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Abstract: We explore the supercritical phase of the vertex-reinforced jump process
(VRJP) and the H2|2-model on rooted regular trees. The VRJP is a random walk, which
is more likely to jump to vertices on which it has previously spent a lot of time. The
H

2|2-model is a supersymmetric lattice spin model, originally introduced as a toy model
for the Anderson transition. On infinite rooted regular trees, the VRJP undergoes a
recurrence/transience transition controlled by an inverse temperature parameter β > 0.
Approaching the critical point from the transient regime, β ↘ βc, we show that the
expected total time spent at the starting vertex diverges as∼ exp(c/

√
β − βc). Moreover,

on large finite trees we show that the VRJP exhibits an additional intermediate regime
for parameter values βc < β < β

erg
c . In this regime, despite being transient in infinite

volume, the VRJP on finite trees spends an unusually long time at the starting vertex
with high probability. We provide analogous results for correlation functions of the
H

2|2-model. Our proofs rely on the application of branching random walk methods to a
horospherical marginal of the H

2|2-model.

Contents

1. Introduction and Main Results . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 History and introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Model definitions and results . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Further comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Structure of this article . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Additional Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Dynkin isomorphism for the VRJP and the H

2|2-Model . . . . . . . . 12
2.2 VRJP as random walk in a t-field environment . . . . . . . . . . . . . 12
2.3 Effective conductance . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 The t-field from the H

2|2- and STZ-Anderson model . . . . . . . . . 15
2.5 Monotonicity properties of the t-field . . . . . . . . . . . . . . . . . . 16

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-024-05070-y&domain=pdf
http://orcid.org/0009-0008-5698-4287


196 Page 2 of 51 R. Poudevigne-Auboiron, P. Wildemann

2.6 The t-field on Td . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Previous results for VRJP on trees . . . . . . . . . . . . . . . . . . . 17
2.8 Background on branching random walks . . . . . . . . . . . . . . . . 17

3. VRJP and the t-Field as β ↘ βc . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Effective conductance in a critical environment (Proof of Theorem 3.2) 25
3.3 Near-critical effective conductance (Proof of Theorem 3.1) . . . . . . 29
3.4 Average escape time of the VRJP as β ↘ βc (Proof of Theorem 1.2) . 30

4. Intermediate Phase of the VRJP . . . . . . . . . . . . . . . . . . . . . . . 33
4.1 Existence of an intermediate phase on Td,n (Proof of Theorem 1.3) . . 33
4.2 Multifractality of the intermediate phase (Proof of Theorem 1.4) . . . 34
4.3 On the intermediate phase for wired boundary conditions . . . . . . . 36

5. Results for the H
2|2-Model . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Asymptotics for the H
2|2-model as β ↘ βc (Proof of Theorem 1.5) . . 38

5.2 Intermediate phase for the H
2|2-model (Proof of Theorem 1.6) . . . . 39

A. Tail Bounds for the t-field Increments . . . . . . . . . . . . . . . . . . . . 43
B. Uniform Gantert–Hu–Shi Asymptotics for τ

β
x : Proof of Theorem 3.8 . . . 44

C. Effective Conductance and Effective Weight . . . . . . . . . . . . . . . . 48

1. Introduction and Main Results

1.1. History and introduction. Our work will focus on two distinct but related models:
The H2|2-model, a lattice spin model which is related to the Anderson transition, and the
vertex-reinforced jump process (VRJP), a random walk on graphs which is more likely
to jump to vertices on which it has already spent a lot of time.

The H2|2-model was initially introduced by Zirnbauer [1] as a toy model for studying
the Anderson transition. Formally, it is a lattice spin model taking values in the hyperbolic
superplane H

2|2, a supersymmetric analogue of hyperbolic space. Independently, the
VRJP was introduced by Davis and Volkov [2] as a natural example of a reinforced (and
consequently non-Markovian) continuous-time random walk. Somewhat surprisingly,
Sabot and Tarrès [3] observed that these two models are intimately related. Namely, the
time the VRJP asymptotically spends on vertices can be expressed in terms of the H2|2-
model. This has been used to see the VRJP as a random walk in random environment,
with the environment being given by the H

2|2-model. Furthermore, the two models are
linked by a Dynkin-type isomorphism theorem due to Bauerschmidt, Helmuth and Swan
[4,5], analogous to the connection between simple random walk and the Gaussian free
field [6].

Both models are parametrised by an inverse temperature β > 0 and, depending on the
background geometry of the graph under consideration, may exhibit a phase transition
at some critical parameter βc ∈ (0,∞]. For the H

2|2-model the expected transition is
between a disordered high-temperature phase (β < βc) and a symmetry-broken low-
temperature phase (β > βc) exhibiting long-range order. For the VRJP the transition is
between a recurrent phase due to strong reinforcement effects and a transient phase due
to low reinforcement effects.

On Z
D a fair bit is known about the phase diagram of the two models. In dimension

D ≤ 2 both models are never delocalised (i.e. they are always disordered and recurrent,
respectively) [2–4,7–9]. In dimensions D ≥ 3, however, they exhibit a phase transition
from a localised to a delocalised phase at a unique βc ∈ (0,∞) [3,8,10–14].

In this article we consider both models on the geometry of a rooted (d + 1)-regular
tree Td with d ≥ 2 (see Fig. 1). For the VRJP this setting was previously explored
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Fig. 1. The rooted (d + 1)-regular tree Td for d = 2 shown up to its third generation, with the root vertex
denoted as 0
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Fig. 2. Sketch of the phase diagram for the VRJP on Td with d ≥ 2. The recurrence/transience transition at βc
is phrased in terms of E[L0∞], i.e. the expected total time the walk (on the infinite rooted (d + 1)-regular tree
Td ) spends at the starting vertex. In this article, we obtain precise asymptotics for E[L0∞] as β ↘ βc. Second,
we show that there is an additional transition point β

erg
c > βc. It is phrased in terms of the volume-scaling

of the fraction of total time, limt→∞ L0
t /t , the VRJP on the finite tree Td,n spends at the origin. Here, the

symbol “∼” is understood loosely, and we refer to the text for precise error terms

by various authors [15–19]. In particular, Basdevant and Singh [17] showed that the
VRJP on Galton–Watson trees with mean offspring m > 1 has a phase transition from
recurrence to transience at some explicitly characterised βc ∈ (0,∞). For simplicity,
we focus on the “deterministic case”, but our results should translate to Galton–Watson
trees as well (up to some technical restrictions on the offspring distribution).

The main goal of this work is to provide new information on the supercritical phase
(β > βc) including the near-critical regime. Roughly speaking, we show that on the infi-
nite rooted (d + 1)-regular tree Td the order parameters of the VRJP and the H2|2-model
diverge as exp(c/

√
β − βc) as one approaches the critical point from the supercritical

regime, β ↘ βc (see Theorem 1.2 and 1.5, respectively). Such behaviour has previously
been predicted by Zirnbauer for Efetov’s model [20]. This “infinite-order” behaviour to-
wards the critical point is rather surprising, as it conflicts with usual scaling hypotheses
in statistical mechanics, which predict algebraic singularities as one approaches the crit-
ical points. Moreover, we show that on finite rooted (d + 1)-regular trees, the VRJP and
the H2|2-model exhibit an additional mulifractal intermediate regime for β ∈ (βc, β

erg
c )

(see Theorem 1.3, 1.4, and 1.6). An illustration of some of our results for the VRJP is
given in Fig. 2.

Connection to the Anderson Transition and Efetov’sModel. Inspiration for our work
originates from predictions in the physics literature on Efetov’s model [20–25]. The lat-
ter is a supersymmetric lattice sigma model that is considered to capture the Anderson
transition [26,27]. To be more precise, Efetov’s model can be derived from a granu-
lar limit (similar to a Griffiths-Simon construction [28]) of the random band matrix
model, followed by a sigma model approximation [29,30]. The connection to our work
is due to Zirnbauer, who introduced the H

2|2-model as a simplification of Efetov’s
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model [1]. Namely, in Efetov’s model spins take value in the symmetric superspace
U(1, 1|2)/[U(1|1)⊗ U(1|1)]. According to Zirnbauer, the essential features of this tar-
get space are its hyperbolic symmetry and its supersymmetry.1 In this sense, H2|2 is the
simplest target space with these two properties. Study of the H2|2-model may guide the
analysis of supersymmetric field theories more closely related to the Anderson transition.

Moreover, the H
2|2-model and the VRJP are directly and rigorously related to an

Anderson-type model, which we refer to as the STZ-Andersonmodel (see Definition 1.8).
This fact was already hinted at by Disertori, Spencer and Zirnbauer [10], but only fully
appreciated by Sabot, Tarrès and Zeng [31,32], who exploited the relationship to gain
new insights on the VRJP. It is an interesting open problem to better understand the
spectral properties of this model and how it relates to the VRJP and the H

2|2-model.
Notably, the phase diagram of the H

2|2-model is better understood than that of Efe-
tov’s model or the Anderson model on a lattice. For example, for the H

2|2-model there
is proven absence of long-range order in 2D [4] as well as proven existence of a phase
transition in 3D [10,11]. For the Anderson model on Z

D , the existence of a phase transi-
tion in D ≥ 3 and the absence of one in D = 2 are arguably among the most prominent
open problems in mathematical physics. A good example of the Anderson model’s in-
tricacies is given by the work of Aizenman and Warzel [33,34]. Despite many previous
efforts, they were the first to gain a somewhat complete understanding of the model’s
spectral properties on the regular tree. However, many questions are still open, in partic-
ular there are no rigorous results on the Anderson model’s (near-)critical behaviour. In
this sense one might (somewhat generously) interpret this article as a step towards better
understanding of the near-critical behaviour for a model in the “Anderson universality
class”.

We would also like to comment on the methods used in the physics literature on
Efetov’s model. The analysis of the model on a regular tree, initiated by Efetov and
Zirnbauer [20,21], relies on a recursion/consistency relation that is specific to the tree
setting. Using this approach, Zirnbauer predicted the divergence of the order parameter
(relevant for the symmetry-breaking transition of Efetov’s model) for β ↘ βc. We should
mention that Mirlin and Gruzberg [35] argued that this analysis should essentially carry
through for the H2|2-model. In our case, we take a different path, exploiting a branching
random walk structure in the “horospherical marginal” of the H

2|2-model (the t-field).
After completion of this work, we were made aware by Martin Zirnbauer of recent

numerical investigations for the Anderson transition on random tree-like graphs [36,37].
The observed scaling behaviour near the transition point might suggest the need for
a field-theoretic description beyond the supersymmetric approach of Efetov (also see
[38,39]). At this point, there does not seem to exist a consensus on the theoretical
description of near-critical scaling for the Anderson transition of tree-like graphs and
rigorous results would be of great value.

Notation: In multi-line estimates, we occasionally use “running constants” c,C > 0
whose precise value may vary from line to line. We denote by [n] = 1, . . . , n the range
of positive integers up to n. For a graph G = (V, E) an unoriented edge {x, y} ∈ E
will be denoted by the juxtaposition xy, whereas an oriented edge is denoted by a
tuple (x, y), which is oriented from x to y. Write �E for the set of oriented edges. For
a vertex x in a rooted tree (or a particle of a branching random walk), we denote its
generation (i.e. distance from the origin) by |x |. We use the short-hand

∑
|x |=n . . . to

1 Also referred to as “perfect grading”. Roughly speaking, this refers to the fact that the space has the
same number of bosonic and fermionic degrees of freedom (in this case four each), while these are also
“exchangeable” under a symmetry of the space.
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Fig. 3. An illustration of various interconnected models, that we touch on. Solid lines denote rigorous con-
nections, i.e. relevant quantities in one model can be expressed in terms of the other. Dashed lines signify
conceptual/heuristic connections

denote summation over all vertices/particles at generation n. Variants of this convention
will be used and the meaning should be clear from context. When our results concern the
(d+1)-regular rooted treeTd , we assume d ≥ 2 will typically suppress the d-dependence
of all involved constants, unless specified otherwise. Mentions of βc implicity refer to
the critical parameter βc = βc(d) as given by Proposition 2.14.

1.2. Model definitions and results. In this section, we define the VRJP, the H2|2-model,
the t-field and the STZ-Anderson model. We are aware that spin systems with fermionic
degrees of freedom, such as the H2|2-model, might be foreign to some readers. However,
understanding this model is not necessary for the main results on the VRJP, and the reader
can feel comfortable to skip references to the H

2|2-model on a first reading. We also
note that all models that we introduce are intimately related (as illustrated in Fig. 3) and
Sect. 2 will illuminate some of these connections.

1.2.1. Vertex-Reinforced jump process

Definition 1.1. Let G = (V, E) be a locally finite graph equipped with positive edge-
weights (βe)e∈E , and a starting vertex i0 ∈ V . The VRJP (Xt )t≥0 starting at X0 = i0
is the continuous-time jump process that at time t jumps from a vertex Xt = x to a
neighbour y at rate

βxy[1 + Ly
t ] with Ly

t (t) :=
∫ t

0
1Xs=yds. (1.1)

We refer to Ly
t as the local time at y up to time t .

Unless specified otherwise, the VRJP on a graph G refers to the case of constants
weights βe ≡ β and the dependency on the weight β is specified by a subscript, as in
Eβ or Pβ . By a slight abuse of language, we refer to β as an inverse temperature.

Results for the VRJP. Note that Fig. 2 gives a rough picture of our statements for the
VRJP. In the following we provide the exact results.
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In the following, βc = βc(d) will denote the critical inverse temperature for the
recurrence/transience transition of the VRJP on the infinite rooted (d + 1)-regular tree
Td with d ≥ 2. By Basdevant and Singh [17] this inverse temperature is well-defined
and finite: βc ∈ (0,∞) (cf. Proposition 2.14). Alternatively, βc is characterised in terms
of divergence of the expected total local time at the origin: βc = inf{β > 0 : Eβ [L0∞] <

∞}. The following theorem provides information about the divergence of Eβ [L0∞] as
we approach the critical point from the transient regime.

Theorem 1.2 (Local-Time Asymptotics as β ↘ βc for the VRJP on Td ). Consider the
VRJP, started at the root 0 of the infinite rooted (d + 1)-regular tree Td with d ≥ 2. Let
βc = βc(d) ∈ (0,∞) be as in Proposition 2.14. Let L0∞ = limt→∞ L0

t denote the total
time the VRJP spends at the root. There are constants c,C > 0 such that for sufficiently
small ε > 0:

exp(c/
√

ε) ≤ Eβc+ε[L0∞] ≤ exp(C/
√

ε). (1.2)

The above result concerned the infinite rooted (d + 1)-regular tree Td . On a finite
rooted (d + 1)-regular tree Td,n the total local time at the origin always diverges, but we
may consider the fraction of time the walk spends at the starting vertex. In terms of this
quantity we can identify both the recurrence/transience transition point βc as well as an
additional intermediate phase inside the transient regime.

Theorem 1.3 (Intermediate Phase for VRJP on Finite Trees).Consider the VRJP started
at the root of the rooted (d + 1)-regular tree of depth n, Td,n, with d ≥ 2. Let L0

t denote
the total time the walk spent at the root up until time t. We have

limt→∞ L0
t
t = ∣

∣Td,n
∣
∣−ν(β)+o(1)

w.h.p. as n →∞ (1.3)

with β 
→ ν(β) continuous and non-decreasing such that

ν(β)

⎧
⎪⎨

⎪⎩

= 0 for β ≤ βc

∈ (0, 1) for βc < β < β
erg
c

= 1 for β > β
erg
c ,

(1.4)

for some β
erg
c = β

erg
c (d) > βc. More precisely, we have

ν(β) = max
(

0, inf
η∈(0,1]

ψβ(η)

η log d

)
(1.5)

with ψβ(η) given in (3.7).

Moreover, in the intermediate phase the inverse fraction of time at the origin shows
a multifractal scaling behaviour:

Theorem 1.4 (Multifractality in the Intermediate Phase). Consider the setup of Theo-
rem 1.3 and suppose β ∈ (βc, β

erg
c ). For η ∈ (0, 1) we have

Eβ [(limt→∞ L0
t
t )−η] ∼ ∣

∣Td,n
∣
∣τβ(η)+o(1)

as n →∞, (1.6)

where

τβ(η) =
{

η
ηβ

ψβ(ηβ)

log d for η ≤ ηβ

ψβ(η)

log d for η ≥ ηβ,
(1.7)

where ψβ is given in (3.7) and ηβ = argminη>0ψβ(η)/η ∈ (0, 1).
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1.2.2. The H2|2-model

Definition of theH2|2-Model. We start by writing down the formal expressions defining
the H2|2-model, and then make sense out of it afterwards. Conceptually, we think of the
hyperbolic superplane H2|2 as the set of vectors u = (z, x, y, ξ, η), satisfying

− 1 = u · u := −z2 + x2 + y2 − 2ξη. (1.8)

Here, z, x, y are even/bosonic coordinates and ξ, η are odd/fermionic, a notion that will
be explained shortly. For two vectorsui = (zi , xi , yi , ξi , ηi ) andu j = (z j , x j , y j , ξ j , η j ),
we define the inner product

ui · u j := −zi z j + xi x j + yi y j + ηiξ j − ξiη j . (1.9)

In other words, this pairing is of hyperbolic type in the even variables and of symplectic
type in the odd variables.

