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Abstract: We present a construction of weak graded Lie 2-algebras associated with
quasi-Poisson groupoids. We also establish a morphism between this weak graded Lie
2-algebra of multiplicative forms and the strict graded Lie 2-algebra of multiplicative
multivector fields, allowing us to compare and relate different aspects of Lie 2-algebra
theory within the context of quasi-Poisson geometry. As an infinitesimal analogy, we
explicitly determine the associated weak graded Lie 2-algebra structure of IM forms for
any quasi-Lie bialgebroid.
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1. Introduction

• The motivation
In the middle of the 1980s, Drinfeld began exploring multiplicative Poisson structures
on a Lie group motivated from the study of quantum groups [15]. This work laid the
foundation for the study of quasi-Poisson groups [18,19], which are the classical limit of
Drinfeld’s quasi-Hopf algebras and have been extensively studied in Poisson geometry.
Subsequently, the investigation of multiplicative geometric structures on a Lie groupoid
becomes a focal point in the advancement of Lie groupoid theory [6,7,17,27,34]. These
structures are linked to the geometric structures of the underlying differentiable stack
[30].

Quasi-Poisson groupoids (see Definition 2.4) are generalizations of quasi-Poisson
groups. From the perspective proposed in [5], quasi-Poisson groupoids can be viewed
as representations of a (+1)-shifted differentiable Poisson stack.

This paper is motivated by many works related to multiplicative vector fields and
forms. First, we note that Berwick-Evans and Lerman [4] demonstrated that vector
fields on a differentiable stack X can be understood in terms of a strict Lie 2-algebra.
This strict Lie 2-algebra is composed of the multiplicative vector fields on a Lie groupoid
that presents X , along with the sections of the Lie algebroid A associated with the Lie
groupoid. The strict Lie 2-algebra also appeared in [28]. Furthermore, in [5] it was
established that every Lie groupoid G corresponds to a strict graded1 Lie 2-algebra
underlying �(∧•A) −→ X•

mult(G) where �(∧•A) is the space of sections of the exterior
powers of the Lie algebroid A ofG andX•

mult(G) is the space of multiplicative multivector
fields ofG. The homotopy equivalence class of this strict graded Lie 2-algebra is invariant
under Morita equivalence of Lie groupoids and is thus considered as multivector fields
on the corresponding differentiable stack.

1 Throughout the paper, graded means Z-graded.
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Second, our work is inspired by recent works about multiplicative differential forms
on Lie groupoids due to their connection to infinitesimal multiplicative (IM-) forms
and Spencer operators on the Lie algebroid level [6,9,14]. In our previous work [12],
we proved that if G is a Poisson Lie groupoid [23,26,33], then the space �•

mult(G) of
multiplicative forms on G admits a differential graded Lie algebra (DGLA) structure.
Furthermore, when combined with �•(M), the space of differential forms on the base
manifold M , �•(M) → �•

mult(G) forms a canonical graded strict Lie 2-algebra. This
supplements the previously known fact [4,5] that multiplicative multivector fields on G
form a graded strict Lie 2-algebra with the Schouten algebra �(∧•A) stemming from
the Lie algebroid A. It is therefore natural to ask how this result can be extended to the
setting of a quasi-Poisson groupoid.

Building on the aforementioned works [4,5,12], our paper focuses on the study of
multiplicative forms on quasi-Poisson groupoids and their interactions with the given
quasi-Poisson structure, and aims to investigate algebraic structures such as (graded)
weak Lie 2-algebras, cubic L∞-algebras, and other higher structure associated with
quasi-Poisson groupoids.

• The main results
We shall show in Sect. 3 how a quasi-Poisson groupoid gives rise to a weak Lie 2-algebra
and a weak graded Lie 2-algebra (see Sect. 2 for definition of various notions of algebraic
objects). Below is a summary of our main results.

Theorem A (Theorem 3.1 and Proposition 3.2). Given a quasi-Poisson groupoid
(G, P,�), there exists a weak Lie 2-algebra structure underlying the triple

�1(M)
J−→ �1

mult(G), where J (γ ) := s∗γ − t∗γ.

Here �1(M) is the space of 1-forms on the base manifold M, and �1
mult(G) is the

space of multiplicative 1-forms on the groupoid G. Moreover, there is a natural weak

Lie 2-algebra morphism from �1(M)
J−→ �1

mult(G) to �(A)
T−→ X1

mult(G) (the strict Lie
2-algebra established in [5]).

For the said weak Lie 2-algebra, the structure maps involve a 2-bracket [ · , · ]P in
�1

mult(G), an action map �P of �1
mult(G) on �1(M), and a homotopy map (3-bracket)

[ · , · , · ]� : ∧3�1
mult(G) → �1(M).

These notations are designed to emphasize their dependence on the given quasi-Poisson
groupoid (G, P,�). They are not immediately evident, but can be expressed explicitly
(see Sect. 3.1).

Theorem A only concerns with differential 1-forms on the base manifold and mul-
tiplicative 1-forms on the groupoid. It is natural to consider differential forms of all
degrees. Our second result extends the above weak Lie 2-algebra to a weak graded Lie
2-algebra.

Theorem B (Theorem 3.3 and Proposition 3.5). Given a quasi-Poisson groupoid
(G, P,�), there exists a weak graded Lie 2-algebra structure underlying the triple

�•(M)[1] J−→ �•
mult(G)[1], where J (γ ) := s∗γ − t∗γ.

Here�•(M) is the space of differential formson the basemanifold M, and�•
mult(G) is the

space ofmultiplicative forms on the groupoidG.Moreover, there is a naturalweak graded
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Lie 2-algebra morphism from �•(M)[1] J−→ �•
mult(G)[1] to �(∧•A)[1] T−→ X•

mult(G)[1]
(the strict graded Lie 2-algebra established in [5]).

The structure maps of this weak graded Lie 2-algebra are essentially defined in the
same fashion as previously. However, the homotopy map has a more intricate construc-
tion.

Note that in the special case of a Poisson groupoid, namely, when � = 0, we are
led to the emergence of a strict Lie 2-algebra and a strict graded Lie 2-algebra. This
recovers some of our previous results [12, Theorems 5.5, 5.14].

The infinitesimal counterpart of a multiplicative k-form on G is the notion of IM
k-form of the Lie algebroid A of G; see [6]. Quasi-Lie bialgebroids, on the other hand,
are infinitesimal replacements of quasi-Poisson groupoids [17]. This suggests a natu-
ral expectation for an analogy of our main Theorem B—a weak graded Lie 2-algebra
underlying IM forms associated with a quasi-Lie bialgebroid.

Theorem C (Theorem 5.2). If A is a quasi-Lie bialgebroid over the base manifold M,

then there exists a natural weak graded Lie 2-algebra structure underlying �•(M)
j−→

IM•(A) where IM•(A) is the space of IM forms on A.

Please refer to Sect. 5.2 for more information on j and the structure maps of this
weak Lie 2-algebra. In Sect. 5.4, we also show the compatibility of this structure with
groupoid-level objects, as stated in Theorems A and B.

• Future work
In this paper, our focus does not include an examination of how the Morita equivalence
class of a quasi-Poisson groupoid affects weak Lie 2-algebras. However, given that quasi-
Poisson groupoids are 1-shifted Poisson stacks, it is reasonable to anticipate that the weak
graded Lie 2-algebras we are analyzing give rise to a stacky object. In other words, the
homotopy equivalence class of the graded Lie 2-algebra that we constructed should
be invariant under Morita equivalence of Lie groupoids and thus can be considered as
differential forms on the corresponding 1-shifted Poisson stacks. This will be explored in
future. Also, the case of quasi-symplectic groupoids [8] is worthy to be studied carefully.

• Structure of the paper
In Sect. 2, we recall the basic notions related to quasi-Poisson groupoids, weak graded
Lie 2-algebras, curved DGLAs, cubic L∞-algebras, etc. Section 3 is devoted to stating
and proving our main results, namely Theorems 3.1 and 3.3, through a series of identi-
ties, and we have dedicated considerable effort towards establishing a number of lemmas
and propositions. In this section we also establish morphisms between the many differ-
ent algebraic structures, and study the special case of quasi-Poisson groups. Section 4
describes a demonstration model, namely the linear quasi-Poisson 2-group arising from
a weak Lie 2-algebra. This model may look simple but is actually very informative. We
calculate the corresponding various higher algebraic structures. Finally, in Sect. 5, The-
orem 5.2 and Proposition 5.8 in particular, we analyze the weak graded Lie 2-algebra
structure on IM forms of a quasi-Lie bialgebroid, and explore its relationship with the
objects introduced in Sect. 3.

2. Preliminaries

Some basic notions and terminologies are recalled here. We will also introduce some
new definitions.
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2.1. Quasi-Poisson groupoids For general theory of Lie groupoids and Lie algebroids,
we refer to the standard text [25]. In this paper, we follow conventions of our previous
work [11,12]: G ⇒ M denotes a Lie groupoid over M whose source and target maps
are s and t . The Lie algebroid of G is standard: A = ker(s∗)|M . The letter A could also
refer to a general Lie algebroid over M with the Lie bracket [ · , · ] on �(A) and anchor
map ρ : A → T M .

For u ∈ �(∧k A), denote by ←−u ∈ �(∧kTG) the left-invariant k-vector field on G
associated to u. In the meantime, for all ω ∈ �l(M), we have the pullback s∗ω ∈ �l(G)

along the source map s : G → M .
Let us recall the definitions of multiplicative forms and tensors on a Lie groupoid G

over M . Denote by G(2) the set of composable elements, i.e., (g, r) ∈ G × G, satisfying
s(g) = t (r). Denote by m : G(2) → G the groupoid multiplication.

Definition 2.1. [6,32] A k-form � ∈ �k(G) is called multiplicative if it satisfies the
relation

m∗� = pr∗1� + pr∗2�,

where pr1, pr2 : G(2) → G are the projections.

In particular, a function F ∈ C∞(G) is multiplicative if it is a multiplicative 0-form.
Namely, it satisfies F(gr) = F(g) + F(r) for all (g, r) ∈ G(2). We will denote by
�k

mult(G) the space of multiplicative k-forms on the groupoid G.
The notion of multiplicative tensors is introduced in [7] by using of the tangent and

cotangent Lie groupoids, namely TG (over T M) and T ∗G (over A∗), of a given Lie
groupoid G (over M).

Definition 2.2. Consider the Lie groupoid

G
(k,l) : (⊕ kT ∗G) ⊕ (⊕ l TG) ⇒ (⊕ k A∗) ⊕ (⊕ l T M).

A (k, l)-tensor T ∈ T k,l(G) on G is calledmultiplicative if it is a multiplicative function
on G

(k,l).

Remark 2.3. In the context of Lie groupoids, ⊕ kT ∗G is defined as the Whitney sum of
k copies of T ∗G (over G), treated as a Lie groupoid over ⊕ k A∗. Similarly, ⊕ l TG is
a Lie groupoid over ⊕ l T M . The linear vector bundle structures on ⊕ kT ∗G,⊕ k A∗,
etc., are not considered in the above definition. Alternatively, one can represent ⊕ kT ∗G
by the fiber product ×k

GT
∗G, and ⊕ k A∗ by ×k

M A∗ to disregard these vector bundle
structures.

A quasi-Poisson groupoid is a Lie groupoid G equipped with a multiplicative 2-
vector field P for which [P, P] is homotopic to zero. This notion is an extension of
Poisson groupoids [33], which in turn broaden the scope of Poisson Lie groups [24] and
symplectic groupoids [10,32]. We recall its specific definition below.

Definition 2.4. [17] A quasi-Poisson groupoid consists of a triple (G, P,�), where G
is a Lie groupoid, P ∈ X2

mult(G), � ∈ �(∧3A), such that

1

2
[P, P] = −→

� − ←−
�, and [P,

−→
� ] = 0.

Here and in the sequel, we denote by Xk
mult(G) the space of multiplicative k-vector fields

on the groupoid G.
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2.2. Weak Lie 2-algebras We follow the terminology of [1].

Definition 2.5. A weak Lie 2-algebra consists of two (non-graded) vector spaces ϑ, g,
and four (multi-) linear structure maps (1) d : ϑ → g, (2) [ · , · ] : g ∧ g → g, (3)
� : g⊗ϑ → ϑ , and (4) [ · , · , · ] : ∧3 g → ϑ satisfying the following compatibility
conditions: for all w, x, y, z ∈ g and u, v ∈ ϑ ,

[[x, y], z] + [[y, z], x] + [[z, x], y] + d[x, y, z] = 0; (1)

[x, y] � u − x � (y � u) + y � (x � u) + [x, y, du] = 0; (2)

(du) � v = −(dv) � u, d(x � u) = [x, du]; (3)

x � [y, z, w] − y � [x, z, w] + z � [x, y, w] − w � [x, y, z]
= [[x, y], z, w] − [[x, z], y, w] + [[x, w], y, z] + [[y, z], x, w]

−[[y, w], x, z] + [[z, w], x, y]. (4)

In particular, if [ · , · , · ] = 0, then it is called a strict Lie 2-algebra. In this case,
g is an ordinary Lie algebra and it acts on ϑ by �.

Note that strict Lie 2-algebras are simply called Lie 2-algebras in [5,13]. They are
equivalent to the notion of Lie algebra crossed modules [1].

In the sequel, we denote a weak Lie 2-algebra as above by ϑ
d→ g to emphasize the

key ingredient d. The binary operation � as a map from g⊗ ϑ to ϑ would be referred to
as the action of g on ϑ , although it is not an honest action of Lie algebras. The 3-bracket
[ · , · , · ] is also called the homotopy map.

A weak Lie 2-algebra can be alternatively defined as a 2-term L∞-algebra (recalled
in Definition 2.9) concentrated in degrees (−1) and 0, i.e., L = ϑ[1] ⊕ g where
ϑ[1] = L−1 and g = L0. Indeed, it is a particular instance of cubic L∞-algebras (see
Definition 2.11).

2.3. Weak graded Lie 2-algebras Next, we generalize the notion of weak Lie 2-algebra
to the Z-graded setting.

Definition 2.6. A weak graded Lie 2-algebra ϑ
d→ g consists of two graded vector

spaces ϑ, g, a degree 0 linear map d : ϑ → g, and the following structure maps:

• a degree 0 graded skew-symmetric 2-bracket [ · , · ] : g ∧ g → g and a degree 0
map � : g ∧ ϑ → ϑ ;
• a degree 0 graded skew-symmetric 3-bracket [ · , · , · ] : ∧3g → ϑ

such that for all w, x, y, z ∈ g and u, v ∈ ϑ ,

(−1)|x ||z|[[x, y], z] + (−1)|y||x |[[y, z], x] + (−1)|z||y|[[z, x], y]
+(−1)|x ||z|d[x, y, z] = 0; (5)

(−1)|x ||u|[x, y] � u − (−1)|x ||u|x � (y � u) + (−1)|x |(|u|+|y|)y � (x � u)

+(−1)|x ||u|[x, y, du] = 0; (6)

(du) � v = −(−1)|u||v|(dv) � u, d(x � u) = [x, du]; (7)

x � [y, z, w] − (−1)|x ||y|y � [x, z, w] + (−1)|z|(|x |+|y|)z � [x, y, w]
−(−1)|w|(|x |+|y|+|z|)w � [x, y, z]

= [[x, y], z, w] − (−1)|z||y|[[x, z], y, w] + (−1)|w|(|y|+|z|)[[x, w], y, z]



The Weak Graded Lie 2-Algebra Page 7 of 41 159

+(−1)|x |(|y|+|z|)[[y, z], x, w]
−(−1)|x ||y|+|w|(|x |+|z|)[[y, w], x, z] + (−1)(|z|+|w|)(|x |+|y|)[[z, w], x, y]. (8)

If the 3-bracket [ · , · , · ] = 0, it is called a strict graded Lie 2-algebra.

