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Abstract: In Constantin and Ramos (Commun Math Phys 275(2), 529–551, 2007),
Constantin and Ramos proved a result on the vanishing long time average enstrophy
dissipation rate in the inviscid limit of the 2D damped Navier–Stokes equations. In this
work, we prove a generalization of this for the p-enstrophy, 1 < p < ∞, sequences
of distributions of initial data and sequences of strongly converging right-hand sides.
We simplify their approach by working with invariant measures on the global attractors
which can be characterized via bounded complete solution trajectories. Then, working
on the level of trajectories allows us to directly employ some recent results on strong
convergence of the vorticity in the inviscid limit.

1. Introduction and Main Results

We consider the two-dimensional damped Navier–Stokes equations

∂t u
ν + (uν · ∇)uν + γ uν + ∇ pν − ν�uν = f ν,

div uν = 0,
(1.1)

in velocity uν = (uν
1, u

ν
2) : R2 ×[0, M) → R

2 and pressure pν : R2 ×[0, M) → R with
stationary right-hand side f ν : R2 → R

2 and constants ν, γ > 0. Then ων := ω(uν) :=
curl uν = ∂x1u

ν
2 − ∂x2u

ν
1 is called the vorticity of uν and formally satisfies

∂tω
ν + uν · ∇ων + γων − ν�ων = gν,

uν = K ∗ ων,
(1.2)

where gν := curl f ν and K (x) := 1
2π

∇⊥ log |x |, x ∈ R
2.

The square of the L2(R2) norm of the vorticity ων(t) at some time t is called enstrophy
and by testing (1.2) with ων(t), one obtains

d

dt
‖ων(t)‖2

L2 + 2γ ‖ων(t)‖2
L2 + 2ν‖∇ων(t)‖2

L2 = (gν, ων(t))L2
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so that −2ν‖∇ων(t)‖2
L2 represents the enstrophy dissipation rate at time t by viscous

effects.
In the inviscid analogue (ν = 0) of (1.2), the so-called damped Euler equations, this
term is not present and it is reasonable to ask if this dissipation rate by viscous effects
vanishes in the inviscid limit (ν → 0) of the Navier–Stokes equations.
Enstrophy and its behaviour in the inviscid limit is an important topic in classical 2D
turbulence theory, see Sect. 9.7 in [15]. An attempt to reconcile aspects of this theory
with the more modern study of the Euler equations was initiated by Eyink [14], see also
[21].
One particularly important and useful notion of solution in this context is that of renor-
malized solutions to the vorticity formulation of the Euler equations, which we are going
to define in our situation in Definition 2.2. These renormalized solutions satisfy a balance
equation for the p-enstrophy, by which we mean the p-th power of the L p(R2) norm of
the vorticity. In the class of vorticity in L∞((0, M); L p(R2)), p ≥ 2, it is well-known
that all weak vorticity solutions to the Euler equations are automatically renormalized
[12,21]. For p < 2, such renormalized solutions can at least be obtained as weak-*
limits in L∞((0, M); L p(R2)) of subsequences of (smooth) exact solutions to the Euler
equations or the Navier–Stokes equations with vanishing viscosity [10,11,21].
In fact, this weak-* convergence has been recently improved in [6,27] to strong conver-
gence in C([0, M]; L p(R2)), 1 ≤ p < ∞. As a consequence, the p-enstrophy dissipa-
tion rate can be seen to vanish in L1(0, M) in the inviscid limit of the full sequence (by
a sub-subsequence argument).

Remark 1.1. Most of the referenced articles in this introduction so far only consider
the standard Euler and Navier–Stokes equations without damping (γ = 0). For weak
solutions to the damped equations, one can generally show the exact same or analogous
results, for which we list the main reasons here:

(i) The standard a priori estimates for the kinetic energy and enstrophy hold analogously
and can even be improved as the damping introduces (further) dissipation to the
system.

(ii) The linearity of the damping term in combination with i) yields that all weak conver-
gence arguments work likewise.

(iii) The linear damping term does not destroy the parabolic structure of the first equation
in the Navier–Stokes equations in vorticity (1.2).

Physically, the termsγ u andγω often arise in the study of large scale two-dimensional
oceanic or atmospheric models describing friction forces. As an example which is very
similar to the damped Euler equations, we refer to the Stommel–Charney model of the
gulf stream considered in [1] and thoroughly derived in Sect. 5.2 of [28].
In the above mentioned references, the final time M is typically fixed. Here, however,
likewise to [8] and the related work [9] on the surface quasi-geostrophic equations, we
do not study the inviscid limit on a finite time interval, but study it in the stationary
situation that is obtained by first considering long times averages. More precisely, in [8],
Constantin and Ramos proved that the long time average of the enstrophy dissipation
rate of the 2D damped Navier–Stokes equations vanishes in the inviscid limit, i.e.,

lim
ν→0

ν lim sup
M→∞

1

M

∫
R2

|∇ων |2 dx dt = 0. (1.3)

under the assumptions of f, u0 ∈ (W 1,1 ∩ W 1,∞)(R2) being independent of ν, weakly-
divergence free and γ > 0 being a positive constant.
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Our main result generalizes this for the p-enstrophy, 1 < p < ∞, and relaxes the
assumptions. We will comment more on this right after stating the main result in the
following theorem. Beforehand, we define the space

Eq := {F = (F1, F2) ∈ L2(R2) : F is weakly divergence-free and curl F ∈ Lq(R2)}
(1.4)

for every 1 ≤ q ≤ ∞. Note that Eq is a Banach space with norm ‖F‖Eq := ‖F‖L2 +
‖ curl F‖Lq , F ∈ Eq . On the space E1 ∩ Ep, 1 < p ≤ ∞, we consider the norm
‖ · ‖E1∩Ep := ‖ · ‖E1 + ‖ · ‖Ep .

Theorem 1.2. Let 1 < p < ∞ and γ > 0 be fixed. Consider a bounded family
( f ν)ν>0 ⊂ E1 ∩ Er with r = max{2, p}, where (curl f ν)ν>0 is precompact in Lr (R2).
For every ν > 0 denote by {Sν(t)}t≥0 : E1 ∩Ep → E1 ∩Ep the solution semigroup of the
associated damped Navier–Stokes equations (1.1). Moreover, let (μν

0)ν>0 be a family of
Borel probability measures on E1 ∩ Ep satisfying

∫
E1∩Ep

‖ω(u0)‖p
L p dμν

0(u0) < ∞ (1.5)

for every ν > 0. Then,

lim
ν→0

lim sup
M→∞

1

M

∫ M

0

∫
E1∩Ep

ν

∫
R2

|∇|ω(Sν(t)u0)| p
2 |2 dx dμν

0(u0) dt = 0. (1.6)

Remark 1.3. (i) In comparison to (1.3) and the assumptions of fixed integrable and
uniformly bounded u0, f with integrable and bounded weak derivatives, here:
(a) We consider the dissipation rate of p-enstrophy by viscous effects (up to a constant

factor) ν‖∇|ω(Sν(t)u0)| p
2 ‖2

L2(R2)
.

(b) For the weakly divergence-free right-hand side f in (1.1), we only require it to
be in L2(R2) with curl in (L1 ∩ Lr )(R2), r = max{2, p}, rather than being in
(W 1,1 ∩ W 1,∞)(R2). Moreover, the right-hand side may depend on ν as long as
( f ν)ν>0 is bounded in E1 ∩ Er and (curl f ν)ν>0 is precompact in Lr (R2).

