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Abstract: For any 2 < p < ∞ we prove that there exists an initial velocity field v◦ ∈ L2

with vorticity ω◦ ∈ L1 ∩ L p for which there are infinitely many bounded admissible
solutions v ∈ Ct L2 to the 2D Euler equation. This shows sharpness of the weak–strong
uniqueness principle, as well as sharpness of Yudovich’s proof of uniqueness in the class
of bounded admissible solutions. The initial data are truncated power-law vortices. The
construction is based on finding a suitable self-similar subsolution and then applying
the convex integration method. In addition, we extend it for 1 < p < ∞ and show that
the energy dissipation rate of the subsolution vanishes at t = 0 if and only if p ≥ 3/2,
which is the Onsager critical exponent in terms of L p control on vorticity in 2D.

1. Introduction and Main Results

We consider the Cauchy problem for the Euler equation

∂tv + div(v ⊗ v) + ∇ p = 0, (1a)

divv = 0, (1b)

v|t=0 = v◦, (1c)

posed on the domain [0, T ] × R
2, where p(t, x) is the pressure, v(t, x) is the velocity

field, and v◦(x) is the initial datum. In this work we are interested in non-uniqueness of
weak (i.e. distributional) solutions to the Euler equation. More precisely, we address the
question of what is the threshold regularity at t = 0 for which uniqueness of bounded
admissible solutions fails. A weak solution v ∈ L∞

t L2 to the Euler equation is called
admissible if it does not increase the (kinematic) energy E := 1

2‖v‖2
L2

E(t) ≤ E(0) for a.e. t ∈ [0, T ]. (2)

This admissibility criterion is based on considering weakly convergent sequences of
Leray solutions of Navier–Stokes with vanishing viscosity (see e.g. [26]). Before going
further, let us present our main result:
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Theorem 1.1. For any 2 < p < ∞ there exists a steady solution vs ∈ L2 with vorticity
ωs ∈ L1 ∩ L p to the Euler equation, with the property that there are infinitely many
bounded admissible solutions v ∈ Ct L2 to the Euler equation (1) starting from v◦ = vs .
Moreover, vs is compactly supported and smooth away from the origin.

In the next sections we explain how Theorem 1.1 shows sharpness of the weak–strong
uniqueness principle, as well as sharpness of Yudovich’s proof of uniqueness in the class
of bounded admissible solutions.

1.1. Sharpness of the Weak–Strong Uniqueness Principle. Admissible solutions coin-
cide with strong solutions as long as the latter exist: Suppose v◦ admits a strong solution
vs ∈ C1, and let v be another admissible solution. A straightforward computation shows
that the relative energy Erel := 1

2‖v − vs‖2
L2 can be bounded by

Erel(t) ≤
∫ t

0

∫
R2

|∇vs ||v − vs |2 dx dτ. (3)

This estimate combined with the Grönwall inequality allows to conclude that necessarily
Erel = 0 (v = vs). Indeed, it is enough to assume that ∇vs ∈ L1

t L
∞. This fact is known

in the literature as the weak–strong uniqueness principle (see e.g. [74]).

Theorem 1.2. (Weak–strong uniqueness principle) Suppose there exists a strong solu-
tion vs ∈ C1 to the Euler equation. Then, it is unique within the class of admissible
solutions.

By the Sobolev embedding W 1,p ⊂ C1−2/p for 2 < p < ∞, Theorem 1.1 implies
the following result, which shows sharpness of Theorem 1.2 for Hölder spaces. More
precisely, it states that if theC1 assumption is weakened at a single point byCγ for some
0 < γ < 1, then uniqueness fails in the class of admissible solutions. As a by-product, it
shows existence of wild data above the Onsager critical exponent γ = 1/3 (see Sect. 2.2).

Theorem 1.3. For any 0 < γ < 1 there exists a steady solution vs ∈ Cγ to the Euler
equation, with the property that there are infinitely many admissible solutions v ∈ Ct L2

to the Euler equation (1) starting from v◦ = vs . Moreover, vs is compactly supported
and smooth away from the origin.

Notice that Theorem 1.2 concerns uniqueness, while existence is just an assumption.
Above C1 regularity, Wolibner [75] and Hölder [49] proved global well-posedness of
the 2D Euler equation in C1,γ for any γ > 0 (assuming suitable decay as |x | → ∞).
In this class, uniqueness follows immediately from Theorem 1.2. The proof of global
existence exploits the fact that the vorticity ω = rotv is transported by the flow

∂tω + div(vω) = 0, (4a)

v = ∇⊥�−1ω, (4b)

ω|t=0 = ω◦, (4c)

where ω◦ = rotv◦, and (4b) is the Biot-Savart law

v(x)∗ = 1

2π i

∫
R2

ω(y)

x − y
dy. (5)
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In (5) we identify R
2 with the complex plane C as usual, where i denotes the imaginary

unit and ∗ the complex conjugate. It is well known from Harmonic analysis that the
map ω �→ ∇⊥�−1ω = v is continuous from Cγ to C1,γ . For C1 vector fields v, the
trajectory map X of the flow is well defined by the Cauchy-Lipschitz theory applied to

∂t X = v(t, X), (6a)

X |t=0 = id. (6b)

Thus, the Euler equation (4) can be written as ω(t, X) = ω◦(x), where ω and X are
related implicitly through v. The rigorous proof of global existence in C1,γ is carried
out by a Schauder fixed-point argument. This result is in stark contrast to the 3D case,
where Elgindi [31] proved formation of finite-time singularities due to vortex stretching
(local well-posedness was known since Lichtenstein [55] and Gunther [47]).

In the borderline case C1, Bourgain and Li [4] and latter Elgindi and Masmoudi
[32] proved strong ill-posedness for the Euler equation (see [20] for strong ill-posedness
in Hβ ). The reason behind is that the map ω �→ v sends bounded vorticities to log-
Lipschitz velocities. Remarkably, Yudovich [76] showed that the log-Lipschitz modulus
of continuity is still valid to define uniquely the Lagrangian map X and prove global well-
posedness (see also [56, Chapter 8]). This fact makes the class of bounded vorticities a
natural space for the 2D Euler equation. In order to motivate Theorem 1.1 it is convenient
to recall Yudovich’s proof of uniqueness, which can be understood as a refinement of
the proof of the weak–strong uniqueness principle.

1.2. Sharpness of Yudovich’s Proof of Uniqueness. We start by recalling two classical
estimates of the Biot-Savart operator (5). The first one is the boundedness of the map
ω �→ v from L1 ∩ L p to L∞ for any 2 < p ≤ ∞. This follows by splitting R

2 into
|x − y| ≥ 1 & |x − y| < 1, and then applying the Hölder inequality

‖v‖L∞ ≤ ‖ω‖L1 +

(
p − 1

p − 2

)1−1/p

‖ω‖L p . (7)

The second estimate is the L p-boundedness of the map ω �→ ∇v for any 1 < p < ∞.
Notice that (5) is the Cauchy transform, and thus ∇v can be written in terms of the
Beurling transform of ω, a 2D version of the Hilbert transform (see e.g. [3]). Then, it
follows from the Calderon-Zygmund theory that

‖∇v‖L p ≤ C
p2

p − 1
‖ω‖L p . (8)

We will use C to denote a constant, which may change from line to line but will be
universal. While the bound (8) gives the exact growth as p → 1,∞, here we just need
the inequality ‖∇v‖L p ≤ Cp‖ω‖L p for 2 < p < ∞.

