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Abstract: Connectedness and bipartiteness are basic properties of classical graphs, and
the purpose of this paper is to investigate the case of quantum graphs. We introduce
the notion of connectedness and bipartiteness of quantum graphs in terms of graph
homomorphisms. This paper shows that regular tracial quantum graphs have the same
algebraic characterization of connectedness and bipartiteness as classical graphs. We also
prove the equivalence between bipartiteness and two-colorability of quantum graphs by
comparing two notions of graph homomorphisms: one respects adjacency matrices and
the other respects edge spaces. In particular, all kinds of quantum two-colorability are
mutually equivalent for regular connected tracial quantum graphs.

The quantum graphs are a non-commutative analogue of classical graphs and re-
cently developed in the interactions between theories of operator algebras, quantum
information, non-commutative geometry, quantum groups, etc.

Since quantum graphs as adjacency matrices were introduced by Musto et al.[16],
there has been substantial activity towards clarifying the relation between the property
of a quantum graph and the spectrum of the adjacency matrix. It is classically known
that the spectrum of the adjacency matrix can characterize some properties of a (regular)
classical graph. Hoffman [13] showed that a connected d-regular graph is bipartite if and
only if−d is an eigenvalue of the adjacency matrix, and it was already known in Fiedler
[10] that the connectedness of a graph is equivalent to the nonzero spectral gap of the
graph Laplacian (cf. [7]). So it is natural to expect that quantum graphs have similar
spectral characterizations, and indeed Ganesan [11] shows that such a spectral approach
is valid for the chromatic numbers of quantum graphs.

Similarly to the classical case, the degree of a regular quantum graph is shown to
be the spectral radius of the adjacency matrix. Thus it makes sense to consider the
behavior of the spectrum in [−d, d] for d-regular undirected quantum graphs. In this
paper, we introduce bipartiteness and connectedness for quantum graphs in terms of
graph homomorphisms, and we give their spectral characterizations for regular quantum
graphs.
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Regarding the notion of graph homomorphisms, we compare two notions of graph
homomorphisms, one is defined in this paper and compatible with adjacency matrices,
and the other is defined in [3] and compatible with edge spaces. We prove that these
two notions are equivalent particularly in the case of quantum-to-classical graph homo-
morphism, that is, any edge is mapped to the edges if the adjacency matrix is mapped
to edges. In the proof, string diagrams (c.f. [15–17]) play a significant role to deduce
positivity from the symmetry of the diagram. As its corollary, we obtained that the local
two-colorability is equivalent to bipartiteness for tracial real quantum graphs. Moreover,
combining the results in this paper, it follows that all kinds of quantum two-colorability
are mutually equivalent for connected regular undirected tracial quantum graphs.

This paper confirms the spectral characterization of connected and bipartite quantum
graphs, which is a base for further topics, including ‘expander’ quantum graphs to
be defined by the spectral gap. It is known [9] that a quantum channel in quantum
information theory gives a quantum graph as an operator system. If we can associate
quantum expander channels with ‘expander’ quantum graphs, we can supply a new
approach to the theory of quantum channels.

Apart from quantum graph theory, Lemma 3.3 supplies a way for a trace to control
the decomposition of a self-adjoint operator as a subtraction of positive operators, and
the proof of Theorem 4.7 shows that string diagrams are indeed useful to show positivity
of operators. These techniques would help the wider scope of mathematics.

This paper is organized as follows.
In Sect. 1, we prepare the basic terminology of quantum graphs and string diagrams

referring to the preceding research and show some lemmas for later use.
In Sect. 2, we introduce the graph gradient to show the positivity of graph Laplacian.

From the positivity, we deduce the spectral bound by the degree of regular real quantum
graphs. On the way, we show that quantum graphs do not admit an orientation in general.

Theorem (Proposition 2.10). Let G = (B, ψ, A) be a d-regular real quantum graph.
The spectral radius r(A) of the adjacency matrix satisfies r(A) = d.

Theorem (Theorem 2.11). Let G = (B, ψ, A) be a d-regular quantum graph. Then the
identity of the operator norm on B(L2(G)) and the degree

‖A‖op = d

holds if either of the following is satisfied:

(1) G is undirected, whence spec(A) ⊂ [−d, d];
(2) A is real and commutes with the modular automorphism σi ;
(3) G is real and tracial.

In Sect. 3, we introduce our notion of graph homomorphism, connectedness, and
bipartiteness and prove their algebraic characterizations by the spectrum of the adjacency
matrix. In the proof, Lemma 3.3 plays an essential role in controlling the decomposition
of a self-adjoint operator into a subtraction of positive elements.

Theorem (Theorem 3.7, Theorem 3.8, Theorem 3.9). Let G = (B, ψ, A) be a d-regular
undirected tracial quantum graph.

• G is connected if and only if d ∈ spec(A) is a simple root.
• G has a bipartite component if and only if −d ∈ spec(A). If d = 0, we require

dim B ≥ 2.

If moreover G is connected, then
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• G is bipartite if and only if −d ∈ spec(A). If d = 0, we require dim B ≥ 2.

In Sect. 4, we give a modified generalization of t-homomorphisms (t ∈ {loc, q, qa, qc,
C∗, alg}) introduced by [3] in the quantum-to-classical cases and show that it agrees
with the quantum homomorphism defined by [16] in terms of string diagrams. Then we
prove that our graph homomorphisms and loc-homomorphisms coincide under some
assumptions.

Theorem (Theorem 4.9). Let G j for j = 0, 1 be real tracial quantum graphs such that
G1 is Schur central. Then f op : G0 → G1 is a graph homomorphism if and only if
( f,C) : G0 → G1 is a loc-homomorphism.

This result yields the equivalence of bipartiteness and local two-colorability, which
implies the equivalence of all the t-2 colorability.

Theorem (Theorem 4.13). Let G be a real tracial quantum graph. Then G is bipartite
if and only if it is loc-2 colorable.

Theorem (Corollary 4.14). Let G = (B, ψ, A) be a connected d-regular undirected
tracial quantum graph. The following are equivalent:

(1) G is loc-2 colorable;
(2) G is alg-2 colorable;
(3) G has a symmetric spectrum;
(4) −d ∈ spec(A). If d = 0, we require dim B ≥ 2;
(5) G is bipartite.

Our main results are restricted to regular tracial quantum graphs. So the non-tracial
versions and the equivalence of the spectral gap of the graph Laplacian and the connect-
edness of irregular quantum graphs are left open. The relation between our connectedness
and the operator space theoretic connectedness [6] of quantum graphs is also left open.

1. Preliminaries

We denote by (·)∗ the involution on a ∗-algebra and by (·)† the adjoint of an operator
between Hilbert spaces.

For a state ψ on a C∗-algebra B, we denote the GNS space by L2(B, ψ), which is
the Hausdorff completion of B with respect to the sesquilinear form 〈x |y〉 = 〈x |y〉ψ =
ψ(x∗y) for x, y ∈ B. If dim B is finite and ψ is faithful, we identify B 
 x = |x〉 ∈
L2(B, ψ). Then we have the multiplication m : B ⊗ B 
 x ⊗ y �→ xy ∈ B and the
comultiplication m† : B → B⊗ B. The unit 1B is identified with a map C 
 1 �→ 1B ∈
B and its adjoint is the counit ψ = 1†

B = 〈1B |.
Via a multimatrix presentation B = ⊕

s Mns , we denote the direct sum of unnor-
malized traces by Tr = ⊕

s Trns (independent of the choice of the presentation) and
denote the density matrix of ψ = Tr(Q ·) by Q ∈ B. If ψ is faithful, Q is positive and
invertible.

1.1. String diagrams. We denote linear operators by string diagrams, which encode the
compositions of operators from the bottom to the top. See [16,17] for string diagrams
of Frobenius algebras and tracial quantum graphs and [15] for diagrams of non-tracial
quantum graphs.
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In particular, we put

1B = |1B〉 = ;m = ;ψ = 〈1B | = ;m† = .

We abbreviate ψm = = ,m†1 = = .

The key point is that the string diagrams allow us graphical calculation (continuous
deformation of diagrams) via associativity = , coassociativity = , and

the Frobenius equality = = . If ψ is non-tracial, note that we sometimes
need to deal with

:= = Q−1(·)Q = σi , = Q(·)Q−1 = σ−i ,

where σz : B → B for z ∈ C are the modular automorphisms σz(x) = QizxQ−i z for
the positive invertible density Q ∈ B of the faithful state ψ = Tr(Q ·).

1.2. Quantum graphs.

Definition 1.1 ([1,16]). A quantum set is (B, ψ) consisting of a finite-dimensional C∗-
algebra B with a δ-form ψ : B → C, where the δ-form is defined as a faithful state
satisfying mm† = δ2idB for δ ≥ 0.

We denote by τB the unique tracial δ = √
dim B-form on B. If B = ⊕

s Mns and
ψ = Tr(Q ·) with Q = ⊕

s Qs , then ψ is a δ-form if and only if Tr(Q−1
s ) = δ2 for all

s, and τB = ⊕
s ns Trs / dim B.

