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Abstract: We prove a q-refined tropical correspondence theorem for higher genus de-
scendant logarithmic Gromov–Witten invariants with a λg class in toric surfaces. Specif-
ically, a generating series of such logarithmic Gromov–Witten invariants agrees with a
q-refined count of rational tropical curves satisfying higher valency conditions. As a
corollary, we obtain a geometric proof of the deformation invariance of this tropical
count. In particular, our results give an algebro-geometric meaning to the tropical count
defined by Blechman and Shustin. Our strategy is to use the logarithmic degeneration
formula, and the key new technique is to reduce to computing integrals against double
ramification cycles and connect these integrals to the non-commutative KdV hierarchy.
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Introduction

We study the logarithmic Gromov–Witten theory of toric varieties, relative their full
toric boundary. Our results continue a line of inquiry which connects Hodge integrals
[51], the local Gromov–Witten theory of curves [7], and refined tropical curve count-
ing [5]. Our main theorem is a tropical correspondence theorem which relates these
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logarithmic Gromov–Witten invariants of toric surfaces to refined tropical enumerative
invariants introduced in work of Blechman and Shustin [3]. The Gromov–Witten theory
of threefolds is particularly interesting: it connects to sheaf-counting theories, and the
dimension of the moduli spaces associated to the enumerative count are independent of
genus. Our theorem can be viewed as a result for the “local surface threefolds” given by
X × A

1, where X is a toric surface.
Fix a multiset �◦ of vectors in Z

2\{(0, 0)} with sum zero, together with non-negative
integers n and k1, . . . , kn such that

n − 1 + |�◦| = 2n +
n∑

i=1

ki .

Associated to this discrete data are two enumerative invariants.

(1) The datum �◦ determines a toric surface X� and a curve class β� on this toric
surface. For every genus g ≥ 0, there is an associated logarithmic Gromov–Witten
invariant with λg insertion defined as the following intersection product

Nk
g,� =

∫

[Mg,�] vir
(−1)gλg

n∏

i=1

ev�
i (pt) ψ

ki
i .

Our notation is defined in Sect. 2.1. This logarithmic Gromov–Witten invariant cap-
tures information about algebraic curves passing through a generic collection of n
points in X� subject to stationary descendant constraints. The multiset �◦ controls
the tangency constraints as well as the curve class corresponding to this Gromov–
Witten invariant.

(2) Fixing a generic ordered tuple of n points p = (p1, . . . , pn) in R
2, the data (�◦,k)

defines a finite set of genus zero tropical curves T k
�,p . To each tropical curve h ∈ T k

�,p

we assign a rational function mh(q) of formal variable q1/2. We define a count of
tropical curves

N�,k
trop (q) =

∑

h∈T k
�,p

mh(q).

The rational function N�,k
trop (q) is an invariant defined in terms of polyhedral geom-

etry.

A precise statement of the following theorem appears in Sect. 2.2.

Theorem A. After the change of variables q = eiu we have the equality

∑

g≥0

N k
g,� u2g−2+|�◦|−∑

i ki = N�,k
trop (q).

The tropical curve count on the right of Theorem A can be computed in two steps.

(1) A combinatorial process to enumerate all tropical curves.
(2) Compute the multiplicity of each tropical curve as a product over its vertices.
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The first step is possible through floor diagrams, lattice path algorithms [44] or with
software [16]. Although tropical curves are studied in higher dimensions, we emphasise
that, in dimension two, these techniques provide an efficient method to enumerate all
tropical curves. See [3, Appendix, p. 26–28] for an explicit computation of N�,k

trop in a
particular example using a lattice path algorithm.

Remarkably, the tropical invariants that arise in Theorem A were discovered through
combinatorial considerations by Blechman–Shustin. Our work sheds light on several
features. Notably, a priori N�,k

trop (q) depends on the choice of points p in R
2. The left

hand side of the equation in Theorem A does not depend on p. Blechman and Shustin
showed that this deformation invariance imposes a severe restriction on mh(q) and
were thus able to write down a multiple of mh(q) and so a multiple of N�,k

trop , without
establishing its relation to Gromov–Witten invariants. Theorem A thus provides a new
proof of the following result of Blechman and Shustin [3].

Corollary B. The count of tropical curves N�,k
trop is independent of the choice of points

p.

Our results suggest a generalisation of the Blechman–Shustin multiplicity to tropical
curves of genus greater than zero, see Sect. 0.4.4. The count of genus g tropical curves
with this generalised multiplicity is independent of p.

0.1. Tropical correspondence theorems. Tropical geometry is a combinatorial shadow
of algebro-geometric problems, well suited to capturing enumerative information.
Mikhalkin pioneered the connection between tropical and enumerative geometry by
establishing an equality between counts of algebraic curves in toric surfaces of fixed
degree and genus and a weighted count of tropical curves, of the same degree and
genus [44]. A number of subsequent results have exhibited this correspondence princi-
ple [11–13,19,20,23,38,49]. Notably, Nishinou and Siebert [49] applied degeneration
techniques to generalise Mikhalkin’s result to counts of rational curves in toric vari-
eties of arbitrary dimension. Contemporary results often connect tropical geometry to
logarithmic Gromov–Witten invariants, which are readily accessible through these de-
generation techniques.

A logarithmic Gromov–Witten invariant is defined as an intersection product on the
moduli space of stable logarithmic maps and thus tautological cohomology classes on
this moduli space may be used as insertions to define new invariants. Two flavours of
tautological cohomology classes play an important role in the sequel: Chern classes of
cotangent line bundles denoted ψi and the top Chern class of the Hodge bundle denoted
λg . We recall the definition of these classes in Sect. 2.1.1.

Mikhalkin suggested that under a correspondence theorem ψ-classes should corre-
spond to counts of tropical curves with high valence vertices [45]. Genus zero corre-
spondences with descendants are known for P2, P1 and P

1 × P
1 [14,26,41,56], with

the most general results coming from [25,38]. More recently, there have been results
for λg class insertions, but the relationship is more complicated and takes the form of a
refined tropical correspondence. The significance of the λg class is that it allows us to
pass from curve counting on a toric surface X , to curve counting on the associated local
Calabi–Yau threefold X × A

1. On any threefold, the virtual dimension of the mapping
space is independent of the genus, and in this case the associated invariants are exactly
the logarithmic Gromov–Witten invariants of X with a λg insertion. By packaging these
invariants in an appropriate generating function, one obtains refined curve counts.
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Refined tropical correspondence theorems are an example of a ubiquitous phenomena
in mathematics: quantum analogues to classical results. Such a result depends on a
parameter q which recovers the classical result as q → 1. In the setting of tropical
correspondence theorems this began with [4]. The authors gave multiplicities of plane
tropical curves, depending on a parameter q which refined the ordinary multiplicity
appearing in the traditional tropical correspondence theorems. In classical situations,
such as Severi degrees, enumerative invariants can be calculated via Euler characteristics
of relative Hilbert schemes of points on planar curves. The authors of [22] suggested
that refined tropical invariants corresponded to Severi degrees with χy genus in place of
the Euler characteristic, see also [48].

Correspondence results involving λg class insertions and higher genus logarithmic
Gromov–Witten theory appeared later in work of Bousseau [5]. This provides an alter-
native perspective on the algebro-geometric information encoded in q-refined tropical
curve counts. Theorem A is parallel to the work of Bousseau, in that we provide the
connection between logarithmic Gromov–Witten theory and the tropical curve counts
of Blechman and Shustin [3], who extended the refined counts of Block–Göttsche to
plane tropical curves with higher valence vertices.

0.2. Relationship to literature. The contribution of the present paper is to handle the
simultaneous presence of λg and ψ class insertions. The place of our result in the
literature may be summarised with the following diagram.

[5]

[3,21] Present Paper [25,38,41]

(1)

(2) (3)

(1) We are not aware of how to generalise Bousseau’s argument to the descendant set-
ting, so we must perform certain atomic calculations directly. As a result we provide
a new proof of the special case that there are no descendants: a theorem proved in
Bousseau’s work. Our proof uses three key ingredients. First, the degeneration for-
mula for logarithmic Gromov–Witten theory. This was already used in Bousseau’s
work, but new subtleties appear in the descendant setting. Secondly, the connection
between logarithmic Gromov–Witten invariants of toric surfaces and double ram-
ification cycles [54]. Finally, we use the connection between intersections against
double ramification cycles and the KdV hierarchy [8,9].

(2) Our theorem provides an algebro-geometric interpretation of the tropical count de-
fined by Blechman and Shustin. Their invariants, though purely combinatorial, are
part of a natural system that contain the geometric refinements of rational curve
counts. The generalization of Blechman–Shustin’s work to higher genus is a topic
of ongoing interest.

(3) Due to the nature of our correspondence theorem, the tropical curves arising in our
computations coincide with the ones considered by Markwig–Rau [41]. Our multi-
plicities coincide with Markwig–Rau’s multiplicities when q approaches 1. This is
a combinatorial statement. From a geometric viewpoint, the q → 1 specialization
simply recovers the correspondence theorems of [25,38], in the special case of plane
curves. The multiplicity of the tropical curves in our theorem split as a product over
multiplicities assigned to vertices. This contrasts with the general case of [25,38].
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0.3. Proof strategy: double-ramification cycles and integrable hierachies. Degeneration
arguments and logarithmic intersection theory allow us to build on [27,53] to prove a
simple degeneration formula in our setting. This is parallel to the degeneration arguments
of [5,38,49] but additional subtleties arise due to the intersection of the λg and ψ

conditions. This reduces the proof of Theorem A to computing intersection products of
the form

∫

[Mg,�] vir
λg ev�(pt) ψk

which we call vertex contributions. Here pt denotes the cohomology class poincare dual
to a generic point. These vertex contributions are also descendant logarithmic Gromov–
Witten invariants of a toric surface with at most one λg class, albeit simpler, with a single
point insertion and power of a ψ class.

In joint work with Ranganathan [54] the third author proved a result implying that
vertex contributions could be expressed as intersection products on the moduli space
Mg,n of genus g curves

∫

[Mg,�] vir
λg ev�

1(pt) ψk
1 =

∫

Mg,n+1

λg ψk
1TCg(�).

The class TCg(�) is the toric contact cycle, a higher rank generalisation of the double
ramification cycle DRg(a). The toric contact sometimes appears in literature, under
the moniker the double double ramification cycle, see [31,33,46] for background. Both
classes are recalled in Sect. 4.

Let � be the 2 × (n + r) matrix defined by setting the first n columns zero and the
final columns to be the elements of �◦. When computing vertex contributions we may
assume n = 1. Writing �x ,�y for the rows of the matrix �, we establish

λg · TCg(�) = λg · DRg(�
x ) · DRg(�

y)

in Proposition 4.5.5. The naive hope that DRg(�
x ) ·DRg(�

y) = TCg(�) is false, and
only true on the compact type locus, so correction terms are required. The content of
Proposition 4.5.5 then is that λg annihilates the correction terms. See also [32] for a
closely related statement. We are left to compute integrals of the form

Ig,d(a1, . . . , an; b1, .., bn) =
∫

Mg,n+1

λgψ
d
1 DRg(0, a1, . . . , an)DRg(0, b1, . . . , bn).

(1)

These integrals are computed with techniques from the theory of integrable hierarchies.
Buryak [8] constructed the double ramification hierarchy, whose hamiltonians are gener-
ating functions of these integrals. This double ramification hierarchy coincides with the
non-commutative KdV hierarchy [9]. This KdV hierarchy is well understood, allowing
us to write explicit formulas for generating functions of Ig,d(a1, . . . , an; b1, . . . , bn).

