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Abstract: For a state ρAn
1 B

, we call a sequence of states (σ
(k)
Ak

1B
)nk=1 an approximation

chain if for every 1 ≤ k ≤ n, ρAk
1B
≈ε σ

(k)
Ak

1B
. In general, it is not possible to lower

bound the smooth min-entropy of such a ρAn
1 B

, in terms of the entropies of σ
(k)
Ak

1B
without

incurring very large penalty factors. In this paper, we study such approximation chains
under additional assumptions. We begin by proving a simple entropic triangle inequality,
which allows us to bound the smooth min-entropy of a state in terms of the Rényi entropy
of an arbitrary auxiliary state while taking into account the smooth max-relative entropy
between the two. Using this triangle inequality, we create lower bounds for the smooth
min-entropy of a state in terms of the entropies of its approximation chain in various
scenarios. In particular, utilising this approach, we prove approximate versions of the
asymptotic equipartition property and entropy accumulation. In the companion paper
(Marwah and Dupuis in Proving Security of BB84 Under Source Correlations, 2024.
arXiv:2402.12346 [quant-ph]), we show that the techniques developed in this paper can
be used to prove the security of quantum key distribution in the presence of source
correlations.

1. Introduction

One-shot information theory investigates the behaviour of tasks in communication and
cryptography under general unstructured processes, as opposed to independent and iden-
tically distributed (i.i.d) processes, where the states or the tasks themselves have a certain
tensor product structure. This is crucial for information theoretically secure cryptogra-
phy, where one cannot place any kind of assumption on the actions of the adversary
(see, for example, [2,3]). To prove security for such protocols, a common strategy is to
show that some smooth min-entropy is sufficiently large. For this reason, the smooth
min-entropy [4,5] is one of the most important quantities in one-shot information theory.
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The smooth min-entropy H ε
min(K |E)ρ for the classical-quantum state

ρ =∑
k p(k)|k〉〈k| ⊗ ρE |k characterises the amount of randomness one can extract from

the classical register K independent of the adversary’s register E [6]. It behaves very
differently from the von Neumann conditional entropy, which characterises tasks in the
i.i.d setting, and the difference between the two can be very large. Roughly speaking,
the smooth min-entropy places a much higher weight on the worst possible scenario of
the conditioning register, whereas the von Neumann entropy places an equal weight on
all possible scenarios.

An important and interesting argument, which works with the von Neumann condi-
tional entropy but fails with the smooth min-entropy, is that of proving lower bounds on
the entropy using an approximation chain. We call a sequence of states,1 (σ

(k)
Ak

1B
)nk=1 an

ε-approximation chain for the state ρAn
1 B

if for every k, we can approximate the partial

state ρAk
1B

as ‖ρAk
1B
− σ

(k)
Ak

1B
‖1 ≤ ε. If one can further prove that these states satisfy

H(Ak |Ak−1
1 B)σ (k) ≥ c for some c > 0 sufficiently large, then the following simple

argument shows that H(An
1|B)ρ is large:

H(An
1|B)ρ =

n∑

k=1

H(Ak |Ak−1
1 B)ρ

≥
n∑

k=1

(
H(Ak |Ak−1

1 B)σ (k) − g(ε)
)

≥ n(c − g(ε))

where we used continuity of the von Neumann conditional entropy in the second line
(g(ε) = O(ε log |A|

ε
) is a “small” function of ε). It is well known that a similar argument

is not possible with the smooth min-entropy. Consequently, identities for the smooth
min-entropy, like the chain rules [7], are much more restrictive. Tools like entropy
accumulation [8,9] also seem quite rigid, in the sense that they cannot be applied unless
certain (Markov chain or non-signalling) conditions apply. It is also not clear how one
could relax the conditions for such tools. In this paper, we consider scenarios consisting
of approximation chains, similar to the above, along with additional conditions and prove
lower bounds on the appropriate smooth min-entropies.

We begin by considering the scenario of approximately independent registers, that
is, a state ρAn

1 B
, which for every 1 ≤ k ≤ n satisfies

1

2

∥
∥
∥ρAk

1B
− ρAk ⊗ ρAk−1

1 B

∥
∥
∥

1
≤ ε. (1)

for some small ε > 0 and arbitrarily large n (in particular n 	 1
ε
). That is, for every k, the

system Ak is almost independent of the system B and everything else, which came before
it. For simplicity, let us further assume that for all k the state ρAk = ρA1 . Intuitively, one
expects that the smooth min-entropy (with the smoothing parameter depending on ε and
not on n)2 for such a state will be large and close to≈ n(H(A1)−g′(ε)) (for some small

1 For n quantum registers (X1, X2, . . . , Xn), the notation X j
i refers to the set of registers

(Xi , Xi+1 . . . , X j ).
2 The smoothing parameter must depend on ε in such a scenario. This can be seen by considering the

probability distribution PAn1 B
such that B is 0 with probability ε and 1 otherwise and An1 is a random n-bit

string if B = 1 and constant if B = 0.
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function g′(ε)). However, it is not possible to prove this result using techniques, which
rely only on the triangle inequality and smoothing. The triangle inequality, in general,
can only be used to bound the trace distance between ρAn

1 B
and ⊗n

k=1ρAk ⊗ ρB by nε,

which will result in a trivial bound when n 	 1
ε
.3 Instead, we show that a bound on the

entropic distance given by the smooth max-relative entropy between these two states
can be used to prove a lower bound for the smooth min-entropy in this scenario.

While an upper bound of nε is trivial and meaningless for the trace distance for large
n, it is still a meaningful bound for the relative entropy between two states, which is
unbounded in general. We can show that the above approximation conditions (Eq. 1)
also imply that relative entropy distance between ρAn

1 B
and⊗n

k=1ρAk ⊗ ρB is n f (ε) for
some small function f (ε). The substate theorem [10] allows us to transform this relative
entropy bound into a smooth max-relative entropy bound. For two general states ρAB
and ηAB , such that d := Dδ

max(ρAB ||ηAB), we can easily bound the smooth min-entropy
of ρ in terms of the min-entropy of η by observing that

ρAB ≈δ ρ̃AB ≤ 2dηAB ≤ 2−(Hmin(A|B)η−d) 1A⊗σB (2)

for some state σB , which satisfies Dmax(ηAB ||1A⊗σB) = −Hmin(A|B)η. This implies
that

H δ
min(A|B)ρ ≥ Hmin(A|B)η − Dδ

max(ρAB ||ηAB) (3)

We call this an entropic triangle inequality, since it is based on the triangle inequality
property of Dmax. We can further improve this smooth min-entropy triangle inequality
to (Lemma 3.5)

H ε+δ
min (A|B)ρ ≥ H̃↑α (A|B)η − α

α − 1
Dε

max(ρAB ||ηAB)− g1(δ, ε)

α − 1
(4)

for some function g1, ε + δ < 1 and 1 < α ≤ 2. Our general strategy for the scenarios
considered in this paper is to first bound the “one-shot information theoretic” distance
(the smooth max-relative entropy distance) between the real state ρ (ρAn

1 B
in the above

scenario) and a virtual, but nicer state, η (⊗n
k=1ρAk ⊗ ρB above) by n f (ε) for some

small f (ε). Then, we use Eq. 4 above to reduce the problem of bounding the smooth
min-entropy on state ρ to that of bounding a α-Rényi entropy on the state η. Using
this strategy, in Corollary 4.4, we prove that for states satisfying the approximately

independent registers assumptions, we have for δ = O
(
ε log |A|

ε

)
that

H δ
1
4

min(A
n
1|B)ρ ≥ n

(
H(A1)ρ − O(δ

1
4 )

)
− O

(
1

δ3/4

)

. (5)

Another scenario we consider here is that of approximate entropy accumulation. In
the setting for entropy accumulation, a sequence of channels Mk : Rk−1 → Ak Bk Rk

3 Consider the distribution QA2n
1 B2n

1
, where for every i ∈ [2n], the bit Bi is chosen independently and is

equal to 0 with probability ε and is 1 otherwise. The bit Ai is chosen randomly if Bi = 1, otherwise it is chosen
to be equal to Ai−1. In this case, QAk is the uniformly random distribution for bits and Eq. 1 is satisfied.

Let I = |{i ∈ [n] : A2i−1 = A2i }|. Then, for QA2n
1 B2n

1
, this value concentrates around n(1+ε)

2 , whereas for

∏2n
i=1 QAi · QB2n

1
, it concentrates around n

2 . This shows that

∥
∥
∥
∥QA2n

1 B2n
1
−∏2n

i=1 QAi · QB2n
1

∥
∥
∥
∥

1
→ 2.
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for 1 ≤ k ≤ n sequentially act on a state ρ
(0)
R0E

to produce the state ρAn
1 B

n
1 E
=Mn ◦ · · ·◦

M1(ρ
(0)
R0E

). It is assumed that the channels Mk are such that the Markov chain Ak−1
1 ↔

Bk−1
1 E ↔ Bk is satisfied for every k. This ensures that the register Bk does not reveal any

additional information about Ak−1
1 than what was previously revealed by Bk−1

1 E . The
entropy accumulation theorem [8], then provides a tight lower bound for the smooth min-
entropy H δ

min(A
n
1|Bn

1 E). We consider an approximate version of the above setting where
the channels Mk themselves do not necessarily satisfy the Markov chain condition, but
they can be ε-approximated by a sequence of channels M′

k , which satisfies certain
Markov chain conditions. Such relaxations are important to understand the behaviour
of cryptographic protocols, like device-independent quantum key distribution [11,12],
which are implemented with imperfect devices [13,14]. Once again we can model this
scenario as an approximation chain: for every 1 ≤ k ≤ n, the state produced in the kth
step satisfies

ρAk
1B

k
1 E
= trRk ◦Mk

(
Mk−1 ◦ · · · ◦M1(ρ

(0)
R0E

)
)

≈ε trRk ◦M′
k

(
Mk−1 ◦ · · · ◦M1(ρ

(0)
R0E

)
)
:= σ

(k)
Ak

1B
k
1 E

.

Moreover, the assumptions on the channel M′
k guarantee that the state σ

(k)
Ak

1B
k
1 E

satisfies

the Markov chain condition Ak−1
1 ↔ Bk−1

1 E ↔ Bk , and so the chain rules and bounds
used for entropy accumulation apply for it too. Roughly speaking, we use the chain rules
for divergences [15] to show that the divergence distance between the states ρAn

1 B
n
1 E
=

Mn ◦ · · ·◦M1(ρ
(0)
R0E

) and the virtual state σAn
1 B

n
1 E
=M′

n ◦ · · ·◦M′
1(ρ

(0)
R0E

) is relatively
small, and then reduce the problem of lower bounding the smooth min-entropy of ρAn

1 B
n
1 E

to that of lower bounding an α-Rényi entropy of σAn
1 B

n
1 E

, which can be done by using the

chain rules developed for entropy accumulation.4 In Theorem 5.1, we show the following
smooth min-entropy lower bound for the state ρAn

1 B
n
1 E

for sufficiently small ε and an
arbitrary δ > 0

H δ
min(A

n
1|Bn

1 E)ρ ≥
n∑

k=1

inf
ω
H(Ak |Bk R̃k−1)M′

k (ω) − nO(ε
1

24 )− O

(
1

ε
1

24

)

(6)

where the infimum is over all possible input states ωRk−1 R̃k−1
for reference register R̃k−1

isomorphic to Rk−1, and the dimensions |A| and |B| are assumed constant while using
the asymptotic notation.

In the companion paper [1], we use the techniques developed in this paper to provide
a solution for the source correlation problem in quantum key distribution (QKD) [16].
Briefly speaking, the security proofs of QKD require that one of the honest parties pro-
duce randomly and independently sampled quantum states in each round of the protocol.
However, the states produced by a realistic quantum source will be somewhat correlated
across different rounds due to imperfections. These correlations are called source corre-
lations. Proving security for QKD under such a correlated source is challenging and no
general satisfying solution was known. In [1], we use the entropic triangle inequality to

4 The channel divergence bounds we are able to prove are too weak for this idea to work as stated here.
The actual proof is more complicated. However, this idea works in the classical case.
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reduce the security of a QKD protocol with a correlated source to that of the QKD pro-
tocol with a depolarised variant of the perfect source, for which security can be proven
using existing techniques.

2. Background and Notation

For n quantum registers (X1, X2, . . . , Xn), the notation X j
i refers to the set of registers

(Xi , Xi+1, . . . , X j ). We use the notation [n] to denote the set {1, 2, . . . , n}. For a register
A, |A| represents the dimension of the underlying Hilbert space. If X andY are Hermitian
operators, then the operator inequality X ≥ Y denotes the fact that X − Y is a positive
semidefinite operator and X > Y denotes that X − Y is a strictly positive operator. A
quantum state (or briefly just state) refers to a positive semidefinite operator with unit
trace. At times, we will also need to consider positive semidefinite operators with trace
less than equal to 1. We call these operators subnormalised states. We will denote the set
of registers a quantum state describes (equivalently, its Hilbert space) using a subscript.
For example, a quantum state on registers A and B, will be written as ρAB and its partial
states on registers A and B, will be denoted as ρA and ρB . The identity operator on
register A is denoted using 1A. A classical-quantum state on registers X and B is given
by ρXB =∑

x p(x)|x〉〈x |⊗ρB|x , where ρB|x are normalised quantum states on register
B.

The term “channel” is used for completely positive trace preserving (CPTP) linear
maps between two spaces of Hermitian operators. A channel N mapping registers A to
B will be denoted by N A→B . We write supp(X) to denote the support of the Hermitian
operator X and use X � Y to denote that supp(X) ⊆ supp(Y ).

The trace norm is defined as‖X‖1 := tr
( (

X†X
) 1

2
)
. The fidelity between two positive

operators P and Q is defined as F(P, Q) =
∥
∥
∥
√
P
√
Q
∥
∥
∥

2

1
. The generalised fidelity

between two subnormalised states ρ and σ is defined as

F∗(ρ, σ ) :=
(∥
∥√ρ

√
σ
∥
∥

1 +
√

(1− tr ρ)(1− tr σ)
)2

. (7)

The purified distance between two subnormalised states ρ and σ is defined as

P(ρ, σ ) = √
1− F∗(ρ, σ ). (8)

We will also use the diamond norm distance as a measure of the distance between two
channels. For a linear transform N A→B from operators on register A to operators on
register B, the diamond norm distance is defined as

‖N A→B‖� := max
XAR :‖XAR‖1≤1

‖N A→B(XAR)‖1 (9)

where the supremum is over all Hilbert spaces R (fixing |R| = |A| is sufficient) and
operators XAR such that ‖XAR‖1 ≤ 1.

Throughout this paper, we use base 2 for both the functions log and exp. We follow
the notation in Tomamichel’s book [17] for Rényi entropies. For α ∈ (0, 1)∪ (1, 2), the
Petz α-Rényi relative entropy between the positive operators P and Q is defined as

D̄α(P||Q) =
{

1
α−1 log tr

(
PαQ1−α

)

tr(P)
if (α < 1 and P �⊥ Q) or (P � Q)

∞ else.
(10)
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The sandwiched α-Rényi relative entropy for α ∈ [ 1
2 , 1) ∪ (1,∞] between the positive

operator P and Q is defined as

D̃α(P||Q) =
⎧
⎨

⎩

1
α−1 log tr(Q−

α′
2 PQ−

α′
2 )α

tr(P)
if (α < 1 and P �⊥ Q) or (P � Q)

∞ else.
(11)

where α′ = α−1
α

. In the limit α →∞, the sandwiched divergence becomes equal to the
max-relative entropy, Dmax, which is defined as

Dmax(P||Q) := inf
{
λ ∈ R : P ≤ 2λQ

}
. (12)

In the limit of α → 1, both the Petz and the sandwiched relative entropies equal the
quantum relative entropy, D(P||Q), which is defined as

D(P||Q) :=
{

tr(P log P−P log Q)
tr(P)

if (P � Q)

∞ else.
(13)

Given any divergence D, we can define the (stabilised) channel divergence based on
D between two channels N A→B and MA→B as [18,19]

D(N ||M) := sup
ρAR

D(N A→B(ρAR)||MA→B(ρAR)) (14)

where R is reference register of arbitrary size (|R| = |A| can be chosen when D satisfies
the data processing inequality).

We can use the divergences defined above to define the following conditional en-
tropies for the subnormalised state ρAB :

H̄↑α (A|B)ρ := sup
σB

−D̄α(ρAB ||1A⊗σB) (15)

H̃↑α (A|B)ρ := sup
σB

−D̃α(ρAB ||1A⊗σB) (16)

H̄↓α (A|B)ρ := −D̄α(ρAB ||1A⊗ρB) (17)

H̃↓α (A|B)ρ := −D̃α(ρAB ||1A⊗ρB) (18)

for appropriate α in the domain of the divergences. The supremum in the definition for
H̄↑α and H̃↑α is over all quantum states σB on register B.

For α → 1, all these conditional entropies are equal to the von Neumann conditional
entropy H(A|B). H̃↑∞(A|B)ρ is usually called the min-entropy. The min-entropy is
usually denoted as Hmin(A|B)ρ and for a subnormalised state can also be defined as

Hmin(A|B)ρ := sup
{
λ ∈ R : there exists state σB such that ρAB ≤ 2−λ 1A⊗σB

}
.

(19)

For the purpose of smoothing, define the ε-ball around the subnormalised state ρ as the
set

Bε(ρ) := {ρ̃ ≥ 0 : P(ρ, ρ̃) ≤ ε and tr ρ̃ ≤ 1}. (20)
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We define the smooth max-relative entropy as

Dε
max(ρ||σ) := min

ρ̃∈Bε (ρ)
Dmax(ρ̃||σ) (21)

The smooth min-entropy of ρAB is defined as

H ε
min(A|B)ρ := max

ρ̃∈Bε (ρ)
Hmin(A|B)ρ̃ . (22)

3. Entropic Triangle Inequality for the Smooth Min-entropy

In this section, we derive a simple entropic triangle inequality (Lemma 3.5) for the
smooth min-entropy of the form in Eq. 4. This Lemma is a direct consequence of the
following triangle inequality for D̃α (see [20, Theorem 3.1] for a triangle inequality,
which changes the second argument of D̃α).

