ab-
sence of absolutely continuous spectrum for all parameter values. Moreover, the authors
of [1] implicitly exclude eigenvalues fg8 = 0 and arbitrary., «. Absence of eigenval-

ues forg # 0 is listed as an open problem. Various partial results have been obtained
since; see [4] for detailed remarks on the history of the problem and the first result
that holds uniformly in the phase. The main improvement in the present article will be
discussed in Sect. 4.

Combining Theorem 3 with the results from [1] we obtain a complete identification
of the spectral type.

Corollary 11. For everyx, 6, 8, the operatorH, ¢ g has purely singular continuous
zero- measure spectrum.

The organization of this article is as follows. Section 2 discusses the transition from
half-line eigenfunction estimates to spectral properties of the whole-line operator and so
proves Theorem 1. In Sect. 3 we present some crucial properties of Sturmian potentials.
We recall in particular the unique decomposition property and the uniform bounds on the
traces of certain transfer matrices. Section 4 provides a study of the scaling properties of
solutions to (9) with respect to the decomposition of the potentials on various levels and
shows how Theorem 3 follows from these scaling properties. Uniform upper and lower
power-law bounds ofju||; for certain rotation numbers are established in Sect. 4. In
Sect. 5 this information is then combined with Theorem 1 to prove Theorem 2.

2. Subordinacy Theory

In this section we demonstrate how the solution estimates discussed in the introduction
may be used to prowe-continuity of spectral measures for some- 0. Although we

shall only be applying Theorem 1 to Sturmian potentials, we believe the result holds a
broader interest. Moreover, it will cost us nothing in clarity to treat the operator

[Hul(n) =u(n+1) +u(n—21) + Vn)umn)
with arbitrary potentiaV:Z — R. To each such whole-line operator we associate two
half-line operatorsii, = P} H P, andH_ = P* H P_, whereP.. denote the inclusions
Pi:02({1,2,...}) = €3(Z) and P_: £2({0, —1, =2, ...}) < €2(Z).

The spectral properties &f, H.. are typically studied via the Weyt-functions. For
eachz e C \ R we definey*(n; z) to be the unique solutions to

Hy* =zy*, y*0;2=1 and ) |[y*(#n;2)]* < oo,
n=0
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With this notation we can define the Weyl functions by

m*(2) = ($1l(Hy —2)7181) = =y (L 2/ (0 2),

m~(z) = (Bol(H- — 2)7*80) = =¥~ (0; 2)/¥ (L 2)
for eachz e C \ R. Here and elsewhers, denotes the vector it? supported at with
3, (n) = 1. For the whole-line problem, the-function role is played by the 2 2 matrix
M(z):

[41" M(2)[4] = (a0 + b8D)|(H — 2)~X(aso + bs1)).
Or, more explicitly,

M= 1 [W(O)W(O) w+<1)w—(0>}
YY) — y+Oy—@) (YT OV O yHOY Q)

_ 1 m~  —mtm~
T 1—mtm- | -mtm—  mt

with z dependence suppressed. We defirle) = tr(M(z)), that is, the trace oM.
These definitions relate the-functions to resolvents and hence to spectral measures.
By pursuing these relations, one finds that:

1
mi(Z)Z/:dpi(l),
1
m(@:/:dA(t), (10)

wheredp™, dp~ are the spectral measures for the pdits, , 61), (H_, 8o), respec-
tively, andd A is the sum of the spectral measures for the p@ifssg) and(H, §1). An
immediate consequence of these representations is that eachmofftimetions maps
C*t = {x +iy:y> O} toitself.

The pair of vector$so, 81} is cyclic for H; indeed, ifg is supported if—N, ... , N,
N + 1}, then there exist polynomialgy, P; of degree not exceediny such thatp =
Po(H)d80 + P1(H)31. This may be proved readily, by induction, once it is observed that
¢ (—N), (N + 1) uniquely determine the leading coefficientsRf P1, respectively.