Next, we recall Yudovich’s energy method. Let vs ∈ Ct L2 with ωs ∈ L∞
t (L1 ∩ L∞)

be a (Yudovich) solution, and let v be another bounded admissible solution with v◦ = v◦
s .

By applying the Hölder inequality and (8), the right hand side of (3) can be bounded by

∫
R2

|∇vs ||v − vs |2 dx ≤ Cp‖ωs‖L p‖v − vs‖2/p
L∞E1−1/p

rel , (9)
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for any 2 < p < ∞, which plugged into (3) implies that

Erel(t) ≤ ‖v − vs‖2
L∞
t,x

(C‖ωs‖L p t)p. (10)

We recall that ‖ωs‖L p is independent of time because ωs(t, X) = ω◦
s (x) with X volume-

preserving by divvs = 0. On the one hand, the term ‖v − vs‖L∞
t,x

can be bounded by the
L∞
t,x -norm of v and vs separately: the first is bounded by hypothesis, and the latter by

(7) for p = ∞. On the other hand, by the log-convexity of the L p-norms we have

‖ωs‖L p ≤ max{‖ωs‖L1 , ‖ωs‖L∞} < ∞. (11)

Finally, by letting p → ∞ in (10), it follows that necessarily Erel = 0 (v = vs).

Theorem 1.4. (Yudovich’s well-posedness Theorem) Let v◦ ∈ L2 with ω◦ ∈ L1 ∩ L∞
and divv◦ = 0. Then, there exists a global solution v ∈ Ct L2 with ω = L∞

t (L1 ∩ L∞)

to the Euler equation. Furthermore, it is unique within the class of bounded admissible
solutions.

Theorem, 1.1 shows sharpness of Yudovich’s proof of uniqueness for L p spaces.
More precisely, it states that if the L∞ assumption is weakened at a single point by L p

for some 2 < p < ∞, then uniqueness fails in the class of bounded admissible solutions.
Let us point out where Yudovich’s proof of uniqueness is not working in Theorem

1.1. Notice that the term ‖v − vs‖L∞
t,x

can still be bounded by the L∞
t,x -norm of v and

vs separately: the first is bounded by hypothesis, and the latter by (7) for 2 < p < ∞.
However, now the condition (11) fails, namely we have ‖ωs‖Lq = ∞ for q > p, which
prevents from concluding Erel = 0 via (10).

We finish the intro with several remarks, as well as a sketch of the proof of Theorem
1.1.

1. Our solutions have compact support. Hence, the same results hold in any arbitrary
open subset of R

2, as well as in the periodic domain T
2.

2. Theorem 1.1 is a corollary of Theorem 1.5. We have chosen to introduce them sep-
arately for clarity of presentation. In fact, we take the same vs in all the theorems.
They are truncated power-law vortices

vs(x) = χ(|x |)|x |−αx⊥, (12)

where χ is a smooth cutoff function, and 0 < α < 1 is a parameter. With this choice
we have vs ∈ C1−α and ωs ∈ L2/α−. The time of existence depends on the truncation,
and it can be made arbitrarily large (see (63)).

3. Our solutions v ∈ Ct L2 are obtained via convex integration. They equal vs outside
a disc of radius (ct)1/α, where 0 < c ≤ Cα are constants that will be specified in
Sect. 5. As a result, v|t=0 = vs and they are smooth outside {|x | ≤ (ct)1/α}. Inside
this region
we only know that the vorticity is a distribution. The question of non-uniqueness
of vorticities in L∞

t (L1 ∩ L p) remains open (see Sect. 2.1). In spite of the lack of
uniqueness and regularity, these velocities are close in average to a smooth radially
symmetric subsolution

v̄(t, x) = χ(|x |)h(t, |x |)
|x | x⊥, (13)
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where h is a self-similar profile

h(t, r) = (ct)
1−α
α H(ξ), ξ = r

(ct)1/α
. (14)

We will declare H(ξ) = ξ1−α for ξ ≥ 1, or equivalently v̄ = vs for |x | ≥ (ct)1/α.
Our central task will be therefore to find a suitable profile H on [0, 1].

4. The construction explained in (3) is also valid for 1 ≤ α < 2. Thus, Theorem 1.1
holds for 1 < p ≤ 2, but removing the property “bounded”. The borderline case
α → 2 corresponds to a point vortex. This will be analyzed in Sect. 6.

5. We can impose that our solutions conserve the energy. The energy dissipation rate
of the subsolution vanishes at t = 0 if and only if α < 4/3. This corresponds to the
Onsager critical exponent p = 3/2 in terms of L p control on vorticity in 2D (see
Sect. 3).

1.3. Sketch of the Proof. The proof of Theorem 1.1 relies on devising a suitable subso-
lution, a solution to the relaxed Euler equation, and then applying the convex integration
method [26].

We start by rewriting the relaxed Euler equation, also known as the Euler-Reynolds
equation, for radially symmetric (13) self-similar (14) subsolutions. Remarkably, the
use of complex coordinates simplifies the computations and the choice of the Reynolds
stress.

Secondly, under these ansatzes, we show that an admissible subsolution exists pro-
vided that the profile H satisfies the following conditions

(4 − α)

∫ 1

0
ξ2H dξ = 1, (15)

2(2 − α)

∫ 1

0
ξH2 dξ < 1. (16)

The first condition (15) is necessary to guarantee that the Reynolds stress remains con-
centrated on {|x | ≤ (ct)1/α}. The second condition (16) arises from imposing the admis-
sibility.

Remark 1.1. It is straightforward to check that the above conditions are consistent with
α > 0 (equiv. p < ∞). Namely, by applying the Hölder inequality, we get

1

(4 − α)2 =
(∫ 1

0
ξ2H dξ

)2

≤
∫ 1

0
ξ3 dξ

∫ 1

0
ξH2 dξ <

1

8(2 − α)
, (17)

which is satisfied for α > 0. In the limiting case α = 0 (p = ∞) the equality in (17)
holds if and only if H(ξ) = ξ . In this case, the subsolution agrees with the steady
solution, v̄ = vs , and thus [26] can only yield non-admissible solutions.

Thirdly, we construct a profile H . In particular, we make the ansatz

H(ξ) = (1 − a log ξ)ξ1+b,

and we show that it is possible to take the parameters a, b > 0 satisfying the conditions
(15)(16). In addition, we show that there exits a unique c > 0 maximizing the energy
dissipation rate of the subsolution (Figs. 1, 2, 3).

Finally, after truncating our solutions to guarantee that the energy is finite, we obtain
the following result, from which we deduce Theorem 1.1 as a corollary by applying [26].
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Fig. 1. From lighter to darker blue, plot of the energy Ē(t) of the subsolution (v̄, σ̄ , q̄) for the powers α = k/3
with k = 1, 2, 3, 4, 5. The initial energy E(0) is taken independently of α. For α = 1/3, 2/3 the energy is
almost constant. The power α = 1 corresponds to the threshold for bounded velocities. The power α = 4/3

corresponds both to the threshold for L3/2 vorticities and ∂t Ē |t=0 = 0. For α = 5/3 the energy decreases
faster
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0
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2/3

3/3

4/3

5/3

Fig. 2. From lighter to darker blue, plot of the boundary (ct)1/α for the powers α = k/3 with k = 1, 2, 3, 4, 5.
This shows how the region {|x | ≤ (ct)1/α} shrinks as α → 0 (equiv. p → ∞)

Theorem 1.5. There exists a subsolution to the Euler equation which agrees with (12)
outside {|x | ≤ (ct)1/α}. Furthermore, the energy dissipation rate equals

∂t Ē = − π

16
c

8−α
2α t

4−3α
α with c =

(
2α

4 − α

)2

.