So, weak Lie 2-algebras are special weak graded Lie 2-algebras. In a weak graded

Lie 2-algebra ϑ
d→ g, the degree 0 components of ϑ and g, respectively, form a weak Lie

2-algebra, namely ϑ0
d→ g0. However, ϑ

d→ g does not give rise to a cubic L∞-algebra
underlying ϑ[1] ⊕ g.

An interesting instance of graded Lie 2-algebra is the following.

Proposition 2.7. [5] Let G be a Lie groupoid. The space X•
mult(G)[1] of multiplicative

multivector fields on G is a graded Lie algebra after degree shifts,2 the Schouten bracket
being its structure map. Moreover, the map

�(∧•A)[1] T−→ X•
mult(G)[1], u �→ ←−u − −→u

together with the action � of X•
mult(G)[1] on �(∧•A[1]) given by

←−−−
X � u = [X,

←−u ] (or
−−−→
X � u = [X,

−→u ]), X ∈ Xk
mult(G), u ∈ �(∧l A)

gives rise to a strict graded Lie 2-algebra. When concentrated in degree 0 parts, it

becomes the strict Lie 2-algebra �(A)
T−→ X1

mult(G).

Definition 2.8. A morphism of weak graded Lie 2-algebras from ϑ
d→ g to ϑ ′ d ′→ g′

consists of

• a degree 0 chain map F1 = (Fg, Fϑ), namely, Fg : g → g′ and Fϑ : ϑ → ϑ ′ such
that Fg ◦ d = d ′ ◦ Fϑ ,
• a degree (−1) graded skew-symmetric bilinear map F2 : g∧ g → ϑ ′, such that the
following equations hold for x, y, z ∈ g and u ∈ ϑ :

(1) Fg[x, y] − [Fg(x), Fg(y)]′ = d ′F2(x, y),
(2) Fϑ(x � u) − Fg(x) �′ Fϑ(u) = F2(x, du),
(3) Fϑ [x, y, z] − [Fg(x), Fg(y), Fg(z)]′ = Fg(x) �′ F2(y, z) − F2([x, y], z) + c.p..

Here c.p. denotes the cyclic permutations of arguments x, y, and z.

If F2 = 0, it is called a strict morphism of weak graded Lie 2-algebras.

We can express the morphism as described above more vividly with a diagram:

ϑ

d

��

Fϑ �� ϑ ′

d ′
��

g
Fg ��

F2

��

g′.

2 Here we emphasize that the convention of degree onX•
mult(G)[1] is by setting deg(Xk

mult(G)[1]) := k−1.
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2.4. Curved DGLAs and cubic L∞-algebras Here we recall more notions of higher
algebraic objects.

Definition 2.9. [16,21,31] A curved L∞-algebra is a graded vector spaceL = ⊕ i∈ZLi
equipped with a collection of skew-symmetric multilinear maps [ · · · ]k : 
kL → L of
degree (2 − k), for all k �0, such that the higher Jacobi identities

n∑

i=0

∑

σ∈Sh(i,n−i)

(−1)i(n−i)χ(σ ; x1, · · · , xn)[[xσ(1),

· · · , xσ(i)]i , xσ(i+1), · · · , xσ(n)]n−i+1 = 0 (9)

hold for all homogeneous elements x1, · · · , xn ∈ L and n � 0. If the 0-bracket []0
(an element in L2) vanishes, the curved L∞-structure is called flat, or uncurved, and we
simply call L an L∞-algebra.

Here the symbol Sh(p, q) denotes the set of (p, q)-unshuffles. Note that in the
literature there are different conventions about the sign (±1) in Equation (9).
Notation: It is common to write the unary bracket [ · ]1 as d, which is a degree 1
endomorphism on L. We also prefer to use the symbol c to denote the 0-bracket, which
is an element in L2.

In the current paper, we will encounter two particular cases of curved L∞-algebras.

Definition 2.10. If a curved L∞-algebra L whose k-brackets vanish for all k � 3, then
L is known as a curved DGLA. In this situation, the Jacobi identities are the following:

– d(c) = 0;
– d2(x) = −[c, x]2;
– d[x1, x2]2 = [dx1, x2]2 + (−1)|x1||x2|[dx2, x1]2;
– [[x1, x2]2, x3]2 +(−1)1+|x2| · |x3|[[x1, x3]2, x2]2 +(−1)|x1|(|x2|+|x3|)[[x2, x3]2, x1]2 =
0.

Definition 2.11. If an L∞-algebra has all trivial brackets except [ · ]1 = d, [ · , · ]2,
and [ · , · , · ]3, it is called a cubic L∞-algebra (following the notion of [16]).

2.5. Two higher algebras associated with a bivector field Let N be an arbitrary man-
ifold and P ∈ X2(N ) a bivector field. There are two higher algebra objects associated
with P . The first one is well-known.

Example 2.12. The space of multivector fields on N forms a curved DGLA: (X•(N )[1],
cP , dP , [ · , · ]), where cP = 1

2 [P, P] ∈ X3(N ), dP := [P, · ], and [ · , · ] is the
Schouten bracket of multivector fields.

The second one is a construction of cubic L∞-algebras associated with P ∈ X2(N ).
Indeed, on the space �1(N ) of 1-forms, there is a skew-symmetric bracket, called the
P-bracket:

[α, β]P = LP�αβ − LP�βα − dP(α, β) ∀α, β ∈ �1(N ), (10)

where P� : T ∗N → T N sends α ∈ �1(N ) to ιαP . Note that the bracket [ · , · ]P
extends to all forms by using the (graded-)Leibniz rule.
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Example 2.13 [16, Theorem 5.2]. The quadruple (�•(N )[1], d, [ · , · ]P , [ · , · , · ]P )

constitutes a cubic L∞-algebra, where d is the de Rham differential, [ · , · , · ]P :
�p(N ) ∧ �q(N ) ∧ �s(N ) → �p+q+s−3(N ) is defined by

[�1,�2,�3]P = ι 1
2 [P,P](�1 ∧ �2 ∧ �3), �i ∈ �1(N )

on 1-forms and extended to all forms by requiring the Leibniz rule on each argument.

Regarding the skew-symmetric P-bracket [ � , � ]P on �1(N ) defined by (10), we
have two key formulas [20]:

[α1, [α2, α3]P ]P + c.p.

= −1

2
L [P,P](α1,α2, � )α3 + c.p. + d([P, P](α1, α2, α3)), ∀αi ∈ �1(N ),

(11)

and

P�[α1, α2]P − [P�α1, P
�α2] = 1

2
[P, P](α1, α2), ∀αi ∈ �1(N ). (12)

3. Algebraic Structures of Multiplicative Forms on a Quasi-Poisson Groupoid

In this section, our focus is on multiplicative forms on a quasi-Poisson groupoid. Our
main results are presented, which include a weak Lie 2-algebra structure on the space of
multiplicative 1-forms on the groupoid and differential 1-forms on the base manifold.
Further, we establish a weak graded Lie 2-algebra structure on the space of multiplicative
forms (of all degrees) and differential forms (of all degrees) on the base manifold.

3.1. The weak Lie 2-algebra of multiplicative 1-forms We now turn to a general Lie
groupoid G with base manifold M . The source and target maps of G are denoted by s
and t , respectively. As usual, A := ker(s∗)|M stands for the Lie algebroid of G.

From Proposition 2.7 we can see that the triple

�(A)
T−→ X1

mult(G), T (u) := ←−u − −→u (13)

forms a strict Lie 2-algebra, where the Lie bracket on X1
mult(G) is the standard com-

mutator [ · , · ] and the action � : X1
mult(G) ⊗ �(A) → �(A) is determined by←−−−

X � u = [X,
←−u ] for X ∈ X1

mult(G) and u ∈ �(A).
We shift our focus to multiplicative 1-forms on G, and we have a parallel result—to

any quasi-Poisson groupoid (G, P,�) is associated the following structures that will
give rise to a weak Lie 2-algebra: for all �,�i ∈ �1

mult(G) and γ ∈ �1(M), define

(1) a linear map J : �1(M) → �1
mult(G) by J (γ ) := s∗γ − t∗γ ;

(2) a P-bracket [ · , · ]P of �1
mult(G) by (10) (the reason that �1

mult(G) ⊂ �1(G) is
closed under [ · , · ]P can be found in [12, Theorem 5.1]);

(3) an action

�P : �1
mult(G) ⊗ �1(M) → �1(M)

determined by

s∗(��Pγ ) = [�, s∗γ ]P ; (14)

(This is indeed well-defined, see [12, Theorem 5.5].)
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(4) a homotopy map [ · , · , · ]� : ∧3�1
mult(G) → �1(M) determined by

s∗[�1,�2,�3]� = (L←−
�(�1,�2, ·)�3 + c.p.) − 2d

←−
�(�1,�2,�3)

= d
←−
�(�1,�2,�3) +

(
ι←−
�(�1,�2)

d�3 + c.p.). (15)

The well-definedness of [·, ·, ·]� will be shown in the proof of the next theorem.

Theorem 3.1. Let (G, P,�) be a quasi-Poisson groupoid. Then the triple �1(M)
J−→

�1
mult(G) together with [ · , · ]P , �P , and [ · , · , · ]� as described above constitutes

a weak Lie 2-algebra.

Proof. We first show that the homotopy map [ · , · , · ]� given by Eq. (15) is
well-defined. In fact, for �i ∈ �1

mult(G), by [12, Lemmas 4.5 and 4.8], we have the
following equalities:

←−
�(�1,�2,�3) = s∗�(θ1, θ2, θ3),

−→
�(�1,�2,�3) = t∗�(θ1, θ2, θ3), (16)

←−
�(�1,�2, � ) = ←−−−−−−−

�(θ1, θ2, � ),
−→
�(�1,�2, � ) = −−−−−−−→

�(θ1, θ2, � ), (17)

where θi = prA∗�i |M ∈ �(A∗). Also for u ∈ �(A) and α ∈ �k
mult(G), we have

ι←−u α = s∗γ for some γ ∈ �k−1(M). So we see that the right hand side of (15) must be
of the form s∗μ where μ ∈ �1(M) is uniquely determined; and hence we simply define
[�1,�2,�3]� := μ. Moreover, by applying inv∗ on both sides of (15), we obtain a
parallel formula:

t∗[�1,�2,�3]� = L−→
�(�1,�2, ·)�3 + c.p. − 2d

−→
�(�1,�2,�3)

= d
−→
�(�1,�2,�3) +

(
ι−→
�(�1,�2)

d�3 + c.p.) (18)

For simplicity, we write �(θ1, θ2) := �(θ1, θ2, ·) ∈ �(A) in the sequel.
Next, we verify one by one that what the theorem states satisfies the axioms (5) ∼

(8) of a weak Lie 2-algebra:

• To see (5), we use Eq. (11), the fact 1
2 [P, P] = −→

� − ←−
� , and Eqs. (16)–(18) to get

[�1, [�2,�3]P ]P + c.p.

= L
(
←−
�−−→

�)(�1,�2)
�3 + c.p. − 2d(

←−
� − −→

�)(�1,�2,�3)

= d(
←−
� − −→

�)(�1,�2,�3) +
(
ι
(
←−−−−−
�(θ1,θ2)−−−−−−→

�(θ1,θ2))
d�3 + c.p.

)

= (s∗ − t∗)[�1,�2,�3]�. (19)

This is identically the desired relation.
• To see (6), we need the following formula—for any �1,�2 ∈ �1

mult(G) and γ ∈
�1(M), one has

[�1, [�2, s
∗γ ]P ]P + [�2, [s∗γ,�1]P ]P + [s∗γ, [�1,�2]P ]P

= s∗[�1,�2, s
∗γ − t∗γ ]�. (20)

In fact, similar to the way to verify (5), we can turn the left hand side of Eq. (20) to

−1

2
d[P, P](�1,�2, s

∗γ ) − 1

2
ι[P,P](�1,�2)ds

∗γ − 1

2
ι[P,P](�2,s∗γ )d�1
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−1

2
ι[P,P](s∗γ,�1)d�2

= d(
←−
� − −→

�)(�1,�2, s
∗γ ) + ι

(
←−
�−−→

�)(�1,�2)
ds∗γ

+ι
(
←−
�−−→

�)(�2,s∗γ )
d�1 + ι

(
←−
�−−→

�)(s∗γ,�1)
d�2

= −ds∗�(θ1, θ2, ρ
∗γ ) − s∗ιρ�(θ1,θ2)dγ − ι←−−−−−−−

�(θ2,ρ
∗γ )

d�1 − ι←−−−−−−−
�(ρ∗γ,θ1)

d�2.

Here we used (16)–(17) and the facts

s∗(←−u − −→u ) = s∗(←−u ) = −ρu, prA∗(s∗γ − t∗γ )|M = −ρ∗γ ∈ �(A∗).
(21)

On the other hand, we have

s∗[�1,�2, s
∗γ − t∗γ ]�

= d
←−
�(�1,�2, s

∗γ − t∗γ ) + ι←−
�(�1,�2)

d(s∗γ − t∗γ ) + ι←−
�(�2,s∗γ−t∗γ )

d�1

+ι←−
�(s∗γ−t∗γ,�1)

d�2

= −ds∗�(θ1, θ2, ρ
∗γ ) − s∗ιρ�(θ1,θ2)dγ − ι←−−−−−−−

�(θ2,ρ
∗γ )

d�1 − ι←−−−−−−−
�(ρ∗γ,θ1)

d�2.

This verifies the desired (20). By the definition of � � γ in (14) and since s∗ is
injective, (20) implies that

�1 � (�2 � γ ) − �2 � (�1 � γ ) − [�1,�2]P � γ = [�1,�2, Jγ ]�.