Definition 1.2 ([1,2,16]). Let (B, ψ) be a quantum set. We define the Schur product
S • T and the involution T ∗ of S, T ∈ B(L2(B, ψ)) by

S • T :=δ−2m(S ⊗ T )m† = δ−2 S T ; T ∗:=(T (·)∗)∗ = T † ,

with which B(L2(B, ψ)) forms a ∗-algebra isomorphic to Bop⊗B. See for example [15,
Lemma 2.13] about the identity of the involution and the diagram. The correspondence
is given by

B(L2(B, ψ)) 
 T ↔ pT :=δ−2 σi/2 T ∈ Bop ⊗ B

where σi/2 = Q−1/2(·)Q1/2 : B → B is a modular automorphism and pT = � ′
0,1/2(T )

defined in [8, Definition 5.1]. See [12] for the tracial setting and [8,18] for the details in
general setting.

We say that T : B → B is real if T ∗ = T (i.e., ∗-preserving. cf. [16]); T is Schur
idempotent if T • T = T ; and T is a Schur projection if it is real and Schur idempotent.
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We often use the realness of T : B → B in the form of

T † = T or T = T † . (1.1)

Note that if T is real, then T † is real if and only if T commutes with modular
automorphisms σz (c.f. [15, Proposition 2.15], [18, Lemma 2.1]). This means that we
cannot always replace T with T † in (1.1).

Definition 1.3 (KMS adjoint). Wasilewski [18] pointed out that the KMS inner product
〈x |y〉 = ψ(x∗σ−i/2(y)) on B behaves better than the GNS inner product 〈x |y〉ψ =
ψ(x∗y) when we define non-tracial quantum Cayley graphs. They coincide if ψ is
tracial. The KMS adjoint is the adjoint of an operator on (tensor powers of) B with
respect to the KMS inner product.

The relation between the GNS adjoint T † and the KMS adjoint T ‡ of T : B⊗m →
B⊗n is given by T ‡ = σ⊗mi/2 T †σ⊗n−i/2. Define :=σi/2, :=σ−i/2, and := =

, where the cusp stands for the operator in the middle of the straight string idB

and the loops σ±i . Then the KMS inner product is drawn as 〈x |y〉 = x∗ y and the

relation of the KMS adjoint and the involution is T ∗ = T ‡ for T : B → B. Thus

in terms of the KMS adjoint, the realness (1.1) of T is replaced by

T ‡ = T or T = T ‡
.

A benefit of KMS adjoint is that T ‡ is real if and only if T is real. Indeed, the flip

invariance = = implies the equivalence between the realness of T and

that of T ‡ by flipping the strings:

T = T ‡ ⇐⇒ T = T ‡
. (1.2)

Since the GNS adjoint is easier to treat in string diagrams, we stick to the GNS inner
product in this paper.

Lemma 1.4. Let T : B → B be an operator on a quantum set (B, ψ). The following
are equivalent:

(1) T † = T ‡;
(2) T commutes with the modular automorphism σi .

Moreover, if T is real, then (1) and (2) are equivalent to

(3) T † is real.
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Proof. ((1) �⇒ (2)) By the relation between GNS and KMS adjoints, T † = T ‡ =
σi/2T †σ−i/2. Taking the adjoint, we get T = σ−i/2Tσi/2, hence Tσi = σi/2Tσi/2 =
σi T .
((2) �⇒ (1)) By the functional calculus, the square root σi/2 of a positive definite
operator σi = Q−1(·)Q is in the commutant of T . Thus we obtain (1) following the
proof of ((1) �⇒ (2)) backward.

((3) �⇒ (2)) Assume T † is real, then we have T † (real)= (T †)∗ = T by the

diagrammatic expression of T ∗ in Definition 1.2. Substituting this to the expression of
T ∗, we obtain

T
(real)= T ∗ = T † (substitute)= T = σi Tσ−i .

Thus T commutes with σi .
((1) �⇒ (3)) Since T is real, T † = T ‡ is also real by (1.2). ��
Definition 1.5 ([1,16]). A quantum graph is a triple G = (B, ψ, A) consisting of a
quantum set (B, ψ) and an operator A : B → B satisfying Schur idempotence A • A =
A, which is called the adjacency matrix.

We denote the GNS space of a quantum graph G = (B, ψ, A) by L2(G):=L2(B, ψ).

Definition 1.6. Let G = (B, ψ, A) be a quantum graph.

[1] G is tracial (or symmetric) if ψ is tracial, i.e., ψ = τB ;
[16] G is real if A is real A∗ = A. The realness is equivalent to the complete positivity
by the Schur idempotence of A (cf. [15, Proposition 2.23], [18, Remark 3.2]);
[16] G is undirected if A is both real and self-adjoint. This is equivalent to GNS
symmetry (c.f. [18]) ψ((Ax)y) = ψ(x(Ay)) under the realness by [15, Lemma
2.22];
[18] G is KMS symmetric if A is both real and KMS self-adjoint A = A‡;
[16] G is reflexive (or has all loops) if A • id = id;
[16] G is irreflexive (or has no loops) if A • id = 0;
[12] G has no partial loops if A • id = id • A;
[15] G is d-regular if A1B = d1B = A†1B . The d ∈ C is the degree of G;

• G is Schur central if A• · = ·• A, i.e., A is central with respect to the Schur product.

Lemma 1.7. Let G = (B, ψ, A) be a d-regular real quantum graph. It follows that
d ∈ R.

Proof. We have d = 〈1B |A1B〉 = 〈1B |A∗1B〉 = 〈1B |(A1B)∗〉 = d . ��
Definition 1.8 (Weaver [19]). A quantum relation on a von Neumann algebra B ⊂ B(H)

is a weak*-closed B ′-B ′-bimodule S ⊂ B(H), where we regard B(H) as the dual of
the trace class TC(H) via the coupling (S, T ) �→ Tr(ST ).

If we chose H = L2(B, ψ) for a quantum set (B, ψ), then a quantum relation on
B = λ(B) ⊂ B(H) is a ρ(B)-ρ(B)-bimodule S ⊂ B(H) where λ (resp. ρ) is the left
(resp. right) regular representation with respect to ψ .
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Quantum relations on a quantum set (B, ψ) are identified with B-B-bimodules S ⊂
B ⊗ B via the identification:

ι : B(L2(B, ψ)) 
 T �→ ι(T ) = T ∈ B ⊗ B. (1.3)

See for example [14], [5, Appendix F] about bimodules over von Neumann algebras,
and [16] about the one-to-one correspondence above.

The linear isomorphism ι is the linear extension of ι(|x〉〈y|) = σ−i (y∗) ⊗ x for
x, y ∈ B. We endow B(L2(B, ψ)) with a Hilbert space structure via ι, i.e.,

〈S|T 〉 = 〈ι(S)|ι(T )〉ψ⊗ψ = �(S†T ) = δ2〈1|S∗ • T |1〉, (1.4)

where � = δ2〈1|idB • ·|1〉 = is an extension of δ2ψ on ρ(B) to B(L2(B, ψ)).

Let P : L2(B, ψ)⊗2 → L2(B, ψ)⊗2 be the orthogonal projection onto the B-B-
bimodule S ⊂ B ⊗ B = L2(B, ψ)⊗2. Then P is B-B-bimodule map, i.e., P(xξ y) =
x P(ξ)y for x, y ∈ B and ξ ∈ B ⊗ B.

There is a one-to-one correspondence (cf. [16]) between B-B-bimodule projections
P on B ⊗ B and real quantum graphs (B, ψ, A) as follows:

P = PA:=δ−2 A ; A = AP = δ2 P . (1.5)

Note that PA = ιP̃Aι−1 is the reformulation of left Schur product by A:

P̃A = A • (·) : B(L2(B, ψ)) 
 T �→ A • T ∈ B(L2(B, ψ)).

Example 1.9. We denote the reflexive trivial graph on a quantum set (B, ψ)byT (B, ψ) =
(B, ψ, idB), which is undirected 1-regular. This is the quantum version of graphs with all
loops. Its corresponding quantum relation is the commutant of B: ST (B,ψ) = λ(B)′ =
ρ(B) ⊂ B(L2(B, ψ)). We abbreviate the classical trivial graphs Tn = T (Cn, τCn ) for
n ∈ N.

We denote the irreflexive complete graph on a quantum set (B, ψ) with δ-form by
K (B, ψ) = (B, ψ, δ2ψ(·)1B − idB), which is undirected (δ2 − 1)-regular. This is
the quantum version of graphs with all edges except loops. Its corresponding quantum
relation is the orthocomplement of the commutant of B:SK (B,ψ) = S⊥T (B,ψ) = ρ(B)⊥ ⊂
B(L2(B, ψ)). We abbreviate the classical complete graphs Kn = K (Cn, τCn ) for n ∈ N.
We denote by J = δ2ψ(·)1B the adjacency matrix of the reflexive complete quantum
graphs.

The degree of a regular classical graph is at most the size of the vertex set. The value
δ2 plays the role of the size of a quantum set and it bounds the degree.

