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Abstract: This paper is devoted to investigating the rotating Boussinesq equations of
inviscid, incompressible flows with both fast Rossby waves and fast internal gravity
waves. The main objective is to establish a rigorous derivation and justification of a
new generalized quasi-geostrophic approximation in a channel domain with no normal
flow at the upper and lower solid boundaries, taking into account the resonance terms
due to the fast and slow waves interactions. Under these circumstances, We are able
to obtain uniform estimates and compactness without the requirement of either well-
prepared initial data [as in Bourgeois and Beale (SIAM J Math Anal 25(4):1023–1068,
1994. https://doi.org/10.1137/S0036141092234980)] or domain with no boundary [as in
Embid and Majda (Commun Partial Differ Equ 21(3–4):619–658, 1996. https://doi.org/
10.1080/03605309608821200)]. In particular, the nonlinear resonances and the new
limit system, which takes into account the fast waves correction to the slow waves
dynamics, are also identified without introducing Fourier series expansion. The key
ingredient includes the introduction of (full) generalized potential vorticity.
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1. Introduction

We consider an inviscid incompressible fluid in a periodic channel domain � := �h ×
(0, h) ⊂ R

3, with horizontal periodic domain �h := T
2 = (0, 1)2 and vertical domain

height h ∈ (0,∞). Denote by v ∈ R
2 the horizontal velocity, w ∈ R the vertical

velocity, p ∈ R the pressure, and ρ ∈ R the density, respectively. Let the following be
the typical characteristic physical scales for length, time, velocity, density, and pressure:

L length scale

U mean advective velocity

Te := L

U
eddy turnover time

TR := f −1 rotation time

ρb mean density

p mean pressure.

Furthermore, set ρ = ρ(z) to be the background density stratification, which is as-
sumed to be linear in the vertical coordinate, and decompose the density into the sum of
stratification ρ and deviation ρbθ , i.e.,

ρ = ρbθ + ρ

The buoyancy (Brunt-Väisälä) frequency is defined as

N :=
(

−g∂zρ

ρb

)1/2

,

and the corresponding buoyancy time scale is

TN := N−1.

In this geophysical situation, one can introduce the following relevant non-dimensional
numbers:

the Rossby number Ro := U

L f

the Froude number Fr := U

LN

the Euler number P := p

ρbU 2

� := gL

U 2 ,
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see, e.g., [33]. With such notations, the dimensionless rotating Boussinesq equations are
given by

∂tv + v · ∇hv + w∂zv +
1

Ro
v⊥ + P∇h p = 0, (1.1a)

∂tw + v · ∇hw + w∂zw + P∂z p − �θ = 0, (1.1b)

∂tθ + v · ∇hθ + w∂zθ +
1

� · Fr2 w = 0, (1.1c)

divh v + ∂zw = 0, (1.1d)

with

w|z=0,h = 0 i.e., the impermeable boundary condition, (1.1e)

see, e.g., [33].
In this paper, we consider the quasi-geostrophic scale where

• The Rossby number is small

Ro = ε � 1;
• The flow is in geostropic balance, i.e., the rotation and the pressure forces are in

balance,

P = 1

Ro
;

• The Froude number is small and equal to the Rossby number,

Fr = Ro;
• The non-dimensional number � is in balance with the inverse of the Froude number

� = 1

Fr
.

Then the rotating Boussinesq equations (1.1) become

∂tv + v · ∇hv + w∂zv +
1

ε
v⊥ +

∇h p

ε
= 0, (1.2a)

∂tw + v · ∇hw + w∂zw +
∂z p

ε
− θ

ε
= 0, (1.2b)

∂tθ + v · ∇hθ + w∂zθ +
w

ε
= 0, (1.2c)

divh v + ∂zw = 0, (1.2d)

with

w|z=0,h = 0. (1.2e)

We refer the reader to [33, Sect. 7.4] for the detailed derivation of system (1.2). We
remark that, the small Rossby number, i.e. Ro � 1, induces the fast Rossby waves, and
the small Froude number, i.e. Fr � 1, induces the fast internal gravity waves. In our
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setting, i.e., system (1.2), both Rossby and gravity waves are fast and they are coupled.
In particular, they have the same scale.

The goal of this work is to investigate the asymptotic limit of system (1.2) as ε → 0+

in the channel domain �., i.e., the quasi-geostrophic approximation, taking into account
the fast-slow waves interaction and their corresponding resonance terms.

Similar problem has been studied in the case of “well-prepared” initial data by Bour-
geois and Beale in [10], where the convergence, as well as the convergence rate, of
solutions to that of quasi-geostrophic equations ((2.27) and (2.29), below) is proved. In
particular, the well-prepared initial data are chosen so that there are only slow waves in
the dynamics and no contribution of the fast waves. That is, the initial data is close to
the geostrophic balance (see (2.16)–(2.18), below). We remark that [10] assumes that
∂z p0|z=0,h = 0 together with the balanced initial data. This guarantees that the system of
equations satisfy some symmetry, and eventually can be extended periodically to a sys-
tem into T

3, i.e., there is no boundary effect as if one has a virtual boundary. The general
convergence theory when ∂z p0|z=0,h 	= 0 is still open. Here p0 is the stream function
associated with the potential vorticity as in (2.26). The existence of weak solutions for
these quasi-geostrophic equations is established in [41,44]

Taking into account the fast waves, but without physical boundary (i.e., in T
3), Em-

bid and Majda studied the nonlinear resonances and established the asymptotic limit of
system (1.2) in [16,17,34]. The limiting system is the quasi-geostrophic equation (2.27)
with nonlinear resonances on the right-hand side, while the velocity and the tempera-
ture in the limiting quasi-geostrophic equations are given by (2.16) and (2.17), below,
respectively.

In the case with vanishing viscosity, an Ekman boundary layer will arise in the channel
domain, which leads to Ekman pumping. This is verified in [14], in the case with well-
prepared initial data (i.e., slow waves only). To the best of the authors’ knowledge,
the asymptotic limit taking into account both the fast waves and the Ekman pumping
is open. The global well-posedness of solutions to the quasi-geostrophic system with
Ekman pumping was established in [40].

In this paper, we introduce the notion of (full) generalized potential vorticity (i.e.,
� and 	 defined in (1.4) and (1.5), below, respectively), which allows us to separately
describe the slow and the fast waves of the dynamics of system (1.2) in a channel domain
without introducing any boundary layer. Moreover, the interaction between the slow and
fast waves can be easily tracked and investigated. Therefore, we are able to establish
the asymptotic limit as ε → 0+ in the channel for general initial data. In particular, we
drop the requirement of well-prepared initial data or periodic spatial domain required
in [10,16], respectively. In addition, the fast waves correction to the slow dynamics is
identified as a new resonance term.