Consider a finite graph G = (V, E) with non-negative edge weights (βe)e∈E and
magnetic field h > 0. Morally, we think of theH2|2-model on G as a probability measure
on spin configurations u = (ui )i∈V ∈ (H2|2)V , such that the formal expectation of a
functional F ∈ C∞((H2|2)V ) is given by

〈F(u)〉β,h :=
∫

(H2|2)V

∏

i∈V
dui F(u) e

∑
i j∈E βi j (ui ·u j+1)−h

∑
i∈V (zi−1)

, (1.10)

with du denoting the Haar measure over H2|2. In other words, formally everything
is analogous to the definition of spin/sigma models with “usual” target spaces, such as
spheres Sn or hyperbolic spaces Hn . The only subtlety is that we still need to understand
what a functional such as F ∈ C∞((H2|2)V ) means and how to interpret the integral
above.

Rigorously, the space H
2|2 is not understood as a set of points, but rather is defined

in a dual sense by directly specifying its set of smooth functions to be

C∞(H2|2) := C∞(R2) ⊗	(R2) (1.11)

In other words, this is the exterior algebra in two generators with coefficients in C∞(R2)

(which is the same as C∞(R2|2), analogous to the fact that H2 ∼= R
2 as smooth mani-

folds.). Note that this set naturally carries the structure of a graded-commutative algebra.
More concretely, any superfunction f ∈ C∞(H2|2) can we written as

f = f0(x, y) + fξ (x, y)ξ + fη(x, y)η + fξη(x, y)ξη (1.12)

with smooth functions f0, fξ , fη, fξη ∈ C∞(R2) and ξ, η generating a Grassmann
algebra, i.e. they satisfy the algebraic relations ξη = −ηξ and ξ2 = η2 = 0. We think
of such f as a smooth function in the variables x, y, ξ, η and write f = f (x, y, ξ, η).
In particular, the coordinate functions x, y, ξ, η are themselves superfunctions. In light
of (1.8), we define the z-coordinate to be the (even) superfunction

z := (1 + x2 + y2 − 2ξη)1/2 := (1 + x2 + y2)1/2 − ξη

(1 + x2 + y2)1/2 ∈ C∞(H2|2).
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(1.13)

In this sense the coordinate vector u = (z, x, y, ξ, η) satisfies u · u = −1. By abuse of
notation we write u ∈ H

2|2, but more correctly one might say that u parametrises H2|2.
For a superfunction f ∈ C∞(H2|2) we write f (u) = f (x, y, ξ, η) = f and in line with
physics terminology we might say that f is a function of the even/bosonic variables
z, x, y and the odd/fermionic variables ξ, η.

The definition of z in (1.13) shows a particular example of a more general princi-
ple: The composition of an ordinary function (the square root in the example) with a
superfunction (in the example that is 1 + x2 + y2 − 2ξη) is defined by formal Taylor
expansion in the Grassmann variables. Due to nilpotency of the Grassmann variables
this is well-defined.

Next we would like to introduce a notion of integrating a superfunction f (u) over
H

2|2. Expressing f as in (1.12), we define the derivations ∂ξ , ∂η acting via

∂ξ f = fξ (x, y) + fξη(x, y)η and ∂η f = fη(x, y) − fξη(x, y)ξ. (1.14)

In particular, note that these derivations are odd: they anticommute, ∂ξ ∂η = −∂η∂ξ , and
satisfy a graded Leibniz rule. The H

2|2-integral of f ∈ C∞(H2|2) is then defined to be
the linear functional

∫

H2|2
du f (u) :=

∫

R2
dxdy∂η∂ξ [1

z
f ]. (1.15)

The factor 1
z plays the role of a H2|2-volume element in the coordinates x, y, ξ, η. Note

that this integral evaluates to a real number.
In a final step to formalise (1.10) we define multivariate superfunctions over H2|2

C∞((H2|2)V ) :=
⊗

i∈V
C∞(H2|2) ∼= C∞(R2|V |)⊗ 	(R2|V |), (1.16)

that is the Grassmann algebra in 2 |V | generators {ξi , ηi }i∈V with coefficients in C∞
(R2|V |). An element of this algebra is considered a functional over spin configurations
u = {ui }i∈V and we write F = F(u). Any superfunction F ∈ C∞((H2|2)V ) can be
expressed, analogously to (1.12), as

∑

I,J⊆V

fI,J ({xi , yi }i∈V )
∏

i∈I
ξi
∏

j∈J
η j . (1.17)

The integral of such F over (H2|2)V is defined as
∫

(H2|2)V

duF(u) :=
∫

(H2|2)V

∏

i∈V
dui F(u) :=

∫

R2|V |

∏

i∈V
dxidyi

∏

i∈V
∂ηi ∂ξi [(

∏
i∈V 1

zi
)F(u)].

(1.18)

With this notion of integration, the definition of the H
2|2-model in (1.10) can be under-

stood in a rigorous sense: The “Gibbs factor” is the composition of a regular function
(exponential) with a superfunction (the exponent). As such it is defined by expansion in
the Grassmann variables.

Results for the H2|2-Model. In the following we will simply rephrase above theorems
in terms of the H

2|2-model.
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Theorem 1.5 (Asymptotics as β ↘ βc for the H
2|2-model on Td ). Consider the H2|2-

model on Td,n. Suppose βc = βc(d) ∈ (0,∞) is as in Proposition 2.14. The quantity

〈x2
0 〉+βc+ε := lim

h↘0
lim
n→∞〈x

2
0 〉βc+ε;h,Td,n (1.19)

is well-defined and finite for any ε > 0. There exist constants c,C > 0 such that for
sufficiently small ε > 0

exp(c/
√

ε) ≤ 〈x2
0 〉+βc+ε ≤ exp(C/

√
ε). (1.20)

The above statement considered the infinite-volume limit, i.e. taking n → ∞ before
removing the magnetic field h ↘ 0. One may also consider a finite-volume limit (also
referred to as inverse-order thermodynamic limit [40]): In that case, we consider scaling
limits of observable as h ↘ 0 before taking n →∞. In this limit, we also demonstrate
an intermediate multifractal regime for the H

2|2-model.

Theorem 1.6 (Intermediate Phase for the H
2|2-Model on Td,n). There exist 0 < βc <

β
erg
c < ∞ as in Theorem 1.3, such that for βc < β < β

erg
c we have for η ∈ (0, 1)

limh↘0 h−η〈z0 |x0|−η〉β,h;Td,n ∼
∣
∣Td,n

∣
∣τβ(η)+o(1)

as n →∞ (1.21)

with τβ(η) as given in (1.7).

At first glance, the observable in (1.21) might seem somewhat obscure. However, in
the physics literature on Efetov’s model and the Anderson transition, analogous quanti-
ties are predicted to encode disorder-averaged (fractional) moments of eigenstates at a
given vertex and energy level, see for example [25, Equation (6)]. The volume-scaling of
these quantities provides information about the (de)localisation behaviour of the eigen-
states.

1.2.3. The t-field Despite the inconspicuous name, the t-field is the most relevant object
for our analysis. It is directly related to both the VRJP, encoding the time the VRJP
asymptotically spends on each vertex, as well as the H

2|2-model, arising as a marginal
in horospherical coordinates (see Sect. 2 for details).

Definition 1.7 (t-fieldDistribution). Consider a finite graphG = (V, E), a vertex i0 ∈ V
and non-negative edge-weights (βe)e∈E . The law of the t-field, with weights (βe)e∈E ,
pinned at i0, is a probability measure on configurations t = {ti }i∈V ∈ R

V given by

Q(i0)
β (dt) := e−

∑
i j∈E βi j [cosh(ti−t j )−1]Dβ(t)1/2 δ(ti0)

∏

i∈V \{i0}

dti√
2π/β

, (1.22)

with the determinantal term

Dβ(t) :=
∑

T∈ �T (i0)

∏

(i, j)∈T
βi j e

ti−t j , (1.23)

where �T (i0) is the set of spanning trees in G oriented away from i0.
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Alternatively, one can write Dβ(t) = ∏
i∈V \{i0} e

−2ti deti0(−
β(t)), where deti0
denotes the principal minor with respect to i0 and −
β(t) is the discrete Laplacian for
edge-weights β(t) = (βi j eti+t j )i j .

In general the determinantal term renders the law Q(i0)
β highly non-local. However,

in case the underlying graph G is a tree, only a single summand contributes to (1.23)
and the measure factorises in terms of the oriented edge-increments {ti − t j }(i, j). This
simplification is essential for this article and gives us the possibility to analyse the t-field
on rooted (d + 1)-regular trees in terms of a branching random walk.

1.2.4. STZ-Anderson model The following introduces a random Schrödinger operator,
which is related to the previously introduced models. It will only be required for trans-
lating our results on the intermediate phase to the H

2|2-model (Sect. 5.2), so the reader
may skip this definition on a first reading. As Sabot, Tarrès and Zeng [31,32] were the
first to study this system in detail, we refer to it as the STZ-Anderson model.

Definition 1.8 (STZ-Anderson model). Consider a locally finite graph G = (V, E),
equipped with non-negative edge-weights (βe)e∈E . For B = (Bi )i∈	 ⊆ R

	
+ define the

Schrödinger-type operator

HB := −
β + V (B) with [V (B)]i = Bi −∑
j βi j . (1.24)

Define a probability distribution νβ over configurations B = (Bi )i∈	 by specifying
the Laplace transforms of its finite-dimensional marginals: For any vector (λi )i∈V ∈
[0,∞)V with only finitely many non-zero entries, we have

∫

e−(λ,B)νβ(dB) = 1
∏

i∈V
√

1 + 2λi
exp[−

∑

i j∈E
βi j (

√
1 + 2λi

√
1 + 2λ j − 1)].

(1.25)

Subject to this distribution, we refer to B as the STZ-field and to HB as the STZ-Anderson
model.

One may note that on finite graphs, the density of νβ is explicit:

νβ(dB) ∝ e−
1
2
∑

i Bi

√
det(HB)

1HB>0dB, (1.26)

where HB > 0 means that the matrix HB is positive definite. The definitino via (1.25) is
convenient, since it allows us to directly consider the infinite-volume limit. We also note
that while the density (1.26) seems highly non-local, the Laplace transform in (1.25)
only involves values of λ at adjacent vertices and therefore implies 1-dependency of the
STZ-field.

In the original literature the STZ-field is denoted by β and referred to as the β-field.
In order to be consistent with the statistical physics literature and avoid confusion with
the inverse temperature, we introduced this slightly different notation. To be precise, we
used this change of notation to also introduce a slightly more convenient normalisation:
one has Bi = 2βi compared to the normalisation of the β-field {βi } used by Sabot,
Tarrès and Zeng.
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1.3. Further comments.

Comments onRelatedWork As noted earlier, the VRJP on tree geometries was already
studied by various authors [15–19]. One notable difference to our work is that we do not
consider the more general setting of Galton–Watson trees. While this is mostly to avoid
unnecessary notational and technical difficulties, the Galton–Watson setting might be
more subtle. This is due to an “extra” phase transition in the transient phase, observed
by Chen and Zeng [18]. This phase transition depends on the probability of the Galton
Watson tree having precisely one offspring. It is an interesting question how this would
interact with our analysis.

In regard to our results, the recent work by Rapenne [19] is of particular interest. He
provides precise quantitative information on the (sub-)critical phase β ≤ βc. The results
are phrased in terms of a certain martingale, associated with the STZ-Anderson model,
but they can be formulated in terms of the H

2|2-model with wired boundary conditions
(or analogously the VRJP started from the boundary) on a rooted (d + 1)-regular tree of
finite depth. In this sense, Rapenne’s article can be considered as complementary to our
work.

Another curious connection to our work is given by the Derrida-Retaux model [41–
48]. The latter is a toy model for a hierarchical renormalisation procedure related to
the depinning transition. It has recently been shown [48] that the free energy of this
model may diverge as ∼ exp(−c/

√
p − pc) approaching the critical point from the

supercritical phase, p ↘ pc. There are further formal similarities between their analysis
and the present article. It would be of interest to shed further light on the universality of
this type of behaviour.
Debate on Intermediate Phase We would like to highlight that the presence/absence
of such an intermediate phase for the Anderson transition 2 on tree-geometries has been
a recent topic of debate in the physics literature (see [40,49] and references therein). In
short, the debate concerns the question of whether the intermediate phase only arises
due to finite-volume and boundary effects on the tree.

While the presence of a non-ergodic delocalised phase on finite regular trees has
been established in recent years [24,25,50], it was not clear if this behaviour persists
in the absence of a large “free” boundary. To study this, one can consider a system on
a large random regular graphs (RRGs) as a “tree without boundary” (alternatively one
could consider trees with wired boundary conditions). For the Anderson transition on
RRGs, early numerical simulations [23,51,52] suggested existence of an intermediate
phase, in conflict with existing theoretical predictions [22,53–55]. Shortly afterwards,
it was argued that the discrepancy was due to finite-size effects that vanish at very large
system sizes [24,49,56], even though this does not seem to be the consensus 3 [40,52].

We should note that Aizenman and Warzel [33,57] have shown the existence of an
energy-regime of “resonant delocalisation” for the Anderson model on regular trees. It
would be interesting to understand if/how this phenomenon is related to the intermediate
phase discussed here.

In accordance with the physics literature, we refer to the intermediate phase (βc <

β < β
erg
c ) as multifractal as opposed to the ergodic phase (β > β

erg
c ).

2 This may refer to the Anderson model, Efetov’s model, or certain sparse random matrix models (such as
random band matrices), all of which are largely considered equivalent in the theoretical physics community.

3 To our understanding, the cited sources consider an inverse-order thermodynamic limit, in which they
remove the level-broadening (resp. magnetic field) before taking the system size to infinity. This corresponds
to a finite-volume limit, as opposed to the reversed limit order considered in other treatments of the Anderson
transition. In this sense, the different statements are not directly comparable.
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1.4. Structure of this article. In Sect. 2 we provide details on the connections between
the various models and recall previously known results for the VRJP. In particular, we
recall that the VRJP can be seen as a random walk in random conductances given in
terms of a t-field (referred to as the t-field environment). On the tree, the t-field can be
seen as a branching random walk (BRW) and we recall various facts from the BRW
literature. In Sect. 3 we apply BRW techniques to establish a statement on effective
conductances in random environments given in terms of critical BRWs (Theorem 3.2).
With Theorem 3.1 we prove a result on effective conductances in the near-critical t-field
environment. We close the section by showing how the result on effective conductances
implies Theorem 1.2 on expected local times for the VRJP. In Sect. 4 we continue to use
BRW techniques for the t-field to establish Theorem 1.3 on the intermediate phase for
the VRJP. We also prove Theorem 1.4 on the multifractality in the intermediate phase.
Moreover, we argue that Rapenne’s recent work [19] implies the absence of such an
intermediate phase on trees with wired boundary conditions. In Sect. 5 we show how to
establish the results for the H2|2-model. For the near-critical asymptotics (Theorem 1.5)
this is an easy consequence of a Dynkin isomorphism between the H

2|2-model and the
VRJP. For Theorem 1.6 on the intermediate phase, we make use of the STZ-field to
connect the observable for the H

2|2-model with the observable limt→∞ L0
t /t that we

study for the VRJP.

2. Additional Background

2.1. Dynkin isomorphism for the VRJP and the H2|2-Model. Analogous to the connec-
tion between the Gaussian free field and the (continuous-time) simple random walk, there
is a Dynkin-type isomorphism theorem relating correlation functions of the H2|2-model
with the local time of a VRJP.

Theorem 2.1 ([5, Theorem 5.6]). Suppose G = (V, E) is a finite graph with positive
edge-weights {βi j }i j∈E . Let 〈·〉β,h denote the expectation of theH2|2-model and suppose
that under Ei , the process (Xt )t≥0 denotes a VRJP started from i. Suppose g : RV → R

is a smooth bounded function. Then, for any i, j ∈ V

〈xi x j g(z− 1)〉β,h =
∫ ∞

0
Ei [g(Lt )1Xt= j ]e−htdt, (2.1)

where Lt = (Lx
t )x∈V denotes the VRJP’s local time field.