Lemma 1.10. Let G = (B, ψ, A) be a d-regular real quantum graph. Then 0 ≤ d ≤ δ2.
In particular, d = 0 if and only if A = 0, and d = δ2 if and only if A = δ2ψ(·)1B.
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Proof. We use the correspondence between A and a projection pA ∈ Bop ⊗ B. Note
that the reflexive complete graph (B, ψ, J = δ2ψ(·)1B) corresponds to the maximal
projection pJ = 1⊗ 1 ∈ Bop ⊗ B. Since 0 ≤ pA ≤ pJ and ψ⊗2 is a state on Bop ⊗ B,
we have

0 ≤ d = ψ(A1B) = δ2ψ⊗2(pA) ≤ δ2ψ⊗2(pJ ) = ψ(J1B) = δ2.

Since ψ⊗2 is faithful, d = 0 holds if and only if A = 0, and d = δ2 holds if and only if
A = J . ��

Gromada [12, section 2.3] pointed out that the value δ2〈1B |A|1B〉 = δ2ψ(A1B) is
the number of edges. This value is strictly positive whenever A is nonzero and real:

Lemma 1.11. Let G = (B, ψ, A) be a real quantum graph. Then 〈1B |A|1B〉 ≥ 0 with
equality if and only if A = 0.

Proof. Similarly to the proof of Lemma 1.10, we have

〈1B |A|1B〉 = ψ⊗2(pA) ≥ 0.

Since ψ⊗2 is faithful, 〈1B |A|1B〉 = 0 holds if and only if A = 0. ��
For later use, we show that the eigenspace for any real eigenvalue of a real quantum

graph is spanned by self-adjoint elements:

Lemma 1.12. Let (B, ψ, A) be a real quantum graph and x ∈ B be an eigenvector for
an eigenvalue λ of A. Then x∗ is an eigenvector for the eigenvalue λ of A. In particular
if λ ∈ spec(A) ∩ R, then the eigenspace ker(λ id − A) and the generalized eigenspace
ker(λ id − A)dim B are spanned by self-adjoint elements.

Proof. Taking the involution of (λ id−A)x = 0, we get (λ id−A)x∗ = (λx)∗−(Ax)∗ =
((λ id − A)x)∗ = 0. If λ is real, then both x and x∗ are eigenvectors for λ, hence
�x = x+x∗

2 ,�x = x−x∗
2i are also eigenvectors for λ. Since x is arbitrary, ker(λ id − A)

is spanned by self-adjoint elements. Similarly ker(λ id − A)dim B is so. ��

2. Spectral Bound for Regular Quantum Graphs

In classical graph theory, d-regular graph is known to have spectral radius d (cf. [7])
and hence it makes sense to argue whether the second largest eigenvalue is d and the
smallest eigenvalue is −d. Here we introduce the notion of graph gradient to prove this
spectral bound for regular quantum graphs.

2.1. Graph gradient of quantum graphs.

Definition 2.1. Let (B, ψ, A) be a quantum graph. Define a linear operator ∇ = ∇A :
B → B ⊗ B by

∇A = δ−2(A† ⊗ idB − idB ⊗ A)m† = δ−2

⎛

⎝ A† − A

⎞

⎠ .

We call ∇A the graph gradient.
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This gradient coincides with the classical one in the following manner.

Lemma 2.2. Let (V, E ⊂ V × V ) be a classical directed graph corresponding to
(C(V ) = C

n, τ, A) with Ai j = χE ( j, i) where χE is the indicator function of E.
The classical graph gradient ∇E : C(V ) → C(E) (the so-called coboundary operator
in [7]) is defined by

∇E f (i, j) = f ( j)− f (i) f ∈ C(V ), (i, j) ∈ E .

It holds that ∇A = ι ◦ ∇E , where ι : C(E) → C(V ) ⊗ C(V ) = C(V × V ) is the
extension of functions on E to V × V with outside zero.

Proof. Note that the evaluation map C(V ) 
 f �→ f (i) ∈ C at i ∈ V is given by
n〈ei | = nτ(ei ·) for the tracial

√
n-form τ and m†ek = nek ⊗ ek . By direct computation

we have for f ∈ C(V ) and i, j ∈ V that

∇A f (i, j) = n2(〈ei | ⊗ 〈e j |)∇A f

= n2n−1
(
〈ei |A† ⊗ 〈e j | − 〈ei | ⊗ 〈e j |A

)
n

∑

k

f (k)ek ⊗ ek

= n2(〈ei |A† f ( j)|e j 〉n−1 − n−1〈e j |A f (i)|ei 〉)
= n

∑

(k, j)∈E
〈ei |ek〉 f ( j)− n

∑

(i,k)∈E
〈e j |ek〉 f (i)

= ( f ( j)− f (i))χE (i, j) = (ι∇E f )(i, j).

��
The graph gradient ∇A is the commutator of the right regular representation ρ(·) and

A via the identification (1.3) ι : B(L2(G)) ∼= B ⊗ B:

Proposition 2.3. Let (B, ψ, A) be a real quantum graph. For x ∈ B, we have

δ2ι−1(∇Ax) = [ρ(x), A]:=ρ(x)A − Aρ(x).

Proof. By direct computation, we get

δ2ι−1(∇Ax) =
A†

x
− A

x
= A x −

x

A = [ρ(x), A].

��
Recall the one-to-one correspondence (1.5) between real quantum graphs A on (B, ψ)

and ‘edge space’ B-B-bimodules S = range PA ⊂ B ⊗ B represented by orthogonal
projection PA onto S ⊂ L2(B, ψ)⊗2. Similarly to the classical case, ∇A is a map to the
edge space.

Proposition 2.4. Let (B, ψ, A) be a real quantum graph. Then the following holds.

(1) The range of ∇A is included in range PA, i.e., PA∇A = ∇A.
(2) The operator∇A is aC-derivation, i.e.,∇A(xy) = (∇Ax)y+x(∇Ay) for all x, y ∈ B

and ∇A(λ) = 0 for any λ ∈ C ⊂ B.
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Proof. (1) Note that the real condition (1.1) implies

A† = A = δ2PA(1⊗ ·); A = A = δ2PA(· ⊗ 1).

Thus we have ∇A = PA(1⊗ · − · ⊗ 1), and

PA∇A = P2
A(1⊗ · − · ⊗ 1) = ∇A

by idempotence of PA.
(2) Now we have ∇A1 = PA(1 ⊗ 1 − 1 ⊗ 1) = 0. It remains to show ∇A(xy) =
(∇Ax)y + x(∇Ay) for x, y ∈ B. Indeed by bimodule property PA(xzy) = x(PAz)y for
x, y ∈ B, z ∈ B⊗2, we obtain

∇A(xy) = PA(1⊗ xy − xy ⊗ 1)

= PA(1⊗ xy − x ⊗ y + x ⊗ y − xy ⊗ 1)

= PA((1⊗ x − x ⊗ 1)y + x(1⊗ y − y ⊗ 1))

= (∇Ax)y + x(∇Ay).

��
Definition 2.5 (Generalization of Ganesan [11] to directed graphs). Let G = (B, ψ, A)

be a quantum graph. We define the (left) indegree matrix Din : B → B and (right)
outdegree matrix Dout : B → B by

Din = λ(A1B) = A ; Dout = ρ(A†1B) = A† (if A:real)= A

where λ (resp. ρ) is the left (resp. right) multiplication.

If G is undirected, then Dout = D∗in by

D∗inx = ((A1)x∗)∗ = x(A1)∗ = x(A∗1)
(undirected)= x(A†1) = Doutx .

And Dout = Din = d idB if G is d-regular.

Lemma 2.6. Let G = (B, ψ, A) be a real quantum graph. Then

0 ≤ ∇†
A∇A = δ−2

(
Din − A + Dout − A†

)
.

Moreover if G is d-regular,

0 ≤ ∇†
A∇A = 2δ−2

(

d idB − A + A†

2

)

.

In particular θ A+θ A†

2 ≤ d idB for all θ ∈ T.
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Proof. We can compute directly

∇†∇ = δ−4m(A ⊗ id − id ⊗ A†)(A† ⊗ id − id ⊗ A)m†

= δ−4

⎛

⎝ AA† + A†A − A A − A† A†

⎞

⎠

= δ−2

⎛

⎜
⎝δ−2

A A + δ−2 A A − A − A†

⎞

⎟
⎠

= δ−2

⎛

⎝ A + A − A − A†

⎞

⎠

= δ−2
(
Din − A + Dout − A†

)
.

If it is d-regular, then Dout = Din = d idB yields

∇†∇ = 2δ−2
(

d idB − A + A†

2

)

.

Replacing A by λA and A† by λA† in ∇A, we deduce d idB − λ2A+λ
2
A†

2 ≥ 0 for any

λ ∈ T. Since θ = λ2 ranges all θ ∈ T, we obtain θ A+θ A†

2 ≤ d idB . ��
Remark 2.7. Ganesan [11] defined the graph Laplacian L by L = D − A for undi-
rected quantum graphs with right degree matrix D = Dout. In this case, our Laplacian
:=δ2∇†∇ = L∗ + L is a ‘double’ of usual Laplacian. Usually, the gradient of an undi-
rected classical graph is defined by the gradient as in Lemma 2.2 of an orientation (i.e.,
a half) of the original graph. This is why we obtained the doubled Laplacian, and such
duplication is inevitable because quantum graphs do not always have an orientation as
shown below.