We remark that in our context, the terms slow (fast) waves and slow (fast) dynamics,
as well as well-prepared (ill-prepared or general) initial data and balanced (unbalanced)
initial data are interchangeable, respectively. This terminology is widely used in the
literature.

Before stating the main results in detail, we would like to put this work in the context
of the study of asymptotic limit in the following subsection.

1.1. Asymptotic limit and boundary layer. We should stress that the following references
are by no mean exhaustive.

The study of low Mach number limit of the compressible flows was pioneered by
Klainerman and Majda in [27,28], where the convergence with only slow waves (i.e.,
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well-prepared initial data) was shown in domains without boundary. In R
3, Ukai in [51]

showed the dispersion of the fast acoustic waves and thus established the low Mach
number limit with large acoustic waves. As pointed out in [15], such dispersion in R

3

is characterized by the Strichartz estimate [26,49]. In the case of T3, [30] showed the
weak convergence of low Mach number limit for compressible flows by investigating
the nonlinear resonances of fast acoustic waves. The general theory of fast singular
limit was developed by Schochet in [47,48] for hyperbolic systems, which was later
extended to parabolic systems in [20]. We refer the reader to [1,2,12,13,18,19,36,38]
and the references therein for more studies of low Mach number limit in domains without
boundary. When there is physical boundary in the underlying domain, the low Much
number limit of viscous flows may give rise to a boundary layer. This is first studied in
terms of eigenvalue-eigenfunction pairs in [23]. Recently in [37], by introducing uniform
estimates in the co-normal Sobolev norm, together with some L∞ estimates, the low
Mach number limit of compressible viscous flows is established in smooth domain with
Navier-slip boundary condition and general initial data. However, the corresponding low
Mach number limit with no-slip boundary condition is still open.

Meanwhile, in the vanishing viscosity limit of the incompressible Navier–Stokes
equations with no-slip boundary condition, the Prandtl boundary layer was introduced
by Prandtl in 1904 [43] and became the paradigm of further mathematical studies. See,
e.g., [52] for a derivation of the Prandtl equations. However it turned out to be the
most singular. The boundary layer is due to the no-slip boundary condition for the
Navier-Stokes and since this effect is not present at the level of the Euler equation, a
discontinuity appears in the zero viscosity limit. Due to the nonlinearity of the problem
such singularity may escape from the boundary layer and propagate in the fluid. This
is one of the main source of turbulence, and as a consequence the Prandtl boundary
layer is strongly unstable, and therefore may exist only for short time and under strict
regularity hypothesis, see, e.g., [32,45,46]. A direct proof of such asymptotic limit, with
the incompressible Euler equations as the limiting equations, without introducing the
boundary layer correction can be found in [7,39]. For general, smooth, but not analytic,
initial data, the vanishing viscosity limit is still an open challenging problem. The pioneer
work in this direction is by Kato [24]. See, also, [8,9] and references therein for related
results.

With fast rotation and vanishing viscosity (but no fast internal waves) in a domain
with no-slip boundary condition, the Ekman boundary layer may arise, which is an
important phenomenon in the atmospheric and oceanic study (see, for instance, [33,42]).
In [22] and [35], the asymptotic limit of fast rotation and vanishing viscosity with the
Ekman boundary layer correction was established for flows with and without fast waves,
respectively.

With only fast rotation in a domain without boundary (T3 or R3), the asymptotic
limit of the Euler or Navier–Stokes equations was studied in [4–6], where the limit
dynamics is characterized by two dimensions three components (2D3C) flows, and the
prolonging effect of fast rotation on the life-span of the solution was established. Such a
regularizing effect of fast rotation was demonstrated in the case of a simple convection
model in [3,31]. See also [21,29] for the study in the primitive equations, and [11] for
some examples in the study of mathematical geophysics, including the aforementioned
Ekman boundary layer.

As mentioned before, in this paper, we study the singular limit ε → 0+ of system
(1.2) in the periodic channel domain � = T

2 ×(0, h). In particular, it will be established
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that the fast rotation induced by strong Coriolis force in (1.2a) suppresses the possible
emergence of a boundary layer near the boundary.

1.2. Main results. The first main result of this paper is the following:

Theorem 1.1 (Uniform-in-ε estimate). Consider the initial data

(vin, win, θin) ∈ H3(�)

of the solution (v,w, θ) to system (1.2), satisfying the compatibility conditions divh vin +
∂zwin = 0 and win|z=0,h = 0. Then there exists T,Cin ∈ (0,∞), depending only on the
initial data and independent of ε, such that

sup
0≤t≤T

��v(t), w(t), θ(t)
��

H3(�)
≤ Cin. (1.3)

Proof. The proof of this theorem is done in Sect. 3. ��
The local well-posedness theory of solutions in H3(�) to system (1.2) for fixed

ε ∈ (0, 1) is classical and thus is omitted here. See, for instance, [25]. With continuity
arguments, the uniform estimate (1.3) implies the uniform-in-ε local well-posedness
with initial data as in the theorem.

To describe our second main result, define

�(x, y, z, t) := ∂zθ + curlh v, (1.4)

	(x, y, z, t) := ∇⊥
h θ + ∇hw − ∂zv, (1.5)

H0(x, y, t) := θ |z=0, (1.6)

Hh(x, y, t) := θ |z=h, (1.7)

and

Z(z, t) :=
∫
T2

v(x, y, z, t) dxdy. (1.8)

Then our second main result of this paper is to investigate the limit system, as follows:

Theorem 1.2 (Convergence theory). Let T > 0 be as in Theorem 1.1, and let (�,	, H0,

Hh, Z) be defined as in (1.4)–(1.8). Then there exists a subsequence of ε that as ε → 0+,
one has the following convergence in strong topology:

� → �p in C([0, T ]; H1(�)), (1.9)

H0, Hh → Hp,0, Hp,h in C([0, T ]; H3/2(T2)), (1.10)

e∓i t
ε (	 ± i	⊥) → ψp,± in C([0, T ]; H1(�)), (1.11)

and

e∓i t
ε (Z ± i Z⊥) → z p,± in C([0, T ]; H2(�)), (1.12)

and in suitable weak-∗ topology (see Sect. 4.1), the limit

(�p, Hp,0, Hp,h, ψp,±, z p pm) (1.13)

satisfies system (4.46), below.
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Proof. This is done in Sect. 4. In particular, the strong convergence can be found in
(4.11), (4.12), (4.22), and (4.23), respectively. ��
Remark 1. In this paper, we have not explored the well-posedness, in particular, the
uniqueness, of solutions to the limit system (4.46). For this reason, we only have the
subsequence convergence in Theorem 1.2. However, if one manages to show the well-
posedness of solutions to system (4.46), the convergence should be of the whole sequence
of ε → 0+. Indeed, the well-posedness theory of the limit system (4.46) is non-trivial,
due to the fact that it is no longer a symmetric hyperbolic system. The investigation of
the limit system is left as a future study.

