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Abstract: For a state p Ang, We call a sequence of states (o;?B)Z:l an approximation

chain if for every 1 < k < n, ,oAsz e o(k)

aipe D general, it is not possible to lower
1

bound the smooth min-entropy of such a p4» g, in terms of the entropies of af(‘]f()B without
1

incurring very large penalty factors. In this paper, we study such approximation chains
under additional assumptions. We begin by proving a simple entropic triangle inequality,
which allows us to bound the smooth min-entropy of a state in terms of the Rényi entropy
of an arbitrary auxiliary state while taking into account the smooth max-relative entropy
between the two. Using this triangle inequality, we create lower bounds for the smooth
min-entropy of a state in terms of the entropies of its approximation chain in various
scenarios. In particular, utilising this approach, we prove approximate versions of the
asymptotic equipartition property and entropy accumulation. In the companion paper
(Marwah and Dupuis in Proving Security of BB84 Under Source Correlations, 2024.
arXiv:2402.12346 [quant-ph]), we show that the techniques developed in this paper can
be used to prove the security of quantum key distribution in the presence of source
correlations.

1. Introduction

One-shot information theory investigates the behaviour of tasks in communication and
cryptography under general unstructured processes, as opposed to independent and iden-
tically distributed (i.i.d) processes, where the states or the tasks themselves have a certain
tensor product structure. This is crucial for information theoretically secure cryptogra-
phy, where one cannot place any kind of assumption on the actions of the adversary
(see, for example, [2,3]). To prove security for such protocols, a common strategy is to
show that some smooth min-entropy is sufficiently large. For this reason, the smooth
min-entropy [4,5] is one of the most important quantities in one-shot information theory.
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The smooth min-entropy H. (K|E), for the classical-quantum state
o=, p(k)Ik) (k| ® pg characterises the amount of randomness one can extract from
the classical register K independent of the adversary’s register E [6]. It behaves very
differently from the von Neumann conditional entropy, which characterises tasks in the
i.i.d setting, and the difference between the two can be very large. Roughly speaking,
the smooth min-entropy places a much higher weight on the worst possible scenario of
the conditioning register, whereas the von Neumann entropy places an equal weight on
all possible scenarios.

An important and interesting argument, which works with the von Neumann condi-
tional entropy but fails with the smooth min-entropy, is that of proving lower bounds on

(k) )"
_p an
Akp k=1

€-approximation chain for the state p4»  if for every k, we can approximate the partial

the entropy using an approximation chain. We call a sequence of states,' (o

(k) :
state p Ak S Ilo Akp = O AXB i1 < €. If one can further prove that these states satisfy

H (Ak|A/1‘_lB)U<k) > ¢ for some ¢ > O sufficiently large, then the following simple
argument shows that H (A7|B), is large:

n
H(AY|B), =Y H(AA{™'B),
k=1

=3 (HAUAT B0 - 2(0)

k=1
> n(c—g(e))

where we used continuity of the von Neumann conditional entropy in the second line

(g(e) = O(elog l’:;l) is a “small” function of €). It is well known that a similar argument
is not possible with the smooth min-entropy. Consequently, identities for the smooth
min-entropy, like the chain rules [7], are much more restrictive. Tools like entropy
accumulation [8,9] also seem quite rigid, in the sense that they cannot be applied unless
certain (Markov chain or non-signalling) conditions apply. It is also not clear how one
could relax the conditions for such tools. In this paper, we consider scenarios consisting
of approximation chains, similar to the above, along with additional conditions and prove
lower bounds on the appropriate smooth min-entropies.

We begin by considering the scenario of approximately independent registers, that
is, a state PATBs which for every 1 < k < n satisfies

1
A R M

for some small € > 0 and arbitrarily large » (in particular n > %). That s, for every k, the
system Ay is almost independent of the system B and everything else, which came before
it. For simplicity, let us further assume that for all k the state ps, = p4,. Intuitively, one
expects that the smooth min-entropy (with the smoothing parameter depending on € and
not on )2 for such a state will be large and close to ~ n(H (A1) — g’ (¢)) (for some small

I For n quantum registers (X1, X2,..., X,), the notation X i’l refers to the set of registers
Xi, Xiv1 -, X ).

2 The smoothing parameter must depend on € in such a scenario. This can be seen by considering the
probability distribution PArl« p such that B is O with probability € and 1 otherwise and A is a random n-bit
string if B = 1 and constant if B = 0.
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function g’(¢)). However, it is not possible to prove this result using techniques, which
rely only on the triangle inequality and smoothing. The triangle inequality, in general,
can only be used to bound the trace distance between p AB and ®}_, 04, ® pp by ne,

which will result in a trivial bound when n > %.3 Instead, we show that a bound on the
entropic distance given by the smooth max-relative entropy between these two states
can be used to prove a lower bound for the smooth min-entropy in this scenario.

While an upper bound of ne is trivial and meaningless for the trace distance for large
n, it is still a meaningful bound for the relative entropy between two states, which is
unbounded in general. We can show that the above approximation conditions (Eq. 1)
also imply that relative entropy distance between p ATB and ®;_,pa, ® ppisnf(e) for
some small function f (¢). The substate theorem [10] allows us to transform this relative
entropy bound into a smooth max-relative entropy bound. For two general states p4p
and n4p, such thatd := Dfnax (paBlInap), we can easily bound the smooth min-entropy
of p in terms of the min-entropy of 1 by observing that

pap ~s pap < 2 nap < 27 HmnAIB=D g L @0y 2)
for some state og, which satisfies Dyax(nag|| 14 ®0B) = — Hmin(A|B),;. This implies
that

Hp:(A|B), = Huin(A|B), — D}, (paBlInaB) 3)

We call this an entropic triangle inequality, since it is based on the triangle inequality
property of Dmax. We can further improve this smooth min-entropy triangle inequality
to (Lemma 3.5)

g1(8,¢€)

- )

~ o
Hii (AIB), = H](A1B)y = —— Diux(paslinan) —

min 1
for some function g1, € +6 < 1 and 1 < o < 2. Our general strategy for the scenarios
considered in this paper is to first bound the “one-shot information theoretic” distance
(the smooth max-relative entropy distance) between the real state p (p ATB in the above
scenario) and a virtual, but nicer state, n ((}Z)Z’:1 oA, @ pp above) by nf () for some
small f(e€). Then, we use Eq. 4 above to reduce the problem of bounding the smooth
min-entropy on state p to that of bounding a «-Rényi entropy on the state 1. Using
this strategy, in Corollary 4.4, we prove that for states satisfying the approximately

independent registers assumptions, we have for § = O (e log ":;‘) that

1 | 1
Hiin(A11B), = n (H(AD, = 069)) = 0 (W) . )

Another scenario we consider here is that of approximate entropy accumulation. In
the setting for entropy accumulation, a sequence of channels My : Ry — Ax B Rx

3 Consider the distribution 9] A2n g2n> where for every i € [2n], the bit B; is chosen independently and is

equal to 0 with probability € and is 1 otherwise. The bit A; is chosen randomly if B; = 1, otherwise it is chosen
to be equal to A;_1. In this case, Q 4, is the uniformly random distribution for bits and Eq. 1 is satisfied.

n(l+e)
7

Let I = |{i € [n] : Ayj—1 = Ap;}|. Then, for O A2n g0 this value concentrates around , whereas for
121

,Zi 194, -0 B> it concentrates around % This shows that — 2.
1

2
QA%"BIZ” - Hiil QA,- . Q312n

1
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for 1 < k < n sequentially act on a state ,ol(g))E to produce the state PABIE = M,o---0

M (pl(g))E). It is assumed that the channels M, are such that the Markov chain A'ffl <~

B{‘ ~'E < By issatisfied for every k. This ensures that the register By does notreveal any

additional information about Alffl than what was previously revealed by BfflE . The
entropy accumulation theorem [8], then provides a tight lower bound for the smooth min-
entropy Hriin (A'| B E)). We consider an approximate version of the above setting where
the channels M themselves do not necessarily satisfy the Markov chain condition, but
they can be e-approximated by a sequence of channels M, which satisfies certain
Markov chain conditions. Such relaxations are important to understand the behaviour
of cryptographic protocols, like device-independent quantum key distribution [11,12],
which are implemented with imperfect devices [13,14]. Once again we can model this
scenario as an approximation chain: for every 1 < k < n, the state produced in the kth
step satisfies

0
Pakpkp = Ry o My (Mk—l o---0 Ml(ﬂ%&;))

~, trg, o M, (M _10---0o My O )::a(k) .
e IR, k k ('OROE AkBrE

Moreover, the assumptions on the channel M guarantee that the state 0;\]?3 kg satisfies
171

the Markov chain condition A]f LIPS B]f E & By, and so the chain rules and bounds
used for entropy accumulation apply for it too. Roughly speaking, we use the chain rules

for divergences [15] to show that the divergence distance between the states pqnprp =

Mo oM (pgg))E) and the virtual state o 4 gy E= Mo oj\/l’l (pg))E) is relatively
small, and then reduce the problem of lower bounding the smooth min-entropy of p 4» g1
to that of lower bounding an «-Rényi entropy of o ATBIES which can be done by using the

chain rules developed for entropy accumulation.* In Theorem 5.1, we show the following
smooth min-entropy lower bound for the state p4» gn g for sufficiently small € and an
arbitrary 6 > 0

€24

n
H?. (A"|B'E) >Zian(A IBiRi_ 1)y 1 —nO(€71) — O € (6)
min\A 1101 E)p = P k1 Bk Rk=1) M, (w) 1

k=1

where the infimum is over all possible input states @ Re 1 Res for reference register I?k,l
isomorphic to Ri_1, and the dimensions |A| and | B| are assumed constant while using
the asymptotic notation.

In the companion paper [1], we use the techniques developed in this paper to provide
a solution for the source correlation problem in quantum key distribution (QKD) [16].
Briefly speaking, the security proofs of QKD require that one of the honest parties pro-
duce randomly and independently sampled quantum states in each round of the protocol.
However, the states produced by a realistic quantum source will be somewhat correlated
across different rounds due to imperfections. These correlations are called source corre-
lations. Proving security for QKD under such a correlated source is challenging and no
general satisfying solution was known. In [1], we use the entropic triangle inequality to

4 The channel divergence bounds we are able to prove are too weak for this idea to work as stated here.
The actual proof is more complicated. However, this idea works in the classical case.
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reduce the security of a QKD protocol with a correlated source to that of the QKD pro-
tocol with a depolarised variant of the perfect source, for which security can be proven
using existing techniques.

2. Background and Notation

For n quantum registers (X1, X2, ..., X,), the notation X l/ refers to the set of registers
(Xi, Xi+1, ..., X ;). We use the notation [n] to denote the set {1, 2, . .., n}. For aregister
A, | A| represents the dimension of the underlying Hilbert space. If X and Y are Hermitian
operators, then the operator inequality X > Y denotes the fact that X — Y is a positive
semidefinite operator and X > Y denotes that X — Y is a strictly positive operator. A
quantum state (or briefly just state) refers to a positive semidefinite operator with unit
trace. At times, we will also need to consider positive semidefinite operators with trace
less than equal to 1. We call these operators subnormalised states. We will denote the set
of registers a quantum state describes (equivalently, its Hilbert space) using a subscript.
For example, a quantum state on registers A and B, will be written as p4 p and its partial
states on registers A and B, will be denoted as p4 and pp. The identity operator on
register A is denoted using 1 4. A classical-quantum state on registers X and B is given
by pxp = Zx p(x)|x){x|® pp|x, Where pp|, are normalised quantum states on register
B.

The term ‘““channel” is used for completely positive trace preserving (CPTP) linear
maps between two spaces of Hermitian operators. A channel A/ mapping registers A to
B will be denoted by NV 4, 5. We write supp(X) to denote the support of the Hermitian
operator X and use X < Y to denote that supp(X) < supp(Y).

. 1
The trace normis defined as || X ||; := tr ( (X X ) 2 ) . The fidelity between two positive

2
operators P and Q is defined as F(P, Q) = H \/P«/QHI. The generalised fidelity
between two subnormalised states p and o is defined as

2
Fu(p.0) = ([vaval, +/T = o —uwo) . M)

The purified distance between two subnormalised states p and o is defined as

P(p,0) =+1— Fi(p,0). ®)

We will also use the diamond norm distance as a measure of the distance between two
channels. For a linear transform A 4, p from operators on register A to operators on
register B, the diamond norm distance is defined as

INasgllo = max INasB(Xar) 1 9

Xar:1Xarlh <1

where the supremum is over all Hilbert spaces R (fixing |R| = |A] is sufficient) and
operators X gg such that || X arll; < 1.

Throughout this paper, we use base 2 for both the functions log and exp. We follow
the notation in Tomamichel’s book [17] for Rényi entropies. For « € (0, 1) U (1, 2), the
Petz «-Rényi relative entropy between the positive operators P and Q is defined as

_ L ogtr PU2) ip (g < Tand P £ Q) or (P < Q)
Dy (P[1Q) = oI wr(P) | (10)
00 else.
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The sandwiched «-Rényi relative entropy for o € [%, 1) U (1, oo] between the positive
operator P and Q is defined as

Do (P||Q) = ﬁlog% if @ <land P L Q)or (P < Q) (1p)

o0 else.

where o’ = “a;l In the limit « — oo, the sandwiched divergence becomes equal to the
max-relative entropy, Dpax, Which is defined as

Dmax(P||Q) :=inf {L e R: P <2"Q]}. (12)

In the limit of « — 1, both the Petz and the sandwiched relative entropies equal the
quantum relative entropy, D(P||Q), which is defined as

tr(P log P—Plog Q) if (P <
D(PI|Q) = W) (F<O (13)
o) else.