Example 0.3.1. Set

�◦ = {(−1, 0), (−1, 0), (0,−1), (1, 0), (1, 0), (0, 1)}, k = (0, 1, 0, 0)

and fix points (p1, p2, p3, p4) = p. See Fig. 1 for a tropical curve contributing to
N�,k
trop for a certain choice of pi . The multiplicity of this tropical curve is a product over
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Fig. 1. Above is a tropical curve including edges with primitive directions (1, 1) and (2, 1)

vertices. The vertex marked by p2 contributes 1
2 (q1/2 + q−1/2) and all other vertices

contribute (−i)(q1/2 − q−1/2). This tells us the total contribution of this tropical curve
is i

2 (q1/2 + q−1/2)(q1/2 − q−1/2)3.

0.4. Future directions. The long term hope is to compute the descendant partition func-
tion of Gromov–Witten invariants of toric threefolds pairs in all genus. To achieve this
goal, two generalisations of current results are required: passing to honest threefolds,
rather than local surfaces, and higher genus tropical curves. Parker established the pri-
mary part of the above computation in the setting of his theory of exploded manifolds
[52]. Even assuming the equivalence of logarithmic and exploded invariants, our results
are new because we handle descendants.

0.4.1. Logarithmic Gromov–Witten/Donaldson–Thomas invariants The q = eiu change
of variables appearing in Theorem A is the same change of variables that controls
the logarithmic Gromov–Witten/Donaldson–Thomas correspondence [42,43]. Includ-
ing descendants in the logarithmic Gromov–Witten/Donaldson–Thomas correspondence
is a subtle problem, studied intensely by Moreira, Okounkov, Oblomkov, and Pandhari-
pande [47,50]. Since the Donaldson–Thomas/ Pandharipande–Thomas wall-crossing
is expected to be trivial in this setting, our calculations offer a concrete and testable
prediction for these new conjectures.

0.4.2. Higher starting genus Fix a multiset �◦ of vectors in Z
2\{(0, 0)} with sum zero,

together with non-negative integers g0, n and k1, . . . , kn such that

n + g0 − 1 + |�◦| = 2n +
n∑

i=1

ki .

For every genus g ≥ g0 we consider the following logarithmic Gromov–Witten invariant

Nk
g,g0,� =

∫

[Mg,�] vir
(−1)g−g0λg−g0

n∏

i=1

ev�
i (pt) ψ

ki
i .
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The present paper establishes a tropical correspondence theorem in the the case g0 = 0.
The case g0 > 0 without descendant insertions is known [5]. The difficulty with higher
genus tropical curves of higher valence is that such curves may be superabundant [38,
Remark 2.6]. Consequently, the degeneration and gluing arguments of Sect. 3 fail.

0.4.3. Weak Frobenius Structure Conjecture In Gross–Hacking–Keel’s construction of
the mirror to a log Calabi–Yau surface X [28], the mirror is constructed as the spectrum
of an algebra of theta functions: the first example of a theta function is the unit. The weak
frobenius structure conjecture asserts that the coefficient of the unit in any product of
theta functions is a sum of genus zero descendant logarithmic Gromov–Witten invariants
of X . The conjecture is known for cluster varieties [37], and Looijenga pairs satisfying
[30, Assumptions 1.1] by [34].

A deformation quantization of the Gross–Hacking–Keel mirror, depending on a pa-
rameter q, is known [6]. Once again this involves the construction of an algebra, this
time non-commutative, generated by quantum theta functions. Theorem A provides an
avenue to explore the connection between the unit term in any product of quantum theta
functions, and descendant logarithmic Gromov–Witten invariants with a λg insertion.
Products of quantum theta functions are computed with quantum scattering diagrams,
which one expects are related to refined counts of tropical curves. Upcoming work of
Gräfnitz, Ruddat, Zaslow and Zhou offers progress in this direction [24].

0.4.4. Generalised Blechman–Shustin Our results suggest a generalisation of the mul-
tiplicities of Blechman and Shustin to higher genus tropical curves. Indeed, the degen-
eration arguments of Sect. 3 show that there is a tropical correspondence result for the
logarithmic Gromov–Witten invariants

Nk
g,g0,� =

∫

[Mg,�] vir
(−1)g−g0λg−g0

n∏

i=1

ev�
i (pt) ψ

ki
i .

On the tropical side one sums over tropical curves of genus g0. One can define the gener-
alised Blechman–Shustin multiplicity as the multiplicity of a tropical curve under such
a correspondence theorem. Theorem A shows that the generalised Blechman–Shustin
multiplicity coincides with the Blechman–Shustin multiplicity in the case g0 = 0. A
version of Corollary B shows counting tropical curves with the generalised Blechman–
Shustin multiplicity is independent of the choice of p. This argument does not suggest
that the generalised Blechman–Shustin multiplicity of a tropical curve � will be a product
over vertices of �.

1. Tropical Enumerative Geometry

In this section we set up the tropical enumerative problem. Fix �◦ = {δ1, . . . , δr }
a multiset of non-zero vectors in Z

2 with sum zero. Fix also an ordered tuple k =
(k1, . . . , kn) of n non–negative integers. In the main body, �◦ will record the tangency
order of curves with the boundary and k will record the ψ class power attached to each
of the n marked points.

In the sequel we partially record these data in a 2 × (r + n) matrix denoted �. The
first n columns are zero and the final r columns are the vectors δi . In writing down
such a matrix we implicitly choose an order on the δi ; we fix this order without further
comment.
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1.1. First definitions. Define the lattice length 
 of a vector δi ∈ Z
2 to be the maximal

positive integer 
 such that one can write δi = 
δi for δi a vector in Z
2 called the

direction of δi .

1.1.1. Tropical curves Our definition of tropical curve coincides with the definition
presented in [5, Section 2.3]. We refer the reader to [2,38,44,49] for background.

Definition 1.1.1. A graph � is a triple consisting of

(1) a finite set of vertices V (�);
(2) a finite set E f (�) of pairs of elements of V (�) called the bounded edges;
(3) and a multiset E∞(�) of elements of V (�) called the unbounded edges.

For us, all graphs are connected. This means for any two elements v,w of V (�) there
exists a sequence of elements v = u1, . . . , uk = w such that {ui , ui+1} lies in E f (�)

for all i .

An abstract tropical curve |�| is the underlying topological space of a graph �.

Definition 1.1.2. A parametrised tropical curve h : � → R
2 consists of the following

data.

(1) A graph � and a non–negative integer gV assigned to each vertex V of � called the
genus.

(2) A bijective function

L : E∞(�) → {1, . . . , r + n}.
(3) A vector weight vV,E ∈ Z

2 for every edge–vertex pair (V, E) with E ∈ E f (�) ∪
E∞(�) and V ∈ E such that for every vertex V , the following balancing condition
is satisfied:

∑

E :V ∈E

vV,E = 0.

(4) For each bounded edge E ∈ E f (�) a positive real number 
(E), called the length
of E .

(5) A map of topological spaces h : |�| → R
2 such that restricting h to the edge {v1, v2}

is affine linear to the line segment connecting h(V1) and h(V2) and moreover

h(V2) − h(V1) = 
(E)vV1,E .

Also, restricting h maps an unbounded edge E associated to vertex V to the ray
h(V ) + R≥0vV,E .

We say h has degree � if vV,E coincides with the L(E)th column of � whenever
E ∈ E∞(�). The genus of a parametrised tropical curve is obtained by adding the sum
of gV to the Betti number of |�|. The weight of an edge E , denoted w(E), is the lattice
length of vV,E .

For a vertex V of � write E+∞(V ) for the set of unbounded edges E adjacent to V
such that vE �= 0 and E f (V ) for the set of bounded edges adjacent to V . The valency
valV of a vertex V is the cardinality of E f (V ) ∪ E+∞(V ). Write �◦

V for the multiset of
all vV,E for fixed V .
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1.2. Multiplicities. In the sequel we count parametrised genus zero tropical curves of
degree � satisfying certain incidence conditions. Tropical curves are counted with a
multiplicity, closely related to the multiplicity of [3]. This multiplicity is a product over
multiplicities assigned to each vertex of our tropical curve. Fix for the remainder of the
section a parametrised tropical curve h : � → R

2.
We will be counting tropical curves passing through a tuple of points p = (p1, . . . , pn)

in R
2, and thus vertices of � come in two flavours. A vertex is pointed if its image under

h coincides with one of the pi . Vertices which are not pointed are unpointed.

1.2.1. Notation Given two elements v1, v2 ∈ Z
2 we define v1 ∧v2 to be the determinant

of the matrix with first column v1 and second column v − 2. Following [3], define
functions of q

[v1 ∧ v2]+ = q
1
2 v1∧v2 + q− 1

2 v1∧v2 [v1 ∧ v2]− = q
1
2 |v1∧v2| − q− 1

2 |v1∧v2|.

The cyclic group with N elements acts on the set of ordered tuples of N distinct
elements from the set {1, . . . , N }. The action is induced by sending the integer in position
i to position i + 1 mod N . The set of orbits of this action is the set �N of cyclic
permutations. We sometimes write �N = �N (a1, . . . , aN ) when we wish to think of
�N as the set of cyclic permutations of vectors (a1, . . . , aN ). Where no confusion is
likely we omit (a1, . . . , aN ) from the notation. For ω a cyclic permutation, choose an
ordered tuple ω̃ in the orbit ω. Define

k(ω) =
∑

2≤i< j≤N

aω̃(i) ∧ aω̃( j)

where ω̃(i) sends i to the element in the i th position of the chosen representative ω̃. As
the vectors ai will always have sum zero, k(ω) is well defined. Define also a function of
formal variable q

μN (a1, . . . , aN ) =
∑

ω∈�N

q
k(ω)

2 .

1.2.2. Multiplicity of an unpointed vertex Let V be an unpointed trivalent vertex with
outgoing vector weights the balanced set of vectors (a1, a2, a3). The multiplicity as-
signed to V is

mV = (−i) · [a1 ∧ a2]−.

1.2.3. Multiplicity of a pointed vertex A vertex V adjacent to edges with vector weights
a1, . . . , aN defines a balanced set of vectors �V = (a1, . . . , aN ) in R

2. From this data
we define a function of q

mV = 1

(N − 1)!μN (a1, . . . , aN ),

which is the multiplicity of V .

1.2.4. Multiplicity of a tropical curve The multiplicity of the parametrised tropical curve
h : � → R is the product of mV over vertices of �.
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1.2.5. Blechman–Shustin multiplicity The Blechman–Shustin multiplicity of a (pointed)
vertex V of valency N with outgoing edges of vector weight a1, . . . , aN denoted
θN (a1, . . . , aN ) is defined recursively on the valency. When N = 3 they defined

θ3(a1, a2, a3) = [a1 ∧ a2]+

and then recursively

θN (a1, . . . , aN ) =
∑

i< j

θN−1(a1, . . . , âi , . . . , â j , . . . , aN , ai + a j )θ3(ai , a j ,−(ai + a j )).

Here a hat denotes omission.

1.2.6. Formula for Blechman–Shustin multiplicity We provide an explicit formula for
the Blechman–Shustin multiplicity.

Proposition 1.2.1. For all choices of ai , there is an equality

θN (a1, . . . , aN ) = N !
3! μN (a1, . . . , aN ).

The proof of Proposition 1.2.1 was communicated to us by Thomas Blomme.