The rest of this paper is organized as follows. In Sect. 2, some preliminaries will be
provided, including the notations and a boundary-to-domain extension (lifting) Lemma.
The classical quasi-geostrophic approximation with only slow waves, i.e., well-prepared
initial data, will be reviewed in Sect. 2.2. The key linear slow-fast waves structure will
be discussed in Sect. 2.3. Section 3 is dedicated to the proof of Theorem 1.1. This paper
will finish with the proof of Theorem 1.2 in Sect. 4.

2. Preliminaries

2.1. Notations and an extension Lemma. In this paper, we have been and will be using(
X1
X2

)⊥
=

(−X2
X1

)
(2.1)

to denote the rotation of a two-dimensional vector. divh and curlh represent the hori-
zontal divergence and curl operators, respectively. Then for any two-dimensional vector
field X = (X1, X2)

�, one has

divh X
⊥ = −curlh X and curlh X

⊥ = divh X. (2.2)

For any functions A and B, the X norms are written as��A, B
��X = ��A

��X +
��B

��X . (2.3)

We will use �−1
D to represent the inverse Laplacian subject to the Dirichlet boundary

condition at z = 0, h and the periodic boundary condition horizontally, i.e.,

��−1
D A = A with (�−1

D A)|z=0,h = 0. (2.4)

Therefore, the definition implies

��−1
D = Id. (2.5)

However, observe that

�−1
D � 	= Id, (2.6)

which plays an important role in the proof of short time stability of analytic Prandtl
boundary layer [32,39].

Moreover, �−1
h is the inverse Laplacian in the horizontal variable with zero mean

value. Therefore, one has that

�−1
h �h A = A −

∫
T2

A dxdy. (2.7)

We will need the following extension (lifting) Lemma:
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Lemma 1. There exists a bi-linear extension operator

Eb : D′(T2) × D′(T2) �→ D′(�), (2.8)

such that for any A, B ∈ Hs− 1
2 (T2), Eb(A, B) ∈ Hs(�) satisfying��Eb(A, B)

��
Hs (�)

≤ Cs
��A, B

��
Hs−1/2(T2)

, (2.9)

and

Eb(A, B)|z=0 = A and Eb(A, B)|z=h = B. (2.10)

Moreover, the following property holds:

∂tEb(A, B) = Eb(∂t A, ∂t B). (2.11)

Proof. Let χ0 : [0, h] → [0, 1] be a C∞([0, h]) monotonic function such that

χ0(z) =
{

1 in z ∈ [0, h/4),

0 in z ∈ (3h/4, h]. (2.12)

Denote by, xh = (x, y)� ∈ T
2, for A, B ∈ D′(T2),

A(x, y) =
∑
k∈Z2

Ake
i2πk·xh , and B(x, y) =

∑
k∈Z2

Bke
i2πk·xh . (2.13)

For z ∈ [0, h], we define

Eb(A, B) =
∑
k∈Z2

Ake
i2πk·xh e−|k|zχ0(z)

+
∑
k∈Z2

Bke
i2πk·xh e−|k|(h−z)(1 − χ0(z)).

(2.14)

Then it is easy to verify that Eb(A, B) satisfies the properties in the Lemma. This finishes
the proof. ��

2.2. Classical quasi-geostrophic approximation and the potential vorticity formulation
for inviscid flows. In this section, we review the formal quasi-geostrophic approximation
with only slow waves of system (1.2), i.e., with well-prepared initial data. This is done
by first introducing the formal asymptotic expansion ansatz

ψ(x, y, z, t) := ψ0(x, y, z, t) + εψ1(x, y, z, t) (2.15)

for ψ ∈ {v,w, p, θ}. Then, after substituting (2.15) in system (1.2) and matching the
O(ε−1) and O(1) terms, one has

(v0)⊥ + ∇h p0 = 0, (2.16)

∂z p0 − θ0 = 0, (2.17)

w0 = 0, (2.18)

∂tv
0 + v0 · ∇hv

0 + w0∂zv
0 + (v1)⊥ + ∇h p1 = 0, (2.19)

∂tw
0 + v0 · ∇hw

0 + w0∂zw
0 + ∂z p1 − θ1 = 0, (2.20)

∂tθ
0 + v0 · ∇hθ

0 + w0∂zθ
0 + w1 = 0, (2.21)

divh v0 + ∂zw
0 = 0, (2.22)
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and

w0|z=0,h = 0. (2.23)

In addition, the O(ε) terms of (1.2d) and (1.2e) yield

divh v1 + ∂zw
1 = 0, (2.24)

and

w1|z=0,h = 0. (2.25)

Following [10,16], we introduce the potential vorticity formulation. Indeed, from
(2.16) and (2.17), it follows that

�p0 = (�h + ∂zz)p
0 = curlh v0 + ∂zθ

0. (2.26)

In particular, the quantity on the right hand side of (2.26) is referred to as the potential
vorticity in the literature, and p0 is the corresponding steam function. In fact, this ter-
minology is justified by observing that the potential vorticity is transported (see (2.27),
below). After applying curlh to (2.19), ∂z to (2.21), and summing up the resulting equa-
tions, one arrives at Ertel’s conservation (transport) of the potential vorticity, i.e.,

∂t�p0 + v0 · ∇h�p0 = 0, (2.27)

where we have applied the fact, thanks to (2.16), (2.17), (2.18), and (2.22), that

∂zv
0 · ∇hθ

0 = 0, w0 = 0, and divh v0 = 0. (2.28)

In addition, thanks to (2.17), (2.21), and (2.25), one can show that

∂t (∂z p
0|z=0,h) + v0|z=0,h · ∇h(∂z p

0|z=0,h) = 0. (2.29)

The system formed by (2.16), (2.17), (2.27), and (2.29) is the well-known potential
vorticity formulation of the classical quasi-geostrophic approximation. In particular,
(2.29) describes the evolution of ‘boundary conditions’ for the stream function p0, i.e.,
∂z p0|z=0,h , which is used to invert the Laplacian in v0 = ∇⊥

h p0 = ∇⊥
h �−1

N (�p0),
where �−1

N here is the inverse Laplacian with Neumann type boundary condition at
z = 0, h and periodic boundary condition horizontally. Observe from (2.29) that if
∂z p0|z=0,h = 0 initially, it remains zero. This is one of the underlying observation
behind the well-prepared initial data in [10]. In addition, observe that �−1

N is unique up
to a constant, which, without loss of generality, can be taken to be zero, justifying the
notation of inverse.
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2.3. The slow–fast waves structure: linear analysis. Our goal in this section is to inves-
tigate the linear slow-fast waves structure of system (1.2). This will guide us to obtain
uniform-in-ε estimates as well as nonlinear waves interaction analysis in the next sec-
tions. Without loss of generality, we write (vl , wl , θl) and pl , i.e., the linear variables,
and the linear system associated with system (1.2) as follows:

∂tvl +
1

ε
v⊥
l +

∇h pl
ε

= 0, (2.30a)

∂twl +
∂z pl
ε

− θl

ε
= 0, (2.30b)

∂tθl +
wl

ε
= 0, (2.30c)

divh vl + ∂zwl = 0, (2.30d)

with

wl |z=0,h = 0 i.e., impermeable boundary condition, (2.30e)

and periodic boundary condition horizontally.
The linear version of Ertel’s conservation (transport) of the potential vorticity (∂zθl +

curlh vl) and the corresponding stream function pl read, thanks to (2.30a), (2.30d), and
(2.30e),

�h pl + ∂zz pl = ∂zθl + curlh vl , ∂t (�h pl + ∂zz pl) = ∂t (∂zθl + curlh vl) = 0.