Given any divergence ID, we can define the (stabilised) channel divergence based on
D between two channels A 4, g and M 4_, g as [18,19]

DW [| M) := sup DN a— g (par) || Ma—B(paR)) (14)
PAR
where R is reference register of arbitrary size (|R| = | A| can be chosen when DD satisfies

the data processing inequality).
We can use the divergences defined above to define the following conditional en-
tropies for the subnormalised state p4p:

HI(A|B), := sup —Dy(papll 14 ®0op) (15)
op

HI(A|B), := sup —Dqy(papll 14 ®0p) (16)
OB

H}(A|B), := —Dy(pap|| 14 ®pp) (17)

H} (A|B), := —Dy(papl| 14 ®pp) (18)

for appropriate « in the domain of the divergences. The supremum in the definition for

I-_IOT and I:IJ is over all quantum states op on register B.
For o — 1, all these conditional entropies are equal to the von Neumann conditional

entropy H(A|B). roTo(A|B) o 1s usually called the min-entropy. The min-entropy is
usually denoted as Hyin (A|B), and for a subnormalised state can also be defined as

Hmin(A|B), :=sup {1 € R : there exists state o5 such that psp < 2741, ®op} .
(19)

For the purpose of smoothing, define the e-ball around the subnormalised state p as the
set

Be(p) :={p=0:P(p,p) <eand trp < 1}. (20)
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We define the smooth max-relative entropy as

Dpax(pllo) := min D (p]]0) (21)
PEBe(p)

e(p

The smooth min-entropy of p4p is defined as

Hr;in(A|B)p ‘= max Hmin(A|B)5. 22)
PEB:(p)

3. Entropic Triangle Inequality for the Smooth Min-entropy

In this section, we derive a simple entropic triangle inequality (Lemma 3.5) for the
smooth min-entropy of the form in Eq. 4. This Lemma is a direct consequence of the
following triangle inequality for D, (see [20, Theorem 3.1] for a triangle inequality,
which changes the second argument of Da).

Lemma 3.1. Let p and n be subnormalised states and Q be a positive operator, then for
o > 1, we have

o 1 tr(n)
D + 1
o —1 max (0111) o—1 0g tw(p)

Do (pl1Q) < Do(n]|Q) +

and for o < 1 if one of Da(m | Q) and Dmax (p||n) is finite (otherwise we cannot define
their difference), we have

o 1 tr(n)
aDmax(p”Tl) - 1_ log

Da(pllQ) = Da(l|Q) = 1— —a S t(p)

Proof. If Dax(pl|n) = oo, then both statements are true trivially. Otherwise, we have
that p < 2Pmax(PlMy and also p <« n. Now, if p & Q thenn & Q. Hence, for o > 1 if
Dy (pl]Q) = o0, then Dy (n]]1Q) = oo, which means the Lemma is also satisfied in this
condition. For & < 1, if D, (p|| Q) = oo, then the Lemma is also trivially satisfied. For
the remaining cases we have,

a—1 a—1\%
(0% p0 %)
tr(p)
a—1 a—1\¥
tr (Q_WZDmax(PHW)nQ_W)
tr(p)

) ot Dy (ol 1)y (o~ 1) Drc (011 Q)
tr(p)

2@=1Du(pllQ) _

IA

where we used the fact that tr( f (X)) is monotone increasing if the function f is mono-
tone increasing. Dividing by (o — 1) now gives the result. O

We define smooth «-Rényi conditional entropy as follows to help us amplify the
above inequality.
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Definition 3.2 (e-smooth a-Rényi conditional entropy). For o € (1, 00] and € € [0, 1],
we define the e-smooth «-Rényi conditional entropy as

Hl (AIB), == max HJ(A|B);. (23)
PABEBe(pAB)

Lemma 3.3. For o € (1, 00] and € € [0, 1), and states pap and nap we have

1
1 —e€?’

- 3 o .
H] (AIB), = HJ (A|B), — mDrenax(pAB“’?AB) b log

1

Proof Let pap € Bec(pap) be a subnormalised state such that Dy (04gl|naB) =
(paBlInap). Using Lemma 3.1 for @ > 1, we have that for every state op, we have
1

1 —¢€2
(24)

max

- - o 1
Dy (0aBl| 14 ®0p) < Dy(napll 14 @op) + FDfnaX(PABHUAB) + - log

1 1

where we used the fact that psp € Bc(p4p) which implies thattr(pap) > 1 — €2. Since,
the above bound is true for arbitrary states op, we can multiply it by —1 and take the
supremum to derive

1
1—e?

HJ(A|B); > H] (A|B), — ——1 Phax(Palinag) — — log

The desired bound follows by using the fact that A, . (A|B), > H, (A|B);. O

Lemma 3.4. For a state pap, € € [0,1), and § € (0, 1) such that ¢ +§ < 1 and
a € (1, 2], we have

5 80(3)
Hif (A1B)y = Hy (AIB)y — -~
where go(x) := —log(l — /1 — x2).
Proof. First, note that
Hii(AIB)p = sup Hpy(A[B)j. (25)

PEB:(paB)

To prove this, considera pap € Be(pap) and ,oAB € Bs(pap) such that Hyin (A|B),y =
(A|B);. Then, using the triangle inequality for the purified distance, we have

mm

P(pag, Pap) < P(paB, paB) + P(pas, Pip)
<€+

which implies that H<X (A|B), > Hmin(A|B),y =
all p € Bc(pap) the bound in Eq. 25 is true.
Using this, we have

(A|B);. Since, this is true for

IIllIl

H;J};S(A|B)p = sup mm(A|B)
PEB:(paB)
5 go(9)
> sup {HJ(A|B)5— 1}
PEBe(paB) o=
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8o(d)
-1

= H} (A|B), —

where we have used [8, Lemma B.10]> (originally proven in [21]) in the second step. O
We can combine these two lemmas to derive the following result.

Lemma 3.5. Fora € (1,2],€ € [0, 1), and § € (0, 1) such that € +5 < 1 and two states
paB and nap, we have

g1(8,€)

Hit (AIB), = HI(AIB), — Dinax (Pas1naB) = =—

min

— (26)

where g1(x, y) := —log(1 — /1 — x2) —log(l — y?).

Proof. We can combine Lemmas 3.3 and 3.4 as follows to derive the bound in the
Lemma:

8o(%)

Hin (AIB), = H] (A1B), — ——

min

J(AlB)n - max(pAB“nAB) - —1 (g()((S) +10g 1— 62> :

o
a—1
0

We can use the asymptotic equipartition theorem for smooth min-entropy and max-
relative entropy [21-23] to derive the following novel triangle inequality for the von
Neumann conditional entropy. Although we do not use this inequality in this paper, we
believe it is interesting and may prove useful in the future.

Corollary 3.6. For « € (1, 2] and states psp and nap, we have that

H(A|B), > H}(A|B), — %D(pABHnAB). @7)

Proof. Using Lemma 3.5 with o € (1, 2], the states p g and n 5 and any € > 0 and
8 > 0 satisfying the conditions for the Lemma, we get

H Al|B g ® 813, ¢€)
T;Jlrj( i n)P®" HT(A |Bn)77®n o — 1D1€nax(:0A1';|| ) - —1
le A B H'(AIB), — 1 D 1 gl(‘S 6)
e‘:r‘ls( | )p®n> T( 1B), (xa o €aX(IO || ) -

Taking the limit of the above for n — oo, we get

1 s ~ . a 1
lim (AT BY) gen = HJ (AIB)y = lim ——— — D (o3 1In%5)

N—> 00 min

i L8169
n—oopn o —1

~ o
= H(AIB), = H](AIB)y = —— D(pasllian)

which proves the claim. O

5 This Lemma is also valid for subnormalised states as long as § € (0, v/2tr(f) — tr(5)2) according to [8,
Lemma B.4].
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4. Approximately Independent Registers

In this section, we introduce our technique for using the smooth min-entropy triangle
inequality for considering approximations by studying a state p an g such that for every
k € [n]

| Pats = ® pyig| = (28)

We assume that the registers Ay all have the same dimension equal to |A|. One should
think of the registers Ay as the secret information produced during some protocol, which

also provides the register B to an adversary. We would like to prove that Hﬂ;) (A|B)is
large (lower bounded by €2 (n)) under the above approximate independence conditions
for some reasonably small function f of € and close to n H(A1), if we assume the states
pA, are identical.

Let us first examine the case where the state p above is classical. We use the standard
notation for probability distributions to address elements of p, so that p(af, b) =
(af, b|,oArlzB lai, b), where |a}, b) is standard basis vector. To show that in this case the

smooth min-entropy is high, we will show that the set where the conditional probability

p(ajlb) := L /()’{';?) can be large, has a small probability using the Markov inequality. We

will use the following lemma for this purpose.

Lemma 4.1. Suppose p, q are probability distributions on X such that% lp—qli <e
then S C X definedas S = {x € X : p(x) < (1+€'/?)q(x)} is suchthatq(S) > 1—e'/?
and p(S) > 1 —¢€'/2 —¢.

Proof. Let S¢ := X\ S, where S is the set defined above. If ¢(S¢) = 0, the statement in
the lemma is satisfied. If ¢(S¢) > 0, we have that

1
> Z — =m H)—-q(H
€= ) Ilp—ql H£§(|P( ) —q(H)|

P
=4 s ‘

SC

— q(SC) <ZXESC p('x) _ 1)

erSC q(x)
1
> q(S) Lol +e)q)
erSC Q(X)
1
=q(S)e2
which implies that ¢ (S¢) < € % Now, the statement of the Lemma follows. O

We will also assume for the sake of simplicity that p4, are identical for all k € [n].
Using the Lemma above, for every k € [n], we know that the set

Be:={(@}.b): p(ak.b) > 1+ Vep(al ™ bptan)|

=@t by s plarlal™ 1) > 1+ V(@]
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satisfies Pr, (By) < 2./€. We cannow define L = Y }_, x,, which is arandom variable
that simply counts the number of bad sets By an element (a, b) belongs to. Using the
Markov inequality, we have

Pr [L > ne%] <
P

E,[L] |

— < 2e7.
nes

We can define the bad set B := {(a?, b): L(a},b) > nei ], then we can define the
subnormalised distribution p Anp s

parplal,b) = parp(al.b) (a.b) ¢ B
1 0 else
We have P(pang. panp) < V/2€!/3. Further, note that for every (af, b) ¢ B, we have

n
p(ai by =[] ptalai™, b)
k=1

= I »e@lai™ b ] el@la™" b

k:(al,b)¢Bx k:(ay ,b)e By

<U+vo" I paca)

k:(ay,b)¢ By
1
<1+ \/E)nz_”(l_fz)Hmin(Al)

where in the third line we have used the fact that if (a{', b) & By, then ,o(aklaf_1 b) <
(1 + /€)pa, (ar) and in the last line we have used the fact that for (a’f, b) & B, we
have [{k € [n] : (a],b) & By}| = n — L(a},b) = n(l — 6%), that all the states pg4,
are identical and 2~ Hmin(A0) — maxg, pa,(ar). Note that we have essentially proven

and used a Dy bound above. This proves the following lower bound for the smooth
min-entropy of p

1
HY2ES (A7IB) = n(1 — €%) Hyin(A1) — nlog(1 + /@), (29)

The right-hand side above can be improved to get the Shannon entropy H instead
of the min-entropy Hpi,. However, we will not pursue this here, since this bound is
sufficient for the purpose of our discussion.

Although, we are unable to generalise the classical argument above to the quantum
case, it provides a great amount of insight into the approximately independent registers
problem. Two important examples of distributions, which satisfy the approximate inde-
pendence conditions above were mentioned in Footnotes 2 and 3 earlier. To create the
first distribution, we flip a biased coin B, which is 0 with probability € and 1 otherwise.
If B =0, then A7 is set to the constant all zero string otherwise it is sampled randomly
and independently. For this distribution, once the bad event (B = 0) is removed, the
new distribution has a high min-entropy. On the other hand, for the second distribution,
0 A2y We have that the random bits B; are chosen independently, with each being

equal to O with probability € and 1 otherwise. If the bit B; is 0, then A; is set equal to
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A;_1 otherwise it is sampled independently. In this case, there is no small probability
(small as a function of €) event, that one can simply remove, so that the distribution
becomes i.i.d. However, we expect that with high probability the number of B; = 0
is close to 2ne. Given that the distribution samples all the other A; independently, the
smooth min-entropy for the distribution should be close to 2n(1 —€) H(A1). The above
argument shows that any distribution satisfying the approximate independence condi-
tions in Eq. 28 can be handled by combining the methods used for these two example
distributions, that is, deleting the bad part of the distribution and recognising that the
probability for every element in the rest of the space behaves independently on average.

The above classical argument is difficult to generalise to quantum states primarily
because the quantum equivalents of Lemma 4.1 are not as nice and simple. Furthermore,
quantum conditional probabilities themselves are also difficult to use. Fortunately, the
substate theorem serves as the perfect tool for developing a smooth max-relative entropy
bound, which we can then use with the min-entropy triangle inequality. The quantum
substate theorem [10,24] provides an upper bound on the smooth max relative entropy
D¢, .« (pllo) between two states in terms of their relative entropy D(p||o).

Theorem 4.2 (Quantum substate theorem [24]). Let p and o be two states on the same
Hilbert space. Then for any € € (0, 1), we have

D | 1
Wl +1 1o (30)

Diix(pllo) < —

In this section, we will also frequently use the multipartite mutual information
[25-27]. For a state Px", the multipartite mutual information between the registers
(X1, X2, ..., X,) is defined as

I(Xy: Xy Xn)p i= D(pxnllox, ® px, ® -+ - ® px,,)- 31

In other words, it is the relative entropy between px» and px, ® px, ® - - - ® px, . It can
easily be shown that the multipartite mutual information satisfies the following identities:

I(Xi: Xyt Xn)p =Y H(Xp)p— HXi+ Xp), (32)
k=1

=) I(Xe: Xy, (33)
k=2

Going back to proving a bound for the quantum approximately independent registers
problem, note that using the Alicki—-Fannes—Winter (AFW) bound [28,29] for mutual
information [30, Theorem 11.10.4], Eq. 28 implies that for every k € [n]

_ €
I(Ac - AA1B), < elog|Al+ g (5) (34)

where g2(x) := (x + 1) log(x + 1) — x log(x). With this in mind, we can now focus our
efforts on proving the following theorem.

