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Abstract: We prove the large deviation principle for several entropy and cross entropy
estimators based on return times and waiting times on shift spaces over finite alphabets.
We consider shift-invariant probability measures satisfying some decoupling conditions
which imply no form of mixing nor ergodicity. We establish precise relations between
the rate functions of the different estimators, and between these rate functions and the
corresponding pressures, one of which is the Rényi entropy function. For the most com-
monly used definition of return times, the large-deviation rate function is proved to
be nonconvex, except in marginal cases. The results apply in particular to irreducible
Markov chains, equilibrium measures for Bowen-regular potentials, g-measures, invari-
ant Gibbs states for absolutely summable interactions in statistical mechanics, and also
to probability measures which may be far from Gibbsian, including some hidden Markov
models and repeated quantum measurement processes.
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1. Introduction

Return times play a fundamental role in the theory of dynamical systems. In the specific
context of a one-sided shift space over a finite alphabet, there is a vast literature on
the connection between return times and entropy. One of the landmark results in this
direction is the following theorem, due to Wyner and Ziv [WZ89] and to Ornstein
and Weiss [OW93]: if P is an ergodic probability measure, then for P-almost every
sequence x , the time Rn(x) it takes for the first n letters to reappear down the sequence x
(in the same order) grows exponentially with n at a rate equal to the Kolmogorov–
Sinai entropy h(P). In other words, return times, once properly rescaled, provide a
sequence ( 1

n ln Rn)n∈N of universal entropy estimators. Here, “universal” means that
the definition of the random variable Rn itself makes no reference to the measure P;
computing Rn(x) requires no explicit information about the marginals of the measure P
whose entropy is being estimated. Refinements of this behavior in the form of central
limit theorems, laws of the iterated logarithm, large deviation principles (LDPs) and
multifractal analysis have been an active area of research since the 1990 s; see e.g.
[Kon98,CGS99,FW01,Ols03,CU05,Joh06,CFM19,AACG23].

In the present paper, we will prove a full LDP for the sequence ( 1
n ln Rn)n∈N, and give

an expression of the rate function and pressure in terms of those of the LDP accompanying
the celebrated Shannon–McMillan–Breiman (SMB) theorem. We will also carry this
analysis for a nonoverlapping notion of return times along a sequence (see the definition
of Vn below) and for waiting times (see the definition of Wn below) involving a pair
of sequences as in [WZ89,Shi93,MS95,Kon98,CDEJR23a]. The latter will be related
to recent results on the large deviations of (− 1

n lnQn)n∈N with respect to P, where
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Qn is the n-th marginal of a second shift-invariant probability measure Q. For each
of these results, the assumptions on the measures involve the notions of decoupling
of [CJPS19,CDEJR23a], in turn inspired by [LPS95,Pfi02]. Roughly speaking, these
decoupling assumptions take the form of bounds on how strongly different parts of the
sequences may depend on each other. However, unlike mixing conditions, they do not
require distant symbols to be asymptotically independent. As we shall see, the decoupling
assumptions cover many standard classes of probability measures, including irreducible
Markov chains, equilibrium measures for sufficiently regular potentials, g-measures,
invariant Gibbs states for summable interactions in statistical mechanics, as well as
some less standard measures which may be far from Gibbsian in any sense.

To the best of the authors’ knowledge, the large deviations of the sequence ( 1
n ln Rn)n∈N

were previously only understood locally (i.e. in a bounded interval containing the entropy
h(P)), and only for measures satisfying the Bowen–Gibbs property [CGS99,AACG23].
The improvements we provide are three-fold. First, we extend the LDP to the whole real
line, and describe the possible lack of convexity of the rate function which prevents the
Gärtner–Ellis method used in [AACG23] from producing a global result. Second, we
go past the Bowen–Gibbs property by focussing on the class of decoupled measures for
which the LDP accompanying the SMB theorem and its analogue for cross entropy can
be derived from results recently established in [CJPS19]. Third, we extend this analysis
to the related estimators ( 1

n ln Vn)n∈N and ( 1
n ln Wn)n∈N to be introduced below.

Our main results also provide a sharp version of the large-deviation upper bounds on
( 1

n ln Rn)n∈N that were obtained in [JB13] for mixing measures on shift spaces, and in
[CRS18] for more general dynamical systems.

Organization of the paper. In the remainder of Sect. 1, we discuss our setup and main
results. Theorem 0, which collects some large-deviation properties of (− 1

n lnQn)n∈N
with respect to P, is viewed as a starting point. Our main new results, Theorems A, B
and C, deal with the large deviations of ( 1

n ln Wn)n∈N, ( 1
n ln Vn)n∈N and ( 1

n ln Rn)n∈N
respectively. In Sect. 1.3, we outline the proof on the basis of a toy model consisting
of a mixture of geometric random variables, which we connect to the widely studied
problem of exponential approximations of hitting and return times.

In Sect. 2, we discuss a selection of applications and provide concrete formulae for
the rate functions and pressures whenever possible. It seems that even in the simplest
examples (Bernoulli and Markov measures), some of our results are actually new. We
also compare our results to those of [CGS99,AACG23] in Sect. 2.3, and explain how
Theorems A and C prove a conjecture stated in [AACG23].

In Sect. 3, we first establish some sharp (at the exponential scale) estimates on the
waiting times Wn (Sect. 3.1), which we then extend to Rn and Vn in Sect. 3.2.

Section 4 starts with some reminders about (weak) LDPs, and a brief review of the
notion of Ruelle–Lanford functions. We then identify the Ruelle–Lanford functions of
( 1

n ln Wn)n∈N, ( 1
n ln Vn)n∈N and ( 1

n ln Rn)n∈N in order to obtain the corresponding weak
LDPs.

In Sect. 5, we complete the proofs of Theorems A–C: the weak LDPs of the previous
section are promoted to full LDPs, the Legendre–Fenchel duality relations between the
rate functions and the associated pressures are established, and the (lack of) convexity
of the rate function of ( 1

n ln Rn)n∈N is characterized.
In Sect. 6, we gain some insight into the set where the rate functions vanish by

combining our LDPs and the corresponding almost sure convergence results (law of
large numbers) in the literature.
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In order to make the paper accessible to readers who may not be familiar with the
tools that we will require from both large-deviation theory and dynamical systems, we
include several technical, yet rather standard results in the appendices. We provide in
“Appendix A” some definitions regarding subshifts and measures of maximal entropy,
which are useful for some of the examples in Sect. 2 as well as for characterizing the
convexity of the rate function of ( 1

n ln Rn)n∈N. In “Appendix B”, we present technical
results about our decoupling assumptions, and in particular some sufficient conditions
for them to hold. Finally, in “Appendix C”, we give tools to promote weak LDPs to full
ones, and we prove Theorem 0.

Notational conventions. We adopt the convention that N = {1, 2, 3, 4, . . . }. Unless
otherwise stated, measures are probability measures. We use the conventions ln 0 = −∞
and 0 · (±∞) = 0 so that, in particular, 0 · ln 0 = 0. Given a function f : R → R∪{∞},
we denote by f ∗ : R → R ∪ {∞} the Legendre–Fenchel transform (convex conjugate)
of f defined by f ∗(α) = sups∈R(αs− f (s)). The ball of radius ε > 0 around the point s
in a metric space is denoted B(s, ε).

1.1. Setup and hypotheses. We consider the one-sided shift space � := AN = {x =
(xk)k∈N : xk ∈ A for all k ∈ N} for some finite alphabetA. The shift map T : � → � is
defined by (T x)n := xn+1. As usual, � is equipped with the product topology constructed
from the discrete topology on A, and F denotes the corresponding Borel σ -algebra.

We use common notations such as: xn
k for the letters xk, xk+1, . . . , xn of the se-

quence x ∈ �; [u] for the cylinder consisting in the sequences x with xn
1 = u; Pn for the

marginal of the probability measure P on An , i.e. Pn(u) = P([u]) for all u ∈ An . We
let �fin := ⋃n∈NAn be the set of words of finite length. The length of a word u ∈ An

is denoted by |u| = n. The concatenation of u, v ∈ �fin is denoted by uv, and the
concatenation of m copies of u is denoted by um . We use Fn for the σ -algebra generated
by the cylinders sets [u] with u ∈ An , and Ffin := ⋃n∈N Fn ⊂ F for the set of events
involving only finitely many coordinates in �.

We denote by Pinv(�) the set of shift-invariant Borel probability measures on �.
For P ∈ Pinv(�) and n ∈ N, the support of Pn is suppPn := {u ∈ An : Pn(u) > 0}.
Moreover, suppP := {x ∈ � : Pn(x) > 0 for all n ∈ N} is the support of P, which
is a subshift of �. We denote by htop(suppP) the topological entropy of suppP, which
satisfies htop(suppP) ≤ ln |A|; see “Appendix A”.1

We now define the three sequences of interest, namely (Rn)n∈N, (Vn)n∈N and (Wn)n∈N.
The return times Rn : � → N are defined as

Rn(x) := inf{k ∈ N : T k x ∈ [xn
1 ]} = inf{k ∈ N : xk+n

k+1 = xn
1 }

for all x ∈ � and n ∈ N, and their nonoverlapping counterparts Vn : � → N are defined
as

Vn(x) := inf{k ∈ N : T k+n−1x ∈ [xn
1 ]} = inf{k ∈ N : x2n+k−1

n+k = xn
1 }

instead. The waiting times Wn : � × � → N are defined as

Wn(x, y) := inf{k ∈ N : T k−1 y ∈ [xn
1 ]} = inf{k ∈ N : yk+n−1

k = xn
1 }

1 We use “| · |” both for the length of words and the cardinality of discrete sets.
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for all (x, y) ∈ �×� and n ∈ N. In the literature, the function Wn(x, · ) is often called
hitting time of the set [xn

1 ].
We next briefly recall some results about almost sure convergence of the sequences

( 1
n ln Rn)n∈N, ( 1

n ln Vn)n∈N and ( 1
n ln Wn)n∈N, which justify their role of as (cross) en-

tropy estimators. The LDPs we prove in the present paper complement these almost sure
convergence results, without relying on them, nor implying them in general; see Sect. 6
for an extended discussion.

First, if P ∈ Pinv(�), then

lim
n→∞

1

n
ln Rn(x) = lim

n→∞
1

n
ln Vn(x) = hP(x), (1.1)

for P-almost every x ∈ �, where hP is the local entropy function defined by

hP(x) := lim
n→∞−1

n
lnPn(xn

1 ). (1.2)

By virtue of the SMB theorem, the last limit exists and satisfies hP(x) = hP(T x) for
P-almost every x , and its integral with respect to P is the Kolmogorov–Sinai entropy
(also commonly called specific entropy or simply entropy), defined as

h(P) := lim
n→∞−1

n

∑

u∈An

Pn(u) lnPn(u).

When P is ergodic, we have hP(x) = h(P) for P-almost every x ∈ �, and in this case
(1.1) can be traced back to [WZ89,OW93]. The relations (1.1) are less standard when
P is merely assumed to be shift invariant; see Sect. 6.1 for references.

Consider now a pair (P,Q) of shift-invariant probability measures, possibly with
P = Q. As we will discuss in Sect. 6.1, under some assumptions more general than
those of Theorem A below, it has recently been proved in [CDEJR23a] that

lim
n→∞

1

n
ln Wn(x, y) = hQ(x)

for (P⊗Q)-almost all pairs (x, y) ∈ �×�, where hQ is defined as in (1.2) and integrates
with respect to P to the specific cross entropy of P relative to Q, i.e.

hc(P|Q) := lim
n→∞−1

n

∑

u∈An

Pn(u) lnQn(u). (1.3)

If P is, in addition, assumed to be ergodic, then hQ(x) = hc(P|Q) for P-almost every
x ∈ �. We stress that the P-almost sure existence of hQ and the existence of the limit
in (1.3) do not follow from mere shift invariance when P 
= Q. Note that, with hr(P|Q)

the specific relative entropy, we have hc(P|Q) = h(P) + hr(P|Q) whenever both sides
are well defined, and that hc(P|P) = h(P) is always well defined. The numbers hr(P|Q)

and hc(P|Q) are both relevant in information theory (see e.g. [CT06, §5.4]2) and are
commonly used in classification tasks (see e.g. [GBC16, §3.13] or [Mur22, §5.1.6]).

2 Unfortunately, there is a lack of consensus on terminology. In particular, in [CT06], “cross entropy” is
only mentioned as a synonym for relative entropy, and what we call cross entropy here plays a central role
in Theorem 5.4.3 of [CT06] but is not given any specific name therein. As far as the authors are aware, the
terminology adopted in the present paper reflects the most common usage in modern applications.
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The pressure qR associated with the sequence ( 1
n ln Rn)n∈N is the function of α ∈ R

defined by

qR(α) := lim
n→∞

1

n
ln
∫

eα ln Rn(x)dP(x) (1.4)

when the limit exists. The function qR is also referred to as the “rescaled cumulant-
generating function” or “Lα-spectrum” in the literature. Similarly, we define

qV (α) := lim
n→∞

1

n
ln
∫

eα ln Vn(x)dP(x) (1.5)

and

qW (α) := lim
n→∞

1

n
ln
∫∫

eα ln Wn(x,y)dP(x)dQ(y) (1.6)

when the limits exist.
The above pressures will be expressed in terms of the pressure of the sequence

(− 1
n lnQn)n∈N, which we define as

qQ(α) := lim
n→∞

1

n
ln
∫

e−α lnQn(xn
1 )dP(x)

= lim
n→∞

1

n
ln

∑

u∈suppPn

Qn(u)−α
Pn(u)

(1.7)

when the limit exists. It will be part of our assumptions below that Pn � Qn for every
n ∈ N, i.e. that Pn is absolutely continuous with respect to Qn , so the integral and sum in
(1.7) are well defined and finite for each n. When Q = P, the summand in the rightmost
expression of (1.7) is Pn(u)1−α; up to some sign and normalization convention, the
pressure qP thus coincides with the Rényi entropy function of P.

A common route to establishing the LDP, which is followed in particular in [AACG23],
is to first study the pressure in detail, and then derive the LDP using an adequate ver-
sion of the Gärtner–Ellis theorem. Intrinsic to this approach are the differentiability of
the pressure and the convexity of the rate function, both of which fail in our setup; see
Sect. 2.3 for further discussion of the results in [AACG23]. Our approach goes in the op-
posite direction: first the LDP is established, and only then is some version of Varadhan’s
lemma used to describe the pressure. This method allows to consider significantly more
general measures, and to obtain the full LDP with a possibly nonconvex rate function.
This path was already followed in [CJPS19] in order to establish, in particular, the LDP
for (− 1

n lnQn)n∈N with respect to P and the properties of qQ.

Assumptions. In order to state the decoupling assumptions below, we require a sequence
(τn)n∈N in N∪{0} and a sequence (Cn)n∈N in [1,∞), assumed to be fixed and to satisfy

lim
n→∞

τn

n
= lim

n→∞
ln Cn

n
= 0. (1.8)

We will freely write τn = o(n) and Cn = eo(n) or speak of an “o(n)-sequence” and an
“eo(n)-sequence” when referring to the conditions (1.8).
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Definition 1.1. (UD, SLD, JSLD, admissible pair) Let P ∈ Pinv(�). We say that P
satisfies the upper decoupling assumption (UD) if for all n, m ∈ N, u ∈ An , v ∈ Am

and ξ ∈ �τn ,

Pn+τn+m (uξv) ≤ CnPn(u)Pm(v). (1.9)

We say that P satisfies the selective lower decoupling assumption (SLD) if for all n, m ∈
N, u ∈ An and v ∈ Am , there exist 0 ≤ � ≤ τn and ξ ∈ A� such that

Pn+�+m (uξv) ≥ C−1
n Pn(u)Pm(v). (1.10)

A pair of measures (P,Q) with P,Q ∈ Pinv(�) is said satisfy the joint selective lower
decoupling assumption (JSLD) if for all n, m ∈ N, u ∈ An and v ∈ Am , there exist
0 ≤ � ≤ τn and ξ ∈ A� such that

Pn+�+m (uξv) ≥ C−1
n Pn(u)Pm(v) and Qn+�+m (uξv) ≥ C−1

n Qn(u)Qm(v).

(1.11)

Finally, a pair of measures (P,Q) with P,Q ∈ Pinv(�) is said to be admissible if
Pn � Qn for all n ∈ N, if P and Q satisfy UD, and if the pair (P,Q) satisfies JSLD.

Remark 1.2. If the pair (P,Q) satisfies JSLD, then obviously both P and Q satisfy SLD,
but the converse need not hold, since in (1.11) both inequalities are required to hold
for the same ξ . If τn = 0 for all n, then JSLD becomes equivalent to P and Q both
satisfying SLD.

Remark 1.3. We can always increase the constants Cn and τn (see Lemma B.1), so there
is no loss of generality in taking the same sequences (τn)n∈N and (Cn)n∈N for JSLD
(resp. SLD) and UD, as well as for both measures P and Q.

Next, the following numbers will play an important role:

γ+ := lim sup
n→∞

1

n
sup

u∈An
lnPn(u) and γ− := lim inf

n→∞
1

n
inf

u∈ suppPn
lnPn(u).

(1.12)

One easily shows that

0 ≤ −γ+ ≤ h(P) ≤ htop(suppP) ≤ −γ− ≤ ∞; (1.13)

see “Appendix A” for a proof and a definition of the topological entropy htop. For some
results, γ+ will be required to be well approximated by periodic sequences:

Definition 1.4 (PA). A measure P ∈ Pinv(�) satisfies the periodic approximation
assumption (PA) if for every ε > 0, there exists p ∈ N and u ∈ Ap such that

lim inf
n→∞

1

np
lnPnp

(
un) ≥ γ+ − ε.

Remark 1.5. IfP satisfies SLD with τn = 0, then automatically PA holds; a more general
sufficient condition for PA to hold is given in Lemma B.6.
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We discuss at the end of Sect. 4.2 possible ways to weaken PA.

Starting point. Our analysis is built on top of the LDP for the sequence (− 1
n lnQn)n∈N

viewed as a family of random variables on (�,P).3 The following theorem summarizes
the large-deviation properties of this sequence and essentially follows from the results
of [CJPS19], where the corresponding weak LDP is proved. Taking this weak LDP
for granted, the proof of the full theorem only requires some minor adjustments to the
arguments in [CJPS19]; for completeness we provide the details in “Appendix C.2”. In
some important applications, the conclusions of the theorem are well known and follow
from standard methods; see Sects. 2.1–2.3 below. The terminology regarding (weak and
full) LDPs, rate functions and exponential tightness is summarized in Sect. 4.

Theorem 0. (LDP for − 1
n lnQn) If (P,Q) is an admissible pair, then the following hold:

i. The sequence (− 1
n lnQn)n∈N on (�,P) satisfies the LDP with a convex rate function

IQ : R → [0,∞] satisfying IQ(s) = ∞ for all s < 0.
ii. The limit defining qQ in (1.7) exists in (−∞,∞] for all α ∈ R and defines a non-

decreasing, convex, lower semicontinuous function qQ : R → (−∞,∞] satisfying
qQ(0) = 0. Moreover, the following Legendre–Fenchel duality relations hold:

qQ = I ∗
Q

and IQ = q∗
Q
. (1.14)

iii. Assume now that Q = P. Then, in addition to the above, the following hold:
a. The sequence (− 1

n lnPn)n∈N on (�,P) is exponentially tight and IP is a good
rate function satisfying

IP(s) ∈ [s − htop(suppP), s] if s ∈ [−γ+,−γ−],
IP(s) = ∞ otherwise,

(1.15)

where [−γ+,−γ−] is understood to be [−γ+,∞) if γ− = −∞.
b. The limit superior (resp. inferior) defining γ+ (resp. γ−) is actually a limit.
c. For every α ≤ 1,

qP(α) ≤ qP(1) = htop(suppP). (1.16)

d. Either γ− > −∞ and qP(α) < ∞ for all α ∈ R, or γ− = −∞ and qP(α) = ∞
for all α > 1.