Hence one gets (6).
• The axiom (7) can be verified directly.
• It is left to show (8), namely,

�1 � [�2,�3,�4]� + c.p. − ([[�1,�2]P ,�3,�4]� + c.p.
) = 0,

�i ∈ �1
mult(G). (22)

Indeed, it follows from the relation [P,
←−
� ] = 0. Let us elaborate on this fact. On the

one hand, for all �i ∈ �1(G) (not necessarily multiplicative), we have

[P,
←−
� ](�1,�2,�3,�4) = P�d(

←−
� ��) − ←−

� �d(P��) + (P ∧ ←−
�)�d�

= (←−
�(�1,�2,�3)P(d�4) + P(d

←−
�(�1,�2,�3),�4) + c.p.(4)

)

−(
P(�1,�2)

(←−
�(d�3,�4) − ←−

�(�3, d�4)
)

+
←−
�(dP(�1,�2),�3,�4) + c.p.(6)

)

−(
P(d�4)

←−
�(�1,�2,�3) + c.p.(4)

)

−(
(P��1 ∧ ←−

�(�2,�3))(d�4) + c.p.(12)
)

+
(
(
←−
�(d�3,�4) − ←−

�(�3, d�4))P(�1,�2) + c.p.(6)
)

= (
P(d

←−
�(�1,�2,�3),�4) + c.p.(4)

) − (←−
�(dP(�1,�2),�3,�4) + c.p.(6)

)

−(P��1 ∧ ←−
�(�2,�3))(d�4) + c.p.(12), (23)
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where c.p.(4) and c.p.(6) stand for the (3, 1) and (2, 2)-unshuffles respectively, and
c.p.(12) is the product of (3, 1) and (2, 1)-unshuffles. By straightforward computa-
tion, one can rewrite Eq. (23) into a more concise form

[P,
←−
� ](�1,�2,�3, ·) = [P�(�3),

←−
�(�1,�2)] − ←−

�([�1,�2]P ,�3) + c.p.

+P�(d
←−
�(�1,�2,�3)) + P�

(
ι←−
�(�1,�2)

d�3 + c.p.
)
.

(24)

On the other hand, by applying s∗ on the left hand side of Eq. (22) we get

[�1, d
←−
�(�2,�3,�4) +

(
ι←−
�(�2,�3)

d�4 + c.p.(3)
)]P + c.p.(4)

−(
d
←−
�([�1,�2]P ,�3,�4) + ι←−

�([�1,�2]P ,�3)
d�4 + ι←−

�(�3,�4)
d[�1,�2]P

+ι←−
�(�4,[�1,�2]P )

d�3 + c.p.(6)
)

= (
dP(�1, d

←−
�(�2,�3,�4)) − ι

P�d
←−
�(�2,�3,�4)

d�1 + c.p.(4)
)

+
(
LP��1

ι←−
�(�2,�3)

d�4 − ιP�ι←−
�(�2,�3)

d�4
d�1 + c.p.(12)

)

−(
d
←−
�(ιP��1

d�2 − ιP��2
d�1 + dP(�1,�2),�3,�4)

+ι←−
�([�1,�2]P ,�3)

d�4 + ι←−
�(�3,�4)

(LP��1
d�2 − LP��2

d�1)

+ι←−
�(�4,[�1,�2]P )

d�3 + c.p.(6)
)

= d[P,
←−
� ](�1,�2,�3,�4) +

(
ι[P,

←−
� ](�1,�2,�3, ·)d�4 + c.p.(4)

)
,

where we have applied Eqs. (23), (24) and the Cartan formulas

d ◦ LX = LX ◦ d, LX ◦ ιY − ιY ◦ LX = ι[X,Y ].

So if [P,
←−
� ] = 0 then (22) holds and we complete the proof. ��

Proposition 3.2. Regarding the weak Lie 2-algebra given by Theorem 3.1 and the strict

Lie 2-algebra�(A)
T−→ X1

mult(G) (explained after Eq. (13)), there is aweak Lie 2-algebra
morphism (P�, p�, ν) between them:

�1(M)

J
��

p�

�� �(A)

T
��

�1
mult(G)

P�
��

ν

��

X1
mult(G),

where p = prT M⊗A(P|M ) ∈ �(T M ⊗ A) and ν : ∧2�1
mult(G) → �(A) is defined by

ν(�1,�2) = −�(θ1, θ2, ·), where θi = prA∗(�i |M ) ∈ �(A∗).

Proof. The fact that T ◦ p� = P� ◦ J has been shown in [12, Proposition 5.8]. We check
all the other conditions. First, by Eqs. (12), (16), (17) and (21), we obtain:

P�[�1,�2]P − [P��1, P
��2] = −−−−−→

�(θ1, θ2) − ←−−−−−
�(θ1, θ2) = T ν(θ1, θ2),
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and, for � ∈ �1
mult(G) and γ ∈ �1(M),

P�[�, s∗γ ]P − [P��, P�s∗γ ] = (
−→
� − ←−

�)(�, s∗γ ) = ←−−−−−−
�(θ, ρ∗γ )

= ←−−−−−−−−−−−
ν(�, s∗γ − t∗γ ).

Second, by the definition of � � γ , the relations P�s∗(μ) = ←−−−
p�(μ) and [P��,

←−−
p�γ ] =←−−−−−−−−−−

(P��) � (p�γ ) for any μ, γ ∈ �1(M), we further have

←−−−−−−
p�(� � γ ) − ←−−−−−−−−−−

(P��) � (p�γ ) = ←−−−−−−
ν(�, Jγ ),

which implies that

p�(� � γ ) − (P��) � (p�γ ) = ν(�, Jγ ).

Finally, we check the third condition

− P�(�3) � ν(�1,�2) + ν([�1,�2]P ,�3) + c.p. + p�([�1,�2,�3]�) = 0.

(25)

In fact, applying the left translation ←−· to the left hand side of (25), we get

([P�(�3),
←−
�(�1,�2)] − ←−

�([�1,�2]P ,�3) + c.p.
)

+P�(d
←−
�(�1,�2,�3)) + P�

(
ι←−
�(�1,�2)

d�3 + c.p.
)

= [P,
←−
� ](�1,�2,�3, ·) = 0,

where we have used (24). Hence we proved (25) and finished the verification of (P�, p�, ν)

being a morphism of the two weak Lie 2-algebras in question. ��

3.2. The weak graded Lie 2-algebra of multiplicative forms We are about to state our
second main result. Let (G, P,�) be a quasi-Poisson groupoid as in Definition 2.4.
Consider two graded vector spaces �•(M)[1] and �•

mult(G)[1]. Define the following
structure maps extending those we constructed for �1(M) and �1

mult(G) in the previous
section:

(1) The linear J : �•(M)[1] → �•
mult(G)[1] given by γ �→ s∗γ − t∗γ ;

(2) The P-bracket [ · , · ]P on �•(G) restricted to �•
mult(G);

(3) The action �P : �
p
mult(G) ⊗ �q(M) → �p+q−1(M) determined by

s∗(��Pγ ) = [�, s∗γ ]P ;
(4) The homotopy [ · , · , · ]� : �

p
mult(G) ∧ �

q
mult(G) ∧ �s

mult(G) → �p+q+s−2(M)

determined by

s∗[�1,�2,�3]� = dι(ι(ι←−
�

�1)�2)�3 +
(
ι(ι(ι←−

�
�1)�2)d�3 + c.p.), (26)

for all �,�i ∈ �•
mult(G) and γ ∈ �•(M).
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Here in the right hand side of Eq. (26), the convention of contraction ι is as follows—For
any tensor field R ∈ T k,l(N ) := �(∧kT N ⊗ ∧l T ∗N ) and � ∈ T 0,p(N ) = �p(N ),
define ιR� ∈ T k−1,l+p−1(N ) by:

ιR� =
∑

i

(−1)k−i X1 ∧ · · · X̂i · · · ∧ Xk ⊗ (β ∧ ιXi �), (27)

where we have assumed R = X1 ∧ · · · ∧ Xk ⊗ β.

The mappings (1) through (3) detailed previously are indeed well-grounded in nature,
whereas (4) presents a notably intricate scenario. In fact, the P-bracket and the action
are well-defined due to [12, Theorem 5.14]. We shall show that [ · , · , · ]� is
well-defined in the next theorem.

Theorem 3.3. Let (G, P,�) be a quasi-Poisson groupoid. The triple �•(M)[1] J−→
�•

mult(G)[1] together with the structure maps [ · , · ]P , �P , and [ · , · , · ]� as
above constitutes a weak graded Lie 2-algebra.

To establish Theorem 3.3, relying solely on Theorem 3.1 for validation might seem allur-
ing but proves to be a complex endeavor. In this pursuit, a comprehensive understanding
of multiplicative tensors on the Lie groupoid G, in conjunction with specific associated
identities, is imperative. Before delving into the proof of Theorem 3.3, it is essential to
revisit an operator initially introduced in the study conducted by [7]—

S : �(∧k A ⊗ ∧l T ∗M) → �(∧kTG ⊗ ∧l T ∗G)

u ⊗ γ �→ ←−u ⊗ s∗γ. (28)

Roughly speaking, the operator S lifts u ⊗ γ to a left-invariant tensor field on G. A key
fact is the following lemma.

Lemma 3.4.

(i) For all R ∈ T k,l
mult(G) and � ∈ �

p
mult(G), we have ιR� ∈ T k−1,l+p−1

mult (G);
(ii) The operator S defined by (28) satisfies

ιS(u⊗γ )� = S(ιu⊗γ θ),

for any u ∈ �(∧k A), γ ∈ �l(M) and � ∈ �
p
mult(G). Here θ := prA∗⊗(∧p−1T ∗M)

(�|M ) is the leading term3 of the multiplicative p-form � and ιu⊗γ θ ∈ �(∧k−1A⊗
∧l+p−1T ∗M) is defined in the same fashion as in (27).

Proof. (i) Since R ∈ T k,l
mult(G) and � ∈ �

p
mult(G) are multiplicative, we know that the

maps

�� : ⊕ p−1TG → T ∗G, and R : (⊕ kT ∗G) ⊕ (⊕ l TG) → R

are groupoid morphisms. For (g, h) ∈ G(2),Yi ∈ TgG,Y ′
i ∈ ThG, α j ∈ T ∗

g G and

α′
j ∈ T ∗

h G such that (Yi ,Y ′
i ) ∈ (TG)(2), (α j , α

′
j ) ∈ (T ∗G)(2) are composable, we have

ιR�(α1 · α′
1, · · · , αk−1 · α′

k−1,Y1 · Y ′
1, · · · ,Yl+p−1 · Y ′

l+p−1)

3 From � ∈ �
p
mult(G) we define θ := prA∗⊗(∧p−1T ∗M)�|M ∈ �(A∗ ⊗ (∧p−1T ∗M)), and call it the

leading term of the multiplicative p-form �, which completely determines the restriction of � on M ; see
[12] for details.
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= ±
∑

σ

(−1)σ R(��(Yσ1 · Y ′
σ1

, · · · ,Yσp−1 · Y ′
σp−1

),

α1 · α′
1, · · · , αk−1 · α′

k−1,Yσp · Y ′
σp

, · · · ,Yσl+p−1 · Y ′
σl+p−1

)

= ±
∑

σ

(−1)σ R(��(Yσ1 , · · · ,Yσp−1) · ��(Y ′
σ1

, · · · ,Y ′
σp−1

),

· · · ,Yσp · Y ′
σp

, · · · ,Yσl+p−1 · Y ′
σl+p−1

)

= ±
∑

σ

(−1)σ
(
R(��(Yσ1 , · · · ,Yσp−1), α1, · · · , αk−1,Yσp , · · · ,Yσl+p−1)

+R(��(Y ′
σ1

, · · · ,Y ′
σp−1

), α′
1, · · · , α′

k−1,Y
′
σp

, · · · ,Y ′
σl+p−1

)
)

= ιR�(α1, · · · , αk−1,Y1, · · · ,Yl+p−1) + ιR�(α′
1, · · · , α′

k−1,Y
′
1, · · · Y ′

l+p−1).

This fact confirms that ιR� is a multiplicative (k − 1, l + p − 1)-tensor field.
(ii) It suffices to check that

(ι←−u ⊗s∗γ �)(α1, · · · , αk−1,Y1, · · · ,Yl+p−1) = 0

holds for Y1 ∈ ker sTG = ker s∗ or α1 ∈ ker sT ∗G , and Yi ∈ X1(G), α j ∈ �1(G), i, j �
2. In fact, as α1 ∈ ker sT ∗G , we have

〈←−w , α1〉 = 〈w, sT ∗Gα1〉 = 0, ∀w ∈ �(A),

and thus

(ι←−u ⊗s∗γ �)(α1, · · · , αk−1,Y1, · · · ,Yl+p−1)

= ±
∑

σ

(−1)σ
←−u (��(Yσ1 , · · · ,Yσp−1), α1, · · · , αk−1)

(s∗γ )(Yσp , · · · ,Yσl+p−1) = 0.

Meanwhile, for Y1 ∈ ker s∗, one has

(ι←−u ⊗s∗γ �)(α1, · · · , αk−1,Y1, · · · ,Yl+p−1)

= ±
∑

τ

(−1)τ
←−u (��(Y1,Yτ1 , · · · ,Yτp−2), α1, · · · , αk−1)

(s∗γ )(Yτp−1 , · · · ,Yτl+p−2)

= ±
∑

τ

(−1)τu(sT ∗G��(Y1,Yτ1 , · · · ,Yτp−2), sT ∗Gα1, · · · , sT ∗Gαk−1)

(s∗γ )(Yτp−1 , · · · ,Yτl+p−2)

= ±
∑

τ

(−1)τu(��(s∗Y1, s∗Yτ1 , · · · , s∗Yτp−2), sT ∗Gα1, · · · , sT ∗Gαk−1)

(s∗γ )(Yτp−1 , · · · ,Yτl+p−2)

= 0,

where in the second last equation we have used the identity sT ∗G ◦ �� = �� ◦ s∗ since
� is multiplicative. ��

Now we turn to the proof of our second main theorem.
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Proof of Theorem 3.3. We first show that [ � , � , � ]� is well-defined. Namely, to every
triple (�1 ∈ �

p
mult(G),�2 ∈ �

q
mult(G),�3 ∈ �s

mult(G)) there exists a unique element
μ ∈ �p+q+s−2(M) such that

dι(ι(ι←−
�

�1)�2)�3 +
(
ι(ι(ι←−

�
�1)�2)d�3 + c.p.) = s∗μ. (29)

In fact, we have d�3 ∈ �s+1
mult(G) and

←−
�(�1,�2, ·) = ←−−−−−−−

�(θ1, θ2, ·) (due to Eq. (17)).
Using (ii) of Lemma 3.4 repeatedly and the fact that s∗ is injective, we are able to
determine the unique element μ satisfying (29).

Further, we note that s∗(· � ·) and s∗[·, ·, ·]� are subject to the Leibniz rules, namely

s∗((�1 ∧ �2) � γ )

= �1 ∧ s∗(�2 � γ ) + (−1)|�2|(|γ |−1)s∗(�1 � γ ) ∧ �2,

s∗(� � (γ1 ∧ γ2))

= s∗(� � γ1) ∧ (s∗γ2) + (−1)(|�|−1)|γ1|(s∗γ1) ∧ s∗(� � γ2),

and s∗[�1 ∧ �2,�3,�4]�
= �1 ∧ s∗[�2,�3,�4]� + (−1)|�2|(|�3|+|�4|)s∗[�1,�3,�4]� ∧ �2.