(2.31a)

Meanwhile, taking the trace of (2.30c) to the channel boundary yields

∂tθl |z=0,h = 0. (2.31b)

On the other hand, one can verify that

∂t (∇⊥
h θl + ∇hwl − ∂zvl) +

1

ε
(∇⊥

h θl + ∇hwl − ∂zvl)
⊥ = 0. (2.31c)

Last but not least, integrating (2.30a) in the horizontal variables yields

∂t

∫
T2

vl(x, y, z) dxdy +
1

ε

(∫
T2

vl(x, y, z) dxdy

)⊥
= 0. (2.31d)

Moreover, observe that (2.30b) and (2.30c) imply

∂t (∂z pl |z=0,h) = 0. (2.32)

Equations (2.31a) and (2.31c) form the linear full generalized potential vorticity
equations. A few remarks about this linear structure are in order:

• While system (2.30) is stable with respect to the L2 norm, i.e., one can get uniform-
in-ε L2 estimate by taking the L2-inner product of (2.30a), (2.30b), and (2.30c) with
respect to vl , wl , and θl , the same can not be said about the Hs estimate for s ≥ 1.
This is due to the absence of boundary condition for the higher order derivatives of
pl and wl . For this reason, only in the case of periodic spatial domains (e.g., [16]), or
in the case with well-prepared initial data and ∂z pl |z=0,h = 0 (e.g., [10]; see (2.32)),
one can verify the uniform Hs estimates and the asymptotic limit as ε → 0+;
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• On the other hand, (2.31a), (2.31c), and (2.31d) completely eliminate pl , and in
particular, the underlying quantities in this system are stable with respect to any
spatial derivatives. Therefore, one can get uniform-in-ε Hs estimates without any
restriction for these quantities;

• To be more precise, the estimates of the horizontal derivatives can be achived from
(2.30). Then from (2.31a), (2.31c), and (2.30d), one can derive the estimates of
∂zθl , ∂zvl , and ∂zwl , respectively, in terms of the horizontal derivatives. Bootstrap
arguments will lead to Hs estimates;

• One can regard (2.31a) and (2.31b) as the equations of the slow waves (dynamics),
and (2.31c) and (2.31d) as the equations of the fast waves (dynamics). That is, one
is able to separate the slow and fast state variables;

• From (2.30c) and (2.31c), one can conclude that as ε → 0, wl ,∇⊥
h θl − ∂zvl ⇀ 0,

weakly in the sense of distribution. This is consistent with (2.16), (2.17,) and (2.18).

Now we shall write down the slow-fast waves of linear system (2.30). Denote by

�l(x, y, z, t) := ∂zθl + curlh vl (the potential vorticity), (2.33)

	l(x, y, z, t) := ∇⊥
h θl + ∇hwl − ∂zvl , (2.34)

Hl,0(x, y, t) := θl |z=0, (2.35)

Hl,h(x, y, t) := θl |z=h, (2.36)

and

Zl(z, t) :=
∫
T2

vl(x, y, z) dxdy. (2.37)

Correspondingly, let �in, 	in, H0,in, Hh,in, and Z in be the initial data at t = 0 for �l , 	l ,
Hl,0, Hl,h , and Zl , respectively. In particular, �l and 	l form the generalized potential
vorticity, and are the main ingredient of, and to be explored later in, this work. Then it
follows from system (2.31), that

linear slow variables: �l(t) ≡ �in, Hl,0(t) ≡ H0,in, Hl,h(t) ≡ Hh,in,

linear fast variables: 	l(t) = eit/ε
	in + i	⊥

in

2
+ e−i t/ε 	in − i	⊥

in

2
,

and Zl(t) = eit/ε
Z in + i Z⊥

in

2
+ e−i t/ε Z in − i Z⊥

in

2
.

(2.38)

We claim that (�l , 	l , Hl,0, Hl,h, Zl) as in (2.38) provide complete information
on the solutions of system (2.30). This can be seen by writing (vl , wl , θl) in terms of
(�l , 	l , Hl,0, Hl,h, Zl). First, taking divh and curlh to (2.34) yields that, respectively,
thanks to (2.30d) and (2.33),

�hwl + ∂zzwl = divh 	l (2.39)

and

�hθl + ∂zzθl = ∂z�l + curlh 	l or, equivalently

�(θl − Eb(Hl,0, Hl,h)) = curlh 	l + ∂z�l − �Eb(Hl,0, Hl,h). (2.40)

Note that, thanks to (2.10), (2.30e), (2.35), and (2.36),

wl |z=0,h = 0 and (θl − Eb(Hl,0, Hl,h))|z=0,h = 0.
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Therefore, let �−1
D be the three-dimensional inverse Laplacian with Dirichlet boundary

condition on {z = 0, h} and periodic boundary condition in the horizontal directions.
From (2.39) and (2.40), one has

wl = �−1
D divh 	l (2.41)

and

θl = Eb(Hl,0, Hl,h) + �−1
D (curlh 	l + ∂z�l − �Eb(Hl,0, Hl,h)). (2.42)

To calculate vl , let �−1
h be the two-dimensional inverse Laplace with zero horizontal

mean value. Then, thanks to (2.30d) and (2.33), one has

divh vl = −∂zwl and curlh vl = �l − ∂zθl , (2.43)

and, therefore, it follows that

vl = Zl + ∇h�
−1
h divh vl + ∇⊥

h �−1
h curlh vl ,

or, after substituting (2.43), (2.41), and (2.42) in the above expression, one has

vl = Zl − ∇h�
−1
h ∂z(�

−1
D divh 	l)

+ ∇⊥
h �−1

h [�l − ∂zEb(Hl,0, Hl,h)

− ∂z�
−1
D (curlh 	l + ∂z�l − �Eb(Hl,0, Hl,h))].

(2.44)

We remind the reader that (�l , 	l , Hl,0, Hl,h, Zl) are as in (2.38), with (	l , Zl) being
fast state variables and (�l , Hl,0, Hl,h) slow state variables. Therefore, one can decom-
pose vl , wl , θl in terms of slow and fast waves in an unambiguous fashion.