This result will be key to deduce Theorem 1.5 from Theorem 1.2.

2.2. VRJP as randomwalk in a t-field environment. As a continuous-time process, there
is some freedom in the time-parametrisation of the VRJP. While the definition in (1.1)
(the linearly reinforced timescale) is the “usual” parametrisation, we also make use of
the exchangeable timescale VRJP (X̃t )t∈[0,+∞):

X̃t := XA−1(t) with A(t) := ∫ t
0 2(1 + LXs

s )ds =∑
x∈V [(1 + Lx

t )
2 − 1] (2.2)

Writing L̃ x
t =

∫ t
0 1{X̃s = x}ds, the local times in the two timescales are related by

Lx
t =

√

1 + L̃ x
t − 1. (2.3)
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Above reparametrisation is motivated by the following result of Sabot and Tarrès [3],
showing that the VRJP in exchangeable timescale can be seen as a (Markovian) random
walk in random conductances given in terms of the t-field.

Theorem 2.2 (VRJP as Random Walk in Random Environment [3]). Consider a finite
graph G = (V, E), a starting vertex i0 ∈ V and edge-weights (βe)e∈E . The exchange-
able timescale VRJP, started at i0, equals in law an (annealed) continuous-time Markov
jump process, with jump rates between from i to j given by

1
2βi j e

Tj−Ti , (2.4)

where T = (Tx )x∈V are random variables distributed according to the law of the t-field
(1.22) pinned at i0.

As a consequence of Theorem 2.2, the t-field can be recovered from the VRJP’s
asymptotic local time:

Corollary 2.3 (t-field from Asymptotic Local Time [31]). Consider the setting of The-
orem 2.2. Let (Lx

t )x∈V and (L̃ x
t )x∈V denote the local time field of the VRJP in linearly

reinforced and exchangeable timescale, respectively. Then

Ti := lim
t→∞ log

(
Li
t/L

i0
t

)
(i ∈ V )

T̃i := 1
2 lim
t→∞ log

(
L̃i
t/L̃

i0
t

)
(i ∈ V )

(2.5)

exist and follow the law Q(i0)
β of the t-field in (1.22).

Proof. For the exchangeable timescale, Sabot, Tarrès and Zeng [31, Theorem 2] provide
a proof. The statement for the usual (linearly reinforced) VRJP then follows by the time
change formula for local times (2.3). ��

Considering the VRJP as a random walk in random environment enables us to study
its local time properties with the tools of random conductance networks. For a t-fieldT =
(Tx )x∈V pinned at i0, we refer to the collection of random edge weights (or conductances)

{βi j e
Ti+Tj }i j∈E (2.6)

as the t-field environment. This should be thought of as a symmetrised version of the
VRJP’s random environment (2.4). It is easier to study a random walk with symmetric
jump rates, since its amenable to the methods of conductance networks. The following
lemma relates local times in the t-field environment with the local times in the environ-
ment of the exchangeable timescale VRJP:

Lemma 2.4. Consider the setting of Theorem 2.2. Let (X̃t )t≥0 and (Yt )t≥0 denote two
continuous-time Markov jump processes started from i0 with rates given by (2.4) and
(2.6), respectively. We write L̃x

t and lxt for their respective local time fields. Let B ⊆ V
and write T̃B and TB for the respective hitting times of B. Then

Lx
T̃B

law= 2eTx lxTB
, (2.7)

for x ∈ V . In particular, Li0
T̃B

law= 2li0TB
.
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Proof. The discrete-time processes associated to (X̃t )t≥0 and (Yt )t≥0 apparently agree.
In particular, they both visit a vertex x the same number of times, before hitting B. Every
time X̃t visits the vertex x , it spends an Exp(

∑
y

1
2βxyeTy−Tx )-distributed time there,

before jumping to another vertex. Yt on the other hand will spend time distributed as
Exp(

∑
y βxyeTx+Ty ) = 1

2e
−2Tx Exp(

∑
y

1
2βxyeTy−Tx ). This concludes the proof. ��

2.3. Effective conductance. Our approach to proving Theorem 1.2 will rely on establish-
ing asymptotics for the effective conductance in the t-field environment (Theorem 3.1).

Definition 2.5. Consider a locally finite graph G = (V, E) with edge weights (or con-
ductances) {wi j }i j∈E . For two disjoint sets A, B ⊆ V , the effective conductance between
them is defined as

Ceff(A, B) := inf
U : V→R

U |A≡0,U |B≡1

∑

i j∈E
wi j (U (i) −U ( j))2. (2.8)

The variational definition (2.8) makes it easy to deduce monotonicity and bounded-
ness properties:

Lemma 2.6. Consider the situation of Definition 2.5. Suppose S ⊆ E is a edge-cutset
separating A, B. Then

Ceff(A, B) ≤
∑

i j∈S
wi j . (2.9)

Alternatively, suppose C ⊆ V is a vertex-cutset separating A, B. Then

Ceff(A, B) ≤ Ceff(A,C). (2.10)

Proof. For the first statement, consider (2.8) for the functionU : V → R that is constant
zero (resp. one) in the component of A (resp. B) in V \S. For the second statement,
note that for any funcion U : V → R with U |A ≡ 0 and U |C ≡ 1 we can define a
function Ũ that agrees with U on C and the connected compenent of V \ C containing
A, and is constant equal to one on the component of B in V \ V . Then, Ũ |A ≡ 0 and
Ũ |B ≡ 1 and

∑
i j∈E wi j (U (i)−U ( j))2 ≤∑

i j∈E wi j (Ũ (i)−Ũ ( j))2, which proves the
claim. ��

The monotoniciy in (2.10) makes it possible to define an effective conductance to
infinity. For an increasing exhaustion V1 ⊆ V2 ⊆ · · · of the vertex set V = ⋃

n Vn and
a given finite set A ⊆ V , we define the effective conductance from A to infinity by

Ceff∞ (A) = lim
n→∞Ceff(A, V \ Vn). (2.11)

One may check that this is independent from the choice of exhaustion. For us, the main
use of effective conductances stems from their relation to escape times:

Lemma 2.7. Consider a locally finite graph G = (V, E) with edge weights (or conduc-
tances) {wi j }i j∈E . Let Ceff(i0, B) denote the effective conductance between the singleton
{i0} and a disjoint set B. Consider a continuous-time random walk (Xt )t≥0 on G, start-
ing at X0 = i0 and jumping from Xt = i to j at rate wi j . Let Lesc(i0, B) denote the
total time the walk spends at i0 before visiting B for the first time. Then Lesc(i0, B) is
distributed as an Exp(1/Ceff(i0, B))-random variable.
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For an infinite graph G, the above conclusions also hold for B “at infinity”: We let
Lesc,∞(i0) denote the total time spent at i0 and understand Ceff∞ (i0) as in (2.11). Then
Lesc,∞(i0) ∼ Exp(1/Ceff∞ (i0)).

Proof. According to [6, Sect. 2.2], the walk’s number of visits at i0 before hitting B
is a geometric random variable N ∼ Geo(pesc) with the escape probability pesc =
Ceff(i0, B)/(

∑
j∼i0 wi0 j ). Moreover, for the continuous-time process, every time we

visit i0 we spend an Exp(
∑

j∼i0 wi0 j )-distributed time there, before jumping to a neigh-
bour. Hence, Lesc(i0, B) is distributed as the sum of N independent Exp(

∑
j∼i0 wi0 j )-

distributed random variables. By standard results for the exponential distribution (eas-
ily checked via its moment-generating function), this implies the claim. Note that this
argument also holds true for B “at infinity”, in which case N ∼ Geo(pesc) with
pesc = Ceff∞ (i0)/(

∑
j∼i0 wi0 j ) will simply denote the total number of visits at i0 (see [6,

Sect. 2.2] for more details). ��

2.4. The t-field from the H2|2- and STZ-Anderson model.

t-Field as a Horospherical Marginal of theH2|2-model First we introduce horospher-
ical coordinates on H

2|2. In these coordinates, u ∈ H
2|2 is parametrised by (t, s, ψ̄, ψ),

with t, s ∈ R and Grassmann variables ψ̄, ψ via

⎛

⎜
⎜
⎜
⎝

z
x
y
ξ

η

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎜
⎝

cosh(t) + et ( 1
2 s

2 + ψ̄ψ)

sinh(t)− et ( 1
2 s

2 + ψ̄ψ)

et s
et ψ̄
etψ

⎞

⎟
⎟
⎟
⎟
⎠

. (2.12)

A particular consequence of this is that et = z + x . By rewriting the Gibbs measure for
the H2|2-model, defined in (1.10), in terms of horospherical coordinates and integrating
out the fermionic variables ψ, ψ̄ , one obtains a marginal density in t = {tx }x∈V and
s = {sx }x∈V , which can be interpreted probabilistically:

Lemma 2.8 (Horospherical Marginal of the H
2|2-Model [4,10,11]). Consider a finite

graph G = (V, E), a vertex i0 ∈ V , and non-negative edge-weights (βi j )i j∈E . There
exist random variables T = {Tx }x∈V ∈ R

V and S = {Sx }x∈V ∈ R
V , such that for any

F ∈ C∞
c (RV × R

V )

〈F(t, s)〉β = E[F(T , S)]. (2.13)

The law of T is given by the t-field pinned at i0 (see Definition 1.7). Moreover, con-
ditionally on T , the s-field follows the law of a Gaussian free field in conductances
{βi j eTi+Tj }i j∈E , pinned at i0, Si0 = 0.

t-Field and the STZ-Anderson Model. It turns out that the (zero-energy) Green’s
function of the STZ-Anderson model is directly related to the t-field:

Proposition 2.9. [31] For HB denoting the STZ-Anderson model as in Definition 1.8
define the Green’s function GB(i, j) = [H−1

B ]i, j . For a vertex i0 ∈ V , define {Ti }i∈	

via

eTi := GB(i0, i)/GB(i0, i0). (2.14)
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Then {Ti } follows the lawQ(i0)
β of the t-field, pinned at i0. Moreover, with {Ti } as above

we have Bi =∑
j∼i βi j eTj−Ti for all i ∈ V \ {i0}.

This provides a way of coupling the STZ-field with the t-field, as well as a coupling
of t-fields pinned at different vertices.

Remark 2.10 (Natural Coupling). Lemma 2.8 and Proposition 2.9 give us a way to define
a natural coupling of STZ-field, t-field and s-field as follows: Fix some pinning vertex
i0 ∈ V . Sample an STZ-Anderson model HB with respect to edge weights {βi j }i j∈E .
Then define the t-field {Ti }i∈V , pinned at i0 via (2.14). Then, conditionally on the t-
field, sample the s-field {Si }i∈V as a Gaussian free field in conductances {βi j eTi+Tj }i j∈E ,
pinned at i0, Si0 = 0.

2.5. Monotonicity properties of the t-field. A rather surprising property of the t-field,
proved by the first author, is the monotonicity of various expectation values with respect
to the edge-weights. The following is a restatement of [8, Theorem 6] after applying
Proposition 2.9:

Theorem 2.11 ([8, Theorem 6]). Consider a finite graph G = (V, E) and fix some
vertex i0 ∈ V . Under Eβββ , we let T = {Ti }i∈V denote a t-field pinned at i0 with respect
to non-negative edge weights βββ = {βe}e∈E . Then, for any convex f : [0,∞) → R and
non-negative {λi }i∈V , the map

βββ 
→ Eβββ [ f (∑i λi e
Ti )] (2.15)

is decreasing.

A direct corollary of the above is that expectations of the formEβ [eηTx ] are increasing
in β for η ≤ [0, 1] and are decreasing for η ≥ 1. This will be the extent to which we
make use of the result.

2.6. The t-field on Td . Consider the t-field measure (1.22) on Td,n = (Vd,n, Ed,n), the
rooted (d+1)-regular tree of depth n, pinned at the root i0 = 0. Only one term contributes
to the determinantal term (1.23), namely the term corresponding to Td,n itself, oriented
away from the root:

Q(0)
β;Td,n

(dt) = e
−∑

(i, j)∈ �Ed,n
[β (cosh(t j−ti )−1)+ 1

2 (t j−ti )]
δ(t0)

∏

i∈Vd,n\0

dti√
2π/β

, (2.16)

where �Ed,n is the set of edges in Td,n oriented away from the root. In other words, the
increments of the t-field along outgoing edges are i.i.d. and distributed according to the
following:

Definition 2.12 (t-field Increment Measure). For β > 0 define the probability distribu-
tion

Qinc
β (dt) = e−β[cosh(t)−1]−t/2 dt√

2π/β
with t ∈ R. (2.17)

We refer to this as the t-field increment distribution and if not specified otherwise, T
will always denote a random variable with distribution Qinc

β . The dependence on β is
either implicit or denoted by a subscript, such as in Eβ or Pβ .
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The density (2.17) implies that

eT ∼ IG(1, β) and e−T ∼ RIG(1, β), (2.18)

where IG (RIG) denotes the (reciprocal) inverse Gaussian distribution (cf. (A.4)). Note
that changing variables to t 
→ et and comparing to the density of the inverse Gaussian,
we see that (2.17) is normalised.

Definition 2.13 (Free Infinite Volume t-field on Td ). For β > 0, associate to every
edge e of the infinite rooted (d + 1)-regular tree Td a t-field increment T̃e, distributed
according to (2.17). For every vertex x ∈ Td let γx denote the unique self-avoiding path
from 0 to x and define Tx := ∑

e∈γx
T̃e. The random field {Tx }x∈Td is the free infinite

volume t-field onTd at inverse temperature β > 0. In particular, its restriction {Tx }x∈Td,n

onto vertices up to generation n follows the law Q(0)
β;Td,n

.

By construction, {Tx }x∈Td can be considered a branching random walk (BRW) with
a deterministic number of offsprings (every particle gives rise to d new particles in the
next generation). In Sect. 2.8 we will elaborate on this perspective.

2.7. Previous results for VRJP on trees. As we have already noted in the introduction,
the VRJP on tree graphs has received quite some attention [15–19]. In particular, Bas-
devant and Singh [17] studied the VRJP on Galton–Watson trees with general offspring
distribution, and exactly located the recurrence/transience phase transition:

Proposition 2.14 (Basdevant-Singh [17]).LetT denote aGalton–Watson treewithmean
offspring b > 1. Consider the VRJP started from the root of T , conditionally on non-
extinction of the tree. There exists a critical parameter βc = βc(b), such that the VRJP
is

• recurrent for β ≤ βc,
• transient for β > βc.

Moreover, βc is characterised as the unique positive solution to

1

b
=
√

βc

2π

∫ +∞

−∞
dte−βc(cosh(t)−1). (2.19)

We also take the opportunity to highlight Rapenne’s recent results [19] concerning
the (sub)critical phase, β ≤ βc. His statements can be seen to complement our results,
which focus on the supercritical phase β > βc.

2.8. Background on branching random walks. Let’s quickly recall some basic results
from the theory of branching random walks. For a more comprehensive treatment we
refer to Shi’s monograph [58].

A branching random walk (BRW) with offspring distribution μ ∈ Prob(N0) and
increment distribution ν is constructed as follows: We start with a “root” particle x = 0 at
generation |0| = 0 and starting position V (0) = v0. We sample its number of offsprings
according to μ. They constitute the particles at generation one, {|x | = 1}. Every such
particle is assigned a position v0 + δVx with {δVx }|x |=1 being i.i.d. according to the
increment distribution ν. This process is repeated recursively and we end up with a
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random collection of particles {x}, each equipped with a position V (x) ∈ R, a generation
|x | ∈ N0 and ahistory 0 = x0, x1, . . . , x|x | = x of predecessors. Unless otherwise stated,
we assume from now on that a BRW always starts from the origin, v0 = 0.

A particularly useful quantity for the study of BRWs is the log-Laplace transform of
the offspring process:

ψ(η) := logE
[ ∑

|x |=1

e−ηV (x)
]
, (2.20)

where the sum goes over all particles in the first generation. A priori, we have ψ(η) ∈
[0,∞], but we typically assume ψ(0) > 0 and infη>0 ψ(η) < ∞. The first assump-
tion corresponds to supercriticality of the offspring distribution 4, whereas the second
assumption enables us to study the average over histories of the BRW in terms of single
random walk:

Proposition 2.15 (Many-To-One Formula). Consider a BRW with log-Laplace trans-
formψ(η). Choose η > 0 such thatψ(η) < ∞ and define a randomwalk 0 = S0, S1, . . .

with i.i.d. increments such that for any measurable h : R → R

E[h(S1)] = E

[∑
|x |=1 e

−ηV (x)h(V (x))
]/

E

[∑
|x |=1 e

−ηV (x)
]
. (2.21)

Then, for all n ≥ 1 and g : Rn → [0,∞) measurable we have

E

[∑
|x |=n g(V (x1), . . . , V (xn))

]
= E

[
enψ(η)+ηSn g(S1, . . . , Sn)

]
. (2.22)

For a proof we refer to Shi’s lecture notes [58, Theorem 1.1]. An application of the
many-to-one formula is the following statement about the velocity of extremal particles
(cf. [58, Theorem 1.3]).