Definition 2.8. Let G = (B, ψ, A) be an undirected quantum graph. We say that a
Schur projection T : B → B is an orientation of G if A • T = T , T • T † = 0, and
range(T • ·) + range(T † • ·) = range(A • ·).
Note that this definition is equivalent to A = T +T † if T † is also a Schur projection. The
definition states that T is a directed subgraph (edge subset) of A over the same quantum
set, T † is the opposite orientation of T , and T and T † disjointly cover A.

If G is non-tracial, then the GNS adjoint T † is not always real, hence not necessarily
a Schur projection and A = T + T † may not hold. To avoid such a problem, we can
instead consider a KMS symmetric quantum graph G and the KMS adjoint T ‡ to define
an orientation simply by A = T + T ‡.

Example 2.9 (A non-orientable quantum graph). Consider 1-regular irreflexive undi-

rected quantum graph G = (M2, τ = Tr /2, A = 2EC2 − idM2 :
(
a b
c d

)

�→
(

a −b
−c d

)

)
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(c.f. [12,15]), where EC2 is the conditional expectation onto the diagonal subalgebra.
Its corresponding projection

pA = 1

2

⎛

⎜
⎝

1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

⎞

⎟
⎠ ∈ Mop

2 ⊗ M2 = M4

is rank one, hence it does not have an orientation T whose corresponding projection pT
must satisfy pA = pT + pT † .

2.2. Spectral bound by the degree.

Proposition 2.10. Let G be a d-regular real quantum graph. The spectral radius r(A)

of the adjacency operator satisfies r(A) = d.

Proof. For a nonzero λ ∈ spec(A) and a unit eigenvector x ∈ ker(λ idB − A), choose
θ ∈ T so that θλ = |λ|. Then Lemma 2.6 shows

d = d〈x |x〉 ≥ 〈x |θ A + θ A†|x〉
2

= θ〈x |Ax〉 + θ〈Ax |x〉
2

= θλ + θλ

2
= |λ|.

Thus r(A) = supλ∈spec(A) |λ| ≤ d. Since d ∈ spec(A), we have r(A) = d. ��
Theorem 2.11. Let G = (B, ψ, A) be a d-regular quantum graph. Then the identity of
the operator norm on B(L2(G)) and the degree

‖A‖op = d

holds if either of the following is satisfied:

(1) G is undirected, whence spec(A) ⊂ [−d, d];
(2) A is real and commutes with σi ;
(3) G is real and tracial, i.e., A is real and ψ = τB.

Proof. (1) Since A is normal AA† = A†A, Proposition 2.10 implies ‖A‖op = r(A) = d.
Thus self-adjointness shows spec(A) ⊂ [−d, d].
(2) By Lemma 1.4, (2) means that both A and A† are real. We prove the identity by
embedding A into an undirected d-regular quantum graph
(
B ⊗ C

2, ψ̃ = ψ ⊗ τC2 , Ã:=A ⊗ E12 + A† ⊗ E21

)
=

(

B ⊕ B,
ψ ⊕ ψ

2
,

(
0 A
A† 0

))

where Ei j are matrix units in M2. By definition Ã is self-adjoint. Note that A, A† are
quantum graphs on (B, ψ) and Ei j are (quantum) graphs on (C2, τC2). Then A ⊗ E12

and A† ⊗ E21 are quantum graphs on (B ⊗ C
2, ψ ⊗ τC2). Since the Schur product of

E12 and E21 is zero, Ã = A ⊗ E12 + A† ⊗ E21 is also a quantum graph.
By assumption, A and A† are real. So are A ⊗ E12 and A† ⊗ E21, hence Ã is real.
The regularity follows from Ã(1B ⊗ 1C2) = d1B ⊗ e1 + d1B ⊗ e2 = d(1B ⊗ 1C2).
Therefore we have

d = ∥
∥ Ã

∥
∥
B(L2(B⊗C2))

≥ ∥
∥ Ã|L2(B)⊗e2→L2(B)⊗e1

∥
∥ = ‖A‖B(L2(B))

via isometric identifications L2(B) 
 x �→ x ⊗ √
2ei ∈ L2(B) ⊗ ei for i = 1, 2. By

d ∈ spec(A), we obtain ‖A‖ = d.
(3) By traciality, σi = idB . Thus (3) follows from (2). ��
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Corollary 2.12. Let G = (B, ψ, A) be a d-regular real quantum graph. Then we have
the identity of the degree and the operator norm with respect to the KMS inner product
on B:

‖A‖op = d.

Proof. By (1.2), the realness of A implies that A‡ is also real. Thus we have the KMS
version of Theorem 2.11 (2): both A and A‡ are real. Since the spectral radius does not
depend on the inner product structure, we have r(A) = d by Proposition 2.10. Therefore
by the same argument as in the proof of Theorem 2.11, we obtain ‖A‖op = d over the
KMS Hilbert space B. ��
Corollary 2.13. LetG = (B, ψ, A)bead-regular undirected irreflexive quantumgraph.
Then spec(A) ⊂ [−d, d] and 0 ≤ d ≤ δ2−1. Equivalently ifG is a d-regular undirected
reflexive quantum graph, then spec(A) ⊂ [−d + 2, d] and 1 ≤ d ≤ δ2.

Proof. IfG is irreflexive, then spec A ⊂ [−d, d] follows from Theorem 2.11. Its reflexive
version is given by (B, ψ, A + id) as a (d + 1)-regular undirected quantum graph, hence
Lemma 1.10 shows that 0 ≤ d ≤ δ2−1. IfG is reflexive, we may replace d in the previous
argumant by d−1 and obtain spec(A− id) ⊂ [−d +1, d−1], i.e., spec A ⊂ [−d +2, d],
and 1 ≤ d ≤ δ2. ��
OpenProblems. In view of the above, we wonder if ‖A‖op = d holds with a weaker
assumption with respect to the GNS inner product.

Although we showed that some irreflexive quantum graphs do not admit an orien-
tation, there may be a better definition that makes any irreflexive undirected quantum
graphs orientable.

As we have the quantum graph Laplacians  = δ2∇†∇ and L , it is natural to consider
a quantum Markov semigroup e−t, which is the heat semigroup over the quantum graph.
We leave it as an open question for future work to investigate the property of e−t such
as the complete logarithmic Sobolev inequality (cf. [4]).

3. Characterization of Graph Properties

In this section, we introduce graph homomorphisms respecting the adjacency matrices
and define the connectedness and bipartiteness of quantum graphs in terms of graph
homomorphisms. After that, we give algebraic characterizations of these properties for
regular quantum graphs.

3.1. Graph properties defined by homomorphisms.

Definition 3.1. Let G = (B, ψ, A),G′ = (B ′, ψ ′, A′) be quantum graphs. A graph
homomorphism f op : G → G′ is a unital ∗-homomorphism f : B ′ → B satisfying
A′ • ( f †A f ) = f †A f .

We say that f op is surjective if f is injective, and f op is injective if f is surjective.

This definition states that the pushforward f †A f of the adjacency matrix of G is in
the edges of G′.
Definition 3.2. Let G be a quantum graph.

• G is disconnected if there is a surjective graph homomorphism G → T2;
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• G is connected if it is not disconnected, i.e., there is no surjective graph homomor-
phism G → T2;
• G is bipartite if there is a surjective graph homomorphism G → K2;
• G has a bipartite component if there is a graph homomorphism G → K2 � T1 that
is onto K2, i.e., there is a unital ∗-homomorphism f : C2 ⊕ C → B satisfying⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ • f †A f = f †A f and f is injective on C
2 ⊕ 0.

If G = (V, E) is classical, these definitions agree with classical definitions: G is
disconnected (resp. bipartite) if there is a decomposition V = V0 � V1 with no edges
between V0 and V1 (resp. with all edges between V0 and V1). The equivalence is proved
by mapping V0 and V1 to the distinct vertices of K2 or T2.

A naive definition of these properties by A =
(∗ 0

0 ∗
)

or

(
0 ∗
∗ 0

)

along some non-

trivial decomposition B = B0 ⊕ B1 of the quantum set is too restrictive for quantum
graphs. Indeed there exists a 1-regular undirected irreflexive quantum graph (M2, τ, A =
2EC2 − id) (c.f. [12,15]) with spec A = {−1,−1, 1, 1}, which looks like bipartite and
disconnected but has no nontrivial decomposition M2 = B0 ⊕ B1. That is why we
defined as above.

The following is the key lemma to prove spectral characterizations of these properties.
This lemma allows us to control the decomposition of a self-adjoint operator into positive
and negative parts.

Lemma 3.3. Let B be a C∗-algebra with a faithful state ψ , and x±, y± ∈ B be positive
elements satisfying

x+ − x− = y+ − y−
with ψ(x+) = ψ(y+), ψ(x−) = ψ(y−). Assume that there is a projection p ∈ B such
that

px+ = x+ = x+ p, (1− p)x− = x− = x−(1− p), ψ(p ·) = ψ(· p).
Then it follows that x+ = y+, x− = y−.
Proof. We show that ξ :=y+ − x+ = y− − x− is zero. By assumptions on p, we have

pξp = py+ p − x+ = py− p ≥ 0

(1− p)ξ(1− p) = (1− p)y−(1− p)− x− = (1− p)y+(1− p) ≥ 0

pξ(1− p) = py+(1− p) = py−(1− p).