3. Uniform-in-ε Estimates of the Euler Equations with Fast Rossby and Gravity
Waves

In this and the following sections, we will proceed to the nonlinear analysis. In particular,
we focus in this section on the uniform-in-ε estimates for system (1.2) in this section.
Inspired by the discussion in Sect. 2.3, recall that we have defined �,	, H0, Hh, Z as
in (1.4)–(1.8), i.e.,

�(x, y, z, t) := ∂zθ + curlh v, (1.4’)

	(x, y, z, t) := ∇⊥
h θ + ∇hw − ∂zv, (1.5’)

H0(x, y, t) := θ |z=0, (1.6’)

Hh(x, y, t) := θ |z=h, (1.7’)

and

Z(z, t) :=
∫
T2

v(x, y, z, t) dxdy. (1.8’)
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Recall that � and 	 form the generalized potential vorticity. From (1.2a), (1.2b),
(1.2c), and (1.2d), one can write down the following equations

∂tcurlh v + v · ∇hcurlh v + w∂zcurlh v

+ curlh v · divh v + ∂zv · ∇⊥
h w − ∂zw

ε
= 0, (3.1)

∂t∂zv + v · ∂zv + w∂z∂zv +
∂zv

⊥

ε
+

∇h∂z p

ε

+ ∂zv · ∇hv + ∂zw∂zv = 0, (3.2)

∂t∇hw + v · ∇h∇hw + w∂z∇hw +
∇h∂z p

ε
− ∇hθ

ε

+ (∇hv)�∇hw + ∂zw∇hw = 0, (3.3)

∂t∇hθ + v · ∇h∇hθ + w∂z∇hθ +
∇hw

ε

+ (∇hv)�∇hθ + ∂zθ∇hw = 0, (3.4)

∂t∂zθ + v · ∇h∂zθ + w∂z∂zθ +
∂zw

ε

+ ∂zv · ∇hθ + ∂zw∂zθ = 0. (3.5)

Consequently, one has, from system (1.2), that

∂t� + v · ∇h� + w∂z� + N1 = 0, (3.6a)

∂t	 + v · ∇h	 + w∂z	 +
1

ε
	⊥ + N2 = 0, (3.6b)

∂t H0 + v|z=0 · ∇h H0 = 0, (3.6c)

∂t Hh + v|z=h · ∇h Hh = 0, (3.6d)

∂t Z +
1

ε
Z⊥ + N3 = 0, (3.6e)

where

N1 := curlh v · divh v + ∂zv · ∇⊥
h w + ∂zv · ∇hθ + ∂zw∂zθ, (3.6f)

N2 := ((∇hv)�∇hθ)⊥ + ∂zθ · ∇⊥
h w + (∇hv)�∇hw + ∂zw∇hw

− ∂zv · ∇hv − ∂zw∂zv, (3.6g)

N3 :=
∫
T2

∂z(wv) dxdy. (3.6h)

We continue with the uniform-in-ε estimates in the following steps: 1. establish esti-
mates for the horizontal derivatives; then 2. establish estimates for the vertical derivatives;
finally, 3. close the estimates.
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Estimates for the horizontal derivatives. Let ∂h ∈ {∂x , ∂y} and α ∈ {0, 1, 2, 3}. Apply-
ing ∂α

h to system (1.2) leads to

∂t∂
α
h v + (v · ∇h + w∂z)∂

α
h v +

1

ε
∂α
h v⊥ +

∇h∂
α
h p

ε

+ ∂α
h (v · ∇hv + w∂zv) − (v · ∇h + w∂z)∂

α
h v = 0, (3.7)

∂t∂
α
h w + (v · ∇h + w∂z)∂

α
h w +

∂z∂
α
h p

ε
− ∂α

h θ

ε

+ ∂α
h (v · ∇hw + w∂zw) − (v · ∇h + w∂z)∂

α
h w = 0, (3.8)

∂t∂
α
h θ + (v · ∇h + w∂z)∂

α
h θ +

∂α
h w

ε

+ ∂α
h (v · ∇hθ + w∂zθ) − (v · ∇h + w∂z)∂

α
h θ = 0, (3.9)

divh ∂α
h v + ∂z∂

α
h w = 0, ∂hw|z=0,h = 0. (3.10)

Taking the L2-inner product of (3.7)–(3.9) with 2∂α
h v, 2∂α

h w, 2∂α
h θ , respectively, apply-

ing integration by parts, and summing up the resultants lead to

d

dt

��∂α
h v, ∂α

h w, ∂α
h θ

��2
L2(�)

= −2
∫

[∂α
h (v · ∇hv + w∂zv) − (v · ∇h + w∂z)∂

α
h v] · ∂α

h v dx

− 2
∫

[∂α
h (v · ∇hw + w∂zw) − (v · ∇h + w∂z)∂

α
h w] × ∂α

h w dx

− 2
∫

[∂α
h (v · ∇hθ + w∂zθ) − (v · ∇h + w∂z)∂

α
h θ ] × ∂α

h θ

≤ C
��v,w, θ

��1/2
H2(�)

× ��v,w, θ
��5/2

H3(�)
,

(3.11)

for some generic constant C ∈ (0,∞), where in the last inequality we have applied
the Hölder inequality, the Gagliardo–Nirenberg inequality, and the Sobolev embedding
inequality.

Estimates for the vertical derivatives. As before, let ∂ ∈ {∂x , ∂y, ∂z} and β ∈ {0, 1, 2}.
Applying ∂β to equations (3.6a) and (3.6b) leads to

∂t∂
β� + (v · ∇h + w∂z)∂

β� + ∂βN1

+ ∂β(v · ∇h� + w∂z�) − (v · ∇h + w∂z)∂
β� = 0, (3.12)

∂t∂
β	 + (v · ∇h + w∂z)∂

β	 +
1

ε
∂β	⊥ + ∂βN2

+ ∂β(v · ∇h	 + w∂z	) − (v · ∇h + w∂z)∂
β	 = 0. (3.13)
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Taking the L2-inner product of (3.12) and (3.13) with 2∂β� and 2∂β	, respectively,
applying integration by parts, and summing up the resultants lead to

d

dt

��∂β�, ∂β	
��2

L2(�)
= −2

∫ (
∂βN1 · ∂β� + ∂βN2 · ∂β	

)
dx

− 2
∫

[∂β(v · ∇h� + w∂z�) − (v · ∇h + w∂z)∂
β�] · ∂β� dx

− 2
∫

[∂β(v · ∇h	 + w∂z	) − (v · ∇h + w∂z)∂
β	] · ∂β	 dx

≤ C
��v,w, θ

��2
H3(�)

���,	
��

H2(�)
+ C

��v,w, θ
��

H3(�)

���,	
��2

H2(�)
,

(3.14)

for some absolute constant C ∈ (0,∞), where in the last inequality we have applied
the Hölder inequality, the Gagliardo–Nirenberg inequality, and the Sobolev embedding
inequality.