(c) The enstrophy dissipation rate is not necessarily associated to one fixed initial
datum but is more generally considered in the mean with respect to a probability
distribution on the space of admissible initial data E1 ∩ Ep. In this way, the result
states that the long time averages of the p-enstrophy dissipation rate of a whole
ensemble of weak solutions associated to this distribution of initial data vanishes in
the inviscid limit. Moreover, these distributions of initial data may depend on ν as
long as (1.5) is satisfied. Note that we do not require a bound in ( 1.5) uniformly in
ν. This comes from the fact that in (1.6) we first consider long time averages after
which all arguments to follow take place on the attractor of the system, which, due
to the damping term, can be bounded independently from the viscosity parameter
ν. Note that μν = δu0 (independently of ν > 0) for u0 ∈ E1 ∩ Ep is admissible
and the previous result by Constantin and Ramos corresponds to μν = δu0 for
weakly divergence-free u0 ∈ (W 1,1 ∩ W 1,∞)(R2).

(ii) As indicated in c) in part i) of this remark, the primary role mathematically of the
linear damping lies in providing a bound for the attractor of the damped Navier–
Stokes equations independently of the viscosity parameter ν (but depending on the
fixed damping parameter γ > 0). Therefore, it would be possible in Theorem 1.2
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to also allow for a bounded family (γ ν)ν>0 ⊂ (0,∞) that is bounded away from 0.
However, to keep things a little bit more simple and avoid needing to discuss the limit
of the equations in the parameter γ ν , we make the standing assumption throughout
that

γ > 0 is a fixed positive
constant.

(iii) A recurring theme throughout this article will be the assumption of the initial data
to be in E1 ∩ Ep and the right-hand side to be in E1 ∩ Er with r = max{p, 2}.
This is weaker than assuming p ≥ 2 but only so by a slight margin: Even if 1 <

p < 2, this assumption on the right-hand side will guarantee that the vorticity of
the associated weak solution of the Navier–Stokes equations is instantaneously in
L2(R2), see Lemma 2.9.

The proof of this main theorem follows the same approach as [8] by first considering
measures associated to long time averages for fixed ν > 0 and to then pass on to the limit
(ν → 0). However, we will employ that these measures are necessarily concentrated on
the global attractor of the solution semigroup of the damped Navier–Stokes equations
and use its characterization via bounded, complete (sometimes called ancient) solution
trajectories, which allows us to work on the level of trajectories subsequently. In contrast,
Constantin and Ramos work with what are called statistical solutions in phase space. This
leads to a notion of renormalized stationary statistical solutions and to the adaptation
of some more or less technical arguments of the seminal work [12] on renormalization
theory by DiPerna and Lions to the context of phase space statistical solutions. Also,
stronger assumptions on the right-hand side were made for these constructions as pointed
out in Remark 1.3.

Moreover, by working on the level of trajectories, we may employ some recent
results on the inviscid limit of solutions to the Navier–Stokes equations. In particular,
the improvement to convergence in C([0, M]; L p(R2)), 1 ≤ p < ∞, in the inviscid
limit to renormalized solutions of the corresponding damped Euler equations [6,27],
which we already mentioned above, will be of use.

After this introduction, in Sect. 2, we briefly recall some classical and recent theory
on renormalized solutions of the damped Euler and Navier–Stokes equations and the
inviscid limit. We continue on in Sect. 3 with a discussion on the global attractor of the
damped Navier–Stokes equations based on [3,4,19,20]. Next, in Sect. 4, we glimpse over
a Krylov–Bogolioubov type construction of invariant measures that are concentrated on
the global attractor. In particular, we rely on work in [24]. Finally, in Sect. 5, we prove
the main theorem.

2. Weak and Renormalized Solutions of the Damped Euler and Navier–Stokes
Equations

For 1 ≤ p ≤ ∞ andm ∈ N, we denote by L p(R2) and Wm,p(R2) the standard Lebesgue
and Sobolev spaces of functions on R

2 with values in R or R2, depending on the context.
By L p,∞(R2), we denote the weak L p spaces with seminorms ‖ ·‖L p,∞ , see [18, chapter
1].

Let us also mention here that the subscript loc in our notation for spaces of continuous
functions means that we endow this space with the topology of uniform convergence on
compact intervals, while in the notation for Lebesgue spaces, this denotes integrability
and the topology of convergence on compact subsets.
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We now review some results on the damped Euler and Navier–Stokes equations. We
recall our standing assumption of the damping parameter

γ > 0 being a fixed positive
constant.

We now state the following lemma from [17, Lemma 2.2], which summarizes a few
standard results on the Biot-Savart law. Recall the definition of the spaces Eq , 1 ≤ q ≤
∞, in (1.4).

Lemma 2.1. Let 1 ≤ p < ∞ and F ∈ E1 ∩ Ep. Then F is determined by its curl via the

Biot-Savart law F = K ∗ curl F with kernel K (x) = 1
2π

x⊥
|x |2 ∈ L2,∞(R2). Moreover,

(i) there exists a constant C1 > 0 such that

‖F‖L2,∞ ≤ C1‖K‖L2,∞‖ curl F‖L1 ,

(ii) if p > 1, then F ∈ W 1,p
loc (R2) and there exists a constant C2 = C2(p) > 0 such that

‖∇F‖L p ≤ C2‖ curl F‖L p ,

(iii) if 1 < p < 2, then there exists C3 = C3(p) s.t.

‖F‖L p∗ ≤ C3‖ curl F‖L p with p∗ = 2p

2 − p
.

We next provide some brief motivation for the upcoming definition of renormalized
solutions. In order for (1.2) and its inviscid analogue (ν = 0) to be well-defined in
the sense of distributions, the non-linear term u · ∇ω = div(uω) requires that uω ∈
L1
loc((0, M) × R

2). For ω ∈ (L1 ∩ L p)(R2), Lemma 2.1 and the Sobolev-embedding
theorem yield that

u = K ∗ ω is in

{
L

2p
2−p (R2) : 1 < p < 2

Lq
loc(R

2) for all q ∈ [1,∞) : p ≥ 2

Hence, for 1 < p < 2, uω ∈ L1
loc(R

2) leads to the condition

1

p
+

1
2p

2−p

≤ 1 ⇔ p ≥ 4

3
.

Therefore, the vorticity formulation of the Euler equations has to be interpreted in a
different way when p < 4

3 . The frequently used notion of renormalized solutions is the
one we consider here and define next.
Beforehand, we remark that for the Navier–Stokes equations and any p ≥ 1, in contrast,
the local integrability of uω is generally satisfied due to better a priori estimates being
available thanks to the Laplacian in the equation. The Navier–Stokes equations with
initial vorticity in L1(R2) have been considered in [2,16,17].

Definition 2.2. Let 1 < p < ∞, ω0 ∈ (L1 ∩ L p)(R2), g ∈ (L1 ∩ L p)(R2). Then
ω ∈ Cloc([0,∞); (L1 ∩ L p)(R2)) is called a renormalized solution of the vorticity
formulation of the damped Euler equations with initial data ω0 and right-hand side g if for
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every β ∈ C1(R2), bounded with bounded derivative and vanishing in a neighbourhood
of 0, ∫ ∞

0

∫
R2

β(ω)(∂tϕ + u · ∇ϕ) − γωβ ′(ω)ϕ dx dt +
∫
R2

β(ω0)ϕ(0) dx

= −
∫ ∞

0

∫
R2

β ′(ω)gϕ dx dt,

where ϕ ∈ C∞
c ([0,∞) × R

2) and

u(t, x) = (K ∗ ω(t))(x) for a.e. (t, x) ∈ (0,∞) × R
2.

Remark 2.3. (i) Under a mild decay assumption at infinity, the consistency result
[12, Theorem II.3] states that weak and renormalized solutions coincide when for the
functions in the non-linear termu·∇ω = div(uω), we haveω ∈ L∞((0, M); L p(R2))

and u ∈ L1((0, M);W 1,q
loc (R2)) with 1

p + 1
q = 1. For the (damped) Euler equations,

Lemma 2.1 implies that for u given by the Biot-Savart law, this is generally the case
when p ≥ 2, which has already been noted in [21, Proposition 1].