Based on Theorem 3.1, the Leibniz rules of s∗(· � ·) and s∗[·, ·, ·]�, and the fact that
s∗, t∗ are injective maps, one can easily see that the structure maps [ · , · ]P , �P , and

[·, ·, ·]� give rise to a weak graded Lie 2-algebra underlying �•(M)[1] J−→ �•
mult(G)

[1]. ��
The next proposition is a natural extension of Proposition 3.2.

Proposition 3.5. There is a morphism of weak graded Lie 2-algebras

�•(M)[1]
J
��

∧• p�

�� �(∧•A)[1]
T
��

�•
mult(G)[1] ∧•P�

��

ν

��

X•
mult(G)[1]

formed by (∧•P�,∧• p�, ν), where p = prT M⊗A(P|M ) ∈ �(T M ⊗ A) and ν :
�

p
mult(G) ∧ �

q
mult(G) → �(∧p+q−1A) is defined by

ν(�1,�2) = −(id ⊗ (∧p+q−2 p�))(ιι�θ1θ2), (30)

with θ1 = prA∗⊗(∧p−1T ∗M)(�1|M ) ∈ �(A∗ ⊗ (∧p−1T ∗M)) and θ2 defined similarly.
The contraction in the right hand side of (30) is defined in the same manner as that of
(27).

Proof. In what follows, ∧•P� is abbreviated to P�, and similarly, ∧• p� to p�. Formula
(12) can be extended by the Leibniz rule to higher degree differential forms:

P�[�1,�2]P − [P��1, P
��2] = (id ⊗ P�)(ιι 1

2 [P,P]�1�2)

for all �1,�2 ∈ �•
mult(G). Using 1

2 [P, P] = −→
� − ←−

� , (ii) of Lemma 3.4, and the
relations
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(id ⊗ P�)(←−v ⊗ s∗μ) = ←−−−−−−
v ⊗ p�(μ), (id ⊗ P�)(−→v ⊗ t∗μ) = −−−−−−→

v ⊗ p�(μ)

∀v ∈ �(∧•A), μ ∈ �•(M),

we further obtain

P�[�1,�2]P − [P��1, P
��2] = (id ⊗ P�)(ιι−→

�−←−
�

�1�2)

= −−−−−−−−−−−→
(id ⊗ p�)(ιι�θ1θ2) − ←−−−−−−−−−−−

(id ⊗ p�)(ιι�θ1θ2)

= T (ν(�1,�2)).

Taking advantage of these relationships, what remains is some direct verification of the
said morphism of weak graded Lie 2-algebras. We omit the details. ��
Remark 3.6. If the quasi-Poisson groupoid (G, P,�)becomes a Poisson groupoid, namely
� = 0, then what we obtain from Theorem 3.3 are two graded strict Lie 2-algebras to-
gether with a graded strict Lie 2-algebra morphism between them, i.e., those given by
[12, Theorem 5.14].

3.3. The special case of quasi-Poisson Lie groups In this part, we study a relatively
easy situation of quasi-Poisson groupoids, called quasi-Poisson Lie groups, i.e., when
the base manifold M of the groupoid G in question is a single point. For clarity of
notations, we use G to denote such a group instead of G, and the Lie algebra of G is
denoted by G = TeG. For a Lie group G, one can easily see that �k

mult(G) = 0 for
k � 2. Only �1

mult(G) is interesting.

Proposition 3.7. Let (G, P,�) be a quasi-Poisson Lie group. The following statements
are true.

(1) The pair (�1
mult(G), [ · , · ]P ) is a Lie algebra and is isomorphic to the Lie algebra

(G∗G , [·, ·]G∗) (the space of G-invariant 1-forms);

(2) The triple G
T=←−

(·)−−→
(·)−−−−−−→ X1

mult(G) constitutes a strict Lie 2-algebra;
(3) There is a weak Lie 2-algebra morphism formed by (P�, 0, ν):

0

0
��

0 �� G

T
��

�1
mult(G)

P�
��

ν

��

X1
mult(G).

The map ν : ∧2�1
mult(G) → G is defined by

ν(�1,�2) = −�(θ1, θ2, ·),

where θi ∈ G∗ is determined by R∗
g�i (g) = θi , for all g ∈ G.
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Proof. For � ∈ �1
mult(G), we have d� = 0 and �g = R∗

g−1θ for θ ∈ G∗G ; see [12,

Example 3.17]. So by (19), we have [[�1,�2]P ,�3]P + c.p = 0 and thus �1
mult(G)

is a Lie algebra. The isomorphism between �1
mult(G) and G∗G sends � ∈ �1

mult(G)

to θ ∈ G∗G given by θ := R∗
g�g = L∗

g�g , for any g ∈ G. This is due to � being
multiplicative. Of course, one could simply set θ = �|e.

By [12, Example 5.2], the said isomorphism sends [�1,�2]P to [θ1, θ2]∗, and this
proves Statement (1). Statements (2) and (3) are direct consequences of Theorem 3.1
and Proposition 3.2. ��
Remark 3.8. We claimed that �1

mult(G) is a Lie algebra whose structure map is the P-
bracket [ · , · ]P . However, be aware that the large space �1(G) is not a Lie algebra
with respect to [ · , · ]P . Please also compare with the previous result (Sect. 2.5) that
�•(G) carries a cubic L∞-algebra structure.

Example 3.9. Let V be a finite dimensional vector space. Viewing it as an abelian group,
we have the identifications

Xk
mult(V ) = Hom(V,∧kV ) (∀k � 1), �1

mult(V ) = V ∗,
and �l

mult(V ) = 0 for all l � 2.

When V = G∗, the dual vector space of a Lie algebra G, there is a natural a Poisson
structure4 P on V determined by {x, y} = [x, y]G, for all x, y ∈ G seen as linear
functions onG∗. It turns out that (G∗, P) forms a Poisson Lie group which is particularly
called the linear Poisson group associated to the given Lie algebra G.

In this case, the Lie algebra (�1
mult(G

∗), [ · , · ]P ) coincides with the Lie algebra

G; and the Lie 2-algebra associated with multiplicative vector field is of the form G∗ 0−→
End(G∗). Moreover, we have a strict Lie 2-algebra morphism

0

0
��

0 �� G∗

T=0
��

G
P�

�� End(G∗)

(31)

where P� : G → End(G∗) is actually

P�(x) = ad∗
x , ∀x ∈ G.

3.4. Other structures arising from a quasi-Poisson groupoid Applying the construc-
tion of a cubic L∞-algebra recalled in Sect. 2.5 and Example 2.12 to the case of a Lie
groupoid G with a bivector field P ∈ X2(G), we obtain a cubic L∞-algebra on the space
of forms �•(G) and a curved DGLA on the space of multivector fields X•(G) of G.
Concerning the groupoid structure, it is certainly interesting to consider the case that P
is a multiplicative bivector field on G. Then we shall obtain a sub cubic L∞-algebra of
�•(G) and a sub curved DGLA of X•(G), respectively.

Proposition 3.10. Let G be a Lie groupoid, and P ∈ X2
mult(G) a multiplicative bivector

field on G. The following statements are true:

4 This Poisson structure is widely known as the Kirillov-Kostant-Souriau (KKS) Poisson structure.
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(i) The quadruple (X•
mult(G)[1], cP , dP = [P, · ], [ · , · ]) is a curved DGLA, where

cP = 1
2 [P, P] ∈ X3

mult(G).
(ii) The quadruple (�•

mult(G)[1], d, [ · , · ]P , [ · , · , · ]P ) is a cubic L∞-algebra, where
d is the de Rham differential and [ · , · , · ]P : �

p
mult(G)∧�

q
mult(G)∧�s

mult(G) →
�

p+q+s−3
mult (G) is defined by

[�1,�2,�3]P = ι(ι(ι 1
2 [P,P]�1)�2)�3, �i ∈ �•

mult(G).

(For convention of the contraction ι, see Eq. (27).)

Proof. For (i), it is well-known that multiplicative multivector fields are closed under
the Schouten bracket and P is multiplicative. So X•

mult(G) is a sub curved DGLA of
X•(G).

For (ii), we only need to show that multiplicative forms are closed under the bracket
[ · , · ]P and the 3-bracket [ · , · , · ]P . The former was proved in our previous
work [12, Theorem 5.14]. For the latter, since [P, P] ∈ X3

mult(G) is multiplicative, and
by applying (i) of Lemma 3.4 repeatedly, we see that

[�1,�2,�3]P ∈ T (0,p+q+s−3)
mult (G) = �

p+q+s−3
mult (G).

Thus �•
mult(G) is a sub cubic L∞-algebra in �•(G). ��

Note that all structure maps in (ii) are (multi-)derivations in each argument. For this
reason, we also call (�•

mult(G)[1], d, [ · , · ]P , [ · , · , · ]P ) a derived Poisson algebra
[3].

Since P is a multiplicative bivector field on G, π := s∗P defines a bivector field on
M (see [17]). Accordingly, π ∈ X2(M) gives rise to a cubic L∞-algebra

(�•(M)[1], d, [ · , · ]π , [ · , · , · ]π ) (32)

and a curved DGLA

(X•(M), cπ , dπ = [π, · ], [ · , · ]). (33)

Below, we list some facts regarding the relationship between the weak graded Lie

2-algebra �•(M)[1] J−→ �•
mult(G)[1] arising from a quasi-Poisson groupoid (G, P,�)

as stated by Theorem 3.3, and the algebraic objects mentioned as above. The proofs are
omitted here for brevity as they are straightforward.

Proposition 3.11. Let (G, P,�)beaquasi-Poissongroupoid. Thehomotopymap [·, ·, ·]�
of theweakgradedLie2-algebra�•(M)[1] J−→ �•

mult(G)[1]and the3-bracket [ · , · , · ]P
of the cubic L∞-algebra �•

mult(G)[1] in Proposition 3.10 are related by the relation

(s∗ − t∗)[�1,�2,�3]� = d[�1,�2,�3]P + [d�1,�2,�3]P + [�1, d�2,�3]P
+[�1,�2, d�3]P ,

for all �i ∈ �1
mult(G).

By taking de Rham cohomology, the cubic L∞-algebra in Proposition 3.10 (ii) yields
a graded Lie algebra (H•

mult(G)[1], [ · , · ]P ). Similarly, the one in (32) yields a graded
Lie algebra (H•(M)[1], [ · , · ]π ).
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Proposition 3.12. For a quasi-Poisson groupoid (G, P,�), the weak graded Lie 2-

algebra �•(M)[1] J−→ �•
mult(G)[1] induces a strict graded Lie 2-algebra:

H•(M)[1] s∗−t∗−−−→ (H•
mult(G)[1], [ · , · ]P ).

Proposition 3.13. The strict gradedLie2-algebra as above induces a gradedLie algebra
structure on H•(M)[1] by

[γ̃1, γ̃2] := ˜(s∗ − t∗)(γ1) � γ2,

where γ1 and γ2 ∈ �•(M) are closed differential forms and γ̃i denotes the corresponding
cohomology class in H•(M). Moreover, this bracket coincides with the binary operation
induced by the cubic L∞-algebra in (32), i.e.,

[γ̃1, γ̃2] = ˜[γ1, γ2]π .

4. The Quasi-Poisson 2-Group Arising from a Weak Lie 2-Algebra

In this section, we will consider a 2-term complex ϑ
d−→ g and derive a Lie 2-group

structure that underlies the direct product g∗ × ϑ∗. The concept of a Lie 2-group is

crucial in this context [2]. When the 2-term complex ϑ
d−→ g is equipped with a weak

Lie 2-algebra structure, the Lie 2-group g∗ × ϑ∗ can be enhanced to a quasi-Poisson
2-group [13]. To demonstrate the application of the theorems from the preceding section,
we will consider this specific quasi-Poisson Lie 2-group as an intriguing example. It is
noteworthy that we will focus solely on degree 1 multiplicative objects, as the handling
of higher degree situations can be carried out in a similar manner.

4.1. The particular action groupoid structure

4.1.1. The linear action groupoid structure Given a linear map of (finite dimensional)

vector spaces ϑ
d−→ g, we denote by dT : g∗ → ϑ∗ the dual map determined by

(dT g)(u) = −g(du), ∀g ∈ g∗, u ∈ ϑ.

We shall view g∗ as an abelian group. Consider the simple action of g∗ on ϑ∗ defined
by

gm := dT g + m,

for all g ∈ g∗ and m ∈ ϑ∗.
There is an associated action Lie groupoid structure underlying the direct product

g∗×ϑ∗ over the base ϑ∗. The source map is given by s : (g,m) �→ m, and the target map
t sends (g,m) to gm = dT g +m, for all (g,m) ∈ g∗ × ϑ∗. The groupoid multiplication
is also simple:

(h, gm)(g,m) = (h + g,m), h, g ∈ g∗,m ∈ ϑ∗. (34)

This groupoid will be denoted by g∗×ϑ∗ ⇒ ϑ∗ and called the linear action groupoid

(arising from ϑ
d−→ g). The corresponding Lie algebroid is denoted by g∗

�ϑ∗ (the action
Lie algebroid arising from the action of g∗ on ϑ∗).
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4.1.2. Multiplicative 1-forms Next, we characterize multiplicative 1-forms on the linear
action groupoid. From the linear map d : ϑ → g, we have Imd ⊂ g and cokerd :=
g/Imd. Introduce the following function spaces:

• C∞(ϑ∗)—the space of smooth functions on ϑ∗;
• C∞(ϑ∗)g∗

—g∗-invariant smooth functions on ϑ∗, i.e., those f : ϑ∗ → R satisfying
f (gm) = f (m), for all g ∈ g∗ and m ∈ ϑ∗;

• C∞
mult(g

∗ × ϑ∗)—multiplicative smooth functions on g∗ × ϑ∗, i.e., functions β :
g∗ × ϑ∗ → R satisfying

β(h + g,m) = β(h, gm) + β(g,m).

Proposition 4.1. We have an isomorphism of vector spaces:

�1
mult(g

∗ × ϑ∗) ∼= C∞(ϑ∗) ⊗ Imd ⊕ C∞(ϑ∗)g∗ ⊗ cokerd

⊕ C∞
mult(g

∗ × ϑ∗) ⊗ ker d. (35)

Proof. We need to fix a decomposition g = Imd ⊕ cokerd. Suppose that dimϑ = q
and dim(Imd) = r (q � r ). Accordingly, we take a basis of ϑ :

{u1, · · · , ur , ur+1, · · · uq}
such that du1, · · · , dur are linearly independent in g and dur+1 = · · · = duq = 0.
Hence Imd is spanned by dui (1 � i � r ). Take the dual basis

{u1, · · · , ur , ur+1, · · · , uq}
of ϑ∗ and extend {du1, · · · , dur } to a basis of g:

{x1 := du1, · · · , xr := dur , xr+1, · · · xp}
where p = dimg. Suppose further that the corresponding dual basis of g∗ is

{x1, · · · , xr , xr+1, · · · , x p}.
Then one can check that dT xi = −ui for all i = 1, · · · , r .