Proof. The proof proceeds by induction on N . When N = 3 there are two cyclic orders
which have representatives ω1 = (3, 1, 2) and ω2 = (3, 2, 1). We thus learn

μ3(a1, a2, a3) = q
1
2 a1∧a2 + q− 1

2 a1∧a2 = θ3(a1, a2, a3).

For the inductive step assume θN−1(a1, . . . , aN−1) = (N−1)!
3! μN−1(a1, . . . , aN−1).

Let WN be the set of ordered pairs (i, j) where 1 ≤ i < j ≤ N . Define � to be the set
of cyclic permutations of (a1, . . . , aN ) and �i, j the set of cyclic permutations of

(a1, . . . , âi , . . . , â j , . . . , aN , ai + a j )

where hat denotes omission. We now proceed with the following chain of equalities.

θN (a1, . . . , aN ) =
∑

(i, j)∈WN

(
q

1
2 ai ∧a j + q

1
2 a j ∧ai

)
θN−1(a1, . . . âi , . . . â j , . . . , ai + a j )

= (N − 1)!
3!

∑

(i, j)∈WN

(
q

1
2 ai ∧a j + q

1
2 a j ∧ai

)
μN−1

(a1, . . . âi , . . . â j , . . . , ai + a j )

= (N − 1)!
3!

∑

(i, j)∈WN

(
q

1
2 ai ∧a j + q

1
2 a j ∧ai

) ∑

ω∈�i, j

q
k(ω)

2

= (N − 1)!
3!

∑

(i, j)∈WN

∑

ω∈�i, j

(
q

k(ω)+ai ∧a j
2 + q

k(ω)−ai ∧a j
2

)

In the sequel use �[i, j] for i �= j to denote the set of cyclic orders of (a1, . . . , aN ) in
which ai , a j are adjacent. There is a two to one map

ϕ : �[i, j] → �i, j
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obtained by coupling ai and a j . The map is two to one to account for the two orders of
ai and a j and moreover k(ϕ(x)) = k(x) ± ai ∧ a j where the sign depends on the order
of ai , a j . We deduce,

θn(a1, . . . , aN ) = (N − 1)!
3!

∑

(i, j)∈WN

∑

ω∈�[i, j]
q

k(ω)
2

= (N − 1)!
3!

∑

ω∈�

q
k(ω)

2 card{(i, j) : i < j, ω ∈ �[i, j]}

= N !
3!

∑

ω∈�

q
k(ω)

2

= N !
3! μN (a1, . . . , aN ).

��

1.3. Moduli of tropical curves and maps. Following [40], note that assuming n > 0 a
parametrised tropical curve of degree �

h : � → R
2

is specified by the following two data:

(1) the image of the first (necessarily contracted) unbounded edge h(E1);
(2) the data of � and the length of its edges.

The slope of each unbounded edge is determined by the degree of h and the slope of
bounded edges are determined by the balancing condition.

For m a non–negative integer, there is a cone complexMtrop
0,m whose points biject with

abstract tropical curves � equipped with m unbounded ends [20,36]. Datum (1) above
is a point in R

2 and the second datum is a point in Mtrop
0,n+r . In this way R

2 ×Mtrop
0,n+r is

a moduli space of parametrised tropical curves [10].
There are n evaluation maps

evi : Mtrop
0,n+r × R

2 → Evtrop = R
2

sending a parametrised tropical curve h to the image of the i th unbounded edge under
h. This image is necessarily a single point. The cone complex Mtrop

0,n+r has a natural
embedding into a vector space such that the evaluation maps are pulled back from linear
functions [20].

1.3.1. Dimension of a cone The combinatorial type of a tropical curve corresponding to
a point p of R2 ×Mtrop

0,n+r is the data of the corresponding cone σp of Mtrop
0,n+r . Consider

now a parametrised tropical curve of degree �. Assume our tropical curve has valency 3
at all vertices except the vertices supporting one of the first n marked points {q1, . . . , qn}
which are 
i + 2 valent for 
i non–negative integers.
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Lemma 1.3.1. There is an equality

dim(σp) = r − 3 −
∑

i

(
i − 3)

Proof. The dimension of a cone in Mtrop
0,n is the number of bounded edges in a tropical

curve of the corresponding combinatorial type. We induct on the number of vertices.
If there is a single vertex then there are no interior edges, r coincides with the valency

and the equality reads

0 = r − 3 − (r − 3),

so the result is true.
For the inductive step suppose we add a vertex V0 of valency k0 to the graph by

replacing an unbounded edge with a bounded one to V0. This increases dim(σp) by one
because there is one new unbounded edge. The value of r is increased by k0 − 2 and so
the right hand side of our equality increases by one overall. ��

1.4. Tropical counting problem. Recall we have fixed a pair (�◦,k). In this section we
associate a function of q to this data. The function of q is a count of tropical curves with
multiplicity passing through a generic tuple of points.

1.4.1. Passing through points Let p = (p1, . . . , pk) be a tuple of points with pi ∈ R
2.

A parametrised tropical curve h of degree � is said to pass through p with degree k if
h(Ei ) = pi for i = 1, . . . , n and Ei is attached to a vertex of valency at least ki + 2. We
say a parametrised tropical curve h through p of degree � is rigid if h is unique among
its combinatorial type in having this property.

1.4.2. Weighted count of tropical curves For p a generic tuple of points in R
2, let T k

�,p
be the set of rigid parametrised tropical curves of degree � passing through p with
degree k.

Proposition 1.4.1. There is an open dense subset U k
n of Evtrop such that whenever p ∈

U k
n then T k

�,p is a finite set and the valency of the vertex supporting unbounded edge

Ei is ki + 2. Moreover we may choose U k
n such that all parametrised tropical curves

passing through p with degree k are rigid.

In the sequel we assume pi �= p j whenever i and j are distinct without further comment.

Remark 1.4.2. Since there are only finitely many combinatorial types of rigid parametrised
tropical curves of degree �, it is automatic that the set T k

�,p is finite.

Proof. Let T be the set of points inM0,n ×R
2 corresponding to degree � tropical curves

passing through p with degree k. Our task is to show that by choosing Uk
n generically

we may ensure first T = T k
�,p and second each point of T lies in the interior of cones

in which the vertex mapped to marked point pi has valency precisely ki + 2.
Since Mtrop

0,n has finitely many cones, it suffices to identify for each cone σ a dense

open Uσ of Evtrop such that T ∩ σ = T k
�,p ∩ σ and if this set is not empty then the
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combinatorial type of tropical curves corresponding to points in the interior of σ have
valency ki + 2 at the vertex supporting Ei .

We assume marked point qi on � has valency k′
i +2 for every tropical curve associated

to a point in the interior of σ . If a point p of M0,n ×R
2 corresponds to a tropical curve

in T k
�,p then the vertex carrying marked point i must have valency at least ki . Thus we

may assume the vertex of � mapped to pi has valency at least ki . Assuming the set {pi }
of marked points are distinct, Lemma 1.3.1 implies dim(σ ) ≤ N − 3 − ∑

i (ki − 3).
Thinking of σ as a cone embedded in R


, the restriction of Ev to σ then specifies a
linear map R

dim(σ ) → R
2n . For a generic choice of {pi } and for fixed σ whenever σ

contains a point of T this linear map surjects. Rank-nullity gives a lower bound and the
fact k′

i ≥ ki for all i gives the following upper bound

N − 3 −
∑

i

(ki − 3) ≥ N − 3 −
∑

i

(k′
i − 3) ≥ N − 3 −

∑

i

(ki − 3).

from which we deduce k′
i = ki for all i . ��

Definition 1.4.3. Recall notation mV for multiplicities of vertex V defined in Sect. 1.2.3.
Fix p = (p1, . . . , pn) in Uk

n and define

N�,k
trop (q) =

∑

h∈T k
�,p

∏

V ∈V (�)

mV (q).

Define also N�,k
trop (1) = N�,k

trop .

A priori the count N�,k
trop (q) depends on the choice of p. We suppress this dependence

from our notation as it is independent a posteriori.

1.5. Anatomy of tropical curves. We record properties of tropical curves which will be
of later use.

Proposition 1.5.1. The complement of the pointed vertices of a parametrised tropical
curve h in T k

�,p is a union of trees, each with a single unbounded edge.

One may specify a component of this complement by the collection κi of vertices which
lie in its closure. For each κi define a parametrised tropical curve

hi : �i → R
2

as follows. First define �i from h by deleting from � every vertex not in κi , and also
deleting every edge which has at least one end not in κi . The map hi is the restriction of
h to �i .

Proof. All �i are trees by [44, Proposition 4.19]. We are required to show �i has precisely
one unbounded edge which is not contracted by hi . This is because unbounded edges
contracted by hi are the pointed vertices which are deleted in the proposition statement
(see Fig. 2 for an example).

Assume that �i has k contracted unbounded edges and 
 unbounded edges which
are not contracted. The moduli space of parametrised tropical curves with the same
combinatorial type as �i is written σi and has dimension 2k + 
 − 1. Since h was rigid,
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Fig. 2. Left a curve in T (1,0)
�,p for p the two red crosses shown and �◦ = {(1, 0), (−1, 0), (0, 1), (0, −1)}.

Right, the union of trees with a single unbounded edges discussed in Proposition 1.5.1

so is hi . In order for hi to be rigid, the dimension of σi must equal two times the number
of bounded edges. That is,

2k = 2k + 
 − 1.

Thus there is precisely one unbounded edge which is not contracted. ��

2. Precise Statement of Main Theorem

Fix (�◦,k) as in Sect. 1 and recall notation � for the associated matrix from the same
section. Fixing a lattice direction ρ write nρ for the sum of the lattice lengths of the
vectors in �◦ = {δ1, . . . , δr } of direction ρ. Associated to (�◦,k) is the following data.

(1) Set X� the unique toric surface corresponding under the toric dictionary to the fan
with rays in the direction of the vectors of �◦. See [18] for the toric dictionary.

(2) Set β� the unique curve class on X� whose intersection with the boundary divisor
corresponding to the ray ρ is nρ .

We consider X� as a logarithmic scheme with the divisorial logarithmic structure from
its toric boundary.

2.1. Logarithmic Gromov–Witten Invariants. The moduli space parametrising (r + n)-
pointed, genus g stable maps to X� of degree β� with the tangency to the toric bound-
ary in the final r markings given by the vectors δi , i = 1, . . . r is not proper. The
space of stable logarithmic maps of type � written Mg,� = Mlog

g,�(X�|∂ X�, β�) is a
compactification [1,15,29]. In the relative situation, such a moduli space exists for any
logarithmically smooth proper morphism X → S.

2.1.1. Moduli of curves Writing Mg,m for the moduli space of stable genus g curves
with m marked points. This space comes equipped with universal curve p : C → Mg,m .
Since under the hypotheses of the introduction m = n + r > 2, there is a forgetful
morphism

π : Mg,� → Mg,n+r .

The moduli space of stable curves carries two flavours of tautological bundle of import
to us.
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• The Hodge bundle Eg = p�ωp where ωp is the relative dualising sheaf of p. We
write λg = cg(Eg).

• NoteMg,n+r carries n+r tautological sections identifying the marked points. Denote
the first n sections as s1, . . . , sn and define

ψi = c1(s
�
i ωp).

Both ψi and λg can be pulled back along π to define tautological classes on the moduli
space of stable logarithmic maps.

Remark 2.1.1. The ψi and λg classes on the moduli space of logarithmic stable maps
can instead be defined directly as Chern classes of tautological bundles on Mg,�. These
definitions are equivalent: see [38, Proposition 3.4] for the case of ψi classes.