(ii) It was proved in [11] and [10] that renormalized solutions to the vorticity formulation
of the Euler equations can be constructed as weak-* limits in L([0,∞); L p(R2)),
1 ≤ p < ∞, of solutions of the vorticity formulation of the Navier–Stokes equations
in the inviscid limit. We also state this fact in Theorem 2.7 in the situation that
1 < p < ∞. The weak solutions of the Navier–Stokes equations on the other
hand can be constructed by standard methods such as Galerkin approximations or
approximations by solving related smoothed equations from which, in either case,
the (unique) weak solution to the Cauchy problem inherits several properties that we
state in Theorem 2.4.

Theorem 2.4. Let 1 < p < ∞, u0 ∈ E1 ∩ Ep, f ∈ E1 ∩ Ep and define g := curl f .
Then there exists a unique weak solution u ∈ Cloc([0,∞); E1 ∩ Ep) of the damped
Navier–Stokes equations (1.1) with viscosity ν > 0, initial data u0 and right-hand side
f . Moreover,

– the vorticityω(u) ∈ Cloc([0,∞); (L1 ∩L p)(R2)) is a weak solution of the vorticity
formulation of the damped Navier–Stokes equations (1.2) with initial dataω(u0) and
right-hand side g,
– a.e. on [0,∞), with equality for p ≥ 2,

d

dt

∫
R2

|ω(u)|pdx+γ p
∫
R2

|ω(u)|p dx≤−4ν
p − 1

p

∫
R2

|∇|ω(u)| p
2 |2 dx+ p

∫
R2

gω(u)|ω(u)|p−2 dx, (2.1)

– for all t ≥ 0,

‖u(t)‖2
L2 + 2ν‖∇u‖2

L2(0,t;L2)
≤ ‖u0‖2

L2 +
t

γ
‖ f ‖2

L2

‖ω(u)(t)‖p
L p + 4ν

p − 1

p
‖∇|ω(u)| p

2 ‖2
L2(0,t;L2)

≤ ‖ω(u0)‖p
L p +

t

γ
‖g‖p

L p ,

(2.2)

– for all t ≥ 0 and 1 ≤ q ≤ p (independently of ν > 0!),

‖u(t)‖L2 ≤ e−γ t (‖u0‖L2 − 1

γ
‖ f ‖L2) +

1

γ
‖ f ‖L2 ,

‖ω(u)(t)‖Lq ≤ e−γ t (‖ω(u0)‖Lq − 1

γ
‖g‖Lq ) +

1

γ
‖g‖Lq .

(2.3)
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Theorem 2.5. Let 1 < p < ∞, ω0, g ∈ (L1 ∩ L p)(R2) and consider a renormalized
solution ω ∈ Cloc([0,∞); (L1 ∩ L p)(R2)) of the vorticity formulation of the damped
Euler equations with initial data ω0 and right-hand side g. Then

d

dt

∫
R2

|ω|p dx + γ p
∫
R2

|ω|p dx = p
∫
R2

gω|ω|p−2 dx (2.4)

a.e. on [0,∞).

The weak-* convergence in L∞([0,∞); L p(R2)) of weak vorticity solutions of the
Navier–Stokes equations in the inviscid limit (ν → 0) to renormalized solutions of the
Euler equations was improved recently in [6,27] for 1 < p < ∞, which we state in the
following theorem. We remark that while [6] also treats the case p = 1, this case is still
problematic for our arguments as we sometimes use reflexivity for weak compactness.
Moreover, and perhaps even more importantly, the enstrophy (in-)equality (2.1), which is
usually obtained by an approximation argument and testing (1.2) with |ω|p−2ω (see for
instance [12, Theorem IV.1] and the proof thereof for more details) becomes problematic
in the case p = 1 (for p = 1, |ω|p−2ω does not have any Sobolev regularity in general
even for smooth or smoothed ω).
We note that the results in [6,27] remain true in our case of an additional constant
coefficient damping term (recall Remark 1.1), strongly converging right-hand sides and
in case one considers viscosity ν which converges to some positive number, i.e., better
behaved convergence of Navier–Stokes solutions to Navier–Stokes solutions.

Theorem 2.6. Let 1 < p < ∞, (νk)k∈N ⊂ (0, 1) be a sequence converging to some
ν ≥ 0 and let (uνk

0 )k∈N, ( f νk )k∈N be bounded sequences of initial data and right-hand

sides in E1 ∩ Ep with associated weak solutions (uνk )k∈N as in Theorem 2.4, where νk

is the viscosity constant for every k ∈ N. We suppose that for some uν
0, f ν ∈ E1 ∩ Ep,

ω(uνk

0 ) → ω(uν
0) (k → ∞) in L p(R2)

and for gνk := curl f νk , gν := curl f ν ,

gνk → gν (k → ∞) in L p(R2).

Then, after passing to a subsequence, there exists uν such that

uνk ∗
⇀ uν (k → ∞) in L∞([0,∞); L2(R2)),

ω(uνk ) → ω(uν) (k → ∞) in Cloc([0,∞); L p(R2)),

whereω(uν) satisfies (in the renormalized sense) the vorticity formulation of the damped
Euler (ν = 0) orNavier-Stokes (ν > 0) equationswith initial dataω(uν

0) and right-hand
side gν .

We also state the related main theorem from [11], adapted to our situation. Although
it appears to be weaker than Theorem 2.6, we give the theorem in a slightly improved
and very useful form of only requiring weak convergence of the initial data opposed to
strong convergence as originally stated in [11], which we explain below.
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Theorem 2.7. Let 1 < p < ∞, (νk)k∈N ⊂ (0, 1) be a sequence converging to 0 and let
(uνk

0 )k∈N, ( f νk )k∈N be bounded sequences of initial data and right-hand sides in E1 ∩Ep

with associated weak solutions (uνk )k∈N as in Theorem 2.4, where νk is the viscosity
constant for every k ∈ N. We suppose that for some u0, f ∈ E1 ∩ Ep,

ω(uνk

0 ) ⇀ ω(u0) (k → ∞) in L p(R2)

and for gνk := curl f νk , g := curl f ,

gνk → g (k → ∞) in L p(R2).

Then, after passing to a subsequence, there exists u such that

uνk ∗
⇀ u (k → ∞) in L∞([0,∞); L2(R2)),

ω(uνk )
∗
⇀ ω(u) (k → ∞) in L∞([0,∞); L p(R2)),

where ω(u) satisfies the vorticity formulation of the damped Euler equations in the
renormalized sense with initial data ω(u0) and right-hand side g.

Proof. (sketch) The idea of the proof in [11, Theorem 1.1] is based on the duality
argument by DiPerna and Lions in [12, Theorem II.6] and applies here step by step
in the same way. Therefore, we only sketch the part in their argument where we can
see that weak convergence ω(uνk

0 ) ⇀ ω(u0) (k → ∞) in L p(R2), rather than strong

convergence, suffices. Let q = p
p−1 and denote by φνk ∈ L∞((0, M); Lq(R2)) the

unique weak solution to the backward damped transport-diffusion problem

−∂tφ
νk − νk�φνk − div(φνk uνk ) + γφνk = χ,

φνk (M, ·) = 0,

with right-hand side χ ∈ C∞
c ((0, M) × R

2). Then, following the arguments in step 1

and 2 in the proof of [11, Theorem 1.1], one obtains that a subsequence of (φνk )k∈N,
which we generally do not relabel, converges in C([0, M], Lq

w(R2)) to the solution φ of
the corresponding backward damped transport equation

−∂tφ − div(φu) + γφ = χ,

φ(M, ·) = 0,

where u is the weak-* limit in L∞([0,∞); L2(R2)) of a subsequence of (uνk )k∈N.
Note that if we let ψνk (t, x) = φνk (M − t, x), ψ(t, x) = φ(M − t, x), ũνk (t, x) =
uνk (M − t, x), ũ(t, x) = u(M − t, x) and χ̃(t, x) = χ(M − t, x), then ψνk and ψ solve
the corresponding forward damped transport-diffusion and damped transport problems

∂tψ
νk − νk�ψνk − div(ψνk ũνk ) + γψνk = χ̃ ,

ψνk (0, ·) = 0,

and

∂tψ − div(ψ ũ) + γψ = χ̃ ,

ψ(0, ·) = 0,
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as well as ψνk → ψ in C([0, T ]; Lq
w(R2)). Then we may apply Proposition 1 in [27] (or

alternatively Lemma 3.3 in [6]), both of which imply that by strong convergence of the
initial data ψνk (0, ·) = 0 → 0 = ψ(0, ·) in Lq(R2), we also have strong convergence

ψνk → ψ in C([0, M]; Lq(R2)).