Theorem 4.3. Let registers Ay have dimension |A| for all k € [n]. Suppose a quantum
state panp is such that for every k € [n], we have

I(Ax: AY'B), <€ (35)
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for some 0 < € < 1. Then, we have that

€1+€(A 1B), > ZH(Ak)p — 3ned log(1 +2]Al)

mln
k=1

2log(1+2|A 2log(1+2|A
- 3 AD_ 2oex 214D (log(l - «/E)+g1(6,6£))
3/ c1/a

(36)

where g1(x, y) := —log(l —+/1 — x2) —log(l — y2). In particular, when all the states
pa, are identical, we have

H“*(A IB), > n (H(Al)p — 3¢ log(1 +2|A|))

min
2log(1+2|A 2log(1+2|A
2o 420D 2008 +24D (100 ey e, ehy).
€ €

(37)

Proof. First note that we have,

n
I(Ay:Ay:--- Ay B) = D(pA’l’B||®/0Ak ® pB)
k=1

n

= ZI(Ak : A1)
k=1

< ne.

Using the substate theorem, we now have

- D(pargll Qi P, ® pB) + 1
Diy (PA':B &) o ®ﬂ3> s ~log(1 — /&)
k=1 €
1
< ne+ — —log(l — /e). (38)
Je

We now define the auxiliary state n Ang = Xi—1 pa, ® pp. Using Lemma 3.5, for
a € (1,2), we can transform the smooth min-entropy into an «-Rényi entropy on the
auxiliary product state n Anp as follows:

min

HE4+E(AIiL|B)p
1
~ o 1 gi(€, €%)
> HJ (A11B)y = — Diax (paysllnags) = = ———

n 1 1

o ped g1(€, €%)
=Y H} (A, — ﬁDﬁix(PA73||ﬁA73) a1
k=1

1
g1(e, €9)
-1

M:

H(AD, = n(@ = Dlog"(1+2/A]) — —— % e orsllnans) -

k=1
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) ,;H(A")” — e = Dlog"(1+2/A) — ——nVe
« < g1 (e, )
Ta—1ve a-1 log(1 — /o) - -0,

In the third line above, we have used [8, Lemma B 9] (which is an improvement of [21,
Lemma 8]), whichis valid aslongas o < 1+ m We will selecta = 1+ Mg(llﬁ

for which the above « bound is satisfied, this gives us

2log(1 +2|A])

n
i 1
Hit(AY1B), = Y H(Ap), — 3nes log(1+2|A|) — 7

k=1

2log(1+2|A
- 2D (g1 - Vo) + 166 e).

We can now plug the bound in Eq. 34 to derive the following Corollary.

Corollary 4.4. Let registers Ay have dimension |A| for all k € [n]. Suppose a quantum
state panp is such that for every k € [n], we have

oats = P @ oy <. (39)

Then, we have that for § = € log |A| + g> (%) suchthat0 < § < 1,

Héfn”(A 1B), > ZmAk)p — 3087 log(1 +2|Al)
k=1

210g(1+2]A])  2log(l +2|A]) ,
- 53/4 - sL/4 (log(l _\/§)+g1(8,84))

(40)

where g1(x,y) = —log(1 —+/1 — x2) —log(l — y2) and go(x) = (x+ D log(x+1) —
xlog(x). In particular, when all the states pa, are identical, we have

1
H,‘flfn”(A’fIB)p >n (H(Al)p — 387 log(1 + 2|A|))

2log(1+2|A)  2log(l +2|A|) |
B §3/4 - s1/4 (log(l —\/5)+gl(5,54)).

(41)




Smooth Min-entropy Lower Bounds for Approximation Chains Page 15 of 55 211

4.1. Weak approximate asymptotic equipartition. We can modify the proof of Theo-
rem 4.3 to prove a weak approximate asymptotic equipartition property (AEP).

Theorem 4.5. Let registers Ay have dimension |A| for all k € [n] and the registers By
have dimension |B| for all k € [n]. Suppose a quantum state PATBIE is such that for
every k € [n], we have

s ona @, =

Then, we have that for § = € log (|A||B]) + g2 (%) such that0 < § < 1,
1 n .
HY P (ATIBYE), = Y H(Ax|Bi), — 3n84 log(1 +2|A|)
k=1

2log(1+2|A]) 2log(1+2|A)])
o §3/4 o 51/4

(log(l — o+, 5%))
(43)

where g1(x,y) = —log(l — +/1 — x2) —log(l — yz) and go(x) = (x+ D log(x+1) —
x log(x). In particular, when all the states pa, p, are identical, we have

1
HIY S (AMBIE), > n (H(A1|Bl)p — 387 log(1 +2|A|)>

min
2log(1+2|A]) 2log(l+2|A|)
- §3/4 - si/4

<log(l — 8+, 5%)).
(44)

Proof. To prove this, we use the auxiliary state n ANBIE = & pa, B, ® pE. Then, we
have

D(parprelnanpre) = 1(A1By : A2Bay : -1 ApBy 1 E))

n
= ZI(AkBk c AR,
k=1
€

<n (clog(4lB) +g(5)) = ns

where we used the AFW bound for mutual information in the last line [30, Theorem
11.10.4]. The rest of the proof follows the proof of Theorem 4.3, only difference being

that now we have H, (ATIBYE)y =Y 4oy ) (A Br)p- |

We call this generalisation weak because the smoothing term (§) depends on size of
the side information |B|. In Appendix E, we show that under the assumptions of the
theorem, some sort of bound on the dimension of the registers B is necessary otherwise
one cannot have a non-trivial bound on the smooth min-entropy.
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Sequential DIQKD protocol

Parameters:
® wexp is the expected winning probability for the honest implementation of the device
e 1 > 1 is the number of rounds in the protocol
e y € (0, 1] is the fraction of test rounds

Protocol:

1. Forevery 0 < i < n perform the following steps:
(a) Alice chooses a random 7; € {0, 1} with Pr[7; = 1] = y.
(b) Alice sends T; to Bob.
(c) If T; = 0, Alice and Bob set the questions (X;, ¥;) = (0, 2), otherwise they sample (X;, ¥;)
uniformly at random from {0, 1}.
(d) Alice and Bob use their device with the questions (X;, ¥;) and obtain the outputs A;, B;.

2. Alice announces her questions X' to Bob.

3. Error correction: Alice and Bob use an error correction procedure, which lets Bob obtain the raw
key A'l’ (if the error correction protocol succeeds, then A} = A’l’). In case the error correction
protocol aborts, they abort the QKD protocol too.

4. Parameter Estimation: Bob uses Bi’ and A’f to compute the average winning probability wayg on
the test rounds. He aborts if wayg < wexp

5. Privacy Amplification: Alice and Bob use a privacy amplification protocol to create a secret key
K from A (using A'l’ for Bob).

Protocol 1.

4.2. Simple security proof for sequential device independent quantum key distribution.
The approximately independent register scenario and the associated min-entropy lower
bound can be used to provide simple “proof of concept” security proofs for cryptographic
protocols. In this section, we will briefly sketch a proof for sequential device independent
quantum key distribution (DIQKD) to demonstrate this idea. The protocol for sequential
DIQKD used in [31] is presented as Protocol 1.

We consider a simple model for DIQKD, where Eve (the adversary) distributes a
state ,01(503 £, between Alice and Bob at the beginning of the protocol. Alice and Bob
then use their states sequentially as given in Protocol 1. The kth round of the protocol

produces the questions Xy, Yy and Tk, the answers Ay and By and transforms the shared
k—1 k
state from péA E;E to péjEBE.

Given the questions and answers of the previous rounds, the state shared between
Alice and Bob and their devices in each round can be viewed as a device for playing the
CHSH game. Suppose in the kth round, the random variables produced in the previous

k — 1 rounds are ry_1 := x’f_l, yll‘_l, t{‘_l , a]f_l, blf_l and that the state shared between

Alice and Bob is pg‘A_gg Elre i We can then define Pr[Wj|ri—_1] to be the winning prob-

ability of the CHSH game played by Alice and Bob using the state and their devices in
the kth round. Note that Alice’s device cannot distinguish whether the CHSH game is
played in a round or is used for key generation. We can further take an average over all
the previous round’s random variables to derive the probability of winning the kth game

Pr[Wi] = Ey_, [Pr[Wlre—11] . (45)

Alice and Bob randomly sample a subset of the rounds (using the random variable T})
and play the CHSH game on this subset. If the average winning probability of CHSH
game on this subset is small, they abort the protocol. For simplicity and brevity, we will

assume here that the state pg)j ERE distributed between Alice and Bob at the start of the
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Fig. 1. The lower bound in Eq. 47 for the interval [%, 2*'4—\/5]

protocol by Eve has an average winning probability at least wexp, that is,

1 n
=D PrlWil > wexp — (46)
k=1

for some small § > 0. Using standard sampling arguments it can be argued that either
this is true or the protocol aborts with high probability.

For any shared state o, g, g (Where E 4 is held by Alice, Ep is held by Bob and E is
held by the adversary) and local measurement devices, if Alice and Bob win the CHSH

game with a probability w € (%, 2?@], then Alice’s answer A to the game is random
given the questions X, Y and the register £ held by adversary. This is quantified by the
following entropic bound [32] (see [31, Lemma 5.3] for the following form)

1—h(+1V/T6o(@—D+3) ifwe[d, 2]

47
0 ifwel0,3) @0

H(A|XYE) = f(w) = {

where A (-) is the binary entropy. The function f is convex over the interval [0, 2J’Tﬁ]

We plot it in the interval [3 2+*f] in Fig. 1.

225] to be large enough so that

For € > 0, we choose the parameter wexp € [% + 4,

1 — flwexp —8) = h ( \/16(wexp 8)(wexp — 8 — 1) + 3) <€ (48)

We will now use Eq. 47 to bound the von Neumann entropy of the answers given Eve’s
information for the sequential DIQKD protocol. We have

H(A"|X"YITIE) = ZH(A,{|A'1"1X’11Y1”T1”E)
k=1

n
25" Ha A Xy E)
k=1
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n
2 > H(Ag| Xy YiRe—1 E)
k=1

n
= Bri~ri [H(Ak|XkYkE>p<k) }
k=1 =1
G w
= ZErk—l“’Rk—l [f (Pr[Wk|rk—l])]

k=1

> f (PrIWeD)

k=1
> nf (1 ZPr[Wk])
n k=1
> nf (wexp — 8) > n(1 — €

where in (1) we have used the fact that the questions sampled in the rounds after the
kth round are independent of the random variables in the previous rounds, in (2) we
use the fact that Alice’s answers are independent of the random variable 7} given the
question X and we also grouped the random variables generated in the previous round
into the random variable R, _| := Alf_l B{‘_IXII‘_1 Ylk_1 le_l, in (3) we use the bound in
Eq. 47, and in the next two steps we use convexity of f. If instead of the von Neumann
entropy on the left-hand side above we had the smooth min-entropy, then the bound
above would be sufficient to prove the security of DIQKD. However, this argument
cannot be easily generalised to the smooth min-entropy because a chain rule like the one
used in the first step does not exist for the smooth min-entropy (entropy accumulation
[8,9] generalises exactly such an argument). We can use the argument used for the
approximately independent register case to transform this von Neumann entropy bound
to a smooth min-entropy bound.
This bound results in the following bound on the multipartite mutual information

n
Ay oot Ay XTYPTPE) = Y H(AW + HX YT E) — H(A} X} Y[ T]'E)
k=1

n

= Z H(Ay) — H(AT|X"YIT'E)
k=1

<n—n(—e* =net
where we have used the dimension bound H (Ay) < 1 for every k € [n]. This is the same
as the multipartite mutual information bound we derived while analysing approximately
independent registers in Theorem 4.3. We can simply use the smooth min-entropy bound
derived there here as well. This gives us the bound

n
1
HYS(AYIXTYITI'E) > ) H(Ay) — 3nelog5 — O <€—3>
k=1

=n(l —3elog5) — O <i3) (49)
€
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Fig. 2. The setting for entropy accumulation and Theorem 5.1. For k € [n], the channels M are repeatedly
applied to the registers Ry_1 to produce the “secret” information Ay and the side information By

where we have used the fact that the answers Ay can always be assumed to be uniformly
distributed [31,32]. For every € > 0, we can choose a sufficiently large n so that this
bound is large and positive.

We note that this method is only able to provide “proof of concept” or existence
type security proofs. This proof method couples the value of the security parameter for
privacy amplification € with the average winning probability, which is not desirable.
The parameter € is chosen according to the security requirements of the protocol and
is typically very small. For such values of €, the average winning probability of the
protocol will have to be extremely close to the maximum and we cannot realistically
expect practical implementations to achieve such high winning probabilities. However,
we do expect that this method will make it easier to create “proof of concept” type proofs
for new cryptographic protocols in the future.