Remark 1.6. As we shall see in Sect. 6, under the assumptions of Theorem 0, the limit
defining hc(P|Q) exists in [0,∞], and we have IQ(hc(P|Q)) = 0 when hc(P|Q) < ∞
and lims→∞ IQ(s) = 0 when hc(P|Q) = ∞. In particular, IP(h(P)) = 0 when Q = P.
These conclusions will extend to the other rate functions to be introduced below; see
again Sect. 6.

Remark 1.7. In the course of the proof, we shall establish and use the relation

IP(s) = s − lim
ε→0

lim sup
n→∞

1

n
ln

∣
∣
∣
∣

{

u ∈ An : −1

n
lnPn(u) ∈ B(s, ε)

}∣
∣
∣
∣ , (1.17)

which can be seen as a classical “energy-entropy competition”. Note that the logarithm
is either nonnegative or −∞, which explains why we have either IP ≤ s or IP = ∞
in (1.15).

3 While Qn was defined as a measure on An , it is reinterpreted here in the straightforward way as a
measurable function on �.
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Remark 1.8. A standard consequence of (1.14) and (1.15), which can also be derived
from the definition of qP directly, is that if P satisfies UD and SLD, then

− γ∓ = lim
α→±∞

qP(α)

α
. (1.18)

Readers who are unfamiliar with such properties of Legendre–Fenchel transforms may
benefit from reading the introductions in Section 2.3 of [DZ09] and Chapter VI of [Ell06],
or the in-depth exposition in [Roc70].

Remark 1.9. The assumption that the alphabet A is finite is important, as many of our
estimates rely on the constant |A| in a way which does not seem easy to circumvent. We
do not expect the results to remain true on countably infinite alphabets without further
assumptions on the measures at hand. This is a matter we would like to investigate in
future research.

1.2. Main results. We shall establish the LDP and express the rate function and pressure
for the sequence ( 1

n ln Wn)n∈N in terms of IQ and qQ. Similarly, the rate functions and
pressures for ( 1

n ln Vn)n∈N and ( 1
n ln Rn)n∈N will be expressed in terms of IP and qP.

Theorem A. (LDP for 1
n ln Wn) If (P,Q) is an admissible pair, then the following hold:

i. The sequence ( 1
n ln Wn)n∈N satisfies the LDP with respect to P⊗Q with the convex

rate function IW given by

IW (s) :=
{
∞ if s < 0,

infr≥s(r − s + IQ(r)) if s ≥ 0.
(1.19)

ii. For all α ∈ R, the limit in (1.6) exists in (0,∞],
qW (α) = max{qQ(α), qQ(−1)}, (1.20)

and the Legendre–Fenchel duality relations qW = I ∗W and IW = q∗
W hold.

iii. If Q = P, then IW is a good rate function and ( 1
n ln Wn)n∈N is an exponentially tight

family of random variables.

Remark 1.10. The relations (1.19) and (1.20) can be written as

IW (s) =
{

s0 − s + IQ(s0) if s < s0,

IQ(s) if s ≥ s0,
and qW (α) =

{
qQ(−1) if α < −1,

qQ(α) if α ≥ −1,

(1.21)

where s0 is any point such that −1 belongs to the subdifferential of IQ at s0, or equiv-
alently, such that s0 belongs to the subdifferential of qQ at −1. In nontrivial cases, qW
is not differentiable at α = −1. The situation is depicted on the basis of an example in
Fig. 1.

The next two theorems involve only one measure P. We remark that the pair (P,P) is
admissible if and only ifP satisfies both UD and SLD. As a consequence, the conclusions
of Theorem 0 hold under the assumptions of Theorems B and C; in particular IP and qP
are well defined, and the numbers γ+ ∈ (−∞, 0] and γ− ∈ [−∞, 0] defined in (1.12)
are actual limits.
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Fig. 1. The rate functions and pressures of Theorems 0 and A for some Bernoulli measures P and Q; see
Sect. 2.1. The rate functions are infinite wherever not drawn

Theorem B. (LDP for 1
n ln Vn) If P ∈ Pinv(�) satisfies UD and SLD, then the following

hold:

i. The sequence ( 1
n ln Vn)n∈N is exponentially tight and satisfies the LDP with respect

to P with the good, convex rate function IV given by

IV (s) :=
{
∞ if s < 0,

infr≥s(r − s + IP(r)) if s ≥ 0.
(1.22)

ii. For all α ∈ R, the limit in (1.5) exists in (0,∞],
qV (α) = max{qP(α), qP(−1)}, (1.23)

and the Legendre–Fenchel duality relations qV = I ∗V and IV = q∗
V hold. Moreover,

IV (0) = −qP(−1) ≥ −γ+. (1.24)

Remark 1.11. The rate function IV corresponds to IW in the special case Q = P. While
one can, of course, chooseQ = P in Theorem A (in this case it suffices thatP satisfies UD
and SLD), this special case is not equivalent to Theorem B. Indeed, Wn and Vn are still
distinct in their definition and underlying probability space. It is known that the range of
applicability of almost sure entropy estimation via Wn is strictly smaller than that via Vn
(or Rn); see [OW93] and [Shi93, §4].

Theorem C. (LDP for 1
n ln Rn) If P ∈ Pinv(�) satisfies UD, SLD and PA, then the

following hold:

i. The sequence ( 1
n ln Rn)n∈N is exponentially tight and satisfies the LDP with respect

to P with the good (possibly nonconvex) rate function IR given by

IR(s) :=

⎧
⎪⎨

⎪⎩

∞ if s < 0,

−γ+ if s = 0,

infr≥s(r − s + IP(r)) if s > 0.

(1.25)
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Fig. 2. The rate functions and pressures of Theorems 0 and A–C for some Bernoulli measure P; see Sect. 2.1.
The rate functions are infinite wherever not drawn

ii. For all α ∈ R, the limit in (1.4) exists in (0,∞] and

qR(α) = max{qP(α), γ+}. (1.26)

Moreover, qR = I ∗R.
iii. We have the following relations: IR is convex ⇐⇒ IR = IV ⇐⇒ qR = qV ⇐⇒

γ+ = qP(−1) ⇐⇒ IP(−γ+) = 0 ⇐⇒ qP(α) = −γ+α for all α ≤ 0 ⇐�
γ+ = γ− ⇐⇒ IP(s) = ∞ for all s ∈ R \ {−γ+} ⇐⇒ h(P) = htop(suppP).
Moreover, if τn = O(1) and Cn = O(1), then all the above properties are actually
equivalent.

By their definition, the rate functions IR and IV may differ only at 0, and by (1.24) we
have IR(0) = −γ+ ≤ IV (0); see Fig. 2 for an illustration. Part iii gives many technical
conditions equivalent to IR = IV , the most notable of which is the convexity of IR .
The situation where IR = IV should be seen as quite degenerate; in the generic case,
we have IR(0) < IV (0), as strikingly illustrated by the examples in Sects. 2.1 and 2.2.
The generic inequality IR(0) < IV (0) is due to fact that the definition of Rn allows for
overlaps (characterized by Rn < n) which are excluded in Vn . These overlaps, which
make the LDP for ( 1

n ln Rn)n∈N highly interesting, were widely studied in other contexts;
see the discussion and references in Sect. 1.3. With help of PA, we will show in Sect. 4.2
that P{x : Rn(x) < n} asymptotically decreases like enγ+ , which explains the equality
IR(0) = −γ+.

Remark 1.12. If γ+ = 0, then IP(0) = 0 by (1.15), and thus qP(α) = I ∗
P
(α) = 0 for all

α ≤ 0. In this case, we easily see that IV = IR = IP and qV = qR = qP.

Remark 1.13. The relation (1.26) can be written as

qR(α) =
{

γ+ if α < α∗,
qP(α) if α ≥ α∗,

(1.27)

where α∗ ≤ 0 is such that qP(α∗) = γ+. If γ+ = 0, then we can take any α∗ ≤ 0 in view
of Remark 1.12. If γ+ < 0, then qP(−1) ≤ γ+ < 0 = qP(0) by (1.24), so the point α∗
is unique and satisfies α∗ ∈ [−1, 0), with α∗ = −1 if and only if IV = IR .
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1.3. Outline of the proof for a toy model. We present a natural toy model, consisting of
a mixture of geometric distributions, which not only provides the correct rate functions
for Wn and Vn , but also illustrates the method of our proof. We then modify the toy
model in order to take overlaps (corresponding to Rn < n) into account and guess the
correct rate function for Rn .

Approximations of waiting times and return times by geometric random variables (or
exponential random variables in the scaling limit) have been widely studied, typically
under mixing assumptions; see e.g. [GS97,CGS99,HSV99,AG01,HV10] and [AAG21]
for a recent overview and more exhaustive references. As often emphasized in the lit-
erature, possible overlaps, which are tightly related to Poincaré recurrence times (see
[AV08,AC15,AAG21]), play a crucial role in such approximations. We shall further
comment on Poincaré recurrence times at the end of Sect. 4.2.

Our decoupling assumptions do not seem to imply any of the very sharp exponential
approximations that are available in the literature. In comparison, the geometric approx-
imation that we prove in Sect. 3.1 are quite loose in the sense that scaling factors and
error terms may grow subexponentially. Yet, it suffices to establish the LDPs of interest.

Geometric approximation. We start with the following interpretation of Wn(x, y): first
x is drawn at random according to the law P and y is drawn at random according to the
law Q, independently of x . Then, for each k ∈ N, we check whether yk+n−1

k = xn
1 or

not. Once xn
1 is given, shift invariance implies that Q{y ∈ � : yk+n−1

k = xn
1 } = Qn(xn

1 )

for each k ∈ N, and we can view Wn as the time of the first “success” in a series
of attempts (indexed by k). If the attempts were mutually independent, Wn would be
a geometric random variable with random parameter pn = Qn(xn

1 ). Of course, these
attempts are not independent: even if Q is a Bernoulli measure, the attempts k and k′
are only independent for |k′ − k| ≥ n. However, it turns out, due to our decoupling
assumptions, that the asymptotic behavior of Wn at the scale that is relevant to our LDP
is accurately captured by this simplified geometric model.

We now define the toy model properly. Let W̃n the random variable whose law νn on
N is given by

νn(k) :=
∑

u∈An

Pn(u)Qn(u)(1 −Qn(u))k−1, (1.28)

for every k ∈ N. This is a simple mixture of geometric distributions, motivated by the
above discussion. The next proposition describes the large deviations of W̃n . Since it is
introduced only for illustration purposes, and since the actual proof of the proposition
relies on estimates which are similar to — but simpler than — those we provide for Wn
in the main body of the paper, we limit ourselves to sketching the proof. The interested
reader will easily be able to fill in the details.

Proposition 1.14. If the pair (P,Q) is admissible, then the sequence ( 1
n ln W̃n)n∈N sat-

isfies the LDP with the rate function IW defined in (1.19).

Sketch of the proof. For each s ∈ Mn := { 1
n ln k : k ∈ N}, the probability that 1

n ln W̃n
equals s is given by

νn(ens) =
∑

u∈An

Pn(u)Qn(u)(1 −Qn(u))ens−1 =
∫

(0,∞)
e−nr (1 − e−nr )ens−1dμn(r),

(1.29)
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where we denote by μn the distribution of − 1
n lnQn with respect to P. Now using that

e−nr is very small for n large, a formal first order Taylor expansion yields

(1 − e−nr )ens−1 ∼ exp(−(ens − 1)e−nr ) ∼ exp(−en(s−r)). (1.30)

We thus have a cut-off phenomenon: the above vanishes superexponentially when r < s,
and is very close to 1 when r > s. Formal substitution into (1.29) yields

νn(ens) ∼
∫

(s,∞)

e−nr dμn(r).

We remark that this cut-off argument corresponds to retaining, in the sum in (1.28), only
the u ∈ An such that Qn(u) � e−ns .

Now, for s > 0 and ε small, the set B(s, ε) ∩ Mn contains approximately en(s+ε) −
en(s−ε) ∼ ens points, so

νn

{

k ∈ N : 1

n
ln k ∈ B(s, ε)

}

∼ ensνn(ens) ∼
∫

(s,∞)

en(s−r)dμn(r). (1.31)

Formally, Theorem 0 says that dμn(r) ∼ e−nIQ(r)dr , and a saddle-point approximation
in (1.31) then yields

1

n
ln νn

{

k ∈ N : 1

n
ln k ∈ B(s, ε)

}

∼ sup
r≥s

(s − r − IQ(r)) = −IW (s).

The same conclusion applies to the case s = 0 without the need for any cut-off argument.
This local formulation of the LDP (i.e. concerning only small balls) implies the weak
LDP (see Sect. 4), which can in turn be promoted to a full LDP using the arguments of
Sect. 5. ��

The fact that we consider Wn(x, y) for x and y that are mutually independent was
an important ingredient of the above argument. When moving on to Vn and Rn (and
replacing Q with P), we look for occurrences of xn

1 , not in an independent sample y,
but in x itself, which introduces more dependence. Conditioned on the event [u] for
some u ∈ An , the random variable Vn corresponds to the first success time of a series of
attempts, where the k-th attempt is successful if x2n+k−1

n+k = u. Contrary to the case of Wn ,
the conditional success probability given [u] of the k-th attempt is not simply given by
Pn(u) since the coordinates xn

1 and x2n+k−1
n+k are not independent in general.4 However,

by our decoupling assumptions, and since the intervals [1, n] and [n+k, 2k +k−1] do not
overlap, this added dependence will not actually alter the asymptotics. The arguments of
Proposition 1.14 then suggest that Vn obeys the LDP with the rate function IV of (1.22).

Return time and overlaps. The picture for Rn is more complicated: while the depen-
dence between xk+n

k+1 and xn
1 will not significantly alter our estimates for k very large,

this dependence will play a major role when k < n, due to overlap; see the examples in
Sect. 2. We shall prove in Sect. 4.2 that, under the assumptions of Theorem C,

lim
n→∞

1

n
lnP{x : Rn(x) < n} = γ+. (1.32)

4 They are, for example, if P is a Bernoulli measure; see Remark 2.1.
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This suggests the following picture: with probability close to enγ+ we have “very quick
return” (Rn < n), and with probability close to 1 − enγ+ we start a series of trials as
in the case of Vn . As before, let us pretend these trials are independent, and that their
probability of success is exactly Pn(xn

1 ). Noting that the asymptotics of 1
n ln Rn is not

affected by adding to Rn quantities of order n, we are led to introduce a toy model R̃n
for Rn whose law ρn on N is given by

ρn(k) := enγ+δk,1 + (1 − enγ+)νn(k) (1.33)

for every k ∈ N, where νn is as in (1.28) with Q = P. A straightforward adaptation of
Proposition 1.14, taking the first term in (1.33) into account at s = 0, and also using that
γ+ ≥ supr≥0(−r − IP(r)) by Theorem 0.iii.a., shows that R̃n satisfies the LDP with the
rate function IR of (1.25).

Turning the sketch into a proof. We now briefly comment on how the above sketch will
be made rigorous in the main body of the paper. In Sect. 3.1, we establish that for fixed
x , the random variable Wn(x, · ) on (�,Q) is indeed well approximated by a geometric
random variable at the exponential scale. The above cut-off argument is made rigorous
in Proposition 3.5. The corresponding estimates for Rn and Vn are presented in Sect. 3.2.

The saddle-point approximation mentioned above is made rigorous by the variation
of Varadhan’s lemma provided in Lemma 4.1, which then leads to the weak LDP for
the sequences of interest. As with the above toy model, we need to treat the cases s > 0
(Sect. 4.1) and s = 0 (Sect. 4.2) separately — the latter is particularly subtle for Rn
and PA will be needed to establish (1.32). With the weak LDPs at hand, the main results
are proved in Sect. 5.

2. Examples

Decoupling assumptions are satisfied by many important classes of examples, and have
allowed to simplify and unify the proofs of various large deviation principles that ex-
isted in many, sometimes rather technical, forms in the literature. The range of appli-
cability of UD and SLD has already been discussed in [CJPS19,BCJP21,CDEJR23a,
CDEJR23b].

We describe in this section some classes of examples that serve as illustrations of
different features of our main results. Sections 2.1–2.5 each assume some level of fa-
miliarity with the specific examples on the reader’s part, and may be skipped entirely
without affecting the reader’s ability to understand the proofs of the main theorems. We
now briefly summarize the role of each of these examples.

1. In the Bernoulli (IID) case (Sect. 2.1), formulae for the different pressures and rate
functions can be quickly derived, and are easy to understand. To the best of our
knowledge, the global aspect (i.e. without any restriction to a strict subinterval of R)
of the LDPs in Theorems A–C as well as the ability to consider distinct measures P
and Q in Theorem A are new even in this most basic class of examples.

2. By going from Bernoulli measures to Markov measures (Sect. 2.2), we start seeing
the benefit of inserting the words ξ in the formulation of SLD, as they allow to deal
with irreducible Markov chains whose transition probabilities are not all positive.
Markov measures also make the role of periodicity in PA very clear.

3. Discussing our assumptions and results in the setup of equilibrium measures for
potentials enjoying Bowen’s regularity condition (Sect. 2.3) allows us to compare
our results to existing ones, most notably to those of [AACG23] where the pressures
qW and qR were studied.
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4. We then discuss two situations in which Bowen’s regularity condition can be lifted.
While carrying distinct history and intuition, they both reveal the same two aspects of
our decoupling assumptions. First, they make a case that allowing a certain amount
of growth for the sequence (Cn)n∈N in UD and SLD is beneficial. Second, they show
that our assumptions apply in phase-transition situations, and in particular do not
imply ergodicity. These generalizations are:
i. equilibrium measures for absolutely summable interactions in statistical mechan-

ics (Sect. 2.4.1);
ii. equilibrium measures for g-functions, i.e. g-measures (Sect. 2.4.2).
While our results do not seem to apply to the class of weak Gibbs measures in full
generality (see Sect. 2.4), the measures discussed in Sects. 2.4.1 and 2.4.2 are weak
Gibbs.

5. Finally, the so-called class of hidden Markov models (Sect. 2.5) shows that our as-
sumptions apply to measures which are far from Gibbsian. Hidden Markov mod-
els also provide examples of pairs of measures (P,Q) where the distributions of
( 1

n ln Wn)n∈N lack exponential tightness, showing that IW (see Theorem A) need not
be a good rate function whenQ 
= P. To the authors’ knowledge, even the conclusions
of Theorem 0 in this setup are new.

As abundantly discussed in [BJPP18,CJPS19,BCJP21,CDEJR23a,CDEJR23b], re-
peated quantum measurement processes give rise to a very rich class of measures satisfy-
ing our decoupling assumptions, yet displaying remarkable singularities — some being,
once again, far from Gibbsian. For reasons of space, we do not repeat such a discussion
in the present paper.