Closing the estimates. Define the total “energy” functional by

E := ���,	
��2

H2(�)
+

∑
∂h∈{∂x ,∂y},
α∈{0,1,2,3}

��∂α
h v, ∂α

h w, ∂α
h θ

��2
L2(�)

. (3.15)

We observe that
1

C

��v,w, θ
��2

H3(�)
≤ E ≤ C

��v,w, θ
��2

H3(�)
, (3.16)

for some generic constant C ∈ (0,∞). Indeed, the right-hand side inequality in (3.16)
follows directly from the definition of � and 	 in (1.4) and (1.5). To show the left-hand
side inequality, notice that

∂zv = −	 + ∇⊥
h θ + ∇hw, ∂zθ = � − curlh v,

and

∂zw = −divh v.

Thus, ∑
α∈{0,1,2}

��∂α
h ∂zv, ∂α

h ∂zw, ∂α
h ∂zθ

��
L2(�)

≤ CE.

Similarly, following a bootstrap argument on the derivatives implies the left-hand side
part of (3.16).

Consequently, (3.11) and (3.14) yield

d

dt
E ≤ CE3/2, (3.17)

for some generic constant C ∈ (0,∞). In particular, from (3.17) and (3.16), one con-
cludes that there exists T ∈ (0,∞), depending only on the initial data and independent
of ε, such that

sup
0≤t≤T

��v(t), w(t), θ(t)
��2

H3(�)
≤ C sup

0≤t≤T
E(t) ≤ 2C2

��vin, win, θin
��2

H3(�)
,

(3.18)

for the same constant C as in (3.16). This finishes the proof of Theorem 1.1.
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4. Convergence Theory

4.1. Convergence theory: part 1, compactness. What is left is to establish the conver-
gence of the solutions to system (1.2) as ε → 0+, which we will do in two steps. In
this subsection, we will conclude the weak and strong compactness, thanks to the uni-
form estimate (3.18). In the next subsection, we will deal with the convergence of the
nonlinearities.

In the rest of this paper, we denote by T ∈ (0,∞) the uniform-in-ε existence time
established in Sect. 3 at (3.18). Cin ∈ (0,∞) will denote a constant that is independent
of ε, different from line to line, depending only on the initial data. With such notations,
thanks to (3.18), by virtue of the definitions of �, 	, H0, Hh , and Z in (1.4)–(1.8),
respectively, we have

sup
0≤t≤T

(���(t),	(t)
��

H2(�)
+

��H0(t), Hh(t)
��

H5/2(T2)
+

��Z(t)
��

H3(�)

) ≤ Cin.

(4.1)

Similarly, from (3.6f)–(3.6h), it follows that

sup
0≤t≤T

(��N1, N2, N3
��

H2(�)

) ≤ Cin. (4.2)

From (3.6a)–(3.6e), one has, thanks to (3.18), (4.1), and (4.2), that

sup
0≤t≤T

(��∂t�(t), ε∂t	(t)
��

H1(�)
+

��∂t H0(t), ∂t Hh(t)
��

H3/2(T2)

+
��ε∂t Z(t)

��
H2(�)

) ≤ Cin.
(4.3)

Consequently, by virtue of the Aubin compactness theorem [50, Theorem 2.1], there
exist

�p, 	p ∈ L∞(0, T ; H2(�)), Hp,0, Hp,h ∈ L∞(0, T ; H5/2(T2)),

and Z p, vp, wp, θp ∈ L∞(0, T ; H3(�)),
(4.4)

with

∂t�p ∈ L∞(0, T ; H1(�), ∂t Hp,0, ∂t Hp,h ∈ L∞(0, T ; H3/2(T2), (4.5)

such that there exists a subsequence of ε that as ε → 0+,

�,	
∗
⇀ �p, 	p weak- ∗ in L∞(0, T ; H2(�)), (4.6)

H0, Hh
∗
⇀ Hp,0, Hp,h weak- ∗ in L∞(0, T ; H5/2(T2)), (4.7)

Z , v, w, θ
∗
⇀ Z p, vp, wp, θp weak- ∗ in L∞(0, T ; H3(�)), (4.8)

∂t�
∗
⇀ ∂t�p weak- ∗ in L∞(0, T ; H1(�)) (4.9)

∂t H0, ∂t Hh
∗
⇀ ∂t Hp,0, ∂t Hp,h weak- ∗ in L∞(0, T ; H3/2(T2)) (4.10)

and

� → �p in C([0, T ]; H1(�)), (4.11)

H0, Hh → Hp,0, Hp,h in C([0, T ]; H3/2(T2)) (4.12)
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Furthermore, from (1.2c), (3.6b) and (3.6e), after sending ε → 0+, one can verify that
wp = 	p = Z p ≡ 0. In fact, after taking the inner product of corresponding equations
with ε and a test function in D′((0, T ) × �) and passing the limit ε → 0+, it is easy to
verify that wp = 	p = Z p ≡ 0 in the sense of distribution. Then it follows from the
regularity of wp, 	p, and Z p that they are equal to zero. Following similar arguments
from the definition, it is easy to show that,

wp = 0, �p = ∂zθp + curlh vp, ∇⊥
h θp + ∇hwp − ∂zvp = 0,

divh vp + ∂zwp = 0, Hp,0 = θp|z=0, Hp,h = θp|z=h,

and
∫
T2

vp(x, y, z) dxdy = 0,

(4.13)

or, equivalently, repeating similar calculation as in (2.39)–(2.44), one has

wp = 0, θp = Eb(Hp,0, Hp,h) + �−1
D (∂z�p − �Eb(Hp,0, Hp,h)),

and vp = ∇⊥
h �−1

h [�p − ∂zEb(Hp,0, Hp,h)

− ∂z�
−1
D (∂z�p − �Eb(Hp,0, Hp,h))].

(4.13’)

Remark 2. We can perform the following calculation to rewrite θp. Let P := �−1
h [�p −

∂zEb(Hp,0, Hp,h) − ∂z�
−1
D (∂z�p − �Eb(Hp,0, Hp,h))]. Then direct calculation shows

that

∂z P = �−1
h [∂z�p − ∂zzEb(Hp,0, Hp,h)

− (� − �h)�
−1
D (∂z�p − �Eb(Hp,0, Hp,h))]

= Eb(Hp,0, Hp,h) + �−1
D (∂z�p − �Eb(Hp,0, Hp,h))︸ ︷︷ ︸

=θp

−
∫
T2

[
Eb(Hp,0, Hp,h) + �−1

D (∂z�p − �Eb(Hp,0, Hp,h))
]
dxdy

︸ ︷︷ ︸
=:Q(z)

,

where we have applied (2.5) and (2.7). Together with (4.13’), we have

θp = ∂z(P +
∫ z

0
Q(z′) dz′) and vp = ∇⊥

h (P +
∫ z

0
Q(z′) dz′).

This is consistent with the classical theory of the quasi-geostrophic approximation. See,
for instance, [10,16].