5. Approximate Entropy Accumulation

In general, it is very difficult to estimate the smooth min-entropy of states produced
during cryptographic protocols. The entropy accumulation theorem (EAT) [8] provides a
tight and simple lower bound for the smooth min-entropy Hy. (A| B} E), of sequential
processes, under certain Markov chain conditions. The state p4ngn g in the setting for
EAT is produced by a sequential process of the form shown in Fig. 2. The process begins
with the registers Rg and E. In the context of a cryptographic protocol, the register Ry
is usually held by the honest parties, whereas the register E is held by the adversary.
Then, in each round k € [n] of the process, a channel My, : Ry_; — Ay By Ry is applied
on the register Ry to produce the registers Ay, By and Ry. The registers A usually
contain a partially secret raw key and the registers B}’ contain the side information about
Al revealed to the adversary during the protocol. EAT requires that for every k € [n],
the side information By satisfies the Markov chain Alf_l pEs Bi‘_lE < By, that is,
the side information revealed in the kth round does not reveal anything more about the
secret registers of the previous rounds than was already known to the adversary through
B i‘*l E. Under this assumption, EAT provides the following lower bound for the smooth
min-entropy

n
Hen(ALIBIE), = > inf H(AKBiR) (o) — v/ (50)
k=1 Re-1R

where the infimum is taken over all input states to the channels My and ¢ > 0O is a
constant depending only on |A| (size of registers Ai) and €. We will state and prove
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an approximate version of EAT. Consider the sequential process in Fig.2 again. Now,
suppose that the channels My do not necessarily satisfy the Markov chain conditions
mentioned above, but each of the channels M can be e-approximated by M) which
satisfy the Markov chain A]f_l <~ Bf_lE < By for a certain collection of inputs.
The approximate entropy accumulation theorem below provides a lower bound on the
smooth min-entropy in such a setting. The proof of this theorem again uses the technique
based on the smooth min-entropy triangle inequality developed in the previous section.
In this setting too, we have a chain of approximations. For each k € [n], we have

0
Pakpkp = WR, © Mg (Mk—l 0---0 Ml(ﬂﬁ;ﬁ,;))

N ’ (0) R (9]
N trg, O./\/lk (Mk_1 o---0 Ml(pROE ) = UA’{B{‘E'
(k)

AkBrE®
satisfies the Markov chain A]f_l DES B{‘_IE <> By. Therefore, we expect that the

According to the Markov chain assumption for the channels M}, the state o

register A; adds some entropy to the smooth min-entropy H;in (A|B{ E), and that the
information leaked through Bj' is not too large. We show that this is indeed the case in
the approximate entropy accumulation theorem.

The approximate entropy accumulation theorem can be used to analyse and prove
the security of cryptographic protocols under certain imperfections. The entropy accu-
mulation theorem itself is used to prove the security of sequential device independent
quantum key distribution (DIQKD) protocols [12]. In these protocols, the side informa-
tion By produced during each of the rounds are the questions used during the round to
play a non-local game, like the CHSH game. In the ideal case, these questions are sam-
pled independently of everything which came before. As an example of an imperfection,
we can imagine that some physical effect between the memory storing the secret bits
Alf_l and the device producing the questions may lead to a small correlation between

the side information produced during the kth round and the secret bits AII‘_l (also see
[13,14]). The approximate entropy accumulation theorem below can be used to prove
security of DIQKD under such imperfections. We do not, however, pursue this example
here and leave applications of this theorem for future work. In Sect. 5.4, we modify this
Theorem to incorporate testing for EAT.

Theorem 5.1. For k € [n], let the registers Ay and By be such that |Ax| = |A| and
|Bx| = |B|. For k € [n], let My, be channels from Ry_; — Ry Ay By and

0
PA"BI'E =tar°Mn°“'°M1(P§eo)E) (1)

be the state produced by applying these maps sequentially. Suppose the channels My
are such that for every k € [n), there exists a channel ./\/l;C from Ry_1 — Ry Ay By such
that

1. M, €-approximates My in the diamond norm.:
1
5 IMe= M, = e (52)

2. For every choice of a sequence of channels Ny € {M;, M’} fori € [k — 1], the state
M oNi_1o---oN| (pgg))E) satisfies the Markov chain

A o BYTE o By (53)
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Then, for 0 < §,€1,€ex < 1 suchthate; +€; < 1, @ € (1, 1+ and B > 1,

1
log(1+2|A|)>
we have

HEY 2 (AT |BYE), > Z inf H(Ag|BLR) v () — ne — 1) Tog? (1 +2| A])

k=1 CRi_( R
_ .~ L log(|A|IBI) _
a_lnlog<1+8(4 1))
1
- —nzple ) - — (gl(ez, €+ "‘?—f?) . (54)
where
1
+1 = VA =8)e\ T
2p(€. 8) = o log (1 +/(1=08)e )f” (5—ﬂ> (55)

and g1(x,y) = —log(l — /1 — x2) —log(1 — y?) and the infimum in Eq. 54 is taken
over all input states Re_ R 10 the channels M), where R is a reference register (R can
be chosen isomorphic to Rk 1)-

For the choiceof 8 =2, = e%, we have

2
22(€,8) < 3log ((1 +62)3 +51'2>,

We also have that
log (1 + 52“7”2‘%('“'3‘)) < (JA]|B])%€¥.

2

Finally, if we define €, := (|A||B|)2€%+3 log ((1 + eé)
we get the bound

L
+€ 2),andchoosea = /¢,

HSY (A BYE), > Z 1Rn£ H(Ak|BkRk)/vlk(w i)
k=1 k Rk

— ny/& (log* (1 +2|A]) +2) — €1) +2go(€1)) (56)

The entropy loss per round in the above bound behaves as ~ €71 This dependence
on € is indeed very poor. In comparison, we can catry out a similar proof argument for
classical probability distributions to get a dependence of O(y/€) (Theorem F.1). The
exponent of € in our bound seems to be almost a factor of 12 off from the best possible
bound. Roughly speaking, while carrying out the proof classically, we can bound the
relevant channel divergences in the proof by O (¢), whereas in Eq. 56, we were only
able to bound the channel divergence by ~ €!/12. This leads to the deterioration of
performance we see here as compared to the classical case. We will discuss this further
in Sect. 5.5.



211 Page 22 of 55 A. Marwah, F. Dupuis

In order to prove this theorem, we will use a channel divergence based chain rule.
Recently proven chain rules for a-Rényi relative entropy [15, Corollary 5.2] state that
for o > 1 and states p4 and o4, and channels £4_, g and F4_, g, we have

Do(Ea— (0| Fasp(04)) < Dy(palloa) + Dat(EaspllFasp)  (57)

where Do (€4 || Fa—p) i= limy 00 2 Do (ES" pIIFS", p) and Dy (-||-) is the chan-
nel divergence (see Eq. 14).
Now observe that if we were guaranteed that for the maps in Theorem 5.1 above,

ﬁ&eg(Mk || M}() < € for every k for some o > 1. Then, we could use the chain rule in
Eq. 57 as follows

Dy(Myo---0 M (,Oﬁg%)E)H M o0 Mi(p;?(:))E))
< Dy(My10-+- 0 Milpl )l M,y 00 M} () + DEEM, | M)

A

n
oo )
< Da(pi pllogs) + > Do (M [| M)
k=1
< ne.

Once we have the above result we can simply use the well known relation between
smooth max-relative entropy and a-Rényi relative entropy [17, Proposition 6.5] to get
the bound

! O 0
Dix Mo+ 0 Mi(pi Il My, 0+ 0 Mi (pfe) )

~ 6/
< Da(My0- -0 Mi(p )| My 00 Ml (i) + —iO(_ 1)

< ne+0(1).

This bound can subsequently be used in Lemma 3.5 to relate the smooth min-entropy

of the real state M, o - - -o M (pﬁ-ﬁf ) with the « —Rényi conditional entropy of the auxil-

iary state M), o - --o M| (pg:))E), for which we can use the original entropy accumulation

theorem.

In order to prove Theorem 5.1, we broadly follow this idea. However, the condition
||/\/lk - M;C || o S € does not lead to any kind of bound on D(rfg or any other channel
divergence. We will get around this issue by instead using mixed channels /\/li =
(1 — 8) M}, +8 My. Also, instead of trying to bound channel divergence in terms of
DX®, we will bound the Dﬁ (defined in the next section) channel divergence and use its
chain rule. We develop the relevant «-Rényi divergence bounds for this divergence in
the next two subsections and then prove the theorem above in Sec 5.3.

5.1. Divergence bound for approximately equal states. We will use the sharp Rényi
divergence Dg defined in Ref. [15] (see [33] for the following equivalent definition) in
this section. For « > 1 and two positive operators P and Q, it is defined

# e min D
D (PI1Q) = min Dy (Al1Q) (58)
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where ﬁa(A| | Q) is the a-Rényi geometric divergence [34]. For o > 1, it is defined as

1 logtr (Q (Q*%AQ*%yY) ifA <O

o0 otherwise.

Dy(A]|Q) = { (59)

A in the optimisation above is any operator A > P. In general, such an operator A is
unnormalised. We will prove a bound on D between two states in terms of the distance
between them and their max-relative entropy. In order to prove this bound, we require the
following simple generalisation of the pinching inequality (see for example [17, Sect.
2.6.3)).

Lemma 5.2 (Asymmetric pinching). For t > 0, a positive semidefinite operator X > 0
and orthogonal projections Il and T1; = 1 —TI1, we have that

1
X§(1+t)HXH+<1+;) IM; XI1,. (60)

Proof. We will write the positive matrix X as the block matrix

_ (X1 X2
= (1%)
where the blocks are partitioned according to the direct sum im(IT) @ im(IT, ). Then,
the statement in the Lemma is equivalent to proving that

X1 X» - 1+X;0 + 0 0
X3 X3) = 0 0)7\0(1+1)Xx3

which is equivalent to proving that

tX1 —X»
0= (" 1)
This is true because

X1 =X2\ _ (=2 0 X1 X2\ (-t 0 -0
—-X3 %X3 = 0o 12 X5 X3 0o 12)=

since X > 0. a

Lemma 5.3. Let € > 0 and « € (1, 00), p and o be two normalised quantum states on
the Hilbert space C" such that % lp —all; <€ and also Dnax(pllo) < d < oo, then
we have the bound

o+ 1

p <
Fpllo) = 25

1
log ((1 +\/E)a‘i1+(2ad\/z)““>. 61)

Note: For a fixed o € (1, 00), this upper bound tends to zero as € — 0. On the other
hand, for a fixed € € (0, 1), the upper bound tends to infinity as ¢ — 1 (that is, the bound
becomes trivial). In Appendix B, we show that a bound of this form for D¥ necessarily
diverges fore > Qasa — 1.
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Proof. Since, Dmax (p|l0) < 0o, wehave that p < o. We can assume that o is invertible.

If it was not, then we could always restrict our vector space to the subspace supp(o).
Let p —o = P — Q, where P > 0 is the positive part of the matrix p —o and Q > 0

is its negative part. We then have that tr(P) = tr(Q) < €.

Further, let

N\

Z hilxi) (xi] (62)

be the eigenvalue decomposition of o~ Po—2. Define the real vector q € R" as
q (@) = (xilo|x;).
Note that g is a probability distribution. Observe that

Ejng ] =) hilxilo|x)
i=1

= (ozxi|x,-><x,~|)
i=1

=1tr (00_%Pa_%>
=tr(P)

<e€.

Also, observe that A; > 0 for all i € [n] because a_% Po_% > (. Let’s define

S:={i €[n]:r <€) (63)
Since, A; > 0 for all i € [n], we can use the Markov inequality to show:
Pr(I € S°) =Pr(r; > /¢€)
q q
_Eig M)
< Je
< e

Thus, if we define the projectors IT 1= Y ;¢ |x;)(x;| and T = ) ;g [x;) (xi| =
1 —TI1, we have

(o) =Y (xilo|x)
eS¢

=Pr(I € 5
q
<+e. (64)
Moreover, by the definition of set S (Eq. 63) we have

Mo 2Po 2T =Y ailx;)(xi| < VeIl (65)

ieS
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and using Dmax (p]lo) < d, we have that

_1
o 2po

Nl—=

<247, (66)

1 . .
2 > (, for an arbitrary ¢ > 0, using Lemma 5.2 we

. _1
Now, observe that since 6~ 2 po
have

1 1

1
po~ 2 <(1+ t)l'[aif,oaf%l'l + (1 + ;) HJ_O'i%pO'i%HJ_

(o2

Bl—=

L1 I\ .4
5(1+t)l'[(]1+0 b po z)n+ 1+ )2'm
1
5(1+z)(1+\/2)n+<1+;>2dnl

where we have used p < o + P to bound the first term and Eq. 66 to bound the second
term in the second line, and Eq. 65 to bound I1o =2 Po~ 211 in the last step.

We will define A, := (1+1)(1+/€)0 2o +(1+ 1) 296111, 02, Above, we have
shown that A, > p for every t > 0. Therefore, for each t > 0, Dﬁ (pllo) < ﬁa (Asllo).
We will now bound ba(Atllo) for o € (1, 00) as:

1 _1 _1\®
log tr (0’ (0’ 2A;0 2) )
a—1

- 1 ; log tr <a ((1 +0)(1+ /)Tl + (1 +;> 2dnl> )

! ; log tr <a ((1 +0)%(1 +/€)TT + (1 + %) 2d“nl>>

Dy(Al|0)

= 11log<(1+t)“(1+\/2)“tr(ol'[)+<1+;> Zd“tr(o—l'u)>
o

IA

— log ((1 +0)%(1+ /)% + <1 + %) 2["&/?)

where in the last line we use tr(o 1) < 1 and tr(cI11) < /€ (Eq. 64). Finally, since

t > 0 was arbitrary, we can choose the ¢ > 0 which minimizes the right-hand side. For

1
. . ad s
this choice of tyin = (ﬁ) T we get

A +1 a a 1
Da(Ay llo) < ——— log ((1+ /)7 + 271 exan )
a—
which proves the required bound. O

5.2. Bounding the channel divergence for two channels close to each other. Suppose
there are two channels A and M mapping registers from the space A to B such that
% IN — M|, < €. In general, the channel divergence between two such channels can
be infinite because there may be states p such that N (p) &« M(p). In order to get
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around this issue, we will use the § —mixed channel, M. For § € (0, 1), we define Mg
as

Ms =1 —-8HM+SN.

This guarantees that D, (N || Ms) < log %, which is enough to ensure that the diver-
gences we are interested in are finite. Moreover, by mixing M with A/, we only decrease
the distance:

1 1
5 IMs =Nl =510 =) M+N =N,

T2
1
={1=97 M =N,
< (1—8e. 67

We will now show that D (\/|| M) is small for an appropriately chosen 8. By the
definition of channel divergence, we have that

DI || M) = sup DEN (par) | Ms(par))

PAR

where R is an arbitrary reference system (N, M map register A to register B). We will
show that for every pag, Di (N (par)|| Ms(par)) is small. Note that

Ms(par) = (1 —8) M(par) + SN (par)
> SN (par)

which implies that Dpax (N (0ar)|| Ms(par)) < log %. Also, using Eq. 67 have that

1
3 Ms(par) — N(par)ll; < (1 —d)e.