2.1. Bernoulli measures. Consider the simple case P = P
⊗N

1 and Q = Q
⊗N

1 , where
P1 and Q1 are measures on A, with P1 � Q1. SLD, UD and PA obviously hold
with Cn = 1 and τn = 0 for all n. Note that, as a random variable on (�,P), the
map x �→ − 1

n lnQn(xn
1 ) = 1

n

∑n
i=1(− lnQ1(xi )) is simply the average of IID random

variables supported on the finite set {− lnQ1(a) : a ∈ suppP1} ⊂ R. By independence,
qQ(α) is easily seen to coincide with the cumulant-generating function:

qQ(α) = ln
∫

A
e−α lnQ1(a)dP1(a) = ln

∑

a∈suppP1

P1(a)Q1(a)−α. (2.1)

The LDP proved in Theorem 0 then follows from standard results. We mention two
methods which lead to different expressions of the rate function IQ.
Method 1. Since lnQn(xn

1 ) is a sum of IID random variables, Cramér’s theorem [DZ09,
§2.2.1] yields the stated LDP with a rate function given by the Legendre–Fenchel trans-
form of the cumulant-generating function (2.1), i.e. with a rate function IQ = q∗

Q
. This

can be seen as a special case of the Gärtner–Ellis theorem [DZ09, §2.3], which applies
here since by (2.1) the function qQ is differentiable (and actually real-analytic).
Method 2. One can instead appeal to a combination of Sanov’s theorem and the contrac-
tion principle [DZ09, §2.1.1–2.1.2] to obtain the LDP with rate function

IQ(s) = inf
μ∈Ls

Hr(μ|P1), (2.2)
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where Hr denotes the relative entropy and Ls is the set of probability measures μ � P1
(hence also satisfying μ � Q1) on A subject to the constraint

−
∑

a∈A
μ(a) lnQ1(a) = s. (2.3)

When s /∈ [− ln maxa∈AQ1(a),− ln mina∈suppQ1 Q1(a)], the set Ls is empty and the
infimum is set to ∞ by convention. Note that IQ vanishes at the unique point s =
−∑a∈A P1(a) lnQ1(a) = hc(P|Q), where the infimum in (2.2) is attained at μ = P1.

We now turn to Theorems B and C, and we discuss in particular the convexity of IR .
The relevant quantities are easily expressed in terms of P1:

γ+ = ln max
a∈suppP1

P1(a), htop(suppP) = ln | suppP1|,

γ− = ln min
a∈suppP1

P1(a), qP(−1) = ln
∑

a∈suppP1

P1(a)2.

In view of these expressions, γ− ≤ qP(−1) ≤ γ+ with strict inequalities unless P1 is
constant on its support. To see this, notice that

∑
a∈A P1(a)2 is the expectation of the

function a �→ P1(a) with respect to the measure P1 on A. To discuss the convexity of
IR we distinguish two cases.

Singular case. If P1 is constant on its support, then γ− = qP(−1) = γ+, so IR is convex
by Theorem C.iii. Moreover, we readily obtain h(P) = htop(suppP), so P is indeed the
measure of maximal entropy on its support, in accordance with Theorem C.iii. Next,
since − 1

n lnPn(xn
1 ) = h(P) almost surely, the rate function IP vanishes at h(P) and is

infinite everywhere else. Dual to this, qP(α) = h(P)α for all α ∈ R. In the quite extreme
case where | suppP1| = 1, i.e. if P is a Dirac measure on an orbit of period 1, we find
h(P) = 0 and qP(α) = 0 for all α ∈ R.

Generic case. If P1 is not constant on its support, then γ− < qP(−1) < γ+, and thus
the rate function IR is nonconvex by Theorem C.iii. In the present setup, it is easy to
understand why IR(0) < IV (0), as we now discuss. Let ε be small and n be large. On
the one hand, if â ∈ A is such that lnP1(â) = γ+, we find Rn(x) = 1 for all x ∈ [ân+1],
so

P{x : Rn(x) ≤ eεn} ≥ P {x : Rn(x) = 1}
≥ Pn+1(â

n+1)

= exp ((n + 1)γ+) .

(2.4)

On the other hand, Vn(x) = k implies that x ∈ [u] ∩ T −n−k+1[u] for some u ∈ An , so

P{x : Vn(x) = k} ≤
∑

u∈An

P([u] ∩ T −n−k+1[u]) =
∑

u∈An

Pn(u)2

=
(∑

a∈A
P1(a)2

)n = exp (nqP(−1)) ,

where we have used (2.1) with Q = P. Thus,

P{x : Vn(x) ≤ eεn} ≤
�eεn�∑

k=1

P{x : Vn(x) = k} ≤ exp (nε + nqP(−1)) . (2.5)
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Fig. 3. Rate functions and pressures for a Bernoulli measure with degenerate least probable letter. The coor-
dinates of the point A are (−γ−,−γ− − ln 2). Rate functions are infinite wherever not drawn

Therefore, for ε small enough, the right-hand side of (2.4) decays exponentially faster
than the right-hand side of (2.5) since qP(−1) < γ+. The estimates (2.4) and (2.5),
despite the rather crude inequalities in (2.4), turn out to be sharp at the exponential
scale. Indeed, we find IV (0) = −qP(−1) and IR(0) = −γ+ in Theorems B and C.

Remark 2.1. For Bernoulli measures, in the case Q = P, Wn and Vn have the same law.

We provide three figures corresponding to Bernoulli measures, the first two of which
were displayed in Sect. 1.2:

• Fig. 1: A = {0,1,2} and P1 = 0.2 δ0 + 0.3 δ1 + 0.5 δ2 and Q1 = 0.6 δ0 + 0.3 δ1 +
0.1 δ2.

• Fig. 2: A = {0,1} and P1 = Q1 = 0.3 δ0 + 0.7 δ1.
• Fig. 3: A = {0,1,2} and P1 = Q1 = 0.15 δ0 + 0.15 δ1 + 0.7 δ2. Notice that

lnP1(0) = lnP1(1) = −γ−. Such degeneracy implies that the second term in (1.17)
takes the value ln 2 for s = −γ−. Indeed, when ε is very small, the cardinality
in (1.17) is essentially 2n . As a consequence, IP(−γ−) = −γ− − ln 2. A similar
phenomenon occurs at −γ+ if several letters in A have maximum probability.

2.2. Irreducible Markov measures. Let P and Q be two stationary Markov measures
on A, with transition matrices P = [Pi, j ]i, j∈A and Q = [Qi, j ]i, j∈A respectively. We
assume that the matrices P and Q are irreducible in the sense that there exists M ∈ N

such that all entries in the matrices
∑M

i=1 Pi and
∑M

i=1 Qi are positive. Then,

Pn(xn
1 ) = P1(x1)

n−1∏

k=1

Pxk ,xk+1 and Qn(xn
1 ) = Q1(x1)

n−1∏

k=1

Qxk ,xk+1, (2.6)

where P1 and Q1 are the (unique and fully supported) invariant probability vectors for
the matrices P and Q respectively. We assume, furthermore, that Qi, j = 0 implies
Pi, j = 0, which ensures that Pn � Qn for all n ∈ N. It follows from Lemma A.3 in
[CJPS19] that JSLD and UD hold with Cn = O(1) and τn = M − 1, so the pair (P,Q)

is admissible. Similar arguments also yield PA. It is worth noting that if P is further
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assumed to be aperiodic, i.e. if there exists M ∈ N such that all entries in the matrix
P M are positive, then we can fix � = τn = M − 1 in (1.10), whereas if P is merely
irreducible, then � must be allowed depend on u and v. This illustrates the importance
of the condition � ≤ τn in SLD instead of � = τn ; see the discussion in [CJPS19,
§§2.5;A.1].

Our results thus apply to the setup described here. As in the previous example, the
conclusions of Theorem 0 can be derived using classical methods, which yield natural
expressions for IQ and qQ, as we now show.
Method 1. In view of (2.6), the pressure is easily seen to be given by

qQ(α) = ln spr(M(α)),

where the spectral radius is computed for the deformation of the stochastic matrix P
defined by Mi, j (α) := Pi, j Q−α

i, j . By the Perron–Frobenius theorem and analytic pertur-

bation theory, α �→ qQ(α) is real-analytic, so the LDP for (− 1
n lnQn)n∈N with the rate

function IQ = q∗
Q

follows from the Gärtner–Ellis theorem [DZ09, §2.3].
Method 2. From (2.6), we see that

lnQn(xn
1 ) =

n−1∑

k=1

ln Qxk ,xk+1 + O(1)

for all x ∈ suppP ⊆ suppQ, so the LDP for (− 1
n lnQn)n∈N reduces to that of a

sequence of Birkhoff sums. By Sanov’s theorem applied to the pair empirical measures
En(x) := 1

n

∑n
k=1 δ(xk ,xk+1) ∈ P(A2) and the contraction principle, one derives the

expression

IQ(s) = inf
μ∈L(2)

s

Hr(μ|μ1 ⊗ P), (2.7)

where L(2)
s is the set of probability measures μ on A × A such that μ � μ1 ⊗ P ,

μ1 = μ2, and
∑

i, j∈A
μ(i, j) ln Qi, j = −s;

see [DZ09, §3.1.3]5 or Lemma 4.49 in [DS89]. Here, μ1 (resp. μ2) denotes the first
(resp. second) marginal of μ, and μ1⊗P denotes the measure onA×A defined by (μ1⊗
P)(i, j) = μ1(i)Pi, j . Note that IQ vanishes at the single point s = −∑i, j∈A P2(i, j) ln
Qi, j = hc(P|Q), where the infimum in (2.7) is attained at μ = P2.

We now discuss IR and its convexity, with P = Q a Markov measure as above. It is
well known that

γ+ = max
p≤|A|

max
u∈Ap

1

p
ln

p∏

k=1

Puk ,uk+1 , (2.8)

with cyclic identification u p+1 = u1; see e.g. Remark 1.ii in [Szp93] or [AACG23, §3.4].
The heuristic interpretation is the following: while in the generic IID case discussed in
Sect. 2.1 the probability P{x : Rn(x) ≤ eεn} was, at exponential scale, captured by the

5 There it is assumed that Pi, j > 0 for all i, j ∈ A.
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Table 1. A summary of the notational changes between our results and those of [AACG23]

Pressures Variable Important points
Present paper qP qW qR α α∗ γ+ γ−
[AACG23] Mϕ Wϕ Rϕ q q∗

ϕ γ +
ϕ −v+

ϕ

subset {x : xn+1
1 = âââ · · · ââ} of the event {x : Rn(x) = 1} for n large and ε small, now

P{x : Rn(x) ≤ eεn} is essentially accounted for by the subset {x : xn+p
1 = uuu · · · uur

1}
of the event {x : Rn(x) = p}, for any p and u that saturate (2.8), and r = n − � n

p �p. In
other words, the key scenario for small return times consists of a periodic orbit repeating
some optimal cycle.

By the last part of Theorem C, the function IR is convex if and only if P is the
measure of maximal entropy on suppP, that is if and only if P is the Parry measure of
suppP, which is characterized by the Perron–Frobenius data of the adjacency matrix of
the chain [Par64]; see also [CGS99, §2]. In particular, if Pi, j > 0 for all i, j ∈ A, then
IR is convex if and only if P = π⊗N with π uniform on A.

Remark 2.2. One can show that irreducible multi-step Markov measures also satisfy
the assumptions in the present paper. In fact, Markov measures and multi-step Markov
measures are merely special cases of the equilibrium measures discussed in Sect. 2.3. For
example, in the notation of Sect. 2.3, one takes ϕ(x) = ln Px1,x2 in the case of Markov
measures. An explicit computation of qP for a specific Markov chain is provided in
[AACG23].

2.3. Equilibrium measures for Bowen potentials. As mentioned above, our assumptions
cover the setups of [CGS99] and [AACG23], where the large-deviation results are local
in the sense that there is some strict subinterval A ⊂ R such that the large-deviation
lower bound and upper bound (see (4.1) and (4.2) below) are only shown to be valid
respectively for open sets O contained in A and closed sets � contained in A. The
former work considers a single measure P that is the equilibrium measure for a Hölder-
continuous potential on a topologically mixing Markov subshift; the latter work, for a
potential of summable variations on the full shift.

In particular, Theorem A.i and Theorem C.i prove the following conjecture stated in
[AACG23, §3.3]:

We believe that there exists a non-trivial rate function describing the large devi-
ation asymptotic [on the whole real line] for both return and waiting times, but
this has to be proven using another method.

Moreover, the results of [AACG23, §3.2] are recovered as special cases of Theorem A.ii
and Theorem C.ii. In order to facilitate the translation, we compare notations in Table 1.
Note also that what we refer to as pressure is called “Lq -spectrum” in [AACG23].

We first consider the class of Bowen-regular potentials on the full shift, and then
discuss the extension to some subshifts (including those of [CGS99]) in Remark 2.3. We
recall that a potential ϕ, i.e. a continuous function ϕ : � → R, is called Bowen regular
if

sup

{∣
∣
∣
∣
∣

n−1∑

i=0

ϕ(T i x) −
n−1∑

i=0

ϕ(T i y)

∣
∣
∣
∣
∣
: x ∈ �, n ∈ N, y ∈ [xn

1 ]
}

< ∞, (2.9)
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and that this class strictly contains the class of potentials with summable variations,
which in turn strictly contains the class of Hölder-continuous potentials; we refer the
reader to [Bow74] and [Wal01, §4] for a thorough discussion. We also recall that the
topological pressure of any potential ϕ is given by

ptop(ϕ) := lim
n→∞

1

n
ln
∑

u∈An

esupx∈[u]
∑n−1

i=0 ϕ(T i x). (2.10)

Suppose that P and Q are the (necessarily unique [Bow74]) equilibrium measures for
the Bowen-regular potentials ϕ and ψ on � in the sense that they belong to Pinv(�) and
satisfy

h(P) +
∫

ϕdP = ptop(ϕ) and h(Q) +
∫

ψdQ = ptop(ψ), (2.11)

respectively. The measure P then satisfies the Bowen–Gibbs property with respect to ϕ,
i.e. there exists a constant K ≥ 1 such that

K−1e
∑n−1

i=0 ϕ(T i x)−nptop(ϕ) ≤ P([xn
1 ]) ≤ K e

∑n−1
i=0 ϕ(T i x)−nptop(ϕ), (2.12)

for every x ∈ � [Wal01, §4], and one then deduces that it satisfies UD and SLD with
τn = 0 and Cn = K 3. The same is true for Q with ψ , so JSLD and PA follow from
Remarks 1.2 and 1.5 respectively, and thus the pair (P,Q) is admissible. We note that
(2.12) is central in the analysis in [AACG23, §2.1]. In order to simplify some formulae,
we assume for the remainder of this subsection that

ptop(ϕ) = ptop(ψ) = 0, (2.13)

which results in no loss of generality since adding constants to ϕ and ψ does not alter
the set of equilibrium measures.

In the setup of the present subsection, the conclusions of Theorem 0 are well known
and can be obtained more directly as follows.
Method 1. The bounds (2.12) imply that

qQ(α) = ptop(ϕ − αψ). (2.14)

In particular, we remark that qP(−1) = ptop(2ϕ); this quantity plays an important role
in the formula for qW , and is equal to −IW (0). In this setup, qQ is differentiable and,
for all α ∈ R,

q ′
Q
(α) = −

∫

ψdμα,

where μα is the equilibrium measure for the Bowen-regular potential ϕ − αψ ; see
e.g. Theorems 4.3.3 and 4.3.5 in [Kel98]. The LDP of Theorem 0 then follows from the
Gärtner–Ellis theorem.
Method 2. The same LDP can be obtained by noticing that, in view of (2.12), the large
deviations of (− 1

n lnQn)n∈N are the same as those of the ergodic averages of −ψ with
respect to P, which is a well-studied problem; see e.g. [You90,Kif90,Com09,PS17].
The rate function is then given, for all s ∈ R, by

IQ(s) = − sup

{∫

ϕdη + h(η) : η ∈ Pinv,

∫

ψdη = −s

}

. (2.15)
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The rate function IQ vanishes at a single point s = − ∫ ψdP = hc(P|Q); the supremum
in (2.15) is then reached at η = P.

For all s ≥ 0, the relations (1.19) and (1.22) give

IW (s) = −s − sup

{∫

(ϕ + ψ)dη + h(η) : η ∈ Pinv,

∫

ψdη ≤ −s

}

,

IV (s) = −s − sup

{

2
∫

ϕdη + h(η) : η ∈ Pinv,

∫

ϕdη ≤ −s

}

.

When Q = P, we obtain IW = IV and, for all s ∈ R,

IP(s) = s − sup

{

h(η) : η ∈ Pinv,

∫

ϕdη = −s

}

.

Next, by (1.25), IR differs from IV only at 0, with

IR(0) = −γ+ = − sup
η∈Pinv

∫

ϕdη;

the second identity is proved [AACG23, §4.2].
The very last assertion of Theorem C applies, and IR is convex if and only if P is

the measure of maximal entropy on � (note that suppP = � by (2.12)), i.e. if P is the
uniform measure. Equivalently, in terms of potentials, IR is convex if and only if ϕ is
cohomologous to a constant [AACG23, §3.2].

The authors of [AACG23] first derive the expression (1.20) for qW and the ex-
pression (1.23) for qR . Then, since under the assumptions at hand, the pressure qW
is differentiable on the domain where it is equal to qP, a version of the Gärtner–Ellis
theorem implies the LDP for ( 1

n ln Wn)n∈N restricted to the interval [q ′
P
(−1),−γ−], i.e.

where IP and IW coincide and are finite. In the same way, ( 1
n ln Rn)n∈N is shown to obey

the LDP restricted to the interval [q ′
P
(α∗),−γ−], i.e. where IP and the convex envelope

of IR coincide and are finite; see e.g. Fig. 2. By construction, the approach of [AACG23]
cannot describe the LDP on the interval (0, q ′

P
(−1)) (resp. (0, q ′

P
(α∗))), and in particular

cannot capture the nonconvexity of IR , since IR is not the Legendre–Fenchel transform
of qR in general.

As mentioned in the introduction, our method is very different in spirit. In addition to
the explicit singularities in (1.21) and (1.27), the pressures suffer from the fact that even
qQ may fail to be differentiable under our decoupling assumptions. As a consequence,
the Gärtner–Ellis theorem cannot be used to obtain the LDP, even limited to the above-
mentioned intervals. We are able to circumvent these limitations by going in the opposite
direction: we first establish the LDPs directly, using the Ruelle–Lanford method, and
then we obtain the properties of the pressures as corollaries.

While [CGS99] does not rely on any version of the Gärtner–Ellis theorem, the LDP
there is still restricted to a nonexplicit interval, which is contained in that of [AACG23].
More precisely, the LDP is restricted to an interval of values of s on which IP(s) is small
enough so that some exponentially decaying error terms that arise in the proof decay
faster than e−nIP(s).

Remark 2.3. The above discussion and the results in [AACG23] are limited to the full
shift �, while [CGS99] discusses Markov subshifts �′ that are topologically mixing.
However, the above conclusions extend in a straightforward way to any subshift �′ ⊆ �
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satisfying the flexible specification property of Definition A.2 with τn = O(1), and in
particular to any transitive subshift of finite type; see Remark A.3. Indeed, in this context,
one can show that if P and Q are equilibrium measures for two potentials ϕ and ψ on �′
satisfying Bowen’s condition, i.e. (2.9) with x and y restricted to �′ in the supremum,
then the Bowen–Gibbs property (2.12) holds for both measures and for all x ∈ �′; see
Remark 2.2 in [CT13] and [CT16, §6.5] (with G = L in the notation therein). This in
turn implies JSLD and PA through Lemmas A.4, B.7 and B.8, once we have extended P

and Q to measures on � by setting P(�\�′) = Q(�\�′) = 0. Thus, our results apply,
and the above expressions for the rate functions and pressures remain valid. In particular,
IR is convex if and only if P is the measure of maximal entropy on �′.

We emphasize that the restriction to τn = O(1) is important in two ways in the above
argument: first, in order to apply Lemma A.4, and second, in order to derive (2.12), on
which the hypotheses (A.3) and (A.4) of Lemmas B.7 and B.8 rely in the present setup.

2.4. Beyond Bowen potentials: statistical mechanics and g-measures. The analysis in
Sect. 2.3 relies heavily on the Bowen–Gibbs property (2.12), which is obtained as a
consequence of the (quite restrictive) Bowen condition (2.9) imposed on the potentials ϕ

and ψ .
For the coming discussion, we introduce a weaker version of (2.12). We say that P

is weak Gibbs for the potential ϕ if there exists an eo(n)-sequence (Kn)n∈N such that for
all x ∈ �,

K−1
n e

∑n−1
i=0 ϕ(T i x)−nptop(ϕ) ≤ Pn(xn

1 ) ≤ Kne
∑n−1

i=0 ϕ(T i x)−nptop(ϕ). (2.16)

The notion of weak Gibbs measure was introduced in [Yur02], and in many interesting
situations, equilibrium measures for non-Bowen potentials can still be shown to be weak
Gibbs, see for example [PS20].