In particular, ∂t Ē |t=0 = 0 if and only if α < 4/3, or equivalently ω◦ ∈ L3/2.

1.4. Organization of the Paper. In Sect. 2 we review the literature and compare it with
the present work. In Sect. 3 we give a heuristic explanation of Theorem 1.5. In Sect. 4 we
write the relaxed Euler equation (23) for radially symmetric self-similar subsolutions.
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In Sect. 5 we derive the conditions under which an admissible subsolution exists, and
we construct an example. Then, we prove Theorems 1.1 & 1.5. Finally, we analyze the
borderline case α → 2 in Sect. 6.

2. Brief Background

In this section we review the literature on non-uniqueness for the Euler equation and
compare it with the present work.

2.1. Self-similarity and Symmetry Breakdown. The global existence of solutions was
extended to the vorticity class L1 ∩ L p for 1 < p ≤ ∞ by DiPerna and Majda [29] (see
also [56, Chapter 10]). In contrast to Yudovich well-posedness Theorem, uniqueness is
not expected to hold for p < ∞. Roughly speaking, the Sobolev embedding implies
continuity of the velocity field, and thus existence of the Lagrangian map X by the
Peano Theorem, but the modulus of continuity does not satisfy the Osgood uniqueness
criterion. Let us formulate this question as a conjecture, which remains open to the best
of our knowledge.

Conjucture 2.1. For any 2 < p < ∞ there exists v◦ ∈ L2 with ω◦ ∈ L1 ∩ L p, with the
property that there is more than one weak solution v ∈ Ct L2 with ω ∈ L∞

t (L1 ∩ L p) to
the Euler equation (4).

In the recent groundbreaking work [71,72] Vishik solved Conjecture 2.1 for the
forced Euler equation (see also the book [2])

∂tω + div(vω) = f, (18a)

v = ∇⊥�−1ω, (18b)

ω|t=0 = ω◦. (18c)

Theorem 2.1. (Vishik’s non-uniqueness Theorem) For any 2 < p < ∞ there exists
v◦ ∈ L2 withω◦ ∈ L1∩L p anda force f = rotg ∈ L1

t (L
1∩L p)with g ∈ L1

t L
2, with the

property that there are infinitely many weak solutions v ∈ Ct L2 with ω ∈ L∞
t (L1 ∩ L p)

to the forced Euler equation (18).

Remarkably, Albritton, Brué, and Colombo [1] proved recently non-uniqueness of
Leray solutions for the forced 3D Navier-Stokes equation by adapting properly Vishik’s
construction into the cross section of an axisymmetric vortex ring. This approach is
framed within the program of Jia, Šverák, and Guillod [46,53] on the conjectural non-
uniqueness of Leray solutions of the (unforced) 3D Navier–Stokes equation.

In the recent investigation [5,6] Bressan, Murray, and Shen showed numerical evi-
dence toward the validity of Conjecture 2.1. Their work is also based on self-similarity
and symmetry breakdown. Their approach suggests two different ways of regularizing
a non-radially symmetric version of ωs , leading to either one or two algebraic spirals.
In contrast to Vishik’s spectral analysis, their construction relies on a smart system
of adapted coordinates due to Elling [33,34] (see also the recent work of García and
Gómez-Serrano for gSQG [39]).
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2.1.1. Relation Between Theorem 1.1 and Vishik’s Non-uniqueness Theorem Theorem
1.1 has certain connections with Vishik’s non-uniqueness Theorem. Firstly, both theo-
rems share the same initial data (12). Secondly, Vishik’s construction is also based on
finding a suitable self-similar velocity v̄. Furthermore, v̄ is a modification of the power-
law vortex β|x |−αx⊥ in a disc of radius 2t 1/α, where β is a sufficiently large constant.
Thirdly, v̄ is also truncated by χ to guarantee integrability at infinity.

In spite of these similarities, both the results and the proofs differ significantly. Con-
cerning the results, Vishik’s non-uniqueness Theorem solves Conjecture 2.1 in the natural
vorticity class L1 ∩L p by introducing a force, while Theorem 1.1 shows non-uniqueness
without forcing by considering distributional vorticities. Our original motivation was in-
deed to explore the possibility of removing the force in Theorem 2.1 by means of convex
integration, but paying the price of the low-regularity inherent to these constructions.
The first obvious attempt was to absorb Vishik’s force into the Reynolds stress. However,
it was not immediate for us that the corresponding subsolution was admissible. More
precisely, we first needed to derive the conditions under which a radially symmetric
self-similar subsolution yields admissible solutions via convex integration. After this,
instead of checking if Vishik’s vortex satisfies these conditions, it becomes easier to
construct our own profile H .

2.2. Convex Integration. As we mentioned, in this work we deal with a weaker version
of Conjecture 2.1: the integrability condition ω ∈ L∞

t (L1 ∩ L p) is removed (for t > 0)
and then necessarily (4) is replaced by (1). The first result in this direction is due to
Scheffer [65]: there exist Euler velocities v ∈ L2

t,x with compact support in space-time.
Latter, this construction was simplified by Shnirelman [66]. In the seminal work [25] De
Lellis and Székelyhidi proved the same result in the energy space L∞

t L2, and for any
space dimension d ≥ 2.

Observe that these solutions show non-uniqueness for the trivial initial datum v◦ = 0.
Non-uniqueness in L∞

t L2 was generalized by Wiedemann [73] for every divergence-
free v◦ ∈ L2 (see [54] for recent improvements of the regularity). For smooth initial
data, the aforementioned solutions necessarily increase the energy, as a consequence of
the weak–strong uniqueness principle. In this sense, a divergence-free v◦ ∈ L2 is called
wild if it admits infinitely many admissible solutions v ∈ L∞

t L2.
In [26] De Lellis and Székelyhidi initiated the investigation on non-uniqueness of ad-

missible solutions, upon which this work is based. Recall that the property “admissible”
includes both conservative (E = E(0)) and dissipative (E < E(0)) solutions. In his
famous work [64] Onsager conjectured, in the context of the zeroth law of turbulence,
the threshold regularity for the validity of the energy conservation of weak solutions to
the Euler equation (in T

3). Onsager’s conjecture, which is nowadays a theorem, can be
stated as follows:

1. Any weak solution v ∈ CtCγ to the Euler equation with γ > 1/3 conserves the
energy.

2. For any 0 < γ < 1/3 there exist weak solutions v ∈ CtCγ to the Euler equation
which do not conserve the energy.

Part (1) was fully proved by Constantin, E, and Titi [17], after a partial result of Eyink
[35]. Part (2) was solved more recently by Isett [50], and by Buckmaster, De Lellis,
Székelyhidi, and Vicol [9]. The last achievement took a decade of refinements of the
convex integration method, and the study of its connection with turbulent flows is still
an active research area (see e.g. the recent works [44,63]). Recently, the dissipative part
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of the 2D Onsager conjecture was solved by Giri and Radu [45]. The convex integration
method has been applied to other 2D active scalar equations (see e.g. [22,52,67]) as well
as the transport equation (see e.g. [59–61]).

Unfortunately, it seems not possible with the current convex integration techniques
to construct solutions, neither with v ∈ Cγ for 1/3 ≤ γ < 1, nor with ω ∈ L p for
p ≥ 1 in two dimensions. In [7] Brué and Colombo constructed a Cauchy sequence ωk
in the Lorentz space L1,∞, whose velocities vk converge to an anomalous weak solution
v. In [8] Buck and Modena adapted the previous construction for the Hardy space H p

for 2/3 < p < 1. This space is also weaker than L1 but, in contrast to L1,∞, it already
embeds into the space of distributions.