Using Lemma 5.3, we have for every o € (1, 0o)

1 & (JT=8e\™
DEWN (0ar)|| Ms(par)) < i T log (1 +v( —5)€> L+ <(—)6>

o — e

Since, this is true for all p4 g, for every « € (1, oo) we have

1
Di(/\/HMa)Sa-'_llog (l+m)a+l+<v(l—8)e) I

a—1 8¢
Note that since § was arbitrary, we can choose it appropriately to make sure that the
1
above bound is small, for example by choosing § = € 4=, we get the bound

oa+1

o 1
- log ((1 L+ eWD)

DI || Ms) <

o —

which is a small function of € in the sense that it tends to 0 as € — 0. We summarise
the bound derived above in the following lemma.
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Lemma 5.4. Let € > 0. Suppose channels N' and M from register A to B are such
that 1 3 IW—=Ml|, < €. For § € (0,1), we can define the mixed channel Ms =
(1 - 8)/\/1 + 8N. Then, for every a € (1, 00), we have the following bound on the
channel divergence

DiwnMs)sg

1
illlog (1+\/(1—5)e)‘”‘+(—w) 1 e

80{

5.3. Proof of the approximate entropy accumulation theorem. We use the mixed chan-

nels defined in the previous section to define the auxiliary state ./\/t‘fl o---0 M‘f (pfe%)E)
for our proof. It is easy to show using the divergence bounds in Sect. 5.2 and the chain

rule for D¥ entropies that the relative entropy distance between the real state and this

choice of the auxiliary state is small. However, the state Mfl 0---0 M‘S(p(o) ) does
not necessarily satisfy the Markov chain conditions required for entropy accumulation.
Thus, we also need to reprove the entropy lower bound on this state by modifying the
approach used in the proof of the original entropy accumulation theorem.

Proof of Theorem 5.1. Using Lemma 5.4, for every § € (0, 1) and for each k € [n] we
have that for every 8 > 1, the mixed maps Mi = (1 — 8) M, +8 My satisfy

b TR\
DYM 1 M) = £ o [ (14T 00e) ™+ (@)ﬂ

= z5(€, 8) (69)

where we defined the right-hand side above as zg(e, 6). This can be made “small” by

1 . . .
choosing § = €% as was shown in the previous section. We use these maps to define
the auxiliary state as

0
oarpre = Moo Mi(pRp). (70)
Now, we have that for § > 1 and e; > 0

Diax(panprelloanpr )

A go(€1)
= Dg(parprelloanpie) + 51
go(€1)
< Dj(parprglloansre) + 51
0 go(€r)
= D (My oo Mi(pg )l Mb o0 Mi (o)) + 51

gol(er)
B—1

< Df(My—y0- 0 Mi(pg p)ll M5 _ 0+ 0 M3 (pf ) + D (M, [| M) +
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go(€1)
< ;Dﬂ(Mk | M2) + 51
< nzp(e, 8) + '-;0(_611) (71)

where the first line follows from [17, Proposition 6.5], the second line follows from [15,
Proposition 3.4], fourth line follows from the chain rule for Dg [15, Proposition 4.5],
and the last line follows from Eq. 69.

Fore; > 0ando € (1, 1 + M), we can plug the above in the bound provided
by Lemma 3.5 to get

H2(AYBYE), > H} (A}|BIE), — [nzp(€,8)
1 ago(€r)
- , +—. 72
a_1(81(62 €1) 51 (72)

We have now reduced our problem to lower bounding I:Io[T (A|B}E),. Note that
we cannot directly use the entropy accumulation here, since the mixed maps /\/l,‘z =
(1= M ,’< +8 M, which means that with § probability the By register may be correlated
with Alffl even given B{FIE , and it may not satisfy the Markov chain required for
entropy accumulation.

The application of the maps /\/li can be viewed as applying the channel M; with
probability 1 — § and the channel M, with probability §. We can define the channels N,
which map the registers Ry_1 to Ry Ay BxCk, where Cy is a binary register. The action
of NVi can be defined as:

1. Sample the classical random variable Cy € {0, 1} independently. Cy = 1 with prob-
ability 1 — § and O otherwise.
2. If Cx = 1 apply the map M; on Rx_1, else apply My on Ri_i.

0
Let us call QAYB{'C]’E =MN,o---0 Nl(p;%())E)‘ Clearly tren (GA'I'B?CI’E> = OABIE-
Thus, we have

H](A"|B'E), = H} (A"|BIE)g
> HJ(AT1B{C] E)e. (73)

We will now focus on lower bounding I:IJ(A’ﬁBfC?E)g. Using [17, Proposition
5.1], we have that

H} (A"|BICIE) =

logZG(c ) exp (—HT(A |BI E)g, ) )

We will show that for a given cf, the conditional entropy I:IJ (AY|BYE )9‘ . accumu-
l,l

lates whenever the “good” map M is used and loses some entropy for the rounds where
the “bad” map M is used. The fact that ¢} contains far more Is than Os with a large

probability then allows us to prove a lower bound on I:IO,T (AT|B{C{E)s.
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Claim 5.5. Define hy := inf,, ﬁof (Ak|BkIék—l)M’k(w) where the infimum is over all
states kaileilfora register Ri_1, which is isomorphicto Rx—1,ands = 10g(|A||B|2).
Then, we have

HJ(ATIBYE)g = ) 3k, Dhic = 8(cx. 0)s) (74)
k=1

where §(x, y) is the Kronecker delta function (§(x, y) = 1 if x = y and 0 otherwise).

Proof. We will prove the statement

H (AYIBLE)a = HY (AT IBY™ Edg gy + (e Dhg = 8(ex. 0)9)
‘1

then the claim will follow inductively. We will consider two cases: when ¢, =0 and when
— 1 _ _ Ri—1— Ry Ay By
cx = 1. Firstsuppose, ¢y = Othen GA;fB{cElcff =trg,oM; (GRk71A§_1 B! Elc’l‘) .

In this case, we have
HJ (AIBYE)g = A (AT |BYE)g  —log [A]
= AJ AT 18I E)g  —1og (14118P%)
= A (Al |B{‘*‘E)(,Wl —s

where in the first line we have used the dimension bound in Lemma D.1, in the second
line we have used the dimension bound in Lemma D.3 and in the last line we have used
O k-1 pi-t gt = O4t=1 ghot okt

Now, suppose that ¢y = 1. In this case, we have that GA/IB{cElcflf = trg, o

’ . _ 0)
M <9Rk71All‘_le_1E|clf) and since ekalA’f_lB{‘_lEIC’f =®_10Py_p---0 dbl(pROE)

where each of the ®; € {M;, ./\/l; }, using the hypothesis of the theorem we have that
the state GAIIBfE\Cf = ./\/l;C <9Rk71Ali'—l B! E\c’f) satisfies the Markov chain

A o BME o By

Now, using Corollary C.5 (the I:IaT counterpart for [8, Corollary 3.5], which is the main
chain rule used for proving entropy accumulation), we have

H] (A% |BfE)9lck > HJ (A1 Bk E)g, +inf H} (Ar|BiRi—1) M, (@)
1 1

= I:IJ(A'f_llBlf_lE)g‘ ol
1

where in the last line we have again used 6 ARl gk = 0 AR BT k1 Combining
these two cases, we have
A} (AY|BYE)g = A (A7 [B{™ ' E)g ,, + (3(ex. Dhic = 8(cie. 0)s) . (75)
Ll Cl

Using this bound n times starting with I:IJ (ATIBYE )9‘ . gives us the bound required in
‘1
the claim. o
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For the sake of clarity let Iy (cx) := (§(ck, 1)hx — §(ck, 0)s). We will now evaluate

l—a ~ l—a &
29(67) exp (TQHJ(AﬂB'fE)e(,?) < ZG(C?)CXP (Ta Zlk(ck)>
cf k=1

J
l

_ Z 1_[ Q(Ck)Z <l (cr)
cf
- ]_[ Y 0(ep2 @, (76)

k=1 ck

Then, we have

H}(A"|BICIE)g

o 1-
- loggé(cﬁ’)expz (

1

n

Y g Y b2 w @
-« k=1 ck
e anlo ((1 —5y2te ey 52—‘;‘”)
l -« P &

n n
= Zh — Y log (1 -5 +82°F ()
= k o1 g

= k=1

where in the second line we have used Eq. 76 and in the last line we have used the fact
that hy < log|A| for all k € [n].

We restricted the choice of « to the region (1 1+

o ~
HOI(A'1’|B{’E)9|C,{) :

v

—nlog (1 P (27“*‘0%““) 1)) 77

m) in the theorem, so that

we can now use [8, Lemma B.9] to transform the above to

H] (AY|B{C{E)y > Z H (A BeRi1) py; o) — (e — 1) log? (1 + 2] A])
k=1 Rk le 1
. 1 log (148 (255 20z0ai8 1)) (78)

Putting Egs. 72, 73, and 78 together, we have

H 2 (AYBYE), > Z H (Ak| Bk Ri—1) o) ) — (e — 1) log® (1 + 2| Al)
Rk le 1
« «L2log(AIIB) _
lnlog<1+5<2a 1))

Olgo(él))
B—-1)"

o —

O_{ 1l’lZﬁ(€, 8)05— (gl(éz, €1+

-1
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5.4. Testing. We will now incorporate testing into the approximate entropy accumula-
tion theorem proven in Theorem 5.1. We follow [9], which is itself based on [35] for
this purpose. Testing enables one to prove a lower bound on the smooth min-entropy
of a state produced by the process in Fig. 2 conditioned on the output of a classical
event. This is particularly useful for proving tight and practical bounds in cryptographic
protocols.

In this section, we will consider the channels My and M), which map registers Ri_1
to Ak Bx Xk Ry such that X is a classical value which is determined using the registers Ay
and By. Concretely, suppose that for every k, there exist achannel 7 : Ag By — Ay By Xk
of the form

Tiap) = Y T, ® My 04,511 @ @1f 0. )0, (79
v,z

where {Hi;k }y and {HZBk }; are orthogonal projectors and f is some deterministic function
which uses the measurements y and z to create the output register Xy.

In order to define the min-tradeoff functions, we let [P be the set of probability distri-
butions over the alphabet of X registers. Let R be any register isomorphic to Ry_1. For
a probability ¢ € P and a channel N : Ry_1 — Ay By Xy Ry, we also define the set

Ek(q|./\/k) = {VAkBkaRkR = ./\/'k(a)kalR) : for a state wg, g such that vy, = q} .
(80)

Definition 5.6. A function f : P — R is called a min-tradeoff function for the channels
{Nk}zzl if for every k € [n], it satisfies

f(@) < _inf  H(A¢|BkR)y. (81)
veZ(q| Ny)

We will also need the definitions of the following simple properties of the min-tradeoff
functions for our entropy accumulation theorem:

Max(f) = max f (¢) (82)
Min(f) := min f(q) (83)
qeP
Ming (f) := ,,;zrfl,‘)';g f@) (84)
2
. 2
Var(f) = max ;qu(ax) (;qu(ax)) (85)

where X(gq) := |, Zx(q) and 8, is the distribution with unit weight on the alphabet x.

Theorem 5.7. For k € [n], let the registers Ay and By be such that |Ax| = |A| and
|Br| = |B|. For k € [n], let My, be channels from Ry_1 — Ry Ay By Xy and

0
pargrxiE =g, 0 Myo--o Mi(pg ) (86)

be the state produced by applying these maps sequentially. Further, let My be such that
M =T o M,(CO) for Ty defined in Eq. 79 and some channel /\/l,(co) : Ri—1 — RyArBx.
Suppose the channels My, are such that for every k € [n], there exists a channel M,
from Ry—1 — Ry Ay By Xy such that
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1. M, =Tio M;C(O) for some channel M;{(O) : Ry_1 — RyAyBy.
2. M, e-approximates My in the diamond norm:

1
5 M= M, < e (87)

3. For every choice of a sequence of channels Ny € {M;, M} fori € [k — 1], the state
MjoNi_jo---o Ny (pg?E) satisfies the Markov chain

AN o BME o By (88)

Then, for an event Q2 defined using X', an affine min-tradeoff function f for {M;}zzl
such that for every x} € @, f(freq(x{)) > h, for parameters 0 < §,€1,e3 < 1 and
€ =2 % such thatey +e3 < 1, a € (1,2), and B > 1, we have

Hein (ATIBYE) pg

> nh — (“_lzﬂ (1og(2|A|2 +1)+2+ Var(f))2 — (e — 1)*K,

* nlog (1 +5 (4‘”7’1<10g(IA\\BI)+Max(f)—Min(f)+l) _ 1))
1

(89)

o 1 1 ago(€r)
,8 - 1 + k] + M
1128(€:8) — —— <Ol 0g e g1(e3, €2) 51 )

where

# —55e\ 7
zpte. ) i= £ log (1+m)ﬂ“+<@>ﬁ' 0

1
Ky =———
“TT 602 —a)3In(2)
In3 (2(210g|A|+(MaX(f)—Minz(f))) + 62) 1)

2 (@—=1)2log |Al+(Max(f)—Minz (f)))

and g1 (x, y) = —log(l — v/1 — x%) —log(1 — y?).
Proof. Just as in the proof of Theorem 5.1, we define
M= (1 = 8) M, +5 My (92)
for every k and the state
oangxrg =Moo Mi(pg)p). (93)
so that for 8 > 1 and €; > 0, we have

go(€1)
Diax(panprxilloargrxne) < nzpg(e, §) + . o4

p—1
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Define dg := nzg(e, §) + gg(—_ﬂl). The bound above implies that there exists a state
,5A»11 BIX"E> which is also classical on X} such that
P <PA’1‘B?X1‘E» ﬁA’;B;lX*;E) <€ 95)
and
~ d
pangrxng < 2%opnpixrg. (96)

The registers X for p can be chosen to be classical, since the channel measuring X
only decreases the distance between p and p, and the new state produced would also
satisfy Eq. 96. As the registers X{ are classical for both o and p, we can condition
these states on the event 2. We will call the probability of the event €2 for the state o
and p Py (£2) and P;(S2) respectively. Using Lemma G.1 and the Fuchs-van de Graaf
inequality, we have

~ €]
P (PA';B;’X';E\Q,PA';B;’X';E|Q) =2 o) CH)

Conditioning Eq. 96 on €2, we get
Ps()pangrxrpie < 2% Po (0 1 g x1 El2- (98)
Together, the above two equations imply that

go(€1) +log Py (£2) (99)
p—1 P;(£2)

D (oanyxyEilloar g xipie) < nzg(e, 8) +

f0r62 =2 /%.