The conclusions of Theorem 0 remain valid if P and Q are assumed to be weak
Gibbs for ϕ and ψ respectively; indeed, in view of (2.16), the LDP of Theorem 0 again
boils down to the LDP for the ergodic averages of ψ with respect to P, which is a
well-studied problem; see e.g. [Com09, §5], [Var12], [PS17], and [CJPS19, §A.3], as
well as [EKW94] in the specific setup of Sect. 2.4.1 and [CO00] in the specific setup of
Sect. 2.4.2 below.

However, the weak Gibbs condition does not seem to imply UD and SLD; see Re-
mark B.10. To the best of the authors’ knowledge, the LDP for ( 1

n ln Wn)n∈N, ( 1
n ln Vn)n∈N

and ( 1
n ln Rn)n∈N as well as the validity of (1.20), (1.23) and (1.26) are open problems

for weak Gibbs measures.
We discuss in Sects. 2.4.1 and 2.4.2 below two important classes of measures enjoy-

ing the weak Gibbs property, which are shown to satisfy our decoupling assumptions,
using specific arguments distinct from those in Sect. 2.3. Although they have a large
intersection, these two classes are distinct; see [FGM11,BEvELN18].

Contrary to the regularity conditions in Sect. 2.3, the setups of Sects. 2.4.1 and 2.4.2
allow for phase transitions: the equilibrium measures may fail to be unique and ergodic.
Also, the pressure qQ may fail to be differentiable, so the conclusions of Theorem 0
cannot be obtained using the Gärtner–Ellis theorem anymore.

2.4.1. Absolutely summable interactions in statistical mechanics An important situa-
tion where less regular potentials arise is the statistical mechanics of one-dimensional,
translation-invariant systems; see e.g. [Rue04, Ch. 3–5] or [Sim93, Ch. II–III]. Indeed, if
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� := {�X }X�Z is a translation-invariant collection of functions �X : AX → R (inter-
changeably considered as functions on AZ), called interactions, satisfying the absolute
summability condition

∑

X�Z

0∈X

‖�X‖∞ < ∞, (2.17)

then there is a well-known correspondence between translation-invariant Gibbs states —
either defined using the Dobrushin–Lanford–Ruelle equations, or using convex combi-
nations of weak limits of finite-volume Gibbs measures — and equilibrium measure (on
AZ) for the “energy per site” potential

ϕ =
∑

X�Z

min X=1

�X ,

which we see both as a function on AZ and on � = AN.6

Let now P (resp. Q) be the marginal on � of some translation-invariant Gibbs state
on AZ for the absolutely summable interaction � (resp. �). Equivalently, P (resp. Q) is
an equilibrium measure for the potential ϕ (resp. ψ) on �.

Since ϕ and ψ may fail to satisfy Bowen’s regularity condition, we cannot use the
Bowen–Gibbs property (2.12). However, the Dobrushin–Lanford–Ruelle equations al-
low to prove that P and Q satisfy UD and SLD with τn = 0, but with a possibly
unbounded7 sequence (Cn)n∈N; see Lemma 9.2 in [LPS95]. JSLD and PA then follow
from Remarks 1.2 and 1.5. Our main results thus apply, and we now identify some of
the quantities at play in physical terms.

The associated topological pressure ptop(ϕ) can be thought of as a free energy density:
with

Un :=
∑

X⊆[1,n]
�X

the Hamiltonian (up to a factor of minus the inverse temperature) corresponding to � in
the finite volume [1, n] with free boundary conditions, we have

Un =
n−1∑

i=0

ϕ ◦ T i + o(n), (2.18)

so

F(�) := lim
n→∞

1

n
ln
∑

u∈An

eUn(u) = ptop(ϕ).

Using the Dobrushin–Lanford–Ruelle equations, one can show that

Pn(u) = eUn(u)−nF(�)+o(n), (2.19)

6 By our choice of summation along X � Z such that min X = 1, the function ϕ only depends on the
positive coordinates of x ∈ AZ. This convention is equivalent to the more common choice of summing over
X � Z such that 0 ∈ X , taking care to divide each term by the cardinality of X ; see e.g. [Rue04, §3.3].

7 A notable case where Cn = O(1) is when the interactions have finite range; in this case also Bowen’s
regularity condition and (2.12) hold. We refer the reader to [Rue04, Ch. 5].
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which, combined with (2.18), shows that P is weak Gibbs in the sense of (2.16). The
same is true of Q. To simplify the discussion, we shall assume going forward that

F(�) = F(�) = 0, (2.20)

which can be achieved by adding suitable constants to �{i} and �{i} for every i ∈ Z.
The expressions for qQ and the rate functions obtained in Sect. 2.3 remain valid,

as replacing (2.12) with (2.16) does not affect these computations (note that (2.20)
implies (2.13)). There,

∫
ϕdη and

∫
ψdη are simply understood as the specific energies

of the state η.
We then obtain, either by (2.14) or by direct computation using (2.19), the relations

qQ(α) = F(� − α�) and qP(α) = F((1 − α)�),

valid for all α ∈ R. We remark that qP(α) is related to the free energy density at (minus
the) inverse temperature 1−α. Moreover, in this setup, γ+ takes the form of (minus) the
asymptotic ground-state energy per unit volume:

γ+ = lim
n→∞

1

n
sup

u∈An
Un(u). (2.21)

The summability condition (2.17) allows for phase transitions, i.e. the coexistence of
several equilibrium measures, and thus the measuresP andQmay fail to be ergodic, while
still satisfying our decoupling assumptions. As a consequence, qQ is not differentiable
in general.

Remark 2.4. Again, we have limited the above discussion to the full shift �, but the
conclusions remain true on many subshifts. In particular, they hold if the subshift satisfies
the flexible specification property of Definition A.2 with τn = O(1). Indeed, although
the technical details are slightly involved, one can then adapt the arguments of Lemma 9.2
in [LPS95, §9] in order to obtain (A.3) and (A.4), so that Lemmas B.7 and B.8, together
with Lemma A.4, establish UD, SLD, JSLD and PA. In particular, this applies to any
transitive subshift of finite type.

2.4.2. g-measures A continuous function g : � → (0, 1] is called a g-function on � if
∑

y∈T −1{x}
g(y) = 1

for all x ∈ �. In this case, the potential ϕ = ln g has vanishing topological pressure
(ptop(ϕ) = 0), and any equilibrium measure (recall (2.11)) for the potential ϕ is a called a
g-measure on �; see e.g. [Wal75,PPW78,Wal05]. LetP be such an equilibrium measure.
It is then well known that suppP = � and that

gn(x) := Pn(xn
1 )

Pn−1(xn
2 )

(2.22)

defines a sequence of continuous functions that converges uniformly to g on �; see e.g.
[PPW78, §4]. As shown in Lemma B.11, this uniform convergence has two important
consequences. First, it implies that P satisfies the weak Gibbs condition. Second, it
implies that there is an eo(n)-sequence (Dn)n∈N such that

D−1
n Pn(xn

1 )Pm(xn+m
n+1 ) ≤ Pn+m(xn+m

1 ) ≤ DnPn(xn
1 )Pm(xn+m

n+1 )
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for all x ∈ �, and all n, m ∈ N, which implies UD and SLD with τn = 0, but with
a possibly unbounded sequence (Cn)n∈N. By Remark 1.5, PA holds as well. If Q is a
second g-measure on � (for a possibly different g-function g′), then JSLD holds as
well by Remark 1.2. Our results thus apply, and once again, the expressions obtained in
Sect. 2.3 remain valid thanks to (2.12), with ϕ = ln g and ψ = ln g′.
Remark 2.5. The above discussion can easily be generalized to transitive Markov sub-
shifts �′ ⊆ �. However, developing a theory of g-measures on more general subshifts
seems to be more delicate, and goes beyond the scope of the present paper. Still, without
any reference to the general theory of g-measures, one obtains by combining Lem-
mas B.11, B.7 and B.8 that our decoupling assumptions hold if �′ satisfies the flexible
specification property and the abundant periodic orbit property of Definition A.2, and if
one assumes that the sequence (gn)n∈N defined by (2.22) converges uniformly to some
continuous function g : �′ → (0, 1]; see Lemma B.11 for a precise statement.

We conclude this subsection by noting two interesting references. First, Hulse con-
structed in [Hul06] an example of a g-measure that is not ergodic, showing once again
that UD, SLD and PA do not imply ergodicity.8 Second, in the framework of g-measures,
the large deviations of empirical entropies (which are also entropy estimators) were stud-
ied in [CG05].

2.5. Hidden Markov models and lack of exponential tightness. A hidden Markov mea-
sure P on � with finite hidden alphabet AH is obtained from a shift-invariant Markov
measure P

H on �H := (AH)N and a surjective map f : AH → A by prescribing the
marginals Pn := P

H
n ◦ ( f ⊗n)−1 for all n ∈ N. The name “hidden Markov model” refers

to the pair (PH,P). There exist several different characterizations of hidden Markov
measures; one which is particularly useful from the point of view of decoupling proper-
ties is the representation in terms of products of matrices discussed in Proposition 2.25
in [BCJP21]. The reader is also encouraged to consult Example 2.25 in [CJPS19]. Using
that |AH| < ∞, it is straightforward to show that, if PH and Q

H are irreducible, station-
ary Markov measures on �H that satisfy P

H
n � Q

H
n for all n ∈ N, then P and Q defined

using the same function f satisfy UD, JSLD and PA, and Theorems 0 and A–C apply.
Obviously, this is a generalization of the setup of Sect. 2.2, but in a completely

different spirit from that of Sect. 2.3: hidden Markov measures can be far from Gibbsian;
see e.g. Theorem 2.10 in [BCJP21].9 The assumption |AH| < ∞ ensures the existence
of a constant c ≥ 0 such that

inf
x∈suppP

Pn(xn
1 ) ≥ e−cn and inf

x∈suppQ
Qn(xn

1 ) ≥ e−cn, (2.23)

so 0 ≤ − 1
n lnQ1(xn

1 ) ≤ c for P-almost every x ∈ �. These bounds imply exponential
tightness and thus guarantee goodness of the rate function IQ. In fact, IQ is infinite on
(c,∞), and the same is then automatically true of IW , IV and IR . By the same token,
the bounds (2.23) imply that qQ ≤ cα for all α ≥ 0, so qQ, qW , qR and qV are finite
everywhere. The bounds (2.23) and these consequences are a common feature of all the
examples in Sects. 2.1–2.4.

8 Ergodicity follows from SLD if we further assume that τn = O(1) and Cn = O(1); see Lemma A.2 in
[CJPS19] for a slightly more general sufficient condition.

9 Historical details and references are given in the discussion of Blackwell–Furstenberg–Walters–van den
Berg measures in [BCJP21, §2.2]. Important references on the topic of Gibbsianity of hidden Markov measures
(or lack thereof) include [LMV98, §3], [CU11] and [Ver11].
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Fig. 4. Illustration of Example 2.6. In the right picture, qQ(α) = qW (α) = ∞ for all α > 0

Dropping the assumption that AH is finite, the class of hidden Markov measures
allows for examples where (2.23) fails, but one then needs to verify on a case-by-case
basis whether UD, JSLD and PA are satisfied in order for our results to apply. Using
AH = {0} ∪ N as in [CJPS19, §A.2], one easily constructs fully supported, admissible
pairs (P,Q) on A = {a,b}, satisfying also PA, but violating either or both inequalities
in (2.23). We limit ourselves to providing two sets of parameters following the notation
in [CJPS19, §A.2]: Examples 2.6 and 2.7 are illustrated in Figs. 4 and 5, respectively.

Example 2.6. Define P using γ (n) = n ln 2, and Q using γ̂ (n) = 2n + 0.15n2. Then, the
measure P is uniform and Q(bn) ∼ e−γ̂ (n). Note that the quadratic term in the definition
of γ̂ (n) makes the second bound in (2.23) fail. Here,

qQ(α) ≥ lim inf
n→∞

1

n
ln(Pn(bn)Qn(bn)−α)

= − ln 2 + α lim inf
n→∞

γ̂ (n)

n
,

so qQ(α) = ∞ for all α > 0. One can show that q ′
Q
(0−) < ∞ and that IQ(s) = IW (s) =

0 for all s ≥ q ′
Q
(0−). Thus, the sequence (− 1

n lnQn)n∈N is not exponentially tight with
respect to P, and the rate functions IQ and IW are not good; see Fig. 4.

Example 2.7. Define P = Q using γ (0) = γ̂ (0) = 0, γ (n) = γ̂ (n) = 0.6 en for n ∈ N.
Then, we have P(bn) = Q(bn) ∼ e−γ (n) and both bounds in (2.23) fail. Here, qP is
infinite for all α > 1, and q ′

P
(1−) = ∞. Each sequence of interest is exponentially tight

and has a rate function that is good, but remains finite on an unbounded interval; in other
words γ− = −∞.

Remark 2.8. The possible lack of exponential tightness is specific to the case where
P 
= Q; when P = Q, our assumptions imply that all the random variables discussed
in the paper are exponentially tight and that the corresponding rate functions are good.
At the root of this fact is the exponential tightness of (− 1

n lnPn)n∈N with respect to P

(Theorem 0.iii). This exponential tightness will be derived as a consequence of (1.16),
but it can also be seen directly: for any M ≥ 0,

P

{

x : −1

n
lnPn(xn

1 ) ≥ M

}

= P{x : Pn(xn
1 ) ≤ e−nM } ≤ |A|ne−Mn . (2.24)



Large Deviations of Return Times Page 27 of 69 135

Fig. 5. Illustration of Example 2.7. In the left picture, the dashed black asymptote is given by the equation
y = x − qP(1), and in the right picture, qP(α) = qW (α) = qV (α) = qR(α) = ∞ for all α > 1

We will come back to this point in Remark 5.3.

Remark 2.9. This class of examples also allows for cases where the pressure qQ is not
differentiable — and hence where the Gärtner–Ellis route cannot provide the conclusions
of Theorem 0. Indeed, using the parameters γ (n) = γ̂ (n) = n

10 + 4 ln(1 + n
4 ) yields

a situation where qQ is not differentiable at α0 ≈ −0.1769 and the rate functions are
affine on an interval corresponding to the subdifferential of qQ at α0.

3. Key Estimates

This section is devoted to technical estimates on the distribution of Wn , Rn and Vn at large
but finite n ∈ N. We start with estimates for Wn and then use those for our analysis of Rn
and Vn . In order to do so, we first need a convenient reformulation of our decoupling
assumptions.

We show in Lemma B.2 that, at the cost of replacing Cn with Cn|A|τn (which also
satisfies (1.8)), UD implies that for every n ∈ N, A ∈ Fn and B ∈ F ,

P
(

A ∩ T −n−τn B
) ≤ CnP(A)P(B). (3.1)

In the same way, we show in Lemma B.3 that at the cost of replacing Cn with (τn +
1)Cn , SLD implies that for every n ∈ N, A ∈ Fn and B ∈ F ,

max
0≤�≤τn

P

(
A ∩ T −n−� B

)
≥ C−1

n P(A)P(B). (3.2)

We shall freely use the form (3.1) of UD and (3.2) of SLD throughout the paper.

3.1. Waiting times. Because Wn : � × � → N is (Fn ⊗ F)-measurable, we will
sometimes identify it to a function An × � → N denoted by the same symbol.

Lemma 3.1. Assume Q satisfies SLD. Then, for all m, n ∈ N and u ∈ An,

Q{y : Wn(u, y) = m} ≤ Qn(u)(1 − C−1
n Qn(u))

⌊
m−1
n+τn

⌋

(3.3)
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and

Q{y : Wn(u, y) ≥ m} ≤ (1 − C−1
n Qn(u))

⌊
m−1
n+τn

⌋

. (3.4)

Proof. Let us fix n, m and u as in the statement, and let k := �m−1
n+τn

�. First, if k = 0,

then (3.4) is trivial and (3.3) holds since {y : Wn(u, y) = m} ⊆ T 1−m[u] and Q is
shift invariant. Consider now the case k ∈ N. In view of SLD (recall (3.2)) and shift
invariance, we may inductively pick k integers 0 ≤ �1, �2, . . . , �k ≤ τn such that the
intersections inductively defined by

A0 := [u] and A j := [u]c ∩ T −n−� j A j−1

for j = 1, . . . , k satisfy Q
([u] ∩ T −n−� j A j−1

) ≥ C−1
n Qn(u)Q(A j−1), and thus also

Q(A j ) = Q(A j−1) −Q([u] ∩ T −n−� j A j−1) ≤ Q(A j−1)(1 − C−1
n Qn(u)). (3.5)

Iterating (3.5) starting from A0 yields

Q(Ak) ≤ Qn(u)(1 − C−1
n Qn(u))k . (3.6)

Let M := {m − jn −∑ j
i=1 �i }k

j=1. By construction, kn +
∑k

i=1 � j ≤ k(n + τn) < m,
so M ⊆ [1, m − n] ⊆ [1, m − 1]. As a consequence,

{y : Wn(u, y) = m} = T 1−m[u] ∩
m−1⋂

m′=1

T 1−m′ [u]c

⊆ T 1−m[u] ∩
⋂

m′∈M

T 1−m′ [u]c

= T 1−m+nk+
∑k

j=1 � j Ak .

Thus, by shift invariance and (3.6), we readily obtain (3.3). The proof of (3.4) is exactly
the same with A0 replaced by �. ��
Remark 3.2. The bounds (3.5) and (3.6) are inspired by [Kon98, §2], and were already
adapted to selective decoupling conditions in [CDEJR23a]. It might be surprising that
the upper bound (3.3) relies on the lower decoupling assumption SLD. In fact, even if
τn = 0 for all n, using UD would yield Q(Ak) ≤ Ck

nQn(u)(1−Qn(u))k instead of (3.6);
the extra factor of Ck

n is too crude since we will be interested in the case where k � n.
The opposite will happen in Lemma 3.4, where a lower bound will be proved using UD;
see (3.13).

If Qn(u) = 0, then Q{y : Wn(u, y) = m} ≤ Q(T 1−m[u]) = Qn(u) = 0 for all
m ∈ N, and thus Wn(u, · ) is almost surely infinite. Conversely, if Q satisfies SLD, the
bound (3.4) ensures that Wn(u, · ) is almost surely finite whenever Qn(u) > 0. This last
observation is at the heart of the next lemma.

Lemma 3.3. Let n ∈ N, let Q satisfy SLD, and assume that Pn � Qn. Then, the random
variable Wn is (P⊗Q)-almost surely finite.
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Proof. This is a consequence of the decomposition

Wn(x, y) =
∑

u∈An

1[u](x)Wn(u, y),

the bound (3.4), and the absolute continuity assumption. ��
We now turn to lower bounds on the distribution of Wn(u, · ). The following lemma

will be useful when (1 − CnQn(u))

⌈
m−1
n+τn

⌉

is close to 1.

Lemma 3.4. Assume Q satisfies UD. Then, for all n, m ∈ N and u ∈ An such that
CnQn(u) ≤ 1,

Q{y : Wn(u, y) = m}
≥ 1

n + τn
Qn(u)

(

1 − (n + τn)

(

1 − (1 − CnQn(u))

⌈
m−1
n+τn

⌉))

.
(3.7)

Proof. Let us fix n, m and u as in the statement. We first prove that it suffices to establish
the bound

Q{y : k(n + τn) < Wn(u, y) ≤ (k + 1)(n + τn)}
≥ Qn(u)

(
1 − (n + τn)

(
1 − (1 − CnQn(u))k

)) (3.8)

for all k ∈ N ∪ {0}. Since

{y : Wn(u, y) = t + 1} ⊆ T −1{y : Wn(u, y) = t} (3.9)

for all t ∈ N, the probability Q{y : Wn(u, y) = t} is nonincreasing in t . As a con-
sequence, the left-hand side of (3.8) is bounded above by (n + τn)Q{y : Wn(u, y) =
k(n + τn) + 1}, so (3.8) implies that

Q{y : Wn(u, y) = 1 + k(n + τn)}
≥ 1

n + τn
Qn(u)

(
1 − (n + τn)

(
1 − (1 − CnQn(u))k

))
.