Lemma 3.1. Let ρ and η be subnormalised states and Q be a positive operator, then for
α > 1, we have

D̃α(ρ||Q) ≤ D̃α(η||Q) +
α

α − 1
Dmax(ρ||η) +

1

α − 1
log

tr(η)

tr(ρ)

and for α < 1 if one of D̃α(η||Q) and Dmax(ρ||η) is finite (otherwise we cannot define
their difference), we have

D̃α(ρ||Q) ≥ D̃α(η||Q)− α

1− α
Dmax(ρ||η)− 1

1− α
log

tr(η)

tr(ρ)
.

Proof. If Dmax(ρ||η) = ∞, then both statements are true trivially. Otherwise, we have
that ρ ≤ 2Dmax(ρ||η)η and also ρ � η. Now, if ρ �� Q then η �� Q. Hence, for α > 1 if
D̃α(ρ||Q) = ∞, then D̃α(η||Q) = ∞, which means the Lemma is also satisfied in this
condition. For α < 1, if D̃α(ρ||Q) = ∞, then the Lemma is also trivially satisfied. For
the remaining cases we have,

2(α−1)D̃α(ρ||Q) =
tr

(
Q− α−1

2α ρQ− α−1
2α

)α

tr(ρ)

≤
tr

(
Q− α−1

2α 2Dmax(ρ||η)ηQ− α−1
2α

)α

tr(ρ)

= tr(η)

tr(ρ)
2αDmax(ρ||η)2(α−1)D̃α(η||Q)

where we used the fact that tr( f (X)) is monotone increasing if the function f is mono-
tone increasing. Dividing by (α − 1) now gives the result. ��

We define smooth α-Rényi conditional entropy as follows to help us amplify the
above inequality.
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Definition 3.2 (ε-smooth α-Rényi conditional entropy). For α ∈ (1,∞] and ε ∈ [0, 1],
we define the ε-smooth α-Rényi conditional entropy as

H̃↑α,ε(A|B)ρ := max
ρ̃AB∈Bε (ρAB )

H̃↑α (A|B)ρ̃ . (23)

Lemma 3.3. For α ∈ (1,∞] and ε ∈ [0, 1), and states ρAB and ηAB we have

H̃↑α,ε(A|B)ρ ≥ H̃↑α (A|B)η − α

α − 1
Dε

max(ρAB ||ηAB)− 1

α − 1
log

1

1− ε2 .

Proof. Let ρ̃AB ∈ Bε(ρAB) be a subnormalised state such that Dmax(ρ̃AB ||ηAB) =
Dε

max(ρAB ||ηAB). Using Lemma 3.1 for α > 1, we have that for every state σB , we have

D̃α(ρ̃AB ||1A⊗σB) ≤ D̃α(ηAB ||1A⊗σB) +
α

α − 1
Dε

max(ρAB ||ηAB) +
1

α − 1
log

1

1− ε2

(24)

where we used the fact that ρ̃AB ∈ Bε(ρAB) which implies that tr(ρ̃AB) ≥ 1−ε2. Since,
the above bound is true for arbitrary states σB , we can multiply it by −1 and take the
supremum to derive

H̃↑α (A|B)ρ̃ ≥ H̃↑α (A|B)η − α

α − 1
Dε

max(ρAB ||ηAB)− 1

α − 1
log

1

1− ε2 .

The desired bound follows by using the fact that H̃↑α,ε(A|B)ρ ≥ H̃↑α (A|B)ρ̃ . ��
Lemma 3.4. For a state ρAB, ε ∈ [0, 1), and δ ∈ (0, 1) such that ε + δ < 1 and
α ∈ (1, 2], we have

H ε+δ
min (A|B)ρ ≥ H̃↑α,ε(A|B)ρ − g0(δ)

α − 1

where g0(x) := − log(1−√1− x2).

Proof. First, note that

H ε+δ
min (A|B)ρ ≥ sup

ρ̃∈Bε (ρAB )

H δ
min(A|B)ρ̃ . (25)

To prove this, consider a ρ̃AB ∈ Bε(ρAB) and ρ′AB ∈ Bδ(ρ̃AB) such that Hmin(A|B)ρ′ =
H δ

min(A|B)ρ̃ . Then, using the triangle inequality for the purified distance, we have

P(ρAB , ρ′AB) ≤ P(ρAB, ρ̃AB) + P(ρ̃AB, ρ′AB)

≤ ε + δ

which implies that H ε+δ
min (A|B)ρ ≥ Hmin(A|B)ρ′ = H δ

min(A|B)ρ̃ . Since, this is true for
all ρ̃ ∈ Bε(ρAB) the bound in Eq. 25 is true.

Using this, we have

H ε+δ
min (A|B)ρ ≥ sup

ρ̃∈Bε (ρAB )

H δ
min(A|B)ρ̃

≥ sup
ρ̃∈Bε (ρAB )

{

H̃↑α (A|B)ρ̃ − g0(δ)

α − 1

}
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= H̃↑α,ε(A|B)ρ − g0(δ)

α − 1

where we have used [8, Lemma B.10]5 (originally proven in [21]) in the second step. ��
We can combine these two lemmas to derive the following result.

Lemma 3.5. For α ∈ (1, 2], ε ∈ [0, 1), and δ ∈ (0, 1) such that ε +δ < 1 and two states
ρAB and ηAB, we have

H ε+δ
min (A|B)ρ ≥ H̃↑α (A|B)η − α

α − 1
Dε

max(ρAB ||ηAB)− g1(δ, ε)

α − 1
(26)

where g1(x, y) := − log(1−√1− x2)− log(1− y2).

Proof. We can combine Lemmas 3.3 and 3.4 as follows to derive the bound in the
Lemma:

H ε+δ
min (A|B)ρ ≥ H̃↑α,ε(A|B)ρ − g0(δ)

α − 1

≥ H̃↑α (A|B)η − α

α − 1
Dε

max(ρAB ||ηAB)− 1

α − 1

(

g0(δ) + log
1

1− ε2

)

.

��
We can use the asymptotic equipartition theorem for smooth min-entropy and max-

relative entropy [21–23] to derive the following novel triangle inequality for the von
Neumann conditional entropy. Although we do not use this inequality in this paper, we
believe it is interesting and may prove useful in the future.

Corollary 3.6. For α ∈ (1, 2] and states ρAB and ηAB, we have that

H(A|B)ρ ≥ H̃↑α (A|B)η − α

α − 1
D(ρAB ||ηAB). (27)

Proof. Using Lemma 3.5 with α ∈ (1, 2], the states ρ⊗nAB , and η⊗nAB and any ε > 0 and
δ > 0 satisfying the conditions for the Lemma, we get

H ε+δ
min (An

1|Bn
1 )ρ⊗n ≥ H̃↑α (An

1|Bn
1 )η⊗n − α

α − 1
Dε

max(ρ
⊗n
AB ||η⊗nAB)− g1(δ, ε)

α − 1

⇒ 1

n
H ε+δ

min (An
1|Bn

1 )ρ⊗n ≥ H̃↑α (A|B)η − α

α − 1

1

n
Dε

max(ρ
⊗n
AB ||η⊗nAB)− 1

n

g1(δ, ε)

α − 1
.

Taking the limit of the above for n→∞, we get

lim
n→∞

1

n
H ε+δ

min (An
1|Bn

1 )ρ⊗n ≥ H̃↑α (A|B)η − lim
n→∞

α

α − 1

1

n
Dε

max(ρ
⊗n
AB ||η⊗nAB)

− lim
n→∞

1

n

g1(δ, ε)

α − 1

⇒ H(A|B)ρ ≥ H̃↑α (A|B)η − α

α − 1
D(ρAB ||ηAB)

which proves the claim. ��
5 This Lemma is also valid for subnormalised states as long as δ ∈ (0,

√
2 tr(ρ̃)− tr(ρ̃)2) according to [8,

Lemma B.4].
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4. Approximately Independent Registers

In this section, we introduce our technique for using the smooth min-entropy triangle
inequality for considering approximations by studying a state ρAn

1 B
such that for every

k ∈ [n]
∥
∥
∥ρAk

1B
− ρAk ⊗ ρAk−1

1 B

∥
∥
∥

1
≤ ε. (28)

We assume that the registers Ak all have the same dimension equal to |A|. One should
think of the registers Ak as the secret information produced during some protocol, which
also provides the register B to an adversary. We would like to prove that H f (ε)

min (An
1|B) is

large (lower bounded by 
(n)) under the above approximate independence conditions
for some reasonably small function f of ε and close to nH(A1), if we assume the states
ρAk are identical.

Let us first examine the case where the state ρ above is classical. We use the standard
notation for probability distributions to address elements of ρ, so that ρ(an1 , b) :=
〈an1 , b|ρAn

1 B
|an1 , b〉, where |an1 , b〉 is standard basis vector. To show that in this case the

smooth min-entropy is high, we will show that the set where the conditional probability

ρ(an1 |b) := ρ(an1b)
ρ(b) can be large, has a small probability using the Markov inequality. We

will use the following lemma for this purpose.

Lemma 4.1. Suppose p, q are probability distributions onX such that 1
2 ‖p − q‖1 ≤ ε,

then S ⊆ X definedas S := {x ∈ X : p(x) ≤ (1+ε1/2)q(x)} is such that q(S) ≥ 1−ε1/2

and p(S) ≥ 1− ε1/2 − ε.

Proof. Let Sc := X \S, where S is the set defined above. If q(Sc) = 0, the statement in
the lemma is satisfied. If q(Sc) > 0, we have that

ε ≥ 1

2
‖p − q‖1 = max

H⊆X
|p(H)− q(H)|

≥ q(Sc)

∣
∣
∣
∣
p(Sc)

q(Sc)
− 1

∣
∣
∣
∣

≥ q(Sc)

(
p(Sc)

q(Sc)
− 1

)

= q(Sc)

(∑
x∈Sc p(x)∑
x∈Sc q(x)

− 1

)

≥ q(Sc)

(∑
x∈Sc (1 + ε

1
2 )q(x)

∑
x∈Sc q(x)

− 1

)

= q(Sc)ε
1
2

which implies that q(Sc) ≤ ε
1
2 . Now, the statement of the Lemma follows. ��

We will also assume for the sake of simplicity that ρAk are identical for all k ∈ [n].
Using the Lemma above, for every k ∈ [n], we know that the set

Bk : =
{
(an1 , b) : ρ(ak1, b) > (1 +

√
ε)ρ(ak−1

1 , b)ρ(ak)
}

=
{
(an1 , b) : ρ(ak |ak−1

1 , b) > (1 +
√

ε)ρ(ak)
}
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satisfies Prρ(Bk) ≤ 2
√

ε. We can now define L =∑n
k=1 χBk , which is a random variable

that simply counts the number of bad sets Bk an element (an1 , b) belongs to. Using the
Markov inequality, we have

Pr
ρ

[
L > nε

1
4

]
≤ Eρ[L]

nε
1
4

≤ 2ε
1
4 .

We can define the bad set B :=
{
(an1 , b) : L(an1 , b) > nε

1
4

}
, then we can define the

subnormalised distribution ρ̃An
1 B

as

ρ̃An
1 B

(an1 , b) =
{

ρAn
1 B

(an1 , b) (an1 , b) �∈ B
0 else

.

We have P(ρ̃An
1 B

, ρAn
1 B

) ≤ √2ε1/8. Further, note that for every (an1 , b) �∈ B, we have

ρ(an1 |b) =
n∏

k=1

ρ(ak |ak−1
1 , b)

=
∏

k:(an1 ,b) �∈Bk
ρ(ak |ak−1

1 , b)
∏

k:(an1 ,b)∈Bk
ρ(ak |ak−1

1 , b)

≤ (1 +
√

ε)n
∏

k:(an1 ,b) �∈Bk
ρAk (ak)

≤ (1 +
√

ε)n2−n(1−ε
1
4 )Hmin(A1)

where in the third line we have used the fact that if (an1 , b) �∈ Bk , then ρ(ak |ak−1
1 b) ≤

(1 +
√

ε)ρAk (ak) and in the last line we have used the fact that for (ak1, b) �∈ B, we

have |{k ∈ [n] : (an1 , b) �∈ Bk}| = n − L(an1 , b) ≥ n(1 − ε
1
4 ), that all the states ρAk

are identical and 2−Hmin(Ak ) = maxak ρAk (ak). Note that we have essentially proven
and used a Dmax bound above. This proves the following lower bound for the smooth
min-entropy of ρ

H
√

2ε
1
8

min (An
1|B) ≥ n(1− ε

1
4 )Hmin(A1)− n log(1 +

√
ε). (29)

The right-hand side above can be improved to get the Shannon entropy H instead
of the min-entropy Hmin. However, we will not pursue this here, since this bound is
sufficient for the purpose of our discussion.

Although, we are unable to generalise the classical argument above to the quantum
case, it provides a great amount of insight into the approximately independent registers
problem. Two important examples of distributions, which satisfy the approximate inde-
pendence conditions above were mentioned in Footnotes 2 and 3 earlier. To create the
first distribution, we flip a biased coin B, which is 0 with probability ε and 1 otherwise.
If B = 0, then An

1 is set to the constant all zero string otherwise it is sampled randomly
and independently. For this distribution, once the bad event (B = 0) is removed, the
new distribution has a high min-entropy. On the other hand, for the second distribution,
QA2n

1 B2n
1

, we have that the random bits Bi are chosen independently, with each being
equal to 0 with probability ε and 1 otherwise. If the bit Bi is 0, then Ai is set equal to
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Ai−1 otherwise it is sampled independently. In this case, there is no small probability
(small as a function of ε) event, that one can simply remove, so that the distribution
becomes i.i.d. However, we expect that with high probability the number of Bi = 0
is close to 2nε. Given that the distribution samples all the other Ai independently, the
smooth min-entropy for the distribution should be close to 2n(1− ε)H(A1). The above
argument shows that any distribution satisfying the approximate independence condi-
tions in Eq. 28 can be handled by combining the methods used for these two example
distributions, that is, deleting the bad part of the distribution and recognising that the
probability for every element in the rest of the space behaves independently on average.

The above classical argument is difficult to generalise to quantum states primarily
because the quantum equivalents of Lemma 4.1 are not as nice and simple. Furthermore,
quantum conditional probabilities themselves are also difficult to use. Fortunately, the
substate theorem serves as the perfect tool for developing a smooth max-relative entropy
bound, which we can then use with the min-entropy triangle inequality. The quantum
substate theorem [10,24] provides an upper bound on the smooth max relative entropy
Dε

max(ρ||σ) between two states in terms of their relative entropy D(ρ||σ).

Theorem 4.2 (Quantum substate theorem [24]). Let ρ and σ be two states on the same
Hilbert space. Then for any ε ∈ (0, 1), we have

D
√

ε
max(ρ||σ) ≤ D(ρ||σ) + 1

ε
+ log

1

1− ε
. (30)

In this section, we will also frequently use the multipartite mutual information
[25–27]. For a state ρXn

1
, the multipartite mutual information between the registers

(X1, X2, . . . , Xn) is defined as

I (X1 : X2 : · · · : Xn)ρ := D(ρXn
1
||ρX1 ⊗ ρX2 ⊗ · · ·⊗ ρXn ). (31)

In other words, it is the relative entropy between ρXn
1

and ρX1 ⊗ ρX2 ⊗ · · ·⊗ ρXn . It can
easily be shown that the multipartite mutual information satisfies the following identities:

I (X1 : X2 : · · · : Xn)ρ =
n∑

k=1

H(Xk)ρ − H(X1 · · · Xn)ρ (32)

=
n∑

k=2

I (Xk : Xk−1
1 ). (33)

Going back to proving a bound for the quantum approximately independent registers
problem, note that using the Alicki–Fannes–Winter (AFW) bound [28,29] for mutual
information [30, Theorem 11.10.4], Eq. 28 implies that for every k ∈ [n]

I (Ak : Ak−1
1 B)ρ ≤ ε log |A| + g2

(ε

2

)
(34)

where g2(x) := (x + 1) log(x + 1)− x log(x). With this in mind, we can now focus our
efforts on proving the following theorem.

Theorem 4.3. Let registers Ak have dimension |A| for all k ∈ [n]. Suppose a quantum
state ρAn

1 B
is such that for every k ∈ [n], we have

I (Ak : Ak−1
1 B)ρ ≤ ε (35)
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for some 0 < ε < 1. Then, we have that

H ε
1
4 +ε

min (An
1|B)ρ ≥

n∑

k=1

H(Ak)ρ − 3nε
1
4 log(1 + 2|A|)

− 2 log(1 + 2|A|)
ε3/4 − 2 log(1 + 2|A|)

ε1/4

(
log(1−√ε) + g1(ε, ε

1
4 )

)

(36)

where g1(x, y) := − log(1−√1− x2)− log(1− y2). In particular, when all the states
ρAk are identical, we have

H ε
1
4 +ε

min (An
1|B)ρ ≥ n

(
H(A1)ρ − 3ε

1
4 log(1 + 2|A|)

)

− 2 log(1 + 2|A|)
ε3/4 − 2 log(1 + 2|A|)

ε1/4

(
log(1−√ε) + g1(ε, ε

1
4 )

)
.

(37)

Proof. First note that we have,

I (A1 : A2 : · · · : An : B) = D(ρAn
1 B
||

n⊗

k=1

ρAk ⊗ ρB)

=
n∑

k=1

I (Ak : Ak−1
1 B)

≤ nε.