Proposition 2.16 (Asymptotic Velocity of Extremal Particles). Suppose ψ(0) > 0 and
inf
η>0

ψ(η) < ∞. Then, almost surely under the event of non-extinction, we have

lim
n→∞

1

n
inf|x |=n

V (x) = − inf
η>0

ψ(η)/η. (2.23)

Critical Branching Random Walks. A common assumption, under which BRWs ex-
hibit various universal properties, is ψ(1) = ψ ′(1) = 0. While not common terminology
in the literature, we will refer to this as criticality:

BRW with ψ(η) = logE[∑|x |=1 e
−ηV (x)] is critical

def⇐⇒ ψ(1) = ψ ′(1) = 0

(2.24)

This definition can be motivated by considering the many-to-one formula (Proposi-
tion 2.15) applied to a critical BRW for η = 1: In that case, the random walk Si has
mean zero increments, E[S1] = −ψ ′(1) = 0, and the exponential drift in (2.22) van-
ishes, enψ(1) = 1. Consequently, as far as the many-to-one formula is concerned, critical
BRWs inherit some of the universality of mean zero random walks (e.g. Donsker’s the-
orem, say under an additional second moment assumption). Moreover, the notion of
criticality is particularly useful, since in many cases we can reduce a BRW to the critical
case by a simple rescaling/drift transformation:

4 Here we mean supercriticality in the sense of Galton–Watson trees. In other words, with positive proba-
bility the BRW consists of infinitely many particles. We also say that the BRW does not go extinct.
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Lemma 2.17 (Critical Rescaling of a BRW). Consider a BRW with log-Laplace trans-
form ψ(η) = logE[∑|x |=1 e

−ηV (x)]. Suppose there exists η∗ > 0 solving the equation

ψ(η∗) = η∗ψ ′(η∗). (2.25)

Equivalently, η∗ is a critical point for η → ψ(η)/η. Define a BRW with the same
particles {x} and rescaled positions

V ∗(x) = η∗V (x) + ψ(η∗) |x | . (2.26)

The resulting BRW is critical.

Proof. Write ψ∗(γ ) = logE
∑

|x |=1 e
−γ V ∗(x) for the log-Laplace transform of the

rescaled BRW. We easily check

ψ∗(1) = logE
∑

|x |=1

e−η∗V (x)−ψ(η∗) = −ψ(η∗) + logE
∑

|x |=1

e−η∗V (x)

= −ψ(η∗) + ψ(η∗) = 0.

(2.27)

Equivalently, 1 = E
∑

|x |=1 e
−η∗V (x)−ψ(η∗), which together with (2.25) yields

(ψ∗)′(1) = −E
∑

|x |=1(η
∗V (x) + ψ(η∗))e−η∗V (x)−ψ(η∗)

E
∑

|x |=1 e
−η∗V (x)−ψ(η∗)

= −η∗E
∑

|x |=1

V (x)e−η∗V (x) − ψ(η∗)

= η∗ψ ′(η∗) − ψ(η∗) = 0,

(2.28)

which concludes the proof. ��

3. VRJP and the t-Field as β ↘ βc

The main goal of this section is to prove Theorem 1.2 on the asymptotic escape time of
the VRJP as β ↘ βc. The main work will be in establishing the following result on the
effective conductance in a t-field environment:

Theorem 3.1 (Near-Critical Effective Conductance). Let {Tx }x∈Td denote the (free) t-
field on Td , pinned at the origin. Let Ceff∞ denote the effective conductance from the
origin to infinity in the network given by conductances {βeTi+Tj1i∼ j }i, j∈Td . There exist
constants c,C > 0 such that

exp[−(C + o(1))/
√

ε] ≤ Eβc+ε[Ceff∞ ] ≤ exp[−(c + o(1))/
√

ε], (3.1)

as ε ↘ 0, where βc = βc(d) > 0 is given by Proposition 2.19.

For establishing this result, the BRW perspective onto the t-field is essential. The
lower bound will follow from a mild modification of a result by Gantert, Hu and Shi
[59] (see Theorem 3.8). For the upper bound we will consider the critical rescaling of
the near-critical t-field (cf. Lemma 2.17). The bound will then follow by a perturbative
argument applied to a result on effective conductances in a critical BRW environment.
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The latter we prove in a more general form, for which it is convenient to introduce some
additional notions.

For a random variable V and a fixed offspring degree d we write

ψV (η) := log(d E[e−ηV ]). (3.2)

Analogous to Definition 2.13, for an increment distribution given by V , we define a
random field {Vx }x∈Td and refer to it as the BRW with increments V . We say that V
is a critical increment if {Vx }x∈Td is critical, i.e. ψV (1) = ψ ′

V (1) = 0. Note that this
implicitly depends on our choice of d ≥ 2, but we choose to suppress this dependency.
For a critical increment V we write

σ 2
V := ψ ′′

V (1) = d E[V 2e−V ]. (3.3)

Note that this is the variance of the (mean-zero) increments of the random walk (Si )i≥0
given by the many-to-one formula (Proposition 2.15 for η = 1).

Theorem 3.2. Fix some offspring degree d ≥ 2 and consider a critical increment V
with σ 2

V < ∞ and ψV (1 + 2a) < ∞ for some constant a > 0. Write {Vx }x∈Td for the
BRW with increments V and define the conductances {e−γ (Vx+Vy)}xy . Let Ceff

n,γ denote
the effective conductance between the origin 0 and the vertices in the n-th generation.
Then, for γ ∈ (1/2, 1/2 + a), we have

E[Ceff
n,γ ] ≤ exp

[
− [

min( 1
4 , γ − 1

2 ) (π2σ 2
V )1/3 + o(1)

]
n1/3

]
as n →∞. (3.4)

Moreover, this is uniform with respect to γ , σ 2
V and ψV (1 + 2a) in the following sense:

Suppose there is a family V (k), k ∈ N, of critical increments and define Ceff
n,γ ;k as above.

Further assume 0 < infk σ 2
V (k) ≤ supk σ 2

V (k) < ∞ and supk ψV (k) (1 + 2a) < ∞. Then
we have

lim sup
n→∞

sup
k

sup
1
2 <γ< 1

2 +a

(

n−1/3 logE[Ceff
n,γ ;k] + min( 1

4 , γ − 1
2 ) (π2σ 2

V (k) )
1/3
)

≤ 0.

(3.5)

We note that random walk in (critical) multiplicative environments on trees has previ-
ously been studied, see for example [60–65]. In particular, Hu and Shi [63, Theorem 2.1]
established bounds analogous to (3.4) for escape probabilities, instead of effective con-
ductances. While the quantities are related, bounds on the expected escape probability
do not directly translate into bounds for the expected effective conductance. Moreover,
their setup for the random environment does not directly apply to our setting 5. Last
but not least, for our applications, we require additional uniformity of the bounds with
respect to the underlying BRW.

5 Roughly speaking, they are working with weights {e−γ Vx }
(x,y)∈ �E(Td )

while we consider the “sym-

metrised” variant {e−γ (Vx+Vy )}xy∈E(Td ).
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Fig. 4. Illustration of ψβ(η)/ log(d) for d = 2 at different values of β. Its minimum is always at η = 1/2,
and the value of this minimum is increasing with β. It is equal to zero at β = βc

Considered as a BRW, the t-field {Tx }x∈Td on the rooted (d + 1)-regular tree Td (or
more precisely the negative t-field) has a log-Laplace transform given by

ψβ(η) := logE[
∑

|x |=1

eηTx ] = log(d Eβ [eηT ]) (η > 0), (3.6)

where T denotes the t-field increment as introduced in Definition 2.12. One can check
easily that ψβ(0) = ψβ(1) = log d. More generally, using the density for T we have

ψβ(η) = log
(
d
∫

dt√
2π/β

e−β [cosh(t)−1]−(
1
2−η) t

)
= log

(d
√

2βeβ

√
π

K
η− 1

2
(β)

)

(3.7)

where Kα denotes the modified Bessel function of second kind. An illustration of ψβ for
different values of β is given in Fig. 4. In particular, it’s a smooth function in β, η > 0
and one may check that it’s strictly convex since

ψ ′′
β (η) = Eβ [T 2eηT ]

Eβ [eηT ] − Eβ [T eηT ]2
Eβ [eηT ]2 > 0 (3.8)

equals the variance of a non-deterministic random variable. Moreover, by the symmetry
and monotonicity properties of the Bessel function (Kα = K−α and Kα ≤ Kα′ for
0 ≤ α ≤ α′), the infimum of ψβ(η) is attained at η = 1/2:

inf
η>0

ψβ(η) = ψβ(1/2) = log(d Eβ [eT/2]) = log(

√
2βeβd√

π
K0(β)) (3.9)

The critical inverse temperature βc = βc(d) > 0, as given in Proposition 2.14, is
equivalently characterised by the vanishing of this infimum:

ψβc(1/2) = inf
η>0

ψβc(η) = 0. (3.10)
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Fig. 5. Illustration of ηβ , γβ/ log d and ψβ(η)/(η log d) for d = 2. For the figure on the left, note that γβ

is positive for β > βc and attains its maximum at β
erg
c , at the same point at which ηβ = 1. The right figure

illustrates the same point: The minima of ψβ(η)/η move to the right with increasing β and attain their highest

value at β = β
erg
c

In particular, by Lemma 2.17, this implies that {− 1
2Tx }x∈Td is a critical BRW at

β = βc. More generally, it will be useful to consider critical rescalings of {Tx } for
general β > 0. For this we write

ηβ := argminη>0
ψβ(η)

η
and γβ := inf

η>0

ψβ(η)

η
= ψβ(ηβ)

ηβ

. (3.11)

An illustration of these quantities is given in Fig. 5. If ηβ as above is well-defined, then
it satisfies (2.25) and hence by Lemma 2.17 the rescaled field

τβ
x = −ηβTx + ψβ(ηβ) |x | (3.12)

defines a critical BRW. The following lemma lends rigour to this:

Lemma 3.3. ηβ as given in (3.11) is well-defined and the unique positive root of the
strictly increasing map η 
→ ηψ ′

β(η) − ψβ(η). Consequently, the maps β 
→ ηβ and
β 
→ γβ are continuously differentiable.

Proof. Recall the Bessel function asymptotics Kα(β) ∼ 1
2 (2/β)α�(α) as α → ∞,

hence by (3.7) we have ψβ(η) ∼ η log η for η → ∞. Consequently, ψβ(η)/η diverges
as η → ∞ (and it also diverges as η ↘ 0). Hence it attains its infimum at some finite
value. We claim that there is a unique minimiser ηβ . Since ψβ(η)/η is continuously
differentiable in η > 0, at any minimum it will have vanishing derivative ∂η(ψβ(η)/η) =
[ηψ ′

β(η)−ψβ(η)]/η2. And in fact the map η 
→ ηψ ′
β(η)−ψβ(η) is strictly increasing,

since its derivative equals ηψ ′′
β (η) > 0, see (3.8), and as such has at most one root. This

implies that ηβ as in (3.11) is well-defined and the unique root of ηψ ′
β(η)− ψβ(η).

Continuous differentiability of β 
→ ηβ follows from the implicit function theorem
applied to f (η, β) := ηψ ′

β(η) − ψβ(η), noting that ∂η f (η, β) = ηψ ′′
β (η) > 0. This

directly implies continuous differentiability of β 
→ γβ = ψβ(ηβ)/ηβ ��
Considering the graphs in Fig. 5, one would conjecture that ηβ is strictly increasing

in β. One can apply the implicit function theorem to f (η, β) := ηψ ′
β(η) − ψβ(η) to

obtain

dηβ

dβ
= −[∂β f ](ηβ, β)

[∂η f ](ηβ, β)
= [∂βψβ ](ηβ) − ηβ [∂βψ ′

β ](ηβ)

ηβψ ′′
β (ηβ)

. (3.13)



H
2|2-model and Vertex-Reinforced Jump Process Page 23 of 51 196

The denominator is positive by (3.8), but we are not aware how to show non-negativity
of the numerator for general β. We can however make use of this for the special case
β = βc, which will be relevant in Sect. 3.3, in order to prove Theorem 3.1.

Proposition 3.4. Let ψβ(η) and ηβ be as in (3.7) and (3.11), for some d ≥ 2. For
βc = βc(d) > 0, as given in Proposition 2.14, we have ηβc = 1/2 and

d

dβ

∣
∣
∣
β=βc

ηβ > 0 and
d

dβ

∣
∣
∣
β=βc

ψβ(ηβ) > 0 (3.14)

Proof. By (3.10) we have 1
2ψ ′

βc
( 1

2 ) − ψβc(
1
2 ) = −ψβc(

1
2 ) = 0. Lemma 3.3 therefore

implies ηβc = 1/2. Applying (3.13) and recalling ψ ′
β( 1

2 ) = 0, we get

dηβ

dβ

∣
∣
∣
β=βc

= ∂β |β=βcψβ( 1
2 )

1
2ψ ′′

β (ηβ)
. (3.15)

The denominator is positive by (3.8). As for the numerator, we recall (3.7) for η = 1/2:

ψβ( 1
2 ) = log

(

d
∫ √

β

2π
e−β(cosh(t)−1)dt

)

. (3.16)

To see monotonicity of the integral in β it is convenient to apply the change of variables.

u = et/2 − e−t/2 = 2 sinh(t/2) ⇐⇒ t = 2 arsinh(u/2)

du

dt
= 1

2
(et/2 + e−t/2) =

√

1 + u2/4
(3.17)

Note that u2/2 = 1
2 (et + e−t ) − 1 = cosh(t)− 1, hence

∫ √
β

2π
e−β(cosh(t)−1)dt =

∫ √
β

2π
e−

β
2 u

2 2√
u2 + 4

du

=
∫ √

1

2π
e−

1
2 s

2 2
√
s2/β + 4

ds.

(3.18)

Clearly, the integrand in the last line is strictly increasing in β, hence ∂βψβ( 1
2 ) > 0.

This implies the first statement in (3.14). For the second statement note that ψ ′
βc

( 1
2 ) = 0.

Hence, ∂β |β=βcψβ(ηβ) = ∂β |β=βcψβ( 1
2 ) > 0. ��

As already suggested in Fig. 5, there is a second natural transition point β
erg
c > βc,

which is “special” due to γβ attaining its maximum there. This transition point will be
relevant for the study of the intermediate phase in Sect. 4.

Proposition 3.5 (Characterisation of β
erg
c ). Let ψβ(η) and ηβ be as in (3.7) and (3.11),

for some d ≥ 2. The map β 
→ ψ ′
β(1) − ψβ(1) is strictly decreasing and there exists a

unique β
erg
c = β

erg
c (d) > 0, such that

ψβ
erg
c

(1) = ψ ′
β

erg
c

(1). (3.19)
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Equivalently, βerg
c > 0 is characterised by any of the following conditions:

Eβ
erg
c
[T ] = − log d ⇐⇒ ηβ

erg
c

= 1 ⇐⇒ γβ
erg
c

= sup
β>0

γβ = log d. (3.20)

Moreover, for β < β
erg
c we have that ηβ < 1 and that β 
→ γβ is increasing, while for

β > β
erg
c one has ηβ > 1 and β 
→ γβ is decreasing.

Proof. By definition of ψβ and the t-field increment measure we have

ψ ′
β(1) − ψβ(1) = Eβ [T eT ] − log d = −Eβ [T ] − log d. (3.21)

We claim that β 
→ Eβ [T ] is strictly increasing. In fact, using the change of variables in
(3.17) and noting that e−t/2 = cosh(t/2)− sinh(t/2) = √

1 + (u/2)2 − u/2, we have

Eβ [T ] =
∫ √

β

2π
e−β(cosh(t)−1)e−t/2tdt

=
∫ √

β

2π
e−

β
2 u

2 2 arsinh(u/2)(
√

1 + (u/2)2 − u/2)
√

1 + (u/2)2
du

=− 2
∫ √

β

2π
e−

β
2 u

2 u

2

arsinh(u/2)
√

1 + (u/2)2
du.

(3.22)

It is easy to check that x arsinh(x)/
√

1 + x2 is strictly increasing in |x |. Consequently,
rescaling u = s/

√
β as in (3.18), we see that above integral is strictly increasing in β.