By nonincreasingness, the same lower bound applies to Q{y : Wn(u, y) = m} for all k
such that 1 + k(n + τn) ≥ m, and thus (3.8) indeed implies (3.7).

We now establish (3.8). For every y ∈ T 1−(k+1)(n+τn)[u] =: A we have Wn(u, y) ≤
(k + 1)(n + τn), and for every y ∈ ⋂k(n+τn)

r=1 T 1−r [u]c we have Wn(u, y) > k(n + τn).
As a consequence,

Q{y : k(n + τn) < Wn(u, y) ≤ (k + 1)(n + τn)} ≥ Q

⎛

⎝A ∩
k(n+τn)⋂

r=1

T 1−r [u]c
⎞

⎠ .

(3.10)

We now write
⋂k(n+τn)

r=1 T 1−r [u]c =⋂n+τn
j=1 B j , where for 1 ≤ j ≤ n + τn ,

B j :=
k−1⋂

d=0

T 1−d(n+τn)− j [u]c.
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Notice that for each j , the events whose intersection defines B j are separated by “gaps”
of size τn , which will allow to use UD below. By a union bound, (3.10) implies that

Q{y : k(n + τn) < Wn(u, y) ≤ (k + 1)(n + τn)} ≥ Q

⎛

⎝A ∩
n+τn⋂

j=1

B j

⎞

⎠

= Q(A) −Q

⎛

⎝
n+τn⋃

j=1

(A ∩ Bc
j )

⎞

⎠

≥ Q(A) −
n+τn∑

j=1

Q(A ∩ Bc
j )

= Q(A) −
n+τn∑

j=1

(Q(A) −Q(A ∩ B j )).

By shift invariance, Q(A) = Qn(u), and thus the proof of (3.8) will be complete once
we have shown that

Q(A ∩ B j ) ≥ Qn(u)(1 − CnQn(u))k . (3.11)

Fix 1 ≤ j ≤ n + τn . We have

A ∩ B j = T 1− j
(

T j−(k+1)(n+τn)[u] ∩ B1

)
= T 1− j Fk, (3.12)

with F0, . . . , Fk inductively defined by

F0 := T j−n−τn [u] and Fi := [u]c ∩ T −n−τn Fi−1

for i = 1, . . . , k. By UD (recall (3.1)),

Q(Fi ) = Q(Fi−1) −Q([u] ∩ T −n−τn Fi−1) ≥ Q(Fi−1)(1 − CnQn(u)).

Iterating this bound starting with F0 yields

Q(Fk) ≥ Qn(u)(1 − CnQn(u))k . (3.13)

Combining this with (3.12) and using shift invariance establishes (3.11), as claimed. ��
The next proposition makes precise the “cut-off” phenomenon sketched in (1.30) and

uses the notation

Un(s) := {u ∈ An : Qn(u) ≤ e−ns} (3.14)

for s > 0.

Proposition 3.5. Suppose that Q satisfies UD and SLD, and let P ∈ Pinv(�) satisfy
Pn � Qn for all n ∈ N. Then, for all s > 0 and all 0 < δ ≤ ε < s

2 , we have, for all
large enough n,

P⊗Q{(x, y) : 1
n ln Wn(x, y) ∈ B(s, ε)}

≤ en(s+ε)
∑

u∈Un(s−ε−δ)

Qn(u)Pn(u) + exp(−e
nδ
2 ) (3.15)
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and

P⊗Q{(x, y) : 1
n ln Wn(x, y) ∈ B(s, ε)} ≥ en(s−δ)

∑

u∈Un(s+δ)

Qn(u)Pn(u). (3.16)

Proof. The key idea in this proof is to show that, when 1
n ln m ∈ B(s, ε), the �m−1

n+τn
�-th

power of (1−C−1
n Qn(u)) in (3.3) vanishes superexponentially for all u /∈ Un(s −ε−δ)

as n → ∞, and that the �m−1
n+τn

 -th power of (1 − CnQn(u)) in (3.7) is very close to 1
for all u ∈ Un(s + δ) as n → ∞. We fix s, ε and δ as in the statement and first note that

P⊗Q{(x, y) : 1
n ln Wn(x, y) ∈ B(s, ε)}

=
∑

u∈An

Pn(u)Q{y : 1
n ln Wn(u, y) ∈ B(s, ε)}. (3.17)

Proof of (3.15). Notice that |{m ∈ N : 1
n ln m ∈ B(s, ε)}| ≤ en(s+ε). Thus, using (3.17),

the nonincreasingness of t �→ Q{y : Wn(u, y) = t} (recall (3.9)), and then Lemma 3.1,
we find

P⊗Q{(x, y) : 1
n ln Wn(x, y) ∈ B(s, ε)}

≤ en(s+ε)
∑

u∈An

Pn(u)Q{y : Wn(u, y) = mn}

≤ en(s+ε)
∑

u∈An

Pn(u)Qn(u)(1 − C−1
n Qn(u))kn ,

(3.18)

where mn := �en(s−ε) and kn := ⌊mn−1
n+τn

⌋
. We now split the above sum into a sum over

Un(s − ε − δ) and a sum over U c
n (s − ε − δ). Clearly,

∑

u∈Un(s−ε−δ)

Pn(u)Qn(u)(1 − C−1
n Qn(u))kn ≤

∑

u∈Un(s−ε−δ)

Pn(u)Qn(u), (3.19)

while on the other hand,

∑

u∈Uc
n (s−ε−δ)

Pn(u)Qn(u)(1 − C−1
n Qn(u))kn ≤ (1 − C−1

n e−n(s−ε−δ))kn . (3.20)

But using the inequality (1 − x)kn ≤ e−xkn , we find

en(s+ε)(1 − C−1
n e−n(s−ε−δ))kn ≤ exp

(
n(s + ε) − C−1

n e−n(s−ε−δ)kn

)

≤ exp(−e
nδ
2 )

for n large enough, thanks to the fact that kn ≥ en(s−ε)−o(n) and Cn = eo(n) as n → ∞.
Therefore, using the estimates (3.19) and (3.20) in (3.18) indeed yields (3.15).
Proof of (3.16). This time, note that |{m ∈ N : 1

n ln m ∈ (s − ε, s]}| ≥ 1
2 ens for

n large enough, and set mn := �ens� and kn := ⌈mn−1
n+τn

⌉
. Then, by (3.17) and the
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nonincreasingness of t �→ Q{y : Wn(u, y) = t}, we obtain

P⊗Q{(x, y) : 1
n ln Wn(x, y) ∈ B(s, ε)}

≥ P⊗Q{(x, y) : 1
n ln Wn(x, y) ∈ (s − ε, s]}

≥ ens

2

∑

u∈An

Pn(u)Q{y : Wn(u, y) = mn}

≥ ens

2

∑

u∈Un(s+δ)

Pn(u)Q{y : Wn(u, y) = mn}.

Then, for n large enough so that Cne−n(s+δ) ≤ 1, we can apply Lemma 3.4 to every
u ∈ Un(s + δ), and we obtain that

P⊗Q{(x, y) : 1
n ln Wn(x, y) ∈ B(s, ε)}

≥ ens

2

∑

u∈Un(s+δ)

Pn(u)Qn(u)
(
(n + τn)−1 −

(
1 − (1 − CnQn(u))kn

))

≥ ens

2

∑

u∈Un(s+δ)

Pn(u)Qn(u)
(
(n + τn)−1 −

(
1 − (1 − Cne−n(s+δ))kn

))
.

(3.21)

Notice that by Bernoulli’s inequality, (1−x)kn ≥ 1−xkn for all x ≤ 1. As a consequence,
for all n large enough,

(1 − Cne−n(s+δ))kn ≥ 1 − Cne−n(s+δ)kn ≥ 1 − e−
nδ
2 ,

where we have used that kn ≤ ens+o(n) and Cn = eo(n). Substitution into (3.21) yields

P⊗Q{(x, y) : 1
n ln Wn(x, y) ∈ B(s, ε)}

≥ ens

2

∑

u∈Un(s+δ)

Pn(u)Qn(u)
(
(n + τn)−1 − e−

nδ
2

)
,

from which the lower bound (3.16) readily follows when n is large enough. ��

3.2. From waiting times to return times.

Lemma 3.6. Assume P satisfies UD. Then, for all s > 0 and all 0 < ε < s, we have,
for all large enough n,

P{x : 1
n ln Rn(x) ∈ B(s, ε)} ≤ Cn

∑

u∈An

Pn(u)P{x : 1
n ln Wn(u, x) ∈ B(s, 2ε)}

and

P{x : 1
n ln Vn(x) ∈ B(s, ε)} ≤ Cn

∑

u∈An

Pn(u)P{x : 1
n ln Wn(u, x) ∈ B(s, 2ε)}.
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Proof. Fix s > ε > 0, fix n ∈ N large enough so that

en(s−ε) > n + τn − 1 and en(s−2ε) ≤ en(s−ε) + 1 − n − τn, (3.22)

and fix u ∈ An . Then, for all x ∈ [u] such that 1
n ln Rn(x) ∈ B(s, ε), we have

Rn(x) = Wn(u, T x) ∈ (en(s−ε), en(s+ε)). The first condition in (3.22) implies that
Wn(u, T n+τn x) = Wn(u, T x) + 1 − n − τn for all such x , so that, also using the second
condition in (3.22),

Wn(u, T n+τn x) ∈ (en(s−ε) + 1 − n − τn, en(s+ε) + 1 − n − τn) ⊂ (en(s−2ε), en(s+2ε)).

As a consequence, by UD,

P([u] ∩ {x : 1
n ln Rn(x) ∈ B(s, ε)}) ≤ P([u] ∩ {x : 1

n ln Wn(u, T n+τn x) ∈ B(s, 2ε)})
≤ CnPn(u)P{x : 1

n ln Wn(u, x) ∈ B(s, 2ε)}.
Taking the sum over u ∈ An proves the desired bound for Rn . The proof of the bound
for Vn is almost identical: for all x ∈ [u] such that 1

n ln Vn(x) ∈ B(s, ε), we have this time
Wn(u, T n x) ∈ (en(s−ε), en(s+ε)), so that Wn(u, T n+τn x) ∈ (en(s−ε)−τn, en(s+ε)−τn) ⊂
(en(s−2ε), en(s+2ε)). The remainder of the argument is unchanged. ��
Lemma 3.7. Assume P satisfies SLD. Then, for all s > 0 and all 0 < ε < s, we have,
for all large enough n,

P{x : 1
n ln Rn(x) ∈ B(s, ε)} ≥ C−1

n

n + τn

∑

u∈An

Pn(u)P{x : 1
n ln Wn(u, x) ∈ B(s, 1

2ε)}

and

P{x : 1
n ln Vn(x) ∈ B(s, ε)} ≥ C−1

n

1 + τn

∑

u∈An

Pn(u)P{x : 1
n ln Wn(u, x) ∈ B(s, 1

2ε)}.

Proof. We first prove the statement concerning Rn . Fix s > ε > 0, fix n large enough
so that

en(s+ 1
2 ε) + n + τn − 1 < en(s+ε), (3.23)

and fix u ∈ An . By SLD, there exists 0 ≤ � ≤ τn such that the set

Au := [u] ∩ T −n−�{x : 1
n ln Wn(u, x) ∈ B(s, 1

2ε)}
satisfies

P(Au) ≥ C−1
n Pn(u)P{x : 1

n ln Wn(u, x) ∈ B(s, 1
2ε)}. (3.24)

We now claim that

Au ⊆
n+τn⋃

j=1

T 1− j {x : 1
n ln Rn(x) ∈ B(s, ε)}. (3.25)

To prove (3.25), take an arbitrary x ∈ Au , and let m := Wn(u, T n+�x), which, by the
definition of Au , satisfies 1

n ln m ∈ B(s, 1
2ε). Then, the set I := {i ∈ N : xi+n−1

i = u}
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contains 1 and n +�+m, but excludes {n +�+1, n +�+2, . . . , n +�+m −1}. Hence, with
j := max{i ∈ I : i ≤ n + �} we find Rn(T j−1x) = n + � + m − j ∈ [m, m + n + τn − 1],
so by (3.23) we obtain (3.25).

By taking the union over u ∈ An in the left-hand side of (3.25), and using shift
invariance to bound the probability of the right-hand side, we obtain

∑

u∈An

P(Au) = P

(
⋃

u∈An

Au

)

≤ (n + τn)P{x : 1
n ln Rn(x) ∈ B(s, ε)}. (3.26)

In view of (3.24), we have completed the proof of the statement about Rn .
To adapt the proof for Vn , it suffices to replace the definition of j with j := max{i ∈

I : i ≤ 1 + �}; then Vn(T j−1x) = 1 + � + m − j ∈ [m, m + τn] and the same arguments
apply, with the factor (n + τn) replaced by (1 + τn) in (3.26). ��
Lemma 3.8. Assume P satisfies SLD. Then, for every n ∈ N, the random variables Rn
and Vn are P-almost surely finite.

Proof. In view of (3.4), the random variable Wn(u, · ) is P-almost surely finite for every
fixed u ∈ An with Pn(u) > 0. By shift invariance, so is Wn(u, · ) ◦ T k for each k. In
view of the expressions

Rn(x) =
∑

u∈An

1[u](x)Wn(u, T x),

Vn(x) =
∑

u∈An

1[u](x)Wn(u, T n x),

the conclusion is immediate. ��
Remark 3.9. An alternative way of showing that Rn and Vn are almost surely finite is to
use the Poincaré recurrence theorem, see e.g. Theorem 1.4 in [Wal82].

4. Weak LDPs and Ruelle–Lanford Functions

We now briefly recall some terminology from the theory of large deviations, limiting
ourselves to sequences of real-valued random variables. See for example [DS89,Ell06,
DZ09] for proper introductions to the field. Let (Zn)n∈N be a sequence of (almost surely
finite) real-valued random variables on a probability space (�∗,P∗). The cases of interest
will be

• �∗ = � × �, P∗ = P⊗Q and Zn = 1
n ln Wn for Theorem A;

• �∗ = �, P∗ = P, with Zn = − 1
n lnQn , Zn = 1

n ln Vn and Zn = 1
n ln Rn for,

respectively, Theorems 0, B and C.

The sequence (Zn)n∈N is said to satisfy the large deviation principle (LDP) if there
exists a lower semicontinuous function I : R → [0,∞] such that

− inf
s∈O

I (s) ≤ lim inf
n→∞

1

n
lnP∗{x : Zn(x) ∈ O} (4.1)

for every open set O ⊆ R and

lim sup
n→∞

1

n
lnP∗{x : Zn(x) ∈ �} ≤ − inf

s∈�
I (s) (4.2)
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for every closed set � ⊆ R. The bounds (4.1) and (4.2) are respectively called the large-
deviation lower bound and the large-deviation upper bound, and the function I — which
is unique when it exists — is called the rate function. Following standard terminology,
we say that I is a good rate function if it properly diverges as s → ±∞. We also recall
that the large-deviation upper bound applied to the set R implies that infs∈R I (s) = 0.
Ubiquitous in the theory of large deviations is the question of whether the rate function
is convex and can be expressed as the Legendre–Fenchel transform of the corresponding
pressure. A detailed analysis of these considerations for the random variables of interest
is postponed to Sect. 5.

Our analysis will require additional vocabulary which is discussed e.g. in [DZ09,
§1.2]. The sequence (Zn)n∈N is said to satisfy the weak large deviation principle if (4.1)
holds for all open sets O ⊆ R, and (4.2) holds for all compact sets � � R. We shall
sometimes refer to the standard LDP as the full LDP when we need to emphasize the
contrast to the weak LDP used as a stepping stone towards the full LDP. The following
notion will play a role in doing so: the sequence (Zn)n∈N is said to be exponentially tight
if, for every β ∈ R, there exists M > 0 such that P∗{x : Zn(x) /∈ [−M, M]} ≤ e−βn

for all n large enough. To be more precise, we will appeal to the two following facts for
real-valued sequences. First, if the weak LDP holds and the sequence is exponentially
tight, then the full LDP holds with a good rate function. Second, if the full LDP holds
with a good rate function, then the sequence is exponentially tight. While all our LDPs
are full, and while exponential tightness does play a role in our analysis, we emphasize
that the sequence ( 1

n ln Wn)n∈N need not be exponentially tight, as illustrated in Sect. 2.5.
As mentioned, we will first prove the weak LDP. We will do so using Ruelle–Lanford

(RL) functions. We introduce the lower RL function I : R → [0,∞] defined by10

I (s) := − lim
ε→0

lim inf
n→∞

1

n
lnP∗{x : Zn(x) ∈ B(s, ε)},

and the upper RL function I : R → [0,∞] defined by

I (s) := − lim
ε→0

lim sup
n→∞

1

n
lnP∗{x : Zn(x) ∈ B(s, ε)}.

It follows from their definition that I and I are lower semicontinuous, and that I ≤ I .
Moreover, the weak LDP holds if and only if we have the equality

I (s) = I (s) (4.3)

for every s ∈ R; see e.g. [DZ09, §4.1.2] or [CJPS19, §3.2]. The common value in (4.3)
must then coincide with I (s).

The core of this section is devoted to proving the weak LDP for the sequences of
interest via the validity of (4.3). To be more precise, for each sequence, both RL functions
are shown to be equal to the proposed rate function, as detailed in Table 2. We consider
separately the case s > 0 in Sect. 4.1 and the case s = 0 in Sect. 4.2, noting that the
case s < 0 is trivial by mere nonnegativity of the random variables under study. We
denote by I W , I V and I R (resp. I W , I V and I R) the lower (resp. upper) RL functions
associated with our sequences.

10 The name “RL function” was first used in [LPS94,LPS95]. The method of RL functions is often used
in conjunction with subadditive arguments; this is in particular the case of the derivation of Theorem 0 in
[CJPS19]. In the present paper, once Theorem 0 is taken for granted, the proof of our results is not of the
subadditive kind.
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Table 2. Assumptions, proposed rate function and references to where the key equality (4.3) is established
for the three weak LDPs to be proved

Random Probability Assumptions Proposed Eq. (4.3) Eq. (4.3)
variable space rate function for s > 0 for s = 0
1
n ln Wn (�2,P⊗Q) admissibility IW (1.19) Prop. 4.2 Prop. 4.4
1
n ln Vn (�,P) SLD, UD IV (1.22) Prop. 4.3 Prop. 4.5
1
n ln Rn (�,P) SLD, UD, PA IR (1.25) Prop. 4.3 Prop. 4.7

4.1. At positive values. Our first goal is to prove equality of the upper and lower Ruelle–
Lanford functions at positive values of s. We start with the RL functions I W and I W of
the sequence ( 1

n ln Wn)n∈N. Most of the work to show that I W (s) = I W (s) when s > 0
was done in Sect. 3.1: in view of Proposition 3.5, it only remains to estimate the quantity

Jn(s) :=
∑

u∈Un(s)

Qn(u)Pn(u) =
∫

[s,∞)

e−rndμn(r), (4.4)

where μn is the distribution of − 1
n lnQn with respect to P, and where Un(s) was defined

in (3.14). The integral in (4.4) allows to express the limiting behavior of Jn in terms of
the rate function IQ of Theorem 0, as shown by the following straightforward variation
of Varadhan’s lemma.

Lemma 4.1. Assume (P,Q) is admissible. Then, for all s > 0,

sup
r>s

(−r − IQ(r)) ≤ lim inf
n→∞

1

n
ln Jn(s) ≤ lim sup

n→∞
1

n
ln Jn(s) ≤ sup

r≥s
(−r − IQ(r)).