Using the substate theorem, we now have

Dε
1
4

max

(

ρAn
1 B

∥
∥
∥
∥

n⊗

k=1

ρAk ⊗ ρB

)

≤ D(ρAn
1 B
||⊗n

k=1 ρAk ⊗ ρB) + 1√
ε

− log(1−√ε)

≤ n
√

ε +
1√
ε
− log(1−√ε). (38)

We now define the auxiliary state ηAn
1 B
:= ⊗n

k=1 ρAk ⊗ ρB . Using Lemma 3.5, for
α ∈ (1, 2), we can transform the smooth min-entropy into an α-Rényi entropy on the
auxiliary product state ηAn

1 B
as follows:

H ε
1
4 +ε

min (An
1|B)ρ

≥ H̃↑α (An
1|B)η − α

α − 1
Dε

1
4

max(ρAn
1 B
||ηAn

1 B
)− g1(ε, ε

1
4 )

α − 1

=
n∑

k=1

H̃↑α (Ak)ρ − α

α − 1
Dε

1
4

max(ρAn
1 B
||ηAn

1 B
)− g1(ε, ε

1
4 )

α − 1

≥
n∑

k=1

H(Ak)ρ − n(α − 1) log2(1 + 2|A|)− α

α − 1
Dε

1
4

max(ρAn
1 B
||ηAn

1 B
)− g1(ε, ε

1
4 )

α − 1
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≥
n∑

k=1

H(Ak)ρ − n(α − 1) log2(1 + 2|A|)− α

α − 1
n
√

ε

− α

α − 1

1√
ε
− α

α − 1
log(1−√ε)− g1(ε, ε

1
4 )

α − 1
.

In the third line above, we have used [8, Lemma B.9] (which is an improvement of [21,
Lemma 8]), which is valid as long as α < 1+ 1

log(1+2|A|) . We will select α = 1+ ε1/4

log(1+2|A|)
for which the above α bound is satisfied, this gives us

H ε
1
4 +ε

min (An
1|B)ρ ≥

n∑

k=1

H(Ak)ρ − 3nε
1
4 log(1 + 2|A|)− 2 log(1 + 2|A|)

ε3/4

− 2 log(1 + 2|A|)
ε1/4

(
log(1−√ε) + g1(ε, ε

1
4 )

)
.

��
We can now plug the bound in Eq. 34 to derive the following Corollary.

Corollary 4.4. Let registers Ak have dimension |A| for all k ∈ [n]. Suppose a quantum
state ρAn

1 B
is such that for every k ∈ [n], we have

∥
∥
∥ρAk

1B
− ρAk ⊗ ρAk−1

1 B

∥
∥
∥

1
≤ ε. (39)

Then, we have that for δ = ε log |A| + g2
(

ε
2

)
such that 0 < δ < 1,

H δ
1
4 +δ

min (An
1|B)ρ ≥

n∑

k=1

H(Ak)ρ − 3nδ
1
4 log(1 + 2|A|)

− 2 log(1 + 2|A|)
δ3/4 − 2 log(1 + 2|A|)

δ1/4

(
log(1−√δ) + g1(δ, δ

1
4 )

)

(40)

where g1(x, y) = − log(1−√1− x2)− log(1− y2) and g2(x) = (x + 1) log(x + 1)−
x log(x). In particular, when all the states ρAk are identical, we have

H δ
1
4 +δ

min (An
1|B)ρ ≥ n

(
H(A1)ρ − 3δ

1
4 log(1 + 2|A|)

)

− 2 log(1 + 2|A|)
δ3/4 − 2 log(1 + 2|A|)

δ1/4

(
log(1−√δ) + g1(δ, δ

1
4 )

)
.

(41)
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4.1. Weak approximate asymptotic equipartition. We can modify the proof of Theo-
rem 4.3 to prove a weak approximate asymptotic equipartition property (AEP).

Theorem 4.5. Let registers Ak have dimension |A| for all k ∈ [n] and the registers Bk
have dimension |B| for all k ∈ [n]. Suppose a quantum state ρAn

1 B
n
1 E

is such that for
every k ∈ [n], we have

∥
∥
∥ρAk

1B
k
1 E
− ρAk Bk ⊗ ρAk−1

1 Bk−1
1 E

∥
∥
∥

1
≤ ε. (42)

Then, we have that for δ = ε log (|A||B|) + g2
(

ε
2

)
such that 0 < δ < 1,

H δ
1
4 +δ

min (An
1|Bn

1 E)ρ ≥
n∑

k=1

H(Ak |Bk)ρ − 3nδ
1
4 log(1 + 2|A|)

− 2 log(1 + 2|A|)
δ3/4 − 2 log(1 + 2|A|)

δ1/4

(
log(1−√δ) + g1(δ, δ

1
4 )

)

(43)

where g1(x, y) = − log(1−√1− x2)− log(1− y2) and g2(x) = (x + 1) log(x + 1)−
x log(x). In particular, when all the states ρAk Bk are identical, we have

H δ
1
4 +δ

min (An
1|Bn

1 E)ρ ≥ n
(
H(A1|B1)ρ − 3δ

1
4 log(1 + 2|A|)

)

− 2 log(1 + 2|A|)
δ3/4 − 2 log(1 + 2|A|)

δ1/4

(
log(1−√δ) + g1(δ, δ

1
4 )

)
.

(44)

Proof. To prove this, we use the auxiliary state ηAn
1 B

n
1 E
:= ⊗

ρAk Bk ⊗ ρE . Then, we
have

D(ρAn
1 B

n
1 E
||ηAn

1 B
n
1 E

) = I (A1B1 : A2B2 : · · · : AnBn : E)ρ

=
n∑

k=1

I (Ak Bk : Ak−1
1 Bk−1

1 E)ρ

≤ n
(
ε log (|A||B|) + g

(ε

2

))
= nδ

where we used the AFW bound for mutual information in the last line [30, Theorem
11.10.4]. The rest of the proof follows the proof of Theorem 4.3, only difference being
that now we have H̃↑α (An

1|Bn
1 E)η =∑n

k=1 H̃↑α (Ak |Bk)ρ . ��
We call this generalisation weak because the smoothing term (δ) depends on size of

the side information |B|. In Appendix E, we show that under the assumptions of the
theorem, some sort of bound on the dimension of the registers B is necessary otherwise
one cannot have a non-trivial bound on the smooth min-entropy.
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Sequential DIQKD protocol

Parameters:
• ωexp is the expected winning probability for the honest implementation of the device
• n ≥ 1 is the number of rounds in the protocol
• γ ∈ (0, 1] is the fraction of test rounds

Protocol:

1. For every 0 ≤ i ≤ n perform the following steps:
(a) Alice chooses a random Ti ∈ {0, 1} with Pr[Ti = 1] = γ .
(b) Alice sends Ti to Bob.
(c) If Ti = 0, Alice and Bob set the questions (Xi , Yi ) = (0, 2), otherwise they sample (Xi , Yi )

uniformly at random from {0, 1}.
(d) Alice and Bob use their device with the questions (Xi , Yi ) and obtain the outputs Ai , Bi .

2. Alice announces her questions Xn
1 to Bob.

3. Error correction: Alice and Bob use an error correction procedure, which lets Bob obtain the raw
key Ãn1 (if the error correction protocol succeeds, then An1 = Ãn1). In case the error correction
protocol aborts, they abort the QKD protocol too.

4. Parameter Estimation: Bob uses Bn
1 and Ãn1 to compute the average winning probability ωavg on

the test rounds. He aborts if ωavg < ωexp
5. Privacy Amplification: Alice and Bob use a privacy amplification protocol to create a secret key

K from An1 (using Ãn1 for Bob).

Protocol 1.

4.2. Simple security proof for sequential device independent quantum key distribution.
The approximately independent register scenario and the associated min-entropy lower
bound can be used to provide simple “proof of concept” security proofs for cryptographic
protocols. In this section, we will briefly sketch a proof for sequential device independent
quantum key distribution (DIQKD) to demonstrate this idea. The protocol for sequential
DIQKD used in [31] is presented as Protocol 1.

We consider a simple model for DIQKD, where Eve (the adversary) distributes a
state ρ

(0)
EAEB E

between Alice and Bob at the beginning of the protocol. Alice and Bob
then use their states sequentially as given in Protocol 1. The kth round of the protocol
produces the questions Xk,Yk and Tk , the answers Ak and Bk and transforms the shared
state from ρ

(k−1)
EAEB E

to ρ
(k)
EAEB E

.
Given the questions and answers of the previous rounds, the state shared between

Alice and Bob and their devices in each round can be viewed as a device for playing the
CHSH game. Suppose in the kth round, the random variables produced in the previous
k−1 rounds are rk−1 := xk−1

1 , yk−1
1 , tk−1

1 , ak−1
1 , bk−1

1 and that the state shared between

Alice and Bob is ρ
(k−1)
EAEB E |rk−1

. We can then define Pr[Wk |rk−1] to be the winning prob-
ability of the CHSH game played by Alice and Bob using the state and their devices in
the kth round. Note that Alice’s device cannot distinguish whether the CHSH game is
played in a round or is used for key generation. We can further take an average over all
the previous round’s random variables to derive the probability of winning the kth game

Pr[Wk] = Erk−1

[
Pr[Wk |rk−1]

]
. (45)

Alice and Bob randomly sample a subset of the rounds (using the random variable Tk)
and play the CHSH game on this subset. If the average winning probability of CHSH
game on this subset is small, they abort the protocol. For simplicity and brevity, we will
assume here that the state ρ

(0)
EAEB E

distributed between Alice and Bob at the start of the
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Fig. 1. The lower bound in Eq. 47 for the interval [ 3
4 , 2+

√
2

4 ]

protocol by Eve has an average winning probability at least ωexp, that is,

1

n

n∑

k=1

Pr[Wk] ≥ ωexp − δ (46)

for some small δ > 0. Using standard sampling arguments it can be argued that either
this is true or the protocol aborts with high probability.

For any shared state σEAEB E (where EA is held by Alice, EB is held by Bob and E is
held by the adversary) and local measurement devices, if Alice and Bob win the CHSH

game with a probability ω ∈ ( 3
4 , 2+

√
2

4 ], then Alice’s answer A to the game is random
given the questions X,Y and the register E held by adversary. This is quantified by the
following entropic bound [32] (see [31, Lemma 5.3] for the following form)

H(A|XY E) ≥ f (ω) =
{

1− h
( 1

2 + 1
2

√
16ω(ω − 1) + 3

)
if ω ∈ [ 3

4 , 2+
√

2
4 ]

0 if ω ∈ [0, 3
4 )

(47)

where h(·) is the binary entropy. The function f is convex over the interval
[
0, 2+

√
2

4

]
.

We plot it in the interval [ 3
4 , 2+

√
2

4 ] in Fig. 1.

For ε > 0, we choose the parameter ωexp ∈ [ 3
4 + δ, 2+

√
2

4 ] to be large enough so that

1− f (ωexp − δ) = h

(
1

2
+

1

2

√
16(ωexp − δ)(ωexp − δ − 1) + 3

)

≤ ε4. (48)

We will now use Eq. 47 to bound the von Neumann entropy of the answers given Eve’s
information for the sequential DIQKD protocol. We have

H(An
1|Xn

1Y
n
1 T

n
1 E) =

n∑

k=1

H(Ak |Ak−1
1 Xn

1Y
n
1 T

n
1 E)

(1)=
n∑

k=1

H(Ak |Ak−1
1 Xk

1Y
k
1 T

k
1 E)
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(2)=
n∑

k=1

H(Ak |XkYk Rk−1E)

=
n∑

k=1

Erk−1∼Rk−1

[

H(Ak |XkYk E)
ρ

(k)
|rk−1

]

(3)≥
n∑

k=1

Erk−1∼Rk−1

[
f (Pr[Wk |rk−1])

]

≥
n∑

k=1

f (Pr[Wk])

≥ n f

(
1

n

n∑

k=1

Pr[Wk]
)

≥ n f (ωexp − δ) ≥ n(1− ε4)

where in (1) we have used the fact that the questions sampled in the rounds after the
kth round are independent of the random variables in the previous rounds, in (2) we
use the fact that Alice’s answers are independent of the random variable Tk given the
question Xk and we also grouped the random variables generated in the previous round
into the random variable Rk−1 := Ak−1

1 Bk−1
1 Xk−1

1 Y k−1
1 T k−1

1 , in (3) we use the bound in
Eq. 47, and in the next two steps we use convexity of f . If instead of the von Neumann
entropy on the left-hand side above we had the smooth min-entropy, then the bound
above would be sufficient to prove the security of DIQKD. However, this argument
cannot be easily generalised to the smooth min-entropy because a chain rule like the one
used in the first step does not exist for the smooth min-entropy (entropy accumulation
[8,9] generalises exactly such an argument). We can use the argument used for the
approximately independent register case to transform this von Neumann entropy bound
to a smooth min-entropy bound.

This bound results in the following bound on the multipartite mutual information

I (A1 : · · · : An : Xn
1Y

n
1 T

n
1 E) =

n∑

k=1

H(Ak) + H(Xn
1Y

n
1 T

n
1 E)− H(An

1X
n
1Y

n
1 T

n
1 E)

=
n∑

k=1

H(Ak)− H(An
1|Xn

1Y
n
1 T

n
1 E)

≤ n − n(1− ε4) = nε4

where we have used the dimension bound H(Ak) ≤ 1 for every k ∈ [n]. This is the same
as the multipartite mutual information bound we derived while analysing approximately
independent registers in Theorem 4.3. We can simply use the smooth min-entropy bound
derived there here as well. This gives us the bound

H2ε
min(A

n
1|Xn

1Y
n
1 T

n
1 E) ≥

n∑

k=1

H(Ak)− 3nε log 5− O

(
1

ε3

)

= n(1− 3ε log 5)− O

(
1

ε3

)

(49)
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Fig. 2. The setting for entropy accumulation and Theorem 5.1. For k ∈ [n], the channels Mk are repeatedly
applied to the registers Rk−1 to produce the “secret” information Ak and the side information Bk

where we have used the fact that the answers Ak can always be assumed to be uniformly
distributed [31,32]. For every ε > 0, we can choose a sufficiently large n so that this
bound is large and positive.

We note that this method is only able to provide “proof of concept” or existence
type security proofs. This proof method couples the value of the security parameter for
privacy amplification ε with the average winning probability, which is not desirable.
The parameter ε is chosen according to the security requirements of the protocol and
is typically very small. For such values of ε, the average winning probability of the
protocol will have to be extremely close to the maximum and we cannot realistically
expect practical implementations to achieve such high winning probabilities. However,
we do expect that this method will make it easier to create “proof of concept” type proofs
for new cryptographic protocols in the future.

5. Approximate Entropy Accumulation

In general, it is very difficult to estimate the smooth min-entropy of states produced
during cryptographic protocols. The entropy accumulation theorem (EAT) [8] provides a
tight and simple lower bound for the smooth min-entropy H ε

min(A
n
1|Bn

1 E)ρ of sequential
processes, under certain Markov chain conditions. The state ρAn

1 B
n
1 E

in the setting for
EAT is produced by a sequential process of the form shown in Fig. 2. The process begins
with the registers R0 and E . In the context of a cryptographic protocol, the register R0
is usually held by the honest parties, whereas the register E is held by the adversary.
Then, in each round k ∈ [n] of the process, a channel Mk : Rk−1 → Ak Bk Rk is applied
on the register Rk−1 to produce the registers Ak, Bk and Rk . The registers An

1 usually
contain a partially secret raw key and the registers Bn

1 contain the side information about
An

1 revealed to the adversary during the protocol. EAT requires that for every k ∈ [n],
the side information Bk satisfies the Markov chain Ak−1

1 ↔ Bk−1
1 E ↔ Bk , that is,

the side information revealed in the kth round does not reveal anything more about the
secret registers of the previous rounds than was already known to the adversary through
Bk−1

1 E . Under this assumption, EAT provides the following lower bound for the smooth
min-entropy

H ε
min(A

n
1|Bn

1 E)ρ ≥
n∑

k=1

inf
ωRk−1 R̃

H(Ak |Bk R̃)Mk (ω) − c
√
n (50)

where the infimum is taken over all input states to the channels Mk and c > 0 is a
constant depending only on |A| (size of registers Ak) and ε. We will state and prove
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an approximate version of EAT. Consider the sequential process in Fig. 2 again. Now,
suppose that the channels Mk do not necessarily satisfy the Markov chain conditions
mentioned above, but each of the channels Mk can be ε-approximated by M′

k which
satisfy the Markov chain Ak−1

1 ↔ Bk−1
1 E ↔ Bk for a certain collection of inputs.

The approximate entropy accumulation theorem below provides a lower bound on the
smooth min-entropy in such a setting. The proof of this theorem again uses the technique
based on the smooth min-entropy triangle inequality developed in the previous section.
In this setting too, we have a chain of approximations. For each k ∈ [n], we have

ρAk
1B

k
1 E
= trRk ◦Mk

(
Mk−1 ◦ · · · ◦M1(ρ

(0)
R0E

)
)

≈ε trRk ◦M′
k

(
Mk−1 ◦ · · · ◦M1(ρ

(0)
R0E

)
)
:= σ

(k)
Ak

1B
k
1 E

.

According to the Markov chain assumption for the channels M′
k , the state σ

(k)
Ak

1B
k
1 E

,

satisfies the Markov chain Ak−1
1 ↔ Bk−1

1 E ↔ Bk . Therefore, we expect that the
register Ak adds some entropy to the smooth min-entropy H ε′

min(A
n
1|Bn

1 E)ρ and that the
information leaked through Bn

1 is not too large. We show that this is indeed the case in
the approximate entropy accumulation theorem.

The approximate entropy accumulation theorem can be used to analyse and prove
the security of cryptographic protocols under certain imperfections. The entropy accu-
mulation theorem itself is used to prove the security of sequential device independent
quantum key distribution (DIQKD) protocols [12]. In these protocols, the side informa-
tion Bk produced during each of the rounds are the questions used during the round to
play a non-local game, like the CHSH game. In the ideal case, these questions are sam-
pled independently of everything which came before. As an example of an imperfection,
we can imagine that some physical effect between the memory storing the secret bits
Ak−1

1 and the device producing the questions may lead to a small correlation between
the side information produced during the kth round and the secret bits Ak−1

1 (also see
[13,14]). The approximate entropy accumulation theorem below can be used to prove
security of DIQKD under such imperfections. We do not, however, pursue this example
here and leave applications of this theorem for future work. In Sect. 5.4, we modify this
Theorem to incorporate testing for EAT.