Next, to handle the fast waves, i.e., 	 and Z , following Schochet’s theory [48], from
(3.6b) and (3.6e), one has

∂t [e∓i t
ε (	 ± i	⊥)] = −v · ∇h[e∓i t

ε (	 ± i	⊥)]
− w∂z[e∓i t

ε (	 ± i	⊥)] − e∓i t
ε (N2 ± i N⊥

2 ), (4.14)

and ∂t [e∓i t
ε (Z ± i Z⊥)] = −e∓i t

ε (N3 ± i N⊥
3 ). (4.15)
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From (4.14) and (4.15), thanks to (3.18), (4.1), and (4.2), it follows that

sup
0≤t≤T

(��∂t [e∓i t
ε (	(t) ± i	⊥(t))]��H1(�)

+
��∂t [e∓i t

ε (Z(t) ± i Z⊥(t))]��H2(�)

+
��e∓i t

ε (	(t) ± i	⊥(t))
��

H2(�)
+

��e∓i t
ε (Z(t) ± i Z⊥(t))

��
H3(�)

)
≤ Cin.

(4.16)

Therefore, by the Aubin compactness theorem [50, Theorem 2.1], there exist

ψp,± ∈ L∞(0, T ; H2(�)), z p,± ∈ L∞(0, T ; H3(�)),

∂tψp,± ∈ L∞(0, T ; H1(�)), and ∂t z p,± ∈ L∞(0, T ; H2(�)),
(4.17)

such that there exists a subsequence of ε that as ε → 0+,

	±
∗
⇀ ψp,± weak- ∗ in L∞(0, T ; H2(�)), (4.18)

Z±
∗
⇀ z p,± weak- ∗ in L∞(0, T ; H3(�)), (4.19)

∂t	±
∗
⇀ ∂tψp,± weak- ∗ in L∞(0, T ; H1(�)), (4.20)

∂t Z±
∗
⇀ ∂t z p,±weak- ∗ in L∞(0, T ; H2(�)),

(4.21)

and

	± → ψp,± in C([0, T ]; H1(�)), (4.22)

Z± → z p,± in C([0, T ]; H2(�)), (4.23)

where

	± := e∓i t
ε (	(t) ± i	⊥(t)) and Z± := e∓i t

ε (Z(t) ± i Z⊥(t)). (4.24)

In particular, directly one can verify that

2	 − (ei
t
ε ψp,+ + e−i t

ε ψp,−) = ei
t
ε (	+ − ψp,+) + e−i t

ε (	− − ψp,−)

→ 0 in L∞(0, T ; H1(�)), as ε → 0+,
(4.25)

and

2Z − (ei
t
ε z p,+ + e−i t

ε z p,−) = ei
t
ε (Z+ − z p,+) + e−i t

ε (Z− − z p,−)

→ 0 in L∞(0, T ; H2(�)), as ε → 0+.
(4.26)

To conclude this section, we write the fast-slow-error decomposition of v,w, θ . Let

W± := 1

2
�−1

D divh ψp,±, �± := 1

2
�−1

D curlh ψp,±, and

V± := 1

2

(
z p,± − ∇h�

−1
h ∂z�

−1
D divh ψp,± − ∇⊥

h �−1
h ∂z�

−1
D curlh ψp,±

)
.

(4.27)

Thanks to (4.17), one has that

W±,�±, V± ∈ L∞(0, T ; H3(�))

and ∂tW±, ∂t�±, ∂t V± ∈ L∞(0, T ; H2(�)).
(4.28)
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Repeating the exact calculation as in (2.39)–(2.44) leads to

w = �−1
D divh 	 = ei

t
ε W+︸ ︷︷ ︸

=:wfast,+

+ e−i t
ε W−︸ ︷︷ ︸

=:wfast,−

+werr, (4.29)

θ = Eb(H0, Hh) + �−1
D (curlh 	 + ∂z� − �Eb(H0, Hh))

= Eb(H0, Hh) + �−1
D (∂z� − �Eb(H0, Hh))︸ ︷︷ ︸

=:θslow

+ ei
t
ε �+︸ ︷︷ ︸

=:θfast,+

+ e−i t
ε �−︸ ︷︷ ︸

=:θfast,−

+ θerr,

(4.30)

and

v = Z − ∇h�
−1
h ∂z(�

−1
D divh 	)

+ ∇⊥
h �−1

h [� − ∂zEb(H0, Hh)

− ∂z�
−1
D (curlh 	 + ∂z� − �Eb(H0, Hh))]

= ∇⊥
h �−1

h [�−∂zEb(H0,Hh)

−∂z�
−1
D (∂z�−�Eb(H0,Hh))]︸ ︷︷ ︸

=:vslow

+ ei
t
ε V+︸ ︷︷ ︸

=:vfast,+

+ e−i t
ε V−︸ ︷︷ ︸

=:vfast,−

+verr,

(4.31)

where, thanks to (4.1), (4.17), (4.25), and (4.26), the error terms satisfy

sup
0≤t≤T

��verr(t), werr(t), θerr(t)
��

H3(�)
≤ Cin,

verr, werr, and θerr → 0 in L∞(0, T ; H2(�)), as ε → 0+.

(4.32)

In addition, thanks to (2.9), (4.3), (4.6), (4.7), (4.11), (4.12) and (4.13’), we have

sup
0≤t≤T

��vslow, θslow
��

H3(�)
≤ Cin and

sup
0≤t≤T

��∂tvslow(t), ∂tθslow(t)
��

H2(�)
≤ Cin.

(4.33)

Moreover, there exists a subsequence of ε that as ε → 0+, we also have

vslow, θslow → vp, θp in C(0, T ; H2(�)),

and vslow, θslow
∗
⇀ vp, θp weak-∗ in L∞(0, T ; H3(�)),

as ε → 0+.

(4.34)

4.2. Convergence theory: part 2, convergence of the nonlinearities . In this section, we
finish the convergence theory by investigating the convergence of the nonlinearities.
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Convergence of the slow waves (3.6a), (3.6c), and (3.6d) First, we investigate N1, de-
fined in (3.6f). Notice that N1 is quadratic. substituting (4.29)–(4.31), we write

N1 = curlh vslow · divh vslow + ∂zvslow · ∇hθslow︸ ︷︷ ︸
=:N1,slow

+
curlh vfast,± · divh vfast,∓ + ∂zvfast,± · ∇⊥

h wfast,∓
+ ∂zvfast,± · ∇hθfast,∓ + ∂zwfast,±∂zθfast,∓︸ ︷︷ ︸

=:N1,res

+
curlh vslow·divh vfast,±+curlh vfast,±·divh vslow

+ ∂zvslow·∇⊥
h wfast,±+∂zvslow·∇hθfast,±

+ ∂zvfast,±·∇hθslow+∂zwfast,±∂zθslow︸ ︷︷ ︸
=:N1,fast,1

+
curlh vfast,± · divh vfast,± + ∂zvfast,± · ∇⊥

h wfast,±
+ ∂zvfast,± · ∇hθfast,± + ∂zwfast,±∂zθfast,±︸ ︷︷ ︸

=:N1,fast,2

+ the rest terms︸ ︷︷ ︸
=:N1,err

.