Moreover, one also observes that thatEβ [T ] → −∞ for β ↘ 0, whereasEβ [T ] → 0 for
β →∞. Hence by (3.21), there exists a unique β

erg
c > 0, such that ψ ′

β
erg
c

(1) = ψβ
erg
c

(1).

In particular, ηβ
erg
c

= 1.
The first two alternative characterisations in (3.20) follow from (3.21) and our pre-

vious considerations. Also, by Theorem 2.11, we have

ψβ(1) ≶ ψ ′
β(1) for β ≶ β

erg
c , (3.23)

which by Lemma 3.3 implies that ηβ ≶ 1 for β ≶ β
erg
c .

To show the last characterisation in (3.20), we calculate the derivative of β 
→ γβ =
ψβ(ηβ)/ηβ :

∂βγβ = ∂β [ψβ(ηβ)

ηβ

]

= 1
ηβ
[∂βψβ ](ηβ) + 1

ηβ
[∂βηβ ]ψ ′

β(ηβ) − 1
η2
β

[∂βηβ ]ψβ(ηβ)

= 1
ηβ
[∂βψβ ](ηβ),

(3.24)

where in the last line we used that ηβψ ′
β(ηβ) − ψβ(ηβ) = 0. By Theorem 2.11, the

last line in (3.24) is non-negative if ηβ ≤ 1 and non-positive for ηβ ≥ 1. Since ηβ ≶ 1
for β ≶ β

erg
c this implies the last statement in (3.20) as well as the stated monotonicity

behaviour of β 
→ γβ . ��
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3.2. Effective conductance in a critical environment (Proof of Theorem 3.2). First we
recall some results on small deviation of random walks. To be precise, we use an extension
of Mogulskii’s Lemma [66], due to Gantert, Hu and Shi [59].

Lemma 3.6 (Triangular Mogulskii’s Lemma [59, Lemma 2.1]). For each n ≥ 1, let
X (n)
i , 1 ≤ i ≤ n, be i.i.d. real-valued random variables. Let g1 < g2 be continuous

functions on [0, 1] with g1(0) < 0 < g2(0). Let (an) be a sequence of positive numbers
such that an → ∞ and a2

n/n → 0 as n → ∞. Assume that there exist constants η > 0
and σ 2 > 0 such that:

sup
n≥1

E

[
|X (n)

1 |2+η
]

< ∞, E

[
X (n)

1

]
= o

(
an
n

)

, Var
[
X (n)

1

]→ σ 2. (3.25)

Consider the measurable event

En :=
{

g1

(
i

n

)

≤ S(n)
i

an
≤ g2

(
i

n

)

∀i ∈ [n]
}

, (3.26)

where S(n)
i := X (n)

1 + · · · + X (n)
i , 1 ≤ i ≤ n. We have

a2
n

n
log (P[En]) −−−→

n→∞ −π2σ 2

2

∫ 1

0

1

(g2(t)− g1(t))2 dt. (3.27)

Lemma 3.7. For each k ≥ 1, let X (k)
i , i ∈ N, be i.i.d. real-valued random variables

with E[X (k)
i ] = 0 and σ 2

k := E[(X (k)
i )2]. Suppose that 0 < infk σ 2

k ≤ supk σ 2
k < ∞.

Write Ski = X (k)
1 + · · · + X (k)

i . For γ > 0 and ν ∈ (0, 1
2 ), define the events

E (k)
n := {|Si | ≤ γ nν, ∀i ∈ [n]}. (3.28)

then we have

lim
n→∞ sup

k∈N

∣
∣
∣
∣n

1−2ν logP[E (k)
n ] +

(πσk

2γ

)2
∣
∣
∣
∣ = 0. (3.29)

Proof. We proceed by contradiction. Write b(k)
n := −n1−2ν logP[E (k)

n ] and b(k)∞ :=
(

πσk
2γ

)2 and suppose (3.29) does not hold. Then there exists ε > 0, (kn)n∈N, and a
subsequence N0 ⊆ N

∀n ∈ N0 :
∣
∣
∣b(kn)

n − b(kn)∞
∣
∣
∣ > ε. (3.30)

Since the σ 2
k are bounded, we can refine to a subsequence N1 ⊆ N0 ⊆ N, such that

σ 2
kn

→ σ̃ > 0 along N1. But by Lemma 3.6 (with an = nν , g1 = −γ , and g2 = +γ )

we have b(kn)
n →−(πσ̃

2γ

)2 along N1, in contradiction with (3.30). ��
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Proof of Theorem 3.2. Recall the notation in Theorem 3.2. We proceed by proving the
statement for an individual increment V , but indicate at which steps care has to be taken
to establish the uniformity (3.5).

Write ∂	n := {x ∈ Td : |x | = n} for the vertices at distance n from the origin. Set
α := 1

2 (π2σ 2
V )1/3. Define the stopping lines of {Vx }x∈Td at level αn1/3:

L(n) := {(x, y) ∈ �E : Vy ≥ αn1/3, ∀z ≺ y : Vz < αn1/3}, (3.31)

where we write �E for the set or edges oriented away from the origin and “a ≺ b” means
that a is an ancestor of b. Let An denote the event that L(n) is a cut-set between the
origin and ∂	n . By (2.9), conditionally on the event An we have the point-wise bound

Ceff
n,γ ≤

∑

xy∈L(n)

e−γ (Vx+Vy). (3.32)

We thus have:

E

[
Ceff
n,γ

]
≤ E

[ ∑

xy∈L(n)

e−γ (Vx+Vy)
]

+ E

[
Ceff
n,γ1Ac

n

]
(3.33)

Bounding the second summand. Clearly, we have

P[Ac
n] ≤ P[∃|x | = n, such that ∀y ≺ x, |Vy | ≤ αn1/3]

+ P[∃|x | ≤ n, such that Vx ≤ −αn1/3]. (3.34)

To bound the first summand on the right hand side, we apply the many-to-one formula
(Proposition 2.15) with η = 1, and get a random walk (Si )i≥0, such that

P[∃|x | = n, such that ∀y ≺ x, |Vy | ≤ αn1/3]
≤ E

[∑
|x |=n1{∀y ≺ x, |Vy | ≤ αn1/3}

]

= E[eSn1∀i∈[n],|Si |≤αn1/3 ]
≤ eαn1/3

P[∀i ∈ [n], |Si | ≤ αn1/3].

(3.35)

In the third line we used that ψV (1) = 0. We recall that (since ψ(1)V = ψ ′
V (1) = 0)

we have E[S1] = 0 and E[S2
1 ] = σ 2

V . Applying Lemma 3.7 (with γ = α and ν = 1/3)
yields

P[∀i ∈ [n], |Si | ≤ αn1/3] = e−[2α+o(1)]n1/3
, (3.36)

where we used that (
πσV
2α

)2 = 2α. Moreover, Lemma 3.7 states that the convergence
in (3.36) is uniform over a family V (k), k ∈ N, of critical increments given that 0 <

infk σ 2
V (k) ≤ supk σ 2

V (k) < ∞. In conclusion we have

P[∃|x | = n, such that ∀y ≺ x, |Vy | ≤ αn1/3] ≤ e−[α+o(1)]n1/3
. (3.37)



H
2|2-model and Vertex-Reinforced Jump Process Page 27 of 51 196

Fot the second summand in (3.34) we have

P[∃|x | ≤ n, such that Vx ≤ −αn1/3] ≤
n∑

i=1

E

[ ∑

|x |=i

1Vx≤−αn1/3

]

=
n∑

i=1

∑

|x |=i

E[e−Vx eVx1Vx≤−αn1/3 ]

≤
n∑

i=1

∑

|x |=i

E[e−Vx ]e−αn1/3

=
n∑

i=1

eiψV (1)e−αn1/3

=
n∑

i=1

e−αn1/3

=ne−αn1/3
.

(3.38)

Where we used that eiψV (η) = ∑
|x |=i E[e−ηVx ], which one may check inductively.

In conclusion, (3.34), (3.37) and (3.38) yield P(Ac
n) ≤ e−(α+o(1))n1/3

. We proceed by
controlling the second summand in (3.33) using Cauchy-Schwarz and properties of the
effective conductance (Lemma 2.6):

E[Ceff
n,γ1Ac

n
] ≤

√
E[(Ceff

n,γ )2] e− α
2 [n1/3+o(1)] (3.39)

To bound the first factor on the right hand side note that Ceff
n,γ ≤ ∑

|x |=1e
−γ Vx by

Lemma 2.6. By Jensen’s and Hölder’s inequality

E[(∑|x |=1e
−γ Vx )2] ≤ d E[∑|x |=1e

−2γ Vx ]
= d2

E[e−2γ V ]
≤ d2

E[e−V ]2γ (1− 2γ−1
2a )

E[e−(1+2a)V ] 2γ
1+2a

2γ−1
2a

≤ d2−2γ (1− 2γ−1
2a )[ 1

d e
ψV (1+2a)] 2γ

1+2a
2γ−1

2a ,

(3.40)

where we used 1 = eψV (1) = d E[e−V ]. The last line in (3.40) is continuous in γ ∈ R,
hence uniformly bounded for γ ∈ (1/2, 1/2 + a). In conclusion, we have

sup
1/2<γ<1/2+a

E[Ceff
n,γ1Ac

n
] ≤ C(ψV (1 + 2a)) e−[

α
2 +o(1)]n1/3

, (3.41)

for a constant C(ψV (1 + 2a)) > 0 depending continuously on ψV (1 + 2a). In par-
ticular, this yields a uniform bound over a family of critical increments V (k) with
0 < infk σ 2

V (k) ≤ supk σ 2
V (k) < ∞ and supk ψV (k) (1 + 2a)∞.

Bounding the first summand. For a vertex x ∈ ∂	n we write (xk)k=0,...,n for its
sequence of predecessors (x0 = 0, xn = x). For a walk X = (Xi )i≥0, analogously to
our stopping lines, we introduce the stopping time at level αn1/3:

T (n)
X = inf{i ≥ 0 : Xi ≥ αn1/3} (3.42)
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Note that on the event An , we know for every x ∈ ∂	n that the sequence (Vxi )i=0,...,n

crosses level αn1/3. In other words, T (n)
(Vxi )

≤ n.

Consequently, the first summand in (3.33) is bounded via

E

[ ∑

xy∈L(n)

e−γ (Vx+Vy)
]
≤

n∑

k=1

E

[ ∑

|x |=k

1{T (n)
(Vxi )

= k}e−γ (Vxk−1 +Vxk )
]
. (3.43)

The last line is amenable to the many-to-one formula (Theorem 2.15). Write (Si )i≥0 for
the associated random walk (choosing η = 1), then the last line in (3.43) is equal to

n∑

k=1

E

[
1{T (n)

S = k}eSk e−γ (Sk−1+Sk )
]
=

n∑

k=1

E

[
1{T (n)

S = k}e−(2γ−1)Sk−1e(1−γ )(Sk−Sk−1)
]
.

(3.44)

Now, since Sk ≥ αn1/3 for T (n)
S = k, and since γ > 1/2 by assumption, we can bound

the right hand side and obtain

E

[ ∑

xy∈L(n)

e−γ (Vx+Vy)1An

]
≤ e−(2γ−1)αn1/3 ×

n∑

k=1

E

[
1{T (n)

S = k}e(1−γ )(Sk−Sk−1)
]

≤ e−(2γ−1)αn1/3 × nE
[
e(1−γ )S1

]
(3.45)

Now by using the definition of (Si ) in (2.21) we have

E[e(1−γ )S1 ] = d E[e−γ V ] ≤ d E[e−(1+2a)V ] γ
1+2a ≤ d [ 1

d e
ψV (1+2a)] γ

1+2a ≤ C(ψV (1 + 2a)),

(3.46)

for a constant C(ψV (1 + 2a)) > 0 that is independent of γ ∈ (1/2, 1/2 + a) and
continuous with respect to ψV (1 + 2a). Hence,

E

[ ∑

xy∈L(n)

e−γ (Vx+Vy)
]
≤ e−[(2γ−1)α+o(1)]n1/3

, (3.47)

and this bound holds uniformly with respect to γ ∈ (1/2, 1/2 + a) and over family of
critical increments V (k), given that supk ψV (k) (1+2a) < ∞. In conclusion (3.32), (3.41)
and (3.47) yield

E[Ceff
n,γ ] ≤ e−[α/2+o(1)]n1/3

+ e−[(2γ−1)α+o(1)]n1/3

≤ e−[min(
1
2 ,2γ−1)α+o(1)]n1/3

= e−[min(
1
4 ,γ− 1

2 )(π2σ 2
V )1/3+o(1)]n1/3

(3.48)

uniformly over γ ∈ (1/2, 1/2 + a) as n →∞. And as noted, this bound is also uniform
over a family of critical increments V (k), given the assumptions in the theorem. This
concludes the proof. ��
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3.3. Near-critical effective conductance (Proof of Theorem 3.1). The upper bound in
Theorem 3.1 will follow from Theorem 3.2 and a perturbative argument. For the lower
bound, we will apply a modification of a result due to Gantert, Hu and Shi [59]. In
their work they give the asymptotics for the probability that some trajectory of a critical
branching random walk stays below a slope δ|i | when δ ↘ 0. We are interested in this
result applied to the critical rescaling of t-field {τβ

x }x∈Td as given in (3.12). Comparing
to Gantert, Hu and Shi’s result, we will require additional uniformity in β:

Theorem 3.8. Let {τβ
x }x∈Td be as in (3.12). For any a > 0 small enough, there exists a

constant C > 0 such that for all β ∈ [βc, βc + a], for δ small enough:

Pβ [∃a path γ : 0 →∞ s.t. ∀i ∈ N, τβ
γi
≤ δi] ≥ e−C/

√
δ.

This theorem will be proven in Appendix B, as it closely follows the arguments of
Gantert, Hu and Shi, while taking some extra care to ensure the required uniformity.

Proof of Theorem 3.1. The main idea is to consider, for β = βc +ε, the critical rescaling
of the t-field (see Lemma 2.17, (3.11) and Lemma 3.3)

τ
β
i = −ηβTi + ψβ(ηβ) |i | . (3.49)

We remind the reader of the definition of the rescaled field with the following near-critical
behaviour for the constants (Proposition 3.4):

ηβc+ε = 1
2 + cηε + O(ε2) with cη > 0

ψβc+ε(ηβc+ε) = cψε + O(ε2) with cψ > 0.
(3.50)

Together with these asymptotics, application Theorem 3.8 and Theorem 3.2 to {τβ
i }i∈Td ,

will yield the lower and upper bound, respectively.

Lower Bound:According to Theorem 3.8 we have that there exist constants a,C > 0,
such that for all sufficiently small δ > 0:

inf
βc<β<βc+a

Pβ [∃a path γ : 0 →∞ s.t. ∀i ∈ N, τβ
γi
≤ δi] ≥ e−C/

√
δ. (3.51)

Note that τγi ≤ δi is equivalent to Tγi ≥ η−1
β [ψβ(ηβ) − δ]i . Choosing δ(ε) = 1

2cψε,

we have η−1
βc+ε[ψβc+ε(ηβc+ε) − δ(ε)] = cψε + O(ε2). Hence, for ε > 0 small enough

Pβc+ε[∃a path γ : 0 →∞ s.t. ∀i ∈ N, Tγi ≥ 1
2cψεi] ≥ e−C/

√
ε . (3.52)

Write Aε for the event in brackets. Conditionally on this event, we can bound Ceff∞ from
below by the conductance along the path γ (which is given by Kirchhoff’s rule for
conductors in series):

On Aε : Ceff∞ ≥
[ ∞∑

i=0

1

β
e−2 1

2 cψε i
]−1 = β(1 − e−cψε). (3.53)

Consequently, (3.52) and (3.53) yield

Eβc+ε[Ceff∞ ] ≥ (βc + ε)(1 − e−cψε)e−C/
√

ε = e−[C+o(1)]/√ε as ε → 0. (3.54)
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This concludes the proof of the lower bound in (3.1).