Forez > Oand« € (1, 2), we can plug the above in the bound provided by Lemma 3.5
to get

- a
HZr S (AY|BYE) pg > HJ (A|B}E)oy, — ——nap(ed)
1 P, (Q2
- wlog L2 4o (en e + DY (400
a—1 P5(R2) B—1
Now, note that using Eq. 79 and [8, Lemma B.7] we have
HJ(A{|B E)oq = H] (A1X| B} E)gg. (o1
For every k, we introduce a register Dy of dimension |Dy| = [2m2X(/)=min(/)] and a
channel Dy : X — X Dy as
Di(w) =Y _(x|olx)]x)(x| ® 7 (102)

X

where for every x, the state 7, is a mixture between a uniform distribution on
{1,2, ... |2max(f)=fG) |} and a uniform distribution on {1, 2, ... [2M&X(H=f)7} 5o
that

H (Dy)r, = max(f) — f(8x) (103)
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where § is the distribution with unit weight at element x.

Define the channels My := Dy o My, _;( := Dy o M, and /\;l,‘z ‘= Dp oM =
1 - 8)./\;1;( + 8 M, and the state

- - - 0
OA"BI X DIE = Mo M?(Pé())E) (104)
Note that 5A';Bf XIE = OABIXIE- [9, Lemma 4.5] implies that this satisfies
HJ (A1X1|BY E)oq = H} (A]X]|B{ E)sq

> AJ (ATXDY|B] E)sq — max Ho(DY)g,  (105)
1

For x| € , we have

Ho(D)s,y < H(Da,,

<Y H(Dp)x,
k=1
=Y max(f) — f(8y)
k=1
= nmax(f) — nf (freq(x]))
< nmax(f) — nh. (106)

We can get rid of the conditioning on the right-hand side of Eq. 105 by using [8, Lemma
B.5]

Hl (A} X!D}|B{E)sq > H} (A} X! D}|B{E)s — (107

% jog——.
1% 7P@

We now show that the channels /\;l;c satisfy the second condition in Theorem 5.1. For an
arbitrary k € [n] and a sequence of channels \/; € {M;, M;} forevery 1 <i <k, let

- 0
NakBEXkDEE = My oNj—1---0 N (pgeo)E)'

For this state, we have

1A DY gy BM T EY, = 1AM By BETYE), + 1DV B AN B R,

=0

where I(Allc_l : Ble{C_lE),7 = 0 because of the condition in Eq. 88, and I(Dll‘_1 :
Bk|A’fle{‘*1E),, = 0 since X’l‘*1 and hence lefl are determined by Alffl B{“l. This
implies that for this state A]f_lle_l < B]f_lE < By. Thus, the maps My and /\;l}C

satisfy the conditions required for applying Theorem 5.1. Specifically, we can use the
bounds in Eqs. 73 and 77 for bounding «-conditional Rényi entropy in Eq. 107

H] (A"X!D}|BI'E)s
> H] (A"D}|B'E);
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n
>Z inf ﬁ,,f(l‘\kaIBkl’%k—l)/\;l;c

= » 3
k=1 Rk—1Rk—1

a 1 log (1+8 (2% 2020AIDIED _ 1)) (108)

(@)

The analysis in the proof of [35, Proposition V.3] shows that the first term above can be
bounded as

inf  Hy (AxDi| BeRi-1)

® -~
Re—1Rk—1

> Max(f) — (“_lzﬂ (1og(2|A|2 +1)+./2 +Var(f))2 — (@ — 12K,
(109)

(@)

Combining Egs. 105, 106, 107, 108 and 109, we have
A} (AT X}|Bl E)s
—DIn2 2
> nh — w (1og(2|A|2 +1)+/2 +Var(f)) —n(a —1)°K,

“ nlog(l+5(2%;1210g<|A||DHBI>_1))_ Y og— (110)
a—1 a—1 Py (R2)

Plugging this into Eq. 100, we get
Hitr S (A7|BTE)

> nh — (“_lzﬂ (1og(2|A|2 +1)+/2 +Var(f))2 —n(a — 1)°K,

nlog (1 45 (4"7’1(log(IAHB|)+maX(f)fmin(f)+1) _ 1))

a—1
o 1 1 ago(€)
_ ,8) — 1 + ,€2) + .oan
—ple8) - —— (01 8 p @ —e gi(e3, €2) 51 (111)
where we have used P;(£2) > P,(2) — € since % lo — plly < P(p, p) < €1. Note that
the probability of €2 under the auxiliary state o cancels out. O

5.5. Limitations and further improvements. As we pointed out previously, the depen-
dence of the entropy loss per round on € is very poor (behaves as ~ €!/2%)in Theorem 5.1.
The classical version of this theorem has a much better dependence of O (,/€) on € (see
Theorem F.1). The reason for the poor performance of the quantum version is that our
bound on the channel divergence (Lemma 5.4) is very weak compared to the bound
we can use classically. It should be noted, however, that if Lemma 5.4 were to be im-
proved in the future, one could simply plug the new bound into our proof and derive an
improvement for Theorem 5.1.

A better bound on the channel divergence would have an additional benefit. It could
simplify the proof and the Markov chain assumption in our theorem. In particular, it
would be much easier to carry out the proof if the mixed channels ./\/l,‘z were defined
as (1 —96) M;C +8T4, B, @ tra, , © My (which is what is done classically), where 74, 5,
is the completely mixed state on registers Ax Bi. Here, instead of mixing the channel
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M, with My, we mix it with T4, g, ® tra, p, o My, which also keeps Dmax (M || M,‘i)
small enough. Moreover, this definition ensures that the registers By produced by the

map M,’i always satisfy the Markov chain conditions. If it were possible to show that

the divergence between the real state My o--- o /\/ll(pgz))E) and the auxiliary state

Mfl 0---0 ./\/l‘f (p}%)E) is small for this definition of M,‘i, then one could directly use the
entropy accumulation theorem for lower bounding the entropy for the auxiliary state.
We cannot do this in our proof as this definition of the mixed channel /\/li also increases
the distance from the original channel My to € + 2§ and this makes the upper bound in
Lemma 5.3 large (finite even in the limit € — 0).

It seems that it should be possible to weaken the assumptions for approximate entropy
accumulation. The classical equivalent of this theorem (Theorem F.1) for instance can
be proven very easily and requires a much weaker approximation assumption. It would
be interesting if one could remove the “memory” registers Ry from the assumptions
required for approximate entropy accumulation, since these are not typically accessible
to the users in applications.

Another troubling feature of the approximate entropy accumulation theorem seems
to be that it assumes that the size of the side information registers By is constant. One
might wonder if this is necessary, since continuity bounds like the Alicki-Fannes-Winter
(AFW) inequality do not depend on the size of the side information. It turns out that a
bound on the side information size is indeed necessary in this case. We show a simple
classical example to demonstrate this in Appendix E. The necessity of such a bound
also rules out a similar approximate extension of the generalised entropy accumulation
theorem (GEAT).
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Appendices
Appendix A: Entropic Triangle Inequalities Cannot be Improved Much

In this section, we will construct a classical counterexample to show that it is not possible
to improve Lemma 3.5 to get a result like
Hyin(AIB)p = Hyi (A|B)y — O (Dpyuy (o) (112)

¢

where €, ¢’ > 0 and the constant in front of D,

|A| and |B].
Consider the probability distribution p4p where B is chosen to be equal to 1 with
probability 1 — € and 0 with probability €, and A’ is chosen to be a random n-bit string

(pl|n) is independent of the dimensions
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if B = 1 otherwise A} is chosen to be the all O string. Let E be the event that B = 0.
Then, we have

1 1
PAB = —PAB
p(E) €

or equivalently Dymax(paB|Ellpa) < log =. In this case, we have Hrfm(A|B)p =n

PABIE =

(where we are smoothing in the trace distance) and H; (A|B) pe = log 1_ = = 0()
(independent of n). If Eq. 112, were true then we would have

1
n—0 (log E) < Hyin(AIB)p — O(Dmax(PAB\EHPAB))
min

< HE(AIB)p, = O(1)

which would lead to a contradiction because 7 is a free parameter and we can letn — oo.
The same example can be used to show that it is not possible to improve Corollary 3.6
to an equation of the form

H(A|B), = H(A|B), — O(D(plIn)).

For p = P|g and n = P, such a bound would imply that
1
0> —e€e)n—1log—
€

which is not true for large n.

Appendix B: Bounds for Dz of the Form in Lemma 5.3 Necessarily Diverge in the
Limita =1

Classically, we have the following bound for Rényi entropies.

Lemma B.1. Suppose € € (0, 1], d > €2 and p and q are two distributions over an
alphabet X such that% lp —qlly <€ and Dmax(pllg) < d < oo, for o > 1 we have

Duplig) = —— log (14 VO~ (1~ 2@ + 214 2) - (13)

In the limit, « — 1, we get the bound
D(pllg) < (1 = 2J/e) log(1 +/€) +2./ed. (114)

Proof. Classically, we have that the set § := {x € X : p(x) < (1 +/€)q(x)} is such
that p(S) > 1 — 2./€ using Lemma 4.1. Thus, for & > 1 we have

Z ()(,,( ))“1 o ()<p( ))‘“ Z ()(p(x))
q(x) q(x) q(x)

xeS
<D 0+ pl) + Z 27D p(x)
xesS xXéES

= (1+ /" 'p(S) +24@D p(59)
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< (1+\/E)c{—1(1 _Zﬁ)+2d(a—l)+lﬁ

where in the second line we used the definition of set S and the fact that Dax (pllg) < d,
in the last line we use the fact that since d > /e > log(1l + /€), the convex sum
is maximised for the largest possible value of p(S¢), which is 2,/€. The bound now
follows. O

We observed in Sect. 5.1 that the bound in Lemma 5.3 for D¥ tends to co asa — 1 for
a fixed € > 0. One may wonder if a bound like Eq. 114 exists for lim,_, | ij (pllo) =
b(,o| |o) [33]. We show in the following that such a bound is not possible.

Suppose, that for all € € [0, a) (a small neighborhood of 0), 1 < d < oo, states p and
o, which satisfy % lp—oll; <eand p < 24¢ ., the following bound holds

D(pllo) < f(e,d) (115)
where f(e,d) is such that limc_.o f(€,d) = f(0,d) = Oforevery 1 < d < oo.
Note that the upper bound in Eq. 114 is of this form. It is known that for pure states p,

b(,o| |6) = Dmax(pllo). We will use this to construct a contradiction.

Lemma B.2. ® For a pure state p = |p){p| and a state o, we have

D(pl|o) = Dmax(pllo) = (plo~"|p).

Proof. First, we can evaluate D as

D(pllo) = tr (p log (p%a_lp%))
=t (1)l log (1) plo "0} (p1))
= tr (o) ol log((plo " 1))Io) (o)
= log(plo ™" |p).
Next, we have that

Dimax(pllo) = log Ha*%paf%

o0

_1 _1

= log [~ 1p) (plo
o0
= logtr (0210} (plo™?)

=log(plo~|p).

6 This Lemma was pointed out to us by Omar Fawzi.
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To obtain a contradiction, let € € [0, a2). Define the states

— 10)(0] = (3 8)

0, := (V1 —€l0) + Ve[ 1) (V1 — €]0) + Ve[1))
_ 1—€e Je(l—¢)
T \WVel—¢) €

oc = —8)a.+8p

(=1 =8)+8 (1 —8)/e(T—e)
AV N () (1—8)e

where {|0), [1)} is the standard basis and § € (0, 1) is a parameter, which will be
chosen later. Observe that F(p, o¢) = (eo, 0ceg) = 1 —€(1 — §), which implies that
% lo —ocll; < /€ € [0, a). For these definitions, we have

ool 1 ( (1—8)e —(1—5%/741_6))
€ T (=88 \—(1=8Ve(T—¢€) (1—e)(1—8)+6

which implies that D(,o||cr€) = log 5 using Lemma B.2. We can fix § = 10 Note that

D(,o| |loe) > 0 is independent of €. Now observe that if the bound in Eq. 115 were true,
then as € — 0, ﬁ(plloe) = log(10) — 0, which leads us to a contradiction. Thus, we
cannot have bounds of the form in Eq. 115 (also see [36]). Consequently, any kind of
bound on ﬁa or Di which results in a bound of the form in Eq. 115 as « — 1, for
example, the bound in Eq. 113, is also not possible at least close to o = 1.

It should be noted that the reason we can have bounds of the form in Lemma 5.3,
despite the fact that no good bound on D = limy D can be produced is that D
unlike the conventional generalizations of the Rényi dlvergence is not monotone in o
[15, Rfmark 3.3](otherwise the above counterexample would also give a no-go argument
for D).