Theorem 5.1. For k ∈ [n], let the registers Ak and Bk be such that |Ak | = |A| and
|Bk | = |B|. For k ∈ [n], let Mk be channels from Rk−1 → Rk Ak Bk and

ρAn
1 B

n
1 E
= trRn ◦Mn ◦ · · · ◦M1(ρ

(0)
R0E

) (51)

be the state produced by applying these maps sequentially. Suppose the channels Mk
are such that for every k ∈ [n], there exists a channel M′

k from Rk−1 → Rk Ak Bk such
that

1. M′
k ε-approximates Mk in the diamond norm:

1

2

∥
∥Mk −M′

k

∥
∥� ≤ ε (52)

2. For every choice of a sequence of channelsN i ∈ {Mi ,M′
i } for i ∈ [k−1], the state

M′
k ◦N k−1 ◦ · · · ◦N 1(ρ

(0)
R0E

) satisfies the Markov chain

Ak−1
1 ↔ Bk−1

1 E ↔ Bk . (53)
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Then, for 0 < δ, ε1, ε2 < 1 such that ε1 + ε2 < 1, α ∈
(

1, 1 + 1
log(1+2|A|)

)
and β > 1,

we have

H ε1+ε2
min (An

1|Bn
1 E)ρ ≥

n∑

k=1

inf
ωRk−1 R̃

H(Ak |Bk R̃)M′
k (ω) − n(α − 1) log2(1 + 2|A|)

− α

α − 1
n log

(
1 + δ

(
4

α−1
α

log(|A||B|) − 1
))

− α

α − 1
nzβ(ε, δ)− 1

α − 1

(

g1(ε2, ε1) +
αg0(ε1)

β − 1

)

. (54)

where

zβ(ε, δ) := β + 1

β − 1
log

⎛

⎝
(

1 +
√

(1− δ)ε
) β

β+1
+

(√
(1− δ)ε

δβ

) 1
β+1

⎞

⎠ (55)

and g1(x, y) = − log(1−√1− x2)− log(1− y2) and the infimum in Eq. 54 is taken
over all input states ωRk−1 R̃

to the channelsM′
k where R̃ is a reference register (R̃ can

be chosen isomorphic to Rk−1).

For the choice of β = 2, δ = ε
1
8 , we have

z2(ε, δ) ≤ 3 log

((
1 + ε

1
2

) 2
3

+ ε
1

12

)

.

We also have that

log
(

1 + δ2
α−1
α

2 log(|A||B|)) ≤ (|A||B|)2ε
1
8 .

Finally, if we define εr := (|A||B|)2ε
1
8 +3 log

((
1 + ε

1
2

) 2
3

+ ε
1

12

)

, and choose α = √εr ,

we get the bound

H ε1+ε2
min (An

1|Bn
1 E)ρ ≥

n∑

k=1

inf
ωRk R̃k

H(Ak |Bk R̃k)M′
k (ωRk R̃k

)

− n
√

εr (log2(1 + 2|A|) + 2)− 1√
εr

(g1(ε2, ε1) + 2g0(ε1)) (56)

The entropy loss per round in the above bound behaves as ∼ ε
1

24 . This dependence
on ε is indeed very poor. In comparison, we can carry out a similar proof argument for
classical probability distributions to get a dependence of O(

√
ε) (Theorem F.1). The

exponent of ε in our bound seems to be almost a factor of 12 off from the best possible
bound. Roughly speaking, while carrying out the proof classically, we can bound the
relevant channel divergences in the proof by O (ε), whereas in Eq. 56, we were only
able to bound the channel divergence by ∼ ε1/12. This leads to the deterioration of
performance we see here as compared to the classical case. We will discuss this further
in Sect. 5.5.
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In order to prove this theorem, we will use a channel divergence based chain rule.
Recently proven chain rules for α-Rényi relative entropy [15, Corollary 5.2] state that
for α > 1 and states ρA and σA, and channels EA→B and FA→B , we have

D̃α(EA→B(ρA)||FA→B(σA)) ≤ D̃α(ρA||σA) + D̃reg
α (EA→B ||FA→B) (57)

where D̃reg
α (EA→B ||FA→B) := limn→∞ 1

n D̃α(E⊗nA→B ||F⊗nA→B) and D̃α(·||·) is the chan-
nel divergence (see Eq. 14).

Now observe that if we were guaranteed that for the maps in Theorem 5.1 above,
D̃reg

α (Mk ||M′
k) ≤ ε for every k for some α > 1. Then, we could use the chain rule in

Eq. 57 as follows

D̃α(Mn ◦ · · · ◦M1(ρ
(0)
R0E

)||M′
n ◦ · · · ◦M′

1(ρ
(0)
R0E

))

≤ D̃α(Mn−1 ◦ · · · ◦M1(ρ
(0)
R0E

)||M′
n−1 ◦ · · · ◦M′

1(ρ
(0)
R0E

)) + D̃reg
α (Mn ||M′

n)

≤ · · ·

≤ D̃α(ρ
(0)
R0E
||ρ(0)

R0E
) +

n∑

k=1

D̃reg
α (Mk ||M′

k)

≤ nε.

Once we have the above result we can simply use the well known relation between
smooth max-relative entropy and α-Rényi relative entropy [17, Proposition 6.5] to get
the bound

Dε′
max(Mn ◦ · · · ◦M1(ρ

(0)
R0E

)||M′
n ◦ · · · ◦M′

1(ρ
(0)
R0E

))

≤ D̃α(Mn ◦ · · · ◦M1(ρ
(0)
R0E

)||M′
n ◦ · · · ◦M′

1(ρ
(0)
R0E

)) +
g0(ε

′)
α − 1

≤ nε + O(1).

This bound can subsequently be used in Lemma 3.5 to relate the smooth min-entropy
of the real stateMn ◦ · · ·◦M1(ρ

(0)
R0E

) with the α−Rényi conditional entropy of the auxil-

iary stateM′
n ◦ · · ·◦M′

1(ρ
(0)
R0E

), for which we can use the original entropy accumulation
theorem.

In order to prove Theorem 5.1, we broadly follow this idea. However, the condition∥
∥Mk −M′

k

∥
∥� ≤ ε does not lead to any kind of bound on D̃reg

α or any other channel

divergence. We will get around this issue by instead using mixed channels Mδ
k :=

(1 − δ)M′
k +δMk . Also, instead of trying to bound channel divergence in terms of

D̃reg
α , we will bound the D#

α (defined in the next section) channel divergence and use its
chain rule. We develop the relevant α-Rényi divergence bounds for this divergence in
the next two subsections and then prove the theorem above in Sec 5.3.

5.1. Divergence bound for approximately equal states. We will use the sharp Rényi
divergence D#

α defined in Ref. [15] (see [33] for the following equivalent definition) in
this section. For α > 1 and two positive operators P and Q, it is defined

D#
α(P||Q) := min

A≥P
D̂α(A||Q) (58)
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where D̂α(A||Q) is the α-Rényi geometric divergence [34]. For α > 1, it is defined as

D̂α(A||Q) =
{

1
α−1 log tr

(
Q

(
Q− 1

2 AQ− 1
2

)α)
if A � Q

∞ otherwise.
(59)

A in the optimisation above is any operator A ≥ P . In general, such an operator A is
unnormalised. We will prove a bound on D#

α between two states in terms of the distance
between them and their max-relative entropy. In order to prove this bound, we require the
following simple generalisation of the pinching inequality (see for example [17, Sect.
2.6.3]).

Lemma 5.2 (Asymmetric pinching). For t > 0, a positive semidefinite operator X ≥ 0
and orthogonal projections � and �⊥ = 1−�, we have that

X ≤ (1 + t)�X� +

(

1 +
1

t

)

�⊥X�⊥. (60)

Proof. We will write the positive matrix X as the block matrix

X =
(
X1 X2
X∗2 X3

)

where the blocks are partitioned according to the direct sum im(�) ⊕ im(�⊥). Then,
the statement in the Lemma is equivalent to proving that

(
X1 X2
X∗2 X3

)

≤
(

(1 + t)X1 0
0 0

)

+

(
0 0
0

(
1 + 1

t

)
X3

)

which is equivalent to proving that

0 ≤
(
t X1 −X2

−X∗2
1
t X3

)

.

This is true because
(
t X1 −X2

−X∗2
1
t X3

)

=
(−t1/2 0

0 t−1/2

)(
X1 X2
X∗2 X3

)(−t1/2 0
0 t−1/2

)

≥ 0

since X ≥ 0. ��
Lemma 5.3. Let ε > 0 and α ∈ (1,∞), ρ and σ be two normalised quantum states on
the Hilbert space Cn such that 1

2 ‖ρ − σ‖1 ≤ ε and also Dmax(ρ||σ) ≤ d < ∞, then
we have the bound

D#
α(ρ||σ) ≤ α + 1

α − 1
log

(

(1 +
√

ε)
α

α+1 +
(

2αd√ε
) 1

α+1
)

. (61)

Note: For a fixed α ∈ (1,∞), this upper bound tends to zero as ε → 0. On the other
hand, for a fixed ε ∈ (0, 1), the upper bound tends to infinity as α → 1 (that is, the bound
becomes trivial). In Appendix B, we show that a bound of this form for D#

α necessarily
diverges for ε > 0 as α → 1.
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Proof. Since, Dmax(ρ||σ) <∞, we have that ρ � σ . We can assume that σ is invertible.
If it was not, then we could always restrict our vector space to the subspace supp(σ ).

Let ρ−σ = P−Q, where P ≥ 0 is the positive part of the matrix ρ−σ and Q ≥ 0
is its negative part. We then have that tr(P) = tr(Q) ≤ ε.
Further, let

σ−
1
2 Pσ−

1
2 =

n∑

i=1

λi |xi 〉〈xi | (62)

be the eigenvalue decomposition of σ− 1
2 Pσ− 1

2 . Define the real vector q ∈ R
n as

q(i) := 〈xi |σ |xi 〉.
Note that q is a probability distribution. Observe that

EI∼q [λI ] =
n∑

i=1

λi 〈xi |σ |xi 〉

= tr

(

σ

n∑

i=1

λi |xi 〉〈xi |
)

= tr
(
σσ−

1
2 Pσ−

1
2

)

= tr(P)

≤ ε.

Also, observe that λi ≥ 0 for all i ∈ [n] because σ− 1
2 Pσ− 1

2 ≥ 0. Let’s define

S := {i ∈ [n] : λi ≤ √ε}. (63)

Since, λi ≥ 0 for all i ∈ [n], we can use the Markov inequality to show:

Pr
q

(I ∈ Sc) = Pr
q

(λI >
√

ε)

≤ EI∼q [λI ]√
ε

≤ √ε.

Thus, if we define the projectors � := ∑
i∈S |xi 〉〈xi | and �⊥ := ∑

i∈Sc |xi 〉〈xi | =
1−�, we have

tr(σ�⊥) =
∑

i∈Sc
〈xi |σ |xi 〉

= Pr
q

(I ∈ Sc)

≤ √ε. (64)

Moreover, by the definition of set S (Eq. 63) we have

�σ−
1
2 Pσ−

1
2 � =

∑

i∈S
λi |xi 〉〈xi | ≤ √ε� (65)
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and using Dmax(ρ||σ) ≤ d, we have that

σ−
1
2 ρσ−

1
2 ≤ 2d 1 . (66)

Now, observe that since σ− 1
2 ρσ− 1

2 ≥ 0, for an arbitrary t > 0, using Lemma 5.2 we
have

σ−
1
2 ρσ−

1
2 ≤ (1 + t)�σ−

1
2 ρσ−

1
2 � +

(

1 +
1

t

)

�⊥σ−
1
2 ρσ−

1
2 �⊥

≤ (1 + t)�
(
1+σ−

1
2 Pσ−

1
2

)
� +

(

1 +
1

t

)

2d�⊥

≤ (1 + t)(1 +
√

ε)� +

(

1 +
1

t

)

2d�⊥

where we have used ρ ≤ σ + P to bound the first term and Eq. 66 to bound the second

term in the second line, and Eq. 65 to bound �σ− 1
2 Pσ− 1

2 � in the last step.

We will define At := (1 + t)(1 +
√

ε)σ
1
2 �σ

1
2 +

(
1 + 1

t

)
2dσ

1
2 �⊥σ

1
2 . Above, we have

shown that At ≥ ρ for every t > 0. Therefore, for each t > 0, D#
α(ρ||σ) ≤ D̂α(At ||σ).

We will now bound D̂α(At ||σ) for α ∈ (1,∞) as:

D̂α(At ||σ) = 1

α − 1
log tr

(
σ

(
σ−

1
2 Atσ

− 1
2

)α)

= 1

α − 1
log tr

(

σ

(

(1 + t)(1 +
√

ε)� +

(

1 +
1

t

)

2d�⊥
)α)

= 1

α − 1
log tr

(

σ

(

(1 + t)α(1 +
√

ε)α� +

(

1 +
1

t

)α

2dα�⊥
))

= 1

α − 1
log

(

(1 + t)α(1 +
√

ε)α tr (σ�) +

(

1 +
1

t

)α

2dα tr (σ�⊥)

)

≤ 1

α − 1
log

(

(1 + t)α(1 +
√

ε)α +

(

1 +
1

t

)α

2dα
√

ε

)

where in the last line we use tr(σ�) ≤ 1 and tr(σ�⊥) ≤ √ε (Eq. 64). Finally, since
t > 0 was arbitrary, we can choose the t > 0 which minimizes the right-hand side. For

this choice of tmin =
(

2αd√ε

(1+
√

ε)
α

) 1
α+1

, we get

D̂α(Atmin ||σ) ≤ α + 1

α − 1
log

(
(1 +

√
ε)

α
α+1 + 2

α
α+1 dε

1
2(α+1)

)

which proves the required bound. ��

5.2. Bounding the channel divergence for two channels close to each other. Suppose
there are two channels N and M mapping registers from the space A to B such that
1
2 ‖N −M‖� ≤ ε. In general, the channel divergence between two such channels can
be infinite because there may be states ρ such that N (ρ) �� M(ρ). In order to get
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around this issue, we will use the δ−mixed channel, Mδ . For δ ∈ (0, 1), we define Mδ

as

Mδ := (1− δ)M + δN .

This guarantees that Dmax(N ||Mδ) ≤ log 1
δ
, which is enough to ensure that the diver-

gences we are interested in are finite. Moreover, by mixing M with N , we only decrease
the distance:

1

2
‖Mδ −N‖� = 1

2
‖(1− δ)M+δN −N‖�

= (1− δ)
1

2
‖M−N‖�

≤ (1− δ)ε. (67)

We will now show that D#
α(N ||Mδ) is small for an appropriately chosen δ. By the

definition of channel divergence, we have that

D#
α(N ||Mδ) = sup

ρAR

D#
α(N (ρAR)||Mδ(ρAR))

where R is an arbitrary reference system (N ,Mδ map register A to register B). We will
show that for every ρAR , D#

α(N (ρAR)||Mδ(ρAR)) is small. Note that

Mδ(ρAR) = (1− δ)M(ρAR) + δN (ρAR)

≥ δN (ρAR)

which implies that Dmax(N (ρAR)||Mδ(ρAR)) ≤ log 1
δ
. Also, using Eq. 67 have that

1

2
‖Mδ(ρAR)−N (ρAR)‖1 ≤ (1− δ)ε.

Using Lemma 5.3, we have for every α ∈ (1,∞)

D#
α(N (ρAR)||Mδ(ρAR)) ≤ α + 1

α − 1
log

⎛

⎝
(

1 +
√

(1− δ)ε
) α

α+1
+

(√
(1− δ)ε

δα

) 1
α+1

⎞

⎠ .

Since, this is true for all ρAR , for every α ∈ (1,∞) we have

D#
α(N ||Mδ) ≤ α + 1

α − 1
log

⎛

⎝
(

1 +
√

(1− δ)ε
) α

α+1
+

(√
(1− δ)ε

δα

) 1
α+1

⎞

⎠ .

Note that since δ was arbitrary, we can choose it appropriately to make sure that the

above bound is small, for example by choosing δ = ε
1

4α , we get the bound

D#
α(N ||Mδ) ≤ α + 1

α − 1
log

(
(1 +

√
ε)

α
α+1 + ε

1
4(α+1)

)

which is a small function of ε in the sense that it tends to 0 as ε → 0. We summarise
the bound derived above in the following lemma.
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Lemma 5.4. Let ε > 0. Suppose channels N and M from register A to B are such
that 1

2 ‖N −M‖� ≤ ε. For δ ∈ (0, 1), we can define the mixed channel Mδ :=
(1 − δ)M + δN . Then, for every α ∈ (1,∞), we have the following bound on the
channel divergence

D#
α(N ||Mδ) ≤ α + 1

α − 1
log

⎛

⎝
(

1 +
√

(1− δ)ε
) α

α+1
+

(√
(1− δ)ε

δα

) 1
α+1

⎞

⎠ . (68)

5.3. Proof of the approximate entropy accumulation theorem. We use the mixed chan-
nels defined in the previous section to define the auxiliary state Mδ

n ◦ · · · ◦Mδ
1(ρ

(0)
R0E

)

for our proof. It is easy to show using the divergence bounds in Sect. 5.2 and the chain
rule for D#

α entropies that the relative entropy distance between the real state and this

choice of the auxiliary state is small. However, the state Mδ
n ◦ · · · ◦Mδ

1(ρ
(0)
R0E

) does
not necessarily satisfy the Markov chain conditions required for entropy accumulation.
Thus, we also need to reprove the entropy lower bound on this state by modifying the
approach used in the proof of the original entropy accumulation theorem.