For the λg class, we will argue that the Hodge bundle on Mg,� coincides with the
pullback of the Hodge bundle on Mg,n+r along π . Indeed write q : C → Mg,� for the
domain universal curve and p′ = π� p : π�C → Mg,� for the pullback of the universal
curve from the moduli of stable curves. There is a stabilisation mapstab : C → π�C over
Mg,�. In this notation, the promised identification of Hodge bundles is an isomorphism
between R1 p′

�Oπ�C and R1q�OC . The identification is immediate from two facts: first
the five term exact sequence associated to the relative Leray spectral sequence for the
functors stab� and p′

�; second properties of stabilisation for a family of prestable curves
[57, TAG 0E8A].

2.1.2. Evaluation maps For each of the n + r marked points {q} there is a tautological
morphism

evq : Mg,� → X�

called the evaluation morphism associated to q. This morphism sends a stable logarithmic
map to the image of q in X�. Write ev1, . . . ,evn for evaluation maps at the first n
sections.

2.1.3. Invariants The moduli space Mg,� carries a virtual fundamental class
[
Mg,�

]vir
allowing us to define logarithmic Gromov–Witten invariants. We will consider the fol-
lowing descendant logarithmic Gromov–Witten invariants with a λg insertion.

Nk
g,� =

∫

[Mg,�]vir
(−1)gλg

∏

i

ψ
ki
i ev�

i (pt).

2.2. Main theorem. We are now ready to state our main theorem.

Theorem 2.2.1 (Theorem A). Set q = eiu . There is an equality

∑

g≥0

N k
g,�u2g+r−2−∑

i ki = N�,k
trop (q).
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Remark 2.2.2. Bousseau [5] proved a tropical correspondence result for integrals of the
form

∫

[Mg,�]vir
(−1)g−g�λg−g�

∏

i

ev�
i (pt).

We provide a new proof of the special case g� = 0 of Bousseau’s result: set k to be the
zero vector in Theorem A. Both our proof and Bousseau’s work proceed by reducing
to computing vertex contributions. Bousseau computes vertex contributions through a
consistency argument. We are able to handle descendants because our computation of
the vertex contributions in Sects. 4 and 5 involves intersection theory on the moduli space
of stable curves. Furthermore, in this case, the vertex contributions are of the same form
for g� �= 0, so the same technique can be used to reprove Bousseau’s general result.

3. Decomposition and Gluing

Fix once and for all a generic choice of points p inR2. By generic we mean p ∈ Uk
n from

Proposition 1.4.1. The arguments of this section follow [5] and proceed in the following
steps.

(1) Use the tropical curves in T k
�,p to build a toric degeneration of X�, see Sect. 3.1.

(2) Appeal to the decomposition formula of [2] to turn a computation on the central
fibre of this degeneration into a sum over the tropical curves, see Sect. 3.2.

(3) Use the gluing theorem of [53] to decompose the contribution of each tropical curve
as a product of contributions from each vertex. See Sect. 3.4.

3.1. Toric degeneration. Following [5, 4.2], [49, Proposition 3.9] and [38, Lemma 3.1],
the set of tropical curves T k

�,p determine a polyhedral decomposition P of R2 satisfying

• the asymptotic fan of P is the fan of X�.
• The image of the vertices of any h : � → R

2 in T k
�,p are vertices of P and the

image of any edges of h are a union of edges of P .

Moreover by rescalingR2, we can assumeP to be an integral polyhedral decomposition.
This determines a degeneration

ν : XP → A
1

with general fibre X� and special fibre X0 = ∪V XV a union of components indexed
by vertices of the decomposition P . Since ν is toric, equipping XP and A

1 with the
divisorial logarithmic structures from their respective toric boundaries, makes ν into a
logarithmically smooth morphism.

Restricting to the central fibre, there is a logarithmically smooth morphism X0 →
ptN. Write Mg,�(X0/ptN) for the moduli space of stable logarithmic maps, where a
family over a fine and saturated logarithmic scheme S is a commutative diagram

C X0

S ptN
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with C/S a logarithmic curve, and the contact order data is specified by �. The notation
highlights that although the discrete data is unchanged, the target has been degenerated.

Each of the p j determines a section of ν [5, Section 4.2]. The restriction of this
section to the special fibre defines a point

iP0 : (P0
1 , . . . , P0

n ) ↪→ Xn
0 .

Define Mg,�(X0/ptN, P0) as the fibre product

Mg,�(X0/ptN, P0) Mg,�(X0/ptN)

P0 = (P0
1 , . . . , P0

n ) (X0)
n .

iP0

By deformation invariance of logarithmic Gromov–Witten invariants and [17, Example
6.3.4 (a)],

Nk
g,� =

∫

[Mg,�(X0/ptN,P0)] vir
(−1)gλg

n∏

i=1

ψ
ki
i

where [Mg,�(X0/ptN, P0)]vir = i !
P0 [Mg,�(X0/ptN)]vir.

3.2. Decomposition. We now use the decomposition formula of [2] to write Nk
g,� of

integrals indexed by the tropical curves in T k
�,p.

3.2.1. Genus g from genus 0 All tropical curves in T k
�,p have genus zero, however the

decomposition formula provides the integral as a sum over genus g tropical curves.
Given h : � → R

2 ∈ T k
�,p we can build genus g tropical curves h̃ : �̃ → R

2 in two
steps.

(1) Add a genus zero bivalent unpointed vertex to � at each point h−1(V ) for V a vertex
of P .

(2) Distribute an assignment of genus gV ∈ N to the vertices V of �̃ such that
∑

V ∈�̃ gV =
g.

We call the resulting set of parametrised tropical curves T g,k
�,p.

3.2.2. Maps marked by h̃ Not all rigid parametrised tropical curves lie in T g,k
�,p. For any

rigid, genus g parametrised tropical curve h̃ : �̃ → R
2 passing through p, an n-pointed,

genus g stable logarithmic map marked by h̃ is the following data.

(1) An n-pointed genus g stable logarithmic map f : C/ptM → X0/ptN of type �

passing through P0.
(2) For each vertex V ∈ V (�̃), an ordinary stable map fV : CV → X�V of class β�V

with marked points xδ for any δ ∈ �V such that fV (xδ) ∈ Dδ , where Dδ is the toric
divisor dual to δ.
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These are subject to the following requirements. The underlying curve of C is isomorphic
to the curve given by gluing the curves CV along the points xδ according to �̃. Moreover,
under the isomorphism above, the scheme-theoretic morphism C → X0 obtained by
gluing the morphisms fV agrees with the underlying morphism of f .

The moduli space of n-pointed genus g stable logarithmic maps marked by h̃, denoted

Mh̃
g,� is a proper Deligne–Mumford stack with a natural perfect obstruction theory and

a forgetful morphism

ih̃ : Mh̃
g,� → Mg,�(X0/ptN, P0).

3.2.3. From maps marked by h̃ to Gromov–Witten invariants For each h̃ ∈ T g,k
�,p define

N h̃,k
g,� =

∫

[Mh̃
g,�]vir

(−1)gλg

n∏

i=1

ψ
ki
i

where we abuse notation by writing λg = i�
h̃
λg and ψi = i�

h̃
ψi . The decomposition

formula of [2] tells us that

Nk
g,� =

∑

h̃

nh̃

|Aut(h̃)| N h̃,k
g,�.

Here nh̃ denotes the smallest positive integer such that h̃ has integral vertices after
being rescaled by a factor of nh̃ . The number |Aut(h̃)| is the order of the group of
automorphisms of the parametrised tropical curve h̃.

Proposition 3.2.1. There is an equality of rational numbers

N k
g,� =

∑

h̃∈T g,k
�,p

N h̃,k
g,�.

Proof. Any h̃ ∈ T g,k
�,p is a rigid parametrised tropical curve. Since P is chosen to be

integral all such curves have nh̃ = 1. Only tropical curves in T g,k
�,p contribute because all

other rigid tropical curves have positive Betti number. The presence of the λg insertion
ensures that such tropical curves do not contribute, see [5, Lemma 8]. Finally, there are
no automorphisms of h̃ because it is rational. ��

3.3. Vertex contribution. Let h̃ : �̃ → R
2 be an element of T g,k

�,p, there are four types

of vertices of �̃.

(1) Trivalent unpointed vertices, coming from �, we call the set of these V 3(�̃).
(2) Bivalent pointed vertices, coming from �, we call the set of these V 2p(�̃).
(3) Bivalent unpointed vertices, not coming from �, we call the set of these V 2(�̃).
(4) m-valent (m ≥ 3) pointed vertices, coming from �, we call the set of these Vmp(�̃).
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Recall �◦
V denotes the balanced multiset of vectors arising from edges adjacent to V .

Write �V for the matrix whose columns are the vectors vV,E for E any edge adjacent to
V . Just as in Sect. 2, this determines a toric surface X�V , a curve class β�V and tangency
conditions for β�V with respect to the toric boundary. If the elements of �◦

V do not span
R

2, replace X�V with some toric compactification, the choice is unimportant.
Recall from Proposition 1.5.1 that the complement of the pointed vertices are trees

with a single unbounded edge. Consequently we may choose a consistent orientation
from pointed vertices to the unbounded edges. We now fix this orientation without further
comment.

3.3.1. Trivalent unpointed contribution Let V be an unpointed trivalent vertex of �̃.
For our fixed orientation X�V has two divisors oriented inwards D1, D2 with associated

edges E in,1
V , E in,2

V and one oriented outwards Dout. Let MgV ,�V be the moduli space
of stable logarithmic maps to X�V of genus gV and of type �V . We have evaluation
morphisms with image in the toric boundary of X . We can therefore think of these
evaluation maps as morphisms

(evin,1,evin,2,evout) : MgV ,�V → D1 × D2 × Dout.

Define the trivalent unpointed contribution

NgV ,V =
∫

[MgV ,�V ]vir
(−1)gV λgV ev�

in,1(ptD1
)ev�

in,2(ptD2
).

3.3.2. Bivalent pointed contribution Let V be a pointed bivalent vertex of �̃. LetMgV ,�V

be the moduli space of stable log maps to X�V of genus gV and of type �V . We have an
evaluation morphism evV : MgV ,�V → X�V . Define the bivalent pointed contribution

NgV ,V =
∫

[MgV ,�V ]vir
(−1)gV λgV ev�

V (pt).

3.3.3. Bivalent unpointed contribution Let V be a bivalent unpointed vertex of �̃. Let
MgV ,�V be the moduli space of stable log maps to X�V of genus gV and of type �V . The
orientation defines a divisor Din with associated edge Ein. Define the bivalent unpointed
contribution

NgV ,V =
∫

[MgV ,�V ]vir
(−1)gV λgV ev�

in(ptDin
).

3.3.4. m-Valent pointed contribution Let V be an m-valent pointed vertex of �̃ (m ≥ 3).
Since it is a higher valency pointed vertex there is a corresponding ki = m − 2 ≥ 1. Let
MgV ,�V be the moduli space of stable log maps to X�V of genus gV and of type �V .
We have an evaluation morphism evV : MgV ,�V → XV . Define the m-valent pointed
contribution

NgV ,V =
∫

[MgV ,�V ]vir
(−1)gV λgV ev�

V (pt)ψm−2.
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3.4. Gluing the vertices. Proposition 3.2.1 reduces computing Nk
g,� to integrals over

(the virtual class of) Mh̃
g,�. We now express these integrals as a product of the vertex

contributions defined in Sect. 3.3. The intuitive picture is that curves mapping to X�V

glue together to form a map from a curve to X0. In [5], the author proves a gluing
statement at the level of virtual classes on the locus where the curve does not map
into the torus fixed points of any X�V . It is then shown that the λg insertion will kill
any contribution supported away from this locus. This is no longer true by the same
arguments in this situation due to the presence of higher valent vertices; the key being
that [5, Lemma 17] is false in our situation. Instead, we use the gluing formula of [53].
In general, this gluing formula is somewhat different due to allowing target expansions,
but in the special case of degeneration of surfaces with at worst triple points, then the
naive gluing formula holds when cutting along a single edge [53, 6.5.3], and we will use
this to prove that Nk

g,� is equal to a product of the vertex contributions.