Upper Bound: Recalling the definition (3.49), we have for any i, j ∈ Td,n ⊆ Td that

eTi+Tj = e(|i |+| j |) ψβ(ηβ)/ηβ e−η−1
β (τ

β
i +τ

β
j ) ≤ e2n ψβ(ηβ)/ηβ e−η−1

β (τ
β
i +τ

β
j )

. (3.55)

Hence, if we write C̃eff
n for the effective conductance between the origin and ∂	n =

{x ∈ Td : |x | = n} in the electrical network with conductances {e−η−1
β (τ

β
i +τ

β
j )}i j∈E , we

have

Eβ [Ceff
n ] ≤ e2n ψβ(ηβ)/ηβ Eβ [C̃eff

n ]. (3.56)

For any β > 0, the field τ
β
i is the BRW for the critical increment τβ := −ηβT +ψβ(ηβ),

withT is distributed as a t-field increment (at inverse temperatureβ). Hence, Theorem 3.2
implies

Eβ [C̃eff
n ] ≤ exp[−[min( 1

4 , η−1
β − 1/2) (π2σ 2

τβ )1/3 + o(1)
]
n1/3] as n →∞,

(3.57)

and moreover this holds uniformly as β ↘ βc. Note that by (3.50) we have min( 1
4 , η−1

β −
1/2) = 1

4 for β sufficiently close to βc. In the following write β = βc + ε. By (3.50) we
have ψβc+ε (ηβc+ε)/ηβc+ε ∼ 2cψε as ε ↘ 0. Hence, choosing n = n(ε) = c′ε−3/2 we
have

2n(ε) ψβc+ε (ηβc+ε)/ηβc+ε ∼ 4cψc
′ε−1/2 and n(ε)1/3 = c′1/3ε−1/2, (3.58)

consequently for c′ > 0 sufficiently small, (3.56) and (3.57) together with Lemma 2.6
yield

Eβc+ε[Ceff∞ ] ≤ Eβc+ε[Ceff
n(ε)] ≤ e−(C+o(1)) ε−1/2

as ε ↘ 0, (3.59)

for some constant C > 0. ��
A corollary of the proof above, in particular (3.52), (3.53) is the following

Lemma 3.9. In the setting of Theorem 3.1 one has, for some constants c,C > 0

Pβc+ε[Ceff∞ > cε] ≥ exp[−(C + o(1))/
√

ε], (3.60)

as ε ↘ 0.

3.4. Average escape time of the VRJP as β ↘ βc (Proof of Theorem 1.2).

Lemma 3.10 (Local Time and Effective Conductance). Let L0∞ denote the time the
VRJP spends at the origin. Let Ceff∞ be the effective conductance between the origin and
infinity in the t-field environment. Also suppose Z is an independent exponential random
variable of unit mean. Then we have

L0∞
law=

√
1 + 2Z/Ceff∞ − 1. (3.61)
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Proof Write L̃0∞ for the total time the exchangeable timescale VRJP spends at the origin.
By the time change formula for the local times (2.3), we have:

L0∞ =
√

1 + L̃0∞ − 1. (3.62)

By Theorem 2.2, Lemma 2.4, and Lemma 2.7, L̃0∞ is Exp(2/Ceff∞ )-distributed. ��
Lemma 3.11 Let Ceff∞ be as in Theorem 3.1. For any α > 0, there exists a constant
c = c(d, α) > 0, such that for ε > 0 small enough and x ≥ ec/

√
ε

Pβc+ε[ 1
Ceff∞

> x] ≤ x−α. (3.63)

In particular, there exists a constant C > 0 such that

Eβc+ε

[ 1

Ceff∞

]
≤ e

C√
ε (3.64)

Proof Recall that the t-field environment is given by edge-weights {βi j eTi+Tj }i j∈E(Td ),
where the t-field Ti has independent increments along outgoing edges and is defined to
equal 0 at the origin. In particular, the environment on the subtree emanating from x
(which is isomorphic to Td ) is distributed as a t-field environment on Td multiplied by
e2Tx (which is the same as requiring that the t-field equals Tx at the “origin” x). For any
n ∈ N, and a vertex x at generation n, write ωn,x for the effective conductance from x
to infinity. By the above we have that {e−2Txωn,x }|x |=n are independently distributed as
Ceff∞ . Also, they are independent from the t-field up to generation n.

In the following, we replace each of the dn subtrees emanating from the vertices x at
generation n by a single edge “to infinity” with weight ωn,x . The resulting network has
the same effective conductance between 0 and infinity.

Define the event

An := {∃ |x | = n : e−2Txωn,x > 2cε}. (3.65)

By Lemma 3.9 we have Pβc+ε[e−2Txωn,x > 2cε] ≥ e−2C/
√

ε and hence

Pβc+ε[Ac
n] = 1 − Pβc+ε[An] ≤ (1 − e−2C/

√
ε)d

n ≤ e−dne−2C/
√

ε

, (3.66)

which is small for appropriately chosen n.
Hence, suppose we are working under the event An , and let x0 be a vertex at generation

n, such that e−2Tx0 ωn,x0 > 2cε. The effective conductance on the tree is larger than the
effective conductance on the subgraph where we only keep the edges between 0 and x0,
as well as an edge between x0 and infinity with conductance e2Tx0 2cε < ωn,x0 . Denote
the conductance of this reduced graph by C red. We write y0 = 0, . . . , yn = x0 for the
vertices along the path from 0 to x0. The series formula for conductances yields

1

Ceff∞
≤ 1

C red = 1

β

n−1∑

i=0

e−(Tyi +Tyi+1 ) +
1

2cε
e−2Tyn . (3.67)

We bound Tyi + Tyi+1 ≥ 2 min(Tyi , Tyi+1). Recall that Tyi
law= ∑i

k=0 T
(k) with i.i.d.

samples {T (k)}k≥0 from the t-field increment measure (2.17). This yields

1

C red ≤ ( n
β

+ 1
2cε )e−2 min(Ty0 ,...,Tyn ). (3.68)
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For fixed τ > 0 we apply a union bound and Chernoff’s bound (resp. Lemma A.1)

Pβ [min(Ty0 , . . . , Tyn ) < −nτ ] ≤
n∑

i=0

P[∑i
k=0 T

(k) < −nτ ]

≤
n∑

i=0

exp(−i�∗
β( ni τ)),

(3.69)

where �∗
β(τ ) = supλ≥0(λτ − logEβ [e−λT ]) is the Fenchel-Legendre dual of the

(negative) t-field increment’s log-MGF. Convexity of �∗
β (and �∗

β(0) = 0) implies
�∗

β( ni τ) ≥ n
i �

∗
β(τ ). Consequently, (3.69) yields

Pβ [min(Ty0 , . . . , Tyn ) < −nτ ] ≤ (n + 1)e−n�∗
β (τ ) for τ > 0 (3.70)

which by (3.67) and (3.68) implies

Pβc+ε[ 1
Ceff∞

> ( n
β

+ 1
2cε )e2nτ |An] ≤ (n + 1) exp[−n�∗

βc+ε(τ )], (3.71)

In Appendix A we obtain lower bounds on �∗
β (Lemma A.1). By (A.3), we have that

for fixed α > 0 and sufficiently small ε > 0, any sufficiently large τ > 0 will satisfy
�∗

βc+ε(τ ) ≥ 7ατ , uniformly as ε ↘ 0. To conclude, we choose n ≥ N (ε) := 4C
log(d)

√
ε
,

such that P[An] ≤ e−dn/2
. In conclusion, with above choices, (3.66) and (3.71) yield

Pβc+ε

[ 1
Ceff∞

> e3nτ
] ≤ e−6nατ + e−dn/2

(3.72)

This implies the claim. ��
Proof of Theorem 1.2. We start with the lower bound: By Lemma 3.10 there exists an
exponential random variable Z of expectation 1 such that:

E[L0∞] = E
[√

1 + 2Z/Ceff∞
]− 1

≥ E
[√

1 + 2Z/E(Ceff∞ )
]− 1 by cond. Jensen inequality

≥ E[√Z ]/E[Ceff∞ ] − 1

≥ exp(c/
√

ε) − 1 by Theorem 3.1.

(3.73)

For the upper bound, we start with Jensen’s inequality:

E[L0∞] = E
[√

1 + 2Z/Ceff∞ − 1
]

≤
√

1 + 2E
[
Z/Ceff∞

]− 1

=
√

1 + 2E
[
1/Ceff∞

]− 1

≤ √
2
√
E
[
1/Ceff∞

]
.

(3.74)

The result now follows by Lemma 3.11. ��
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4. Intermediate Phase of the VRJP

In this section we show that the VRJP on large finite regular trees exhibits an intermediate
phase. We also argue that Rapenne’s recent results [19] imply the absence of such an
intermediate phase on regular trees with wired boundary conditions.

4.1. Existence of an intermediate phase on Td,n (Proof of Theorem 1.3). The interme-
diate phase is characterised by the VRJP, despite being transient, spending “unusually
much” time at the root. To be precise, on finite trees the fraction of time spent at the
origin scales with the system size as a fractional power of the inverse system volume.
At the second transition point the walk then reverts to the behaviour that one expects by
comparison with simple random walk, spending time inversely proportional to the tree’s
volume at the starting vertex.

We will see that the different scalings will be due to different regimes for the log-
Laplace transform of the t-field increments, ψβ(η) = log[d EβeηT ], as elaborated in
Sect. 3.1.

Before starting the proof, we show how the observable in Theorem 1.3 can be
rephrased in terms of a t-field. The proof will then proceed by analysing the result-
ing t-field quantity via branching random walk methods.

Lemma 4.1 Consider the situation of Theorem 1.3. Further consider a t-field {Tx } on
Td,n, rooted at the origin 0. We then have

limt→∞ L0
t
t

law=
[∑

|x |≤n eTx
]−1

, (4.1)

Proof Trivially one has t =∑
|x |≤n Lx

t . Consequently,

lim
t→∞

L0
t
t = lim

t→∞
[ ∑

|x |≤n
Lx
t /L

0
t

]−1
. (4.2)

Hence, the claim follows from Corollary 2.3. ��
Proof of Theorem 1.3. In light of Lemma 4.1 we consider a t-field {Tx } on Td , rooted at
the origin. In the following we analyse the asymptotic behaviour of the random variable∑

|x |≤n eTx .

Case βc < β < β
erg
c : We note that it suffices to show

∑

|x |≤n
eTx = enγβ+o(n) a.s. for n →∞ with γβ = inf

η>0
ψβ(η)/η > 0, (4.3)

since we have 0 < γβ < log(d) by Proposition 3.5. The lower bound in (4.3) follows
from Theorem 2.16:

∑

|x |≤n
eTx ≥

∑

|x |=n

eTx ≥ emax|x |=n Tx = enγβ+o(n). (4.4)
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For the upper bound in (4.3) note that for η ∈ (0, 1) and ε > 0 we have

P[
∑

|x |≤n
eTx > en(γβ+ε)] ≤ e−nη(γβ+ε)

E[(
∑

|x |≤n
eTx )η]

≤ e−nη(γβ+ε)
E[
∑

|x |≤n
eηTx ]

= e−nη(γβ+ε)
n∑

k=0

eψ(η)k

(4.5)

Now let η = ηβ as in Lemma 3.3, i.e. such that γβ = ψβ(ηβ)/ηβ > 0. Note
that by Proposition 3.5, we have γβ ∈ (0, log(d)). With this choice (4.5) implies
lim supn→∞ 1

n log
∑

|x |≤n eTx ≤ γβ + ε almost surely for any ε > 0. This yields the
lower bound in (4.3).

Case β ≤ βc: This proceeds similarly to the previous case. For the lower bound we
simply use

∑
|x |≤n eTx ≥ eT0 = 1. For the lower bound we use (4.5) with γβ 
→ 0 and

η = 1/2, which implies that lim supn→∞ 1
n log

∑
|x |≤n eTx ≤ ε. almost surely for any

ε > 0.

Case β > β
erg
c : First note that the quantity Wn := d−n∑|x |=n e

Tx is a martingale.
In the branching random walk literature this is referred to as the additive martingale
associated with the BRW {Tx }x∈Td . Since Wn is non-negative it converges almost surely
to a random variable W∞ = limn→∞ Wn . Biggin’s martingale convergence theorem
[58, Theorem 3.2] implies that for β > β

erg
c (equivalently ψ ′

β(1) < ψβ(1), see Proposi-
tion 3.5), the sequence is uniformly integrable and the limit W∞ is almost surely strictly
positive. Consequently we also get convergence for the weighted average

1
∣
∣Td,n

∣
∣

∑

|x |≤n
eTx = 1

∣
∣Td,n

∣
∣

n∑

k=0

dkWk → W∞ > 0 a.s. for n →∞. (4.6)

In other words,

∑

|x |≤n
eTx ∼ ∣

∣Td,n
∣
∣W∞ = dn+O(1) as n →∞, (4.7)

which implies the claim for β > β
erg
c . ��

4.2. Multifractality of the intermediate phase (Proof of Theorem 1.4). For the proof we
will make use of explicit large deviation asymptotics for the maximum of the t-field.
These follow (as an easy special case) from results due to Gantert and Höfelsauer on the
large deviations of the maximum of a branching random walk [67, Theorem 3.2]:

Lemma 4.2 Consider the t-field {Tx }x∈Td on Td , pinned at the origin 0. Let γβ =
infη>0 ψβ(η)/η as in (3.11). For any γ > γβ we have

lim infn→∞ 1
n logP[max|x |=n Tx ≥ nγ ] = − supη∈R[γ η − ψβ(η)] < 0. (4.8)
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Proof As noted, this is a direct consequence of [67, Theorem 3.2]. To be precise, we
consider the special case of a deterministic offspring distribution (instead of Galton-
Watson trees) and fluctuations above the asymptotic velocity γβ (corresponding to the
case x > x∗ in [67]). In this case, the rate function given by Gantert and Höfelsauer
(denoted by x 
→ I (x) − log(m) in their article) is equal to

γ 
→ sup
η∈R

(γ η − logE[eηT ])− log d = sup
η∈R

[γ η − ψβ(η)]. (4.9)

This concludes the proof. ��
Proof of Theorem 1.4. By Lemma 4.1, we would like to understand fractional moments
of

[ lim
t→∞ L0

t /t]−1 law=
∑

|x |≤n
eTx , (4.10)

where {Tx }x∈Td denotes a t-field on the rooted (d + 1)-regular tree, pinned at the origin.
Recall the definition of ηβ in (3.11) and Lemma 3.3. For β ∈ (βc, β

erg
c ) we have ηβ ∈

(0, 1) by Proposition 3.5.
Case η ∈ (0, ηβ

]
: We recall Proposition 2.16, which implies that

lim
n→∞

1

n
max|x |=n

Tx = γβ = ψβ(ηβ)/ηβ. (4.11)

By Jensen’s inequality and Fatou’s lemma we get

lim inf
n→∞

1
n logE[(

∑

|x |≤n
eTx )η] ≥ lim inf

n→∞
1
n logE[eη max|x |=n Tx ]

≥ lim inf
n→∞

η

n
E[max|x |=n

Tx ]
≥ ηψβ(ηβ)/ηβ.

(4.12)

On the other hand, since η/ηβ ≤ 1

E[(
∑

|x |≤n
eTx )η] ≤ E[(

∑

|x |≤n
eTx )ηβ ]η/ηβ

(4.13)

For any η ∈ (0, 1) and β > βc we can bound

E[(
∑

|x |≤n
eTx )η] ≤ E[

∑

|x |≤n
eηTx ] ≤

n∑

k=0

ekψβ(η) ≤ enψβ(η)+o(n), (4.14)

where we used that infη>0 ψβ(η) = ψβ(1/2) > 0 for β > βc (cf. (3.10), (3.9) and
(3.16)). Applying this to the last line of (4.13), we obtain

E[(
∑

|x |≤n
eTx )η] ≤ en η ψβ(ηβ)/ηβ+o(n) (4.15)
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Case η ∈ [ηβ, 1
)
: The upper bound already follows from (4.14). For the lower bound

we start with

E[(
∑

|x |≤n
eTx )η] ≥ E[eη max|x |=n Tx ]

≥ enηγ
P[max|x |=n

Tx ≥ nγ ] for any γ > 0.

(4.16)

We get that for any γ ∈ R:

lim inf
n→∞

1
n logE[(

∑

|x |≤n
eTx )η] ≥ ηγ + lim inf

n→∞
1
n logP[max|x |=n

Tx ≥ nγ ]. (4.17)

By Lemma 4.2, we have

lim inf
n→∞

1
n logE[(

∑

|x |≤n
eTx )η] ≥ sup

γ>γβ

(
ηγ − sup

η̃∈R
[γ η̃ − ψβ(η̃)]

)
. (4.18)

We claim that the right hand side of (4.18) is equal to ψβ(η). For the upper bound simply
choose η̃ = η. For the lower bound first note that the supremum of η̃ 
→ γ η̃ − ψβη̃

is attained at the unique η̃, such that ψ ′
β(η̃) = γ (uniqueness follow from convexity

of η 
→ ψβ(η)). Since we assumed η > ηβ , we may choose γ = ψ ′
β(η), satisfying

γ > γβ = ψ ′
β(ηβ). Together with previous observation this shows that the right hand

side is larger or equal to ψβ(η). This concludes the proof. ��

4.3. On the intermediate phase for wired boundary conditions. We recall that for the
Anderson transition it was debated whether an intermediate multifractal phase persists
in the infinite volume and on tree-like graphs without free boundary conditions (see
Sect. 1.3).