Proof. Let us fix s > 0. For the lower bound, note that for every choice of r > s and
0 < ε < r − s,

lim inf
n→∞

1

n
ln Jn(s) ≥ lim inf

n→∞
1

n
ln
∫

B(r,ε)
e−r ′ndμn(r ′)

≥ −r − ε + lim inf
n→∞

1

n
ln μn(B(r, ε))

≥ −r − ε − IQ(r),

where we have used the large-deviation lower bound of Theorem 0. For the upper bound,
let β := infr≥s(r + IQ(r)) ∈ [s,∞). Then,

Jn(s) =
∫

[s,β]
e−rndμn(r) +

∫

(β,∞)

e−rndμn(r) ≤
∫

[s,β]
e−rndμn(r) + e−βn .

As a consequence, it suffices to show that

lim sup
n→∞

1

n

∫

[s,β]
e−rndμn(r) ≤ −β, (4.5)

which, since [s, β] is compact, follows from a standard covering argument, see e.g.
Lemma 4.3.6 in [DZ09] or the proof of Proposition C.1.iv below. ��
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Proposition 4.2. Assume the pair (P,Q) is admissible. Then, for all s > 0, the RL
functions for ( 1

n ln Wn)n∈N with respect to P⊗Q satisfy

I W (s) = I W (s) = −s + inf
r≥s

(r + IQ(r)). (4.6)

Proof. Let s > 0. By Proposition 3.5 and Lemma 4.1, we find that for all 0 < δ ≤ ε <
1
2 s,

lim sup
n→∞

1

n
lnP⊗Q{(x, y) : 1

n ln Wn(x, y) ∈ B(s, ε)} ≤ s + ε − inf
r≥s−ε−δ

(r + IQ(r))

(4.7)

and

lim inf
n→∞

1

n
lnP⊗Q{(x, y) : 1

n ln Wn(x, y) ∈ B(s, ε)} ≥ s − δ − inf
r>s+δ

(r + IQ(r)).

(4.8)

By taking the limit as δ → 0 first and then ε → 0 in (4.7), and since IQ is lower
semicontinuous, we obtain that −I W (s) ≤ s − infr≥s(r + IQ(r)). Taking the same limits
in (4.8) yields −I W (s) ≥ s − infr>s(r + IQ(r)). We then have

− s + inf
r≥s

(r + IQ(r)) ≤ I W (s) ≤ I W (s) ≤ −s + inf
r>s

(r + IQ(r)). (4.9)

For all s′ ∈ (0, s), the last inequality in (4.9) applied to s′ yields

I W (s′) ≤ −s′ + inf
r>s′

(r + IQ(r)) ≤ −s′ + inf
r≥s

(r + IQ(r)).

Since I W is lower semicontinuous (as a RL function), this in turn implies that

I W (s) ≤ lim inf
s′↑s

I W (s′) ≤ −s + inf
r≥s

(r + IQ(r)),

so the first three quantities in (4.9) are actually equal, as desired. ��
Proposition 4.3. Assume P satisfies UD and SLD. Then, for all s > 0, the RL functions
for ( 1

n ln Rn)n∈N and ( 1
n ln Vn)n∈N with respect to P satisfy

I R(s) = I R(s) = −s + inf
r≥s

(r + IP(r))

and

I V (s) = I V (s) = −s + inf
r≥s

(r + IP(r)).

Proof. Let s > 0. First, we remark that Proposition 4.2 applies to the admissible pair
(P,P), so that I W (s) = I W (s) = −s + infr≥s(r + IP(r)). Then, Lemma 3.6 implies that
I R(s) ≥ I W (s) and I V (s) ≥ I W (s); recall also (3.17). In the same way, Lemma 3.7
implies that I R(s) ≤ I W (s) and I V (s) ≤ I W (s). Since also I R ≤ I R and I V ≤ I V ,
the proof is complete. ��
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4.2. At the origin. In this subsection, we prove that, for each of the sequences
( 1

n ln Wn)n∈N, ( 1
n ln Vn)n∈N and ( 1

n ln Rn)n∈N, the upper and lower RL functions match
at s = 0. We recall that the limit

qQ(−1) = lim
n→∞

1

n
ln
∑

u∈An

Pn(u)Qn(u) (4.10)

exists for any admissible pair (P,Q) by Theorem 0.ii.

Proposition 4.4. If the pair (P,Q) is admissible, then

I W (0) = I W (0) = −qQ(−1) = inf
r≥0

(r + IQ(r)). (4.11)

Proof. For all ε > 0 and n ∈ N,

P⊗Q{(x, y) : 1
n ln Wn(x, y) ∈ B(0, ε)} ≥ P⊗Q{(x, y) : Wn(x, y) = 1}

=
∑

u∈An

Pn(u)Qn(u).

In view of (4.10) and the definition of I W , we have I W (0) ≤ −qQ(−1). To obtain the
opposite inequality for I W (0), observe that

P⊗Q{(x, y) : Wn(x, y) = k} ≤ P⊗Q{(x, y) : xn
1 = yn+k

1+k } =
∑

u∈An

Pn(u)Qn(u)

for every u ∈ An , n ∈ N and k ∈ N. Therefore, a union bound gives, for every ε > 0,

P⊗Q{(x, y) : Wn(x, y) ≤ eεn} ≤ eεn
∑

u∈An

Pn(u)Qn(u).

By (4.10) and the definition of I W , we conclude that I W (0) ≥ −qQ(−1). Since also
I W (0) ≥ I W (0) we have thus established the first two equalities in (4.11).

To complete the proof, it remains to observe that, since IQ(r) = ∞ for all r < 0,
and since qQ = I ∗

Q
by Theorem 0.ii,

inf
r≥0

(r + IQ(r)) = inf
r∈R(r + IQ(r)) = − sup

r∈R
(−r − IQ(r)) = −qQ(−1), (4.12)

which establishes the last identity in (4.11). ��
Proposition 4.5. If P satisfies UD and SLD, then

I V (0) = I V (0) = −qP(−1) = inf
r≥0

(r + IP(r)). (4.13)

Proof. The stated assumptions allow to apply Theorem 0 to the pair (P,P), and in
particular its consequences (4.10) and (4.12) with Q = P. Since the third equality
in (4.13) is a special case of (4.12), and since I V (0) ≤ I V (0) by definition, it suffices
to establish the inequalities I V (0) ≤ −qP(−1) and I V (0) ≥ −qP(−1) in order to
complete the proof. To this end, we let ε > 0 be arbitrary and restrict our attention to n
large enough so that min{n, eεn} > τn + 1.



Large Deviations of Return Times Page 39 of 69 135

For each u ∈ An , SLD implies that there is 0 ≤ � ≤ τn such thatP([u]∩T −n−�[u]) ≥
C−1

n Pn(u)2. Since [u] ∩ {x : Vn(x) ≤ τn + 1} ⊇ [u] ∩ T −n−�[u], this in turn implies
that

P{x : Vn(x) < eεn} ≥ P{x : Vn(x) ≤ τn + 1} ≥ C−1
n

∑

u∈An

Pn(u)2.

Combining this with (4.10) for Q = P establishes the inequality I V (0) ≤ −qP(−1).
On the other hand, for each k ∈ N,

{x : Vn(x) = k} ⊆
⋃

u∈An

[u] ∩ T 1−n−k[u] ⊆
⋃

v∈An−τn

[v] ∩ T 1−n−k[v].

Assuming without loss of generality that the sequence (τn)n∈N is nondecreasing (so in
particular τn−τn ≤ τn), we obtain from UD that

P{x : Vn(x) = k} ≤ Cn−τn

∑

v∈An−τn

Pn−τn (v)2.

Considering the union over k = 1, 2, . . . , �eεn − 1, we further obtain

lim sup
n→∞

1

n
lnP{x : Vn(x) < eεn}

≤ lim sup
n→∞

1

n
ln

⎛

⎝eεnCn−τn

∑

v∈An−τn

Pn−τn (v)2

⎞

⎠

= ε + lim sup
n→∞

1

n
ln
∑

u∈An

Pn(u)2,

(4.14)

where we have used that limn→∞ n−τn
n = 1. Combining this with (4.10) for Q = P

establishes the inequality I V (0) ≥ −qP(−1), so the proof is complete. ��
Let us now turn to I R(0) and I R(0), whose comparison is significantly more involved.

We start with a technical lemma.

Lemma 4.6. If P satisfies SLD and UD, then

γ+ = lim
n→∞

1

n
sup

u∈An
lnPn(u) ≥ qP(−1). (4.15)

Proof. From Theorem 0.iii.b, we know that the limit superior in the definition (1.12) of
γ+ is actually a limit, which is the first equality in (4.15). We now prove the inequality,
noting that, by Theorem 0.ii, the limit defining qP(−1) exists. For each n ∈ N, we find
supv∈An P(v) =∑u∈An Pn(u) supv∈An Pn(v) ≥∑u∈An Pn(u)2, and the claim follows
from (4.10) with Q = P. ��

The following proposition shows that I R(0) = I R(0) = −γ+ under the assumptions
of Theorem C. We give several additional inequalities in order to underline the role
of PA. The proposition also shows that, while I R(0) and I R(0) are defined in terms of
{x : Rn(x) < eεn}, the subset {x : Rn(x) < n} accounts for the full behavior of the
probability at the exponential scale.
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Proposition 4.7. The following hold:

i. If P satisfies UD, then

lim sup
n→∞

1

n
lnP{x : Rn(x) < n} ≤ −I R(0) ≤ γ+. (4.16)

ii. If P satisfies PA, then

− I R(0) ≥ lim inf
n→∞

1

n
lnP{x : Rn(x) < n} ≥ γ+. (4.17)

iii. If P satisfies UD and PA, then

−I R(0) = −I R(0) = lim
n→∞

1

n
lnP{x : Rn(x) < n} = γ+.

Proof. Given u ∈ An , we denote by per(u) the period of u, i.e. the smallest p ∈ N such
that ui = ui+p for all 1 ≤ i ≤ n − p. Since the condition is vacuously true for p = n,
we have the bound per(u) ≤ n. The key observation is that, for every 1 ≤ k < n and
x ∈ �,

Rn(x) = k ⇐⇒ per(xk+n
1 ) = k. (4.18)

i. Since {x : Rn(x) < n} ⊆ {x : Rn(x) < eεn} for all large enough n, the first
inequality in (4.16) readily follows from the definition of I R . We now prove the
second inequality. Let n be large enough so that n > max{1, τn} and let 1 ≤ k < n.
The map {u ∈ An : per(u) = k} → Ak given by u �→ un

n−k+1 is injective. By (4.18),
we thus have

P{x : Rn(x) = k} =
∑

u∈An :per(u)=k

Pn+k(uun
n−k+1) ≤

∑

v∈Ak

sup
u∈An

Pn+k(uv).

As in the proof of Proposition 4.5, we assume without loss of generality that (τn)n∈N
is nondecreasing. Then, UD yields

Pn+k(uv) ≤ P([un−τn
1 ] ∩ T −n[v]) ≤ Cn−τnPn−τn (u

n−τn
1 )Pk(v),

and so

P{x : Rn(x) = k} ≤ Cn−τn

∑

v∈Ak

sup
u∈An

Pn−τn (u
n−τn
1 )Pk(v)

= Cn−τn sup
u∈An

Pn−τn (u
n−τn
1 )

= Cn−τn sup
u∈An−τn

Pn−τn (u).

Taking a union over 1 ≤ k < n gives

P{x : Rn(x) < n} ≤ (n − 1)Cn−τn sup
u∈An−τn

Pn−τn (u).

Comparing with the definition (1.12) of γ+, and using that limn→∞ n−τn
n = 1, we

deduce that

lim sup
n→∞

1

n
lnP{x : Rn(x) < n} ≤ γ+. (4.19)
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Now, observe that

P{x : Rn(x) ∈ [n, enε)} ≤ P{x : Vn(x) ∈ [1, enε + 1 − n)} ≤ P{x : Vn(x) < eεn}.
By (4.14), which only relies on UD, this implies

lim
ε→0

lim sup
n→∞

1

n
lnP{x : Rn(x) ∈ [n, enε)} ≤ γ+. (4.20)

By definition of I R , the inequalities (4.19) and (4.20) imply−I R(0) ≤ γ+, as desired.
ii. As above, the first inequality in (4.17) is immediate by the definition of I R . We now

establish the second one. Let p ∈ N and u ∈ Ap be arbitrary. By (4.18), for n > p
and rn = � n

p  + 1, we have [urn ] ⊆ {x : Rn(x) ≤ p}. Therefore,

lim inf
n→∞

1

n
lnP{x : Rn(x) < n} ≥ lim inf

n→∞
1

n
lnP{x : Rn(x) ≤ p}

≥ lim inf
n→∞

1

n
lnP([urn ])

= lim inf
r→∞

1

pr
lnP([ur ]).

(4.21)

Since the expression in the last line of (4.21) can be made arbitrarily close to γ+
by PA, the proof of Part ii is complete.

iii. The conclusion is just the combination of Parts i and ii. ��
Proposition 4.7 is the only place where PA is ever used in our proofs. We do not

know if PA can be lifted, nor are we aware of any example of a measure satisfying UD
and SLD but not PA. We take the remainder of this subsection to briefly discuss what
remains true if PA is dropped or weakened. In this discussion, we always assume that P
satisfies UD and SLD.

First, if PA is dropped, we remark that Propositions 4.7.i and 4.3 still ensure that
I R(s) ≥ IR(s) for all s ∈ R, with IR defined in (1.25). Thus, the weak large-deviation
upper bound for ( 1

n ln Rn)n∈N holds. By retracing the proofs, one easily concludes that
also the full large-deviation upper bound holds with the rate function IR , and that q R =
I
∗
R ≤ I ∗R , where q R is defined as in (1.4) with a limit superior.

In Proposition 4.7, PA is only used to obtain the large-deviation lower bound at s = 0.
More specifically, all we actually derive from PA is that

lim inf
n→∞

1

n
lnP{x : Rn(x) < n} ≥ γ+. (4.22)

So instead of PA, one could have taken (4.22) as an assumption, or any other condition
implying it.

In fact, one could even obtain a full LDP for ( 1
n ln Rn)n∈N without (4.22). Indeed,

if one can show by some means that the limit D := limn→∞ 1
n lnP{x : Rn(x) < n}

exists, then necessarily D ≤ γ+ by Proposition 4.7.i, and the proofs can easily be
adapted to obtain the full LDP, by merely replacing −γ+ with min{−D, IV (0)} in the
definition (1.25) of IR . We do not know under what conditions the limit defining D
exists, and we have been unable to produce any counter example.

We now return to means of establishing (4.22). Under PA, the proof of Proposi-
tion 4.7.ii actually shows that the probability of {x : Rn(x) < n} is asymptotically
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captured by periodic orbits of period much smaller than n. PA can be slightly relaxed
so as to take into account words u that can be repeated many times, but not necessarily
infinitely many times as PA requires:

Definition 4.8 (WPA). A measure P ∈ Pinv(�) satisfies the assumption of weak pe-
riodic approximation (WPA) if for every ε > 0 there exists M ∈ N such that for all
m ≥ M there is a word u ∈ �fin with |u| ≤ εm, and such that

1

m
lnP|u|

⌊
m
|u|
⌋

(

u

⌊
m
|u|
⌋)

≥ γ+ − ε.

Then, an easy modification of the proof of Proposition 4.7 shows that (4.22) still
holds assuming WPA instead of PA, and thus so do the conclusions of Theorem C.

In order to conclude the discussion, we briefly comment on results from the literature
about Poincaré recurrence times (see [AV08,AC15,AAG21] and references therein)
which can be used to establish (4.22). The Poincaré recurrence times are defined by
Tn(x) = inf{k ∈ N : P([xn

1 ] ∩ T −k[xn
1 ]) > 0}.11 The asymptotic behavior of Tn

is overall very different from that of Rn ; in particular Tn ≤ n + τn almost surely
by SLD. However, the following two relations hold P-almost surely: first, Tn ≤ Rn ,
and second, Tn < n implies that Rn−Tn ≤ Tn . It follows that if one can show that
limε→0 lim infn→∞ ln 1

nP{Tn < εn} ≥ γ+, then also limε→0 lim infn→∞ ln 1
nP{x :

Rn(x) < εn} ≥ γ+, and in particular (4.22) holds. Such a result is proved in [AV08]
under an assumption called “Hypothesis 1”, which is very similar to WPA. The same
bound is obtained in [AC15] under an assumption called “Assumption 1” which, in spirit,
also plays role similar to that of WPA.

5. Proof of the Main Results

At this stage, we have proved that if the pair (Q,P) is admissible, then I W = I W = IW ,
with IW defined by (1.19); see Propositions 4.2 and 4.4, and notice that all three functions
are infinite on the negative real axis. This implies that the sequence ( 1

n ln Wn)n∈N satisfies
the weak LDP with respect to P ⊗ Q, with the rate function IW ; see the beginning
of Sect. 4. In the same way, by Propositions 4.3 and 4.5, we have proved that, if P

satisfies UD and SLD, then the sequence ( 1
n ln Vn)n∈N satisfies the weak LDP with

respect toP, with the rate function IV given in (1.22). Finally, combining Propositions 4.3
and 4.7, we have shown that forP satisfying UD, SLD and PA, the sequence ( 1

n ln Rn)n∈N
satisfies the weak LDP with respect to P, with the rate function IR given in (1.25). See
Table 2 for a summary.

Since upper and lower Ruelle–Lanford functions are always lower semicontinuous,
we conclude that IW , IV and IR are lower semicontinuous. Alternatively, lower semi-
continuity can be checked explicitly using the expressions (1.19), (1.22) and (1.25),
together with the fact that the rate function IQ in Theorem 0 is lower semicontinuous.

In this section, we promote the weak LDPs to full ones and establish the claimed
relations about the rate functions and accompanying pressures. This will conclude the
proofs of Theorems A, B and C. The proofs of these theorems, and actually also that of
Theorem 0, have many (rather standard) arguments in common, which we have extracted
as Proposition C.1.

11 We use the condition P([xn
1 ] ∩ T−k [xn

1 ]) > 0 instead of [xn
1 ] ∩ T−k [xn

1 ] 
= ∅ because the discussion is
not limited to the subshift suppP.
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Lemma 5.1. Under the assumptions of Theorem A, the rate function IW is convex. In
particular, if P satisfies UD and SLD, then IV is convex.

Proof. We claim that for every λ ∈ [0, 1] and s1, s2 ∈ R,

λIW (s1) + (1 − λ)IW (s2) ≥ IW (s)

where s := λs1 + (1 − λ)s2. The stated inequality is obvious if s1 < 0 or s2 < 0. For
s1, s2 ≥ 0,

λIW (s1) + (1 − λ)IW (s2)

= −s + inf
r1≥s1,r2≥s2

(λr1 + (1 − λ)r2 + λIQ(r1) + (1 − λ)IQ(r2))

≥ −s + inf
r1≥s1,r2≥s2

(λr1 + (1 − λ)r2 + IQ(λr1 + (1 − λ)r2))

= −s + inf
r≥s

(r + IQ(r)) = IW (s),

where the inequality in the second line relies on the convexity of IQ, by Theorem 0.i.
The second part of the lemma follows from the identity IV = IW when P = Q; recall
Remark 1.11. ��
Lemma 5.2. Suppose that Q satisfies SLD. Then, for every α > 0, there exists an eo(n)-
sequence (κα,n)n∈N such that

∫

Wn(u, y)αdQ(y) ≤ κα,nQn(u)−α

for each u ∈ suppQn.

Proof. Fix n ∈ N, u ∈ suppQn , and let q := 1−C−1
n Qn(u). Without loss of generality,

we assume that Cn ≥ C1 > 1, so that 0 < 1 − C−1
1 ≤ q < 1. For all t ≥ 0, the

bound (3.4) of Lemma 3.1 yields

Q{y : Wn(u, y) > t} = Q{y : Wn(u, y) ≥ �t� + 1}
≤ q

⌊ �t�
n+τn

⌋

≤ q
t

n+τn
−2

≤ (1 − C−1
1 )−2q

t
n+τn .