This particularly implies

φνk → φ in C([0, M]; Lq(R2)). (2.5)

Testing the damped Navier–Stokes equations for ωνk with φνk and integrating by parts
yields

∫ M

0

∫
R2

ωνkχ dx dt =
∫ M

0

∫
R2

f νkφνk dx dt +
∫
R2

ω(uνk

0 )φνk (0) dx . (2.6)

Letting ω ∈ L∞([0,∞); L p(R2)) be the weak-* limit of a subsequence of (ωνk )k∈N,
we obtain

∫ M

0

∫
R2

ωχ dx dt =
∫ M

0

∫
R2

f φ dx dt +
∫
R2

ω(u0)φ(0) dx .

From there on, one may again proceed as in step 4 in [11, Theorem 1.1] to show that
ω is indeed a renormalized solution to the vorticity formulation of the damped Euler
equations. ��
Remark 2.8. In the formulation in [11, Theorem 1.1], the strong convergence ω(uνk

0 ) →
ω(uν

0) (k → ∞) in L p(R2) was assumed to have convergence of the integrals
∫
R2 ω(uνk

0 )

φνk (0) dx in (2.6), as it was only known that (φνk )k∈N converges in C([0, M], Lq
w(R2))

to φ. However, having used the later and independently from one another proved Propo-
sition 1 in [27] (or alternatively Lemma 3.3 in [6]), we obtained the strong convergence
(2.5).

Finally, let us close this section with a result on the vorticity of solutions to the Navier–
Stokes equations being instantaneously in L2(R2) with a bound on the corresponding
norm for positive times bounded away from 0, even for initial data of lower integrability.
Our estimates are derived as in the proof of Theorem B in [2] but with the inclusion of
a damping term and a right-hand side g ∈ (L1 ∩ L2)(R2).

Lemma 2.9. Let1 ≤ p < ∞and consider the unique solutionu ∈ Cloc([0,∞); E1∩Ep)

of the damped Navier–Stokes equations with initial data u0 ∈ E1 ∩ Ep, right-hand side
f ∈ E1 ∩ Emax{2,p} and define g := curl f . Then, for fixed t0 > 0, ‖ω(u)(t)‖L2 is
bounded in t ≥ t0 by a constant C = C(t0, γ, ν, ‖g‖L1∩L2 , ‖ω(u0)‖L1∩L p ).

Proof. We first note that if ω(u0) ∈ L2(R2), then the lemma follows immediately from
(2.3). Therefore, we assume ω(u0) ∈ L1(R2) \ L2(R2). In fact, by an approximation
argument, it suffices to consider smooth and compactly supported data u0 and g with

‖ω(u0)‖L2 ≥ λ, (2.7)
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where λ > 0 can be chosen arbitrarily large and will be specified later. Equation (2.1)
then yields

d

dt
‖ω(u)(t)‖2

L2 ≤ −2ν‖∇ω(u)(t)‖2
L2 +

‖g‖2
L2

γ
(2.8)

for t ≥ 0. The right-hand side in (2.3) for q = 1 can be bounded by a constant 1 ≤ c =
c(γ, ‖ω(u0)‖L1 , ‖g‖L1) so that the Nash inequality [26, pp. 935, 936] yields

‖ω(u)(t)‖2
L2 ≤ η‖ω(u)(t)‖L1‖∇ω(u)(t)‖L2 ≤ cη‖∇ω(u)(t)‖L2 ,

for some constant η > 0. Then (2.8) yields

d

dt
‖ω(u)(t)‖2

L2 ≤ − 2ν

c2η2 ‖ω(u)(t)‖4
L2 +

‖g‖2
L2

γ
.

Therefore, to estimate ‖ω(u)(t)‖2
L2 , we consider the corresponding Riccati differential

equation

ẋ = − 2ν

c2η2 x
2 +

‖g‖2
L2

γ
. (2.9)

We remark that generally for a, b > 0 and x0 > 0 large enough such that
√

b
a x0 > 1,

the solution to

ẋ = −ax2 + b, x(0) = x0 (2.10)

is given by

x(t) =
√
b

a
coth(

√
ab(z + t)) ≤

(t≥t0)

√
b

a
coth(

√
abt0) (2.11)

for some z > 0, where coth(s) = e2 s+1
e2 s−1

for s > 0. If x0, a > 0 and b = 0, then the
solution to (2.10) is given by

x(t) = 1

1/x0 + at
≤

(t≥t0)

1

at0
. (2.12)

We now choose a and b to match (2.9) and let λ in (2.7) be large enough so that in both
cases, (2.11) or (2.12) yields the claim. ��

3. Attractors of the Damped Navier–Stokes Equations

The global attractor of the solution semigroup of the damped Navier–Stokes equations on
H without assumptions on the vorticity was constructed in [19]. We recall the necessary
definitions and slightly enhance the attraction and compactness property of the attractor
for L p bounded vorticities. All these arguments blend in with the work in [3,4,19,20].

With exception of Proposition 3.6, the viscosity ν > 0 is fixed and we will not
explicitly note the dependence of the solutions to (1.1), (1.2) on ν.
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Definition 3.1. Let {θ(t)}t≥0 be a semigroup on a complete metric space X . A setU ⊂ X
is called global attractor of {θ(t)}t≥0 if

(i) U is compact in X ,
(ii) U is attracting in the sense that for any bounded set B ⊂ X and every open neigh-

bourhood O of U , there exists t0 = t0(B,O) > 0 such that θ(t)B ⊂ O for all
t ≥ t0,

(iii) U is invariant, that is, θ(t)U = U for every t ≥ 0.

Definition 3.2. Let 1 < p < ∞ and f ∈ E1 ∩ Ep. Then u ∈ Cloc(R; E1 ∩ Ep) is called
complete (or sometimes ancient) solution of the damped Navier–Stokes equations with
right-hand side f if it is a weak solution of the damped Navier-Stokes equations with
right-hand side f on the time-interval [t0,∞) for every t0 ∈ R.

Theorem 3.3. [19]Let {S(t)}t≥0 be the solution semigroup of the dampedNavier–Stokes
equations on

H := {u ∈ L2(R2) : u is weakly divergence-free}
with right-hand side f ∈ H and fixed viscosity ν > 0. Then {S(t)}t≥0 has a global
attractor A.

Moreover, if we let K ⊂ Cb(R; L2(R2)) be the set of complete solution trajectories
of the damped Navier–Stokes equations with right-hand side f that are bounded in
L2(R2), then

A = {u(0) : u ∈ K}. (3.1)

Lemma 3.4. Let K ⊂ Cb(R; L2(R2)) be the set of L2(R2) bounded complete solution
trajectories of the damped Navier–Stokes equations with right-hand side f ∈ H and

fixed viscosity ν > 0 as in Theorem 3.3. Then K is bounded by
‖ f ‖L2

γ
in Cb(R; H),

independently of ν.

Proof. Let u ∈ K and R > 0 s.t. supt∈R ‖u(t)‖L2 ≤ R. Then, for any t ∈ R and
arbitrary s > 0, (2.3) implies

‖u(t)‖L2 ≤ e−γ s
(

‖u(t − s)‖L2 − ‖ f ‖L2

γ

)
+

‖ f ‖L2

γ

≤ e−γ s
(
R − ‖ f ‖L2

γ

)
+

‖ f ‖L2

γ

→ ‖ f ‖L2

γ
(s → ∞)

and we conclude

sup
t∈R

‖u(t)‖L2 ≤ ‖ f ‖L2

γ
.