By ψ(ξ) = ψ(y+)− ψ(x+) = 0 and ψ(pξ(1− p)) = ψ(ξ(1− p)p) = 0, we have

0 = ψ(ξ) = ψ(pξp) + ψ((1− p)ξ(1− p)) + ψ(pξ(1− p)) + ψ((1− p)ξp)

= ψ(pξp) + ψ((1− p)ξ(1− p)).

Since pξp and (1− p)ξ(1− p) are positive, faithfulness of ψ implies

pξp = (1− p)ξ(1− p) = 0.

By positivity of y+ = x+ + ξ , it follows for all t ∈ R that

(p + t (1− p))y+(p + t (1− p)) = x+ + t (pξ(1− p) + (1− p)ξp)
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is positive. Since pξ(1 − p) + (1 − p)ξp is self-adjoint, if it has a nonzero positive
or negative part, x+ + t (pξ(1 − p) + (1 − p)ξp) cannot be always positive. Therefore
pξ(1− p) + (1− p)ξp = 0, hence ξ = (p + (1− p))ξ(p + (1− p)) = 0. ��
Lemma 3.4. Let B be a von Neumann algebra with a faithful tracial state τ , and
x±, y± ∈ B be positive elements satisfying

x+ − x− = y+ − y−, x+x− = x−x+ = 0

with τ(x+) = τ(y+), τ (x−) = τ(y−). Then it follows that x+ = y+, x− = y−.

Proof. Since x+x− = x−x+ = 0, the range projection p of x+ satisfies px+ = x+ = x+ p
and (1 − p)x− = x− = x−(1 − p). Since τ is tracial, we also have τ(p ·) = τ(· p).
Thus Lemma 3.3 shows x+ = y+, x− = y−. ��
Remark 3.5. Note that the assumption ψ(p ·) = ψ(· p) is essential in Lemma 3.3.
Indeed we have the following counterexample without this property. Let B = M2, ψ =
ωq ◦ ad(u) = Tr(u∗Qu·) where Q = 1

1 + q2

(
1 0
0 q2

)

, q ∈ (0, 1), u = 1√
2

(
1 −1
1 1

)

.

Put

x+ =
(

1 0
0 0

)

≥ 0, x− =
(

0 0
0 1

)

≥ 0, ξ = α

⎛

⎝
1 1+q2

1−q2

1+q2

1−q2 1

⎞

⎠ : s.a.,

for α ∈
(

0,
(q−1−q)2

4

]
. It follows that

y± = x± + ξ ≥ 0, ψ(ξ) = 0, i.e., ψ(x±) = ψ(y±),

and x+, x− are orthogonal projections, but ξ �= 0.

Proof. We have

y+ =
⎛

⎝
1 + α

1+q2

1−q2 α

1+q2

1−q2 α α

⎞

⎠ ,

hence Tr(y+) = 1 + 2α > 0 and

det y+ = α + α2

(

1−
(

1 + q2

1− q2

)2
)

= α

(

1− α
4q2

(1− q2)2

)

≥ 0

show that y+ ≥ 0, and y− ≥ 0 as well. By simple computation, we get

ψ(ξ) = Tr(u∗Quξ) = α

2
Tr

⎛

⎝

⎛

⎝
1 −1+q2

1+q2

−1+q2

1+q2 1

⎞

⎠

⎛

⎝
1 1+q2

1−q2

1+q2

1−q2 1

⎞

⎠

⎞

⎠ = 0.

��
Lemma 3.6. Let G = (B, ψ, A) be a d-regular undirected tracial quantum graph. It
follows for any self-adjoint x ∈ ker(d id − A) that C∗(x) ⊂ ker(d id − A).



185 Page 16 of 28 J. Matsuda

Proof. It suffices to show that Api = dpi for the spectral projections {p1, . . . , pk}
of x = ∑k

i=1 λi pi with λ1 > · · · > λk . Consider ker(d id − A) 
 x − λ21B =
(λ1 − λ2)p1 −∑k

i=2(λ2 − λi )pi , then

(λ1 − λ2)Ap1 −
k∑

i=2

(λ2 − λi )Api = d(λ1 − λ2)p1 − d
k∑

i=2

(λ2 − λi )pi .

Since (λ1 − λ2)p1 and
∑k

i=2(λ2 − λi )pi are positive and have disjoint supports, ψ A =
dψ shows that we can apply Lemma 3.4. Thus

(λ1 − λ2)Ap1 = d(λ1 − λ2)p1,

hence p1,
∑k

i=2 λi pi ∈ ker(d id − A). Inductively we get p1, . . . , pk ∈ ker(d id
− A). ��

3.2. Connected quantum graphs.

Theorem 3.7. Let G = (B, ψ, A) be a d-regular undirected tracial quantum graph. The
following are equivalent:

(1) G is connected.
(2) d ∈ spec(A) is a simple root, i.e., dim ker(d id − A) = 1.

Proof. If dim B = 1, then G is connected and d is simple. If dim B ≥ 2 and d = 0, then
A = 0 by Lemma 1.11 and d has multiplicity ≥ 2, whence there is an injective unital
∗-homomorphism f : C2 → B. Hence neither G is connected nor d is simple. In the
sequel of the proof, we may assume d > 0 and dim B ≥ 2.
((2) �⇒ (1)): We show that d is a multiple root if G is disconnected.

We have an injective unital∗-homomorphism f : C2 → B such that

(
1 0
0 1

)

• f †A f =
f †A f . Put x1 = f (e1), x2 = f (e2) ∈ B, which are mutually orthogonal nonzero
projections satisfying x1+x2 = 1B . The regularity shows Ax1+Ax2 = A1B = dx1+dx2.

By ( f †A f )i j = 2〈ei | f †A f |e j 〉 = 2〈xi |Ax j 〉 and

(
1 0
0 1

)

• f †A f = f †A f , it follows

that

〈x1|Ax2〉 = 〈x2|Ax1〉 = 0;
〈x1|Ax1〉 = 〈x1 + x2|Ax1〉 = ψ(Ax1) = dψ(x1);
〈x2|Ax2〉 = 〈x1 + x2|Ax2〉 = ψ(Ax2) = dψ(x2).

Thus Ax1 = dx1 + (dx2 − Ax2) gives the orthogonal decomposition of Ax1 along
Cx1 ⊕ (x1)

⊥. Then we have

d2ψ(x1) ≥ ‖Ax1‖2
2 = ‖dx1‖2

2 + ‖dx2 − Ax2‖2
2 = d2ψ(x1) + ‖dx1 − Ax2‖2

2,

hence ‖dx2 − Ax2‖2 = 0, i.e., Ax2 = dx2 and Ax1 = dx1. Therefore d ∈ spec(A) has
multiplicity more than 1.
((1) �⇒ (2)): We show that G is disconnected if d is not simple.

By Lemma 1.12 and the multiplicity of d, there is a self-adjoint x ∈ ker(d id−A)\C1,
and Lemma 3.6 allows us to take mutually orthogonal projections x1, x2 ∈ ker(d id− A)
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satisfying x1 + x2 = 1 as spectral projections of x . Thus we obtain an injective ∗-
homomorphism f : C2 → B defined by f (ei ) = xi for i = 1, 2. It satisfies

2〈ei | f †A f |e j 〉 = 2〈xi |Ax j 〉 = 2d〈xi |x j 〉 = 2dψ(xi )δi j .

Thus f †A f =
(

2dψ(x1) 0
0 2dψ(x2)

)

, which gives a surjective graph homomorphism

f op : G → T2. ��

3.3. Bipartite quantum graphs.

Theorem 3.8. Let G = (B, ψ, A) be a d-regular connected undirected tracial quantum
graph. The following are equivalent:

(1) G is bipartite.
(2) −d ∈ spec(A). If d = 0, we require that the multiplicity of 0 ∈ spec(A) is at least

two, i.e., dim B ≥ 2.

Proof. If dim B = 1, then A = 0 with simple root d = 0 or A = idC with d = 1 �=
−d, hence neither bipartite nor −d ∈ spec(A). We may assume dim B ≥ 2, then the
connectedness implies d > 0 as argued in the proof of Theorem 3.7.
((1) �⇒ (2)): We have an injective unital ∗-homomorphism f : C2 → B such

that

(
0 1
1 0

)

• f †A f = f †A f . Put x1 = f (e1), x2 = f (e2) ∈ B, which are mutually

orthogonal nonzero projections satisfying x1 + x2 = 1B . The regularity shows Ax1 +

Ax2 = A1B = dx1 + dx2. By ( f †A f )i j = 2〈ei | f †A f |e j 〉 = 2〈xi |Ax j 〉 and

(
0 1
1 0

)

•
f †A f = f †A f , it follows that

〈x1|Ax1〉 = 〈x2|Ax2〉 = 0;
〈x1|Ax2〉 = 〈x1 + x2|Ax2〉 = ψ(Ax2) = dψ(x2)

= 〈x2|Ax1〉 = dψ(x1).