Thereby a 1-form � = (�g∗
,�ϑ∗

) ∈ �1(g∗ × ϑ∗) takes the form

�
g∗
(g,m) =

r∑

i=1

Ai (g,m)D(dui ) +
p∑

j=r+1

Bj (g,m)Dx j ,

�ϑ∗
(g,m) =

r∑

i=1

Ci (g,m)Dui +
q∑

k=r+1

βk(g,m)Duk,

where Ai , Bj ,Ci , βk ∈ C∞(g∗ × ϑ∗). Here we treat dui , x j ∈ g, ui , uk ∈ ϑ as
coordinate functions on g∗ × ϑ∗, and Df denotes the differential of a function f ∈
C∞(g∗ × ϑ∗).

By multiplicativity of �, we obtain

Ai (h + g,m) = Ai (h, gm), Bj (h + g,m) = Bj (h, gm), (h, g ∈ g∗,m ∈ θ∗)

which implies that

Ai (g,m) = Ai (0, gm) ( denote it by μi (gm)),
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Bj (g,m) = Bj (0, gm) ( denote it by α j (gm)).

Any μi , α j ∈ C∞(ϑ∗) will determine Ai and Bj , respectively.
We also have

Ai (h + g,m) = −Ci (h, gm) + Ai (g,m), Bj (h + g,m) = Bj (g,m),

which implies

Ci (h,m) = Ai (0,m) − Ai (h,m) = μi (m) − μi (hm), α j (gm) = α j (m),

and thus α j ∈ C∞(ϑ∗)g∗
. By similar reasons, we have

Ci (h + g,m) = Ci (h, gm) + Ci (g,m), βk(h + g,m) = βk(h, gm) + βk(g,m).

Note that ifCi is determined by μi , then it automatically satisfies the above first equation.
The second one implies that βk ∈ C∞

mult(g
∗ × ϑ∗).

In summary, we have

Ai (g,m) = μi (gm), Bj (g,m) = α j (m), Ci (g,m) = μi (m) − μi (gm),

βk ∈ C∞
mult(g

∗ × ϑ∗),

where μi , α j ∈ C∞(ϑ∗) and α j ∈ C∞(ϑ∗)g∗
. Hence, a 1-form � = (�g∗

,�ϑ∗
) ∈

�1(g∗ × ϑ∗) is multiplicative if and only if it can be expressed in the form

�
g∗
(g,m) =

r∑

i=1

μi (gm)D(dui ) +
p∑

j=r+1

α j (m)Dx j , (36)

�ϑ∗
(g,m) =

r∑

i=1

(
μi (m) − μi (gm)

)
Dui +

q∑

k=r+1

βk(g,m)Duk, (37)

where μi ∈ C∞(ϑ∗), α j ∈ C∞(ϑ∗)g∗
, and βk ∈ C∞

mult(g
∗ × ϑ∗). Now the decomposi-

tion (35) is evident. ��

4.1.3. Multiplicative 1-vector fields We then turn to multiplicative vector fields on the
linear action groupoid g∗ × ϑ∗ ⇒ ϑ∗. In a similar fashion as in Proposition 4.1 and
using notations therein, we can decompose ϑ∗ ∼= ImdT ⊕ cokerdT and show that any
multiplicative vector field X = (Xg∗

, Xϑ∗
) on g∗ × ϑ∗ is of the form

Xg∗
(g,m) =

r∑

i=1

(
μi (gm) − μi (m)

) ∂

∂xi
+

p∑

j=r+1

β j (g,m)
∂

∂x j
, (38)

Xϑ∗
(g,m) = Xϑ∗

m =
r∑

i=1

μi (m)
∂

∂(dT xi )
+

q∑

k=r+1

αk(m)
∂

∂uk
, (39)

where μi ∈ C∞(ϑ∗), αk ∈ C∞(ϑ∗)g∗
, and β j ∈ C∞

mult(g
∗ × ϑ∗). So we have the

following proposition.

Proposition 4.2. We have an isomorphism

X1
mult(g

∗ × ϑ∗) ∼= C∞(ϑ∗) ⊗ ImdT ⊕ C∞(ϑ∗)g∗

⊗ cokerdT ⊕ C∞
mult(g

∗ × ϑ∗) ⊗ ker dT .
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4.2. The particular Abelian group structure There exits an obvious Lie group structure
on g∗ × ϑ∗ which is abelian—the group multiplication is simply

(g,m) · (h, n) = (g + h,m + n), ∀g, h ∈ g∗,m, n ∈ ϑ∗.

A 1-form � = (�g∗
,�ϑ∗

) ∈ �1(g∗ × ϑ∗) is multiplicative with respect to the said
abelian group structure if and only if it is of the form

�
g∗
(g,m) =

r∑

i=1

ai D(dui ) +
p∑

j=r+1

b j Dx j , (40)

�ϑ∗
(g,m) =

r∑

i=1

ci Dui +
q∑

k=r+1

ek Duk, (41)

where ai , b j , ci , ek are constants. So we can identify g ⊕ ϑ with such 1-forms.

Similarly, a vector field X = (Xg∗
, Xϑ∗

) ∈ X1(g∗ × ϑ∗) is multiplicative with
respect the abelian group structure if and only if it can be written as

Xg∗
(g,m) =

r∑

i=1

ai (g,m)
∂

∂xi
+

p∑

j=r+1

b j (g,m)
∂

∂x j
, (42)

Xϑ∗
(g,m) =

r∑

i=1

ci (g,m)
∂

∂(dT xi )
+

q∑

k=r+1

ek(g,m)
∂

∂uk
, (43)

where ai , b j , ci , ek are linear functions on g∗ ⊕ ϑ∗. Therefore, we can identify X with
an element of End(g∗ ⊕ ϑ∗).

4.3. The particular Lie 2-group structure Now combine the action Lie groupoid struc-
ture as described in Sect. 4.1 with the abelian group structure in Sect. 4.2, the space
g∗ × ϑ∗ ⇒ ϑ∗ become a (strict) Lie 2-group in the sense of [2].

By saying a bi-multiplicative 1-form on g∗×ϑ∗, we mean a differential 1-form which
is multiplicative with respect to both the action groupoid and abelian group structures
of the Lie 2-group g∗ × ϑ∗. For the notation of the space of bi-multiplicative forms,
we use �1

bmult(g
∗ × ϑ∗). Similarly, we use X1

bmult(g
∗ × ϑ∗) to denote the space of bi-

multiplicative vector fields on on g∗ × ϑ∗ which are multiplicative with respect to both
the action groupoid and abelian group structures.

Comparing the expressions of � in Eqs. (36), (37), (40), (41), and X in Eqs. (38),
(39), (42), (43), one is able to derive the following conclusion.

Proposition 4.3. We have natural identifications

�1
bmult(g

∗ × ϑ∗) ∼= g,

and X1
bmult(g

∗ × ϑ∗) ∼= {(A, B) ∈ End(g∗) ⊕ End(ϑ∗)|dT ◦ A = B ◦ dT }.
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4.4. The quasi-Poisson groupoid arising from a weak Lie 2-algebra If the 2-term

complex ϑ
d−→ g that we are working with happens to come from a weak Lie 2-algebra

(ϑ
d−→ g, [ · , · ]2, [ · , · , · ]3), then the linear action Lie groupoid g∗ ×ϑ∗ ⇒ ϑ∗ can

be enhanced to a quasi-Poisson Lie groupoid. In fact, the bivector field P on g∗ × ϑ∗
and the element � ∈ �(∧3(g∗

� ϑ∗)) ∼= C∞(ϑ∗) ⊗ ∧3g∗ are defined, respectively, as
follows:

P := [ · , · ]2 ∈ ∧2g∗⊗g ⊕ g∗∧ϑ∗⊗ϑ ⊕ ∧2ϑ∗⊗ϑ, � := [ · , · , · ]3 ∈ ∧3g∗⊗ϑ.

(44)
Moreover, P is linear in the sense that it defines a bracket which maps two linear
functions to a linear function and � is linear as a linear map ϑ∗ → ∧3g∗.

Making use of Theorem 3.1 and Proposition 3.2 in the setting of the quasi-Poisson
Lie groupoid (g∗ × ϑ∗, P,�) as above, we obtain a weak graded Lie 2-algebra, a strict
graded Lie 2-algebra, and a weak Lie 2-algebra morphism arranged in the following
diagram:

�1(ϑ∗) ∼= C∞(ϑ∗) ⊗ ϑ

J
��

p�

�� �(g∗
� ϑ∗) ∼= C∞(ϑ∗) ⊗ g∗

T
��

�1
mult(g

∗ × ϑ∗) P�
��

ν

��

X1
mult(g

∗ × ϑ∗),

(45)

where ν is defined by Eq. (30). The vertical maps J and T are expressed as follows:

J (

q∑

i=1

μi ui )(g,m) = ( r∑

i=1

μi (gm)D(dui ),
q∑

i=1

(μi (m) − μi (gm))D(ui )
);

T (

p∑

j=1

μ j x
j )(g,m) = ( p∑

j=1

(μ j (m) − μ j (gm))
∂

∂x j
,−

r∑

j=1

μ j (m)
∂

∂(dT x j )

)
,

where μi , μ j ∈ C∞(ϑ∗) and {ui }qi=1, {x j }pj=1 are coordinates of ϑ and g∗ that we
adopted in the proof of Proposition 4.1.

4.5. The quasi-Poisson 2-group arising from a weak Lie 2-algebra We continue to

consider the weak Lie 2-algebra (ϑ
d−→ g, [ · , · ]2, [ · , · , · ]3). Since the data P

and � in (44) are linear, they give rise to a quasi-Poisson 2-group structure underlying
the Lie 2-group g∗ × ϑ∗ in the sense of [13].

According to [13], the infinitesimal counterpart of this quasi-Poisson 2-group is a
weak Lie 2-bialgebra. Indeed, it is formed by a pair of weak Lie 2-algebras in duality:

(L∗,L). HereL is the weak Lie 2-algebra we start with, namely (ϑ
d−→ g, [ · , · ]2, [ · , · , · ]3),

and L∗ is the weak Lie 2-algebra equipped with trivial binary and ternary brackets, i.e.,

(g∗ dT−→ ϑ∗, [ · , · ]2 = 0, [ · , · , · ]3 = 0).
The four spaces in Diagram (45) are both infinite-dimensional (over R). We finally

identify subspaces from the diagram which form two finite-dimensional weak Lie 2-
algebras and establish a morphism between them.
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(1) From the weak Lie 2-algebra C∞(ϑ∗)⊗ϑ∗ J→ �1
mult(g

∗ ×ϑ∗) in Diagram (45), we
find a weak Lie 2-algebra �1

mult(ϑ
∗) → �1

bmult(g
∗ × ϑ∗) which coincides with the

original weak Lie 2-algebra ϑ
d→ g. (Here �1

mult(ϑ
∗)(∼= ϑ) stands for the space of

multiplicative 1-forms on the abelian Lie group ϑ∗ and we used Proposition 4.3).

(2) In the meantime, from the weak Lie 2-algebra C∞(ϑ∗) ⊗ g∗ T→ X1
mult(g

∗ × ϑ∗) in
Diagram (45) we can extract a sub weak Lie 2-algebra:

Hom(ϑ∗, g∗) T−→ X1
bmult(g

∗ × ϑ∗), T (D) := (D ◦ d∗, d∗ ◦ D).

Here X1
bmult(g

∗ × ϑ∗) is depicted by Proposition 4.3.
(3) Moreover, the weak Lie 2-algebra morphism in (45) becomes the coadjoint action

(ad∗
0, ad∗

1, ad∗
2) of the weak Lie 2-algebra L = (ϑ

d−→ g) on its dual L∗ = (g∗ dT−→
ϑ∗):

ϑ

d

��

ad∗
1 �� Hom(ϑ∗, g∗)

T
��

g
ad∗

0 ��

ν

��

X1
bmult(g

∗ × ϑ∗),

where ν : ∧2g → Hom(ϑ∗, g∗) is given by

ν(x, y) = −[x, y, · ]∗3, ∀x, y ∈ g.

This could be seen as a weak Lie 2-algebra analogue of Diagram (31).

5. Infinitesimal Multiplicative (IM) Forms on a Quasi-Lie Bialgebroid

Quasi-Lie bialgebroids serve as the infinitesimal counterparts of quasi-Poisson groupoids,
while IM forms of a Lie algebroid correspond to the infinitesimal counterparts of mul-
tiplicative forms on a Lie groupoid. Given this parallelism, a natural extension of our
Theorems 3.1 and 3.3 from a quasi-Poisson groupoid to a quasi-Lie bialgebroid setting
is warranted. This section of the paper aims to accomplish this transition.

5.1. IM forms of a Lie algebroid First, recall from [6] that an IM k-form of a Lie
algebroid A is a pair (ν, θ), where ν : A → ∧kT ∗M and θ : A → ∧k−1T ∗M are bundle
maps satisfying the constraints

ιρ(x)θ(y) = −ιρ(y)θ(x),

θ([x, y]) = Lρ(x)θ(y) − ιρ(y)dθ(x) − ιρ(y)ν(x),

and ν([x, y]) = Lρ(x)ν(y) − ιρ(y)dν(x),

for x, y ∈ �(A). In particular, an IM 1-form is a pair (ν, θ) where ν : A → T ∗M is a
morphism of vector bundles, θ ∈ �(A∗), and the following conditions are satisfied:

θ [x, y] = ρ(x)θ(y) − ρ(y)θ(x) − 〈ρ(y), ν(x)〉, (46)

ν[x, y] = Lρ(x)ν(y) − ιρ(y)dν(x). (47)

Equation (46) is also formulated as (dAθ)(x, y) = 〈ρ(y), ν(x)〉 where dA : �(A∗) →
�(∧2A∗) is the differential associated with the Lie algebroid structure of A.
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Let G be a Lie groupoid over M and A the Lie algebroid of it. We need a basic map
σ : �k

mult(G) → IMk(A) (the space of IM k-forms) for all integers k introduced in
[6]—For any � ∈ �k

mult(G), define the corresponding IM k-form σ(�), say the pair
(ν, θ), by the following relations

〈ν(x),U1 ∧ · · · ∧Uk〉 = d�(x,U1, · · · ,Uk), (48)

and 〈θ(x),U1 ∧ · · · ∧Uk−1〉 = �(x,U1, · · · ,Uk−1), (49)

for x ∈ �(A) and Ui ∈ X1(M). The multiplicativity property of � ensures that (ν, θ)

fulfills the aforementioned conditions of an IM k-form of A. If G is source-simply-
connected, then σ is a one-one correspondence, and hence an isomorphism �k

mult(G) ∼=
IMk(A) of R-vector spaces.

5.2. The weak graded Lie 2-algebra of IM forms on a quasi-Lie bialgebroid If we are
given a quasi-Poisson groupoid (G, P,�), then by Theorem 3.3, we have a weak graded

Lie 2-algebra �•(M)
J−→ �•

mult(G). Further, if G is source-simply-connected, then by
identifying �•

mult(G) with IM•(A) via σ , we also have a weak graded Lie 2-algebra

�•(M)
j−→ IM•(A).