Our immediate goal is to prove that\ is uniformly «- Holder continuous. This will
follow quickly from

Theorem 4.Fix E € R. Suppose every solution 6 — E)u = 0 with [u(0)|? +
lu(1)|%2 = 1 obeys the estimate

C1L" < |lu|lp < CoL"? (11)
for L > 0 sufficiently large. Then

sin(p) + cosp)m™(E + i) | _ Caco1
¢ |Ccog@) —sin(p)mt(E +ie)| —

: 12)

wherea = 2y1/(y1 + y2).

Proof. This result lies within the Gilbert—Pearson theory of subordinacy [6,7,14]. A
concise proof is available in [11,12]. In this context, th@bove corresponds to the
choice of boundary conditions.oo
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Corollary 21. Given a Borel sek, suppose that the estimattl) holds for everyE e
o (H) with C1, Cz independent of . Then, given any function™:C* — C*, and any
E e %,

mT(E +ie)+m (E +ie)

Cze®t 13
1—mt(E+iom(E+ie)| — ¢ (13)

Im(E + ie€)| =‘

forall ¢ > 0. Consequently\ (E) is uniformlyx-Hélder continuous at all pointg € X.
In particular, d A is a-continuous ori.

Proof. Fix E € ¥ ande > 0. Then, by introducing new variables = ¢%¢ and
w=(mT —i)/(mT +1i), we may rewrite (12) as

1 4
sup + uz

< Cgea_l.
=111 — nz

Note that In(m™) > 0 implies|u| < 1 and so(1 + uz)/(1 — uz) defines an analytic
functionon{z : |z| < 1}. The pointz = (i —m™)/(i +m™) lies inside the unit disk since
Im@m~) > 0. The estimate (13) now follows from the maximum modulus principle and
a few simple manipulations. This estimate and the representation (10) provide

A([E — €, E +€]) < 2elm(m(E +i€)) < 2C3¢* forallE€ £,¢ >0,
from which A (E) is uniformly e-Hdolder continuous ox. O

Remark 4If we permitC1, C2 to depend orE, the only consequence is that naw
depends ol and soA need not beniformlyHélder continuous. However;- continuity
is still guaranteed.

Proof of Theorem 1Given ¢ e ¢2(Z) with compact support, the remarks preceding
Theorem 4 show that the spectral measurepfs bounded byf (E)d A(E) for some
polynomially bounded functioii (E). If C1, C2 are independent &, then, by the above
corollary,d A is uniformly «-Hoélder continuous, and & is bounded, this implies that
fdA is also WxH.

In the case thaf'1, C» are permitted to depend an, the remark above shows that
dA is a-continuous. Given any € ¢2, its spectral measure may be writtenfasA and
S0 must bex-continuous. O

3. Basic Properties of Sturmian Potentials

In this section we recall some basic properties of Sturmian potentials. For further infor-
mation we refer the reader to [1,3,4,19, 20]. We focus, in particular, on the decompo-
sition of Sturmian potentials into canonical words, which obey recursive relations, and
on known results on the traces of the transfer matrices associated to these words.
Fix some rotation numbe#t, and lets,, denote the coefficients in its continued fraction

expansion. Define the wordgs over the alphabetl = {0, 1} by

s.1=1 s5=0, s = sgl_ls_l, Sy =Sy 1Sy_p, N> 2. (14)
In particular, the word,, has lengthy, for eachn > 0. By definition,s,,_1 is a prefix of
s, for eachn > 2. For later use, we recall the following elementary formula [4].
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e ap—1
Proposition 31.For eachn > 2,s,s, .1 = 5,,15,"178,_25,_1-

Thus, the word,, s, +1 hass, 11 as a prefix. Note that the dependence,ofp,, g, s»
on @ is left implicit. Fix coupling constank and energyE; then, for eachw =
w1 ...w, € A", we define the transfer matri¥ (1, E, w) by

MO E.w) — |:E —1an —01} . x |:E —1/\w1 —01] (15)

If u is a solution to (9), we have
Un+1) =M, E,vopl)...v9mn)U(QD),
where
Un) = [M(Z(f)l)].

When studying the power-law behavior|pf| ; , one can investigate as well the behavior
of

1
LL] 2

wiL= Y Jvm|?* + @« - Lh|luvaLi+v|*] . (16)
n=1

where
IU )17 = Ju(m)|? + lu(n — 1),

since
LUIZ < |l < 1U13. (17)

Now, the spectrum off; 4 g is independent o [1] and can thus be denoted By, 4.
Let us define
xn = tr(M()"v Es S}’l—l))v
Yo =t((M\, E, s)),
Zn =tr(M\, E, sysp-1)),

with dependence oh and E suppressed.