Thus ψ(x1) = ψ(x2) = 1/2, and Ax1 = dx2 + (dx1 − Ax2) gives the orthogonal
decomposition of Ax1 along Cx2 ⊕ (x2)

⊥. This yields

d2

2
= d2ψ(x1) ≥ ‖Ax1‖2

2 = ‖dx2‖2
2 + ‖dx1 − Ax2‖2

2 =
d2

2
+ ‖dx1 − Ax2‖2

2,

hence ‖dx1 − Ax2‖2 = 0, i.e., Ax1 = dx2 and Ax2 = dx1. Therefore we obtain
A(x1 − x2) = −d(x1 − x2), which shows −d ∈ spec(A).
((2) �⇒ (1)): By Lemma 1.12, we can take a self-adjoint x ∈ ker(d id + A) with
‖x‖2 = 1. Decompose x = x+ − x− into positive and negative parts x± ∈ B+, Then we
have

Ax+ − Ax− = Ax = −dx = dx− − dx+.

The self-adjointness of A implies the orthogonality of eigenvectors ψ(x) = 〈1|x〉 = 0,
i.e., ψ(x+) = ψ(x−), hence the regularity implies ψ(Ax±) = dψ(x±) = dψ(x∓) =
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ψ(dx∓). Note that the real quantum graph A is CP; hence Ax± are positive. Since ψ is
tracial and x± have disjoint supports, Lemma 3.4 shows

Ax± = dx∓.

Thus A(x+ + x−) = d(x+ + x−). Since G is connected, we get x+ + x− = c1B for
some c > 0. By 1 = ‖x‖2

2 = ‖x+‖2
2 + ‖x−‖2

2 = ‖x+ + x−‖2
2 = c2, we have c =

1, x+ + x− = 1B . Then x+x− = 0 shows x2± = x±(x± + x∓) = x±, hence x± are
mutually orthogonal projections with ψ(x±) = 1/2. Thus we obtain an injective ∗-
homomorphism f : C2 → B defined by f (e1) = x+, f (e2) = x−. It satisfies

2〈ei | f †A f |ei 〉 = 2〈x±|Ax±〉 = 2d〈x±|x∓〉 = 0 (i = 1, 2);
2〈e1| f †A f |e2〉 = 2〈x+|Ax−〉 = 2d〈x+|x+〉 = d.

Thus f †A f =
(

0 d
d 0

)

, which gives a surjective graph homomorphism f op : G →
K2. ��
Theorem 3.9. Let G = (B, ψ, A) be a d-regular undirected tracial quantum graph. The
following are equivalent:

(1) G has a bipartite component.
(2) −d ∈ spec(A). If d = 0, we require that the multiplicity of 0 ∈ spec(A) is at least

two, i.e., dim B ≥ 2.

Proof. If dim B = 1, G → K2 � T1 cannot be surjective to K2. Hence G does not have
a bipartite component, and −d ∈ spec(A) does not hold as in the previous proof. If
d = 0 and dim B ≥ 2, then d = 0 = −d is the multiple root of A = 0 and has a graph
homomorphism G → K2�T1 that is surjective to K2, hence G has a bipartite component
and −d ∈ spec(A). In the sequel of the proof, we may assume d > 0 and dim B ≥ 2.

((1) �⇒ (2)): We have a unital ∗-homomorphism f : C3 → B such that

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ •

f †A f = f †A f and f is injective on C
2⊕ 0. Put xi = f (ei ) ∈ B for i = 1, 2, 3, which

are mutually orthogonal projections satisfying x1 + x2 + x3 = 1 and x1, x2 are nonzero.
Then the regularity implies

Ax1 + A(1− x1) = A1B = dx2 + d(1− x2).

By ( f †A f )i j = 3〈ei | f †A f |e j 〉 = 3〈xi |Ax j 〉 and

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠• f †A f = f †A f , it follows

that

〈1− x1|Ax2〉 = 〈1− x2|Ax1〉 = 〈1− x3|Ax3〉 = 0;
〈x1|Ax2〉 = 〈x1 + (1− x1)|Ax2〉 = ψ(Ax2) = dψ(x2)

= 〈x2|Ax1〉 = dψ(x1).

Thus ψ(x1) = ψ(x2), and Ax1 = dx2 + (d(1− x2)− A(1− x1)) gives the orthogonal
decomposition of Ax1 along Cx2 ⊕ (x2)

⊥. Then we have

d2ψ(x1) = ‖A‖2‖x1‖2
2 ≥ ‖Ax1‖2

2 = ‖dx2‖2
2 + ‖d(1− x2)− A(1− x1)‖2

2

= d2ψ(x2) + ‖d(1− x2)− A(1− x1)‖2
2,
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hence ‖d(1− x2)− A(1− x1)‖2 = 0, i.e., A(1− x1) = d(1− x2) and Ax1 = dx2. By
symmetry, we also have Ax2 = dx1. Therefore we obtain

A(x1 − x2) = −d(x1 − x2),

which shows −d ∈ spec(A).
((2) �⇒ (1)): By Lemma 1.12, we can take a self-adjoint x ∈ ker(d id + A). Consider
the spectral projections {pλ|λ ∈ spec(x)} of

x =
∑

λ

λpλ =
∑

λ>0

λ(pλ − p−λ); x+ =
∑

λ>0

λpλ; x− =
∑

λ>0

λp−λ.

In the same way as the proof of Theorem 3.8, we obtain Ax± = dx∓ and x+ + x− ∈
ker(d id− A). Therefore it follows from Lemma 3.6 that pλ + p−λ ∈ ker(d id− A) for
all λ > 0. Thus it follows for a fixed λ > 0 that

Apλ = dpλ + dp−λ − Ap−λ ≤ dpλ + dp−λ. (3.1)

Now λpλ ≤ x+ implies

Apλ ≤ λ−1Ax+ = d

λ
x− =

∑

μ>0

dμ

λ
p−μ. (3.2)

By taking the meet of (3.1) and (3.2) in the lattice of self-adjoint elements in the com-
mutative algebra C∗(x), we obtain

Apλ ≤ (dpλ + dp−λ) ∧
∑

μ>0

dμ

λ
p−μ = dp−λ. (3.3)

Similarly we have Ap−λ ≤ dpλ, i.e.,

Apλ = A(1− p−λ) ≥ d(1− pλ) = dp−λ. (3.4)

Combining (3.4) and (3.4) we get Apλ = dp−λ and Ap−λ = dpλ. Hence pλ − p−λ ∈
ker(d id + A) for all λ > 0. Thus we may initially take x = x+ − x− ∈ ker(d id + A) for
mutually orthogonal nonzero projections x± ∈ B satisfying

Ax± = dx∓.

Then we have a ∗-homomorphism f : C2 ⊕ C → B defined by f (e1) = x+, f (e2) =
x−, f (e3) = 1− x+ − x− that is injective on C

2 ⊕ 0. It satisfies

3〈ei | f †A f |ei 〉 = 3〈x±|Ax±〉 = 3d〈x±|x∓〉 = 0 (i = 1, 2);
3〈e1| f †A f |e2〉 = 3〈x+|Ax−〉 = 3d〈x+|x+〉 = 3dψ(x+);
3〈ei | f †A f |e3〉 = 3〈x±|d1− dx+ − dx−〉 = 0 (i = 1, 2);
3〈e3| f †A f |e3〉 = 3d〈1− x+ − x−|1− x+ − x−〉 = 3d(1− 2ψ(x+)).

Thus f †A f =
⎛

⎝
0 3dψ(x+) 0

3dψ(x+) 0 0
0 0 3d(1− 2ψ(x+))

⎞

⎠, which gives a graph homomor-

phism f op : G → K2 � T1. ��
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4. Two-Colorability and Bipartiteness

It is known that a classical graph is bipartite if and only if it is two-colorable. We compare
the bipartiteness defined in this paper and the local two-colorability introduced in [3].

4.1. t-homomorphism. The gap of bipartiteness and two-colorability arises from the two
notions of graph homomorphisms: one is Definition 3.1 and the other is the following
t-homomorphisms:

Definition 4.1 (ModifiedgeneralizationofBrannan et al. [3]). LetG0 = (B0, ψ0, A0,S0),

G1 = (B1, ψ1, A1,S1) be quantum graphs with δi -forms ψi and quantum relations Si =
range(Ai • ·) ⊂ B(L2(Gi )). A t-homomorphism ( f,A) : G0

t→ G1 (t ∈ {loc, q, qa, qc,
C∗, alg}) is consisting of a unital ∗-homomorphism f : B1 → B0 ⊗ A and a unital
∗-algebra A satisfying

f †(S0 ⊗ 1A) f ⊂ S1 ⊗A, (4.1)

where f † ∈ B(L2(G0), L2(G1)) ⊗ A is the adjoint (·)† ⊗ (·)∗ of f as an operator in
B(L2(G1), L2(G0))⊗A, and

• A = C if t = loc (local, classical);
• A is finite-dimensional if t = q (quantum);
• A = Rω is the ultrapower of the hyperfinite I I1-factor R by a free ultrafilter ω on
N if t = qa (quantum approximate);
• A is a tracial C∗-algebra if t = qc (quantum commuting);
• A is a C∗-algebra if t = C∗;
• A is a unital ∗-algebra if t = alg.