Proof of Theorem 5.1. Using Lemma 5.4, for every δ ∈ (0, 1) and for each k ∈ [n] we
have that for every β > 1, the mixed maps Mδ

k := (1− δ)M′
k +δMk satisfy

D#
β(Mk ||Mδ

k) ≤
β + 1

β − 1
log

⎛

⎝
(

1 +
√

(1− δ)ε
) β

β+1
+

(√
(1− δ)ε

δβ

) 1
β+1

⎞

⎠

:= zβ(ε, δ) (69)

where we defined the right-hand side above as zβ(ε, δ). This can be made “small” by

choosing δ = ε
1

4β as was shown in the previous section. We use these maps to define
the auxiliary state as

σAn
1 B

n
1 E
:=Mδ

n ◦ · · · ◦Mδ
1(ρ

(0)
R0E

). (70)

Now, we have that for β > 1 and ε1 > 0

Dε1
max(ρAn

1 B
n
1 E
||σAn

1 B
n
1 E

)

≤ D̃β(ρAn
1 B

n
1 E
||σAn

1 B
n
1 E

) +
g0(ε1)

β − 1

≤ D#
β(ρAn

1 B
n
1 E
||σAn

1 B
n
1 E

) +
g0(ε1)

β − 1

= D#
β(Mn ◦ · · · ◦M1(ρ

(0)
R0E

)||Mδ
n ◦ · · · ◦Mδ

1(ρ
(0)
R0E

)) +
g0(ε1)

β − 1

≤ D#
β(Mn−1 ◦ · · · ◦M1(ρ

(0)
R0E

)||Mδ
n−1 ◦ · · · ◦Mδ

1(ρ
(0)
R0E

)) + D#
β(Mn ||Mδ

n) +
g0(ε1)

β − 1
≤ · · ·
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≤
n∑

k=1

D#
β(Mk ||Mδ

k) +
g0(ε1)

β − 1

≤ nzβ(ε, δ) +
g0(ε1)

β − 1
(71)

where the first line follows from [17, Proposition 6.5], the second line follows from [15,
Proposition 3.4], fourth line follows from the chain rule for D#

β [15, Proposition 4.5],
and the last line follows from Eq. 69.

For ε2 > 0 and α ∈ (1, 1 + 1
log(1+2|A|) ), we can plug the above in the bound provided

by Lemma 3.5 to get

H ε1+ε2
min (An

1|Bn
1 E)ρ ≥ H̃↑α (An

1|Bn
1 E)σ − α

α − 1
nzβ(ε, δ)

− 1

α − 1

(

g1(ε2, ε1) +
αg0(ε1)

β − 1

)

. (72)

We have now reduced our problem to lower bounding H̃↑α (An
1|Bn

1 E)σ . Note that
we cannot directly use the entropy accumulation here, since the mixed maps Mδ

k =
(1−δ)M′

k +δMk , which means that with δ probability the Bk register may be correlated
with Ak−1

1 even given Bk−1
1 E , and it may not satisfy the Markov chain required for

entropy accumulation.
The application of the maps Mδ

k can be viewed as applying the channel M′
k with

probability 1−δ and the channel Mk with probability δ. We can define the channels N k
which map the registers Rk−1 to Rk Ak BkCk , where Ck is a binary register. The action
of N k can be defined as:

1. Sample the classical random variable Ck ∈ {0, 1} independently. Ck = 1 with prob-
ability 1− δ and 0 otherwise.

2. If Ck = 1 apply the map M′
k on Rk−1, else apply Mk on Rk−1.

Let us call θAn
1 B

n
1C

n
1 E
= N n ◦ · · · ◦ N 1(ρ

(0)
R0E

). Clearly trCn
1

(
θAn

1 B
n
1C

n
1 E

)
= σAn

1 B
n
1 E

.

Thus, we have

H̃↑α (An
1|Bn

1 E)σ = H̃↑α (An
1|Bn

1 E)θ

≥ H̃↑α (An
1|Bn

1C
n
1 E)θ . (73)

We will now focus on lower bounding H̃↑α (An
1|Bn

1C
n
1 E)θ . Using [17, Proposition

5.1], we have that

H̃↑α (An
1|Bn

1C
n
1 E)θ = α

1− α
log

∑

cn1

θ(cn1) exp

(
1− α

α
H̃↑α (An

1|Bn
1 E)θ|cn1

)

.

We will show that for a given cn1 , the conditional entropy H̃↑α (An
1|Bn

1 E)θ|cn1
accumu-

lates whenever the “good” map M′
k is used and loses some entropy for the rounds where

the “bad” map Mk is used. The fact that cn1 contains far more 1s than 0s with a large

probability then allows us to prove a lower bound on H̃↑α (An
1|Bn

1C
n
1 E)θ .
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Claim 5.5. Define hk := infω H̃↓α (Ak |Bk R̃k−1)M′
k (ω) where the infimum is over all

statesωRk−1 R̃k−1
for a register R̃k−1, which is isomorphic to Rk−1, and s := log(|A||B|2).

Then, we have

H̃↑α (An
1|Bn

1 E)θ|cn1
≥

n∑

k=1

(δ(ck, 1)hk − δ(ck, 0)s) (74)

where δ(x, y) is the Kronecker delta function (δ(x, y) = 1 if x = y and 0 otherwise).

Proof. We will prove the statement

H̃↑α (Ak
1|Bk

1 E)θ|ck1
≥ H̃↑α (Ak−1

1 |Bk−1
1 E)θ|ck−1

1
+ (δ(ck, 1)hk − δ(ck, 0)s)

then the claim will follow inductively. We will consider two cases: when ck=0 and when

ck=1. First suppose, ck = 0 then θAk
1B

k
1 E |ck1= trRk◦MRk−1→Rk Ak Bk

k

(
θRk−1A

k−1
1 Bk−1

1 E |ck1
)

.

In this case, we have

H̃↑α (Ak
1|Bk

1 E)θ|ck1
≥ H̃↑α (Ak−1

1 |Bk
1 E)θ|ck1

− log |A|

≥ H̃↑α (Ak−1
1 |Bk−1

1 E)θ|ck1
− log

(
|A||B|2

)

= H̃↑α (Ak−1
1 |Bk−1

1 E)θ|ck−1
1
− s

where in the first line we have used the dimension bound in Lemma D.1, in the second
line we have used the dimension bound in Lemma D.3 and in the last line we have used
θAk−1

1 Bk−1
1 E |ck1 = θAk−1

1 Bk−1
1 E |ck−1

1
.

Now, suppose that ck = 1. In this case, we have that θAk
1B

k
1 E |ck1 = trRk ◦

M′
k

(
θRk−1A

k−1
1 Bk−1

1 E |ck1
)

and since θRk−1A
k−1
1 Bk−1

1 E |ck1 = �k−1 ◦ �k−2 · · · ◦ �1(ρ
(0)
R0E

)

where each of the �i ∈ {Mi ,M′
i }, using the hypothesis of the theorem we have that

the state θAk
1B

k
1 E |ck1 =M′

k

(
θRk−1A

k−1
1 Bk−1

1 E |ck1
)

satisfies the Markov chain

Ak−1
1 ↔ Bk−1

1 E ↔ Bk .

Now, using Corollary C.5 (the H̃↑α counterpart for [8, Corollary 3.5], which is the main
chain rule used for proving entropy accumulation), we have

H̃↑α (Ak
1|Bk

1 E)θ|ck1
≥ H̃↑α (Ak−1

1 |Bk−1
1 E)θ|ck1

+ inf
ω

H̃↓α (Ak |Bk R̃k−1)M′
k (ω)

= H̃↑α (Ak−1
1 |Bk−1

1 E)θ|ck−1
1

+ hk

where in the last line we have again used θAk−1
1 Bk−1

1 E |ck1 = θAk−1
1 Bk−1

1 E |ck−1
1

. Combining
these two cases, we have

H̃↑α (Ak
1|Bk

1 E)θ|ck1
≥ H̃↑α (Ak−1

1 |Bk−1
1 E)θ|ck−1

1
+ (δ(ck, 1)hk − δ(ck, 0)s) . (75)

Using this bound n times starting with H̃↑α (An
1|Bn

1 E)θ|cn1
gives us the bound required in

the claim. ��
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For the sake of clarity let lk(ck) := (δ(ck, 1)hk − δ(ck, 0)s). We will now evaluate

∑

cn1

θ(cn1) exp

(
1− α

α
H̃↑α (An

1|Bn
1 E)θ|cn1

)

≤
∑

cn1

θ(cn1) exp

(
1− α

α

n∑

k=1

lk(ck)

)

=
∑

cn1

n∏

k=1

θ(ck)2
1−α
α

lk (ck)

=
n∏

k=1

∑

ck

θ(ck)2
1−α
α

lk (ck). (76)

Then, we have

H̃↑α (An
1|Bn

1C
n
1 E)θ = α

1− α
log

∑

cn1

θ(cn1) exp2

(
1− α

α
H̃↑α (An

1|Bn
1 E)θ|cn1

)

.

≥ α

1− α

n∑

k=1

log
∑

ck

θ(ck)2
1−α
α

lk (ck)

= α

1− α

n∑

k=1

log
(
(1− δ)2

1−α
α

hk + δ2−
1−α
α

s
)

=
n∑

k=1

hk − α

α − 1

n∑

k=1

log
(

1− δ + δ2
α−1
α

(s+hk )
)

≥
n∑

k=1

hk − α

α − 1
n log

(
1 + δ

(
2

α−1
α

(s+log |A|) − 1
))

(77)

where in the second line we have used Eq. 76 and in the last line we have used the fact
that hk ≤ log |A| for all k ∈ [n].

We restricted the choice of α to the region
(

1, 1 + 1
log(1+2|A|)

)
in the theorem, so that

we can now use [8, Lemma B.9] to transform the above to

H̃↑α (An
1|Bn

1C
n
1 E)θ ≥

n∑

k=1

inf
ωRk−1 R̃k−1

H(Ak |Bk R̃k−1)M′
k (ω) − n(α − 1) log2(1 + 2|A|)

− α

α − 1
n log

(
1 + δ

(
2

α−1
α

2 log(|A||B|) − 1
))

. (78)

Putting Eqs. 72, 73, and 78 together, we have

H ε1+ε2
min (An

1|Bn
1 E)ρ ≥

n∑

k=1

inf
ωRk−1 R̃k−1

H(Ak |Bk R̃k−1)M′
k (ω) − n(α − 1) log2(1 + 2|A|)

− α

α − 1
n log

(
1 + δ

(
2

α−1
α

2 log(|A||B|) − 1
))

− α

α − 1
nzβ(ε, δ)

1

α − 1

(

g1(ε2, ε1) +
αg0(ε1)

β − 1

)

.

��



Smooth Min-entropy Lower Bounds for Approximation Chains Page 31 of 55 211

5.4. Testing. We will now incorporate testing into the approximate entropy accumula-
tion theorem proven in Theorem 5.1. We follow [9], which is itself based on [35] for
this purpose. Testing enables one to prove a lower bound on the smooth min-entropy
of a state produced by the process in Fig. 2 conditioned on the output of a classical
event. This is particularly useful for proving tight and practical bounds in cryptographic
protocols.

In this section, we will consider the channels Mk and M′
k which map registers Rk−1

to Ak Bk Xk Rk such that Xk is a classical value which is determined using the registers Ak
and Bk . Concretely, suppose that for every k, there exist a channelTk : Ak Bk → Ak Bk Xk
of the form

Tk(ωAk Bk ) =
∑

y,z

�
y
Ak
⊗�z

Bk
ωAk Bk�

y
Ak
⊗�z

Bk
⊗ | f (y, z)〉〈 f (y, z)|Xk (79)

where {�y
Ak
}y and {�z

Bk
}z are orthogonal projectors and f is some deterministic function

which uses the measurements y and z to create the output register Xk .
In order to define the min-tradeoff functions, we let P be the set of probability distri-

butions over the alphabet of X registers. Let R be any register isomorphic to Rk−1. For
a probability q ∈ P and a channel N k : Rk−1 → Ak Bk Xk Rk , we also define the set

�k(q|N k) :=
{
νAk Bk Xk Rk R = N k(ωRk−1R) : for a state ωRk−1R such that νXk = q

}
.

(80)

Definition 5.6. A function f : P→ R is called a min-tradeoff function for the channels
{N k}nk=1 if for every k ∈ [n], it satisfies

f (q) ≤ inf
ν∈�k (q|N k )

H(Ak |Bk R)ν. (81)

We will also need the definitions of the following simple properties of the min-tradeoff
functions for our entropy accumulation theorem:

Max( f ) := max
q∈P

f (q) (82)

Min( f ) := min
q∈P

f (q) (83)

Min�( f ) := min
q:�(q) �=∅

f (q) (84)

Var( f ) := max
q:�(q) �=∅

∑

x

q(x) f (δx )
2 −

(
∑

x

q(x) f (δx )

)2

(85)

where �(q) :=⋃
k �k(q) and δx is the distribution with unit weight on the alphabet x .

Theorem 5.7. For k ∈ [n], let the registers Ak and Bk be such that |Ak | = |A| and
|Bk | = |B|. For k ∈ [n], let Mk be channels from Rk−1 → Rk Ak Bk Xk and

ρAn
1 B

n
1 X

n
1 E
= trRn ◦Mn ◦ · · · ◦M1(ρ

(0)
R0E

) (86)

be the state produced by applying these maps sequentially. Further, letMk be such that
Mk = Tk ◦M(0)

k for Tk defined in Eq. 79 and some channelM(0)
k : Rk−1 → Rk Ak Bk.

Suppose the channels Mk are such that for every k ∈ [n], there exists a channel M′
k

from Rk−1 → Rk Ak Bk Xk such that
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1. M′
k = Tk ◦M′(0)

k for some channel M′(0)
k : Rk−1 → Rk Ak Bk.

2. M′
k ε-approximates Mk in the diamond norm:

1

2

∥
∥Mk −M′

k

∥
∥� ≤ ε (87)

3. For every choice of a sequence of channelsN i ∈ {Mi ,M′
i } for i ∈ [k−1], the state

M′
k ◦N k−1 ◦ · · · ◦N 1(ρ

(0)
R0E

) satisfies the Markov chain

Ak−1
1 ↔ Bk−1

1 E ↔ Bk . (88)

Then, for an event 
 defined using Xn
1 , an affine min-tradeoff function f for {M′

k}nk=1
such that for every xn1 ∈ 
, f (freq(xn1 )) ≥ h, for parameters 0 < δ, ε1, ε3 < 1 and

ε2 := 2
√

ε1
Pρ(
)

such that ε2 + ε3 < 1, α ∈ (1, 2), and β > 1, we have

H ε2+ε3
min (An

1|Bn
1 E)ρ|


≥ nh − (α − 1) ln(2)

2

(
log(2|A|2 + 1) +

√
2 + Var( f )

)2 − n(α − 1)2Kα

− α

α − 1
n log

(
1 + δ

(
4

α−1
α

(log(|A||B|)+Max( f )−Min( f )+1) − 1
))

− α

α − 1
nzβ(ε, δ)− 1

α − 1

(

α log
1

Pρ(
)− ε1
+ g1(ε3, ε2) +

αg0(ε1)

β − 1

)

. (89)

where

zβ(ε, δ) := β + 1

β − 1
log

⎛

⎝
(

1 +
√

(1− δ)ε
) β

β+1
+

(√
(1− δ)ε

δβ

) 1
β+1

⎞

⎠ (90)

Kα := 1

6(2− α)3 ln(2)
2(α−1)(2 log |A|+(Max( f )−Min�( f )))

ln3
(

2(2 log |A|+(Max( f )−Min�( f ))) + e2
)

(91)

and g1(x, y) = − log(1−√1− x2)− log(1− y2).

Proof. Just as in the proof of Theorem 5.1, we define

Mδ
k := (1− δ)M′

k +δMk (92)

for every k and the state

σAn
1 B

n
1 X

n
1 E
:=Mδ

n ◦ · · · ◦Mδ
1(ρ

(0)
R0E

). (93)

so that for β > 1 and ε1 > 0, we have

Dε1
max(ρAn

1 B
n
1 X

n
1 E
||σAn

1 B
n
1 X

n
1 E

) ≤ nzβ(ε, δ) +
g0(ε1)

β − 1
. (94)
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Define dβ := nzβ(ε, δ) + g0(ε1)
β−1 . The bound above implies that there exists a state

ρ̃An
1 B

n
1 X

n
1 E

, which is also classical on Xn
1 such that

P
(
ρAn

1 B
n
1 X

n
1 E

, ρ̃An
1 B

n
1 X

n
1 E

)
≤ ε1 (95)

and

ρ̃An
1 B

n
1 X

n
1 E
≤ 2dβ σAn

1 B
n
1 X

n
1 E

. (96)

The registers Xn
1 for ρ̃ can be chosen to be classical, since the channel measuring Xn

1
only decreases the distance between ρ̃ and ρ, and the new state produced would also
satisfy Eq. 96. As the registers Xn

1 are classical for both σ and ρ̃, we can condition
these states on the event 
. We will call the probability of the event 
 for the state σ

and ρ̃ Pσ (
) and Pρ̃ (
) respectively. Using Lemma G.1 and the Fuchs-van de Graaf
inequality, we have

P
(
ρAn

1 B
n
1 X

n
1 E |
, ρ̃An

1 B
n
1 X

n
1 E |


)
≤ 2

√
ε1

Pρ(
)
. (97)

Conditioning Eq. 96 on 
, we get

Pρ̃ (
)ρ̃An
1 B

n
1 X

n
1 E |
 ≤ 2dβ Pσ (
)σAn

1 B
n
1 X

n
1 E |
. (98)

Together, the above two equations imply that

Dε2
max(ρAn

1 B
n
1 X

n
1 E |
||σAn

1 B
n
1 X

n
1 E |
) ≤ nzβ(ε, δ) +

g0(ε1)

β − 1
+ log

Pσ (
)

Pρ̃ (
)
(99)

for ε2 := 2
√

ε1
Pρ(
)

.