Proposition 32. For everya, there exists”, € (1, oo) such that for every irrationad,
everyE € ¥, g, and every: € N, we have

max{|x, !, [yal, lzal} < Ci.

Proof. This result follows implicitly from [1]. It can be derived from the analysis in [1]
by combining their bound ofx, | and|y,| with the fact that the traces obey the Fricke-
Vogt invariant

xs + )’3 + Z% — XpYnln = )”2 +4,

which was also shown in [1]. O
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The wordss,, are now related to the sequenagsg in the following way. For each
pair (9, n), every sequencey g may be partitioned into words such that each word is
eithers,, ands, _1. This uniform combinatorial property, together with the uniform trace
bounds given in Proposition 3.2, lies at the heart of the results contained in this paper
and its precursors [4,5]. Let us make this property explicit.

Definition 33. Letn € Ng be given. An(n, 8)-partition of a functionf : Z — {0, 1}
is a sequence of pairg;, z;), j € Z such that:

i) the setsl; C Z partitionZ;

i) 1€ lp;

iii) each blockz; belongs tds,, s,—1}; and

iv) the restriction off to I; is z;. Thatis, fu; fa;+1- - - fa; ;-1 = 2j-

Notice thatd; is defined implicitly to be the left-hand endpoint of the interval

We will suppress the dependence @®iif it is understood to whicly we refer. In
particular, we will writez-partition instead ofr, 6)-partition. The unique decomposition
property is now given in the following lemma which was proved in [4].

Lemma 34.For everyn € Ng and everyg € [0, 1), there exists a unique-partition
(I, z;) of vg g. Moreover, ifz; = s,_1, thenz;_1 = zj41 = sp. If z; = 55, then
there is an intervall = {d,d +1,...,d +1 — 1} C Z containing; and of length
[ € {ap+1, an+1 + 1} such that;; = s, foralli e I andzy—1 = 2441 = sp—1-

We finish this section with a short discussion of symmetry properties of the words
vg,g. This will show that the considerations below, based on a study of the operators
H, ¢, on the right half-line, could equally well be based on a study of the operators on
the left half-line. This particularly implies that for all parameter values, given an energy
in the spectrum, both atco and—oco every solution of (9) does not tend to zero.

For a finite wordw = ws ... w, over{0, 1}, define the reverse wond® by w® =
w, ... w1 and for a wordw € {0, 1}%, define the reverse word® by w® = v with
v, = w_, forn € Z. It is not hard to show that eveny, g allows a uniquen-R-
partition [19]. Here, am-R-partition is defined by replacing,_1 ands, by s® ; and
sR, respectively, in the definition of-partition. Mimicking the proof of Lemma 5.1
in [5] with the norm replaced by the trace, immediately givds = x,, yX = y,
andz® = z,. Here,xR, yR andz® are defined by replacing,_1, s, ands,s,_1 with
their reverse words in the definition of, y, andz,, respectively. Thus, the analog of
Proposition 3.2 holds fatX, yX, z& (in fact, this can also be established by remarking
that the underlying trace map system is essentially unchanged by passing fasff).
Then-R-partitions and the bound on the traces allow one to study the operators on the
left half-line in exactly the same way as the operators on the right half-line are studied in
the following two sections. Alternatively, it is possible to show that the R#graves the
set{vg,g : B €[0, 1)} C {0, 1}% invariant, where the bar denotes closure with respect
to product topology [19]. This could also be used to show that the two half-lines are
equally well accessible.

4. Scaling Behavior of Solutions

In this section, we use the trace bounds and the partition lemma to study the growth of
|U| . for energies in the spectrum and normalized solutions to (9). For our purposes it
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will be sufficient to consider this quantity only fér = ¢sg,, n € N. In Lemma 4.1 below

it is shown that this growth has a lower bound which is exponential in particular,

this will imply absence of eigenvalues as claimed in Theorem 3 and it will also be used
in our proof of power-law (in_) lower bounds for certain rotation numbers which will

be given in the next section.