We conjecture that there is no intermediate phase for the VRJP on regular trees with
wired boundary conditions. In this section, we would like to provide some evidence for
this claim, based on recent work by Rapenne [19].

Let Td,n denote the rooted (d + 1)-regular tree of depth n with wired boundary, i.e.
all vertices at generation n have an outgoing edge to a single boundary ghost g. We
consider Td,n ⊂ Td,n as a the subgraph induced by the vertices excluding the ghost. Let
{T g

x }x∈T d,n
denote a t-field on the wired tree Td,n , pinned at the ghost g, and at inverse

temperature β. We define

ψn(x) = eT
g
x for x ∈ Td,n, (4.19)

where we use the index n to make the dependence on the underlying domain Td,n
more explicit. This coincides with the (vector) martingale {ψn(x)}x∈Td,n considered
by Rapenne (see [32, Lemma 2] for a proof that these are in fact the same). By [19,
Theorem 2] we have for β > βc and p ∈ (1,∞)

supn≥1 Eβ [ψn(0)p] < ∞. (4.20)
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Our statement about the absence of an intermediate phase, will be conditional on a
(conjectural) extension of this result:

Conjecture: sup
n≥1

1
∣
∣Td,n

∣
∣

∑

x∈Td,n

Eβ [ψn(x)
p] < ∞ for p > 1 and β > βc. (4.21)

We believe this statement to be true due to the following heuristic: Given that the origin
of Td,n is furthest away from the ghost g, at which the t-field in (4.19) is pinned, we
expect the fluctuations of ψn(x) to be largest at x = 0. Hence, we expect the moments
of ψn(x) to be comparable with the ones of ψn(0), in which case (4.20) would imply
(4.21).

Proposition 4.3 Consider a VRJP started from the root of Td,n and let L0
t denote the

time it spent at root up until time t. Assume (4.21) holds true. Then, for any β > βc

lim
t→∞

L0
t

t
≤ ∣
∣Td,n

∣
∣−1+o(1)

w.h.p. as n →∞. (4.22)

This is to be contrasted with the behaviour in Theorem 1.3.

Proof Let {T x }x∈Td,n
denote the t-field on Td,n , pinned at the origin 0. We stress that

this is different from T
g
x , as used in (4.19), which is pinned at the ghost g. However, we

can sample the former from the latter: First consider an STZ-Anderson operator HB on
the infinite graph Td , as defined in Definition 1.8. Define Ĝn := (HB |Td,n )

−1 and also
define {ψn(x)}x∈Td by

(HBψn)|Td,n = 0 and ψ |Td\Td,n ≡ 1. (4.23)

By [32, Lemma 2], the ψn so defined (and restriced to Td,n) agree in law with the
definition in (4.19). Then define T x for x ∈ Td,n via

eT x = Ĝn(0, x) + 1
2γ

ψn(0)ψn(x)

Ĝn(0, 0) + 1
2γ

ψn(0)2
, (4.24)

where γ ∼ Gamma( 1
2 , 1) is independent of HB . By [32, Proposition 8], {T x }x∈Td,n has

the law of a t-field on Td,n , pinned at the origin 0 (and restricted to Td,n). Note that Tg

is not defined by (4.24). Using the conditional law of the t-field on Td,n given its values
away from the ghost, we can however define it such that {T x }x∈Td,n

is the “full” t-field

on Td,n , pinned at the origin. Then, as in (4.1), we have that

lim
t→∞

L0
t

t
law=

[ ∑

x∈Td,n

eT x

]−1

. (4.25)

By (4.24) and positivity of Ĝ we get

∑

x∈Td,n

eT x ≥
∑

x∈Td,n

eT x ≥ ψn(0)

2γ Ĝn(0, 0) + ψn(0)2

∑

x∈Td,n

ψn(x). (4.26)
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By [32, Theorem 1], for β > βc the fraction on the right hand side converges a.s. to a
(random) positive number as n → ∞. Hence, the claim in (4.22) follows if we show

that
∑

x∈Td,n
ψn(x) ≥

∣
∣Td,n

∣
∣1−o(1) a.s. as n →∞. For any s > 0 and q ≥ 1 we have

P[
∑

x∈Td,n

ψn(x) ≤ s
∣
∣Td,n

∣
∣] = P[( 1

∣
∣Td,n

∣
∣

∑

x∈Td,n

ψn(x))
−q ≥ s−q ]

≤ sq E[( 1
∣
∣Td,n

∣
∣

∑

x∈Td,n

ψn(x))
−q ]

≤ sq
1

∣
∣Td,n

∣
∣

∑

x∈Td,n

E[ψn(x)
−q ]

= sq
1

∣
∣Td,n

∣
∣

∑

x∈Td,n

E[ψn(x)
1+q ],

(4.27)

where in the last line we used the reflection property of the t-field (see Lemma C.1).
Subject to the assumption that (4.21) holds true, we may choose q = 1 and s = n−2 in
(4.27). An application of the Borel-Cantelli lemma then yields that

∑
x∈Td,n

ψn(x) ≥
∣
∣Td,n

∣
∣1−o(1) a.s. as n →∞. Together with (4.25) and (4.26), this implies (4.22). ��

5. Results for the H2|2-Model

5.1. Asymptotics for the H2|2-model as β ↘ βc (Proof of Theorem 1.5).

Proof of Theorem 1.5 By Theorem 1.2 it suffices to show that

〈x2
0 〉+β = lim

h↘0
lim
n→∞〈x

2
0 〉β;h,Td,n = Eβ [L0∞]. (5.1)

For this, we use the H
2|2-Dynkin isomorphism (Theorem 2.1):

〈x2
0 〉β;h,Td,n =

∞∫

0

dtEβ;Td,n

[
e−ht 1Xt=0

]
, (5.2)

where, subject to Eβ;Td,n , (Xt )t≥0 is a VRJP on Td,n started at 0. Coupling the VRJP
on Td,n with a VRJP on the infinite tree Td up to the time they first visit the leaves of
Td,n , we get

∣
∣Eβ;Td,n [1Xt=0] − Eβ;Td [1Xt = 0]∣∣ ≤ Pβ;Td [Tn ≤ t], (5.3)

with Tn being the VRJP’s hitting time of ∂Td,n = {x ∈ Td,n : |x | = n}. By definition
of the VRJP, the time it takes to reach ∂Td,n is stochastically lower bounded by an
exponential random variable of rate dβ/n. Consequently, the right hand side of (5.3)
converges to zero asn →∞. By this observation and the monotone convergence theorem
we have

〈x2
0 〉+β = lim

h↘0

∞∫

0

dte−ht
Eβ;Td

[
1Xt=0

] =
∞∫

0

dtEβ;Td

[
1Xt=0

] = Eβ;Td [L0∞], (5.4)

which proves the claim. ��
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5.2. Intermediate phase for the H2|2-model (Proof of Theorem 1.6). In this section, we
want to prove Theorem 1.6 on the intermediate phase of the H

2|2-model. We will make
use of the STZ-Anderson model, as defined in Definition 1.8, making use of its restriction
properties as discussed in [8,68].

The proof consists of three parts: First we evaluate the quantity on the left hand side
of (1.21) on a graph consisting of a single vertex (and a coupling to a ghost vertex). Then
we reduce the actual quantity in (1.21) onto the case of a single vertex with a random
effective magnetic field heff . As h ↘ 0, the law of heff can be expressed in terms of the
t-field and we can deduce Theorem 1.6 from Theorem 1.4 on the VRJP’s multifractality.

Lemma 5.1 Consider the H
2|2-model on a single vertex 0 with magnetic field h > 0.

For η ∈ (0, 1) we have

〈z0 |x0|−η〉h;{0} = hη × gη(h) (5.5)

with

gη(h) := 1

π
eh(2h)(1−η)/2 �( 1

2 − η
2 )K(1−η)/2(h). (5.6)

In particular

cη := 1

π
2−η �( 1

2 − η
2 )2 = lim

h↘0
gη(h) (5.7)

Proof For convenience, lets write 〈·〉 = 〈·〉h;{0}. By et0 = z0 + x0 and y0 = s0et0 , see
(2.12), we have

〈z0 |x0|−η〉
= 〈z0 |y0|−η〉 = 〈(et0 + x0) |y0|−η〉 = 〈et0 |y0|−η〉 = 〈et0 |s0|−η e−ηt0〉
= 〈e(1−η)t0 |s0|−η〉.

(5.8)

The last line can be interpreted in purely probabilistic terms: t0 follows the law of a t-
field increment with inverse temperature h > 0 and conditionally on t0, s0 is a Gaussian
random variable with variance e−t0/h. Consequently,

E[|s0|−η|t0] =
√
het0

2π

∫ +∞

−∞
ds|s|−ηe−het0 s2/2

= (het0)η/2 1√
2π

∫ +∞

−∞
dx |x |−ηe−x2/2

= (het0)η/2 2−η/2

√
π

�( 1
2 − η

2 ).

(5.9)

With (5.8) we obtain

〈z0 |x0|−η〉 = hη/2 2−η/2

√
π

�( 1
2 − η

2 )Eh[e(1−η/2)T ], (5.10)
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where T denotes a t-field increment at inverse temperature h. Expressing the exponential
moments of T in terms of the modified Bessel function of second kind Kα , as in (3.7),
and using small-argument asymptotics for the latter, we obtain

Eh[e(1−η/2)T ]=
√

2heh√
π

K(1−η)/2(h) ∼ hη/2× 2(1−η)/2�( 1
2 − η

2 )√
2π

as h ↘ 0. (5.11)

Inserting this into (5.10) yields the claim. ��
EffectiveWeight.Before proceeding, we need to introduce the notion of effective weight
for the STZ-field: Consider an STZ-Anderson model HB as in 1.8 and suppose the
underlying graph G = (V, E) is finite. Write GB = (HB)−1. Then, for i0, j0 ∈ V , the
effective weight between these two vertices is defined by

βeff
i0 j0 :=

GB(i0, j0)

GB(i0, i0)GB( j0, j0)− GB(i0, j0)2 . (5.12)

Another expression can be deduced using Schur’s complement: Write V0 = {i0, j0} and
V1 = V \ {i0, j0} and decompose HB as

HB =
(
H00 H01
H10 H11

)

, (5.13)

with H00 being the restriction of HB to entries with indices in V0 and analogously for
the other submatrices. By Schur’s decomposition we have

GB |V0 = H−1
B |V0

= (H00 − H01H
−1
11 H10)

−1

=
(

Bi0 − [H01H
−1
11 H10](i0, i0) −βi0 j0 − [H01H

−1
11 H10](i0, j0)

−β j0i0 − [H01H
−1
11 H10]( j0, i0) Bj0 − [H01H

−1
11 H10]( j0, j0)

)−1

.

(5.14)

Note that (5.12) reads as βeff
i0 j0

= GB(i0, j0)/ det(GB |V0) = GB(i0, j0) det([GB |V0 ]−1).
Hence using the familiar formula for the inverse of a 2 × 2-matrix we get

βeff
i0 j0 = βi0 j0 + [H01H

−1
11 H10](i0, j0), (5.15)

which is measurable with respect to B|V1 . The relevance of the effective weight stems
from the following Lemma (see [8, Sect. 6])

Lemma 5.2 For a finite graph G = (V, E) with positive edge-weights {βi j }i j∈E and
a pinning vertex i0, consider the natural coupling of an STZ-field (Bi )i∈V and a t-
field (Ti )i∈V (see Remark 2.10). For a vertex j0 ∈ V \ {i0} write V0 := {i0, j0} and
V1 := V \ {i0, j0}.

Then, conditionally on B|V1 , the t-field T |V0 = (Ti0 , Tj0) is distributed as a t-field
on V0, pinned at i0, with edge-weight given by βeff

i0 j0
= βeff

i0 j0
(B|V1).

Moreover, the notion of effective weight and effective conductance are directly re-
lated:
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Lemma 5.3 (Effective Conductance vs. Weight) Consider the setting of Lemma 5.2. For
j0 ∈ V \ {i0}, let Ceff

i0 j0
denote the effective conductance between i0 and j0 in the t-field

environment {βi j eTi+Tj }i j∈E . Then

Ceff
i0 j0 = eTj0 βeff

i0 j0 . (5.16)

This statement is proved in Appendix C. In the following, we will come back to the
setting of the regular tree.

Reduction to Two Vertices on the Tree. We denote by T̃d,n the graph obtained by
adding an additional ghost vertex g connected to every vertex of the graph Td,n . For
the H

2|2-model (and consequently the t-/s-field) we refer to the model on Td,n with
magnetic field h > 0 as the model on T̃d,n , pinned at the ghost g, with weights βxg = h
between the ghost and any other vertex.

Lemma 5.4 (Effective Magnetic Field at the Origin). Consider the natural coupling of t-
field, s-field and STZ-field on T̃d,n, at inverse temperature β > 0 and with magnetic field
h > 0, pinned at the ghostg. The randomfields are denoted by Tx , Sx and Bx , respectively
(x ∈ T̃d,n). Write V0 := {0, g} and V1 := T̃d,n \ {0, g} and define H11 := HB |V1 .

Conditionally on B|V1 , the t-/s-field at the origin (T0, S0) follows the lawof a t-/s-field
on {0, g} with effective magnetic field

heff := βeff
0g = h + hβ

∑

x,y∈V1:y∼0

H−1
11 (y, x). (5.17)

Proof By Lemma 5.2, conditionally on B|V1 , the t-field at the origin T0 has the law of
a t-field increment at inverse temperature heff . We claim that the analogous fact is true
for the joint measure of (T0, S0).

Recall that, conditionally on {Tx }, the law of {Sx } is that of Gaussian free field, pinned
at g, edge-weights given by the t-field environment {βi j eTi+Tj } over edges in T̃d,n with
βxg = h. Let Ceff

0g denote the effective conductance between the origin 0 and the ghost
g in the t-field environment. Then, conditionally on {Tx }, we have that S0 is a centred
normal random variable with variance given by the effective resistance 1/Ceff

0g (see [6,

Proposition 2.24]). By Lemma 5.3 we have Ceff
0g = eT0βeff

0g = eT0heff . To conclude, it

suffices to note that heff is measurable with respect to B|V1 . ��
Lemma 5.5 (Law of Effective Magnetic Field as h ↘ 0). Consider the setting of
Lemma 5.4. Further consider a t-field {T (0)

x } on Td,n, pinned at the origin, at the same
inverse temperature β. Then we have that

heff

h
law−→

∑

x∈Td,n

eT
(0)
x as h ↘ 0. (5.18)

Proof By (5.17) it suffices to show that

β
∑

y∈V1 : y∼0

H−1
11 (y, x)

law−→ eT
(0)
x as h ↘ 0. (5.19)
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We start by decomposing the restriction of HB to Td,n , i.e. without the ghost vertex g,
as follows

HB |Td,n =
(
B0 −β�

0−β�
0 H11

)

, (5.20)

where we write β0 = [β1y∼0]y∈V1 . By Schur’s complement we have

(HB |Td,n )
−1 =

(
(B0 − β�

0 H−1
11 β0)

−1 (B0 − β�
0 H−1

11 β0)
−1β�

0 H−1
11· · · · · ·
)

. (5.21)

As a consequence, for any x ∈ V1

(HB |Td,n )
−1(0, x)

(HB |Td,n )
−1(0, 0)

= (β�
0 H−1

11 )(0, x) = β
∑

y∈V1 : y∼0

H−1
11 (y, x). (5.22)

We now note that as h ↘ 0 the law of B|Td,n converges to that of a STZ-field on Td,n ,
as can be seen from (1.25). Consequently, by Proposition 2.9, the law of the left hand

side in (5.22) converges to that of eT
(0)
x , which proves the claim. ��

Proof of Theorem 1.6 Combining Lemma 5.1 and 5.4 we have

lim
h↘0

h−η〈z0 |x0|−η〉β,h;Td,n = lim
h↘0

Eβ,h[
(heff

h

)η

gη(h
eff)] (5.23)

We note that by [8, Proposition 6.1.2] we have E[heff ] ≤ h
∣
∣Td,n

∣
∣. Hence, for any fixed

C > 0 we have heff ≤ C with probability 1 − o(1) as h ↘ 0. Lemma 5.5 therefore
implies

lim
h↘0

h−η〈z0 |x0|−η〉β,h;Td,n = cηEβ [
( ∑

x∈Td,n

eT
(0)
x
)η], (5.24)

with cη > 0 given in (5.7). Consequently, application of Lemma 4.1 and Theorem 1.4
concludes the proof. ��
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A. Tail Bounds for the t-field Increments

In this section, we apply the Cramér-Chernoff method [69] to prove a doubly-exponential
lower tail-bound for sums of independent (negative) t-field increments. Consider the
Fenchel-Legendre dual of the t-field’s log-moment-generating function:

�∗
β(τ ) = sup

λ≥0
(λτ − logEβ [e−λT ]). (A.1)

Lemma A.1 (Lower Tail bound for sums of t-Field Increments). Let {Ti }i=1,...,n denote
independent random variables distributed according to the t-field increment measure
Qinc

β (see Definition 2.12). For any τ > 0 we have

Pβ [∑n
i=1 Ti ≤ −nτ ] ≤ exp

[
− n�∗

β(τ )
]
, (A.2)

Moreover, �∗
β is bounded from below as

�∗
β(τ ) > sup

0<ρ<1
[ρ βeτ

2
− β(1 −√

1 − ρ) + 1
2 log(1 − ρ)]

≥ ( 3
8βeτ − log[2eβ/2]).