3.4.1. Notation For V a pointed vertex of �̃, there is an iV ∈ {1, . . . , n} such that
P0

iV
∈ X�V ⊂ X0. Let M′

gV ,�V
be the fibre product

M′
gV ,�V

MgV ,�V

P0
iV

X�V

evV

As in Sect. 3.1, there is a virtual class [M′
gV ,�V

] vir on M′
gV ,�V

given by Gysin pull-

back which pushes forward to ev∗
V (pt) ∩ [MgV ,�V ] vir. For V an unpointed vertex, set

M′
gV ,�V

= MgV ,�V

Observe that for each E ∈ E f (�̃), there are two natural maps

∏

V ∈V (�̃)

M′
gV ,�V

→ DE

because each edge is adjacent to two vertices. With this observation we build a map

ev(e) :
∏

V ∈V (�̃)

M′
gV ,�V

→
∏

E∈E f (�̃)

D2
E .

For h̃ ∈ T g,k
�,p we define the map:

cut : Mh̃
g,� →

∏

V ∈V (�̃)

M′
gV ,�V

,

by partially normalizing the source curve of a stable logarithmic map marked by h̃ (See
[5, p.36 − 37] for a detailed construction). Let κh̃ : ∏

E∈E f (�̃) DE → ∏
E∈E f (�̃) D2

E be

the diagonal embedding and similarly, for an edge F ∈ E f (�̃), let κF : DF → DF ×DF
the diagonal embedding. We will use the same notation to refer to the cohomology class
associated to the diagonal embedding.
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Proposition 3.4.1. There is an equality of Chow cycles

cut�([Mh̃
g,�] vir) =

⎛

⎜⎝
∏

E∈E f (�̃)

w(E)

⎞

⎟⎠

⎛

⎝ev�
(e)(κh̃) ∩

∏

V ∈V (�̃)

[M′
gV ,�V

] vir

⎞

⎠ .

Proof. We induct on |V (�̃)|. The base case |V (�̃)| = 1 is vacuous. We now assume the
statement is true for |V (�̃)| < m with m ≥ 2. Let the source graph �̃ of h̃ have exactly m
vertices. We cut at a bounded edge F ∈ E f (�̃) yielding two rigid parametrised tropical
curves

h̃1, h̃2 : �̃1, �̃2 → R
2.

Associated to h̃1, h̃2 are moduli spaces Mh̃i
of stable logarithmic maps marked by h̃i .

Consider the following diagram

Mh̃
g,�

Mh̃1
× Mh̃2

∏
V ∈V (�̃1) M

′
gV ,�V

× Mh̃2

∏
V ∈V (�̃1) M

′
gV ,�V

× ∏
V ∈V (�̃2) M

′
gV ,�V

DF × DF DF × DF (DF × DF ) × ∏
E∈E f (�̃1) D2

E × ∏
E∈E f (�̃2) D2

E .

c

evF

cut1×id id×cut2

ev′
F

ev(e)

By [53, p. 45 penultimate sentence] we have

c�([Mh̃
g,�] vir) = w(F)ev�

F (κF ) ∩
(
[Mh̃1

] vir × [Mh̃2
] vir

)
.

By the inductive hypothesis

(cut1)�([Mh̃1
] vir) =

⎛

⎜⎝
∏

E∈E f (�̃1)

w(E)

⎞

⎟⎠ev�

h̃1
(κh̃1

) ∩
∏

V ∈V (�̃1)

[M′
gV ,�V

] vir,

(cut2)�([Mh̃2
] vir) =

⎛

⎜⎝
∏

E∈E f (�̃2)

w(E)

⎞

⎟⎠ev�

h̃2
(κh̃2

) ∩
∏

V ∈V (�̃2)

[M′
gV ,�V

] vir.

Combining with a diagram chase, we get

cut�([Mh̃
g,�] vir) =

⎛

⎜⎝
∏

E∈E f (�̃)

w(E)

⎞

⎟⎠ev�
(e)(κF ⊗ 1 ⊗ 1)ev�

(e)(1 ⊗ κh̃1
⊗ 1)ev�

(e)

(1 ⊗ 1 ⊗ κh̃2
) ∩

∏

V ∈V (�̃)

[M′
gV ,�V

] vir

=
⎛

⎜⎝
∏

E∈E f (�̃)

w(E)

⎞

⎟⎠ev�
(e)(κh̃) ∩

∏

V ∈V (�̃)

[M′
gV ,�V

] vir.

This completes the proof. ��
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Proposition 3.4.2.

N�,k
g,h̃

=
∏

E∈E f (�̃)

w(E)

⎛

⎝
∏

V ∈V 3(�̃)

NgV ,V

∏

V ∈V 2u(�̃)

NgV ,V

∏

V ∈V 2p(�̃)

NgV ,V

∏

V ∈Vmp(�̃)

NgV ,V

⎞

⎠

Proof. The integrand of N h̃,k
g,� can be written

(−1)gλg

n∏

i=1

ψ
ki
i = cut�

⎛

⎝
∏

V ∈V (�̃)

(−1)gV λgV

n∏

i=1

ψ
ki
i

⎞

⎠

since λg classes can be glued [5, Lemma 7] and ψ classes pull back under gluing.
Combining with proposition 3.4.1 we learn,

N h̃,k
g,� =

⎛

⎜⎝
∏

E∈E f (�̃)

w(E)

⎞

⎟⎠

⎛

⎝
∫

∏
V [M′

gV ,�V
] vir

ev�
(e)(κh̃)

∏

V ∈V (�̃)

(−1)gV λgV

n∏

i=1

ψ
ki
i

⎞

⎠

By definition of the virtual class on M′
gV ,�V

we have, abusing notation, that

N h̃,k
g,� =

⎛

⎜⎝
∏

E∈E f (�̃)

w(E)

⎞

⎟⎠

⎛

⎝
∫

∏
V [MgV ,�V ] vir

∏

V ∈Vmp(�̃)∪V 2p(�̃)

ev�
V (pt)ev�

(e)(κh̃)

∏

V ∈V (�̃)

(−1)gV λgV

n∏

i=1

ψ
ki
i

⎞

⎠ (2)

Claim 3.4.3. In Eq. (2) we may replace ev�
(e)(κh̃) by

∏

V ∈V 3(�̃)

ev�
in,1(ptD1

) · ev�
in,2(ptD2

)
∏

V ∈V 2u(�̃)

ev�
in(ptDin

).

After proving Claim 3.4.3 the proposition follows from rearranging equation (2).

Proof. Certainly,

ev�
(e)(κh̃) =

∏

E∈E f (�̃)

(evE
V s

E
)�ptE + (evE

V t
E
)�ptE ,

where V s
E , V t

E are the source and target vertices with respect to the orientation on �̃. By
the induction argument of [5, Proposition 22], only the summand (evE

V t
E
)�ptE contributes

to our integral. A minor adaptation of op cit is required in our situation: we must check
it applies to edges whose source is an m-valent pointed vertex. Indeed, if V ∈ V mp(�̃),
and E an outgoing edge of V = V s , then (evE

V s
E
)�ptE cannot contribute to the integral

because the corresponding term would involve an integral of

λgV ev�
V pt · (evE

V s
E
)�ptE · ψki

but this has degree greater than the virtual dimension of MgV ,�V . ��
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��
Proposition 3.4.2 expresses N�,k

g,h̃
as a product over all of the vertices of �̃, the graph

appearing in h̃ : �̃ → R
2 ∈ T g,k

�,p. On the other hand, we want to relate this to a product

over the vertices of � - the graph underlying an element of T k
�,p. In [5], the author proved

that the contributions from the ‘extra vertices’ of �̃ exactly cancel out the contributions
of the weights coming from the ‘extra edges’ of �̃. More precisely,

Proposition 3.4.4 ([5, Corollary 16]). Assume h̃ : �̃ → R
2 is an element of T g,k

�,p.

(1) If there exists a bivalent vertex V of �̃ with gV �= 0 then

N h̃,k
g,� = 0.

(2) If gV = 0 for all the bivalent vertices V of �, then

N h̃,k
g,� =

⎛

⎝
∏

E∈E f (�)

w(E)

⎞

⎠

⎛

⎝
∏

V ∈V 3(�̃)

NgV ,V

⎞

⎠

⎛

⎝
∏

V ∈Vmp(�̃)

NgV ,V

⎞

⎠ .

4. Logarithmic Gromov–Witten Theory and Double Ramification Cycles

Following Proposition 3.4.4, computing N h̃,k
g,� amounts to working out the m-valent

pointed vertex contibutions defined in Sect. 3.3.4

NgV ,V =
∫

[MgV ,�V ]vir
(−1)gV λgV ev�

V (pt)

as the trivalent contributions of Sect. 3.3.1 are calculated in [5].
These numbers are logarithmic Gromov–Witten invariants of a toric surface. In this

section we show these Gromov–Witten invariants are equal to integrals of tautological
classes on Mg,n against a product of double ramification cycles. The crucial step for
this result is using machinery developed in [54, Section 3.4] to turn integrals against the
virtual class of the moduli space of stable logarithmic maps into integrals against the
toric contact cycle, a higher rank generalisation of the double ramification cycle. We
use the same technique to reprove Bousseau’s formula for the trivalent unpointed vertex
contribution.

4.1. The double ramification cycle. Fix an ordered tuple of integers with sum zero
a = (a1, . . . , an). To define the double ramification cycle we study the space of maps to
the unique proper toric variety of dimension one: P1. There is a moduli space Mrub

g,a(P
1)

of equivalence classes of relative stable map to P
1 for which the i th marked point has

contact order ai [39]. Two maps are identified if there is a torus automorphism of P1

carrying one map to the other. There is a forgetful map

π : Mrub
g,a(P

1) → Mg,n

which forgets the map and stabilises the underlying curve. The moduli space Mrub
g,a(P

1)

carries a virtual cycle [Mrub
g,a ]vir [39]. The double ramification cycle DR(a) is the class

π�

(
[Mrub

g,a ]vir
)

∈ A2g−3+n(Mg,n).
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4.2. Toric contact cycle. The toric contact cycle is the analogue of the double ramifi-
cation cycle replacing P

1 by a dimension r toric variety. The contact order of a marked
point is now recorded by an integral vector inZr . The tuple a is replaced by a r ×n matrix
with row sum zero. For us this matrix will always be �V from the previous section.

4.2.1. Rubber stable maps There is a universal compactificationGr
log of an r -dimensional

torus, see [54] for background. This is a stack on the category of logarithmic schemes
and admits every choice of two dimensional toric variety as a subdivision. See [54, Sec-
tion 1.1] for the definition of subdivision. There is a moduli space Mrub

g,�V
(Gr

log) of stable
logarithmic maps to rubber Gr

log with contact data �V tracking stable maps to G
r
log up

to the action of Gr
log, see [54,55].

Remark 4.2.1. The functor Gr
log is not representable by an algebraic stack with loga-

rithmic structure, however the moduli space Mrub
g,�V

(Gr
log) is a Deligne–Mumford stack

with logarithmic structure.