2.2.1. Relation Between Theorem 1.3 and Onsager’s Conjecture Coming back to the
initial value problem, Theorem 1.3 gives presumably the first example of wild data with
Hölder regularity above the Onsager critical exponent 1/3 ≤ γ < 1 (see [10] for a convex
integration construction in C1/2− for the forced 3D Euler equation). Below the Onsager
critical exponent 0 < γ < 1/3, Daneri, Runa, and Székelyhidi [23] proved that the set
of wild data v◦ ∈ Cγ is a dense subset of the divergence-free vector fields in L2 (see
also [28]). However, to the best of our knowledge, it was not known neither concrete
examples of wild data in Cγ , nor even the size of their set of singular points (see [27] for
estimates of the singular set of times). In this regard, Theorem 1.3 provides an explicit
example with a minimal singular set: a single point {0}. We remark that, although the
aforementioned literature on the Onsager conjecture (2) is posed on the 3D periodic
domain T

3, our solutions can be trivially adjust to this setting. However, in this case the
singular set becomes a line {0} × T. On this matter, it would be interesting to explore if
there might be other 3D wild data with smaller singular sets.

Remarkably, Székelyhidi [68] provided the first concrete example of a wild datum
for the unstable vortex sheet v◦(x) = sgn(x2), which corresponds to the limiting case
p → 1. This initiated a promising program on modeling hydrodynamical instabilities via
convex integration: see [58,68] for the Kelvin-Helmholtz, [40,42,43] for the Rayleigh-
Taylor, and [11–13,19,37,48,57,62,69] for the Saffman-Taylor instabilities.

2.3. Yudovich Spaces. In [77] Yudovich extended his uniqueness result for unbounded
vorticities for which ‖ωs‖L p has moderate growth as p → ∞. Let us recall Taniuchi’s
(non-localized) version [70] of this generalization (see also [14]): Given a non-decreasing
function  : [1,∞) → [1,∞), a vorticity ω belongs to the Yudovich space Y if

‖ω‖Y := sup
p∈[1,∞)

‖ω‖L p

(p)
< ∞.

Then, the Euler equation (4) is globally well-posed in Y if  satisfies the Osgood type
condition

∫ ∞

3

dp

p(p)
= ∞. (19)

Notice that Theorem 1.4 corresponds to the particular case Y 1 = L1∩L∞. In this regard,
it would be interesting to explore if Theorem 1.1 could be extended to Yudovich spaces
for which (19) fails.
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Global existence has been proved in other vorticity classes (see e.g. the recent work
of Crippa and Stefani [21] and the references therein). In [70] Taniuchi extended it to
the Yudovich space Y for which the Osgood condition (19) is weakened by

∫ ∞

3

dp

p(log p)
= ∞. (20)

In this regard, Conjecture 2.1 could be also stated for Yudovich spaces satisfying the
existence condition (20) but not the uniqueness condition (19).

3. Energy Conservation/Dissipation

In this section we discuss the energy conservation/dissipation of weak solutions to the
Euler equation in terms of the vorticity. For simplicity of presentation we consider the
periodic domain. The same results hold in the euclidean space mutatis mutandis.

We start by recalling that Onsager’s conjecture 1 is a corollary of the following
Besov type criterion (see e.g. [15,30]): Any weak solution v to the Euler equation in T

d

satisfying

lim|y|→0

∫ T

0

∫
Td

|v(t, x + y) − v(t, x)|3
|y| dx dt = 0, (21)

conserves the energy. Although this condition is independent of the dimension d ≥ 2,
it has stronger implications in the 2D case. As a first easy consequence, by the Sobolev
embedding W 1,p ⊂ C1−2/p and 1, it follows that the energy is conserved for any weak
solution with L p control on vorticity for p > 3. However, the energy conservation
can be extended for smaller p’s by taking more advantage of (21). Let us recall the
argument from [30, Proposition 6]. Firstly, by applying the Hölder inequality to δyv =
v(x + y) − v(x), we get

‖δyv‖L3 ≤ ‖δyv‖θ
L p‖δyv‖1−θ

Lq with
1

3
= θ

p
+

1 − θ

q
.

Secondly, by using the Sobolev embedding W 1,p ⊂ L
2p

2−p and ‖δyv‖L p ≤ |y|‖v‖W 1,p ,
we get

‖δyv‖L3 ≤ C |y|θ‖v‖W 1,p with θ = 5

3
− 2

p
.

Therefore, the energy conservation criterion (21) is satisfied for θ > 1/3, or equivalently
p > 3/2. This result was extended to the borderline case p = 3/2 by Cheskidov, Lopes
Filho, Nussenzveig Lopes, and Shvydkoy [16]. Furthermore, they constructed a velocity
field with vorticity in L3/2− exhibiting non-vanishing energy flux. This suggests that there
might exist dissipative solutions of the 2D Euler equation with vorticity in L3/2−. This
threshold is somehow related to our construction: the energy dissipation rate of our
subsolution vanishes at t = 0 if and only if α < 4/3, where recall ω◦ = ωs ∈ L2/α−. Let
us give a heuristic explanation of this phenomenon.
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3.1. Heuristic Explanation of Theorem 1.5. First of all, it is convenient to rewrite the
Euler equation (1) as

∂tv + div(v � v) + ∇q = 0, (22a)

divv = 0, (22b)

v|t=0 = v◦, (22c)

where

v � v := v ⊗ v − 1

2
|v|2 I2,

is the projection of v ⊗ v into the space of symmetric and traceless matrices, and the
trace has been absorbed by the Bernoulli pressure

q := p +
1

2
|v|2.

Let us analyze the non-uniqueness/energy-dissipation scenario in the Euler equation.
Firstly, we introduce some notation. Concerning non-uniqueness: Given v◦ ∈ L2 with
divv◦ = 0 and rotv◦ ∈ L1 ∩ L p, let us denote S = S(v◦) by the space of admissible
solutions to the Euler equation, and Sp = Sp(v◦) by the subset of S formed by velocities
with ω ∈ L∞

t (L1 ∩ L p). Recall that Sp is non-empty by [29]. With this notation, we can
rewrite Yudovich’s well-posedness Theorem: if p = ∞, then S = S∞ = {v} where v is
the Yudovich solution. Similarly, we can reformulate Conjecture 2.1: for any 2 < p < ∞
there exists v◦ satisfying |Sp(v◦)| > 1, and Theorem 1.1: |S(v◦)| = ∞ for the initial
data (12). Concerning energy dissipation: Given v ∈ S we denote its energy by

E :=
∫
T2

e dx, e := 1

2
|v|2,

and its dissipation by

D := E(0) − E .

Next, we give a condition for non-uniqueness/energy-dissipation in terms of averaged
solutions. Given μ a probability measure on S, we define

v̄ :=
∫
S
v dμ, σ̄ :=

∫
S
(v � v) dμ, q̄ :=

∫
S
q dμ.