These notions of t show what kind of quantum correlation is allowed in the corresponding
graph homomorphism game.

We say that a t-homomorphism ( f,A) : G0
t→ G1 is:

• (vertex-)surjective if f : B1 → B0 ⊗A is injective.

This definition means that the pushforward of the edges of G0 by the mapping ( f,A)

are edges of G1.

Remark 4.2. For a t-homomorphism ( f,A) : G0
t→ G1, the best definition of (vertex-

)injectivity is not sure. If it is a classical homomorphism between classical graphs, then
( f,A = C) is injective if and only if (δ0/δ1) f is a coisometry f f † = (δ1/δ0)

2idB1⊗1A,
so this is a candidate for the definition of injectivity. Another weaker candidate is the
injectivity of f † : B0 → B1 ⊗A.

On the other hand, in classical case ( f,C) is surjective if and only if f † f ≥
(δ1/δ0)

2idB0 ⊗ 1A, which may be too strong for the definition of surjectivity of general
( f,A).

Consider a toy model f : C4 → C
2 ⊗ M2 of a quantum 4-coloring of 2 vertices

( f, M2) : (C2, τ, 0)
q→ K4 given by

f (e1) = e1 ⊗ e11; f (e2) = e2 ⊗ e11; f (e3) = e1 ⊗ e22; f (e4) = e2 ⊗ e22.

Then coisometry condition f f † = 2 idC2 ⊗ 1M2 holds, hence ( f, M2) is injective in
the strong sense. On the other hand, we have an injective homomorphism f but f † f =
2[(e1 + e2)⊗ e11 + (e3 + e4)⊗ e22] �≥ 2 idC4 ⊗ 1M2 , hence ( f, M2) is surjective only in
the weak sense as defined above.
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Notation. For a quantum graph G = (B.ψ, A) and a unital algebra A, we abbreviate by
A • · the left Schur product by A acting on the first tensor component of B(L2(G))⊗A.

If we faithfully represent A ⊂ B(H) on a Hilbert space H , we may regard f : B1 →
B0 ⊗ A as f : L2(G1) ⊗ H → H ⊗ L2(G0) ∈ B(L2(G1), L2(G0)) ⊗ B(H). By this
identification, we denote f in string diagrams by

f = f

B1

B0

H

H

,

where H is drawn as oriented strings. Even if A is not a C∗-algebra, such a diagram
formally makes sense by thinking of the string of H as an indicator of the order of
multiplication in A.

Note that f is unital; multiplicative; ∗-preserving (real) respectively if and only if
the following are satisfied:

f = ; f
f = f ; f † = f . (4.2)

Proposition 4.3. Let ( f,A) : G0
t→ G1 be as in Definition 4.1 without assumption (4.1).

The following are equivalent:

(1) The inclusion (4.1): f †(S0 ⊗ 1A) f ⊂ S1 ⊗A;
(2) A1 • ( f †(A0 • T ⊗ 1A) f ) = f †(A0 • T ⊗ 1A) f for any T ∈ B(L2(G0));
(3) 〈S| f †(T ⊗ 1A) f 〉 = 0 in A for any S ∈ S⊥1 and T ∈ S0, where 〈S|·〉 = �1(S†·) =

δ2
1〈1B1 |S∗ • ·|1B1〉ψ1 as in (1.4) acts on the first tensor component;

(4) The (adjoint of) diagrammatic definition of quantum graph homomorphism by [16,
Definition 5.4]:

A1

A0

f

f
= δ2

1

A0

f

f

.

Proof. ((1) ⇐⇒ (2)): Since S1 ⊗A = range(A1 • ·)⊗A and A1 • · is a projection,
(1) means that f †(S ⊗ 1A) f is invariant under the action of A1 • · for all S ∈ S0. Thus
(1) is equivalent to

A1 • ( f †(A0 • T ⊗ 1A) f ) = f †(A0 • T ⊗ 1A) f ∀T ∈ B(L2(G0)).

((1) ⇐⇒ (3)): Note that

(S⊥1 )⊥ ⊗A = {X ∈ B(L2(G1))⊗A|〈S|X〉 = 0 ∀S ∈ S⊥1 }.
Indeed ⊂ is obvious and ⊃ is shown by choosing a presentation X = ∑

j Tj ⊗ a j ∈
(RHS) with independent a j ’s in A to deduce 〈S|Tj 〉 = 0 from 〈S|X〉 = ∑

j 〈S|Tj 〉a j =
0. Thus (1) is equivalent to (3).
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((2) �⇒ (4)): In string diagrams, (2) is expressed as follows:

δ−2
1 δ−2

0
A0 TA1

f

f †

= δ−2
0

A0 T

f

f †

.

Since T ∈ B(L2(G0)) ∼= B0 ⊗ B∗0 is arbitrary, we may replace T = T with open

ends of strings of B0. We move the open ends to the top (insert ) and move

the top left string of B1 to the bottom (postcompose the right end of ) to obtain

A0A1

f

f †

= δ2
1 A0

f

f †

.

Therefore it follows by the realness (4.2) of f that

A1

A0

f

f
= δ2

1

A0

f

f

.

((4) �⇒ (2)): We can transform the diagrams conversely to go back from (4) to
(2). ��

Note that [3] defined the quantum-to-classical t-homomorphisms by the following
conditions instead of (4.1) to omit self-loops in particular for the coloring problem.

f †(S0 ∩ S⊥T (B0,ψ0) ⊗ 1A) f ⊂ S1 ⊗A; (4.3)

f †(ST (B0,ψ0) ⊗ 1A) f ⊂ ST (B1,ψ1) ⊗A. (4.4)

(4.1) and (4.3) coincide under some assumptions, and as a generalization of [3, Lemma
4.8], the second condition (4.4) is redundant as shown below.

Lemma 4.4. Let ( f,A) : G0
t→ G1 be as in Definition 4.1 without assumption (4.1).

(1) The inclusion (4.4) always holds.
(2) (4.1) is equivalent to (4.3) if G0 is irreflexive, or if G0 has no partial loops and G1 is

reflexive.
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Proof. (1) Recall that the adjacency matrix of the trivial graph T (Bi , ψi ) is idBi . Thus
(4.4) is equivalent to

f

f
= δ2

1 f

f

.

This is proved by the multiplicativity (4.2) of f and Frobenius equality:

f

f
= f

f (4.2)= f

(δ1-form)= δ2
1

f (4.2)= δ2
1 f

f

.

(2) (i) If G0 is irreflexive, then S0 ⊂ S⊥T (B0,ψ0) = SK (B0,ψ0). Thus (4.3) is exactly equal
to (4.1). (ii) Note that (4.1) always implies (4.3) by the trivial inclusion

f †(S0 ∩ S⊥T (B0,ψ0) ⊗ 1A) f ⊂ f †(S0 ⊗ 1A) f
(4.1)⊂ S1 ⊗A.

If G1 is reflexive, then ST (B1,ψ1) ⊂ S1, and no partial loops means that S0 = S0 ∩
S⊥T (B0,ψ0) ⊕ S0 ∩ ST (B0,ψ0) gives an orthogonal decomposition. Thus (4.4) and (4.3)
implies

f †(S0 ⊗ 1A) f ⊂ f †((S0 ∩ S⊥T (B0,ψ0) ⊕ ST (B0,ψ0))⊗ 1A) f

(4.3)⊂ (S1 + ST (B1,ψ1))⊗A (4.4)= S1 ⊗A.

��
Remark 4.5. For a quantum-to-classical t-homomorphism ( f,A) : G0

t→ G1 = (Cn, τ,

A1), Proposition 4.3 (4) is equivalent to the existence of projections P1, . . . , Pn ∈ B0⊗A
satisfying Pi (S0 ⊗A)Pj = 0 for all (i, j) with 〈ei |A1|e j 〉 = 0. Indeed, RHS−LHS of
(4) with imput ei ⊗ e j yields

0 = n−1

e jei

Ac
1

A0

f

f

= f (ei )(A0 ⊗ 1A) f (e j )
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where Ac
1 = J − A1 is the complement of A1 satisfying n〈ei |Ac

1|e j 〉 = 1. We may put
Pi = f (ei ) and take Schur product with S0 from the right to obtain Pi (S0 ⊗A)Pj = 0.
Conversely, if we have Pi ’s, then the desired f is given by f (ei ) = Pi .

The notion of local homomorphism is stronger than that of graph homomorphism as
follows.

Proposition 4.6. Let ( f,C) : G0
loc→ G1 be a loc-homomorphism. Then f op : G0 → G1

is a graph homomorphism.

Proof. Since A0 ∈ S0 and C is the tensor unit, Proposition 4.3 (2) with T = A0 shows
A1 • ( f †A0 f ) = f †A0 f . ��

The following theorem gives a sufficient condition to make the two notions of ho-
momorphisms coincide.