��
In preparation to the following proposition, for f ∈ E1 ∩ Ep, 1 < p < ∞, with

g := curl f and viscosity ν > 0, we define

Kp := {u ∈ K : sup
t∈R

‖ω(u)(t)‖Lq ≤ ‖g‖Lq

γ
, q ∈ {1, p}}. (3.2)
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Proposition 3.5. Let 1 < p < ∞, f ∈ E1 ∩ Emax{2,p}, define g := curl f and consider
Kp as in (3.2) for fixed viscosity ν > 0. Then, for every bounded set B ⊂ E1 ∩ Ep, the
set

Ap := {u(0) : u ∈ Kp}
is both compact and attracts B w.r.t. ‖ · ‖Ep and the solution semigroup {S(t)}t≥0 of the
damped Navier–Stokes equtions with right-hand side f and viscosity ν.

Proof. We only show the attraction property. The compactness follows similarly. De-
scribing the attraction property in terms of sequences, this means that for an arbitrary
bounded sequence (un0)n∈N ⊂ E1 ∩ Ep and a sequence of times tn → ∞ (n → ∞),
there exists a subsequence of (S(tn)un0)n∈N converging to some u0 ∈ Ap w.r.t. ‖ · ‖Ep .
Step 1: First of all, consider solutions (un)n∈N ⊂ Cloc([−tn,∞); E1∩Ep) of the damped
Navier–Stokes equations satisfying the initial condition un(−tn) = un0 for every n ∈ N.
Then S(tn)un0 = un(0) for every n ∈ N and it suffices to show that (un(0))n∈N converges
w.r.t. ‖ · ‖Ep to an element of Ap.
Since we already know that A is the attractor of {S(t)}t≥0 as a semigroup on H , due to
(3.1), there exists u ∈ K such that for u0 := u(0) ∈ A and a subsequence, which we do
not relabel,

un(0) → u0 (n → ∞) in L2(R2). (3.3)

As (ω(un0))n∈N is bounded in (L1 ∩ L p)(R2), we may also assume due to the bound
(2.3),

ω(un)(0) ⇀ ω(u0) (n → ∞) in L p(R2) (3.4)

and ω(u0) ∈ (L1 ∩ L p)(R2) so that u0 ∈ E1 ∩ Ep.
Step 2: It now remains to show that u ∈ Kp and that we have strong convergence in
(3.4) for which it suffices to show convergence of the norms limn→∞ ‖ω(un)(0)‖L p =
‖ω(u0)‖L p .
Step 2.1: We first argue that u ∈ Kp or that u can be appropriately redefined so on
(−∞, 0). Since u0 ∈ E1 ∩ Ep, u|[0,∞) ∈ Cloc([0,∞); E1 ∩ Ep) is the unique solution
of the damped Navier–Stokes equations as in Theorem 2.4 with this initial datum. Now,
let m ∈ N and repeat the argument with (tn − m)n∈N so that there exists v ∈ K s.t.

S(tn − m)un0 → v(0) (n → ∞) in L2(R2).

Likewise, v(0) ∈ E1 ∩ Ep. Since S(t) : H → H is continuous for every t ≥ 0 [23,
Theorem 7.1],

u0 = lim
n→∞ S(tn)un0 = lim

n→∞ S(m)S(tn − m)un0 = S(m)v(0) = v(m) in L2(R2)

so that v(m) = u0 and by uniqueness of the weak solution,

u(t) = v(t + m), t ≥ 0. (3.5)

By redefining u via (3.5) on [−m, 0), u(−m) = v(0) ∈ E1 ∩ Ep implies that u|[−m,∞)

in Cloc([−m,∞); E1 ∩ Ep) is a solution of the damped Navier–Stokes equations as
in Theorem 2.4 still satisfying (3.3) and (3.4). Since m ∈ N was arbitrary, one can
inductively redefine u and obtain a bounded complete solution u ∈ Cb(R; E1 ∩Ep) with
(3.3) and (3.4).
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The bound on the vorticity in the definition of Kp can then be derived for ω(u) from
(2.3) as in the proof for velocity in Lemma 3.4 so that u ∈ Kp.

Step 2.2: Now we show that we have strong convergence in (3.4). First, we note that
from (3.3) it follows (see the relative energy argument in [23, Theorem 7.1]),

un → u in Cloc([0,∞); L2(R2)) (3.6)

and with (ω(un))n∈N being bounded in Cb([0,∞); (L1 ∩ L p)(R2)), we may assume

ω(un)
∗
⇀ ω(u) (n → ∞) in L∞([0,∞); L p(R2)). (3.7)

As we redefined u inductively earlier for m ∈ N so that

u(−m) = v(0) = lim
n→∞ S(tn − m)un0 = lim

n→∞ S(tn − m)u(−tn) = lim
n→∞ un(−m)

in L2(R2), we can actually assume (3.6), (3.7) to hold on [−m,∞) and ultimately by
induction,

un → u in Cloc(R; L2(R2)) and ω(un)
∗
⇀ ω(u) (n → ∞) in L∞(R; L p(R2)).(3.8)

Now, for every n ∈ N, by (2.4),

‖ω(un)(0)‖p
L p − ‖ω(un)(−tn)‖p

L p e−pγ tn

≤ − 4ν
p − 1

p

∫ 0

−tn
epγ t

∫
R2

|∇|ω(un)| p
2 |2 dx dt

+ p
∫ 0

−tn
epγ t

∫
R2

gω(un)|ω(un)|p−2 dx dt.

(3.9)

As ‖ω(un)(−tn)‖L p = ‖ω(un0)‖L p is bounded in n ∈ N, it follows that
‖ω(un)(−tn)‖p

L pe−pγ tn → 0 (n → ∞).
To treat the two terms on the right-hand side, we first differ between the cases p = 2

and p > 2. By our assumption on the right-hand side, g ∈ Lr (R2) for r = max{2, p},
it is easy to trace the case 1 < p < 2 back to the case p = 2. Case p = 2: From weak-*

convergence (3.8), that is, ω(un)
∗
⇀ ω(u) (n → ∞) in L∞(R; L2(R2)), we obtain

2
∫ 0

−tn
e2γ t

∫
R2

gω(un) dx dt → 2
∫ 0

−∞
e2γ t

∫
R2

gω(u) dx dt (n → ∞).

Due to (2.2), we may also assume ∇ω(un) ⇀ ∇ω(u) (n → ∞) in L2
loc(R; L2(R2)).

Using weak lower semi-continuity of the norm, we obtain for every M > 0,

lim inf
n→∞

∫ 0

−tn
e2γ t

∫
R2

|∇|ω(un)||2 dx dt = lim inf
n→∞

∫ 0

−tn
e2γ t

∫
R2

|∇ω(un)|2 dx dt

≥ lim inf
n→∞

∫ 0

−M
e2γ t

∫
R2

|∇ω(un)|2 dx dt

≥
∫ 0

−M
e2γ t

∫
R2

|∇ω(u)|2 dx dt

=
∫ 0

−M
e2γ t

∫
R2

|∇|ω(u)||2 dx dt
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so that

lim inf
n→∞

∫ 0

−tn
e2γ t

∫
R2

|∇|ω(un)||2 dx dt ≥
∫ 0

−∞
e2γ t

∫
R2

|∇|ω(u)||2 dx dt.

Combining these results yields

lim sup
n→∞

‖ω(un)(0)‖L2 ≤ −2ν

∫ 0

−∞
e2γ t

∫
R2

|∇|ω(u)||2 dx dt + 2
∫ 0

−∞
e2γ t

∫
R2

gω(u) dx dt.