Lemma4l.LetA, 0, B be arbitrary, E € X, ¢, and letu be a normalized solution to
(9). Then, for every > 8, the inequality

1Ullg, = DallUllg,_s

holds, where
2 112
D =1+[5]"

Proof of Theorem 3lt follows immediately from Lemma 4.1 that for all parameter
valuesi, 6, 8, the operatoi,, 4.4 has no eigenvalues.o

Before giving the proof of Lemma 4.1, let us recall a basic definition: A wore
w1...w, IS conjugate to a word = v;1...v, if for somei € {1,...,n}, we have
wi...w, =V;...v,v1...0;_1, thatis, ifw is obtained fromv by a cyclic permutation
of its symbols.

To prove Lemma 4.1 we shall employ the mass-reproduction technique that was used
in [2]. This technique is based on the two-block version of the Gordon argument from
[8]. More explicitly we have

Lemma 42.Fix A, 6, B. Suppose that g(j) ... ve,g(j+2k—1)is conjugate tds,_1)2,
(s2)?, OF (s,_15,)2 for somen € N, < k, and everyj € {1,...,1}. LetE € X; g.
Then every normalized solutiento (9) satisfies

1Ulli+2c = DU |ls-
Proof. Consider somg € {1, ... ,[}. By definition, we have

UGj+k)=M( E v9p()...v98( +k—D)UQ),
and U(j+2k)=M(r E,vo8()...v08( + 2k —D)U()).

Sincevy g(j) ... vg,p(j + 2k — 1) is conjugate to a square, it is itself a square, and
UG +2k) = [M(h, E,vo5() ... v9.5G +k — D) UG).
Hence, applying the Cayley—Hamilton theorem,
U(j+2k) —tr[M(A, E,v9.8(j)...v08( +k—D)]U( +k) +U(j) =0. (18)
Moreover,
[tr[M(x, E,v9.8(j)...vo,8(j +k —D)]| < Cs. (19)

Combining (18) and (19), we obtain

1
max{||U(j+k)||,||U(j+2k)||}2EHU(]')H (20)
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forall 1 < j <. We can therefore proceed as follows,

1+2k

U7y = Z U Gm)||?
1+2k

= ZnU(m)n2 + > lum?

m=I[+1

>Z||U<m)|| +[ ZIIU(m)II
=(1+[ ])||U||,

This proves the assertiono

Proof of Lemma 4.2Ve make use of the information provided by Lemma 3.4 and exhibit
squares in the potentials which are suitable in the sense that they satisfy the assumption
of Lemma 4.2. In fact, we shall show

||U||2(qn+l+qn)+qnfl = D}‘”U”qnfél (21)

forall 1,0, 8,all E € %, ¢, all solutionsy, and alln > 4. Sinceg,+4 > 2(qgn+1+qn) +
gn-1, this proves the assertion.

Fix 1,6, g and some: > 4 and consider the-partition ofvs g. Since we want to
exhibit squares close to the origin, we consider the following cases.

Case 1zp = s,—1. Applying (14) and Proposition 3.1, we see that this block is followed
by sf_lsn_4. We can therefore apply Lemma 4.2 with= ¢,,_4 andk = g,,_1. This
yields (21) and we are done in this case.

Case 2z9 = s, andzy = s,,. Proposition 3.1 yields that these two blocks are followed
by s,s,—3. Lemma 4.2 now applies with= ¢,,_3 andk = g,,.

Case 3z9 = s, andzy = s,,_1. Letz} label the blocks in thén + 1)-partition ofvg g.

By uniqueness of tha-partition we therefore have, = s,,1. Let us consider the
following subcases.

Case 3.1z} = s,41. Similarly to Case 2, this implies thajz) is followed bys, ;15,2
and hence Lemma 4.2 applies with- g,,_» andk = g, 1.

Case 3.2z7 = s,. It follows thatz/, = s,11. Again we consider two subcases.

Case 3.2.1z5 = s,,. Of course, this case can only occuraify, = 1. We infer that

75 = Sp+1. But this implies that we have squares conjugats,tp, 1 and Lemma 4.2 is
applicable withl = ¢,,_1 andk = g, + ¢,+1. Hence, (21) also holds in this case.