The triple (v̄, σ̄ , q̄) satisfies the relaxed Euler equation

∂t v̄ + divσ̄ + ∇q̄ = 0, (23a)

divv̄ = 0, (23b)

v̄|t=0 = v◦. (23c)

The (relaxed) energy was obtained by De Lellis and Székelyhidi in [26, Lemma 3]

Ē =
∫
T2

ē dx, ē := 1

2
|v̄|2 + λmax(v̄ � v̄ − σ̄ ), (24)
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where λmax denotes the largest eigenvalue. The crucial facts are that ē is convex and
agrees with e on S. By applying the Jensen inequality and the Fubini-Tonelli Theorem,
we get

Ē =
∫
T2

ē(v̄, σ̄ ) dx =
∫
T2

ē

(∫
S
(v, v � v) dμ

)
dx (25a)

≤
∫
T2

∫
S
ē(v, v � v) dμ dx =

∫
S

∫
T2

e(v) dx dμ

= E(0) −
∫
S
D(v) dμ. (25b)

In particular, Ē ≤ E(0). The last inequality is strict in two situations:

1. If the Jensen inequality (25a) is strict. In this case, ē is strictly convex on (the convex
envelope) of spt(μ). In particular, |spt(μ)| > 1.

2. If the dissipative term in (25b) is non-vanishing. In this case, D(v) > 0 μ-a.e. v ∈ S.

In short, (1) concerns non-uniqueness and (2) concerns energy dissipation. On the one
hand, (1) is to be expected in the regime 1 < p < ∞. On the other hand, (2) cannot occur
if spt(μ) ⊂ Sp in the regime 3/2 ≤ p < ∞, while it might be possible if 1 < p < 3/2.

We have seen that the existence of a solution (v̄, σ̄ , q̄) to (23) with strictly decreasing
energy Ē is linked to either non-uniqueness or energy dissipation. Our third main result
Theorem 1.5 shows the existence of this solution (v̄, σ̄ , q̄), which is called a subsolution
in the convex integration framework, for the initial data (12). Remarkably, the initial
energy dissipation of the subsolution is imperceptible (∂t Ē |t=0 = 0) in the regime
3/2 ≤ p < ∞. Below p = 3/2, the energy dissipation rate is more abrupt, which might
reflect the contribution of the dissipation (2) to the Jensen gap (1).

By virtue of the h-principle for the Euler equation discovered by De Lellis and
Székelyhidi [26] Theorem 1.5 implies the existence of infinitely many admissible so-
lutions, and thus Theorem 1.1 follows as corollaries. Furthermore, the flexibility of the
h-principle allows to prescribe any energy functional e strictly greater than ē on the region
� = {|x | ≤ (ct)1/α}. Thus, it is possible to select e making the energy E = ∫

e dx either
constant (conservative) or decreasing (dissipative). Here we do not consider increasing
energies (non-admissible).

3.2. Other Admissibility Criteria. In spite of these non-uniqueness results, there exist
other admissibility criteria that rule out some of these solutions. The first criterion is
to belong to the natural space Sp. In the regime 3/2 ≤ p < ∞, any weak solution
v ∈ S with decreasing energy cannot belong to Sp because Sp ⊂ Scon := S ∩ {E =
E(0)}. In contrast, by taking E decreasing in the regime 1 < p < 3/2, Theorem 1.1
shows presumably the first example of dissipative solutions v ∈ S with L p vorticity
data, although this does not necessarily imply that Sp � Scon. The second criterion
is the vanishing viscosity limit. It was shown in [16, Theorem 2] that any physically
realizable solution conserves the energy for every 1 < p ≤ ∞. This scaling gap in
the energy conservation between ideal solutions and ideal limits has been observed in
other equations of Hydrodynamics (see [18] for SQG and [36] for MHD). By taking
E constant in the regime 1 < p < ∞, Theorem 1.1 shows that |Scon| = ∞ for the
initial data (12), although this does not necessarily implies that |Sp| > 1. For radially
symmetric solutions, a third way to rule out non-uniqueness could be the stability of
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2D viscous vortices (see e.g. [38]). In such a case, the proof of non-uniqueness of
L p physical solutions would require less symmetric initial data. Another prerequisite
satisfied by physicial solutions is the local energy (in)equality (see e.g. [26,30]). Globally
dissipative solutions have been constructed in the last years via convex integration (see
e.g. [24,41,44,51]). We do not explore this property here.

4. H-Principle for Symmetric Subsolutions

In this section we write the h-principle for the Euler equation of De Lellis and Székely-
hidi [26] for 2D radially symmetric self-similar subsolutions. We start by recalling the
definitions of weak solution and subsolution to the Euler equation.

Definition 4.1. A triple (v̄, σ̄ , q̄) ∈ Ct (L2 × L1 × L1) where

v̄ =
[

v̄1
v̄2

]
, σ̄ =

[
σ̄1 σ̄2
σ̄2 −σ̄1

]
, q̄, (26)

is a subsolution to the Euler equation (22) if v̄ is weakly divergence-free and

∫ T

0

∫
R2

(v̄ · ∂t� + σ̄ : ∇� + q̄div�) dx dt = −
∫
R2

v◦ · �|t=0 dx, (27)

holds for every test function � ∈ C1
c ([0, T ) × R

2). The pair (v̄, q̄) is a weak solution to
the Euler equation if (v̄, v̄ � v̄, q̄) is a subsolution.

Next, we recall the h-principle for the Euler equation [26, Proposition 2]. Recall the
definition of the energy functional ē (24).

Theorem 4.1. (H-principle for the Euler equation) Let � be a non-empty open subset
of (0, T ] × R

2 and let e ∈ C(�) with e1� ∈ Ct L1. Suppose there exists a subsolution
(v̄, σ̄ , q̄) to the Euler equation satisfying the following properties:

• {σ̄ �= v̄ � v̄} ⊆ �.
• (v̄, σ̄ ) maps continuously � into {ē < e}.

Then, there exist infinitelymanyweak solutions (v, q) to theEuler equationwithBernoulli’s
pressure q = q̄ and velocity v satisfying

v = v̄ outside �,

1

2
|v|2 = e inside �.

By virtue of Theorem 4.1, the proof of non-uniqueness of admissible solutions to the
Euler equation is reduced to find a subsolution (v̄, σ̄ , q̄) with non-empty � and strictly
decreasing energy Ē = ∫

ē dx . In this case, we will say that (v̄, σ̄ , q̄) is an admissible
subsolution.



207 Page 14 of 28 F. Mengual

4.1. Complex Coordinates. In this section we rewrite the relaxed Euler equation (23) in
complex coordinates

x = x1 + i x2.

In this setting, for any z, w ∈ R
2 � C we denote as usual

|z| =
√
z2

1 + z2
2, z∗ = z1 − i z2, z⊥ = i z = −z2 + i z1,

and also

z · w = (zw∗)1 = z1w1 + z2w2,

z · w⊥ = (zw∗)2 = z2w1 − z1w2.

By slight abuse of the notation, we identify

∇ = ∂1 + i∂2,

and (v̄, σ̄ , q̄) in (26) with

v̄ = v̄1 + i v̄2, σ̄ = σ̄1 + i σ̄2, q̄ = q̄ + i0.

Proposition 4.1. The relaxed Euler equation (23) is written in complex coordinates as

∂t v̄ + ∇∗σ̄ + ∇q̄ = 0, (28a)

∇ · v̄ = 0, (28b)

v̄|t=0 = v◦, (28c)

and the energy (24) equals

ē = 1

2
|v̄|2 +

∣∣∣∣1

2
v̄2 − σ̄

∣∣∣∣ . (29)

Furthermore, the subsolution is a solution to the Euler equation if and only if

σ̄ = 1

2
v̄2.

Proof. On the one hand,

div

[
σ̄1 σ̄2
σ̄2 −σ̄1

]
=

[
∂1σ̄1 + ∂2σ̄2
∂1σ̄2 − ∂2σ̄1

]
= (∂1 − i∂2)(σ̄1 + i σ̄2).