Then, by a standard consequence of Fubini’s theorem (see e.g. Theorem 8.16 in [Rud87]),
∫

Wn(u, y)αdQ(y) = α

∫ ∞

0
tα−1

Q{y : Wn(u, y) > t}dt

≤ α

(1 − C−1
1 )2

∫ ∞

0
tα−1q

t
n+τn dt

= α

(1 − C−1
1 )2

�(α)

(
1

n + τn

)−α

(− ln q)−α .

Further using that−ln(q)=− ln(1 − C−1
n Qn(u))≥C−1

n Qn(u) completes the proof. ��
We are now in a position to prove the main results. With Proposition C.1 from

“Appendix C” and the weak LDPs at hand, the proofs of Theorems A–C only consist in
providing a few remaining estimates specific to each case.
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5.1. Proof of Theorem A. Since ( 1
n ln Wn)n∈N satisfies the weak LDP, the assumptions of

Proposition C.1 are satisfied with Zn := 1
n ln Wn on (�∗,P∗) := (�×�,P⊗Q), with

the convex (recall Lemma 5.1) rate function I := IW . We now show that the conclusions
of Theorem A follow from Proposition C.1.

We first prove that qW exists and that qW = I ∗W . For this we define q
W

and qW
as the limit inferior and limit superior corresponding to the definition (1.6) of qW . The
bound q

W
≥ I ∗W is provided by Proposition C.1.iii, and by Proposition C.1.v we have

qW (α) = I ∗W (α) for all α < 0. Since IW ≤ IQ by definition, we have I ∗W (0) ≥ I ∗
Q
(0) =

qQ(0) = 0 = qW (0), where we have used Theorem 0.ii. Finally, for α > 0, Lemma 5.2
gives

∫∫

Wn(x, y)αdP(x)dQ(y) =
∑

u∈suppPn

Pn(u)

∫

Wn(u, y)αdQ(y)

≤ κn,α

∑

u∈suppPn

Pn(u)Qn(u)−α.

(5.1)

Note that we have used the absolute continuity granted by admissibility of the pair (P,Q).
We conclude that

qW (α) ≤ qQ(α) = I ∗
Q
(α) ≤ I ∗W (α),

where from left to right, we have used (5.1), Theorem 0.ii, and the fact that IW ≤ IQ by
definition. We have thus proved that qW = I ∗W . By Proposition C.1.vii, the weak LDP
then extends to a full one. This completes the proof of Theorem A.i.

For Part ii, we have already established that qW = I ∗W (in particular qW exists as a
limit), and since IW is convex and lower semicontinuous, this implies that also IW = q∗

W .
To establish (1.20), note that

qW (α) = I ∗W (α) = sup
s≥0

(αs − inf
r≥s

(r − s + IQ(r))) = sup
r≥s≥0

((α + 1)s − r − IQ(r)).

Since the quantity to optimize is linear in s, it suffices to consider the extremal points
s ∈ {0, r}, which yields, using again Theorem 0.ii,

qW (α) = sup
r≥0

(max{0, (α + 1)r} − r − IQ(r))

= max

{

sup
r≥0

(−r − IQ(r)), sup
r≥0

(αr − IQ(r))

}

= max{qQ(α), qQ(−1)},

so the proof of Theorem A.ii is complete.
In order to prove Theorem A.iii, we simply note that when Q = P, then by (1.20) and

(1.16), we have qW (1) = qP(1) = htop(suppP) < ∞, so Proposition C.1.vi applies. ��
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5.2. Proof of Theorem B. The proof is almost the same as that of Theorem A, applying
this time Proposition C.1 to Zn := 1

n ln Vn on (�∗,P∗) := (�,P), with the convex rate
function I := IV . We will only require a slightly more involved argument to derive the
inequality qV (α) ≤ I ∗V (α) when α > 0, where qV is defined by taking the limit superior
in the definition (1.5) of qV . For α > 0, recalling that Wn(u, x) ≤ Wn(u, T k x) + k, we
obtain

∫

V α
n dP =

∑

u∈An

∫

1[u](x)Wn(u, T n x)αdP(x)

≤
∑

u∈An

∫

1[u](x)(Wn(u, T n+τn x) + τn)αdP(x).

Then, by UD,

∫

1[u](x)(Wn(u, T n+τn x) + τn)αdP(x)

=
∞∑

j=1

P([u] ∩ T −n−τn {x : Wn(u, x) = j})( j + τn)α

≤ Cn

∞∑

j=1

Pn(u)P{x : Wn(u, x) = j}( j + τn)α

= CnPn(u)

∫

(Wn(u, x) + τn)αdP(x),

so
∫

V α
n dP ≤ Cn

∑

u∈An

Pn(u)

∫

(Wn(u, x) + τn)αdP(x)

≤ Cn

∑

u∈An

Pn(u)

∫

(Wn(u, x)(1 + τn))αdP(x)

≤ Cn(1 + τn)ακα,n

∑

u∈An

Pn(u)1−α,

where the last inequality was obtained using Lemma 5.2 with Q = P. By this and
Theorem 0.ii, and since IV ≤ IP by definition, we conclude that qV (α) ≤ qP(α) =
I ∗
P
(α) ≤ I ∗V (α), as claimed.
The same arguments as in the proof of Theorem A then provide the full LDP together

with the Legendre–Fenchel duality relations and (1.23), which is merely a special case
of (1.20).

Next, the exponential tightness and goodness assertions in Theorem B.i follow, as in
the proof of Theorem A.iii, from Proposition C.1.vi and the bound qV (1) = qP(1) =
htop(suppP) < ∞.

Finally, (1.24) is proved as follows: by Lemma 4.6 we have qP(−1) ≤ γ+ and by
(1.23) and Legendre–Fenchel duality we have IV (0) = supα∈R(−qV (α)) = −qP(−1);
this can also be obtained using (4.13). ��
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5.3. Proof of Theorem C. Once more, we plan to apply Proposition C.1, this time with
Zn := 1

n ln Rn on (�∗,P∗) := (�,P) and the rate function I := IR , keeping in mind
that the latter is not convex in general.

The proof that qR = I ∗R follows the same argument as in Theorems A and B, and
once again, only the proof of the inequality q R(α) ≤ I ∗R(α) when α > 0 needs to be
adapted, where q R is again defined by taking the limit superior in the definition (1.4) of
qR . We have, for α > 0,

∫

Rα
n dP =

∑

u∈An

∫

1[u](x)Wn(u, T x)αdP(x)

≤
∑

u∈An

∫

1[u](x)(Wn(u, T n+τn x) + n + τn − 1)αdP(x)

≤ Cn(n + τn)ακα,n

∑

u∈An

Pn(u)1−α,

where the steps giving the last inequality are exactly as in the proof of Theorem B with τn
replaced by τn+n−1. As previously, we conclude that q R(α) ≤ qP(α) = I ∗

P
(α) ≤ I ∗R(α),

since IR ≤ IP. We thus have qR = I ∗R .
Unlike in the previous theorems, the rate function is not convex in general and we

cannot invert the Legendre–Fenchel transform. For the same reason, we cannot ap-
ply Proposition C.1.vii to obtain the full LDP. Nevertheless, since qR(1) = qP(1) =
htop(suppP) < ∞, the full LDP, exponential tightness and goodness of IR follow at
once from Proposition C.1.vi. This completes the proof of Part i.

We now turn to the proof of Part ii. We have already seen that qR = I ∗R , so it remains
to prove (1.26), which we do by singling out the pathological case where γ− = 0.
Case 1: γ− = 0. In this case, γ+ = 0 as well by (1.13), so Theorem 0.iii yields that
IP(0) = 0 and IP(s) = ∞ for s 
= 0. It follows from its definition that IR = IP, and
taking the Legendre–Fenchel transform gives qR = qP = 0. In particular, both sides of
(1.26) vanish identically.
Case 2:γ− < 0. Since IR(s) = IV (s) for all s > 0 by definition, and since lims↓0 IV (s) =
IV (0) when γ− < 0, we find

qR(α) = sup
s∈R

(αs − IR(s))

= max

{

−IR(0), sup
s>0

(αs − IV (s))

}

= max{−IR(0), I ∗V (α)}.
Further using that −IR(0) = γ+ by definition and that

I ∗V (α) = qV (α) = max{qP(α), qP(−1)}
by (1.23), we conclude that qR(α) = max{γ+, qP(α), qP(−1)}. In view of (1.24), the
quantity qP(−1) can be omitted from the maximum, and (1.26) follows.

Part iii of Theorem C, about (non)convexity of IR , is proved in Sect. 5.4. ��
Remark 5.3. In order to follow a common route for the proof of our three main theorems,
our arguments to promote the weak LDP to a full one did not rely on exponential tightness,
since the latter does not hold in general in the setup Theorem A.i–ii. We have instead
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made extensive use of the properties of the pressures. We now briefly argue that in
the context of Theorems A.iii, B and C, exponential tightness could have been proved
more directly, and the full LDP could have thus been obtained without any reference to
pressures.

In the setup of Theorem A.iii, that is in the case of ( 1
n ln Wn)n∈N with Q = P, the

idea is that multiplying (3.4) in the case m ∼ enM by Pn(u) and summing over u ∈ An

yields terms that fall in either of two categories: those with Pn(u) � e−nM decay super-
exponentially, while those with Pn(u) � e−nM are controlled in view of the exponential
tightness estimate (2.24). The argument relies on SLD only, and the details are easily
written by following the proof of the estimate (3.15). Further assuming UD, exponen-
tial tightness can be extended to ( 1

n ln Rn)n∈N and ( 1
n ln Vn)n∈N by introducing a minor

variation of Lemma 3.6 where balls are replaced by intervals of the form (s,∞) and
(s − ε,∞).

5.4. Nonconvexity in Theorem C. In this subsection, we prove the numerous relations
stated in Theorem C.iii. The topological entropy htop(suppP) as well as the notion of
measure of maximal entropy (MME) on suppP are recalled in “Appendix A”.

Proposition 5.4. LetP satisfy the assumptions of Theorem C, and consider the following
properties:

(a) IR is convex;
(b) IR = IV ;
(c) qR = qV ;
(d) γ+ = qP(−1);
(e) IP(−γ+) = 0;
(f) qP(α) = −γ+α for all α ≤ 0;
(g) γ+ = γ−;
(h) IP(s) = ∞ for all s ∈ R\{−γ+};
(i) h(P) = htop(suppP), i.e. P is a MME on suppP.

Then, Properties (a)–(f) are equivalent, Properties (g)–(i) are equivalent, and Proper-
ties (g)–(i) imply Properties (a)–(f). If, in addition, τn = O(1) and Cn = O(1), then
Properties (a)–(i) are equivalent.

Proof. Let us summarize the information we have gathered on the rate functions. First,
IV (s) and IR(s) coincide for s 
= 0 by comparison of (1.22) and (1.25). By the same two
equations, and since we have already established that −γ+ ≤ −qP(−1) in Lemma 4.6
and that −qP(−1) = IV (0) in Theorem B.ii, we obtain

0 ≤ IR(0) = −γ+ ≤ −qP(−1) = IV (0) ≤ IP(0). (5.2)

We now prove that (a)–(f) are equivalent.

(a)⇒(b) If γ+ = 0, Theorem 0.iii.a implies that IP(0) = 0, so by (5.2) we obtain
IV (0) = IR(0) and thus IV = IR .12 Assume now γ+ < 0. By Theorem 0.iii.a
and the formulae (1.22) and (1.25), the functions IV and IR are finite on
[0,−γ+], and equal on (0,−γ+]. Now, if (a) holds, then both IV and IR are
convex, and since they are also lower semicontinuous, their restriction to
[0, γ+] is continuous, so IR(0) = IV (0), and thus IR = IV .

12 Note that the argument when γ+ = 0 does not actually use (a); in fact properties (a)–(f) always hold true
if γ+ = 0.
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(a)⇐(b) The function IV is convex by Lemma 5.1.
(b)⇒(c) By Theorems B.ii and C.ii, assuming (b) yields qV = I ∗V = I ∗R = qR .
(c)⇒(d) As mentioned in Remarks 1.10 and 1.13, for all α ≤ −1 we have qV (α) =

qP(−1) and qR(α) = γ+, so by (c) we find qP(−1) = γ+.
(d)⇒(b) Combining (d) and (5.2) gives again IV (0) = IR(0).
(b)⇒(e) Assuming (b), the identity IR(0) = IV (0) reads −γ+ = infs≥0(s + IP(s))

according to (1.22) and (1.25), so that for all ε > 0, there exists sε ≥ 0 such
that IP(sε) < −γ+ − sε +ε. Since also sε ≥ −γ+ by Theorem 0.iii.a, we have

0 ≤ IP(sε) < −γ+ − sε + ε ≤ ε.

It follows that sε → −γ+ and IP(sε) → 0 as ε → 0. By nonnegativity and
lower semicontinuity of IP, this allows to conclude that IP(−γ+) = 0.

(e)⇒(f) By Theorem 0.iii.a and (e), we have IP(−γ+) = 0 and IP(s) = ∞ for
s < −γ+. Since IP is nonnegative, for all α ≤ 0, the duality relations (1.14)
imply that qP(α) = sups≥−γ+

(αs − IP(s)) = −αγ+, where the supremum is
reached at s = −γ+.

(f)⇒(d) The latter is a special case of the former with α = −1.

We now prove the equivalence of (g)–(i).

(g)⇔(h) This is a consequence of Theorem 0.iii.a.
(g)⇔(i) This is a consequence of Proposition A.5.i.

To show that (g)–(i) imply (a)–(f) we remark that if (h) holds, then we have (e) because
infs∈R IP(s) = 0. Finally, to obtain the last statement, we prove in Proposition 5.5 below
that if τn = O(1) and Cn = O(1), then (d) implies (h). ��
Proposition 5.5. Suppose thatP satisfies UD and SLD with τn = O(1) and Cn = O(1).
If qP(−1) = γ+, then IP(s) = ∞ for all s ∈ R\{−γ+}.
Proof. Seeking a contradiction, suppose that there is s > −γ+ such that IP(s) < ∞
(recall that IP(s) = ∞ for all s < −γ+ by Theorem 0.iii.a). The idea of the proof is that,
if such s exists, then there are words whose probability decreases like e−sn � eγ+n , and
that these words appear often enough to make qP(−1) strictly smaller than γ+, which
contradicts the assumption. Let τ := supn∈N τn < ∞, C := supn∈N Cn < ∞, and
ε := s + γ+ > 0. For �, m ∈ N and w ∈ Am , the computations below will involve

R1 := ln(1 − CPm(w))

2(m + τ)
+

ln 2

�
+

ln C

2�
− ln(1 − CPm(w))

�

and

R2 := m

2�

(

−γ+ +
lnPm(w)

m
− 2τγ+

m
+

3 ln C

m

)

.

Let us show that m, �, and w can be chosen so that R1 and R2 are negative, which will
later lead to the contradiction we are seeking. Since IP(s) < ∞, the LDP implies that

for all m large enough we can choose a word w ∈ Am such that Pm(w) ≤ e−m(s− 1
2 ε),

and thus γ+ − lnPm (w)
m ≥ ε

2 . We fix m large enough and w ∈ Am so that not only

the above holds, but also − 2τγ+
m + 3 ln C

m ≤ ε
4 and e−m(s− 1

2 ε) < C−1 (so in particular
1 − CPm(w) > 0). Thus, we have

R2 ≤ −mε

8�
< 0,
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and, since the first term in R1 is negative, taking � large enough yields

R1 ≤ ln(1 − CPm(w))

4(m + τ)
< 0.

We remark that the above condition on � implies in particular that � > 2(m + τ), which
will be useful to have in mind below.

For the remainder of the proof, m, w and � are fixed as above, so that R1 and R2
are negative. Let k ∈ N and consider the intervals L j := [1 + j�, ( j + 1)� − τ ] for
j = 0, 1, . . . , 2k − 1. These 2k intervals are separated by gaps of length τ . Let Ak be
the set of points x ∈ � for which at least k out of the 2k intervals contain no occurrence
of w (an interval [i1, i2] contains no occurrence of w if there is no i1 ≤ i ≤ i2 − m + 1
such that xi+m−1

i = w). Clearly,

∑

u∈A2k�

P
2
2k�(u) =

∫

Ak

P2k�([x2k�
1 ])dP(x) +

∫

Ac
k

P2k�([x2k�
1 ])dP(x)

≤ P(Ak) sup
x∈�

P2k�(x2k�
1 ) + sup

x∈Ac
k

P2k�(x2k�
1 ).

(5.3)

We will show below that

lim sup
k→∞

1

2k�
ln(P(Ak) sup

x∈�

P2k�(x2k�
1 )) ≤ γ+ + R1, (5.4)

lim sup
k→∞

1

2k�
ln sup

x∈Ac
k

P2k�(x2k�
1 ) ≤ γ+ + R2. (5.5)

Combining this with (5.3) yields, since the limit defining qP(−1) exists,

qP(−1) = lim
n→∞

1

n
ln
∑

u∈An

P
2
n(u)

= lim sup
k→∞

1

2k�

∑

u∈A2k�

P
2
2k�(u)

≤ max {γ+ + R2, γ+ + R1}
< γ+,

which contradicts the assumption, and thus proves the claim.
Proof of (5.4). By Remark B.5, since τn = O(1), we can assume without loss of gener-
ality that the sequence (Cn)n∈N required for (3.1) and (3.2) to hold, is also bounded by
C .

The event “there is no occurrence of w in the interval L j ” can be written as T − j�U ,
where U := {x : Wm(w, x) > � + 1 − m − τ } ∈ F�−τ . By the definition of Ak ,

Ak ⊆
⋃

M⊆{0,1,...,2k−1}
|M|=k

⋂

j∈M

T − j�U. (5.6)

Using the bound (3.4) of Lemma 3.1, we obtain

P(U ) ≤ (1 − CPm(w))�
�+1−m−τ

m+τ
� ≤ (1 − CPm(w))

�
m+τ

−2.
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Since U ∈ F�−τ , we can apply UD recursively k − 1 times to the intersection in (5.6).
This and a simple union bound (noting that the union in (5.6) contains

(2k
k

)
terms) yields

P(Ak) ≤
(

2k

k

)

Ck−1(1 − CPm(w))
k�

m+τ
−2k .

Since limn→∞ 1
2k ln

(2k
k

) = ln 2, we have proved that lim supk→∞ 1
2k�

lnP(Ak) ≤ R1.
Combining this with the definition of γ+ completes the proof of (5.4).
Proof of (5.5). First, let an := supu∈An lnPn(u). Clearly, the sequence (an)n∈N is nonin-
creasing, and by SLD, for all n, m ∈ N, there is 0 ≤ � ≤ τ such that an+m ≥ an+m+� ≥
an + am − ln C . By applying Fekete’s lemma to the sequence (ln C − an)n∈N, we obtain
γ+ = supn∈N an−ln C

n , so for every x ∈ � and n ∈ N,

lnPn(xn
1 ) ≤ nγ+ + ln C. (5.7)

Let x ∈ Ac
k . By construction, we can choose k occurrences of w in x2k�

1 , which are
pairwise separated by gaps of length at least τ (possible additional occurrences of w

in x2k�
1 do not play any role in the argument). In other words, we can write x2k�

1 =
u0wu1wu2 . . . uk−1wuk where |u0| ≥ 0 and |ui | ≥ τ for all 1 ≤ i ≤ k. We then
apply UD before and after each occurrence of w of x2k�

1 .13 More precisely, in order to
apply UD, we discard a prefix of length τ in each ui with 1 ≤ i ≤ k, and we discard a
suffix of length τ in each ui with 0 ≤ i ≤ k − 1; the ui whose length is insufficient for
this to be done are discarded entirely. By using (5.7) to bound the probability of what
remains of the ui at the end of this process, we easily obtain the estimate

P2k�(x2k�
1 ) ≤ Pm(w)kC3k+1eγ+(2k�−km−2kτ),

where the C3k+1 comes from the fact that we have used UD at most 2k times and (5.7)
at most k + 1 times, and where 2k� − km − 2kτ is the minimum cumulative length of
the words to which we have applied (5.7). By the definition of R2, this establishes (5.5),
and thus the proof is complete. ��

6. Relation to Almost Sure Convergence Results

In this section we discuss the complementarity of our LDPs and existing almost sure
convergence results in the literature.