Case 3.2.2z5 = s,+1. Let us consider the consequences of this particular case for the
blocks in then- partition. We have

nt1 an+1
20Z1 - - - 22ap1+4 = snsn—lsnsnn Sp— lsﬂn+ Sp—1- (22)

Sinces,, is a prefix ofs, 1, this must be followed by, . We therefore have the sequence

of blocks
An+1 Aan+1
Snsnflsnsnn Snflsnn Spn—15n>
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where the site & Z is contained in the leftmost block. Using Proposition 3.1 this can

be rewritten as

ap+1 ap41 a,—1—1
SpSn—18nSn Sp—15n SpSy_2  Sp—35,-2

which can as well be interpreted as

an+1 Ap-1—1

S 8 48 sl s gl S _aS
nn—1°n°n n—1°n°n n—2 n—3>n-2-

Thus, Lemma4.2is applicable with= ¢,,_3 andk = ¢, +¢,+1 which closes Case 3.2.2.
Between Cases 1, 2, and 3 we have covered all possible choicgxof O

Remark 5While our analysis is similar in spirit to the analysis performed in [4], we want

to note here that we were able to improve upon essential aspects. Not only are we now
able to treat an arbitrary rotation numlisef{4] had to exclude the case lim sup = 2),

we are also able to restrict our attention to one half-line which is of course crucial
since we are aiming at an application of Theorem 1. The improvement stems from our
considering the triplés,_1, s, su—15,} as being the set of “good” words. This allows

us to conclude as in Case 3.2.2 which is not possible when one is only working with the
pair {s,_1, s, } of “good” words as was done in [4].

5. Power-Law Upper and Lower Bounds on Solutions

In this section we provide power-law bounds fpr||; in the case where the rotation
numbem® has suitable number theoretic properties. Recalkthdenote the coefficients
in the continued fraction expansionandg, denote the denominators of the canonical
continued fraction approximants o

Proposition 51. Let6 be such that for some < oo, g, < B" for everyn € N. Then for
everya, there exisD < y1, C1 < oo such that for evenf € X, o and everys, every
normalized solutiom of (9) obeys

lully = C1L™ (23)
for L sufficiently large.

Remark 6 The set ofd’s obeying the assumption of Proposition 5.1 has full Lebesgue
measure [15].

Proof. The bound (23) can be derived from the exponential lower bounpitaifg, ,

n € N, given the exponential upper bound gpn n € N. Lemma 4.1 established the
power-law bound fol. = gg,. It can then be interpolated to other valued.ofsee [2]
for details). O

Proposition 52.Let 6 be a bounded density number. Then for everthere exisD <
y2, C2 < oo such that for evenf € X, ¢ and everys, every normalized solutiom of
(9) obeys

lullL < C2L"? (24)

forall L.
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Proof. The proof is based upon local partitions and results by lochum et al. [9,10]. Up
to interpolation to non-integet’s, it was given in [5]. O

Remark 7l1tis easy to see that bounded density numbers obey the assumption of Propo-
sition 5.1. Thus, ib is a bounded density number, we have

C1L"™ < lullp < CoL”?

with A-dependent constanis, C;, uniformly for all energies from the spectrum, all
phase$, and all normalized solutions of (9).

We are now fully prepared for the

Proof of Theorem 2Ve employ Theorem 1. Propositions 5.1 and 5.2 provide the estimate
(11) for eachE in the spectrunk,, o of H, ¢ g. This setis bounded because the potential
is bounded and hence, so is the operéipp g. Of course, the spectral measure for the
pair (H 6,8, ¢) is supported by, ¢ and so must be uniformly-Hélder continuous.

]

AcknowledgementsD. D. was supported by the German Academic Exchange Service through Hochschul-

sonderprogramm Ill (Postdoktoranden), R. K. was supported, in part, by an Alfred P. Sloan Doctoral Disserta-
tion Fellowship, and D. L. received financial support from Studienstiftung des Deutschen Volkes (Doktoran-

denstipendium), all of which are gratefully acknowledged.