On the other hand,

v̄ � v̄ = 1

2

[
v̄2

1 − v̄2
2 2v̄1v̄2

2v̄1v̄2 v̄2
2 − v̄2

1

]
= 1

2
(v̄1 + i v̄2)

2.

For (29) it is easy to check that any traceless symmetric matrix z satisfies

λmax

[
z1 z2
z2 −z1

]
=

√
z2

1 + z2
2 = |z|,

where we identify z = z1 + i z2. Finally, if (v̄, q̄) is a solution to the Euler equation, it
holds

∇∗
(

1

2
v̄2 − σ̄

)
= 0.

Then, since 1
2 v̄2 − σ̄ is anti-holomorphic and integrable, necessarily 1

2 v̄2 − σ̄ = 0. ��
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4.2. Radial Symmetry. In this section we write the relaxed Euler equation (28) in polar
coordinates

x = reiθ ,

for radially symmetric subsolutions. More precisely, we assume that the fluid is rotating
around the origin: the velocity v̄ is of the form

v̄(t, x) := h(t, r)ieiθ , (30)

for some real-valuedh, to be determined. Under this choice, v̄ is automatically divergence-
free (see (35)) and the vorticity ω̄ = rotv̄ is radially symmetric ω̄(t, x) = g(t, r), where
h and g are related by

rg = ∂r (rh).

In order to compare σ̄ with 1
2 v̄2 = − 1

2h
2e2iθ , it seems convenient to take σ̄ of the form

σ̄ (t, x) := −w(t, r)e2iθ , (31)

for some complex-valued w, to be determined. Finally, we also assume (although it can
be deduced from the equation) that the Bernoulli pressure q̄ is radially symmetric, and
then (by slight abuse of the notation) we write

q̄(t, x) := q(t, r), (32)

for some (real-valued) q, to be determined.

Proposition 4.2. Under the choice (30)–(32), the relaxed Euler equation (28) is written
as

i∂t h − ∂r (r2w)

r2 + ∂r q = 0, (33a)

h|t=0 = h◦, (33b)

where v◦(x) = h◦(r)ieiθ , and the energy (29) equals

ē = 1

2
h2 +

∣∣∣∣1

2
h2 − w

∣∣∣∣ . (34)

Furthermore, the subsolution is a solution to the Euler equation if and only if

w = 1

2
h2.

In this case, h is steady and q satisfies

∂r q = gh.
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Proof. By writing the gradient in polar coordinates

∇x = eiθ
(

∂r +
i

r
∂θ

)
,

we deduce that

∇∗
x v̄ = e−iθ

(
∂r − i

r
∂θ

)
(hieiθ ) = i

∂r (rh)

r
,

∇∗
x σ̄ = e−iθ

(
∂r − i

r
∂θ

)
(−we2iθ ) = −eiθ

∂r (r2w)

r2 ,

and also

∇x q̄ = eiθ ∂r q.

On the one hand (recall h is real-valued)

∇x · v̄ = (∇∗
x v̄)1 = 0, (35a)

ω̄ = ∇⊥
x · v̄ = (∇∗

x v̄)2 = ∂r (rh)

r
= g. (35b)

On the other hand,

∂t v̄ + ∇∗
x σ̄ + ∇x q̄ = eiθ

(
i∂t h − ∂r (r2w)

r2 + ∂r q

)
.

We have proved (33). The equality (34) follows from the definitions (30)(31). Finally,
by decomposing (33a) into its real and imaginary part respectively, we deduce that
w = w1 + iw2 and (q, h) are related by

r2∂r q = ∂r (r
2w1), (36a)

r2∂t h = ∂r (r
2w2). (36b)

Hence, if w = 1
2h

2 we have ∂t h = 0, and ∂r q = gh follows from

1

2
∂r (rh)2 = r2gh. (37)

This concludes the proof. ��
Corollary 4.1. The energy (34) is minimized in w1 by taking

w1 := 1

2
h2. (38)

Under the choice (38), the relaxed Euler equation (33) is written as

∂r q = gh, (39a)

∂r (r
2w2) = r2∂t h, (39b)

h|t=0 = h◦, (39c)
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and the energy (34) equals

ē = 1

2
h2 + |w2|. (40)

Furthermore, the subsolution is a solution to the Euler equation if and only if

w2 = 0.

In this case, h is steady.

Proof. It follows from (34), (36) and (37). ��
By virtue of Corollary 4.1, the functions w, q and ē are determined by h. Therefore,

the construction of an admissible subsolution is reduced to find a profile h with non-
vanishing w2 and strictly decreasing energy Ē = ∫

ē dx .

4.3. Scaling Symmetry. In this section we write the relaxed Euler equation (39) for
self-similar subsolutions. The (relaxed) Euler equation possess a two-parameter scaling
symmetry (see e.g. [2]): If (v̄, σ̄ , q̄) is a (sub)solution and λ,μ > 0, then

v̄λ,μ(t, x) = λ

μ
v̄(λt, μx), σ̄λ,μ(t, x)

=
( λ

μ

)2
σ̄ (λt, μx), q̄λ,μ(t, x) =

( λ

μ

)2
q̄(λt, μx), (41)

define another (sub)solution. This corresponds to the physical dimensions

[x] = L , [t] = T, [v̄] = L

T
, [σ̄ ] = [q̄] =

( L

T

)2
.

We say that (v̄, σ̄ , q̄) is self-similar if it is invariant under the scaling Lα ∼ T for some
α > 0, that is, if (v̄, σ̄ , q̄)λ,μ = (v̄, σ̄ , q̄) for all λ,μ > 0 given by the relation

λ = 1/t = cμα,

for some parameters α, c > 0.
We assume that the triple (v̄, σ̄ , q̄) given by (30)–(32) and (38) is self-similar for

some α, c > 0. Then, the profiles (h, w2, q) are of the form

h(t, r) := (ct)
1−α
α H(ξ), w2(t, r) := − c

α
(ct)

2(1−α)
α W2(ξ),

q(t, r) := (ct)
2(1−α)

α Q(ξ), (42)

in self-similar variables

ξ := r

(ct)1/α
,

for some functions (H,W2, Q), to be determined. Under this choice, the vorticity profile
is of the form (see (45))

g(t, r) := 1

ct
G(ξ),

where H and G are related by

ξG = ∂ξ (ξH).
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Proposition 4.3. Under the choice (42), the relaxed Euler equation (39) is written as

∂ξ Q = GH, (43a)

∂ξ (ξ
2W2) = ξ4−α∂ξ (ξ

α−1H), (43b)

lim
ξ→∞ ξα−1H(ξ) = β, (43c)

where h◦(r) = βr1−α for some β ∈ R, and the energy (40) equals

ē = (ct)
2(1−α)

α

(
1

2
H2 +

c

α
|W2|

)
.

Furthermore, the subsolution is a solution to the Euler equation if and only if

W2 = 0.

In this case, H(ξ) = βξ1−α .

Proof. First of all, we compute

∂t h = − c

α
(ct)

1−2α
α ξ2−α∂ξ (ξ

α−1H), ∂r h = 1

ct
∂ξ H. (44)

On the one hand, since

g = 1

r
∂r (rh) = 1

ct

1

ξ
∂ξ (ξH) = 1

ct
G, (45)

the equation (43a) follows from

(ct)
1−2α

α ∂ξ Q = ∂r q = gh = (ct)
1−2α

α GH.