Sincequasi-Lie bialgebroids are infinitesimal replacements of quasi-Poisson groupoids

[17], it is natural to expect that a weak graded Lie 2-algebra�•(M)
j−→ IM•(A) is directly

associated with a quasi-Lie bialgebroid (A, d∗,�). In what follows, we demonstrate this
fact. Although our statements are about the graded space of all degree IM forms IM•(A)

of a quasi-Lie bialgebroid A, for brevity most of the proofs are limited only to IM
1-forms.

We start with recalling the definitions of k-differentials and quasi-Lie bialgebroids.
A k-differential on a Lie algebroid A is a pair of linear maps δ : �(A) → �(∧k A)

and δ : C∞(M) → �(∧k−1A) such that

δ( f f ′) = f δ( f ′) + f ′δ( f ), δ( f x) = f δ(x) + δ( f ) ∧ x,

δ[x, y] = [δ(x), y] + [x, δ(y)],
for f, f ′ ∈ C∞(M) and x, y ∈ �(A). A k-differential extends naturally to an operator
�(∧•A) → �(∧•+k−1A).

Denote by Derk(A) the space of k-differentials. Then Der•(A) := ⊕ kDerk(A) with

the commutator bracket is a graded Lie algebra and �(∧•A)
t−→ Der•(A); t(u) = [u, · ]

is a strict graded Lie 2-algebra; see [17] for details.

Definition 5.1. [29] A quasi-Lie bialgebroid is a triple (A, d∗,�) consisting of a Lie
algebroid A, a section � ∈ �(∧3A) and a 2-differential d∗ : �(∧•A) → �(∧•+1A)

satisfying d2∗ = [�, � ] and d∗� = 0.

The operator d∗ in a quasi-Lie bialgebroid gives rise to an anchor map ρ∗ : A∗ → T M
and a bracket [·, ·]∗ on �(A∗) defined as follows:

ρ∗(ξ) f = 〈d∗ f, ξ 〉;
〈[ξ, ξ ′]∗, x〉 = ρ∗(ξ)〈ξ ′, x〉 − ρ∗(ξ ′)〈ξ, x〉 − 〈d∗x, ξ ∧ ξ ′〉,

for all f ∈ C∞(M), x ∈ �(A) and ξ, ξ ′ ∈ �(A∗). But note that (A∗, [·, ·]∗, ρ∗) does
not form a Lie algebroid. For more properties of quasi-Lie bialgebroids, see [17,29].
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Let (A, d∗,�) be a quasi-Lie bialgebroid as defined above. We form a 2-term com-
plex

�•(M)
j−→ IM•(A), j (γ ) = (−ιρ(·)dγ,−ιρ(·)γ ).

Furthermore, we introduce the following structure maps:

• A skew-symmetric 2-bracket [·, ·] on IM•(A) defined by

[(ν, θ), (ν′, θ ′)] = (
ν ◦ ρ∗∗ ◦ ν′ − ν′ ◦ ρ∗∗ ◦ ν + L(ρ∗θ)ν

′(·) − ν′(Lθ (·))
−L(ρ∗θ ′)ν(·) + ν(Lθ ′(·)), [θ, θ ′]∗

)
, (50)

for all (ν, θ) ∈ IMp(A) and (ν′, θ ′) ∈ IMq(A). Here ρ∗∗ : �(∧qT ∗M) → �(A ⊗
∧q−1T ∗M) is given by

ρ∗∗(γ1 ∧ · · · ∧ γq) =
q∑

i=1

(−1)i−1ρ∗∗(γi ) ⊗ γ1 ∧ · · · γ̂i ∧ · · · ∧ γq ,

the two Lie derivatives are the Lie derivatives of �(T M) on forms and of �(A∗)
on �(A), and the bracket [θ, θ ′]∗ ∈ Hom(A,∧p+q−2T ∗M) is given by [θ, θ ′]∗ =
[ξ, ξ ′]∗ ⊗ γ ∧ γ for θ = ξ ⊗ γ ∈ �(A∗ ⊗ ∧p−1T ∗M) and θ ′ = ξ ′ ⊗ γ ′ ∈
�(A∗ ⊗ ∧q−1T ∗M).

• An action map � : IMp(A) ⊗ �q(M) → �p+q−1(M) defined by

(ν, θ) � γ = ν(ρ∗∗γ ) + L(ρ∗θ)γ .

• A homotopy map (3-bracket) [·, ·, ·] : IMp(A)∧IMq(A)∧IMs(A) → �p+q+s−2(M)

defined by

[(ν1, θ1), (ν2, θ2), (ν3, θ3)] = dι(ι(ι�θ1)θ2)θ3 + ν1(ιι�θ2θ3) + ν2(ιι�θ3θ1) + ν3(ιι�θ1θ2).

Here the contraction ι· is defined in the same fashion as in (27).

Theorem 5.2. The triple �•(M)
j−→ IM•(A) together with the bracket, the action, and

the homotopy maps as above composes a weak graded Lie 2-algebra.

Proposition 5.3. Under the same assumptions as in the above theorem, there exists a
weak graded Lie 2-algebra morphism (ψ0,∧•ρ∗∗ , ψ2):

�•(M)

j
��

∧•ρ∗∗ �� �(∧•A)

t
��

IM•(A)
ψ0 ��

ψ2

��

Der•(A),

where

ψ0(ν, θ) = (∧kρ∗∗)(ν(·) + dιθ (·)) + (id ⊗ (∧k−1ρ∗∗))(ιθd∗(·)) (51)

and ψ2 : IMp(A) ∧ IMq(A) → �(∧p+q−1A) is given by

ψ2((ν, θ), (ν′, θ ′)) = (id ⊗ (∧p+q−2ρ∗∗))(ιι�θ θ
′).

The proofs of these two statements are quite involved. To save pages, in what follows
we only show the • = 1 case and divide the proof into several parts. The general situation
can be approached in a similar manner.
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5.2.1. Well-definedness of the 2-bracket We verify that the resulting pair (ν̃, θ̃ ) :=
[(ν, θ), (ν′, θ ′)] given by Eq. (50) is an element of IM1(A), namely, the pair satisfies
(46) and (47).

Since (A, d∗,�) is a quasi-Lie bialgebroid, we have

dA[θ, θ ′]∗ = [dAθ, θ ′]∗ + [θ, dAθ ′]∗, ∀θ, θ ′ ∈ �(A∗).

Then using (46) for (ν, θ), (ν′, θ ′) and the following relations due to [26]:

Lρ∗∗γ θ = −[ρ∗γ, θ ]∗ − ρ∗(ιρ∗θdγ ), Lρ∗γ x = −[ρ∗∗γ, x] − ρ∗∗(ιρxdγ ) (52)

for all γ ∈ �1(M), θ ∈ �(A∗), x ∈ �(A), we further obtain

dA[θ, θ ′]∗(x, y) = −ρ∗(θ ′)dAθ(x, y) + dAθ(Lθ ′x, y) + dAθ(x, Lθ ′ y) − c.p.

= −ρ∗(θ ′)〈ρ(y), ν(x)〉 + 〈ρ(y), ν(Lθ ′x)〉 + 〈ρ(Lθ ′ y), ν(x)〉 − c.p.

= 〈y, [ρ∗ν(x), θ ′]∗〉 + 〈ρ(y), ν(Lθ ′x)〉 − c.p.

= 〈y,−Lρ∗∗ν(x)θ
′ − ρ∗(ιρ∗θ ′dν(x))〉 + 〈ρ(y), ν(Lθ ′x)〉 − c.p.

= 〈y,−ρ∗ν′(ρ∗∗ν(x)) − ρ∗Lρ∗θ ′ν(x)〉 + 〈ρy, ν(Lθ ′x)〉 − c.p.

= 〈ρy,−ν′ρ∗∗ν(x) − Lρ∗θ ′ν(x) + ν(Lθ ′x) + νρ∗∗ν′(x)
+Lρ∗θ ν

′(x) − ν′(Lθ x)〉.
So we proved (46). Then it is left to check (47) for (ν̃, θ̃ ). Using the following formula:

Lθ [x, y] = [Lθ x, y] + [x, Lθ y] − L ιx dAθ y + ιιydAθd∗x, (53)

we have

ν̃[x, y] = νρ∗∗ν′[x, y] + Lρ∗θ ν
′[x, y] − ν′(Lθ [x, y]) − c.p.

= νρ∗∗
(
Lρxν

′(y) − ιρydν′(x)
)

+ Lρ∗θ (Lρxν
′(y) − ιρydν′(x))

−Lρ(Lθ x)ν
′(y) + ιρydν′(Lθ x) − Lρxν

′(Lθ y) + ιρ(Lθ y)dν′(x)
+ν′(L ιx dAθ y − ιιydAθd∗x) − c.p.,

and

Lρx ν̃(y) − ιρyd ν̃(x)

= Lρx
(
νρ∗∗ν′(y) + Lρ∗θ ν

′(y) − ν′(Lθ y)
) − ιρyd

(
νρ∗∗ν′(x)

+Lρ∗θ ν
′(x) − ν′(Lθ x)

) − c.p..

According to Eqs. (47) and (52), we have

νρ∗∗ Lρxν
′(y) = ν

(
ρ∗∗ ιρxdν′(y) + ρ∗∗dιρxν

′(y)
)

= ν([x, ρ∗∗ν′(y)] − Lρ∗ν′(y)x + d∗ιxρ∗ν′(y))
= Lρxνρ

∗∗ν′(y) − ιρρ∗∗ν′(y)dν(x) − ν(ιρ∗ν′(y)d∗x),

and

−νρ∗∗ ιρydν′(x) = ν(Lρ∗ν′(x)y + [ρ∗∗ν′(x), y])
= ν(Lρ∗ν′(x)y) + Lρρ∗∗ν′(x)ν(y) − ιρydν(ρ∗∗ν′(x)).
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Utilizing the above relations to ν̃[x, y], we obtain

ν̃[x, y] − Lρx ν̃(y) − ιρyd ν̃(x) = (
L [ρ∗θ,ρx]ν′(y) − Lρ(Lθ x)ν

′(y)
)

+
(
ι[ρy,ρ∗θ]dν′(x) + ιρ(Lθ y)dν′(x)

)

+Lρρ∗∗ν′(x)ν(y) − ιρρ∗∗ν′(y)dν(x) − c.p.

= 0,

where we have used (46), the Cartan formulas

d ◦ Lu = Lu ◦ d, Lu ◦ ιv − ιv ◦ Lu = ι[u,v], ∀u, v ∈ X1(M),

and the equations

[ρ∗θ, ρx] = ρ(Lθ x) − ρ∗(ιxdAθ), ρ∗ ◦ ρ∗ = −ρ ◦ ρ∗∗ . (54)

Hence we proved that (ν̃, θ̃ ) satisfies (47), and verified that [(ν, θ), (ν′, θ ′)] ∈ IM1(A).

5.2.2. Compatibility of the 2-bracket and the action

Lemma 5.4. For any (ν, θ) ∈ IM1(A) and γ ∈ �1(M), we have

[(ν, θ), jγ ] = j ((ν, θ) � γ ).

Proof. Denote by μ ∈ �1(M) the result of (ν, θ) � γ (= ν(ρ∗∗γ ) + Lρ∗θγ ). According
to the definition of j , what the lemma claims is the following identity

[(ν, θ), (ιρ(·)dγ, ρ∗γ )] = (ιρ(·)dμ, ρ∗μ). (55)

Now we prove this equality. To simplify notations, we denote by (ν̂, θ̂ ) := [(ν, θ),

(ιρ(·)dγ, ρ∗γ )] the result of left hand side. Then by Eqs. (52) and (46), we have

θ̂ = [θ, ρ∗γ ]∗ = Lρ∗∗γ θ + ρ∗(ιρ∗θdγ ) = ιρ∗∗γ dAθ + dA〈γ, ρ∗θ〉
+ρ∗(ιρ∗θdγ ) = ρ∗ν(ρ∗∗γ ) + ρ∗Lρ∗θ γ,

which is exactly ρ∗μ.
We then compute ν̂. Indeed, using (52), (54), (46), (47), we can explicitly describe

the value of ν̂ when it is applied to x ∈ �(A):

ν̂(x) = νρ∗∗ ιρ(x)dγ − ιρ(ρ∗∗ν(x))dγ + Lρ∗θ ιρxdγ − ιρ(Lθ x)dγ

−Lρ∗ρ∗γ ν(x) + ν(Lρ∗γ x)

= ν([x, ρ∗∗γ ]) − ι[ρ∗θ,ρx]dγ + Lρ∗θ ιρxdγ − Lρ∗ρ∗γ ν(x)

= ιρxdν(ρ∗∗γ ) + ιρx Lρ∗θdγ = ιρxdμ,

where in the second-to-last calculation, we utilized d ◦Lρ∗θ = Lρ∗θ ◦d. Thus we proved
(55). ��
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5.2.3. Proof of Theorem 5.2 Based on the previous two subsections, it remains to show
the following facts to finish the proof of Theorem 5.2.

(1). We first prove the property:

( jγ ) � γ ′ = −( jγ ′) � γ,

for all γ, γ ′ ∈ �1(M).
In fact, we can consider the map π� := ρ ◦ ρ∗∗ : T ∗M → T M . Since ρ ◦ ρ∗∗ =

−ρ∗ ◦ ρ∗, π� gives rise to a bivector field π on the base manifold M and thus defines a
skew-symmetric bracket (not necessarily Lie) [·, ·]π on �1(M). It follows that

( jγ ) � γ ′ = Lπ�γ γ ′ − ιπ�γ ′dγ = [γ, γ ′]π = −( jγ ′) � γ.

(2). Next, we show that the 2-bracket (50) satisfies a generalized type of Jacobi
identity:

[[(ν1, θ1), (ν2, θ2)], (ν3, θ3)] + c.p. = − j[(ν1, θ1), (ν2, θ2), (ν3, θ3)]. (56)

To verify the identity proposed above that involves the 2-bracket [·, ·], which is R-
bilinear, all possible combinations of νi and θi should be considered—

(2.1) When focusing solely on the pure entries of νi , it is easy to see that they do not
contribute to the left hand side of Eq. (56). This is due to the fact that by definition,
we have [[ν1, ν2], ν3] + c.p. = 0.

(2.2) Using the axioms of a quasi-Lie bialgebroid (A, d∗,�) ([29]) and Eq. (46), we
can establish the following equality by considering only θi in the entries:

[[θ1, θ2], θ3] + c.p. = dA�(θ1, θ2, θ3) + �(dAθ1, θ2, θ3)

−�(θ1, dAθ2, θ3) + �(θ1, θ2, dAθ3)

= ρ∗d�(θ1, θ2, θ3) + ρ∗ν1(�(θ2, θ3))

+ρ∗ν2(�(θ3, θ1)) + ρ∗ν3(�(θ1, θ2))

= ρ∗[(ν1, θ2), (ν2, θ2), (ν3, θ3)].
(2.3) We have the following mixed terms:

[[ν1, ν2], θ3] + [[ν2, θ3], ν1] + [[θ3, ν1], ν2]
= [ν1, ν2](Lθ3(·)) − Lρ∗θ3 [ν1, ν2](·)

+
([ν2, θ3]ρ∗∗ν1 − ν1ρ

∗∗ [ν2, θ3] − c.p.(ν1, ν2)
)

= (ν1ρ
∗∗ν2 − ν2ρ

∗∗ν1)(Lθ3(·)) − Lρ∗θ3(ν1ρ
∗∗ν2 − ν2ρ

∗∗ν1)

+
(
ν2(Lθ3ρ

∗∗ν1(·)) − Lρ∗θ3(ν2ρ
∗∗ν1(·))

−ν1ρ
∗∗ν2(Lθ3(·)) + ν1ρ

∗∗(Lρ∗θ3ν2(·)) − c.p.(ν1, ν2)
)

= ν1
(
ρ∗∗(Lρ∗θ3ν2(·)) − Lθ3ρ

∗∗ν2(·)
) − c.p.(ν1, ν2).