Appendix C: Transforming Lemmas for EAT from ﬁj to I-NIOtT

We have to redo the Lemmas used in [8] using ﬁaT because we were only able to prove
the dimension bound we need () (A|BC) > HJ (A|B) — 21log |C|) in terms of H,

Lemma C.1 [8, Lemma 3.1]. For pa,a, and op be states and o € (0, 00), we have
the chain rule

Da(pa, 8|l 14, ®5) — Do(pa, ar5ll 14,4, ®05) = HY (A2|A1B), (116)

where the state v, A, B is defined as
% —a’ % ¢
PA,B9B PAB

VA|B ‘= ] ] a
2 —a' 2
tr ('OAIBUB IOAlB)

1 1
— 2 2
VA A2B ‘= UAIBIOA2|AIBUAIB

and o' = =,
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Corollary C.2. (Chain rule for f]of [8, Theorem 3.2]) For a € (0, 00), a state p, A, B,
we have the chain rule

H}(A1A2|B), = HY(A1|B), + H} (A2 A1 B), (117)

where the state v, A, B is defined as

3 —o 3 ¢
(pAlBloB '0A18>

% —a’ % “
tr (IOAlB'OB IOA]B>

VA|B ‘=

| |
)2 2
VA1 A2B = V4 pPA2|A1BV 4 B

A |
and o' == %=,

We can modify [8, Theorem 3.2], which is in terms of I:Ij , to the following, which
is a chain rule in terms of ﬁtj . The chain rule in this Corollary was also observed in [8].

Corollary C.3. (Chain rule for I:Io(T ) For a € (0, 00), a state pa,a,B and for any state
op such that Hy (A1|B), = —Dy(pa, ]| 14, ®03), we have

Hl(A1A2|B), > H] (A1|B), + H} (A2| A1 B), (118)

where the state v, a, g is defined as

1 " &
2 —
PA,B9B PaB

VA|B ‘= ! ! a
2 —ao' 2
tr ('OAlBGB me)

1 1
2 2
VA1 A2B -= V4, pPA2|A1BV B

ando’ = aa;l Fora € (0, 00), state pa, A, B and any state o g suchthatl‘l(o,T (A1A2|B), =
—Dq(pa; 4,81 L a4, ®0B), we have

H}(A1A2|B), < H](A1|B), + H) (A2 A1 B), (119)
where the state v, a, p is defined the same as above.

Proof. Let op be a state such that ﬁJ(Al |B), = —Da (pa, B!l 1 ®op). Then, using
Lemma C.1, we have

Hl(A1A2|B), > —Dy(pa, ar81 14, 4, ®05)
= —Dy(pa,ll 14, ®0p) + HY (A2]A1B),
= H}(A1|B), + H} (A2|A1 B),

for va,a,p defined as in the Lemma. Similarly, if FIO(T(AlA2|B)p = —Da (pAA2B
[| 14,4, ®op), then

H](A142|B), = —Da(pa, .81 14,4, ®5B)
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= —Dy(pa,sl| 14, ®cp) + ﬁi(AzlAlB)u
< H}(A1|B), + H} (A2] A1 B),

for va, 4, p defined as in the Lemma. O

We transform [8, Theorem 3.3] to a statement about ﬁlj in the following.

Lemma Cd4. Leta € [% 00) and pa, A, B, B, be a state which satisfies the Markov chain
A| < By < By. Then, we have

HJ(A1A2|B1By)p = HJ (A1] Br), +inf Hy (A2| A1 B1 By), (120)

where the infimum is taken over all states v A, A, B, B, SUCh that VA, B,|A\B; = PA;B>|A| B, -

Proof. Since, p satisfies the Markov chain A| <> By <> By, there exists adecomposition
of the system Bj as [37, Theorem 5.4]

By = @aj dcj
jeJ
such that
PAB1By = @P(j)PA|aj ®/06sz~ (121)
jeJ

Let J/ C Jbetheset{j € J: p(j) > 0}. Note, that we can replace J by J’ in the
above equation.
We can define the CPTP recovery map Rp,— B, B, for pa,p,B, as

RB|~>B]Bz(X) = @trcj‘ (Huj ® HCJ'XHaj by HCj) ® pCsz (122)
jeJ

where I1,; ®I1,; is the projector on the subspace a; ® ;. This recovery channel satisfies
RB,—BB,(PAB) = PA BB, - (123)

We can now show that the optimisation for the conditional entropy Ifl(J (A1|B1B2), can
be restricted to states of the form R, g, 8, (o, ). This follows as

Hl(A1|B1B2), = sup —Dy(pa, 55,1114, @55, 5,)
OB1B)

< sup —Dy(Rp,—-BB, 0, (PAlBle) [IRBy— BB, 0 trB, (]lAl ®03132))
JB]BZ

= sup _DIX(IOAIBIBQH ]lAl ®RBl—>Ble (031))

G'Bl

< sup —Dy (04,88, 14, ®08,5,)
OB B,

= H](A1|B1B2),
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where the second line follows from the data processing inequality for D, for @ > %,

the supremum in the fourth line is over all states on the registers B By,and the last line
simply follows from the definition of I:IJ (A1|B1B2),. As aresul, it follows that

H](A1|B1B2), = sup — Do (pa, 8,8, |1 L4, ®Rp,— 5,8, (75,)) (124)

O'B]

Let 03B, = Rp -85 (18) be such that I:IJ(AllBle)p = —Du(pa,5 5
[| 14, ®0p,B,). Using Corollary C.3, for this choice of o, p,, we have that

H}(A1A2|B1B)), > H} (A1|B1B)), + H} (A2|A1 B1 Ba), (125)

where the state v4, 4, B, B, 18 defined as

1 , 1 o
2 —o 2
PABi BB B,PAB B,

VA1B1 By -= | " a
2 —a' 2
tr <pAlBlBQUBlBQpAlBle>
1 1
e 2 2
VA A2B 1By *= V4, B, B, PA21A1B1 B2V A, B, By

We will now show that va,p,|a; B, = 0A,B,|A; B, - For this it is sufficient to show that

11 1 1
-2 2 A2 2
VA B YA1Bi1B, = Pa B PAB By
‘We have that

08,8, = Rp,—88 (18,)
= @trw (Ma; ® M0, oy @ Tey) ® pc;
jelJ
= @q(j)waj by Pc;By
jeJ

where we have defined the probability distribution ¢ (j) := tr(Ils; ® I1¢; np,) and states

Wq; = ﬁﬂaj tre; (chngll'lcj) I, for every j € J.
Since Do (4, 5,8,11 14, ®05,8,) = —Hq (A11B1B2), < log|A;| < oo, we have
that

PA BB, K14, Q0B B,
= @P(j)/?ma, by PeiBy K 14, ®@q(j)waj ®,00sz
jeJ’ jeJ
= forevery j € J': pajq; < 14, ®wq; and g(j) > 0. (126)
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This decomposition can be used to evaluate v4, g, B, as follows

1 1 o
v _ i 2 U—oz’ 2
AiBIBy = PA1B BB B,PA B B,

1 N 1 R, Y N :
- N @ p(J)zpfilaj@’OCZsz @q(]) ‘ a)aja I ®p€./oé2 @ p(])z'ofil"f@p;f&
jeJ’ jet jelt!
o
1 1

. N—a 2 —a 2 1—a’
P rtirair™ Pira;Pa; Pira; ® Pe, B
jeJ’
1 1 1 ;1 «

o PN Y —
~ D rirat) (pjlajwaj pﬁ,a,) ® Pec;By
jeJ’

z| -

1 ;1 o
. 2 —u 2
for N :=tr (pAlBleaBlepAlBle> . Further, we have

1

2
vAlBlvAlBle

1 P4 Ll 1 i 1 _% _1
Z_N_%@P(J) 2q(j) 2 <pg,ajwaﬁp/§]aj) ® o,
jelJ’

1 AU AP -1 1 o 3 2 1
'E@P(J)zq(ﬂ 2 <pj,ajwa_,-“ pf\]aj> ® P’ 5,
jeJ’
1 1

1 N

2 —o 2 2,2
@ pAlajwa_/ pAlaj ® ’OCj pCsz
jelJ’

11

— 0 2,2

- @'0141&/ ®'OC/' pCsz
jelJ’

0
1 ;1 )
where in the last line we have used that the projector ('Olilaj wa—;’ pjlaj) is equal to

the projector ,02] o, forevery j € J' (here PY is the projector onto the image of positive
J
semidefinite operator P). This can be seen since for every j € J' we first have

1

1 o1 )
im (pjlajwaj“ pzimj) C im (PAlaj) . (127)

Second, we have that Eq. 126 above implies that a)gj pg 4 = pg 4 for every j € J'.
Now, for j € J’ we have the following inequality ' '

| L1 1 1
2 —a’ 2 2 0 2
(pAlajwuj pA](Jj) zm (’OAlajwaijlaj>

= miOAla_,'
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where m > ( is the minimum non-zero eigenvalue of a)a_],"‘/. Finally, raising the above to
the power of O (this action is operator monotone) '

1

0
1
1 1 0
<pjlajwaj“ pjlaj) > PAra;- (128)
Equations 127 and 128 together imply that for j € J’
R '
<pA1ajwaj pAla_,') = 'OAlaj'

Finally, we have that

1

_1 1 [ _1 1 L 1
_ N—5 T2 2 N5 2 2
pAlzBl'szxlBle = @P(]) 2'0A1aj ®pc_,- @p(])szlaj ®'00sz

jelJ’ jeJ'
0 11

— 2 .2
- @’OAW,' ® pc; Pe;By

jelJ’

This proves that
_1 1 _1 %
2 2 — 2
Va B YA B By = PAB/PAB B, (129)

and hence

1 1 1

0y 2 2 2
VAyBy|A1By = VAIBI vA]B]Bsz2|AlBlBZVA1B]BszlBl
_1 1 1 _1
— 2 2 2 2
= PA B PA B By PA2IAIBIB2P A BB PAL B,

= PAB3|A1 B

where we have used the fact that va,a, 8,8, = PA,4,B,8, and Eq. 129. We can now
modify Eq. 125 to get

HJ(A1A2|B1B2), = HJ (A1 B1B2), +inf Hy (A2] A1 B1B)),

where the infimum is over states v such that va,g,j4,B, = 0a,B,/4,B,- We can use the
data processing inequality to get

HJ(A1|B1B2), = HI (A1|BIB)Ry, 5, (pan)
= HJ (A1|BD),.
Together with the above inequality this proves the Lemma. O
We will use the following modification of [8, Corollary 3.5].

Corollary C.5. Let Mgr_, a,B, be a channel and ps,a,B,B, = M(p;xlBlR) such that
the Markov chain Ay <> B1 <> By holds. Then, we have

HJ(A1A2|B1By)p = HY (A1l B1)o +inf Hy (A2|A1B1B) ey (130)

where the infimum is taken over all states w4, g, r. Moreover, if,o;‘lBlR is pure then we
can restrict the optimisation to pure states.
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Proof. The proof is the same as [8, Corollary 3.5]. We include it here for the sake of
completeness.

It is sufficient to show that for every state v such that va,p,(4,B, = 04,B,|4, B> there
exists an wg, g, g such that v4, 4, 8,8, = M(w). For such a v, we can define

1 1 1 1

2 -2 / -2 2
WRA1B1 = VA,B,PA B PAIBIRPA B VA B,

which can be seen to be a valid state and also satisfy v4, 4,8, 8, = M(®). |

Appendix D: Dimension Bounds for Conditional Rényi Entropies

Lemma D.1 (Dimension bound). For o € [%, 00], a state pa, A, B, the following bounds
hold for the sandwiched conditional entropies

H}(A1|B), —log|Az| < H}(A142|B), < HY(A1|B), +log|Ay|
H](A1|B), —log|As| < HI (A1 A2|B), < H] (A1|B), +log |As|.

For a € [0, 2] and a state pa, A, B, the following bounds hold for the Petz conditional
entropies

H}(A1A2|B), < H}(A1|B), +log|A,|
H](A1A2|B), < H} (A1|B), +log|As|.

Proof. For the sandwiched conditional entropies, we simply use the corresponding
chain rules (Corollary C.2 or Corollary C.3) along with the fact that for all states v,
I:Ij(A2|A]B)U € [—log|Aa|,log|A3|] [17, Lemma 5.2].

For the Petz conditional entropies, we will make use of the Jensen’s inequality for

operators [38, Theorem V.2.3]. Suppose, {|e,')}1.i|1 is an orthogonal basis for the space
X. Then, we have for a positive operator Pxy and « € [0, 1]

RY

try Py = Y Ly ®leilx PYy Iy ®lei)x
i=1
o

[X] 1
< |X] Zm]lY®<ei|XPXY]1Y®|€i>X
i=1
= |X|'7* pg (131)

where in the second step we have used the operator Jensen’s inequality with the operators

1X|
[ﬁ 1y Qlei)x } | along with the fact that the map X — X is operator concave.
1=

For o € [1, 2] and positive operator Pyy, we can use the same argument as above and
the fact that X +— X“ is operator convex in this regime and derive

try PYy > |X|'7Y P2, (132)
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To prove the dimension bound, observe that for a positive state op and o € [0, 2], we
have

_ 1 _
_Da(PmAzBH ]1A|A2 ®op) = —a log tr (leAzBO'}g a)

1 _
-1 = log tr (ter2 (leAZB) Ullg “)

IA

— log tr (|A2|1_“,0ZIBGII;“)
= —Dqo(pa, 8l 14, ®0p) +1log|As|.

We can now take a supremum over op to prove the dimension bound for I-_IJ or choose
op = pp to prove the dimension bound for Hof . O

The following Lemma was originally proven in [39, Proposition 8]. We reproduce the
proof argument here.

Lemma D.2. For a € [%, o), a state papc, we have

H}(A|BC), > H] (AC|B), — log|C]| (133)
and for o € [0, 2]

H}(A|BC), > H}(AC|B), — log|C]| (134)

Proof. By the definition of the sandwiched conditional entropy, we have

HI(AIBC)= sup —Dq(pagcllla®npc)
npc€D(BC)

v

~ ]lc
sup —Dy (,OABC“ 1,—® 773)
npeD(B) |C]

= sup —Dy (pagcllLac ®ng) —log|C]|
npED(B)

= H}(AC|B) — log|C|
where we simply restrict the supremum in the second line to states of the form npc =

np & % to derive the inequality. The same proof also works with Iﬁ entropy. O

The following lemma was originally proven in [40, Proposition 3.3.5].