References

1. Bellissard, J., lochum, B., Scoppola, E. and Testard, D.: Spectral properties of one-dimensional quasicrys-
tals. Commun. Math. Phy425 527-543 (1989)
2. Damanik, D.w-continuity properties of one-dimensional quasicrystals. Commun. Math. P83,<.69—
182 (1998)
3. Damanik, D.: Gordon-type arguments in the spectral theory of one-dimensional quasicrystals.
Preprint (math-ph/9912005, mp-arc/99-472), to appedbirections in Mathematical Quasicrystals
Eds. M. Baake and R. V. Moody, CRM Monograph Series, Providence, RI: AMS
4. Damanik, D. and Lenz, D.: Uniform spectral properties of one-dimensional quasicrystals, |. Absence of
eigenvalues. Commun. Math. Php€7, 687-696 (1999)
5. Damanik, D. and Lenz, D.: Uniform spectral properties of one-dimensional quasicrystals, Il. The Lya-
punov exponent. Preprint (math-ph/9905008, mp-arc/99-184), to appear in Lett. Math. Phys.
6. Gilbert, D.J.: On subordinacy and analysis of the spectrum of Schrédinger operators with two singular
endpoints. Proc. Roy. Soc. EdinburghlA2, 213—-229 (1989)
7. Gilbert, D.J. and Pearson, D.B.: On subordinacy and analysis of the spectrum of one-dimensional
Schrédinger operators. J. Math. Anal. App28 30-56 (1987)
8. Gordon, A.: On the point spectrum of the one-dimensional Schrodinger operator. Usp. Mati8INauk
257-258 (1976)
9. lochum, B., Raymond, L. and Testard, D.: Resistance of one-dimensional quasicrystals. Piyaica A
353-368 (1992)
10. lochum, B. and Testard, D.: Power law growth for the resistance in the Fibonacci model. J. Stat. Phys.
65, 715-723 (1991)
11. Jitomirskaya, S. and Last, Y.: Dimensional Hausdorff properties of singular continuous spectra. Phys.
Rev. Lett.76, 1765-1769 (1996)
12. Jitomirskaya, S. and Last, Y.: Power law subordinacy and singular spectra, I. Half-line operators. Preprint
(mp-arc/98-723), to appear in Acta Math.
13. Jitomirskaya, S. and Last, Y.: Power law subordinacy and singular spectra, Il. Line operators. Preprint
(mp- arc/99-364), to appear in Commun. Math. Phys.
14. Khan, S. and Pearson, D.B.: Subordinacy and spectral theory for infinite matrices. Helv. Phg&, Acta
505-527 (1992)
15. Khinchin, A.Ya.:Continued FractionsMineola: Dover Publications, 1997



204 D. Damanik, R. Killip, D. Lenz

16. Kohmoto, M., Kadanoff, L.P. and Tang, C.: Localization problem in one dimension: Mapping and escape.
Phys. Rev. Lett50, 1870-1872 (1983)

17. Lang, S.introduction to Diophantine Approximationslew York: Addison-Wesley, 1966

18. Last, Y.: Quantum dynamics and decompositions of singular continuous spectra. J. Funct42nal.
406-445 (1996)

19. Lengz, D. Hierarchical structures in Sturmian dynamical systems. Preprint

20. Lothaire, M.: Algebraic Combinatorics on Words. In preparation

21. Ostlund, S., Pandit, R., Rand, D., Schellnhuber, H.J. and Siggia, E.D.: One-dimensional Schrédinger
equation with an almost periodic potential. Phys. Rev. |5t1873—-1877 (1983)

22. Rogers, C.AHausdorff Measured.ondon: Cambridge Univ. Press, 1970

23. Sio; A.: The spectrum of a quasiperiodic Schrodinger operator. Commun. Math. Pty<€l09—-415
(1987)

24. Suv; A.: Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci
Hamiltonian. J. Stat. Phy§6, 525-531 (1989)

25. Sio; A.: Schrédinger difference equation with deterministic ergodic potentialBelyond Quasicrystals
(Les Houches, 1994), Eds. F. Axel and D. Gratias, Berlin: Springer, 1995, pp. 481-549

Communicated by B. Simon