4.2.2. Virtual fundamental class Consider the cartesian diagram,

Mrub
g,�V

(Gr
log) Mg,n

Mrub
g,�V

(Gr
trop) Picg,n × · · · × Picg,n .

0×···×0

The lower horizontal map is the Abel Jacobi section and 0 denotes the section cor-
responding to the trivial line bundle. The fibre product in the bottom right involves r
copies ofPicg,n and is taken overMg,n . The moduli spaceMrub

g,�V
(Gr

log) admits a virtual
fundamental class defined as

[Mrub
g,�V

(Gr
log)]vir := (0 × . . . × 0)![Mrub

g,�V
(Gr

trop)]

where upper shriek denotes refined Gysin pullback. See [39, pp. 22–23] for details in
the case r = 1 and [54, Section 3.3.3] in general.

4.2.3. Toric contact cycle We define the toric contact cycle,

TCg(�V ) := π�([Mrub
g,�V

]vir) ∈ Arg(Mg,n),

where π denotes the stabilization morphism Mrub
g,�V

→ Mg,n . In the literature the toric
contact cycle is sometimes called the double double ramification cycle, see [31,33,46]
for background and development of the theory. In the sequel we will mean r = 2 when
we say toric contact cycle. Setting r = 1 the toric contact cycle coincides with the double
ramification cycle defined in Sect. 4.1, see [39].
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4.3. Rubber and rigidified geometry. Each column vector δi of �V determines a toric
stratum Yi of X�V for i = 1, . . . , n. The rigid evaluation space is the toric variety

Ev�V := Y1 × · · · × Yn .

In the sequel we assume that the dense torus T = (C�)2 of X�V acts effectively on
Ev�V . Thus we identify the dense torus of X�V as a subtorus T of the dense torus
Ev◦

�V
of Ev�V . There is a smooth toric compactification Evrub�V

of Ev◦
�V

/T such that
the following proposition holds.

Proposition 4.3.1 ([54, Section 3.4, Proof of Theorem B]). After possibly replacing
Ev�V ,Mg,�V ,Mrub

g,�V
by a subdivision, there is a commutative diagram with the right

hand square cartesian,

Mg,�V P Ev�V

Mrub
g,�V

(G2
log) Evrub�V

.

ε

p ev

ε̃ � δ

evrub

Both ε̃ and δ are flat and proper. The morphism δ is toric and on the level of tori restricts
to the quotient map

Ev◦
�V

→ Ev◦
�V

/T .

Corollary 4.3.2. For γ an element of A�(Ev�V ) there is an equality

ε�(p�ev�(γ ) ∩ [Mg,�V ]vir) = ev�
rub(δ�(γ )) ∩ [Mrub

g,�V
(G2

log)]vir.

Proof. From [54, Theorem 3.3.2] we get [Mg,�V ]vir = ε�[Mrub
g,�V

(G2
log)]vir. Now appeal

to the fact that the cartesian square in Proposition 4.3.1 is Cartesian. ��

4.4. Vertex contributions as integrals on Mg,n. Write ptDi
for the class of a point on

Di in A�(Ev�V ).

4.4.1. m-valent pointed vertices We require a preparatory Lemma. Let n be a natural
number and choose a morphism

ϕ : G2
log → G

n−2
log and write ϕ′ = id × ϕ : G2

log → G
n
log.

Lemma 4.4.1. There is a Cartesian square

G
n
log G

2
log

G
n
log/ϕ

′(G2
log) Spec(C).

p

� (3)
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Proof. There is certainly a map

α : Gn
log → G

n
log/ϕ

′(G2
log) × G

2
log

and our task is to verify this map is an isomorphism. For T an arbritary test scheme
equipped with sheaf of monoids MT we have

αT : Hom(T,Gn
log) = �(T, MT )n → Hom(T,Gn

log/ϕ
′(G2

log) × G
2
log).

A point in the set on the right hand side is specified by an element of (h1, h2) ∈
�(T, MT )n × �(T, MT )2, but tuples (h1, h2), (h′

1, h′
2) correspond to the same point

of Hom(T,Gn
log/ϕ

′(G2
log)×G

2
log) if and only if h2 = h′

2 and h−1
1 h′

1 lies in the image of
ϕ′. Elementary group theory shows αT is a bijection and we deduce α is an isomorphism.

��
Lemma 4.4.2. Let V be a pointed m-valent vertex. We then have

π�(ev�
V (pt) ∩ [MgV ,�V (G2

log)]vir) = TCg(�V )

Proof. Since Ev�V is toric we may regard it as a subdivision of Gk
log for some k. The

map δ can then be understood as obtained from a quotient map

δ◦ : Gk
log → G

k
log/G

2
log

by compatible subdivision of source and target.
We now think of δ◦ as the left vertical arrow of the diagram in Eq. (3). Choose a

subdivision of every space in Eq. (3) such that, after replacing Ev�V by a subdivision,
we have a cartesian square

Ev�V W

Evrub�V
Spec(C)

p

� δ . (4)

Here W is a toric variety of dimension two. Replacing P and Mrub
g,�V

(G2
log) by a subdi-

vision, we may concatenate the Cartesian squares in Eqs. 3 and 4,

P Ev�V W

Mrub
g,�V

(G2
log) Evrub�V

Spec(C).

� � .

By abstract nonsense we have built a cartesian square of logarithmic schemes which fits
into the larger diagram

Mg,�V

P W

Mrub
g,�V

(G2
log) Spec(C)

ev1

t

ε
q

ε � r

s



Tropical Refined Curve Counting with Descendants Page 27 of 41   240 

Let pt be the cohomology class dual to a point in the dense torus of W . There is an
equality of Chow cycles

ε�q�pt = s�r�pt = 1.

Applying both sides to [Mrub
g,�V

(G2
log)]vir we obtain

ε�

(
q�pt ∩ ε�[Mrub

g,�V
(G2

log)]vir
)

= ε�q�pt ∩ [Mrub
g,�V

(G2
log)]vir = [Mrub

g,�V
(G2

log)]vir,
where the first equality is from the projection formula. To complete the proof, push this
formula forward to Mg,n along the map

π ′ : Mrub
g,�V

(G2
log) → Mg,n

and observeπ = π ′◦ε and by use of [54, Theorem 3.3.2] we also have ε�[Mrub
g,�V

(G2
log)]vir

= t�[Mg,�V ]vir. ��

4.4.2. Trivalent unpointed vertices

Lemma 4.4.3. Let V be a trivalent unpointed vertex. Let �v1 and �v2 denote the primitive
generators of the rays corresponding to D1 and D2.

π�

(
ev�(ptD1

)ev�(ptD2
) ∩ [MgV ,�V (G2

log)]vir
)

= |�v1 ∧ �v2|TCg(�V ),

where π denotes the forget and stabilise morphism.

Proof. The proof involves explicit computation so we fix coordinates. Consider the
morphism

δ : Ev → Evrub.

Restricting to dense tori δ is the quotient map

δ◦ : (C�)3 → (C�)3/(C�)2.

Here the action of (C�)2 is the action of the dense torus of X on its toric boundary strata.
Therefore, on the level of cocharacters the map δ◦ is specified by quotienting by the
column span W of the matrix with rows vi . Passing to a subdivision if necessary, we
may assume Ev is smooth. The cohomology class ptD1

∪ ptD2
is poincare dual to the

closure Z in Ev of V (X − 1, Y − 1). Note Z is just a copy of P1.
Restricting δ◦ or δ to the dense torus in Z yields the map C

� → C
� which factors as

C
� → (C�)3 → C

�.

On the level of cocharacters these maps are

1 �→ (0, 0, 1) and (a, b, c) �→ [(a, b, c)] ∈ Z3/W.

This extends to a map P
1 → P

1 of degree |�v1 ∧ �v2| because this is the factor by which
cocharacters are scaled. It follows from definitions that on the level of cycles

δ�[Z ] = |�v1 ∧ �v2|[P1].
The rest of the proof follows the steps in the proof of Proposition 4.4.2. ��
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4.5. Double ramification and toric contact cycles. We have expressed vertex contribu-
tions as integrals over the toric contact cycle, and it remains to compute these integrals.
In this section we establish Proposition 4.5.5 which asserts that in the presence of a λg
class, the toric contact cycle is a product of double ramification cycles.

4.5.1. The compact type locus Define an open subscheme

j : Mct
g,n ↪→ Mg,n

called the compact type locus parametrising curves whose arithmetic and geometric
genus coincide. The preimage of Mct

g,n in Mrub
g,�V

(G2
log) is denoted k : Mrub,ct

g,�V
(G2

log) ↪→
Mrub

g,�V
(G2

log). Similarly define

kx : Mrub,ct
g,�x

V
(Glog) ↪→ Mrub

g,�x
V
(Glog) and ky : Mrub,ct

g,�
y
V

(Glog) ↪→ Mrub
g,�

y
V
(Glog).

Recall �V is a 2 × n matrix of balanced contact order data with rows �x
V ,�

y
V .

Proposition 4.5.1. There is an equality in the Chow group of Mct
g,n,

j�
(
TCg(�V ) − DRg(�

x
V )DRg(�

y
V )

) = 0.

The proof of Proposition 4.5.1 requires preparatory lemmas. We have maps

π : Mrub
g,�V

(G2
log) → Mg,n, π x : M rub

g,�x
V
(Glog) → Mg,n, π y : Mrub

g,�
y
V
(Glog) → Mg,n .

These maps restrict to define

π : Mrub,ct
g,�V

(G2
log) → Mct

g,n, π x : Mrub,ct
g,�x

V
(Glog) → Mct

g,n, π y : Mrub,ct
g,�

y
V

(Glog) → Mct
g,n .

Consider the diagram

Mrub,ct
g,� (G2

log) Mrub,ct
g,�x (Glog) × Mrub,ct

g,�y (Glog) Mct
g,n × Mct

g,n

Mct
g,n Mct

g,n × Mct
g,n Picctg,n × Picctg,n

π � �πx ×πy 0×0

κ

. (5)

The first horizontal map is the diagonal embedding; the second is the Abel–Jacobi section
on each factor. Define a class

[Mrub,ct
g,� (G2

log)]vir = (0 × 0)![Mct
g,n].

Lemma 4.5.2.

κ�(π x
� [Mrub,ct

g,�x (Glog)]vir × π
y
� [Mrub,ct

g,�y (Glog)]vir) = π�[Mrub,ct
g,� (G2

log)]vir

Proof. Applying [17, Theorem 6.4] to diagram 5 we learn

κ !([Mrub,ct
g,�x (Glog)]vir × [Mrub,ct

g,�y (Glog)]vir) = [Mrub,ct
g,� (G2

log)]vir.
Push this equality forward along the map π to complete the proof. ��
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Lemma 4.5.3. There is an equality

k�[Mrub
g,�V

(G2
log)]vir = [Mrub,ct

g,�V
(G2

log)]vir,
and similarly for kx , ky.

Proof. We prove the statement for k and note kx , ky follow similarly. Consider the
commutative diagram in which all squares are cartesian

Mrub,ct
g,� (G2

log) Mrub
g,�(G2

log)

Mct
g,n × Mct

g,n Mg,n × Mg,n

Mct
g,n Mrub

g,�(G2
trop)

Picctg,n × Picctgn
Picg,n × Picg,n .

k

Observe the map Mct
g,n → Mrub

g,�(G2
trop) is an open immersion, and thus the result

follows from [17, Theorem 6.2 (b)]. ��
Lemma 4.5.4. There is an equality in the Chow group of Mg,n,

j�π�[Mrub
g,�V

(G2
log)]vir = π�[Mrub,ct

g,�V
(G2

log)]vir.
Proof. Note Mrub

g,�(G2
trop) is an open subscheme in a subdivision M̃g,n of Mg,n . We

thus have a commutative diagram,

Mrub
g,�(G2

log) Mrub,ct
g,� (G2

log)

M̃g,n Mct
g,n

Mg,n .