(2.4) We also have the terms

[[ν1, θ2], θ3] + [[θ3, ν1], θ2] + [[θ2, θ3], ν1]
= [ν1, θ2](Lθ3(·)) − Lρ∗θ3 [ν1, θ2](·) − c.p.(θ2, θ3)

+Lρ∗[θ2,θ3]∗ν1(·) − ν1(L [θ2,θ3]∗(·))
= ν1(Lθ2Lθ3(·)) − Lρ∗θ2ν1(Lθ3(·)) − Lρ∗θ3ν1(Lθ2(·))
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+Lρ∗θ3Lρ∗θ2ν1(·) − c.p.(θ2, θ3)

+Lρ∗[θ2,θ3]∗ν1(·) − ν1(L [θ2,θ3]∗(·))
= ν1

([Lθ2 , Lθ3 ](·) − L [θ2,θ3]∗(·)
)

+ Lρ�(θ2,θ3)ν1(·),
where in the last step we used the relation

ρ∗[θ2, θ3]∗ = [ρ∗θ2, ρ∗θ3] + ρ�(θ2, θ3). (57)

Note also that for α ∈ �(A∗) and x ∈ �(A), by Eqs. (46) and (57), we have

〈ρ∗∗(Lρ∗θ3ν2(x)) − Lθ3ρ
∗∗ν2(x), α〉

= ρ∗θ3〈ν2(x), ρ∗α〉 − 〈ν2(x), [ρ∗θ3, ρ∗α]〉
−ρ∗θ3〈ν2(x), ρ∗α〉 + 〈ν2(x), ρ∗[θ3, α]∗〉

= 〈ν2(x), ρ�(θ3, α)〉 = (dAθ2)(x,�(θ3, α)), (58)

and

〈[Lθ2 , Lθ3 ]x − L [θ2,θ3]∗x, α〉
= ρ∗θ2〈Lθ3x, α〉 − 〈Lθ3x, [θ2, α]∗〉 − c.p.(θ2, θ3)

−ρ∗[θ2, θ3]∗〈x, α〉 + 〈x, [[θ2, θ3]∗, α]∗〉
= ρ∗θ2ρ∗θ3〈x, α〉 + 〈x, [θ3, [θ2, α]∗]∗〉 − c.p.(θ2, θ3)

−ρ∗[θ2, θ3]∗〈x, α〉 + 〈x, [[θ2, θ3]∗, α]∗〉
= −ρ�(θ2, θ3)〈x, α〉 + 〈x, dA�(θ2, θ3, α) + �(dAθ2, θ3, α)

−�(θ2, dAθ3, α) + �(θ2, θ3, dAα)〉
= (dAθ2)(�(θ3, α), x) − (dAθ3)(�(θ2, α), x) − 〈α, [�(θ2, θ3), x]〉. (59)

Combining the above equalities, we find the Hom(A, T ∗M)-component of the
left hand side of Eq. (56):

prHom(A,T ∗M)([[(ν1, θ1), (ν2, θ2)], (ν3, θ3)] + c.p.)

= −ν1([�(θ2, θ3), ·]) + Lρ�(θ2,θ3)ν1(·) + c.p.(3)

= ιρ(·)dν1(�(θ2, θ3)) + c.p.(3)

= ιρ(·)d[(ν1, θ2), (ν2, θ2), (ν3, θ3)],
where in the second-to-last step we have used (47). Here “c.p.(3)” means the rest
terms involving ν2, θ3, ν3 and ν3, θ1, ν1.

Combining the above lines, we get exactly the desired Eq. (56).
(3). Then we verify a relation:

[(ν1, θ1), (ν2, θ2)] � γ − (ν1, θ1) � (
(ν2, θ2) � γ

)
+ (ν2, θ2) � (

(ν1, θ1) � γ
)

= −[(ν1, θ1), (ν2, θ2), jγ ].
In fact, by (57) and (58), we can compute the left hand side of the above equation:

(
ν1ρ

∗∗ν2 + ν1(Lθ2(·)) − Lρ∗θ2ν1(·) − c.p.(2)
)
(ρ∗∗γ ) + Lρ∗[θ1,θ2]∗γ

−(
ν1ρ

∗∗(ν2ρ
∗∗γ + Lρ∗θ2γ ) + Lρ∗θ1(ν2ρ

∗∗γ + Lρ∗θ2γ ) − c.p.(2)
)

= ν1(Lθ2ρ
∗∗γ − ρ∗∗ Lρ∗θ2γ ) − c.p.(2) + Lρ�(θ1,θ2)γ

= ν1(�(θ2, ρ
∗γ )) − ν2(�(θ1, ρ

∗γ )) + d�(θ1, θ2, ρ
∗γ ) + ιρ�(θ1,θ2)dγ,
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which exactly matches with the right hand side.
(4). We finally check compatibility of the 2-bracket and the 3-bracket, namely, the

relation

−(ν4, θ4) � [(ν1, θ1), (ν2, θ2), (ν3, θ3)] + c.p.(4)

= [[(ν1, θ1), (ν2, θ2)], (ν3, θ3), (ν4, θ4)] + c.p.(6).

In fact, its left hand side reads

−ν4ρ
∗∗
(
ν1(�(θ2, θ3)) + c.p.(3) + d�(θ1, θ2, θ3)

)

−Lρ∗θ4

(
ν1(�(θ2, θ3)) + c.p.(3) + d�(θ1, θ2, θ3)

)
+ c.p.(4),

while the right hand side reads

RHS = d�([θ1, θ2]∗, θ3, θ4) +
(
ν1ρ

∗∗ν2 + ν1(Lθ2(·))
−Lρ∗θ2ν1(·) − c.p.(2)

)
(�(θ3, θ4))

+ν3(�(θ4, [θ1, θ2]∗)) + ν4(�([θ1, θ2]∗, θ3)) + c.p.(6).

So, subtraction of the two sides equals

−ν4(d∗�(θ1, θ2, θ3)) + c.p.(4)

−(
ν1(Lθ2�(θ3, θ4)) − ν2(Lθ1�(θ3, θ4)) + ν3(�(θ4, [θ1, θ2]∗))

+ν4(�([θ1, θ2]∗, θ3)) + c.p.(6)
)

−(
d(ρ∗θ4)(�(θ1, θ2, θ3)) + c.p.(4) + (d�([θ1, θ2]∗, θ3, θ4) + c.p.(6))

)

= ν4((d∗�)(θ1, θ2, θ3, ·)) + c.p.(4) + d((d∗�)(θ1, θ2, θ3, θ4)),

which vanishes as d∗� = 0.

This completes the proof of �1(M)
j−→ IM1(A) being a weak Lie 2-algebra.

5.2.4. Proof of Proposition 5.3 (1). We first verify that ψ0(ν, θ) ∈ Der1(A), which
amounts to check the following two conditions:

ψ0(ν, θ)( f x) = f ψ0(ν, θ)(x) + ψ0(ν, θ)( f )x,

and ψ0(ν, θ)[x, y] = [ψ0(ν, θ)(x), y] + [x, ψ0(ν, θ)(y)],
for all f ∈ C∞(M) and x, y ∈ �(A). The proof is simple and direct—Note that
ψ0(ν, θ) = ρ∗∗ν(·) + L A∗

θ (·), and hence we can check the first one:

ψ0(ν, θ)( f x) = ρ∗∗ν( f x) + Lθ ( f x) = fρ∗∗ν(x) + f Lθ (x) + ρ∗(θ)( f )x

= f ψ0(ν, θ)(x) + ρ∗(θ)( f )x;
For the second one, we use (46), (47), (52) and (53), and obtain

ψ0(ν, θ)[x, y]
= ρ∗∗ν[x, y] + Lθ [x, y]
= d∗〈ρx, ν(y)〉 + ρ∗∗(ιρxdν(y) − ιρydν(x))

+[Lθ x, y] + [x, Lθ y] − Lρ∗ν(x)y + ιρ∗ν(y)d∗x
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= [ρ∗∗ν(x) + Lθ x, y] + [x, ρ∗∗ν(y) + Lθ y]
= [ψ0(ν, θ)(x), y] + [x, ψ0(ν, θ)(y)].

(2). Next, following Eq. (52), we have

ψ0( jγ )(x) = −ρ∗∗ ιρxdγ − Lρ∗γ x = [ρ∗∗γ, x] = t(ρ∗∗γ )(x).

This confirms that the diagram stated in the proposition is commutative.
(3). Then we check the relations

ψ0[(ν, θ), (ν′, θ ′)] − [ψ0(ν, θ), ψ0(ν
′, θ ′)] = tψ2((ν, θ), (ν′, θ ′)), (60)

ρ∗∗((ν, θ) � γ ) − ψ0(ν, θ)(ρ∗∗γ ) = ψ2((ν, θ), jγ ). (61)

In fact, by direct calculation, we have

ψ0[ν, ν′] − [ψ0(ν), ψ0(ν
′)] = ρ∗∗

(
ν ◦ ρ∗∗ ◦ ν′ − ν′ ◦ ρ∗∗ ◦ ν) − [ρ∗∗ν, ρ∗∗ν′] = 0,

ψ0[θ, θ ′] − [ψ0(θ), ψ0(θ
′)] = L [θ,θ ′]∗(·) − [Lθ (·), Lθ ′(·)],

and ψ0[ν, θ ′] − [ψ0(ν), ψ0(θ
′)] = ρ∗∗(−Lρ∗θ ′ν(·) + ν(Lθ ′(·))) − [ρ∗∗ν(·), Lθ ′(·)]

= −ρ∗∗Lρ∗θ ′ν(·) + Lθ ′ρ∗∗ν(·).

Using these relations together, (58), and (59), we can check (60):

ψ0[(ν, θ), (ν′, θ ′)] − [ψ0(ν, θ), ψ0(ν
′, θ ′)] = [�(θ, θ ′), ·] = tψ2((ν, θ), (ν′, θ ′)).

To examine (61), we have

ρ∗∗((ν, θ) � γ ) − ψ0(ν, θ)(ρ∗∗γ ) = ρ∗∗(ν(ρ∗∗γ ) + Lρ∗θ γ ) − ρ∗∗ν(ρ∗∗γ ) − Lθ (ρ
∗∗γ )

= ψ2((ν, θ), jγ ),

where we have used (58) again.
(4). Finally, we prove

ρ∗∗ [(ν1, θ1), (ν2, θ2), (ν3, θ3)] = ψ0(ν1, θ1) � ψ2((ν2, θ2), (ν3, θ3))

−ψ2([(ν1, θ1), (ν2, θ2)], (ν3, θ3)) + c.p.

Let us compare the two sides of this equation. By definition and (46), we have

LHS = ρ∗∗ν1(�(θ2, θ3)) + c.p. + d∗(�(θ1, θ2, θ3)),

RHS = ρ∗∗ν1(�(θ2, θ3)) + Lθ1�(θ2, θ3) − �([θ1, θ2]∗, θ3) + c.p.

Since d∗� = 0, it is easy to see that they are identical. This completes the proof of
(ψ0, ρ

∗∗ , ψ2) being a weak Lie 2-algebra morphism.
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5.2.5. More corollaries Recall that a Lie bialgebroid is a special quasi-Lie algebroid
(A, d∗,�) where � is trivial [26]. So, let us use the pair (A, d∗) to denote a Lie bial-
gebroid. The following corollary directly follows from Theorem 5.2 and Proposition
5.3.

Corollary 5.5. Let (A, d∗) be a Lie bialgebroid over the base manifold M.

(i) The triple �•(M)
j−→ IM•(A) together with the bracket and action map as earlier

constitutes a strict graded Lie 2-algebra.
(ii) There is a strict graded Lie 2-algebra homomorphism (ψ0, ρ

∗∗):

�•(M)

j
��

∧•ρ∗∗ �� �(∧•A)

t
��

IM•(A)
ψ0 �� Der•(A),

where ψ0 is given by Eq. (51).

We finally consider the particular case of quasi-Lie bialgebroids whose base mani-
folds are single points, i.e., quasi-Lie bialgebras. Indeed, it is easily seen that for a Lie
algebra G, we have IMk(G) = 0 for all k � 2; and an IM 1-form of G is simply an ele-
ment θ ∈ G∗ such that ad∗

x θ = 0 for all x ∈ G. So we can identify IM1(G) with (G∗)ad

(the space of ad∗-invariant elements in G∗), and thereby, Theorem 5.2 and Proposition
5.3 yield the following corollary.

Corollary 5.6. Let (G, d∗,�) be a quasi-Lie bialgebra.

(i) There is a Lie algebra structure IM1(G) = (G∗)ad, where the bracket is [·, ·]∗.
(ii) There is a weak Lie 2-algebra homomorphism (ψ0, 0, ψ2) between two strict Lie

2-algebras:

0

0
��

0 �� G

t

��
(G∗)ad ψ0 ��

ψ2

��

Der(G),

where ψ0(θ) = ad∗
θ (·) and ψ2 : ∧2(G∗)ad → G is given by

ψ2(θ, θ ′) = �(θ, θ ′).

5.3. Relating linear forms and multivector fields on a quasi-Lie bialgebroid Let A
be a vector bundle over M . Denote by �k

lin(A) and Xk
lin(A), respectively, the spaces of

linear k-forms [6] and linear k-vector fields [17] on A. Alternatively, one can use the
identifications �•

lin(A) ∼= �(J•A∗) and X•
lin(A) ∼= �(D•A∗) (see [22] and notations

therein).
If A is equipped with a quasi-Lie bialgebroid structure (A, d∗,�), then the operator

d∗ gives rise to a 2-bracket on �(A∗) (but not a Lie bracket), and it corresponds to a
linear bivector field PA ∈ X2

lin(A) on A. In the same manner as that of the P-bracket in
Eq. (10), this PA defines a PA-bracket [·, ·]PA on �•

lin(A). In the meantime, PA induces
a map

∧•P�
A : �•

lin(A) → X•
lin(A).
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Due to [6], we have an inclusion ι : IM•(A) ↪→ �•
lin(A) given by

ι(ν, θ) = 
ν + d
θ, (
μ)x := (dqA)∗ν(x), ∀x ∈ A, (62)

where 
θ is defined in the same fashion as that of 
ν and qA : A → M is the pro-
jection. We will verify that IM•(A) with the bracket given in (50) is a subalgebra of
(�•

lin(A), [·, ·]PA ) (in Proposition 5.7, (i)).
According to [17], k-differentials of A are special instances of linear k-vector fields

on A. In other words, we have an inclusion κ : Derk(A) ↪→ Xk
lin(A) determined by

κ(δ)(dlξ1, · · · , dlξk−1 , dq
∗
A f ) = q∗

A〈δ f, ξ1 ∧ · · · ∧ ξk−1〉; (63)

κ(δ)(dlξ1 , · · · , dlξk )x =
k∑

i=1

(−1)i+kκ(δ)(· · · , d̂lξi , · · · , dq∗
Aξi (x))

−〈δx, ξ1 ∧ · · · ∧ ξk〉 (64)

for ξi ∈ �(A∗), x ∈ �(A) and f ∈ C∞(M).