For ε3 > 0 and α ∈ (1, 2), we can plug the above in the bound provided by Lemma 3.5
to get

H ε2+ε3
min (An

1|Bn
1 E)ρ|
 ≥ H̃↑α (An

1|Bn
1 E)σ|
 −

α

α − 1
nzβ(ε, δ)

− 1

α − 1

(

α log
Pσ (
)

Pρ̃ (
)
+ g1(ε3, ε2) +

αg0(ε1)

β − 1

)

. (100)

Now, note that using Eq. 79 and [8, Lemma B.7] we have

H̃↑α (An
1|Bn

1 E)σ|
 = H̃↑α (An
1X

n
1 |Bn

1 E)σ|
. (101)

For every k, we introduce a register Dk of dimension |Dk | = !2max( f )−min( f )" and a
channel Dk : Xk → XkDk as

Dk(ω) :=
∑

x

〈x |ω|x〉|x〉〈x | ⊗ τx (102)

where for every x , the state τx is a mixture between a uniform distribution on
{1, 2, . . . #2max( f )− f (δx )$} and a uniform distribution on {1, 2, . . . !2max( f )− f (δx )"}, so
that

H(Dk)τx = max( f )− f (δx ) (103)
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where δx is the distribution with unit weight at element x .

Define the channels M̄k := Dk ◦Mk , M̄′
k := Dk ◦M′

k and M̄δ
k := Dk ◦Mδ

k =
(1− δ)M̄′

k + δM̄k and the state

σ̄An
1 B

n
1 X

n
1 D

n
1 E
:= M̄δ

n ◦ · · ·M̄δ
1(ρ

(0)
R0E

) (104)

Note that σ̄An
1 B

n
1 X

n
1 E
= σAn

1 B
n
1 X

n
1 E

. [9, Lemma 4.5] implies that this satisfies

H̃↑α (An
1X

n
1 |Bn

1 E)σ|
 = H̃↑α (An
1X

n
1 |Bn

1 E)σ̄|


≥ H̃↑α (An
1X

n
1 D

n
1 |Bn

1 E)σ̄|
 − max
xn1∈


Hα(Dn
1 )σ̄|xn1

(105)

For xn1 ∈ 
, we have

Hα(Dn
1 )σ̄|xn1

≤ H(Dn
1 )σ̄|xn1

≤
n∑

k=1

H(Dk)τxk

=
n∑

k=1

max( f )− f (δxk )

= n max( f )− n f (freq(xn1 ))

≤ n max( f )− nh. (106)

We can get rid of the conditioning on the right-hand side of Eq. 105 by using [8, Lemma
B.5]

H̃↑α (An
1X

n
1 D

n
1 |Bn

1 E)σ̄|
 ≥ H̃↑α (An
1X

n
1 D

n
1 |Bn

1 E)σ̄ − α

α − 1
log

1

Pσ (
)
. (107)

We now show that the channels M̄′
k satisfy the second condition in Theorem 5.1. For an

arbitrary k ∈ [n] and a sequence of channels N i ∈ {M̄i ,M̄′
i } for every 1 ≤ i < k, let

ηAk
1B

k
1 X

k
1 D

k
1 E
= M̄′

k ◦N k−1 · · · ◦N 1(ρ
(0)
R0E

).

For this state, we have

I (Ak−1
1 Dk−1

1 : Bk |Bk−1
1 E)η = I (Ak−1

1 : Bk |Bk−1
1 E)η + I (Dk−1

1 : Bk |Ak−1
1 Bk−1

1 E)η

= 0

where I (Ak−1
1 : Bk |Bk−1

1 E)η = 0 because of the condition in Eq. 88, and I (Dk−1
1 :

Bk |Ak−1
1 Bk−1

1 E)η = 0 since Xk−1
1 and hence Dk−1

1 are determined by Ak−1
1 Bk−1

1 . This
implies that for this state Ak−1

1 Dk−1
1 ↔ Bk−1

1 E ↔ Bk . Thus, the maps M̄k and M̄′
k

satisfy the conditions required for applying Theorem 5.1. Specifically, we can use the
bounds in Eqs. 73 and 77 for bounding α-conditional Rényi entropy in Eq. 107

H̃↑α (An
1X

n
1 D

n
1 |Bn

1 E)σ̄

≥ H̃↑α (An
1D

n
1 |Bn

1 E)σ̄
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≥
n∑

k=1

inf
ωRk−1 R̃k−1

H̃↓α (AkDk |Bk R̃k−1)M̄′
k(ω)

− α

α − 1
n log

(
1 + δ

(
2

α−1
α

2 log(|A||D||B|) − 1
))

. (108)

The analysis in the proof of [35, Proposition V.3] shows that the first term above can be
bounded as

inf
ωRk−1 R̃k−1

H̃↓α (AkDk |Bk R̃k−1)M̄′
k (ω)

≥ Max( f )− (α − 1) ln(2)

2

(
log(2|A|2 + 1) +

√
2 + Var( f )

)2 − (α − 1)2Kα

(109)

Combining Eqs. 105, 106, 107, 108 and 109, we have

H̃↑α (An
1X

n
1 |Bn

1 E)σ̄|


≥ nh − (α − 1) ln(2)

2

(
log(2|A|2 + 1) +

√
2 + Var( f )

)2 − n(α − 1)2Kα

− α

α − 1
n log

(
1 + δ

(
2

α−1
α

2 log(|A||D||B|) − 1
))
− α

α − 1
log

1

Pσ (
)
. (110)

Plugging this into Eq. 100, we get

H ε2+ε3
min (An

1|Bn
1 E)ρ|


≥ nh − (α − 1) ln(2)

2

(
log(2|A|2 + 1) +

√
2 + Var( f )

)2 − n(α − 1)2Kα

− α

α − 1
n log

(
1 + δ

(
4

α−1
α

(log(|A||B|)+max( f )−min( f )+1) − 1
))

− α

α − 1
nzβ(ε, δ)− 1

α − 1

(

α log
1

Pρ(
)− ε1
+ g1(ε3, ε2) +

αg0(ε1)

β − 1

)

. (111)

where we have used Pρ̃ (
) ≥ Pρ(
)− ε1 since 1
2 ‖ρ − ρ̃‖1 ≤ P(ρ, ρ̃) ≤ ε1. Note that

the probability of 
 under the auxiliary state σ cancels out. ��

5.5. Limitations and further improvements. As we pointed out previously, the depen-
dence of the entropy loss per round on ε is very poor (behaves as∼ ε1/24) in Theorem 5.1.
The classical version of this theorem has a much better dependence of O(

√
ε) on ε (see

Theorem F.1). The reason for the poor performance of the quantum version is that our
bound on the channel divergence (Lemma 5.4) is very weak compared to the bound
we can use classically. It should be noted, however, that if Lemma 5.4 were to be im-
proved in the future, one could simply plug the new bound into our proof and derive an
improvement for Theorem 5.1.

A better bound on the channel divergence would have an additional benefit. It could
simplify the proof and the Markov chain assumption in our theorem. In particular, it
would be much easier to carry out the proof if the mixed channels Mδ

k were defined
as (1− δ)M′

k +δτAk Bk ⊗ trAk Bk ◦Mk (which is what is done classically), where τAk Bk
is the completely mixed state on registers Ak Bk . Here, instead of mixing the channel
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M′
k with Mk , we mix it with τAk Bk ⊗ trAk Bk ◦Mk , which also keeps Dmax(Mk ||Mδ

k)

small enough. Moreover, this definition ensures that the registers Bk produced by the
map Mδ

k always satisfy the Markov chain conditions. If it were possible to show that

the divergence between the real state Mn ◦ · · · ◦M1(ρ
(0)
R0E

) and the auxiliary state

Mδ
n ◦ · · · ◦Mδ

1(ρ
(0)
R0E

) is small for this definition of Mδ
k , then one could directly use the

entropy accumulation theorem for lower bounding the entropy for the auxiliary state.
We cannot do this in our proof as this definition of the mixed channel Mδ

k also increases
the distance from the original channel Mk to ε + 2δ and this makes the upper bound in
Lemma 5.3 large (finite even in the limit ε → 0).

It seems that it should be possible to weaken the assumptions for approximate entropy
accumulation. The classical equivalent of this theorem (Theorem F.1) for instance can
be proven very easily and requires a much weaker approximation assumption. It would
be interesting if one could remove the “memory” registers Rk from the assumptions
required for approximate entropy accumulation, since these are not typically accessible
to the users in applications.

Another troubling feature of the approximate entropy accumulation theorem seems
to be that it assumes that the size of the side information registers Bk is constant. One
might wonder if this is necessary, since continuity bounds like the Alicki-Fannes-Winter
(AFW) inequality do not depend on the size of the side information. It turns out that a
bound on the side information size is indeed necessary in this case. We show a simple
classical example to demonstrate this in Appendix E. The necessity of such a bound
also rules out a similar approximate extension of the generalised entropy accumulation
theorem (GEAT).
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Appendices

Appendix A: Entropic Triangle Inequalities Cannot be Improved Much

In this section, we will construct a classical counterexample to show that it is not possible
to improve Lemma 3.5 to get a result like

H ε′
min(A|B)ρ ≥ H ε

min(A|B)η − O(Dε′′
max(ρ||η)) (112)

where ε, ε′ > 0 and the constant in front of Dε′′
max(ρ||η) is independent of the dimensions

|A| and |B|.
Consider the probability distribution pAB where B is chosen to be equal to 1 with

probability 1− ε and 0 with probability ε, and An
1 is chosen to be a random n-bit string
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if B = 1 otherwise An
1 is chosen to be the all 0 string. Let E be the event that B = 0.

Then, we have

pAB|E ≤ 1

p(E)
pAB = 1

ε
pAB

or equivalently Dmax(pAB|E ||pAB) ≤ log 1
ε
. In this case, we have H ε

min(A|B)p = n

(where we are smoothing in the trace distance) and H ε′
min(A|B)p|E = log 1

1−ε′ = O(1)

(independent of n). If Eq. 112, were true then we would have

n − O

(

log
1

ε

)

≤ H ε
min(A|B)P − O(Dε′′

max(pAB|E ||pAB))

≤ H ε′
min(A|B)p|E = O(1)

which would lead to a contradiction because n is a free parameter and we can let n→∞.
The same example can be used to show that it is not possible to improve Corollary 3.6

to an equation of the form

H(A|B)ρ ≥ H(A|B)η − O(D(ρ||η)).

For ρ = P|E and η = P , such a bound would imply that

0 ≥ (1− ε)n − log
1

ε

which is not true for large n.

Appendix B: Bounds for D#
α of the Form in Lemma 5.3 Necessarily Diverge in the

Limit α = 1

Classically, we have the following bound for Rényi entropies.

Lemma B.1. Suppose ε ∈ (0, 1], d ≥ ε1/2, and p and q are two distributions over an
alphabet X such that 1

2 ‖p − q‖1 ≤ ε and Dmax(p||q) ≤ d <∞, for α > 1 we have

Dα(p||q) ≤ 1

α − 1
log

(
(1 +

√
ε)α−1(1− 2

√
ε) + 2d(α−1)+1√ε

)
. (113)

In the limit, α → 1, we get the bound

D(p||q) ≤ (1− 2
√

ε) log(1 +
√

ε) + 2
√

εd. (114)

Proof. Classically, we have that the set S := {x ∈ X : p(x) ≤ (1 +
√

ε)q(x)} is such
that p(S) ≥ 1− 2

√
ε using Lemma 4.1. Thus, for α > 1 we have

∑

x∈X
p(x)

(
p(x)

q(x)

)α−1

=
∑

x∈S
p(x)

(
p(x)

q(x)

)α−1

+
∑

x �∈S
p(x)

(
p(x)

q(x)

)α−1

≤
∑

x∈S
(1 +

√
ε)α−1 p(x) +

∑

x �∈S
2d(α−1) p(x)

= (1 +
√

ε)α−1 p(S) + 2d(α−1) p(Sc)
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≤ (1 +
√

ε)α−1(1− 2
√

ε) + 2d(α−1)+1√ε

where in the second line we used the definition of set S and the fact that Dmax(p||q) ≤ d,
in the last line we use the fact that since d ≥ √

ε ≥ log(1 +
√

ε), the convex sum
is maximised for the largest possible value of p(Sc), which is 2

√
ε. The bound now

follows. ��
We observed in Sect. 5.1 that the bound in Lemma 5.3 for D#

α tends to∞ as α → 1 for
a fixed ε > 0. One may wonder if a bound like Eq. 114 exists for limα→1 D#

α(ρ||σ) =
D̂(ρ||σ) [33]. We show in the following that such a bound is not possible.

Suppose, that for all ε ∈ [0, a) (a small neighborhood of 0), 1 ≤ d <∞, states ρ and
σ , which satisfy 1

2 ‖ρ − σ‖1 ≤ ε and ρ ≤ 2dσ , the following bound holds

D̂(ρ||σ) ≤ f (ε, d) (115)

where f (ε, d) is such that limε→0 f (ε, d) = f (0, d) = 0 for every 1 ≤ d < ∞.
Note that the upper bound in Eq. 114 is of this form. It is known that for pure states ρ,
D̂(ρ||σ) = Dmax(ρ||σ). We will use this to construct a contradiction.

Lemma B.2. 6 For a pure state ρ = |ρ〉〈ρ| and a state σ , we have

D̂(ρ||σ) = Dmax(ρ||σ) = 〈ρ|σ−1|ρ〉.

Proof. First, we can evaluate D̂ as

D̂(ρ||σ) = tr
(
ρ log

(
ρ

1
2 σ−1ρ

1
2

))

= tr
(
|ρ〉〈ρ| log

(
|ρ〉〈ρ|σ−1|ρ〉〈ρ|

))

= tr
(
|ρ〉〈ρ| log(〈ρ|σ−1|ρ〉)|ρ〉〈ρ|

)

= log〈ρ|σ−1|ρ〉.

Next, we have that

Dmax(ρ||σ) = log
∥
∥
∥σ−

1
2 ρσ−

1
2

∥
∥
∥∞

= log
∥
∥
∥σ−

1
2 |ρ〉〈ρ|σ− 1

2

∥
∥
∥∞

= log tr
(
σ−

1
2 |ρ〉〈ρ|σ− 1

2

)

= log〈ρ|σ−1|ρ〉.

��
6 This Lemma was pointed out to us by Omar Fawzi.
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To obtain a contradiction, let ε ∈ [0, a2). Define the states

ρ := |0〉〈0| =
(

1 0
0 0

)

σ ′ε := (
√

1− ε|0〉 +
√

ε|1〉)(√1− ε|0〉 +
√

ε|1〉)†

=
(

1− ε
√

ε(1− ε)√
ε(1− ε) ε

)

σε := (1− δ)σ ′ε + δρ

=
(

(1− ε)(1− δ) + δ (1− δ)
√

ε(1− ε)

(1− δ)
√

ε(1− ε) (1− δ)ε

)

where {|0〉, |1〉} is the standard basis and δ ∈ (0, 1) is a parameter, which will be
chosen later. Observe that F(ρ, σε) = 〈e0, σεe0〉 = 1− ε(1− δ), which implies that
1
2 ‖ρ − σε‖1 ≤

√
ε ∈ [0, a). For these definitions, we have

σ−1
ε = 1

(1− δ)δε

(
(1− δ)ε −(1− δ)

√
ε(1− ε)

−(1− δ)
√

ε(1− ε) (1− ε)(1− δ) + δ

)

which implies that D̂(ρ||σε) = log 1
δ

using Lemma B.2. We can fix δ = 1
10 . Note that

D̂(ρ||σε) > 0 is independent of ε. Now observe that if the bound in Eq. 115 were true,
then as ε → 0, D̂(ρ||σε) = log(10) → 0, which leads us to a contradiction. Thus, we
cannot have bounds of the form in Eq. 115 (also see [36]). Consequently, any kind of
bound on D̂α or D#

α which results in a bound of the form in Eq. 115 as α → 1, for
example, the bound in Eq. 113, is also not possible at least close to α = 1.

It should be noted that the reason we can have bounds of the form in Lemma 5.3,
despite the fact that no good bound on D̂ = limα→1 D#

α can be produced is that D#
α ,

unlike the conventional generalizations of the Rényi divergence, is not monotone in α

[15, Remark 3.3](otherwise the above counterexample would also give a no-go argument
for D#

α).

Appendix C: Transforming Lemmas for EAT from H̃↓α to H̃↑α
We have to redo the Lemmas used in [8] using H̃↑α because we were only able to prove
the dimension bound we need (H̃↑α (A|BC) ≥ H̃↑α (A|B)− 2 log |C |) in terms of H̃↑α
Lemma C.1 [8, Lemma 3.1]. For ρA1A2B and σB be states and α ∈ (0,∞), we have
the chain rule

D̃α(ρA1B ||1A1 ⊗σB)− D̃α(ρA1A2B ||1A1A2 ⊗σB) = H̃↓α (A2|A1B)ν (116)

where the state νA1A2B is defined as

νA1B :=

(

ρ
1
2
A1B

σ−α′
B ρ

1
2
A1B

)α

tr

(

ρ
1
2
A1B

σ−α′
B ρ

1
2
A1B

)α

νA1A2B := ν
1
2
A1B

ρA2|A1Bν
1
2
A1B

and α′ := α−1
α

.
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Corollary C.2. (Chain rule for H̃↓α [8, Theorem 3.2]) For α ∈ (0,∞), a state ρA1A2B,
we have the chain rule

H̃↓α (A1A2|B)ρ = H̃↓α (A1|B)ρ + H̃↓α (A2|A1B)ν (117)

where the state νA1A2B is defined as

νA1B :=

(

ρ
1
2
A1B

ρ−α′
B ρ

1
2
A1B

)α

tr

(

ρ
1
2
A1B

ρ−α′
B ρ

1
2
A1B

)α

νA1A2B := ν
1
2
A1B

ρA2|A1Bν
1
2
A1B

and α′ := α−1
α

.

We can modify [8, Theorem 3.2], which is in terms of H̃↓α , to the following, which
is a chain rule in terms of H̃↑α . The chain rule in this Corollary was also observed in [8].