π

� π

k

j

The result now follows combining Lemma 4.5.3 and [57, TAG 0EPD]. ��
Proof of Proposition 4.5.1. By Lemma 4.5.2 we know

π�[Mrub,ct
g,� (G2

log)]vir − π x
� [Mrub,ct

g,�x (Glog)]vir · π
y
� [Mrub,ct

g,�y (Glog)
vir] = 0

in the Chow group of Mct
g,n . Combining with Lemma 4.5.4 this equation becomes

j�
(
π�[Mrub

g,�(G2
log)]vir − π x

� [Mrub
g,�x (Glog)]vir · π

y
� [Mrub

g,�y (Glog)
vir]

)
= 0.

Substituting in the definition of toric contact cycle and double ramification cycle, the
proof is complete. ��
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4.5.2. Connecting toric contact and double ramification cycles The key result of this
subsection follows.

Proposition 4.5.5. There is an equality in the Chow group of Mg,n

λgTCg(�V ) = λgDRg(�
x
V )DRg(�

y
V ).

Proof. Our task is to establish

R = λg
(
TCg(�V ) − DRg(�

x
V )DRg(�

y
V )

) = 0.

Combining the excision sequence

A�(Z) → A�(Mg,n) → A�(Mct
g,n)

with Proposition 4.5.1 we learn there is some class R′ ∈ A�(Z) which pushes forward
to TCg(�V ) − DRg(�

x
V )DRg(�

y
V ). Observe R = λg ∩ ι� R′ = ι�( j�λg ∩ R′). Since

j�λg = 0 [5, Lemma 7,8] we deduce R = 0 and the proof is complete. ��

4.6. Vertex contributions and double ramification cycles. To finish this section we apply
Proposition 4.5.5 to provide a new formula for the vertex contributions introduced in
Sect. 3.3.

Lemma 4.6.1. Let V be a trivalent unpointed vertex and let �v1, �v2 denote the first two
columns of �V .

NgV ,V =| �v1 ∧ �v2 |
∫

MgV ,3

(−1)gV λgV DRgV (�x
V )DRgV (�

y
V )

Proof. Starting with the definition of the left hand side,

NgV ,V =
∫

[MgV ,V ]vir
(−1)gV λgV ev�

in,1(ptD1
)ev�

in,2(ptD2
)

we apply Lemma 4.4.3 and the projection formula to obtain,

NgV ,V = |�v1 ∧ �v2|
∫

MgV ,3

(−1)gV λgV TCgV (�V ).

The result now follows by Proposition 4.5.5. ��
Lemma 4.6.2. We have an equality

NgV ,V =
∫

MgV ,m+1

(−1)gV λgV ψm−2
1 DRgV (�x

V )DRgV (�
y
V ).

Proof. Similar to proof of Lemma 4.6.1, except we apply Lemma 4.4.2 in place of
Lemma 4.4.3. ��
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5. Results from the Theory of Double Ramification Hierarchies

Set d a positive integer and let a,b be tuples of d + 2 integers with sum zero. Write
a0,b0 the vectors formed from a,b by prefixing zero. In this section we evaluate

Ig,d(a;b) =
∫

Mg,d+3

(−1)gλgψ
d
1 DRg(a0)DRg(b0).

Combining with Lemma 4.6.2 for d = m − 2 we have computed the m-valent pointed
vertex contribution NgV ,V .

The geometric input in this computation are the WDVV relations on the Losev–
Manin space [35]. Buryak and Rossi leveraged these equations to study generating
series involving Ig,d(a;b) [8,9]. We use their analysis to understand Ig,d(a;b).

We set up notation. Throughout this section u p,q , pa
b , eiy, eix , ε denote formal vari-

ables and we often write u0,0 = u. The heuristic is to study a function on S1 × S1

expressed as a fourier series

u = u0,0 =
∑

a,b∈Z
pa

b ei(ay+bx) and its derivatives ∂ i
x∂

j
y u = ui, j .

More formally, define a map

T : C[[u�,�, ε]] → C[[p�
�, e±i x , e±iy, ε]] by sending uk1,k2 �→ ∂k1

x ∂k2
y

⎛

⎝
∑

a,b

pa
b ei(ay+bx)

⎞

⎠ .

For g an element of C[[p�
�, ε, e±i x , e±iy]] we write g for its ei0 coefficient considered an

element of C[[p�
�, ε]]. This is the algebraic incarnation of an integration map. Moreover

set T0 : C[[u�,�, ε]] → C[[p�
�, ε]] by composing T with projection to the coefficient of

ei0. The next definitions, motivated by the chain rule, complete our setup,

∂x , ∂y : C[[u�,�, ε]] → C[[u�,�, ε]]

∂x : f �→
∑

k1,k2≥0

uk1+1,k2

∂ f

∂uk1,k2

, ∂y : f �→
∑

k1,k2≥0

uk1+1,k2

∂ f

∂uk1,k2

.

5.1. The quadratic double ramification integrable hierarchy. Buryak and Rossi study
integrals Ig,d(a;b) in the context of integrable hierarchies. We introduce some language
from this area so that we may extract Proposition 5.2.1.

5.1.1. Variational derivative Write W for the subspace of C[[p�
�, ε]] defined by image

of T0. The variational derivative of g in W ⊆ C[[p�
�, ε]] is defined by choosing f in

C[[u�,�, ε]] such that T0( f ) = g. Thinking of g as depending on u and its derivatives in
this way, we may ask how g is affected by changes in ui, j . This information is tracked
with a variational derivative which we define through the formula

δḡ

δu
:=

∑

k1,k2≥0

(−1)k1+k2∂k1
x ∂k2

y
∂ f

∂uk1,k2

.

This definition is independent of the choice of f .
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Lemma 5.1.1. For ḡ ∈ W there is an equality

T

(
δḡ

δu

)
=

∑

a,b∈Z

∂ ḡ

∂pa
b

e−i(ay+bx).

Proof. Recall that a bar over a symbol means take coefficient of ei0. We write g = T0( f ).
Applying the chain rule we learn

∑

a,b∈Z

∂(T0( f ))

∂pa
b

e−i(ay+bx) =
∑

k1,k2≥0

∑

a,b∈Z

∂T (uk1,k2)

∂ pa
b

T

(
∂ f

∂uk1,k2

)
e−i(ay+bx)

=
∑

k1,k2≥0

∑

a,b∈Z
∂

k1
x ∂

k2
y (ei(ay+bx))T

(
∂ f

∂uk1,k2

)
e−i(ay+bx)

=
∑

k1,k2≥0

∑

a,b∈Z
(−i)k1+k2 ak1 bk2 T

(
∂ f

∂uk1,k2

)
e−i(ay+bx)ei(ay+bx).

To complete the proof we establish

T
(
∂k1

x ∂k2
y h

)
=

∑

a,b∈Z
(i)k1+k2 ak1 bk2 T (h) e−i(ay+bx)ei(ay+bx) (6)

for any h ∈ C[[u�,�, ε]], and apply it to the case h = ∂ f
∂uk1,k2

. We will write T (h) =
∑

a,b∈Z ha,bei(ay+bx) so that ∂
k1
x ∂

k2
y h = ∑

a,b∈Z(i)k1+k2 ha,bak1 bk2 ei(ay+bx). Equation
(6) can now be deduced by comparing coefficients of ei(ax+by). ��

5.1.2. The noncommutative Moyal product Let f and g be in C[[u�,�, ε]] and define
the non-commutative Moyal product,

f � g :=
∑

n≥0

∑

k1+k2=n

(−1)k2(iε)n

2nk1!k2! ∂k1
x ∂k2

y ( f )∂k2
x ∂k1

y (g) ∈ C[[u�,�, ε]].

5.1.3. Generating series The integrals Ig,d can be packaged in a generating function

gd =
∑

g≥0

(−ε2)g

(d + 2)!
∑

a1,...,an ,b1,...,bn

∫

Mg,d+3

λgψ
d
1 DRg(0, a1, . . . , ad+2)

DRg(0, b1, . . . , bd+2)

d+2∏

j=1

p
a j
b j

,

considered as an element of C[[p�
�, ε]]. Buryak and Rossi showed that gd lies in the

image of T0. In particular it will make sense to take a variational derivative.
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5.1.4. A result of Buryak and Rossi The variational derivatives of gd are related to the
non-commutative Moyal product through the following theorem.

Theorem 5.1.2 ([9, Theorem 4.1]). There is an equality

∂x
δḡd

δu
= ∂x

(
1

(d + 1)! (u � . . . � u)

)

where there are d + 1 copies of u on the right hand side.

Remark 5.1.3. Integrable hierarchies are systems of differential equations. Originally
such systems arose from studying commuting Hamiltonian flows on a symplectic man-
ifold. The equations in an integrable hierarchy take the form

Differential operator = a certain variational derivative.

For us, as for Buryak and Rossi, we understand the left hand side as a formal symbol.
Buryak has shown that partial cohomological field theories on finite dimensional vector
spaces naturally give rise to such an integrable hierarchy [8].

Let V be the free vector space with basis {ea}a∈Z and define maps V �→ H �(Mg,n)

cg,n(eb1 , . . . , ebn ) = DRg(b1, . . . , bn).

Buryak and Rossi execute a version of Buryak’s construction for a cohomological field
theory on V built from this data. The resulting quadratic double ramification hierarchy
consists of equations

∂u

∂td
= ∂x

δḡd

δu
.

The left hand side is a formal symbol.
Buryak and Rossi therefore understand Theorem 5.1.2 as follows. The equations of

the quadratic double ramification hierarchy coincide with the equations of the hierarchy

∂u

∂td
= ∂x

(
1

(d + 1)! (u � · · · � u)

)
.

This second hierarchy is called the dispersionless noncommutative KdV hierachy.

5.2. Expression for the double ramification integrals. In the remainder of this section
we extract an expression for Ig,d(a;b) recorded in the following proposition.

Proposition 5.2.1. For a1, . . . , ad+1, b1, . . . , bd+1 ∈ Z we have

∑

g≥0

Ig,d(a, b)u2g

= 1

(d + 1)!
∑

σ∈Sd+1

d∏

j=1

cos

(
u

aσ( j+1)(bσ(1) + · · · + bσ( j)) − bσ( j+1)(aσ(1) + · · · + aσ( j))

2

)
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In the sequel given a tuple a = a1, . . . , an define Sa = −∑
i ai . We write a =

(a1, . . . , an, Sa). Applying the map T to the equation of Theorem 5.1.2 and applying
Lemma 5.1.1 yields

∑

g≥0

(−ε2)g

(d + 1)!
∑

a1,...,ad+1,b1,...,bd+1

Ig,d(a,b)

d+1∏

j=1

p
a j
b j

ei(−Say−Sbx) = 1

(d + 1)!T (u � · · · � u).

(7)

Proof of Proposition 5.2.1. We first make the following claim.

Claim 5.2.2.

T (u � · · · � u) =
∑ d∏

j=1

cos

(
u

(
a j+1(b1 + · · · + b j ) − b j+1(a1 + · · · + a j )

2

))

d+1∏

k=1

pak
bk

ei(−Say−Sbx)

where the first sum on the right hand side is over integers a1, . . . , ad+1, b1, . . . , bd+1.
The product on the left is d + 1 times after substituting u = iε.