Theorem 4.7. Let G j = (Bj , ψ j , A j ,S j ) for j = 0, 1 be real quantum graphs with
δ j -forms ψ j and quantum relations S j = range(A j • ·) ⊂ B(L2(G j )). Suppose that
f : B1 → B0 is modular invariant σi ◦ f = f = f ◦ σi and G1 is Schur central.
Then f op : G0 → G1 is a graph homomorphism if and only if ( f,C) : G0 → G1 is a
loc-homomorphism.

Proof. Proposition 4.6 shows that a local homomorphism is a graph homomorphism. It
suffices to show the converse, i.e.,

〈S| f †T f 〉�1 = δ2
1〈1B1 |S∗ • ( f †T f )|1B1〉ψ1 = S∗ f †T f = 0 (4.5)

holds for any T ∈ S0 and S ∈ S⊥1 from the assumption that (4.5) holds for T = A0.
Take T as a normal vector 〈T |T 〉�0 = 1 in S0.
By the following Lemma 4.8, we may assume that S ∈ S⊥1 is a Schur projection

because G1 is Schur central and so is its complement (B1, ψ1, J − A1, S⊥1 = range(J −
A1)).

Lemma 4.8. Let G = (B, ψ, A,S) be a real quantum graph. Then G is Schur central if
and only if S is generated by Schur projections.

And the modular invariance of f enables us to eliminate loops in diagrams as follows:

f † ( f : real)= f ( f σi= f )= f ; (4.6)

f
(σ−i f= f )= f

( f : real)= f † .

Now we have
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0 = S∗ f †A0 f
(S∗=S=S•S)= δ−2

1 SS∗ f †A0 f = δ−2
1 SS∗ f †A0 f

( f :hom)= δ−2
1 SS∗ A0

f †f †

ff

= δ−2
1 S S∗A0

f †f †

ff

( f :real)= δ−2
1 f S f † f S∗ f †A0

= δ−2
1 A0

f S f †

f S∗ f †

(4.6)= δ−2
1 A0

f S f †

f S† f †

(1.5)= δ2
0δ−2

1
PA0

f S f †

f S† f †

,

where the non-indicated equalities are continuous deformations.

Recall (1.5) that PA0 = δ−2
0

A0 is a projection onto ι(S0) ⊂ B0 ⊗ B0. Since

ι(T ) ∈ ι(S0), the rank one projection |ι(T )〉〈ι(T )| = T

T †
is smaller than or equal to

PA0 , hence P = PA0 − |ι(T )〉〈ι(T )| is also a projection. Therefore we obtain

0 = δ2
0δ−2

1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

T

T †

f S f †

f S† f †
+ P

f S f †

f S† f †

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

By the vertical symmetry, each term is nonnegative, hence they must be zero. The
first term is what we desired:

0 =
∣
∣
∣
∣
∣
∣

Tf S f †

∣
∣
∣
∣
∣
∣

2

( f :real)=
∣
∣
∣
∣
∣
∣

f †T fS

∣
∣
∣
∣
∣
∣

2

(S:real)=
∣
∣
∣〈S| f †T f 〉

∣
∣
∣
2
.
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��
Theorem 4.9. Let G j = (Bj , ψ j , A j ,S j ) for j = 0, 1 be real tracial quantum graphs
such that G1 is Schur central. Then f op : G0 → G1 is a graph homomorphism if and
only if ( f,C) : G0 → G1 is a loc-homomorphism.

Proof. Since each ψ j = Tr(Q j ·) is tracial, the density Q j is central and its modular
automorphism is σi = Q−1

j (·)Q j = idBj . Thus we have σi ◦ f = f = f ◦σi . Therefore
the statement follows from Theorem 4.7. ��
Proof of Lemma 4.8. Since the statement depends only on the Schur product structure,
it suffices to show for a von Neumann algebra M(= Bop⊗ B) and a projection p ∈M
that p is central if and only if pM is linearly generated by projections in weak operator
topology (WOT).

Suppose p is central, then pM = pMp is a WOT-closed subalgebra ofM. Then we
can decompose x ∈ pMp into real and imaginary parts, which have spectral projections
in pMp. Since x lies in the WOT-closed linear span of such spectral projections, we
are done.

Suppose that pM is generated by projections. It follows for any projection q ∈ pM
that pq = q = q∗ = qp. Since such projectionsq span pM in WOT, we have px = pxp
for any x ∈M, and px∗ = px∗ p as well. Thus we get px = xp, i.e., p is central. ��

4.2. t-2 colorability compared with bipartiteness.

Definition 4.10 ([3]). Let t ∈ {loc, q, qa, qc,C∗, alg} and c ∈ Z>0. A quantum graphG
is t-c colorable if there exists a t-homomorphism G → Kc, which is called a t-c coloring
ofG. The t-chromatic number ofG is defined by χt (G) = inf{c ∈ Z>0|G : t-c colorable}.

Note that a t-c coloring need not be a surjective t-homomorphism. Surjectivity means
that it uses all the c colors.

Remark 4.11. By the obvious inclusion of the classes of algebras, c-colorability has the
following implication: loc ⇒ q ⇒ qa ⇒ qc ⇒ C∗ ⇒ alg, and hence the chromatic
numbers satisfy

χloc ≥ χq ≥ χqa ≥ χqc ≥ χC∗ ≥ χalg.

Proposition 4.12. Let G = (B, ψ, A) be an alg-2 colorable real quantum graph. Then
G has a symmetric spectrum spec A = − spec A. Moreover, if it is q-2 colorable, then
the symmetry of the spectrum holds with its multiplicity.

Proof. If A = 0, the statement is trivial. So we may assume A �= 0. Let ( f,A) : G →
K2 = (C2, τ, AK2 ,SK2) be an alg-homomorphism. In this case ( f,A) is automatically
surjective, i.e., f : C2 → B ⊗A is injective. Indeed if f is not injective, then we may
assume f (e1) = 1B ⊗ 1A and f (e2) = 0 without loss of generality. But this implies for
e1e

†
1 ∈ S⊥K2

that 〈e1e
†
1| f †(A ⊗ 1A) f 〉Tr = 〈e1| f †(A ⊗ 1A) f |e1〉τ = 〈1|A|1〉ψ1A �= 0

by Lemma 1.11, which contradicts that ( f,A) is an alg-homomorphism (Proposi-
tion 4.3 (3)).

Now we have nonzero projections Pj = λ( f (e j )) ∈ B(L2(G))⊗A, where λ denotes
the left multiplication, satisfying Pj (A ⊗ 1A)Pj = 0 for each j = 1, 2. Then we have

A ⊗ 1A = P1(A ⊗ 1A)P2 + P2(A ⊗ 1A)P1.
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and hence

(A ⊗ 1A)(P1 − P2) = P2(A ⊗ 1A)P1 − P1(A ⊗ 1A)P2

= (P2 − P1)(A ⊗ 1A),

((α id + A)⊗ 1A)(P1 − P2) = (P1 − P2)((α id − A)⊗ 1A)

It follows for α ∈ spec A and v ∈ ker(α idB− A) that (P1− P2)v ∈ ker(α idB + A)⊗A.
Indeed v satisfies

((α id + A)⊗ 1A)(P1 − P2)v = (P1 − P2)((α id − A)⊗ 1A)v = 0.

For a generalized eigenvector v ∈ ker(α idB − A)k for some positive integer k, we
similarly have (P1 − P2)v ∈ ker(α idB + A)k ⊗A by

((α id + A)k ⊗ 1A)(P1 − P2)v = (P1 − P2)((α id − A)k ⊗ 1A)v = 0.

Therefore −α ∈ spec A, i.e., G has a symmetric spectrum.
If ( f,A) is a q-2 coloring, then A ⊂ Mn = B(Cn) for some positive integer

n. Thus P1 − P2 restricts to linear isomorphisms between generalized eigenspaces
ker(α idB − A)dim B ⊗ C

n ∼= ker(α idB + A)dim B ⊗ C
n , hence the multiplicities co-

incide as dim ker(α idB − A)dim B = dim ker(α idB + A)dim B . ��
Theorem 4.13. Let G = (B, ψ, A) be a real tracial quantum graph. Then G is bipartite
if and only if it is loc-2 colorable.

Proof. By Theorem 4.9, the existence of a graph homomorphism G → K2 is equivalent
to the existence of a loc-homomorphism G → K2 because these are tracial real quantum
graphs and the classical K2 is Schur central. Thus G is bipartite if and only if it is loc-2
colorable. ��
Corollary 4.14. Let G = (B, ψ, A) be a connected d-regular undirected tracial quan-
tum graph. The following are equivalent:

(1) G is loc-2 colorable;
(2) G is alg-2 colorable;
(3) G has a symmetric spectrum;
(4) −d ∈ spec(A). If d = 0, we require dim B ≥ 2;
(5) G is bipartite.

In this case, the symmetry of the spectrum in (3) holds with multiplicity.

Proof. ((1) �⇒ (2)): Obvious by definition.
((2) �⇒ (3)): The symmetry follows from Proposition 4.12. In particular, if we
assume (1), the symmetry holds with multiplicity.
((3) �⇒ (4)): Since G is d-regular, the symmetry of spectrum shows −d ∈ spec A.
((4) �⇒ (5)): This is shown by Theorem 3.8 as we assumed that G is connected.
((5) �⇒ (1)): This is the direct consequence of Theorem 4.13. ��
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