On the other hand, the equation (43b) follows from

− c

α
(ct)

3−2α
α ∂ξ (ξ

2W2) = ∂r (r
2w2) = r2∂t h = − c

α
(ct)

3−2α
α ξ4−α∂ξ (ξ

α−1H).

The equation (43c) follows from

h◦(r) = lim
t→0

h(t, r) = r1−α lim
ξ→∞ ξα−1H(ξ).

The rest follows from (42) and (43b). ��
By virtue of Proposition 4.3, the functions W2, Q and ē are determined by H , which

is now time-independent (in contrast to h). Notice that the condition (43c) prevents
from constructing subsolutions with finite energy. However, this inconvenient can be
easily fixed by truncating the profile H (see Sect. 5.4). Therefore, the construction of
an admissible subsolution is reduced to find a profile H with non-vanishing W2 and
satisfying

∫
∂t ē dx < 0.
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5. Admissible Subsolutions

In this section we prove Theorems 1.1 & 1.5 by constructing first admissible subsolutions,
and then invoking the h-principle for the 2D Euler equation.

The first step is to construct radially symmetric self-similar subsolutions (v̄, σ̄ , q̄).
These are given by the choices (30)–(32), (38) and (42) in terms of the parameters
α, c > 0, and some functions (H,W2, Q) which must satisfy the equation (43).

As it is stated in Proposition 4.3, this subsolution (v̄, σ̄ , q̄) is a solution to the Euler
equation if and only if W2 = 0, and so H(ξ) = βξ1−α . In contrast to Vishik’s work
[71,72], here the constant β does not play a crucial role, and thus we will take β = 1
for simplicity. The profile H(ξ) = ξ1−α corresponds to the steady power-law vortex
v̄ = vs

vs(x) = |x |−αx⊥.

In this case, the velocity and vorticity profiles are given by

hs(r) = r1−α, gs(r) = (2 − α)r−α,

and the Bernoulli pressure equals

qs(r) =
{ 2−α

2(1−α)
r2(1−α), α �= 1,

ln r, α = 1.
(46)

Notice that (vs, qs) ∈ L2
loc × L1

loc if and only if α < 2, and also ωs ∈ L p
loc for p < 2/α.

As we mentioned at the end of Sect. 4, we need to find a profile H with non-vanishing
W2 and satisfying

∫
∂t ē dx < 0. Since we want to minimize the contribution of W2 to

the energy, we assume that the subsolution agrees with the power-law vortex outside
[0, 1]

H(ξ) := ξ1−α, ξ > 1. (47)

We also impose the regularity conditions: H(0) = 0, H(1) = 1, and H ∈ C1([0, 1]).
The condition H(0) = 0 is necessary to make v̄ continuous at x = 0 for t > 0. Hence,
it remains to determine H in the interval (0, 1). Next, we need to guarantee that the
support of W2 is indeed contained in [0, 1]. This yields the first condition for H .

Lemma 5.1. (1st condition for H) Under the choice (47), the support of the solution W2
to (43b) is contained in [0, 1] if and only if H satisfies

(4 − α)

∫ 1

0
ξ2H dξ = 1. (48)

Proof. The solution W2 to (43b) is given by

W2(ξ) = 1

ξ2

(∫ ξ

0
ζ 4−α∂ζ (ζ

α−1H) dζ + C

)
,

for some constant C . Since the profile 1/ξ2 is neither continuous nor locally integrable
at ξ = 0, necessarily C = 0. By (47), we have W2(ξ) = 0 for ξ ≥ 1 if and only if
W2(1) = 0. Finally, an integration by parts yields

W2(ξ) = ξH − 4 − α

ξ2

∫ ξ

0
ζ 2H dζ, (49)

from which we deduce (48). ��
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Proposition 5.1. Suppose (47)(48) hold. Then, the solution to the relaxed Euler equation
(43) is given by

Q(ξ) :=

⎧⎪⎨
⎪⎩
qs(1) −

∫ 1

ξ

GH dζ, 0 < ξ ≤ 1,

qs(ξ), ξ > 1,

(50)

with qs as in (46), and

W2(ξ) :=

⎧⎪⎨
⎪⎩

ξH − 4 − α

ξ2

∫ ξ

0
ζ 2H dζ, 0 < ξ ≤ 1,

0, ξ > 1.

(51)

As a result, (v̄, σ̄ , q̄) = (vs, vs � vs, qs) outside {|x | ≤ (ct)1/α}.
Proof. The initial condition (43c) is automatically satisfied by (47). The other two equa-
tions (43a)(43b) can be integrated (recall (49)). ��

5.1. The Energy. In this section we compute the energy dissipation rate
∫

∂t ē dx , and
derive the conditions under which it becomes negative. Recall that the energy ē is deter-
mined by H through the choices (30)–(32), (38), (42), (47) and (48).

Proposition 5.2. It holds
∫
R2

∂t ē dx = −2π

α
c

2(2−α)
α

(
A − 2(2 − α)

α
Bc

)
t

4−3α
α , (52)

where

A := 1

2
− (2 − α)

∫ 1

0
ξH2 dξ, (53a)

B :=
∫ 1

0

∣∣∣∣ξ2H − 4 − α

ξ

∫ ξ

0
ζ 2H dζ

∣∣∣∣ dξ. (53b)

Proof. First of all, by recalling (40) we write
∫
R2

∂t ē dx =
∫
R2

∂t

(
1

2
h2 + |w2|

)
dx .

On the one hand, by applying (42), (44) and (47), we compute

1

2

∫
R2

∂t h
2 dx = 2π

∫ (ct)1/α

0
h∂t hr dr = −2πc

α
(ct)

4−3α
α A,

where

A =
∫ 1

0
ξ3−αH∂ξ (ξα−1H) dξ = 1

2

∫ 1

0
ξ2(2−α)∂ξ (ξα−1H)2 dξ = 1

2
− (2 − α)

∫ 1

0
ξH2 dξ.



Non-uniqueness of Admissible Solutions... Page 21 of 28 207

On the other hand, by applying (42) and (51), we compute

∫
R2

|w2| dx = 2π

∫ (ct)1/α

0
|w2|r dr = 2πc

α
(ct)

2(2−α)
α B,

where

B =
∫ 1

0
|W2|ξ dξ =

∫ 1

0

∣∣∣∣ξ2H − 4 − α

ξ

∫ ξ

0
ζ 2H dζ

∣∣∣∣ dξ.

Hence, ∫
R2

∂t |w2| dx = ∂t

∫
R2

|w2| dx = 2πc

α

2(2 − α)

α
(ct)

4−3α
α Bc.

This concludes the proof ��
Corollary 5.1. (2nd condition for H ) Suppose

∫
∂t ē dx < 0. Then, necessarily A > 0,

or equivalently

2(2 − α)

∫ 1

0
ξH2 dξ < 1. (54)

5.2. The Growth Rate c. In this section we select c maximizing the energy dissipation
rate.

Proposition 5.3. Suppose (54) holds. Then,
∫

∂t ē dx < 0 if and only if

0 < c <
α

2(2 − α)

A

B
. (55)

Furthermore, the energy dissipation rate is maximized

∫
R2

∂t ē dx = −2π

(
A

4 − α

) 4−α
α ( α

B

) 2(2−α)
α

t
4−3α

α , (56)

by taking

c := α

4 − α

A

B
. (57)

Proof. The first statement (55) follows immediately from (52). For (56), we need to
maximize the functional

F(c) = 2π

α
c

2(2−α)
α

(
A − 2(2 − α)

α
Bc

)
.