Corollary C.3. (Chain rule for H̃↑α ) For α ∈ (0,∞), a state ρA1A2B and for any state

σB such that H̃↑α (A1|B)ρ = −D̃α(ρA1B ||1A1 ⊗σB), we have

H̃↑α (A1A2|B)ρ ≥ H̃↑α (A1|B)ρ + H̃↓α (A2|A1B)ν (118)

where the state νA1A2B is defined as

νA1B :=

(

ρ
1
2
A1B

σ−α′
B ρ

1
2
A1B

)α

tr

(

ρ
1
2
A1B

σ−α′
B ρ

1
2
A1B

)α

νA1A2B := ν
1
2
A1B

ρA2|A1Bν
1
2
A1B

andα′ := α−1
α

. Forα ∈ (0,∞), stateρA1A2B andany stateσB such that H̃
↑
α (A1A2|B)ρ =

−D̃α(ρA1A2B ||1A1A2 ⊗σB), we have

H̃↑α (A1A2|B)ρ ≤ H̃↑α (A1|B)ρ + H̃↓α (A2|A1B)ν (119)

where the state νA1A2B is defined the same as above.

Proof. Let σB be a state such that H̃↑α (A1|B)ρ = −D̃α(ρA1B ||1⊗σB). Then, using
Lemma C.1, we have

H̃↑α (A1A2|B)ρ ≥ −D̃α(ρA1A2B ||1A1A2 ⊗σB)

= −D̃α(ρA1B ||1A1 ⊗σB) + H̃↓α (A2|A1B)ν

= H̃↑α (A1|B)ρ + H̃↓α (A2|A1B)ν

for νA1A2B defined as in the Lemma. Similarly, if H̃↑α (A1A2|B)ρ = −D̃α(ρA1A2B||1A1A2 ⊗σB), then

H̃↑α (A1A2|B)ρ = −D̃α(ρA1A2B ||1A1A2 ⊗σB)
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= −D̃α(ρA1B ||1A1 ⊗σB) + H̃↓α (A2|A1B)ν

≤ H̃↑α (A1|B)ρ + H̃↓α (A2|A1B)ν

for νA1A2B defined as in the Lemma. ��
We transform [8, Theorem 3.3] to a statement about H̃↑α in the following.

Lemma C.4. Let α ∈ [ 1
2 ,∞)

and ρA1A2B1B2 be a state which satisfies the Markov chain
A1 ↔ B1 ↔ B2. Then, we have

H̃↑α (A1A2|B1B2)ρ ≥ H̃↑α (A1|B1)ρ + inf
ν

H̃↓α (A2|A1B1B2)ν (120)

where the infimum is taken over all states νA1A2B1B2 such that νA2B2|A1B1 = ρA2B2|A1B1 .

Proof. Since, ρ satisfies the Markov chain A1 ↔ B1 ↔ B2, there exists a decomposition
of the system B1 as [37, Theorem 5.4]

B1 =
⊕

j∈J
a j ⊗ c j

such that

ρA1B1B2 =
⊕

j∈J
p( j)ρA1a j ⊗ ρc j B2 . (121)

Let J ′ ⊆ J be the set { j ∈ J : p( j) > 0}. Note, that we can replace J by J ′ in the
above equation.

We can define the CPTP recovery map RB1→B1B2 for ρA1B1B2 as

RB1→B1B2(X) :=
⊕

j∈J
trc j

(
�a j ⊗�c j X�a j ⊗�c j

)⊗ ρc j B2 (122)

where �a j⊗�c j is the projector on the subspace a j⊗c j . This recovery channel satisfies

RB1→B1B2(ρA1B1) = ρA1B1B2 . (123)

We can now show that the optimisation for the conditional entropy H̃↑α (A1|B1B2)ρ can
be restricted to states of the form RB1→B1B2

(
σB1

)
. This follows as

H̃↑α (A1|B1B2)ρ = sup
σB1B2

−D̃α(ρA1B1B2 ||1A1 ⊗σB1B2)

≤ sup
σB1B2

−D̃α(RB1→B1B2 ◦ trB2

(
ρA1B1B2

) ||RB1→B1B2 ◦ trB2

(
1A1 ⊗σB1B2

)
)

= sup
σB1

−D̃α(ρA1B1B2 ||1A1 ⊗RB1→B1B2

(
σB1

)
)

≤ sup
σB1B2

−D̃α(ρA1B1B2 ||1A1 ⊗σB1B2)

= H̃↑α (A1|B1B2)ρ
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where the second line follows from the data processing inequality for D̃α for α ≥ 1
2 ,

the supremum in the fourth line is over all states on the registers B1B2,and the last line
simply follows from the definition of H̃↑α (A1|B1B2)ρ . As a result, it follows that

H̃↑α (A1|B1B2)ρ = sup
σB1

−D̃α(ρA1B1B2 ||1A1 ⊗RB1→B1B2

(
σB1

)
) (124)

Let σB1B2 = RB1→B1B2

(
ηB1

)
be such that H̃↑α (A1|B1B2)ρ = −D̃α(ρA1B1B2||1A1 ⊗σB1B2). Using Corollary C.3, for this choice of σB1B2 , we have that

H̃↑α (A1A2|B1B2)ρ ≥ H̃↑α (A1|B1B2)ρ + H̃↓α (A2|A1B1B2)ν (125)

where the state νA1A2B1B2 is defined as

νA1B1B2 :=

(

ρ
1
2
A1B1B2

σ−α′
B1B2

ρ
1
2
A1B1B2

)α

tr

(

ρ
1
2
A1B1B2

σ−α′
B1B2

ρ
1
2
A1B1B2

)α

νA1A2B1B2 := ν
1
2
A1B1B2

ρA2|A1B1B2ν
1
2
A1B1B2

.

We will now show that νA2B2|A1B1 = ρA2B2|A1B1 . For this it is sufficient to show that

ν
− 1

2
A1B1

ν
1
2
A1B1B2

= ρ
− 1

2
A1B1

ρ
1
2
A1B1B2

.

We have that

σB1B2 = RB1→B1B2

(
ηB1

)

=
⊕

j∈J
trc j

(
�a j ⊗�c j ηB1�a j ⊗�c j

)⊗ ρc j B2

=
⊕

j∈J
q( j)ωa j ⊗ ρc j B2

where we have defined the probability distribution q( j) := tr(�a j ⊗�c j ηB1) and states

ωa j = 1
q( j)�a j trc j

(
�c j ηB1�c j

)
�a j for every j ∈ J .

Since D̃α(ρA1B1B2 ||1A1 ⊗σB1B2) = −H̃↑α (A1|B1B2)ρ ≤ log |A1| < ∞, we have
that

ρA1B1B2 � 1A1 ⊗σB1B2

⇒
⊕

j∈J ′
p( j)ρA1a j ⊗ ρc j B2 � 1A1 ⊗

⊕

j∈J
q( j)ωa j ⊗ ρc j B2

⇒ for every j ∈ J ′ : ρA1a j � 1A1 ⊗ωa j and q( j) > 0. (126)
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This decomposition can be used to evaluate νA1B1B2 as follows

νA1B1B2 =
1

N

(

ρ
1
2
A1B1B2

σ−α′
B1B2

ρ
1
2
A1B1B2

)α

= 1

N

⎛

⎝
⊕

j∈J ′
p( j)

1
2 ρ

1
2
A1a j

⊗ρ
1
2
c j B2

⊕

j∈J
q( j)−α′ω−α′

a j
‖! ⊗ρ−α′

c j B2

⊕

j∈J ′
p( j)

1
2 ρ

1
2
A1a j

⊗ρ
1
2
c j B2

⎞

⎠

α

= 1

N

⎛

⎝
⊕

j∈J ′
p( j)q( j)−α′ρ

1
2
A1a j

ω−α′
a j

ρ
1
2
A1a j

⊗ ρ1−α′
c j B2

⎞

⎠

α

= 1

N

⊕

j∈J ′
p( j)αq( j)1−α

(

ρ
1
2
A1a j

ω−α′
a j

ρ
1
2
A1a j

)α

⊗ ρc j B2

for N := tr

(

ρ
1
2
A1B1B2

σ−α′
B1B2

ρ
1
2
A1B1B2

)α

. Further, we have

ν
− 1

2
A1B1

ν
1
2
A1B1B2

= 1

N− 1
2

⊕

j∈J ′
p( j)−

α
2 q( j)−

1−α
2

(

ρ
1
2
A1a j

ω−α′
a j

ρ
1
2
A1a j

)− α
2 ⊗ ρ

− 1
2

c j

· 1

N
1
2

⊕

j∈J ′
p( j)

α
2 q( j)

1−α
2

(

ρ
1
2
A1a j

ω−α′
a j

ρ
1
2
A1a j

) α
2 ⊗ ρ

1
2
c j B2

=
⊕

j∈J ′

(

ρ
1
2
A1a j

ω−α′
a j

ρ
1
2
A1a j

)0

⊗ ρ
− 1

2
c j ρ

1
2
c j B2

=
⊕

j∈J ′
ρ0
A1a j

⊗ ρ
− 1

2
c j ρ

1
2
c j B2

where in the last line we have used that the projector

(

ρ
1
2
A1a j

ω−α′
a j

ρ
1
2
A1a j

)0

is equal to

the projector ρ0
A1a j

for every j ∈ J ′ (here P0 is the projector onto the image of positive

semidefinite operator P). This can be seen since for every j ∈ J ′ we first have

im

(

ρ
1
2
A1a j

ω−α′
a j

ρ
1
2
A1a j

)

⊆ im
(
ρA1a j

)
. (127)

Second, we have that Eq. 126 above implies that ω0
a j

ρ0
Aa j

= ρ0
Aa j

for every j ∈ J ′.
Now, for j ∈ J ′ we have the following inequality

(

ρ
1
2
A1a j

ω−α′
a j

ρ
1
2
A1a j

)

≥ m

(

ρ
1
2
A1a j

ω0
a j

ρ
1
2
A1a j

)

= mρA1a j
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where m > 0 is the minimum non-zero eigenvalue of ω−α′
a j

. Finally, raising the above to
the power of 0 (this action is operator monotone)

(

ρ
1
2
A1a j

ω−α′
a j

ρ
1
2
A1a j

)0

≥ ρ0
A1a j

. (128)

Equations 127 and 128 together imply that for j ∈ J ′
(

ρ
1
2
A1a j

ω−α′
a j

ρ
1
2
A1a j

)0

= ρ0
A1a j

.

Finally, we have that

ρ
− 1

2
A1B1

ρ
1
2
A1B1B2

=
⊕

j∈J ′
p( j)−

1
2 ρ
− 1

2
A1a j

⊗ ρ
− 1

2
c j

⊕

j∈J ′
p( j)

1
2 ρ

1
2
A1a j

⊗ ρ
1
2
c j B2

=
⊕

j∈J ′
ρ0
A1a j

⊗ ρ
− 1

2
c j ρ

1
2
c j B2

.

This proves that

ν
− 1

2
A1B1

ν
1
2
A1B1B2

= ρ
− 1

2
A1B1

ρ
1
2
A1B1B2

(129)

and hence

νA2B2|A1B1 = ν
− 1

2
A1B1

ν
1
2
A1B1B2

νA2|A1B1B2ν
1
2
A1B1B2

ν
− 1

2
A1B1

= ρ
− 1

2
A1B1

ρ
1
2
A1B1B2

ρA2|A1B1B2ρ
1
2
A1B1B2

ρ
− 1

2
A1B1

= ρA2B2|A1B1

where we have used the fact that νA2|A1B1B2 = ρA2|A1B1B2 and Eq. 129. We can now
modify Eq. 125 to get

H̃↑α (A1A2|B1B2)ρ ≥ H̃↑α (A1|B1B2)ρ + inf
ν

H̃↓α (A2|A1B1B2)ν

where the infimum is over states ν such that νA2B2|A1B1 = ρA2B2|A1B1 . We can use the
data processing inequality to get

H̃↑α (A1|B1B2)ρ = H̃↑α (A1|B1B2)RB1→B1B2 (ρAB1 )

≥ H̃↑α (A1|B1)ρ.

Together with the above inequality this proves the Lemma. ��
We will use the following modification of [8, Corollary 3.5].

Corollary C.5. Let MR→A2B2 be a channel and ρA1A2B1B2 = M(ρ′A1B1R
) such that

the Markov chain A1 ↔ B1 ↔ B2 holds. Then, we have

H̃↑α (A1A2|B1B2)ρ ≥ H̃↑α (A1|B1)ρ + inf
ω

H̃↓α (A2|A1B1B2)M(ω) (130)

where the infimum is taken over all states ωA1B1R. Moreover, if ρ′A1B1R
is pure then we

can restrict the optimisation to pure states.
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Proof. The proof is the same as [8, Corollary 3.5]. We include it here for the sake of
completeness.

It is sufficient to show that for every state ν such that νA2B2|A1B1 = ρA2B2|A1B1 , there
exists an ωA1B1R such that νA1A2B1B2 =M(ω). For such a ν, we can define

ωRA1B1 = ν
1
2
A1B1

ρ
− 1

2
A1B1

ρ′A1B1Rρ
− 1

2
A1B1

ν
1
2
A1B1

which can be seen to be a valid state and also satisfy νA1A2B1B2 =M(ω). ��

Appendix D: Dimension Bounds for Conditional Rényi Entropies

Lemma D.1 (Dimension bound). For α ∈ [ 1
2 ,∞], a state ρA1A2B, the following bounds

hold for the sandwiched conditional entropies

H̃↓α (A1|B)ρ − log |A2| ≤ H̃↓α (A1A2|B)ρ ≤ H̃↓α (A1|B)ρ + log |A2|
H̃↑α (A1|B)ρ − log |A2| ≤ H̃↑α (A1A2|B)ρ ≤ H̃↑α (A1|B)ρ + log |A2|.

For α ∈ [0, 2] and a state ρA1A2B, the following bounds hold for the Petz conditional
entropies

H̄↓α (A1A2|B)ρ ≤ H̄↓α (A1|B)ρ + log |A2|
H̄↑α (A1A2|B)ρ ≤ H̄↑α (A1|B)ρ + log |A2|.

Proof. For the sandwiched conditional entropies, we simply use the corresponding
chain rules (Corollary C.2 or Corollary C.3) along with the fact that for all states ν,
H̃↓α (A2|A1B)ν ∈ [− log |A2|, log |A2|] [17, Lemma 5.2].

For the Petz conditional entropies, we will make use of the Jensen’s inequality for
operators [38, Theorem V.2.3]. Suppose, {|ei 〉}|X |i=1 is an orthogonal basis for the space
X . Then, we have for a positive operator PXY and α ∈ [0, 1]

trX Pα
XY =

|X |∑

i=1

1Y ⊗〈ei |X Pα
XY 1Y ⊗|ei 〉X

≤ |X |
⎛

⎝
|X |∑

i=1

1

|X | 1Y ⊗〈ei |X PXY 1Y ⊗|ei 〉X
⎞

⎠

α

= |X |1−αPα
Y (131)

where in the second step we have used the operator Jensen’s inequality with the operators
{

1√|X | 1Y ⊗|ei 〉X
}|X |
i=1

along with the fact that the map X &→ Xα is operator concave.

For α ∈ [1, 2] and positive operator PXY , we can use the same argument as above and
the fact that X &→ Xα is operator convex in this regime and derive

trX Pα
XY ≥ |X |1−αPα

Y . (132)
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To prove the dimension bound, observe that for a positive state σB and α ∈ [0, 2], we
have

−D̄α(ρA1A2B ||1A1A2 ⊗σB) = 1

1− α
log tr

(
ρα
A1A2Bσ 1−α

B

)

= 1

1− α
log tr

(
trA2

(
ρα
A1A2B

)
σ 1−α
B

)

≤ 1

1− α
log tr

(
|A2|1−αρα

A1Bσ 1−α
B

)

= −D̄α(ρA1B ||1A1 ⊗σB) + log |A2|.
We can now take a supremum over σB to prove the dimension bound for H̄↑α or choose
σB = ρB to prove the dimension bound for H̄↓α . ��

The following Lemma was originally proven in [39, Proposition 8]. We reproduce the
proof argument here.

Lemma D.2. For α ∈ [ 1
2 ,∞], a state ρABC , we have

H̃↑α (A|BC)ρ ≥ H̃↑α (AC |B)ρ − log |C | (133)

and for α ∈ [0, 2]
H̄↑α (A|BC)ρ ≥ H̄↑α (AC |B)ρ − log |C | (134)

Proof. By the definition of the sandwiched conditional entropy, we have

H̃↑α (A|BC) = sup
ηBC∈D(BC)

−D̃α(ρABC ||1A⊗ηBC )

≥ sup
ηB∈D(B)

−D̃α

(

ρABC ||1A⊗1C

|C | ⊗ ηB

)

= sup
ηB∈D(B)

−D̃α (ρABC ||1AC ⊗ηB)− log |C |

= H̃↑α (AC |B)− log |C |
where we simply restrict the supremum in the second line to states of the form ηBC =
ηB ⊗ 1C|C| to derive the inequality. The same proof also works with H̄↑α entropy. ��

The following lemma was originally proven in [40, Proposition 3.3.5].

Lemma D.3 (Dimension bound for conditioning register). For α ∈ [ 1
2 ,∞] and a state

ρABC we have

H̃↑α (A|BC)ρ ≥ H̃↑α (A|B)ρ − 2 log |C |. (135)

Further, if the register C is classical, then we have

H̃↑α (A|BC)ρ ≥ H̃↑α (A|B)ρ − log |C |. (136)

Proof. This bound can be proven by combining Lemmas D.1 and D.2. In the case that
C is classical, we have the inequality H̃↑α (AC |B)ρ ≥ H̃↑α (A|B)ρ [17, Lemma 5.3]. ��
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Appendix E: Necessity for Constraints on Side Information Size for Approximate
AEP and EAT and its Implication for Approximate GEAT

It turns out that it is necessary to place some sort of bound on the size of the side infor-
mation for an approximate entropy accumulation theorem of the form in Theorem 5.1.
The following classical example demonstrates this. This example also demonstrates the
necessity for a bound on the size of the side information in an approximate asymptotic
equipartition of the form in Theorem 4.5.