Lemma D.3 (Dimension bound for conditioning register). For o € [%, oo] and a state
PABC We have

HJ(AIBC), = H}(AIB), —2log|C|. (135)
Further, if the register C is classical, then we have

H}(A|BC), > H} (A|B), —log|C|. (136)

Proof. This bound can be proven by combining Lemmas D.1 and D.2. In the case that
C is classical, we have the inequality I:IaT (AC|B), = I:IaT (A|B), [17,Lemma 5.3]. O
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Appendix E: Necessity for Constraints on Side Information Size for Approximate
AEP and EAT and its Implication for Approximate GEAT

It turns out that it is necessary to place some sort of bound on the size of the side infor-
mation for an approximate entropy accumulation theorem of the form in Theorem 5.1.
The following classical example demonstrates this. This example also demonstrates the
necessity for a bound on the size of the side information in an approximate asymptotic
equipartition of the form in Theorem 4.5.

Let there be n rounds. For k € [n], the map My : AII‘_l — Ay By Cy. This map sets
the variables as follows:

1. Measure A]f_l in the standard basis.

2. Let Ax €r {0, 1} be a randomly chosen bit.

3. Let Cy = 0 with probability § and Cy = 1 otherwise.

4. In the case that Cy = 1, let By €g {0, 1}" be a randomly chosen n-bit string.
Otherwise, let B, = A’l‘Rk, where Ry is an (n — k) bit randomly chosen string from
{0, 1}.

Let M) be the map which always chooses By to be a random n-bit string. It is
easy to see that in this case, we have Hmin(A}ﬂBlfcil)M;l oo M (1) =1 whereas Hpin
(AT|BYCP M, oom; 1) = O(1) even though for every k € [n], the maps M are
e—close in diamond norm distance to the maps M. This proves that a bound on the
size of the side registers is indeed necessary for approximate entropy accumulation. We
show these facts formally in the following.

Lemma E.1. Suppose ® : R — A and ® : R — A are two channels which take a
register R and measure it in the standard basis and map the resulting classical register
C to the classical register A. Then, for every prpr/, we have

|®(orr) — @' (PRR)

(D !
1§HPAC—PAC

)1 (137)

where P;‘DC and Pf& are the classical distributions produced when the maps ® and @'
are applied to the state pgg' respectively.

Proof. Let {|c){(c|}. represent the measurement in the standard basis. Since, both the
channels first measure register R in the standard basis, they produce the state

per = Y _le)(cle ® trg () (c|rpRRY)

c

=2 _p©le)(clc ® pric

where we have defined p(c) := tr (|c)(c|rpr) and pg/ . = ﬁtl’[z (leY(c|rRPRR)-
Now, the action of channel ® on register C can be represented using the conditional

probability distribution pf;‘c and the action of channel ®' on register C can be similarly

represented using pf\’l/ c- We can define the states

prcr =Y Piclalo)p(©la, c)a, ¢l ® prric

ac

prR/ = Zp?lc(a|c)p(c)|a, c){a, c| ® pgiie-

ac
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Note that tre (p§¢ /) = ®(orp) and tre (,off,CR,> = &'(prp). Further, we can view

the R’ register of pf\’c & and ,ofc g as being created by a channel which measures the
register C and outputs the state pgr|. in the register R’. Therefore, we have

|®(orr) — @' (PRR)

® Y
|, =< HpACR/ — Pacr

,

® /
=[Pte - rkel,

1

= prx)c - ,Of;c

O

We can use the above lemma to evaluate the distance between the channels M and
M. Using the above lemma, it is sufficient to suppose that the input of the channels

are classical. We can suppose that the registers Alffl are classical and distributed as
P Ak Let P Ak B be the output of M on this distribution and Q Ak BC be the output

of applying M. Then, we have

=22 PETHP@OP©) | Pyt o, — O

k
aj,cx

=" P HPa) ((1 - %) H Py a1 — OB
ak

” PA’;Bka - QA’,‘Bka |

)

€
| + 5 H PBk\af,ck=0 - QBk

<Y P HP(@e
ay

=€

where in the first line we have used the fact that Ay and Cy are chosen independently
with the same distribution in both the maps and the fact that By is chosen independently
in M, for the third line we have used the fact that By, is independent and has the same
distribution as Q g, when ¢; = 1. Since, this is true for all input distributions, we have
[Mi = My, < e

Now, let R AnBICh be the probability distribution created when the maps My are
applied sequentiafly n times and S AngrCh be the probability distribution created when

the maps M. are applied sequentially » times. Since, By and Cy are independent of Ay
in the distribution S, we have

Hnin( ’11|Bi1 ?)S:”-

We will show that Hél/in(Alll|Bll,,Cil)R = O(1) aslong as €’ < %. Let] := glog 5 Let
E be the event that there exists a k > n — [ such that C; = 0. For our choice of /, we

have p(E) > 1 — €',

Lemma E.2. Let Pjp be a subnormalised probability distribution such that A = f(B)
for some function f (that is, P(a,b) > 0 only if a = f(b)). Then, HS. (A|B)p <

| min
log tr(P)—+/2¢"
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Proof. Let P ; be a distribution e-close to P in purified distance. Then, it is v/2¢ close
to P in trace distance. We have that
—Hnin(A[B)pr _
2 min P = guess (A | B)

> Php(f(b),b)
b
> Y Pap(f(b),b) —V2e
b

v

=tr(P) — +2¢
S . ) , 1 . .. . .
whichimplies that Hyin (A|B) pr < log -7 Since, this is true for every distribution
e-close to P, it also holds for HS. (A|B)p. O

‘We then have that
(A"|B"C")R <H (A"|B”C” A E)R

(ATTBICT A E)g +1

m1n mm

mm

1
<log— 4]
gp(E)—Jze/
1
<log ———=+!
1 —€ —/2€

<I+log8/3 = O(1)

where in the first line we have used [41, Lemma 10] in the first line, dimension bound
(can be proven using Lemma D.1) in the second line, Lemma E.2 in the third line and
the fact that p(E) > 1 —¢€'.

Also, note that the example given here satisfies

|Paisict = Pacimircir Panar], <
for every k. This also proves that a bound on the size of the side information registers
(BiCy here), as we have in Theorem 4.5, is necessary for an approximate version of
AEP.

Further, this example also rules out the possibility of a natural approximate extension to
the generalised entropy accumulation theorem (GEAT) [9] where the maps M ~¢ M
and the maps M satisfy the non-signalling conditions because one can write the entropy
accumulation scenario in the form of a generalised entropy accumulation scenario where
Eve’s information contains the side information B{‘ E in each step. Thus, it would not be
possible to prove a meaningful bound on the smooth min-entropy without some sort of
bound on the information transferred between the adversary’s register E; and the register
R;.

Appendix F: Classical Approximate Entropy Accumulation

We present a simple proof for the approximate entropy accumulation theorem for classi-
cal distributions. This result also requires a much weaker assumption than Theorem 5.1.
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Theorem F.1. Let p ATBIE be a classical distribution such that for every k € [n], and
a]f_l, b]]‘_1 and e

where ||v||s := max; |v(i)| and the g

(k)

k=1 k=1  — <e€ 138
pAkBk|a1 ’bl € quBk|a’1{_1,bllc_],e ( )

[e¢]

(k) — 4
Bilak =1 b1 e Bilbk 1 e
satisfies the Markov chain Ay <> BY\™'E < By. Also, let |Ax| = |Al, |By| = |B| for
every k € [n].

Then, for €’ € (0,1) and o € (1, 1+ m>, we have that

or equivalently q®

n
! . k—1 pk—1
H(ATIBTE), > > :1r(;fH(Ak|BkA] BI™'E) w

min =1 AkBk‘A]filBlfflEqufileflE
/
(@ = 1102 QIA|+ 1) — —%—nlog(1 +¢|A||B]) — 8.
a—1 a—1
(139)
where go(x) := —log(l — «/1 — x2). The infimums are taken over all possible input

probability distributions.

Fora = 1+ /€ (assuming /e < 1+ m), and using @ < 2 and log(1+x) < x
as long as x > 0, the above bound gives us

n
€ n)pn . k—1 pk—1
H (A1|BIE)pZ E lzlfH(Ak|BkAl Bl E)q(k)

min

k=1 AkBk\A/I_]BIf_'EqA]rlBlkilE
/
— e <log2(2|A| +1) — 2|A||B|) — &61) (140)
p—

(k)

-1 51 to create the distributions
AxBr| AV B TUE

Proof. For every k € [n], we modify ¢

(k)

r -1 -1 .- which are defined as follows
AxBr|AYIBITE

1. Choose a random variable Cy from {0, 1} with probabilities (%, m).
(k)

w1 .k_1 . €lse choose
AcB AT BT E

2. If Cx = 1, then choose random variables A, By using g
Ay, By randomly with probability A
That is, we have

*) 1 ®) |Al|Ble

r _ _ B —— _ _ + ————UA.B
MBI B E T T LAl Ble LAt B E T T Al Ble KB

where u 4, p, is the uniform distribution on the registers Ay and By.
For every k, a]f_l , b]f_l ,and e, we have

()
k=1 k=1 , —
pAkBH“l by e quBkIa'f_l,b’f_l,e

o]
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=P k=1 k=1, < q(k) +elas
AkBk|a1 ’hl e — AkBk|a,1€_l,blf_l,e k Dk

(k)

Ak3k|ak71 bkil +€lA| |B|uAkBk

= PacBld— pi e =4
=p w1 o1 < (1+]A)Ble)r®
ApBilai™" by e AxBi AK1 B E

Define the distribution
n
k
rangre = [ [, e pE- (141)
k

AcBi AN B E
=1

Note that for every k, af 71, bk, and e, we have

T e P U S B WY SV O UL S
B AN BT E 1+|A||Ble BiAt B gL T 1+|A|[Ble
1 4® k-1 €
. bk TTAEe
= Triansle sas e PO Y T B
which implies
er|B{‘*1E(bk|bll<_1e) = ZrAllc—llB{c—lE((/_ll |bk le)rB A1 gl 1E(bk|ak lbk ! e)
ak!
1 €
_ —k—1 | k—1 ( k— -
= St G (e 00O )

_k—1
a

k—17k—1
VBk‘All{_lB{(_lE(bHal by "e).

Thus, for every k € [n], r satisfies the Markov chain A]f_l RES Bf_lE <> By. Further,
we have

n

k—1 jk—1
paymye@l o) = [T Py, paet gt gla brlai™ by e)pe(e)
k=1
n
k) k—1 1 k—1
<1 +elABY" T+
< (1 +€|Al|B]) AkBklAllc—l’B/{—lyE(akvbk|a1 b7, e)pe(e)

= (1 +€|Al|B)"ranpre(al, by, e)

which shows that Dimax(pan g gllrangrg) < nlog(l + €| Al|BJ).

The distribution r An g E can be viewed as the result of a series of maps as in Fig. 3. We
can now use the EAT chain rule [8, Corollary 3.5] along with [8, Lemma B.9] n-times
to bound the entropy of this auxiliary distribution. We get

H}(A"|BJE), > Z inf  Hf (A|B A BYTE)

k—1 pk—1
qu 1B{< g AABklAk 1Bk1‘1A B g

>Y " inf  H(ABA'BITE)

1ok q k—1 pk—1
k=1 LAk gk tp AkBk|Ak Lkl g Ay BT E
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E
PEE <
M1 M2 > = — Mn
E EAB,
/\ /\EA?B? AT /\
Ay B, A,y B A, B,
Fig. 3. Setting for classical EAT

—n(a — 1)1og?(2|A| + 1)

n
> < inf  —————— H (A B A B E) o

P CVSPES 1+ |Al|Ble quBklA;l(,lB;l{,lEqulc—lgilc—lE

€
+—— log|A|) — —1)log?(2|A| + 1
T+ ]A|Ble og| |> n(a — 1)log”(2|Al + 1)
n

>y inf  H(A(BAY'BIT'E) w

1k k=1 pk—1 .9 k=1 pk—1
i1 Jak—1 g1 A Bl Ak k=1 g AT By E

—n(a — 1) 1log?2lAl + 1)

for o € (1, 1+ m). In the third line, we have used the concavity of the von

(k)

Neumann entropy along with the definition of r Al kel e
ArBr|ATT BT E

Using Lemma 3.5, we

have

gi(€,0)
—1

min

’ ~ o
Hiin (AY1BYE)p = HI (A|BIE)r = —— Dmax (Pay sy £l ay5y) =

n
> ];igf H(Ak|BkA’;—1B’f—1E)q<k>

1k k=1 k=1
AgBylak=1 Bk 1pdak=1pk=1g

/
nlog(l +¢€|A||B]) — gO(El).
=

O

—n(e — 1D 1og?2|A| + 1) —
a—1

Appendix G: Lemma to Bound Distance after Conditioning

The following Lemma relates the distance of two states conditioned on an event to the
distance between them without conditioning.

Lemma G.1. Suppose pxa = Y cx P(XO)|X)(x|®pajxand pxa = Y cx PX)]X)(x|®
Oa|x are classical-quantum states such that% loxa — pxally < €. Then, for x € X such
that p(x) > 0, we have

¢
p(x)

1 <
5 loap = Ban]l = (142)
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Proof.

1 - 1 .
5 loxa = pxalli = 5 ZX |p)pap — P, <€
xXe

This implies that for x € X

1
5 [PCpap = FIpan]; < €

and

%Ip(x) —px)| <e.

Using these inequalities, we have

| o E BT
5 ||,0A|x — PAlx ”1 = 5 |[PAx MPAM + 3 ‘1 - m “PAIx ”1
= p@pan = BB+ —— s P — 5]
P(x)2 U p)2
< 2¢ .
~px)
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