Since F is concave with

F ′(c) = 2π

α

2(2 − α)

α
c

4−3α
α

(
A − 4 − α

α
Bc

)
,

it follows that F attains its maximum at (57) with

F(c) = 2π

(
A

4 − α

) 4−α
α ( α

B

) 2(2−α)
α

.

This concludes the proof. ��
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5.3. The Profile H. In this section we construct profiles H satisfying the requirements
from the previous sections. We defineH as the space of profiles H ∈ C1([0, 1]) satisfying
the conditions H(0) = 0, H(1) = 1, (48) and (54).

Proposition 5.4. The space H is non-empty and convex.

Proof. First of all, notice that the four conditions H(0) = 0, H(1) = 1, (48) and (54)
are convex. Given a, b > 0, we consider the ansatz

H(ξ) := (1 − a log ξ)ξ1+b. (58)

It is clear that H ∈ C1([0, 1]) with H(0) = 0 and H(1) = 1. On the one hand, an
integration by parts yields∫ 1

0
ξ2H dξ =

∫ 1

0
(1 − a log ξ)ξ3+b dξ = 1

4 + b

(
1 +

a

4 + b

)
.

Hence, the condition (48) is equivalent to

a := (4 + b)(α + b)

4 − α
. (59)

On the other hand, an integration by parts yields∫ 1

0
ξH2 dξ =

∫ 1

0
(1 − a log ξ)2ξ3+2b dξ = 1

4 + 2b

(
1 +

2a

4 + 2b

(
1 +

a

4 + 2b

))

= 1

4(2 + b)

(
1 +

(
1 +

a

2 + b

)2
)

=: f (b).

(60)

Notice that f is continuous on [0,∞) and the condition (54)

2(2 − α) f (b) < 1,

is open. Then, it is enough to check that it is satisfied at b = 0. Since

f (0) = 42 + α2

4(4 − α)2 , (61)

the condition (54) with b = 0 is equivalent to α > 0. ��
We finish this section by computing the energy dissipation rate for the particular

ansatz H given in (58). We consider the case b = 0 to simplify the computations. For
small b’s the result will be similar by continuity. We remark that, although the profile
(58) with b = 0 is not differentiable at ξ = 0, it still satisfies H(0) = 0, which makes
v̄ continuous at x = 0 for t > 0. Moreover, it improves the regularity of the power-law
vortex. For b > 0 we have H ′(0) = 0, which makes v̄ differentiable at x = 0 for t > 0.
Similarly, it should be possible to construct profiles H with better regularity.

Proposition 5.5. Let H be the profile (58) with b = 0. Then, the energy dissipation rate
(56) equals

∫
R2

∂t ē dx = − π

16

(
2α

4 − α

) 8−α
α

t
4−3α

α ,

and the growth rate (57) equals

c =
(

2α

4 − α

)2

. (62)
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Proof. On the one hand, (53a) equals

A = 1

2
− (2 − α) f (b),

where f is given in (60). On the other hand,

ξ2H − 4 − α

ξ

∫ ξ

0
ζ 2H dζ = ξ3+b(1 − a log ξ) − 4 − α

4 + b
ξ3+b

(
(1 − a log ξ) +

a

4 + b

)

= (b + α)2

4 − α
ξ3+b| log ξ |,

where we have applied (59). Hence, (53b) equals

B = (b + α)2

4 − α

∫ 1

0
ξ3+b| log ξ | dξ = (b + α)2

(4 − α)(4 + b)2 .

For b = 0, these formulas simplify to (recall (61))

A = α3

4(4 − α)2 , B = α2

16(4 − α)
.

Therefore,

(
A

4 − α

) 4−α
α ( α

B

) 2(2−α)
α = 1

25

(
2α

4 − α

) 8−α
α

.

This concludes the proof. ��

5.4. The Truncation. In this section we prove Theorems 1.1 & 1.5. Let us fix 0 < α < 2.
Recall that the inconvenience of considering the self-similar subsolutions (v̄, σ̄ , q̄) from
the previous sections is that they have infinite energy. This is because their tails are not
integrable. In order to make the energy finite, we fix r0 > 0 and consider the truncated
profile

hχ := hχ,

where χ : [0,∞) → [0, 1] is a smooth cutoff with χ(r) = 1 if r ∈ [0, r0]. On the
one hand, the profile h is determined by H via (42), where we take H as in Proposition
5.4 with b = 0. This H determines also the growth rate c by (62), the terms W2, Q by
Proposition 5.1, and thus (v̄, σ̄ , q̄) by (30)–(32), (38) and (42). On the other hand, hχ

determines the terms wχ , qχ and ēχ by Corollary 4.1. The final subsolution (v̄, σ̄ , q̄)χ is
defined by (30)–(32), which agrees with (v̄, σ̄ , q̄) for |x | ≤ r0 provided that (ct)1/α ≤ r0.
Hence, for all 0 ≤ t ≤ T , where

T := rα
0

c
=

(
4 − α

2α

)2

rα
0 , (63)

the energy dissipation rate of the (truncated) subsolution equals (recall Proposition 5.5)

∂t Ēχ =
∫
R2

∂t ēχ = − π

16

(
2α

4 − α

) 8−α
α

t
4−3α

α .
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1 2
0

1

2

Fig. 3. Plot of the growth rate c(α)1/α

Therefore,

Ēχ (t) = Eχ (0) − π

32

α

(2 − α)

(
2α

4 − α

) 8−α
α

t
2(2−α)

α ,

where

Eχ (0) = 1

2

∫
R2

|vsχ |2 dx ≥ π

∫ r0

0
r3−2α dr = π

2(2 − α)
r2(2−α)

0 .

We have proved Theorem 1.5. For Theorems 1.1 & 1.3, we invoke the h-principle for
the Euler equation (Theorem 4.1) by taking some energy profile e satisfying ē < e on
� = {|x | < (ct)1/α}. It is possible to select e making the energy E = ∫

e dx either
constant or decreasing. Finally, notice that these solutions are uniformly bounded on
[0, T ] × R

2 if and only if 0 < α ≤ 1 due to (42).

6. The Case α → 2

In this section we analyze the borderline case α → 2. This corresponds to the point
vortex ωs = 2πδ0 for χ = 1. Notice that the initial velocity has infinite energy at the
origin because h◦(r) = 1/r . However, our subsolution (v̄, σ̄ , q̄) has energy dissipation
rate

∫
R2

∂t ē = − π

2t
,
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and therefore it has finite energy for t > 0

Ē(t) = Ē(1) − π

2
log t.

Hence, (v̄, σ̄ , q̄) is well defined in the Banach space Clog t (L2 × L1 × L1), which is
given by the (weighted) norm

‖ f ‖Clog t L p := sup
t∈(0,T ]

‖ f (t)‖L p

max{1, | log t |1/p} .

This integrability class is enough to make sense of definition (27). Moreover, the initial
datum is attained in L2−. The h-principle for the Euler equation [25] can be easily
modified to construct velocities in this class. As a result, we show non-uniqueness of
dissipative solutions to the Euler equation for the (truncated) point vortex datum.

Theorem 6.1. Let 0 < β < 1. Then, there exist infinitely many weak solutions v ∈
Ct L2− to the Euler equation starting from

vs(x) = χ(|x |) x
⊥

|x |2 .

Furthermore, v = vs outside {|x | ≤ 2
√
t}, and v ∈ Clog t L2 with

∂t E = −β
π

2t
,

for all t ∈ (0, T ], where T is given in (63).
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