We prove Claim 5.2 by induction on d. The base case d = 1 is done in [9, Proof of
Theorem 4.1], after using the dilaton equation to remove the ψ class. By definition of
the Moyal product there is an expression for † = T ((u � · · · � u) � u) as

† =
∑

g′≥0

∑

k1+k2=2g′

(−1)k2(iε)2g′

22g′k1!k2! T (∂k1
x ∂k2

y (u � · · · � u))

∑

ad+1,bd+1

(i(bd+1))
k2(i(ad+1))

k1 pad+1
bd+1

ei(ad+1 y+bd+1x)

where we have that the summation range only contributes for even indices because
(u � · · · � u) � u = u � (u � · · · � u). The induction step tells us that T (∂

k1
x ∂

k2
y (u � · · · � u))

introduces the factor of

(
i(

d∑

k=1

bi )

)k1

·
(

i(
d∑

k=1

ai )

)k2

which combines with (−1)k2(i(bd+1))
k2(i(ad+1))

k1 to introduce a factor of

(ad+1(b1 + · · · + bd))k1(−bd+1(a1 + · · · + ad))k2 .



Tropical Refined Curve Counting with Descendants Page 35 of 41   240 

Now we observe that

∑

g′≥0

∑

k1+k2=2g′

(iε)2g′
(ad+1(b1 + · · · + bd))k1(−bd+1(a1 + · · · + ad))k2

22g′k1!k2!

=
∑

g′≥0

(
iε( ad+1(b1+···+bd )−bd+1(a1+···+ad )

2 )
)2g′

(2g′)!

= cos

(
iε(

ad+1(b1 + · · · + bd) − bd+1(a1 + · · · + ad)

2
)

)
.

Note that this is the cosine factor in the statement of the lemma for j = d. It follows
now that after substituting u = iε

† =
∑

a1,...,ad+1,b1,...,bd+1

d∏

j=1

cos

(
u

(
a j+1(b1 + · · · + b j ) − b j+1(a1 + · · · + a j )

2

))

d+1∏

k=1

pak
bk

ei(−Say−Sbx).

This completes the proof of the claim. Proposition 5.2.1 follows from substituting the
formula in the claim into Eq. (7), and taking coefficients. ��

6. Completing Proof of Theorem A

We complete the proof of Theorem A, by combining Proposition 3.4.4 with Lemmas
4.6.1, 4.6.2 and Proposition 5.2.1. Recall our goal is to prove the following theorem.

Theorem 6.0.1 (Theorem A). After the change of variables q = eiu we have the equality

∑

g≥0

N k
g,� u2g−2+|�◦|−∑

i ki =
∑

h∈T k
�,p

∏

V ∈V (�)

mV (q)

6.1. Generating series as sums over tropical curves. The following definitions follow
[5] and are motivated by Lemma 6.1.1. After fixing an orientation on �̃ as in Sect. 3.3.1,
for a trivalent unpointed vertex V ∈ V 3(�̃) define

F3u
V (u) =

∑

g≥0

N ′
g,V u2g+1 :=

∑

g≥0

Ng,V w(E in,1
V )w(E in,2

V )u2g+1

and for an m-valent pointed vertex V with m ≥ 3 define

Fmp
V (u) :=

∑

g≥0

Ng,V u2g.
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Lemma 6.1.1.

∑

g≥0

N k
g,�u2g−2+|�◦|−∑

i ki =
∑

h∈T k
�,p

⎛

⎝
∏

V ∈V 3(�)

F3u
V (u)

⎞

⎠

⎛

⎝
∏

V ∈Vmp(�)

Fmp(u)

⎞

⎠

Proof. Observe first that by definition

� :=
∑

g≥0

Nk
g,�u2g−2+|�◦|−∑

i ki =
∑

g≥0

∑

h̃∈T g,k
�,p

N h̃,k
g,�u2g−2+|�◦|−∑

i ki

By Proposition 3.4.4 we know

N h̃,k
g,� =

⎛

⎝
∏

E∈E f (�)

w(E)

⎞

⎠

⎛

⎝
∏

V ∈V 3(�̃)

NgV ,V

⎞

⎠

⎛

⎝
∏

V ∈Vmp(�̃)

NgV ,V

⎞

⎠

whenever h̃ is a parametrised tropical curve with all bivalent vertices having genus 0.
Thus we may rewrite

� =
∑

g≥0

∑

h̃∈T g,k
�,p :

gV =0 ∀ V ∈V 2(�̃)

⎛

⎝
∏

E∈E f (�)

w(E)

⎞

⎠

⎛

⎝
∏

V ∈V 3(�̃)

NgV ,V

⎞

⎠

⎛

⎝
∏

V ∈Vmp(�̃)

NgV ,V

⎞

⎠ u2g−2+|�◦|−∑
i ki .

Since every tropical curve in T g,k
�,p has |�◦| − 2 − ∑

i ki unpointed trivalent vertices we
learn,

� =
∑

g≥0

∑

h̃∈T g,k
�,p :

gV =0 ∀ V ∈V 2(�̃)

⎛

⎝
∏

V ∈V 3(�̃)

N ′
gV ,V u2gV +1

⎞

⎠

⎛

⎝
∏

V ∈Vmp(�̃)

NgV ,V u2gV

⎞

⎠ .
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Now we have,

� =
∑

h∈T k
�,p

∑

g≥0

∑

gV :∑
gV =g

⎛

⎝
∏

V ∈V 3(�)

N ′
gV ,V u2gV +1

⎞

⎠

⎛

⎝
∏

V ∈Vmp(�)

NgV ,�V u2gV

⎞

⎠

=
∑

h∈T k
�,p

⎛

⎜⎜⎝
∑

g1≥0

∑

g1(V ):∑
g1(V )=g1

∏

V ∈V 3(�)

N ′
g1(V ),V u2g1(V )+1

⎞

⎟⎟⎠

⎛

⎜⎜⎝
∑

g2≥0

∑

g2(V ):∑
g2(V )=g2

∏

V ∈Vmp(�)

Ng2(V ),V u2g2(V )

⎞

⎟⎟⎠

=
∑

h∈T k
�,p

⎛

⎝
∏

V ∈V 3(�)

F3u
V (u)

⎞

⎠

⎛

⎝
∏

V ∈Vmp(�)

Fmp(u)

⎞

⎠

completing the proof. ��

6.2. Formulae for vertex contributions. The right hand side of Lemma 6.1.1 resembles
the right hand side of Theorem A. We have formulae for the summands on the right hand
side.

Corollary 6.2.1. Let V be an unpointed trivalent vertex with �◦
V = {v1, v2, v3}. After

the change of variables q = eiu we have

F3u
V (u) = (−i)

(
q

|v1∧v2 |
2 − q− |v1∧v2 |

2

)

Proof. By Lemma 4.6.1 we have that

F3u
V (u) =

∑

g≥0

|v1 ∧ v2|
∫

Mg,3

(−1)gλgV DRg(�
x
V )DRg(�

y
V )u2g+1

By combining the dilaton equation with Proposition 5.2.1, or explicitly [9, Theorem
2.1], this is equal to

2
∑

g≥0

(−1)g|v1 ∧ v2|2g+1

22g+1(2g + 1)! u2g+1 = 2 sin

(
u

( |v1 ∧ v2|
2

))
.

After the substituting q = eiu this gives the result. ��
For an m-valent pointed vertex with m ≥ 3 write the multiset

�◦
V = {δV

1 , . . . , δV
m }.
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Corollary 6.2.2. After the change of variables q = eiu we have

Fmp
V (u) = 1

2m−2(m − 1)!
∑

σ∈Sm−1

m−2∏

j=1

⎡

⎣δV
σ( j+1) ∧

j∑

l=1

δV
σ(l)

⎤

⎦

+

.

Proof. Follows from Proposition 5.2.1 by comparing coefficients of powers of u, and
identifying d = m − 2. ��

Lemma 6.2.3 relates the formulae of Corollary 6.2.2 to the tropical curve multiplicity
defined in Sect. 1.2.

Lemma 6.2.3. There is an equality

Fmp
V (u) = 1

(m − 1)!μm(δV
1 , . . . , δV

m )

.

The proof of Lemma 6.2.3 was communicated to us by Thomas Blomme. We record
definitions before giving a proof. For ω in �m write ω̂ for the unique representative in
the group Sm of permutations of {1, . . . , m} which fixes m. For σ ∈ Sm−1 let Aσ be the
set of cyclic permutations ω ∈ �m , such that for any integer k ≤ m − 1,

max{ω̂(σ (1)), . . . , ω̂(σ (k))} − min{ω̂(σ (1)), . . . , ω̂(σ (k))} = k − 1.

A cyclic permutation ω will be recorded by a unique tuple

(ω̂(m) = m, ω̂(m − 1), ω̂(m − 2), . . . , ω̂(1)).

Write {−1, 1}[ j] for the set of functions ε : {1, . . . , j} → {−1, 1}. There is a bijective
function

T : {1,−1}[ j] → Aid.

To define T we recursively define T1 = (1) and then T
 is (
, T
−1) if ε(
) = −1 and
(T
−1, 
) if ε(
) = 1. We then set T (ε) ∈ Aid to be (m, Tm−2(ε)). It is now possible to
define

Tσ : {1,−1}[ j] → Aσ

by composing T with the action of σ on �n .

Proof. We may rewrite the left hand side as

Fmp
V (u) = 1

2m−2(m − 1)!
∑

σ∈Sm−1

∑

ε

q
1
2

∑m−2
j=1 ε( j)

(
δV
σ( j+1)

∧∑ j
l=1 δV

σ(l)

)

.

where the second sum is over functions ε ∈ {1,−1}[ j]. We now claim that for fixed σ

∑

ε

q
1
2

∑m−2
j=1 ε( j)

(
δV
σ( j+1)

∧∑ j
l=1 δV

σ(l)

)

=
∑

ω∈Aσ

q
1
2 k(ω).
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Indeed,

m−2∑

j=1

ε( j)

⎛

⎝δV
σ( j+1) ∧

j∑

l=1

δV
σ(l)

⎞

⎠ = k(Tσ (ε)).

Thus we may write

Fmp
V (u) = 1

2m−2(m − 1)!
∑

σ∈Sm−1

∑

Aσ

q
1
2 k(ω)

= 1

2m−2(m − 1)!
∑

ω∈�

q
1
2 k(ω)card{σ |ω ∈ Aσ }.

The number card{σ |ω ∈ Aσ } is independent of ω and so we assume ω = id. Then note
card{σ |ω ∈ Aσ } = 2m−2. We conclude

Fmp
V (u) = 1

(m − 1)!
∑

ω∈�

q
1
2 k(ω)

and the result is proved. ��

6.3. Finishing the proof. In this section we will write μm(δV
1 , . . . , δV

m ) = μV (q).

Proof of Theorem A. Substituting Corollary 6.2.2 and Lemma 6.2.3 into Lemma 6.1.1
then rearranging we learn,

∑

g≥0

Nk
g,�u2g−2+|�◦|−∑

i ki =
∑

h∈T k
�,p

⎛

⎝
∏

V ∈V 3(�)

(−i)(q
m(V )

2 − q− m(V )
2 )

⎞

⎠

·
⎛

⎝
∏

V ∈Vmp(�)

1

(valV − 1)!μV (q)

⎞

⎠

=
∑

h∈T k
�,p

∏

V ∈V (�)

mV (q)

= N�,k
trop (q).

This completes our proof. ��
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