(A.3)

To prove this, we note that for a t-field increment T , the random variable e±T follows
a (reciprocal) inverse Gaussian distribution. For completeness, recall that a random
variable X > 0 is said to follow an inverse Gaussian distribution, X ∼ IG(μ, β), if it
has density

eβ/μ

√
2π/β

e
− β

2 ( x
μ2 + 1

x ) dx

x3/2 (A.4)

over the positive real numbers. Similarly, Y > 0 follows reciprocal inverse Gaussian
distribution, Y ∼ RIG(μ, β), if it has density

eβ/μ

√
2π/β

e
− β

2 (y+ 1
μ2 y

) dy√
y

(A.5)

over the positive real numbers. With this convention, we have eT ∼ IG(1, β) and
e−T ∼ RIG(1, β). Also recall the moment-generating functions (MGF):

E[eλX ] = e
β
μ

(
1−
√

1−2μ2λ/β
)

for λ < β/(2μ2),

E[eλY ] = e
β
μ (1−√1−2λ/β)

√
1 − 2λ/β

for λ < β/2.

(A.6)

With this, we have everything we need:

Proof of Lemma A.1 By Markov’s inequality one easily derives the Chernoff bound

P[T ≤ −τ ] ≤ e−�∗
β (τ )

. (A.7)

Similarly, for independent t-field increments {Ti } one obtains

P[∑n
i=1 Ti ≤ −nτ ] ≤ e−n�∗

β(τ )
. (A.8)
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In the following, we establish lower bounds on �∗
β . We start by bounding Eβ [e−λt ],

using the elementary inequality xλ ≤ (λ/e)λex for x > 0:

E[e−λT ] = ρ−λ
E[(ρe−T )λ]

≤
(

λ
ρe

)λ

E[eρe−T ],
(A.9)

with the right hand side being finite and explicit for 0 < ρ < β/2 by the MGF for
the reciprocal inverse Gaussian distribution (A.6). Consequently, for any λ, τ > 0 and
0 < ρ < β/2 we have

λτ − logE[e−λT ] ≥ λ(τ − log(λ/ρ) + 1) − logE[eρe−T ]. (A.10)

In λ, the right hand side is maximised for λ = ρeτ , which yields

�∗
β(τ ) ≥ supρ>0(ρe

τ − logE[eρe−T ]). (A.11)

After inserting (A.6) and rescaling ρ 
→ β
2 ρ, first bound in (A.3) follows. For the second

bound, one may simply choose ρ = 3/4. ��

B. Uniform Gantert–Hu–Shi Asymptotics for τ
β
x : Proof of Theorem 3.8

We will stay close to the original proof by Gantert, Hu ans Shi [59], but get rid of some of
the technical details as we only require a lower bound not a precise limit. Also note that
Gantert et al. prove their result for general branching random walks, whereas we only
show the result for a deterministic offspring distribution. A crucial technical ingredient
to Gantert et al.’s proof is their extension of Mogulskii’s Lemma (Lemma 3.6), which
we also make use of.

Definition B.1 Let ρβ(δ, n) be the probability that there exists |x | = n such that for all
i ∈ [n], τxi ≤ δi .

Definition B.2 Let τ = τβ be a random variable distributed as the increment of {τβ
x }x∈Td .

Let Mβ be such thatPβ

(
τ ≥ Mβ

) = 2/3 and let pd > 0 be the probability that a Galton–
Watson tree where the reproduction law is given by a binomial Bin(d, 2/3) survives.
We now define for any δ > 0 small enough and for any n ∈ N the set Gn,δ as follows:

Gn,δ := {|x | = n such that τxi ≤
1

2
δi,∀i ∈ [(1 − δ/(2Mβ)n] and

for all
(

1 − δ

2Mβ

)
n + 1 ≤ k ≤ n, τxk − τxk−1 ≤ Mβ}.

(B.1)

The idea is that if Gn,δ is not empty, it means that there is a vertex x such that
|x | = n and ∀i ∈ [n], τxi ≤ δi . Then started at all the vertices of Gn,δ we can see if the
corresponding sets Gn,δ are not empty. This allows us to create a Galton–Watson tree.
The exact definition of Gn,δ is chosen to ensure that if it is not empty it contains many
vertices. In turn this means that if the Galton–Watson tree we construct is not empty then
it is infinite with high probability. To compute everything precisely we will use 3.6 but
first we need a preliminary result. The following results allows us to show that if Gn,δ

is not empty then with high probability it has many vertices.
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Lemma B.3 (Lemma 1 of [70]). Let (Zn)n∈N be a supercritical Galton Watson tree.
There exists η > 1 such that:

P[Zn < ηn] = P[Z is finite] + o(η−n). (B.2)

Corollary B.4 Let (Zn)n∈N be a supercritical Galton Watson tree. There exists η > 1
such that:

P[1 ≤ Zn ≤ ηn] = o(η−n). (B.3)

Proof The Galton–Watson tree conditioned on dying is a sub-critical Galton Watson
tree and thus the probability that it survives up to time n decreases exponentially in n.
This coupled with B.3 gives the desired result. ��

Now the goal is to give a lower bound on the probability that Gn,δ is not empty. First
we express this in terms of ρβ .

Lemma B.5 [[59, Lemma 4.3]]. Let δ > 0. We have:

Pβ [Gn,δ �= ∅] ≥ pdρβ(δ/2, n). (B.4)

Proof Let L :=
⌊(

1 − δ
2Mβ

)
n
⌋

.

Pβ [Gn,δ �= ∅] = Pβ

[

∃|x | = L such that τxi ≤
1

2
δi,∀i ∈ [L]

]

. . .

. . . × Pβ

[

∃|x | = n − L such that max
1≤k≤n−L

τxi − τxi−1 ≤ Mβ

]

≥ρβ(δ/2, n)pd .

(B.5)

��
Once we have this lower bound, we need to show that with high probability if |Gn,δ|

is not empty then it has many children with high probability.

Lemma B.6 Let L :=
⌊(

1 − δ
2Mβ

)
n
⌋
. There exists η > 1 such that for n − L large

enough (this only depends on d):

Pβ

[
1 ≤ |Gn,δ| ≤ ηn−L

∣
∣|Gn,δ| ≥ 1

] = o
( 1

ηn−L

)
. (B.6)

Proof If |Gn,δ| ≥ 1, it means that there exists x such that |x | = n and

τxi ≤ αδi,∀i ∈ [L] and max
L+1≤k≤n τxi − τxi−1 ≤ M. (B.7)

Now, if we restrictGn,δ to the descendant of xL , we get a Galton–Watson tree conditioned
to survive up to time n − L and where the reproduction law is a binomial B

(
n,Pβ(τ ≤

Mβ)
)

which does not depend on β. Then, by B.4, we have the desired result. ��
What is left is to give a lower bound ρ. The goal of the next lemmata is to give a

lower bound of ρ by terms for which we can apply Lemma 3.6.
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Lemma B.7 [Lemma 4.5 of [59]]. For any n ≥ 1 and any i ∈ [n], let Ii,n ⊂ R be a
Borel set. We have:

Pβ

[∃|x | = n such that ∀i ∈ [n], τxi ∈ Ii,n
] ≥ Eβ

[
eSn1∀i∈[n],Si∈Ii,n

]

1 + (d − 1)
∑n

j=1 h j,n
, (B.8)

where h j,n is defined by:

h j,n := sup
u∈I j,n

Eβ

[
eSn− j 1∀l∈[n− j],Sl+u∈Il+ j,n

]
. (B.9)

Lemma B.8 For any β > βc we have:

ρβ(n−2/3, n) ≥
Pβ

[
i
n − 1 ≤ Si

n1/3 ≤ i
n ∀i ∈ [n]

]

1 + (d − 1)ne2n1/3 . (B.10)

Proof Let Ii,n :=
[ i
n2/3 − n1/3, i

n2/3

]
. We have:

ρβ(n−2/3, n) ≥Pβ [∃|x | = n such that τxi ∈ Ii,n∀i ∈ [n]]

≥ Eβ

[
eSn1∀i∈[n],Si∈Ii,n

]

1 + (d − 1)
∑n

j=1 h j,n
by lemma B.7,

(B.11)

where h j,n is as in lemma B.7. The numerator of B.11 can be bounded as follows:

Eβ

[
eSn1∀i∈[n],Si∈Ii,n

]
≥ e(1−1)n1/3

P
[∀i ∈ [n], Si ∈ Ii,n

]
. (B.12)

As for the denominator, we have:

h j,n = sup
u∈I j,n

E
[
eSn− j 1∀i∈[n− j],Si∈[(i+ j)/n2/3−λn1/3−u,(i+ j)/n2/3−u]

]

≤e(i+ j)/n2/3− j/n2/3+n1/3

≤e2n1/3
.

(B.13)

From this we get the desired result. ��
Now we have everything we need to prove the result we want.

Proof of Theorem 3.8 Given the tree T
d and the τ -field on it we create the new tree T̃

as follows: we look at all the vertices x at distance n of the origin, and we only keep
those that are in Gn,δ . Then we look at the trees started at those vertices and we apply
the same procedure recursively. The tree we obtain is thus a Galton–Watson tree with
reproduction law given by the law of |Gn,δ|. Furthermore, by definition of Gn,δ , if T̃ is
infinite then there exists an infinite path γ in T

d such that for all i ∈ N, τγi ≤ δi . Now
we just need to give a lower bound on the probability that T̃ is infinite. By the lemmata
B.7 and B.8, we have by taking δn := 2n−2/3:

Pβ [Gn,δn �= ∅] ≥ pd
Pβ

[
i
n − 1 ≤ Si

n1/3 ≤ i
n ∀i ∈ [n]

]

1 + (d − 1)ne2n1/3 . (B.14)
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Now we want to apply 3.6 but unfortunately we are not exactly in the conditions of the
theorem, we would need Si

n1/3 ≤ i
n + something. To get that, we say that there exists

some constant c such that uniformly on some interval [βc, βc + a] we have:

Pβ [S1 ∈ (−2,−1)] ≥ c. (B.15)

Therefore for any δ > 0:

Pβ [∀i ∈ [δn1/3](Si − Si−1) ∈ (−2,−1)] ≥ elog(c)δn1/3
. (B.16)

Now, we get for any ε > 0 small enough:

Pβ

[
i

n
− 1 ≤ Si

n1/3 ≤ i

n
∀i ∈ [n]

]

≥ Pβ

[

∀i ∈ [εn1/3], (Si − Si−1) ∈ (−2,−1)

]

Pβ

[
i

n
− 1 + 2ε ≤ Si

n1/3 ≤ i

n
+ ε ∀i ∈ [n − εn1/3]

]

≥ elog(c)εn1/3
Pβ

[
i

n
− 1 + 2ε ≤ Si

n1/3 ≤ i

n
+ ε ∀i ∈ [n]

]

. (B.17)

Finally we satisfy the condition of our lemma 3.6. We have by lemma 3.6 that for any
interval of the form [βc, βc + a] there exists some explicit constant Ca such that :

lim sup
n→∞

sup
β∈[βc,βc+a]

n−1/3 logPβ

[
i

n
− 1 + 2ε ≤ Si

n1/3 ≤ i

n
+ ε ∀i ∈ [n]

]

≤ Cδ.

(B.18)

Define fβ by fβ := Eβ [s|Gn,δ(α)|] and let qβ,n be the extinction probability. We have
qβ,n = fβ(β, n). For any r < qβ,n we have:

qβ,n = fβ(0) +
∫ qβ,n

0
f
′
β(s)ds = fβ(0) +

∫ qβ,n−r

0
f
′
β(s)ds +

∫ qβ,n

qβ,n−r
f
′
β(s)ds.

(B.19)

Now, using that fβ is convex and therefore f
′
β is non-decreasing, we get:

qβ,n ≤ fβ(0) + (qβ,n − r) f
′
β(qβ,n − r) + r f

′
β(qβ,n) ≤ fβ(0) + (1 − r) f

′
β(1 − r) + r.

(B.20)

Now, fβ(0) = Pβ [Gn,δn = ∅] and f
′
β(1 − r) = Eβ [|Gn,δn |(1 − r)|Gn,δn |−1] which is

bounded from above by 1
1−rEβ(|Gn,δn |e−r |Gn,δn |). Now if we take r < 1/2 we get:

1 − qβ,n ≥ Pβ [Gn,δn �= ∅] − 2Eβ [|Gn,δn |e−r |Gn,δn |] − r. (B.21)

From this we get:

1 − qβ,n ≥Pβ [Gn,δn �= ∅] − 2

r2 Pβ

[
1 ≤ |Gn,δn | ≤ r2

]
− 2e−1/r

r2 − r

≥Pβ [Gn,δn �= ∅] − 2

r2 Pβ

[
1 ≤ |Gn,δ| ≤ r2

]
− 2r for r small enough.

(B.22)

By taking r = η−n we get that for n large enough, for some constant C > 0, for any
β ∈ [βc, βc + a]:

1 − qβ,n ≥ e−Cn1/3
. (B.23)

Then by noticing that n = (2/δn)
3/2 we get the desired result. ��
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C. Effective Conductance and Effective Weight

Before starting with the proof of Lemma 5.3, we would like to remind the reader of the
definition of the effective weight (5.12) as well as the discussion following it.

Proof of Lemma 5.3 Let DT denote the graph Laplacian on G with weights given by
the t-field environment {βi j eTi+Tj }i j∈E . The effective resistance (i.e. inverse effective
conductance) can be expressed as

1/Ceff
i0 j0 = (−DT |V \{i0})−1( j0, j0), (C.1)

where DT |V \{i0} denotes DT with deletion of the row and column corresponding to i0.
Recall that on V \ {i0} we have Bx =∑

y∼x βxyeTy−Tx . Defining the diagonal matrices

LT = diag({eTx }x∈T \{i0}), one may check that

− DT |V \{i0} = LT HB |V \{i0} LT . (C.2)

Inserting this into (C.1) yields

e−Tj0Ceff
i0 j0 =

eTj0

(HB |V \{i0})−1( j0, j0)
= H−1

B (i0, j0)

H−1
B (i0, i0) (HB |V \{i0})−1( j0, j0)

(C.3)

Using (5.14) and the familiar expression for the inverse of a 2x2-matrix, we have

H−1
B (i0, j0)

H−1
B (i0, i0)

= βi0 j0 + [H01H
−1
11 H10](i0, j0)

Bj0 − [H01H
−1
11 H10]( j0, j0)

. (C.4)

Note that the numerator equals βeff
i0 j0

. On the other hand, using a Schur decomposition
for HB |V \{i0}, decomposing V \ {i0} into { j0} and V1, one may compute

(HB |V \{i0})−1( j0, j0) = 1/(Bj0 − [H01H
−1
11 H10]( j0, j0)). (C.5)

Inserting (C.4) and (C.5) into (C.3) we obtain

e−Tj0Ceff
i0 j0 = βi0 j0 + [H01H

−1
11 H10](i0, j0) = βeff

i0 j0 , (C.6)

which proves the claim. ��
Lemma C.1 (Reflection Property of the t-Field). Consider a finite graph G = (V, E)

with positive edge weights {βi j }i j∈E . Let {Tx }x∈V denote a t-field on G with weights
{βi j }, pinned at some vertex i0. For any q ∈ R and x ∈ V we have

E[eqTx ] = E[e(
1
2−q)Tx ]. (C.7)

Proof On a graph with two vertices, the claim follows from the density of the t-field
increment measure (Definition 2.12). On a larger graph, we consider the natural coupling
of the STZ-field {Bx }x∈V and the t-field. By [8, Sect. 6.1] we know that conditionally on
By for y ∈ V \ {i0, x}, the t-field on {i0, x} follows the law of a t-field on this reduced
graph (still pinned at i0) with edge-weights given by an effective weight βi0x (the latter
being measurable with respect to the STZ-field outside {i0, x}). Consequently, the claim
follows from the statement on two vertices. ��
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