On the other hand, the vorticity ω(u) of the complete trajectory u satisfies (2.1) almost
everywhere on R from which we obtain

‖ω(u0)‖L2 = −2ν

∫ 0

−∞
e2γ t

∫
R2

|∇|ω(u)||2 dx dt + 2
∫ 0

−∞
e2γ t

∫
R2

gω(u) dx dt.

Note that even though the right-hand side in (2.2) depends on the length of the time
interval, the exponential function in the integrals above guarantees their convergence on
(−∞, 0].
We finally arrive at

lim sup
n→∞

‖ω(un)(0)‖L2 ≤ ‖ω(u0)‖L2 ≤ lim inf
n→∞ ‖ω(un)(0)‖L2 .

Case p > 2: We note that as we have boundedness of the initial vorticities (ω(un0))n∈N
in L1(R2), by interpolation, we are also in the situation of the previous case p = 2. This

means that along with weak-* convergence (3.8), that is, ω(un)
∗
⇀ ω(u) (n → ∞) in

L∞(R; L p(R2)), we may also assume ω(un)(0) → ω(u)(0) (n → ∞) in L2(R2). By
Theorem 2.6, this yields strong convergence

ω(un) → ω(u) (n → ∞) in Cloc([0,∞); L2(R2)). (3.10)

As in the arguments before, we can inductively obtain strong convergence on any compact
subset of R, not just of [0,∞), and (3.10) holds in Cloc(R; L2(R2)).
The first term on the right-hand side in (3.9) involving the gradients may again be
estimated in the limit by employing an argument of weak lower-semicontinuity.
For the other term, note that due to boundedness of (ω(un))n∈N inCb(R; (L1∩L p)(R2)),

we may assume that (ω(un)|ω(un)|p−2)n∈N converges weakly-* in L∞(R; L p
p−1 (R2))

to some �. We can then conclude the argument as in the previous case if we can prove
that

� = ω(u)|ω(u)|p−2. (3.11)

Due to (3.10), interpolating between L1(R2) and L2(R2) or L2(R2) and L p(R2), de-
pending on whether p − 1 < 2 or p − 1 ≥ 2, yields

|ω(un)|p−2 → |ω(u)|p−2 (n → ∞) in L∞
loc(R; L p−1

p−2 (R2)).

As we may also assume ω(un)
∗
⇀ ω(u) (n → ∞) in L∞(R; L p−1(R2)) and 1

p−1 +
p−2
p−1 = 1, we can conclude (3.11).

1 < p < 2: In this case, we argue that we are actually in the situation of the case
p = 2, i.e., we have strong convergence ‖ω(un)(0)‖L2 → ‖ω(u0)‖L2 (n → ∞), which
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along with a uniform L1 bound implies ‖ω(un)(0)‖L p → ‖ω(u0)‖L p (n → ∞) as
desired.
As seen in Lemma 2.9, ω(un)(t) is instantaneously bounded in L2(R2) for t bounded
away from the initial time −tn . Therefore, assuming tn > 1 for all n ∈ N and simply
using the sequence t̃ n := tn − 1, n ∈ N, instead of (tn)n∈N in (3.9) and the arguments
to follow, we obtain as in the case p = 2 that ‖ω(un)(0)‖L2 → ‖ω(u0)‖L2 (n → ∞)

as desired. ��
Proposition 3.6. We assume that p ≥ 2. Let (νk)k∈N ⊂ (0, 1) be a sequence converging
to 0 and let ( f νk )k∈N be a bounded sequence in E1 ∩ Ep. Suppose that there exists

f ∈ E1 ∩ Ep s.t. for gνk := curl f νk and g := curl f ,

gνk → g (k → ∞) in L p(R2).

Consider a bounded sequence (uνk )k∈N ⊂ Cb(R; E1 ∩Ep) of complete weak solutions of

the damped Navier–Stokes equations with right-hand sides ( f νk )k∈N with νk being the
viscosity parameter associated to uνk for every k ∈ N. After passing to a subsequence,
there exists u ∈ L∞([0,∞); E1 ∩ Ep) whose vorticity ω(u) satisfies the damped Euler
equations with right-hand side g in the renormalized sense and

ω(uνk ) → ω(u) (k → ∞) in Cloc([0,∞); L p(R2)). (3.12)

Proof. (sketch) We follow the proof of Proposition 3.5. Due to boundedness of
(uνk (0))n∈N in E1 ∩ Ep, there exists u0 ∈ E1 ∩ Ep s.t. after passing to a subsequence,

uνk (0) ⇀ u0 (k → ∞) in L2(R2) and ω(uνk )(0) ⇀ ω(u0) (k → ∞) in L p(R2).

By Theorem 2.7, after passing to yet another subsequence, there exists u such that

uνk ∗
⇀ u (k → ∞) in L∞([0,∞); L2(R2)),

ω(uνk )
∗
⇀ ω(u) (k → ∞) in L∞([0,∞); L p(R2)), (3.13)

where ω(u) is a renormalized solution of the damped Euler equations with initial data
ω(u0) and right-hand side g. Then, in order to obtain the strong convergence (3.12)
using Theorem 2.6, it suffices again to derive strong convergence of the initial data

ω(uνk )(0) → ω(u0) in L p(R2). (3.14)

For this, we consider a sequence tk → ∞ and note that (3.9) holds again, so that by
dropping the viscous term we obtain

‖ω(uνk )(0)‖p
L p − ‖ω(uνk )(−tk)‖p

L p e−pγ tk ≤ p
∫ 0

−tk
epγ t

∫
R2

gω(uνk )|ω(uνk )|p−2 dx dt.

Moreover, by a diagonal sequence argument, the weak-* convergences in (3.13) can be
obtained on the domain R instead of just [0,∞) and ω(u) is a (complete) renormalized
solution of the damped Euler equations onRwith right-hand side g, satisfying ω(u)(0) =
ω(u0).
From there on, we can argue as in the cases p = 2 and p > 2 in the proof of Proposition
3.5 by replacing (2.1) with (2.4) to obtain (3.14). ��
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Proposition 3.6 is going to be useful in combination with the following lemma.

Lemma 3.7. Let 1 < p < ∞, f ∈ E1 ∩ Emax{2,p} and define g := curl f . Then,
Ap ⊂ A2 andKp ⊂ K2 (see Proposition 3.5 for the definitions ofAp,A2 andKp,K2)
so that in particular every u ∈ Kp satisfies

sup
t∈R

‖ω(u)(t)‖L2(R2) ≤ ‖g‖L2

γ
.

Proof. Let B be a bounded subset of E1 ∩ Ep and consider the solution semigroup
{S(t)}t≥0 associated to the right-hand side f and some fixed viscosity ν > 0. Since
g ∈ L2(R2), S(t)B is bounded in L2(R2) for positive t bounded away from 0 by Lemma
2.9. Therefore, A2 attracts B for {S(t)}t≥0 w.r.t. ‖ · ‖E2 . If we particularly consider the
set B = Ap, attraction of A2 and invariance of Ap w.r.t. {S(t)}t≥0 already imply

Ap ⊂ A2.

Using the definition of Ap,A2 and estimate (2.3), one also obtains Kp ⊂ K2 from this.
��

4. Long Time Average Invariant Measures

In this section, we are concerned with the construction of invariant measures from
probability distributions of initial data via long time averages.
The main theorem of this section, Theorem 4.1, is essentially an application of Theorem
7 in [24]. We remark, however, that the stated assumptions are note quite satisfied here.
The major discrepancy comes from working on R

2, where E1 �⊂ Ep: We showed in
Proposition 3.5 that Ap is compact and attracting w.r.t. ‖ · ‖Ep instead of ‖ · ‖E1∩Ep ,
while we would like to regard the solution semigroup of the damped Navier–Stokes
equations {S(t)}t≥0 as a semigroup on E1 ∩ Ep.
Nevertheless, the proof of [24, Theorem 7] still applies and we give it here for the
convenience of the reader.