Proposition 5.7. Let (A, d∗,�) be a quasi-Lie bialgebroid.
(i) We have the following commutative diagram:

IM•(A)
ι

⊂
��

ψ0

��

�•
lin(A)

∧•P�
A

��

�(J•A∗)∼=
α		

φ0

��
Der•(A)

κ

⊂
�� X•

lin(A) �(D•A∗),∼=
β		

where ψ0 is given by Eq. (51) and

φ0(μ)(j1ξ1, · · · , j1ξ•) = μ([ξ1, ·]∗, · · · , [ξ•, ·]∗)
for μ ∈ �(J•A∗) ⊂ Hom(∧•DA∗, A∗) and ξi ∈ �(A∗).

(ii) Regarding the 2-brackets of the top objects and the natural graded Lie bracket of
commutator of the bottom objects, every horizontal map preserves the relevant brack-
ets.

Proof. (i) For simplicity, we only give the proof for • = 1. We use the equality
ψ0(ν, θ)(x) = ρ∗∗ν(x) + Lθ x = ρ∗∗(ν(x) + dθ(x)) + ιθd∗x (for all x ∈ �(A)), and
compute the following relations:

κ(ψ0(ν, θ))(dq∗
A f ) = q∗

A((ρ∗θ) f );
κ(ψ0(ν, θ))(dlξ )x = κ(ψ0(ν, θ))(dq∗

Aξ(x)) − 〈ρ∗∗(ν(x) + dθ(x)) + ιθd∗x, ξ 〉
= ρ∗θ(ξ(x)) − 〈ν(x) + dθ(x), ρ∗ξ 〉 − 〈d∗x, θ ∧ ξ 〉
= −〈ρ∗ξ, ν(x)〉 + 〈x, [θ, ξ ]∗〉.

Then comparing with the following lines

P�
A(ι(ν, θ))(dq∗

A f ) = PA((dqA)∗ν(·) + dlθ , dq
∗
A f ) = q∗

A((ρ∗θ) f ),

P�
A(ι(ν, θ))(dlξ )x = PA((dqA)∗ν(x) + dlθ , dlξ )

= PA((dqA)∗ν(x), dlξ )) + PA(dlθ , dlξ )x
= −〈ρ∗ξ, ν(x)〉 + 〈x, [θ, ξ ]∗〉,
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one immediately proves κ ◦ ψ0 = P�
A ◦ ι.

Given any j1ξ ∈ �(J1A∗), note that φ0(j
1ξ) = [ξ, ·]∗, we have

〈P�
Aα(j1ξ), dlη〉 = PA(dlξ , dlη) = l[ξ,η]∗ , ∀ξ, η ∈ �(A∗),

〈βφ0(j
1ξ), dlη〉 = 〈β([ξ, ·]∗), dlη〉 = l[ξ,η]∗ ,

which clearly implies that P�
A ◦ α = β ◦ φ0.

(ii) It is known from [22, Theorem 2.1] and [17, Proposition 3.8] that β and κ are
Lie algebra isomorphisms. So we are left to show the following relations:

ι[(ν, θ), (ν′, θ ′)] = [ι(ν, θ), ι(ν′, θ ′)]PA , ∀(ν, θ), (ν′, θ ′) ∈ IM1(A), (65)

α([μ,μ′]J1A∗) = [α(μ), α(μ′)]PA , ∀μ,μ′ ∈ �(J1A∗). (66)

Let us denote (ν̃, θ̃ ) = [(ν, θ), (ν′, θ ′)], where, by (50), θ̃ = [θ, θ ′]∗. Then Eq. (65) is
equivalent to

(
ν̃, d
[θ,θ ′]∗) = [
ν + d
θ,
ν′ + d
θ ′ ]PA .

By definition, we have 
θ = lθ ∈ C∞
lin(A); then by [dlθ , dlθ ′ ]PA = dl[θ,θ ′]∗ , we get

d
[θ,θ ′] = [d
θ, d
θ ′ ]PA . Therefore, we can compute

[
ν,
ν′ ]PA = [(dqA)∗ν, (dqA)∗ν′]PA

= dPA((dqA)∗ν, (dqA)∗ν′) +
(
ι
P�
A(dqA)∗νd(dqA)∗ν′ − c.p.(ν, ν′)

)

= 0 − (dqA)∗(ν′ρ∗∗ν − νρ∗∗ν′),

where we have used the fact that (P�
A(dqA)∗ν)x = −ρ∗∗ν(x) ∈ Am for x ∈ Am , which

is easily verified using local coordinates.
In the meantime, we find

[d
θ,
ν′ ]PA = [dlθ , (dqA)∗ν′]PA

= L
P�
A(dlθ )

(dqA)∗ν′

= (dqA)∗(Lρ∗θ ν
′(·) − ν′(Lθ (·)).

Combining these equalities, we obtain the desired (65). For (66), taking μ = j1ξ and
μ′ = j1ξ ′, we have

α[j1ξ, j1ξ ′]J1A∗ = α(j1[ξ, ξ ′]∗) = dl[ξ,ξ ′]∗ = [dlξ , dlξ ′ ]PA = [α(j1ξ), α(j1ξ ′)]PA .

This completes the proof. ��

5.4. Compatibility of the two weak graded Lie 2-algebras In this part, we connect our
constructions of weak graded Lie 2-algebras, respectively, on the groupoid level and on
the associate tangent Lie algebroid level.
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5.4.1. The main results We need two basic mappings.

• The correspondence σ : �•
mult(G) → IM•(A) is given as in Eqs. (48) and (49); see

[6] for more details.
• The map τ : X•

mult(G) → Der•(A) given in [17] is defined as follows—For any
� ∈ X•

mult(G), there is a unique τ(�) ∈ Der•(A) subject to the relations

−−−−→
τ(�) f = [t∗ f,�], −−−→

τ(�)x = [−→x ,�], ∀ f ∈ C∞(M), x ∈ �(A).

Proposition 5.8. Let (G, P,�) be a quasi-Poisson Lie groupoid and (A, d∗,�) the
corresponding quasi-Lie bialgebroid. Then the maps P� and ψ0 (given by Proposition
5.3) together with σ and τ defined above form a commutative diagram:

�•
mult(G)

∧•P�
��

σ

��

X•
mult(G)

τ

��
IM•(A)

ψ0 �� Der•(A).

Moreover, ifG is s-connected and simply connected, then bothσ and τ are isomorphisms.

Proposition 5.9. Under the same assumption and notation as in Proposition 5.8, the
triple of maps (σ, id, 0) is a strict morphism of weak graded Lie 2-algebras:

�•(M)
id ��

J
��

�•(M)

j
��

�•
mult(G)

σ
�� IM•(A).

If G is s-connected and simply connected, then (σ, id, 0) is an isomorphism.

5.4.2. Proofs of the main results

Proof of Proposition 5.8. Again, we only give the proof for • = 1. Take any � ∈
�1

mult(G) and suppose that σ(�) = (ν, θ) ∈ IM1(A). The commutativity relation ψ0 ◦
σ = τ ◦ P� amounts to

−−−−−−−−−→
ρ∗∗ν(x) + Lθ x = [−→x , P��], ∀x ∈ �(A).

To prove it, we need to check

ρ∗∗ν(x) + Lθ x = [−→x , P��]|M .

In fact, we have

(L−→x P)�(�) = L−→x (P��) − P�(L−→x �) = [−→x , P��] − P�(dι−→x � + ι−→x d�),

and hence

[−→x , P��]|M = [−→x , P]�(�)|M + P�(dι−→x �) + ι−→x d�)|M
= ιθd∗x + ρ∗∗(dθ(x) + ν(x))

= ρ∗∗ν(x) + Lθ x .

��
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Before we proceed to the proof of Proposition 5.9, a technical lemma is needed.
Recall from [12, Lemma 4.8] that for X ∈ X1

mult(G) and � ∈ �k
mult(G), we have the

contraction ιX� ∈ �k−1
mult(G) and the Lie derivative LX� ∈ �k

mult(G) since the de
Rham differential preserves multiplicativity properties. Now we would like to find the
IM-forms corresponding to ιX� and LX� via σ defined by (48) and (49).

Lemma 5.10. For X ∈ X1
mult(G),� ∈ �k

mult(G), suppose that τ(X) = (δ0, δ1) ∈
Der1(A), σ(�) = (ν, θ) ∈ IMk(A), σ(ιX�) = (ν̃, θ̃ ) ∈ IMk−1(A), and σ(LX�) =
(ν̂, θ̂ ) ∈ IMk(A). Then we have

ν̃(x) = ιδ0(ν(x)) + Lδ0(θ(x)) − θ(δ1x), θ̃ (x) = −ιδ0(θ(x)), ∀x ∈ �(A),

and

ν̂(x) = Lδ0(ν(x)) − ν(δ1x), θ̂ (x) = Lδ0(θ(x)) − θ(δ1x).

Proof. The proof is simply straightforward computations—For Ui ∈ T M , we have

〈θ̃ (x),U1 ∧ · · · ∧Uk−2〉 = (ιX�)(x,U1, · · · ,Uk−2)

= −�(x, X |M ,U1, · · · ,Uk−2)

= −〈ιδ0θ(x),U1 ∧ · · · ∧Uk−2〉,
and

〈ν̃(x),U1 ∧ · · · ∧Uk−1〉
= d(ιX�)(x,U1, · · · ,Uk−1)

= (LX� − ιXd�)(x,U1, · · · ,Uk−1)

= X |M�(x,U1, · · · ,Uk−1) − �([X,
−→x ]|M ,U1, · · · ,Uk)

−
∑

i

�(x, · · · , [X |M ,Ui ], · · · ) + 〈ιδ0ν(x),U1 ∧ · · · ∧Uk−1)

= 〈Lδ0θ(x) − θ(δ1x) + ιδ0ν(x),U1 ∧ · · · ∧Uk−1〉.
These are the desired formulas of ν̃ and θ̃ .

Based on the well-known fact that the IM k-form σ(d�) = (0, ν) if σ(�) = (ν, θ) ∈
IMk−1(A), we can determine the IM k-forms of dιX� and ιXd� as follows:

σ(dιX�) = (0, ν̃), σ (ιXd�) = (
Lδ0(ν(·)) − ν(δ1(·)),−ιδ0(ν(·))).

So the IM k-form of LX� is as described. ��
Proof of Proposition 5.9. We only prove the case of • = 1. We first show that, for � and
�′ ∈ �1

mult(G) mapping to, respectively, (ν, θ), (ν′, θ ′) ∈ IM1(A) by σ , the resulting
[�,�′]P ∈ �1

mult(G) is mapped to [(ν, θ), (ν′, θ ′)] (defined in (50)).
By definition, we have

[�,�′]P = LP���′ − ιP��′d�.

It follows from Proposition 5.8 that the 1-differential σ(P��) = (δ0, δ1) ∈ Der1(A) is

δ0 = ρ∗θ, δ1(x) = ρ∗∗ν(x) + Lθ x .
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A well-known fact is the IM 2-form σ(d�) = (0, ν) provided that σ(�) = (ν, θ) ∈
IM1(A). Applying the technical Lemma 5.10, for ιP��′d� ∈ �1

mult(G), the value of
σ(ιP��′d�) = (ν1, θ1) ∈ IM1(A) is given by

ν1(x) = Lρ∗θ ′ν(x) − ν(ρ∗∗ν′(x) + Lθ ′x),

θ1(x) = −ιρ∗θ ′ν(x) = −〈ν(x), ρ∗θ ′〉.
And σ(LP���′) = (ν2, θ2) ∈ IM1(A) is given by

ν2(x) = Lρ∗θ ν
′(x) − ν′(ρ∗∗ν(x) + Lθ x),

θ2(x) = Lρ∗θ θ
′(x) − θ ′(ρ∗∗ν(x) + Lθ x) = −〈ρ∗θ ′, ν(x)〉 + 〈[θ, θ ′]∗, x〉.

Thus, assuming σ([�,�′]P ) = (ν̃, θ̃ ), we have

ν̃(x) = ν2(x) − ν1(x) = Lρ∗θ ν
′(x) − ν′(ρ∗∗ν(x) + Lθ x) − Lρ∗θ ′ν(x)

+ν(ρ∗∗ν′(x) + Lθ ′x),

θ̃ (x) = θ2(x) − θ1(x) = 〈[θ, θ ′]∗, x〉.
Comparing with (50), we have proved

σ([�,�′]P ) = (ν̃, θ̃ ) = [(ν, θ), (ν′, θ ′)]. (67)

Then for γ ∈ �1(M), by [6, Consequence (a) of Theorem 2], we have

σ(Jγ ) = σ(s∗γ − t∗γ ) = (−ιρ(·)dγ,−ρ∗γ ) = j (γ ). (68)

Therefore, it remains to prove that

[�1,�2,�3]� = [(ν1, θ1), (ν2, θ2), (ν3, θ3)], ∀�i ∈ �1
mult(G), (69)

where (νi , θi ) = σ(�i ) ∈ IM1(A). In fact, we have

s∗[�1,�2,�3]� = d
←−
�(�1,�2,�3) +

(
ι←−
�(�1,�2)

d�3 + c.p.
)

= s∗d�(θ1, θ2, θ3) + s∗(ν3(�(θ1, θ2)) + c.p.
)

= s∗[(ν1, θ1), (ν2, θ2), (ν3, θ3)],
which justifies (69) (as s∗ is injective). In conclusion, Eqs. (67)–(69) imply that (σ, id, 0)

is a Lie 2-algebra isomorphism. ��
5.4.3. A summary diagram In summary, if a quasi-Poisson groupoid (G, P,�) is s-
connected and simply connected, then regarding the associated quasi-Lie bialgebroid
(A, d∗,�), we have the following commutative diagrams:

�•(M)
∧•ρ∗∗ ��

j��

�(∧•A)

t

��

�•(M)

= 

������ ∧• p�

��

J

��

�(∧•A)
=



������

T

��

IM•(A)
∧•P�

A �� Der•(A).

�•
mult(G)

∧•P�
��

∼= 

�����
X•

mult(G)
∼=



�����

Here, the front and back faces are weak graded Lie 2-algebra morphisms as described
by Propositions 3.2 and 5.3 (observing that p� = ρ∗∗ ), respectively.
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