Let there be n rounds. For k ∈ [n], the map Mk : Ak−1
1 → Ak BkCk . This map sets

the variables as follows:

1. Measure Ak−1
1 in the standard basis.

2. Let Ak ∈R {0, 1} be a randomly chosen bit.
3. Let Ck = 0 with probability ε

2 and Ck = 1 otherwise.
4. In the case that Ck = 1, let Bk ∈R {0, 1}n be a randomly chosen n-bit string.

Otherwise, let Bk = Ak
1Rk , where Rk is an (n − k) bit randomly chosen string from

{0, 1}.
Let M′

k be the map which always chooses Bk to be a random n-bit string. It is
easy to see that in this case, we have Hmin(An

1|Bn
1C

n
1 )M′

n ◦···◦M′
1(1) = n whereas Hmin

(An
1|Bn

1C
n
1 )Mn ◦···◦M1(1) = O(1) even though for every k ∈ [n], the maps Mk are

ε−close in diamond norm distance to the maps M′
k . This proves that a bound on the

size of the side registers is indeed necessary for approximate entropy accumulation. We
show these facts formally in the following.

Lemma E.1. Suppose � : R → A and �′ : R → A are two channels which take a
register R and measure it in the standard basis and map the resulting classical register
C to the classical register A. Then, for every ρRR′ , we have

∥
∥�(ρRR′)−�′(ρRR′)

∥
∥

1 ≤
∥
∥
∥P�

AC − P�′
AC

∥
∥
∥

1
(137)

where P�
AC and P�′

AC are the classical distributions produced when the maps � and �′
are applied to the state ρRR′ respectively.

Proof. Let {|c〉〈c|}c represent the measurement in the standard basis. Since, both the
channels first measure register R in the standard basis, they produce the state

ρCR′ =
∑

c

|c〉〈c|C ⊗ trR (|c〉〈c|RρRR′)

=
∑

c

p(c)|c〉〈c|C ⊗ ρR′|c

where we have defined p(c) := tr (|c〉〈c|RρR) and ρR′|c := 1
p(c) trR (|c〉〈c|RρRR′).

Now, the action of channel � on register C can be represented using the conditional
probability distribution p�

A|C and the action of channel �′ on register C can be similarly

represented using p�′
A|C . We can define the states

ρ�
ACR′ :=

∑

ac

p�
A|C (a|c)p(c)|a, c〉〈a, c| ⊗ ρR′|c

ρ�′
ACR′ :=

∑

ac

p�′
A|C (a|c)p(c)|a, c〉〈a, c| ⊗ ρR′|c.
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Note that trC
(
ρ�
ACR′

) = �(ρRR′) and trC
(
ρ�′
ACR′

)
= �′(ρRR′). Further, we can view

the R′ register of ρ�
ACR′ and ρ�′

ACR′ as being created by a channel which measures the
register C and outputs the state ρR′|c in the register R′. Therefore, we have

∥
∥�(ρRR′)−�′(ρRR′)

∥
∥

1 ≤
∥
∥
∥ρ�

ACR′ − ρ�′
ACR′

∥
∥
∥

1

≤
∥
∥
∥ρ�

AC − ρ�′
AC

∥
∥
∥

1

=
∥
∥
∥P�

AC − P�′
AC

∥
∥
∥

1
.

��
We can use the above lemma to evaluate the distance between the channels Mk and

M′
k . Using the above lemma, it is sufficient to suppose that the input of the channels

are classical. We can suppose that the registers Ak−1
1 are classical and distributed as

PAk−1
1

. Let PAk
1BkCk

be the output of Mk on this distribution and QAk
1BkCk

be the output

of applying M′
k . Then, we have

∥
∥
∥PAk

1BkCk
− QAk

1BkCk

∥
∥
∥

1
=

∑

ak1 ,ck

P(ak−1
1 )P(ak)P(ck)

∥
∥
∥PBk |ak1 ,ck

− QBk

∥
∥
∥

1

=
∑

ak1

P(ak−1
1 )P(ak)

((
1− ε

2

) ∥
∥
∥PBk |ak1 ,ck=1 − QBk

∥
∥
∥

1
+

ε

2

∥
∥
∥PBk |ak1 ,ck=0 − QBk

∥
∥
∥

1

)

≤
∑

ak1

P(ak−1
1 )P(ak)ε

= ε

where in the first line we have used the fact that Ak and Ck are chosen independently
with the same distribution in both the maps and the fact that Bk is chosen independently
in M′

k , for the third line we have used the fact that Bk is independent and has the same
distribution as QBk when ck = 1. Since, this is true for all input distributions, we have∥
∥Mk −M′

k

∥
∥� ≤ ε.

Now, let RAn
1 B

n
1C

n
1

be the probability distribution created when the maps Mk are
applied sequentially n times and SAn

1 B
n
1C

n
1

be the probability distribution created when
the maps M′

k are applied sequentially n times. Since, Bk and Ck are independent of Ak
in the distribution S, we have

Hmin(A
n
1|Bn

1C
n
1 )S = n.

We will show that H ε′
min(A

n
1|Bn

1C
n
1 )R = O(1) as long as ε′ ≤ 1

4 . Let l := 2
ε

log 1
ε′ . Let

E be the event that there exists a k > n − l such that Ck = 0. For our choice of l, we
have p(E) ≥ 1− ε′.

Lemma E.2. Let PAB be a subnormalised probability distribution such that A = f (B)

for some function f (that is, P(a, b) > 0 only if a = f (b)). Then, H ε
min(A|B)P ≤

log 1
tr(P)−√2ε

.
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Proof. Let P ′AB be a distribution ε-close to P in purified distance. Then, it is
√

2ε close
to P in trace distance. We have that

2−Hmin(A|B)P ′ = P ′guess(A|B)

≥
∑

b

P ′AB( f (b), b)

≥
∑

b

PAB( f (b), b)−√2ε

= tr(P)−√2ε

which implies that Hmin(A|B)P ′ ≤ log 1
tr(P)−√2ε

. Since, this is true for every distribution

ε-close to P , it also holds for H ε
min(A|B)P . ��

We then have that

H ε′
min(A

n
1|Bn

1C
n
1 )R ≤ H ε′

min(A
n
1|Bn

1C
n
1 ∧ E)R

≤ H ε′
min(A

n−l
1 |Bn

1C
n
1 ∧ E)R + l

≤ log
1

p(E)−√2ε′
+ l

≤ log
1

1− ε′ − √2ε′
+ l

≤ l + log 8/3 = O(1)

where in the first line we have used [41, Lemma 10] in the first line, dimension bound
(can be proven using Lemma D.1) in the second line, Lemma E.2 in the third line and
the fact that p(E) ≥ 1− ε′.

Also, note that the example given here satisfies
∥
∥
∥PAk

1B
k
1C

k
1
− PAk−1

1 Bk−1
1 Ck−1

1
PAk BkCk

∥
∥
∥

1
≤ ε

for every k. This also proves that a bound on the size of the side information registers
(BkCk here), as we have in Theorem 4.5, is necessary for an approximate version of
AEP.

Further, this example also rules out the possibility of a natural approximate extension to
the generalised entropy accumulation theorem (GEAT) [9] where the maps Mk ≈ε M′

k
and the mapsM′

k satisfy the non-signalling conditions because one can write the entropy
accumulation scenario in the form of a generalised entropy accumulation scenario where
Eve’s information contains the side information Bk

1 E in each step. Thus, it would not be
possible to prove a meaningful bound on the smooth min-entropy without some sort of
bound on the information transferred between the adversary’s register Ei and the register
Ri .

Appendix F: Classical Approximate Entropy Accumulation

We present a simple proof for the approximate entropy accumulation theorem for classi-
cal distributions. This result also requires a much weaker assumption than Theorem 5.1.
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Theorem F.1. Let pAn
1 B

n
1 E

be a classical distribution such that for every k ∈ [n], and
ak−1

1 , bk−1
1 and e

∥
∥
∥
∥pAk Bk |ak−1

1 ,bk−1
1 ,e − q(k)

Ak Bk |ak−1
1 ,bk−1

1 ,e

∥
∥
∥
∥∞

≤ ε (138)

where ‖v‖∞ := maxi |v(i)| and the q(k)

Bk |ak−1
1 ,bk−1

1 ,e
= q(k)

Bk |bk−1
1 ,e

or equivalently q(k)

satisfies the Markov chain Ak ↔ Bk−1
1 E ↔ Bk. Also, let |Ak | = |A|, |Bk | = |B| for

every k ∈ [n].
Then, for ε′ ∈ (0, 1) and α ∈

(
1, 1 + 1

log(1+2|A|)
)
, we have that

H ε′
min(A

n
1|Bn

1 E)p ≥
n∑

k=1

inf
q

H(Ak |Bk A
k−1
1 Bk−1

1 E)
q(k)

Ak Bk |Ak−1
1 Bk−1

1 E
q
Ak−1

1 Bk−1
1 E

− n(α − 1) log2(2|A| + 1)− α

α − 1
n log(1 + ε|A||B|)− g0(ε

′)
α − 1

.

(139)

where g0(x) := − log(1 − √1− x2). The infimums are taken over all possible input
probability distributions.

For α = 1 +
√

ε (assuming
√

ε ≤ 1 + 1
log(1+2|A|) ), and using α ≤ 2 and log(1 + x) ≤ x

as long as x ≥ 0, the above bound gives us

H ε′
min(A

n
1|Bn

1 E)p ≥
n∑

k=1

inf
q

H(Ak |Bk A
k−1
1 Bk−1

1 E)
q(k)

Ak Bk |Ak−1
1 Bk−1

1 E
q
Ak−1

1 Bk−1
1 E

− n
√

ε
(

log2(2|A| + 1)− 2|A||B|
)
− g0(ε

′)
α − 1

(140)

Proof. For every k ∈ [n], we modify q(k)

Ak Bk |Ak−1
1 Bk−1

1 E
to create the distributions

r (k)

Ak Bk |Ak−1
1 Bk−1

1 E
, which are defined as follows

1. Choose a random variable Ck from {0, 1} with probabilities
( |A||B|ε

1+|A||B|ε , 1
1+|A||B|ε

)
.

2. If Ck = 1, then choose random variables Ak, Bk using q(k)

Ak Bk |Ak−1
1 Bk−1

1 E
else choose

Ak, Bk randomly with probability 1
|A||B| .

That is, we have

r (k)

Ak Bk |Ak−1
1 Bk−1

1 E
:= 1

1 + |A||B|ε q
(k)

Ak Bk |Ak−1
1 Bk−1

1 E
+

|A||B|ε
1 + |A||B|ε uAk Bk

where uAk Bk is the uniform distribution on the registers Ak and Bk .
For every k, ak−1

1 , bk−1
1 , and e, we have

∥
∥
∥
∥pAk Bk |ak−1

1 ,bk−1
1 ,e − q(k)

Ak Bk |ak−1
1 ,bk−1

1 ,e

∥
∥
∥
∥∞

≤ ε
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⇒ pAk Bk |ak−1
1 ,bk−1

1 ,e ≤ q(k)

Ak Bk |ak−1
1 ,bk−1

1 ,e
+ ε 1Ak Bk

⇒ pAk Bk |ak−1
1 ,bk−1

1 ,e ≤ q(k)

Ak Bk |ak−1
1 ,bk−1

1 ,e
+ ε|A||B|uAk Bk

⇒ pAk Bk |ak−1
1 ,bk−1

1 ,e ≤ (1 + |A||B|ε)r (k)

Ak Bk |Ak−1
1 Bk−1

1 E

Define the distribution

rAn
1 B

n
1 E
=

n∏

k=1

r (k)

Ak Bk |Ak−1
1 Bk−1

1 E
pE . (141)

Note that for every k, ak−1
1 , bk1, and e, we have

rBk |Ak−1
1 Bk−1

1 E (bk |ak−1
1 bk−1

1 e) = 1

1+|A||B|εq
(k)

Bk |Ak−1
1 Bk−1

1 E
(bk |ak−1

1 bk−1
1 e)+

ε

1+|A||B|ε
= 1

1 + |A||B|ε q
(k)

Bk |Bk−1
1 E

(bk |bk−1
1 e) +

ε

1 + |A||B|ε ,

which implies

rBk |Bk−1
1 E (bk |bk−1

1 e) =
∑

āk−1
1

rAk−1
1 |Bk−1

1 E (āk−1
1 |bk−1

1 e)rBk |Ak−1
1 Bk−1

1 E (bk |āk−1
1 bk−1

1 e)

=
∑

āk−1
1

rAk−1
1 |Bk−1

1 E (āk−1
1 |bk−1

1 e)

(
1

1 + |A||B|ε q
(k)

Bk |Bk−1
1 E

(bk |bk−1
1 e) +

ε

1 + |A||B|ε
)

= rBk |Ak−1
1 Bk−1

1 E (bk |ak−1
1 bk−1

1 e).

Thus, for every k ∈ [n], r satisfies the Markov chain Ak−1
1 ↔ Bk−1

1 E ↔ Bk . Further,
we have

pAn
1 B

n
1 E

(an1 , bn1 , e) =
n∏

k=1

pAk Bk |Ak−1
1 ,Bk−1

1 ,E (ak, bk |ak−1
1 , bk−1

1 , e)pE (e)

≤ (1 + ε|A||B|)n
n∏

k=1

r (k)

Ak Bk |Ak−1
1 ,Bk−1

1 ,E
(ak, bk |ak−1

1 , bk−1
1 , e)pE (e)

= (1 + ε|A||B|)nrAn
1 B

n
1 E

(an1 , bn1 , e)

which shows that Dmax(pAn
1 B

n
1 E
||rAn

1 B
n
1 E

) ≤ n log(1 + ε|A||B|).
The distribution rAn

1 B
n
1 E

can be viewed as the result of a series of maps as in Fig. 3. We
can now use the EAT chain rule [8, Corollary 3.5] along with [8, Lemma B.9] n-times
to bound the entropy of this auxiliary distribution. We get

H̃↑α (An
1|Bn

1 E)r ≥
n∑

k=1

inf
q
Ak−1

1 Bk−1
1 E

H̃↓α (Ak |Bk A
k−1
1 Bk−1

1 E)
r (k)

Ak Bk |Ak−1
1 Bk−1

1 E
q
Ak−1

1 Bk−1
1 E

≥
n∑

k=1

inf
q
Ak−1

1 Bk−1
1 E

H(Ak |Bk A
k−1
1 Bk−1

1 E)
r (k)

Ak Bk |Ak−1
1 Bk−1

1 E
q
Ak−1

1 Bk−1
1 E
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Fig. 3. Setting for classical EAT

− n(α − 1) log2(2|A| + 1)

≥
n∑

k=1

(

inf
q
Ak−1

1 Bk−1
1 E

1

1 + |A||B|ε H(Ak |Bk A
k−1
1 Bk−1

1 E)
q(k)

Ak Bk |Ak−1
1 Bk−1

1 E
q
Ak−1

1 Bk−1
1 E

+
ε

1 + |A||B|ε log |A|
)

− n(α − 1) log2(2|A| + 1)

≥
n∑

k=1

inf
q
Ak−1

1 Bk−1
1 E

H(Ak |Bk A
k−1
1 Bk−1

1 E)
q(k)

Ak Bk |Ak−1
1 Bk−1

1 E
q
Ak−1

1 Bk−1
1 E

− n(α − 1) log2(2|A| + 1)

for α ∈
(

1, 1 + 1
log(1+2|A|)

)
. In the third line, we have used the concavity of the von

Neumann entropy along with the definition of r (k)

Ak Bk |Ak−1
1 Bk−1

1 E
. Using Lemma 3.5, we

have

H ε′
min(A

n
1|Bn

1 E)p ≥ H̃↑α (An
1|Bn

1 E)r − α

α − 1
Dmax(pAn

1 B
n
1 E
||rAn

1 B
n
1 E

)− g1(ε
′, 0)

α − 1

≥
n∑

k=1

inf
q

H(Ak |Bk A
k−1
1 Bk−1

1 E)
q(k)

Ak Bk |Ak−1
1 Bk−1

1 E
q
Ak−1

1 Bk−1
1 E

− n(α − 1) log2(2|A| + 1)− α

α − 1
n log(1 + ε|A||B|)− g0(ε

′)
α − 1

.

��

Appendix G: Lemma to Bound Distance after Conditioning

The following Lemma relates the distance of two states conditioned on an event to the
distance between them without conditioning.

Lemma G.1. SupposeρX A =∑
x∈X p(x)|x〉〈x |⊗ρA|x and ρ̃X A =∑

x∈X p̃(x)|x〉〈x |⊗
ρ̃A|x are classical-quantum states such that 1

2 ‖ρX A − ρ̃X A‖1 ≤ ε. Then, for x ∈ X such
that p(x) > 0, we have

1

2

∥
∥ρA|x − ρ̃A|x

∥
∥

1 ≤
2ε

p(x)
(142)
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Proof.

1

2
‖ρX A − ρ̃X A‖1 =

1

2

∑

x∈X

∥
∥p(x)ρA|x − p̃(x)ρ̃A|x

∥
∥

1 ≤ ε

This implies that for x ∈ X

1

2

∥
∥p(x)ρA|x − p̃(x)ρ̃A|x

∥
∥

1 ≤ ε

and

1

2
|p(x)− p̃(x)| ≤ ε.

Using these inequalities, we have

1

2

∥
∥ρA|x − ρ̃A|x

∥
∥

1 ≤
1

2

∥
∥
∥
∥ρA|x − p̃(x)

p(x)
ρ̃A|x

∥
∥
∥
∥

1
+

1

2

∣
∣
∣
∣1−

p̃(x)

p(x)

∣
∣
∣
∣
∥
∥ρ̃A|x

∥
∥

1

= 1

p(x)

1

2

∥
∥p(x)ρA|x − p̃(x)ρ̃A|x

∥
∥

1 +
1

p(x)

1

2
|p(x)− p̃(x)|

≤ 2ε

p(x)
.

��
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