Theorem 4.1. Letμ0 be a Borel probability measure on E1 ∩Ep. Then, for any sequence

t j → ∞ ( j → ∞), there exists a subsequence t j
k → ∞ (k → ∞) and a Borel

probability measure μ on Ep, concentrated on Ap, which is invariant w.r.t. {S(t)}t≥0
(when μ is restricted to E1 ∩ Ep) s.t. for any ϕ ∈ C(Ep),

lim
k→∞

1

t jk

∫ t j
k

0

∫
E1∩Ep

ϕ(S(t)u0) dμ0(u0) dt =
∫
Ap

ϕ(u) dμ(u). (4.1)

Proof. We begin the proof by making some observations on measurability.
First of all, we note that E1 ∩ Ep is a Borel subset of (Ep, ‖ · ‖Ep ) since it can be written
as

E1 ∩ Ep =
⋃
l∈N

⋂
m∈N

{u ∈ Ep : ‖ω(u)‖L1(Bm ) ≤ l},

which is a countable union of countable intersections of closed sets in (Ep, ‖ · ‖Ep ).
Moreover, on E1 ∩ Ep, the Borel-σ -algebras generated by the standard norm ‖ · ‖E1∩Ep
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on that space and the subspace norm ‖ · ‖Ep coincide: Since ‖ · ‖Ep ≤ ‖ · ‖E1∩Ep , open
sets in E1 ∩ Ep w.r.t. ‖ · ‖Ep are also open w.r.t. ‖ · ‖E1∩Ep .
Conversely, since (E1 ∩ Ep, ‖ · ‖E1∩Ep ) is separable, it suffices to note that an arbitrary
open ball B = {v ∈ E1 ∩ Ep : ‖u − v‖E1∩Ep < r} with center u ∈ E1 ∩ Ep and radius
r > 0 is Borel-measurable w.r.t. the Borel-σ -algebra on E1 ∩ Ep, generated by ‖ · ‖Ep .
This holds since

B =
⋃
l∈N

⋂
m∈N

{v ∈ E1 ∩ Ep : ‖u − v‖Ep + ‖ω(u) − ω(v)‖L1(Bm ) ≤ r − 1

l
},

which is a countable union of countable intersections of subsets of E1 ∩ Ep which are
(relatively) closed w.r.t. ‖ · ‖Ep .

We now define the average measure μ j for every j ∈ N as the Borel probability
measure on E1 ∩ Ep given by

μ j (A) := 1

t j

∫ t j

0
μ0(S(t)−1A) dt

for every Borel measurable A ⊂ E1∩Ep so that, equivalently, for every ϕ ∈ Cb(E1∩Ep),

∫
E1∩Ep

ϕ(u) dμ j (u) = 1

t j

∫ t j

0

∫
E1∩Ep

ϕ(S(t)u) dμ0(u) dt.

Due to the above considerations, we may also view (μ j ) j∈N as a measure on the Borel-
σ -algebra of Ep via the formula μ j = μ j (·∩(E1 ∩Ep)). We then argue that the sequence
of measures (μ j ) j∈N on Ep is asymptotically tight, which, by Prokhorov’s theorem (cf.
Theorem 1.3.9 in [29]), implies (4.1) for ϕ ∈ Cb(Ep).
We first note that μ0, as a finite Borel measure on the separable Banach space E1 ∩ Ep,
is automatically tight so that there exist compact sets (Kn)n∈N ⊂ E1 ∩ Ep satisfying

μ0(K
n) ≥ 1 − 1

n

for every n ∈ N. Fix δ > 0 and consider the open δ-enlargement

Ap,δ := {u ∈ Ep : dist‖·‖Ep
(u,Ap) < δ}.

Due to the attraction property of Ap proved in Proposition 3.5, for every n ∈ N there
exists tn0 = tn0 (δ) s.t. for every t ≥ tn0 ,

S(t)Kn ⊂ Ap,δ.

This particularly implies for t ≥ tn0 ,

S(t)−1(Ap,δ ∩ (E1 ∩ Ep)) ⊃ S(t)−1(S(t)Kn ∩ (E1 ∩ Ep)) = S(t)−1(S(t)Kn) ⊃ Kn .
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Hence, μ0(S(t)−1(Ap,δ ∩ (E1 ∩ Ep))) ≥ 1 − 1
n for t ≥ tn0 . Therefore, if t j ≥ tn0 ,

μ j (Ap,δ) = μ j (Ap,δ ∩ (E1 ∩ Ep))

= 1

t j

(∫ tn0

0
μ0(S(t)−1(Ap,δ ∩ (E1 ∩ Ep))) dt

+
∫ t j

tn0

μ0(S(t)−1(Ap,δ ∩ (E1 ∩ Ep))) dt

)

≥ t j − tn0
t j

(
1 − 1

n

)
,

which implies asymptotic tightness. The Borel probablity measure μ on Ep, obtained

as weak limit of an adequate subsequence (μ j k )k∈N is clearly concentrated on E1 ∩ Ep

since every measure μ j k is. Invariance w.r.t. {S(t)}t≥0 can be seen from (4.1), cf. the
arguments in [24, Theorem 7] for details.
Denoting the closure of a set A in (Ep, ‖ · ‖Ep ) by cl‖·‖Ep

(A), we also obtain from the
above considerations that for every δ > 0,

μ(cl‖·‖Ep
(Ap,δ)) ≥ lim sup

k→∞
μ j k (cl‖·‖Ep

(Ap,δ)) ≥ 1 − 1

n
.

Since n ∈ N can be chosen arbitrarily, this implies μ(cl‖·‖Ep
(Ap,δ)) = 1. Due to⋂

δ>0 cl‖·‖Ep
(Ap,δ) = Ap, we conclude μ(Ap) = 1.

The fact that in (4.1) we may consider all continuous functions and not just bounded
continuous functions follows from Ap being compact in Ep and can be seen as in [31,
Theorem 4.1]. ��

5. Vanishing of Long Time Average p-Enstrophy Dissipation Rate

In this concluding part of the article, we prepare and prove Theorem 1.2. As we consider
the inviscid limit (ν → 0) in this section, from now on, we will indicate the dependence
of the solutions, the attractors, etc. on the viscosity parameter ν > 0 by adding it as a
superscript.

Since we do not have a well-defined solution semigroup for the damped Euler equa-
tions, we work on the level of trajectories in the next lemma and consider the semi-
group of time-shifts {T (t)}t≥0 on Cloc([0,∞); L p(R2)), i.e., T (t)u = u(· + t) for all
u ∈ Cloc([0,∞); L p(R2)) and t ≥ 0.

Lemma 5.1. Let 1 < p < ∞ and ρ be a Borel probability measure on the space
Vp := Cloc([0,∞); L p(R2))with support in the subsetF0

p of all renormalized solutions
of the vorticity formulation of the damped Euler equations with right-hand side g ∈
(L1 ∩ L p)(R2) as in Theorem 2.5, invariant w.r.t. {T (t)}t≥0 and satisfying∫

Vp

∫
R2

|ω(0)|p dx dρ(ω) < ∞. (5.1)

Then, ∫
Vp

∫
R2

−γ |ω(t)|p + gω(t)|ω(t)|p−2 dx dρ(ω) = 0 (5.2)
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for every t ≥ 0.