Then thanks to (3.18), (4.28), (4.32), and (4.34), we have, as ε → 0+,

N1,slow → curlh vp · divh vp + ∂zvp · ∇hθp = 0 in C([0, T ]; H1(�)),

(4.35)

N1,fast,1, N1,fast,2 ⇀ 0 weakly in L p(0, T ; H1(�)) ∀p ∈ (1,∞), (4.36)

N1,err → 0 in L∞(0, T ; H1(�)), (4.37)

and

N1,res → curlh V± · divh V∓ + ∂zV± · ∇⊥
h W∓ + ∂zV± · ∇h�∓ + ∂zW±∂z�∓

in L∞(0, T ; H2(�)).
(4.38)

Consequently, as ε → 0+, in the sense of distribution, the limit of equation (3.6a) is

∂t�p + vp · ∇h�p + wp∂z�p + curlh V± · divh V∓
+∂zV± · ∇⊥

h W∓ + ∂zV± · ∇h�∓ + ∂zW±∂z�∓ = 0.
(4.39)

Here we have omitted the convergence of the advection terms, which is left to the reader.
The limit equations of (3.6c) and (3.6d) follow similarly. The proof is left to the

reader and we only state the result as follows:

∂t Hp,0 + vp|z=0 · ∇hHp,0 = 0, (4.40)

∂t Hp,h + vp|z=h · ∇h Hp,h = 0. (4.41)

We remind the reader that vp, wp, θp (V±,W±,�±, respectively) are determined by
�p, Hp,0, Hp,h (ψp,±, z p,±), respectively), as in (4.13’) ((4.27), respectively). There-
fore, the equations for �p, Hp,0, and Hp,h , i.e., (4.39), (4.40), and (4.41), can be consid-
ered as the equations of vp, wp, θp, with source terms given by the resonances involving
V±, W±, and �± (equivalently ψp,± and z p,±). To close the system, we will investigate
the limit equations of (4.14) and (4.15) in the following.
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Convergence of the fast waves (4.14) and (4.15) Using the notation of (4.24), (4.14)
and (4.15) can be written as

∂t	± + v · ∇h	± + w∂z	± + e∓i t
ε (N2 ± i N⊥

2 ) = 0, (4.14’)

∂t Z± + e∓i t
ε (N3 ± i N⊥

3 ) = 0. (4.15’)

Thanks to (4.8) and (4.18)–(4.23), we only need to investigate the limit of e∓i t
ε N2 and

e∓i t
ε N3.
Repeating the same arguments as for N1, above, one can show that

e∓i t
ε N2 = e∓i t

ε
(
(∇hvfast,±)�∇hθslow + (∇hvslow)�∇hθfast,±

)⊥

+ e∓i t
ε ∂zθslow · ∇⊥

h wfast,± + e∓i t
ε (∇hvslow)�∇hwfast,±

− e∓i t
ε (∂zvfast,± · ∇hvslow + ∂zvslow · ∇hvfast,±)

− e∓i t
ε ∂zwfast,±∂zvslow + the rest︸ ︷︷ ︸

⇀0 in the sense of distribution

.

After substituting (4.29)–(4.31) and sending ε → 0+, it follows that

e∓i t
ε N2 ⇀

(
(∇hV±)�∇hθp + (∇hvp)

�∇h�±
)⊥

+ ∂zθp · ∇⊥
h W± + (∇hvp)

�∇hW±
− ∂zV± · ∇hvp − ∂zvp · ∇hV± − ∂zW±∂zvp =: Nψ

in L p(0, T ; H1(�)) ∀p ∈ (1,∞).

(4.42)

Therefore, the limit of (4.14) as ε → 0+ is

∂tψp,± + vp · ∇hψp,± + wp∂zψp,± + (Nψ ± i N⊥
ψ ) = 0. (4.43)

Last but not least, one has that

e∓i t
ε N3 = e∓i t

ε

∫
T2

∂z(wfast,±vslow) dxdy + the rest︸ ︷︷ ︸
⇀0 in the sense of distribution

,

and thus

e∓i t
ε N3 ⇀

∫
T2

∂z(W±vp) dxdy =: Nz

in L p(0, T ; H1(�)) ∀p ∈ (1,∞).

(4.44)

Consequently, as ε → 0+, the limit of (4.15) is

∂t z p,± + (Nz ± i N⊥
z ) = 0. (4.45)
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Conclusion The limit system for the slow limit variables �p, Hp and the fast limit
variables ψp,±, z p,± is then, from (4.39), (4.40), (4.41), (4.43), and (4.45),

∂t�p + vp · ∇h�p + N� = 0, (4.46a)

∂t Hp,0 + vp|z=0 · ∇h Hp,0 = 0, (4.46b)

∂t Hp,h + vp|z=h · ∇h Hp,h = 0, (4.46c)

∂tψp,± + vp · ∇hψp,± + (Nψ ± i N⊥
ψ ) = 0, (4.46d)

∂t z p,± + (Nz ± i N⊥
z ) = 0, (4.46e)

where

N� := curlh V± · divh V∓ + ∂zV± · ∇⊥
h W∓ + ∂zV± · ∇h�∓ + ∂zW±∂z�∓, (4.46f)

and Nψ and Nz are defined in (4.42) and (4.44), above, respectively. We remind the
reader that vp, θp,W±, θ±, and V± are functions of �p, Hp,0, Hp,h, ψp,±, and z p,± as
in (4.13’) and (4.27). This finishes the proof of Theorem 1.2.

Remark 3. In the absence of fast waves, all the fast wave variables in system (4.46),
i.e., N	,ψp,±, z p,±, Nψ, Nz vanish. Therefore system (4.46) reduces to the classical
quasi-geostrophic approximation as studied in [10]. Meanwhile, in the case of periodic
domains, with additional symmetry, the traces on the upper and bottom boundaries, i.e.,
Hp,0, Hp,h vanish. Hence system (4.46) reduces to a special case in [16,17]. Notably,
in [16] as well as [17], only the special case that avoids the resonance in the slow
dynamics is explicitly written down. Recalling that in [16,17], the authors treat the fast
waves case subject to the periodic boundary condition (i.e., without solid boundaries). In
comparison, in our paper, we treat the case with solid boundaries and identify an explicit
form of such resonance terms.
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