Proof. Due to the invariance of ρ w.r.t. {T (t)}t≥0, (5.1) holds for every t ≥ 0 and we
have ∫

Vp

∫
R2

−γ |ω(t)|p + gω(t)|ω(t)|p−2 dx dρ(ω)

=
∫
Vp

∫
R2

−γ |ω(0)|p + gω(0)|ω(0)|p−2 dx dρ(ω)

so that the left-hand side is finite and constant in t . Then, by taking the time average and
applying both Fubini’s theorem and (2.4), we obtain for all 0 ≤ t ≤ M ,

∫
Vp

∫
R2

−γ |ω(t)|p + gω(t)|ω(t)|p−2 dx dρ(ω)

= 1

M

∫ M

0

∫
Vp

∫
R2

−γ |ω(t)|p + gω(t)|ω(t)|p−2 dx dρ(ω) dt

= 1

M

∫
Vp

∫ M

0

∫
R2

−γ |ω(t)|p + gω(t)|ω(t)|p−2 dx dt dρ(ω)

= 1

M

∫
Vp

(‖ω(M)‖p
L p − ‖ω(0)‖p

L p ) dρ(ω),

which is 0 due to invariance of ρ w.r.t. {T (t)}t≥0. ��
Consider the situation of the main theorem, Theorem 1.2, where we have a bounded

family of right-hand sides ( f ν)ν>0 ⊂ E1 ∩ Er , r = max{2, p}, for which (gν :=
curl f ν)ν>0 is precompact in Lr (R2). Then we define for every viscosity parameter
ν > 0 the set of vorticity of associated bounded complete solutions with right-hand side
f ν (see Definition 3.2 and (3.2)), restricted to non-negative times

Fν
p := {ω(u)|[0,∞) ∈ Cloc([0,∞); (L1 ∩ L p)(R2)) : u ∈ Kν

p}.
Let νn → 0 (n → ∞) s.t. for some f ∈ E1 ∩ Er , r = max{2, p}, with g := curl f ,

gνn → g in Lr (R2). (5.3)

Lemma 5.2. Under the assumptions of Theorem 1.2, consider a sequence νn → 0 (n →
∞) so that (5.3) holds. Then

Fp :=
⋃
n∈N

Fνn

p (5.4)

is precompact in Cloc([0,∞); L p(R2)).

Proof. For fixed n ∈ N, we first argue that Fνn

p is precompact in Cloc([0,∞); L p(R2)).

Consider any sequence (ωk)k∈N ⊂ Fνn

p and (uk)k∈N ⊂ Kνn

p with ω(uk)|[0,∞) = ωk for

every k ∈ N. In the proof of Proposition 3.5, we argued that there exists u ∈ Kνn

p so that
for u0 := u(0) and appropriate subsequences,

uk → u (k → ∞) in Cb([0,∞); L2(R2)) and ω(un)(0) → ω(u0) (k → ∞) in L p(R2).
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Then, by Theorem 2.6, we obtain the desired convergence of a subsequence

ω(un) → ω(u) (k → ∞) in Cloc([0,∞); L p(R2)).

As a consequence, also
⋃N

n=1 Fνn

p is precompact in Cloc([0,∞); L p(R2)) for every
N ∈ N.

Now, it only remains to consider sequences in Fp associated to a vanishing sequence
of viscosity, where convergence of a subsequence in Cloc([0,∞); L p(R2)) (to a renor-
malized solution to the vorticity formulation of the damped Euler equations) follows
from Proposition 3.6, which is applicable since Kνk

p ⊂ Kνk

2 by Lemma 3.7, whereby

Kνk

p is bounded in Cb(R; E1 ∩ Er ), r = max{2, p}, independently of νk . ��
We may proceed to prove Theorem 1.2 by a similar approach as [8], but with the

simplifications described in the introduction to this article and prepared in the previous
sections.

Proof of Theorem 1.2. Suppose that (1.6) is false. Then there exists a sequence (νn)n∈N ⊂
(0, 1) converging to 0 and some δ > 0 s.t. for every n ∈ N, there exists a sequence of
times (t j = t j (n)) j∈N with t j → ∞ ( j → ∞) and

νn
1

t j

∫ t j

0

∫
E1∩Ep

∫
R2

|∇|ω(Sνn (t)u0)| p
2 |2 dx dμνn

0 (u0) dt ≥ δ,

n, j ∈ N. By (2.1) and Fubini’s theorem, the left-hand side is bounded by

p2

4(p − 1)

1

t j

∫
E1∩Ep

∫ t j

0

∫
R2

−γ |ω(Sνn (t)u0)|p

+gνnω(Sνn (t)u)|ω(Sνn (t)u)|p−2 dx dt dμνn

0 (u0)

+
1

t j

∫
E1∩Ep

p

4(p − 1)
(‖ω(u0)‖p

L p ‖ω(Sνn (t j )u0)‖p
L p ) dμνn

0 (u0).

We have

1

t j

∫
E1∩Ep

p

4(p − 1)
(‖ω(u0)‖p

L p − ‖ω(Sνn (t)u)‖p
L p ) dμνn

0 (u0)

≤ 1

t j

∫
E1∩Ep

p

4(p − 1)
‖ω(u0)‖p

L p dμνn

0 (u0)

→0 ( j → ∞)

due to (1.5). The integrals

u �→
∫
R2

−γ |ω(u)|p dx and u �→
∫
R2

gνnω(u)|ω(u)|p−2 dx

may be seen as continuous mappings on (Ep, ‖ · ‖Ep ). Therefore, by Theorem 4.1, after

passing to a subsequence t j
k → ∞, there exists an invariant Borel probability measure
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μνn on Ep, concentrated on Aνn

p so that

4(p − 1)

p2 δ ≤ lim
k→∞

1

t jk

∫ t j
k

0

∫
E1∩Ep

∫
R2

−γ |ω(Sνn (t)u0)|p

+ gνnω(Sνn (t)u0)|ω(Sνn (t)u0)|p−2 dx dμνn

0 (u0) dt

=
∫
Aνn

p

∫
R2

−γ |ω(u)|p + gνnω(u)|ω(u)|p−2 dx dμνn (u). (5.5)

We denote the solution operator to the Cauchy problem of the damped Navier–Stokes
equations with viscosityν > 0 and right-hand side f ν by�ν : E1∩Ep → Cloc([0,∞); E1∩
Ep). The vorticity may be interpreted as a continuous mapping from E1 ∩ Ep to L p(R2)

and we then denote the composition of �ν with the vorticity mapping (pointwise in
time) by

�ν
ω : E1 ∩ Ep → Cloc([0,∞); L p(R2)).

Then we can pass to a subsequence s.t. the convergence of the curl of the right-hand
sides (5.3) holds and define for every n ∈ N the pushforward measures

ρνn := �νn

ω �μ
νn

on Fνn

p ⊂ Fp ⊂ Cloc([0,∞); L p(R2)), with Fp as in (5.4). We fix some time τ ≥ 0

s.t. due to invariance of μνn w.r.t. {Sνn (t)}t≥0, the right-hand side in (5.5) is equal to∫
Fp

∫
R2

−γ |ω(τ)|p + gνnω(τ)|ω(τ)|p−2 dx dρνn (ω).

We can view every ρνn as a measure on the closure Fp of Fp in Cloc([0,∞); L p(R2)),
which is compact by Lemma 5.2. Then, a subsequence of (ρνn )n∈N converges weakly-*
to a Borel probability measure ρ, i.e.,∫

Fp

�(ω) dρνn (ω) →
∫
Fp

�(ω) dρ(ω) (n → ∞)

for every continuous � : Fp → R. Passing to the limit (n → ∞) in (5.5) then yields

4(p − 1)

p2 δ ≤
∫
Fp

∫
R2

−γ |ω(τ)|p + gω(τ)|ω(τ)|p−2 dx dρ(ω). (5.6)

We now derive the contradiction from this. For every ω ∈ supp ρ, there exists a sequence
ũνn ∈ Kνn

p , n ∈ N, s.t. (after restricting the time domain to [0,∞)) ω(ũνn ) ∈ supp ρνn ⊂
Fνn

p for every n ∈ N and

ω(ũνn ) → ω (n → ∞) in Cloc([0,∞); L p(R2)),

cf. [30, Lemma 2.20]. In particular, ω(ũνn )(0) → ω(0) (n → ∞) in L p(R2) so that by
Theorem 2.6, ω ∈ F0

p, see Lemma 5.1. This means that supp ρ ⊂ F0
p and we may apply

Lemma 5.1. Note that (5.1) is satisfied as ρ is concentrated on Fp, which is bounded in
Cb([0,∞); L p(R2)). But then (5.2) contradicts (5.6). ��
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