6.1. A brief review of results on almost sure convergence. Throughout this subsection,
we consider two measuresP,Q ∈ Pinv, and we only assume thatQ satisfies UD and SLD.
Under these conditions, the limits

hP(x) := lim
n→∞−1

n
lnPn(xn

1 ) (6.1)

and

hQ(x) := lim
n→∞−1

n
lnQn(xn

1 ) (6.2)

13 Remark that decoupling is not necessarily used near the boundaries of the intervals L j .
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exist for P-almost all x . Moreover,
∫

hP(x)dP(x) = lim
n→∞−1

n

∑

u∈An

Pn(u) lnPn(u) =: h(P) (6.3)

and
∫

hQ(x)dP(x) = lim
n→∞−1

n

∑

u∈An

Pn(u) lnQn(u) =: hc(P|Q). (6.4)

The relations (6.1) and (6.3) are the contents of the well-known SMB theorem. While
often stated assuming ergodicity, the general form of the SMB theorem, which only
requires shift invariance, is obtained as a special case of the Brin–Katok formula [BK83];
see also Theorem 9.3.1 of [VO16] for a direct proof.

On the other hand, (6.2) and (6.4) are much less general, and the literature on them
is comparatively sparse. Even the limit defining hc(P|Q) in (6.4) fails to exist in some
cases; see e.g. [vEFS93, §A.5.2]. In our setup, the almost sure existence of the limit (6.2)
and the validity of (6.4) are guaranteed by the assumption UD imposed on Q. Indeed,
as discussed in [CDEJR23a, §5], the assumption implies that the functions ( fn)n∈N
defined by fn(x) = lnQn(xn

1 ) satisfy the gapped almost subadditivity condition of the
adaptation of Kingman’s theorem given in [Raq23, §2].

Still assuming only thatQ satisfies UD and SLD (and that P is merely shift invariant),
the random variables studied in our main theorems are known to satisfy the following
almost sure identities, which, as mentioned in the introduction, justify their role as
entropy estimators: for P-almost every x , we have

lim
n→∞

1

n
ln Rn(x) = hP(x) (6.5)

and

lim
n→∞

1

n
ln Vn(x) = hP(x), (6.6)

and, for (P⊗Q)-almost every (x, y), we have

lim
n→∞

1

n
ln Wn(x, y) = hQ(x). (6.7)

The convergences expressed in (6.5) and (6.6) were first proved under the assumption
that P is ergodic, in which case hP(x) = h(P) for P-almost every x ; see [WZ89,OW93,
Kon98]. However, combining Remark 1 of [Kon98, §2] with a generalization of Kac’s
lemma, as found e.g. in [VO16, §1.2.2], shows that shift invariance suffices for (6.5).
Since Rn(x) ≤ Vn(x) + n − 1 and Vn(x) = Rn(T mn(x)−1x) − (n − mn(x)) with
mn(x) := max{1 ≤ i ≤ n : xi+n−1

i = xn
1 }, it is straightforward to show that the bounds

used in [Kon98, §2] to prove (6.5) via the Borel–Cantelli lemma also imply (6.6). The
convergence expressed in (6.7) was first proved for Markov measures, and then under
various strong mixing assumptions; see [WZ89,Shi93,MS95,Kon98]. However, it is
known that (6.7) may fail for some mixing measures, even when P = Q; see [Shi93].
In the present setup, the SLD assumption satisfied by Q and (6.2) have been shown to
imply (6.7) in [CDEJR23a, §2].
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6.2. Zeroes of the rate functions. In this subsection, we discuss how the LDPs of Theo-
rems 0 and A–C complement the above almost sure results. We assume throughout that
the pair (P,Q) is admissible, but not necessarily that P satisfies PA. The central role is
held by the set

J := {s : IQ(s) = 0} ⊆ [0,∞), (6.8)

which, by convexity of IQ (see Theorem 0.i), is an interval and coincides with the
subdifferential of qQ at 0. Since IQ is lower semicontinuous, and since infs∈R IQ(s) = 0,
only the three following cases are possible: J = [a, b] for some 0 ≤ a ≤ b < ∞,
J = [a,∞) for some a ≥ 0, and J = ∅, which happens when IQ(s) > 0 for all s ∈ R

and lims→∞ IQ(s) = 0. When Q = P, we necessarily have J = [a, b] since IP is a
good rate function (recall Theorem 0.iii).

Lemma 6.1. Let (P,Q) be admissible. Then, the rate function IW of (1.19) vanishes
precisely on J . Moreover, if Q = P, the same is true of the rate functions IV of (1.22)
and IR of (1.25).

Proof. The statement for IW is an immediate consequence of (1.19). Appealing to Re-
mark 1.11, the statement for IV is immediate. In order to extend the result to IR , it
remains to note that IR(0) = 0 if and only if γ+ = 0, which, by (1.15), happens if and
only if IP(0) = 0, i.e. if and only if 0 ∈ J . ��

We briefly comment on the simple case where J is a singleton, which occurs in
particular in Examples 2.1–2.3, and which corresponds to the property of exponential
rates for entropy in the terminology of [Shi96, Chap. III], [JB13] and [CRS18]. In this
case, we obtain from Lemma 6.1 that the rate functions of Theorems 0 and A–C all
vanish at a single point, say a. In this situation, a standard argument shows that, almost
surely, all limits in (6.2) and (6.5)–(6.7) exist and are equal to a; see e.g. [Ell06, §II.6]
and the argument in the proof of Proposition 6.2.i below. In this simple case, our LDPs
thus imply the almost sure convergence results reviewed in Sect. 6.1.

When J is an interval of positive length, our LDPs do not imply these almost sure
convergence results anymore. Still, all displayed equations in Sect. 6.1 remain valid
under our assumptions (see the references given there), and we show in the following
two propositions that the limiting values are constrained by J .

Proposition 6.2. Let (P,Q) be an admissible pair. Then, the following hold:

i. If J is nonempty, then hQ(x) ∈ J for P-almost all x and hc(P|Q) ∈ J .
ii. If J is empty, then hQ(x) = ∞ for P-almost all x and hc(P|Q) = ∞.

iii. If J is a singleton, then J = {hc(P|Q)}, hQ(x) = hc(P|Q) for P-almost all x, and the
convergence in (6.2) (resp.(6.7)) occurs in L p(P) (resp. L p(P⊗Q)) for all p ≥ 1.

Proof. We proceed with the proof, taking (6.4), (6.7) as well as the almost sure existence
of the limit in (6.2) for granted.

i. Suppose that the interval J is nonempty. Then, by convexity,

inf
s:dist(s,J )≥δ

IQ(s) > 0

for every δ > 0. Therefore, by the large-deviation upper bound, the probability P{x :
dist(− 1

n lnQn(xn
1 ), J ) ≥ δ} decreases exponentially fast and a standard application

of the Borel–Cantelli lemma, followed by taking the limit δ → 0, implies that
inf J ≤ hP(x) ≤ sup J for P-almost every x . By (6.4), we obtain hc(P|Q) ∈ J .
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ii. If J = ∅, a similar argument applies to P{x : − 1
n lnQn(xn

1 ) ≤ K } with K arbitrarily
large, forcing hQ(x) to properly diverge to ∞ for P-almost every x . By (6.4), we
conclude that also hc(P|Q) = ∞.

iii. If J is a singleton, by Part i we conclude that J = {hc(P|Q)} and that hQ(x) =
hc(P|Q) for P-almost all x . We now claim that there exists α > 0 such that qQ(α) <

∞. Indeed, if this were not the case, we would have IQ(s) = q∗
Q
(s) = supα≤0(αs −

qQ(α)) for all s ∈ R, so IQ would be nonincreasing, which contradicts the assumption
that J is a singleton. For such α, note that the function φ : s �→ exp(αs1/p) grows
superlinearly and that

lim sup
n→∞

∫

φ
(| 1

n lnQn|p) dP ≤ exp
(
qQ(α)

)
(6.9)

by Jensen’s inequality applied to n
√· . Hence, de la Vallée Poussin’s criterion guar-

antees the sufficient uniform integrability requirement for the convergence in (6.2)
to hold in L p(P). The exact same argument applies to (6.7): we just need to replace
(6.9) with

lim sup
n→∞

∫

φ
(
( 1

n ln Wn)p) d(P⊗Q) ≤ exp (qW (α))

and to recall that, by (1.20) and since α > 0, we have qW (α) = qQ(α) < ∞. ��
In the next proposition, we consider the special case where Q = P, which allows

to include the limits (6.5) and (6.6) into the discussion. Notice also that even when
discussing (6.5), the measure P is not assumed to satisfy PA.

Proposition 6.3. Assume P satisfies UD and SLD, and let J be defined by (6.8) with
Q = P. Then, the following hold:

i. J ⊆ [−γ+,−γ−].
ii. hP(x) ∈ J for P-almost every x, and h(P) ∈ J .

iii. If J is a singleton, then J = {h(P)} and hP(x) = h(P) for P-almost every x.
Moreover, for all p ≥ 1, the convergence in (6.1), (6.5) and (6.6) holds in L p(P),
and that of (6.7) holds in L p(P⊗ P).

Proof. Part i is immediate by (1.15) and Part ii is a special case of Proposition 6.2.i.
All statements in Part iii except the one about (6.5) are either special cases of Proposi-
tion 6.2.iii or proved in exactly the same way (possibly using the simplification offered
by (1.16)).

The statement about (6.5) requires additional considerations to lift PA. As discussed
at the end of Sect. 4.2, the large-deviation upper bound of Theorem C still holds without
assuming PA, and we have q R ≤ I ∗R , with q R defined by taking the limit superior in
(1.4). Then, (6.9) is simply replaced by

lim sup
n→∞

∫

φ
(
( 1

n ln Rn)
p) dP ≤ exp

(
q R(α)

)
.

Since q R(α) ≤ I ∗R(α) = qP(α) for all α ≥ 0 by (1.26), the same argument applies once
more. ��
Remark 6.4. The P-essential image of hP(x) can be a strict subset of J .
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A. Supports and Subshifts

In this short appendix, we collect some basic definitions and technical results from the
theory of dynamical systems, which are used at several places in the paper.
We recall that a nonempty set �′ ⊆ � is called a subshift of � if it is closed (with respect
to the product topology) and if it satisfies T (�′) ⊆ �′. The language of �′ is defined as
L := {xm

n : 1 ≤ n ≤ m, x ∈ �′}. The subshift �′ is called transitive if, whenever u ∈ L
and v ∈ L, there exists ξ ∈ L such that uξv ∈ L.
A nonempty set �′ ⊆ � is a subshift if and only if there exists a collection W ⊂ �fin of
forbidden words such that �′ consists of those x ∈ � such that no word xm

n , 1 ≤ n ≤ m,
belongs to W . For a given subshift �′, the set W is not uniquely determined, but if it
can be chosen as a finite set, then �′ is called a subshift of finite type. In the further
specialized case where W can be chosen as a subset of A2, then �′ is called a Markov
subshift.
We now fix P ∈ Pinv(�) and consider �′ := suppP = {x ∈ � : Pn(x) > 0 for all n ∈
N}. It is clear that �′ is a subshift whose language is given by L = {u ∈ �fin : P([u]) >

0}, and that actually T (�′) = �′.
The topological entropy of �′ is defined by

htop(�
′) := lim

n→∞
1

n
ln |{xn

1 : x ∈ �′}| = lim
n→∞

1

n
ln | suppPn| ≤ ln |A|, (A.1)

where we recall that suppPn := {u ∈ An : Pn(u) > 0}. The limits in (A.1) exist by a
standard subadditivity argument (which does not require any decoupling assumption).

Lemma A.1. Let P ∈ Pinv(�). Then, the bounds (1.13) hold.

Proof. Obviously, 0 ≤ −γ+. Let now H(Pn) := −∑u∈An Pn(u) lnPn(u). By the defi-
nition of γ+ we find lnPn(u) ≤ nγ++o(n) for every u ∈ An and so−nγ+ ≤ H(Pn)+o(n).
On the other hand, H(Pn) ≤ ln | suppPn| (see e.g. Corollary 4.2.1 in [Wal82]). Finally,
clearly minu∈suppPn Pn(u) ≤ 1/| suppPn|, so ln | suppPn| ≤ −minu∈suppPn lnPn(u).
Dividing the above inequalities by n and taking n → ∞ completes the proof of (1.13).
Remark that the inequality h(P) ≤ htop(suppP) also follows from the much more gen-
eral result (A.2) below. ��
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A.1. Specification properties. The following definitions will be especially helpful when
combined with Lemmas B.7 and B.8 below. As in the statement of our decoupling
conditions, we shall assume that τn = o(n), and there will be no loss of generality
assuming that the various assumptions hold with the same sequence (τn)n∈N. Again, the
case where the sequence is bounded (written τn = O(1)) will sometimes be singled out.

Definition A.2. For a subshift �′ ⊂ � with language L, we define the following prop-
erties:

• the subshift �′ satisfies the flexible specification property if for every n ∈ N, u ∈
L ∩An , and every v ∈ L, there exists 0 ≤ � ≤ τn and ξ ∈ A� such that uξv ∈ L;
• the subshift �′ satisfies the abundant periodic orbit property if for each n ∈ N

and each u ∈ L ∩An , the cylinder [u] contains at least one periodic point of period
no larger than n + τn , i.e. if there exists a word ξ with 0 ≤ |ξ | ≤ τn such that
uξuξuξ · · · ∈ �′.

Remark A.3. Obviously, ifP satisfies SLD, then suppP satisfies the flexible specification
property (with the same sequence (τn)n∈N). In the same way, if a subshift �′ satisfies
Bowen’s specification property [Bow74], then the two properties in (A.2) are satisfied
with τn = O(1). The same is true when �′ is a transitive subshift of finite type: the
flexible specification property (with τn = O(1)) is quite immediate, and the abundant
periodic orbit property is then obtained using Lemma A.4 below. The interested reader
can gather other sufficient conditions by combining ideas from [Jun11,KŁO16,CT21].

Lemma A.4. If the flexible specification property holds with τn = O(1), then the abun-
dant periodic orbit property holds with some (possibly larger) τ ′

n = O(1).

Proof. Assume that the flexible specification property holds with τ := supn∈N τn < ∞.
Following [Ber88] and [Jun11, §3], this implies the existence of a synchronizing word w,
i.e. a word w ∈ L such that whenever uw ∈ L and wv ∈ L, then uwv ∈ L. Using
the assumption twice, for every u ∈ L, we can find ξ1 and ξ2, each of length at most
τ , such that wξ1uξ2w ∈ L. Note that |ξ1wξ2| ≤ 2τ + |w|. But by the synchronizing
property of w, we must have uξ2wξ1uξ2wξ1uξ2wξ1 · · · ∈ �′, so the abundant periodic
orbit property holds with τ ′

n := 2τ + |w| = O(1). ��

A.2. Measures of maximal entropy. Let �′ be a subshift. We denote by Pinv(�
′) the set

of shift-invariant probability measures on �′, and we identify the elements of Pinv(�
′)

with those of {μ ∈ Pinv(�) : μ(�′) = 1} in the obvious way.
By the variational principle (see e.g. Theorem 8.6 in [Wal82]) applied to the dynamical
system (�′, T ), we have

htop(�
′) = max

μ∈Pinv(�′)
h(μ), (A.2)

where the right-hand side is indeed a maximum, since the map h is upper semicontinuous
(see e.g. Theorem 8.2 in [Wal82]). In particular h(μ) ≤ htop(�

′) for all μ ∈ Pinv(�
′),

and μ is called a measure of maximal entropy (MME) on �′ if h(μ) = htop(�
′).

Given a continuous potential ϕ : �′ → R, we denote by ptop(ϕ) the topological pressure
of ϕ with respect to the dynamical system (�′, T ), that is,

ptop(ϕ) := lim
n→∞

1

n
ln

∑

u∈An∩L
esupx∈[u]∩�′

∑n−1
i=0 ϕ(T i x),
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which reduces to (2.10) when �′ = �. With this in mind, noting that htop(�
′) is nothing

but ptop(ϕ0) for the potential ϕ0 : �′ → R that vanishes identically, we conclude that
μ ∈ Pinv(�

′) is a MME on �′ if and only if ptop(ϕ0) = h(μ), that is, if and only if μ is
an equilibrium measure for ϕ0.

Proposition A.5. Let P ∈ Pinv(�), and let �′ := suppP.

i. Assume P satisfies SLD. Then, the measure P is a MME on �′ if and only if γ− = γ+.
ii. Assume P satisfies SLD with τn = O(1). Then, the dynamical system (�′, T ) is

intrinsically ergodic, i.e. there is exactly one MME on �′.

Proof. Recall that γ± are defined in (1.12).

i. Assume P is a MME on �′. As discussed above, P is then an equilibrium measure for
the identically vanishing potential ϕ0 defined on �′. By SLD, �′ enjoys the flexible
specification property (Remark A.3) and thus we can apply Theorem 2.1 in [PS20],
which guarantees that P is weak Gibbs with respect to ϕ0, i.e. that for all x ∈ �′,

Pn(xn
1 ) = e

∑n−1
i=0 ϕ0(T i x)−nptop(ϕ0)+o(n) = e−nhtop(�

′)+o(n).

From this we obtain γ+ = γ− = htop(�
′). Conversely, if γ− = γ+, then (1.13)

implies that h(P) = htop(�
′), so P is a MME.

ii. Under the stated assumption, �′ satisfies the flexible specification property with
τn = O(1) (Remark A.3) and the conclusion follows from e.g. Theorem 3.2 in
[CT21]. ��

B. Technical Results About Decoupling Assumptions

This appendix complements the discussion of our assumptions in Sect. 1.1 and uses the
notations therein.

B.1. Alternative definitions. The following lemma is used in Remark 1.3.

Lemma B.1. If any of the assumptions UD, SLD or JSLD holds with some sequences
(Cn)n∈N and (τn)n∈N, then it holds with any choice of sequences (C ′

n)n∈N and (τ ′
n)n∈N

satisfying C ′
n ≥ Cn and τ ′

n ≥ τn for all n ∈ N.

Proof. The only nontrivial part of the statement is that we may replace τn with τ ′
n

in UD, which we now prove. Let n, m ∈ N, u ∈ An , v ∈ Am and ξ ∈ �τ ′
n . UD then

implies, with ξ ′ = ξ
τ ′

n
τn+1 (possibly the empty word if τ ′

n = τn) that Pn+τ ′
n+m(uξv) ≤

CnPn(u)Pm+τ ′
n−τn (ξ

′v) ≤ CnPn(u)Pm(v). ��
The next two lemmas justify (3.1) and (3.2) respectively.

Lemma B.2. If P ∈ Pinv(�) satisfies UD, then

P
(

A ∩ T −n−τn B
) ≤ C̃nP(A)P(B)

for every n ∈ N, A ∈ Fn and B ∈ F , with C̃n := Cn|A|τn = eo(n).



Large Deviations of Return Times Page 57 of 69 135

Proof. First, since the semi-algebra of cylinder sets generates F , and since B �→ P(A∩
T −n−τn B) defines a finite measure, it suffices to consider the case where B ∈ Fm for
some m ∈ N (see e.g. Lemma 1.9.4 in [Bog07]). But then, by UD,

P
(

A ∩ T −n−τn B
) =

∑

u∈An :[u]⊆A
v∈Am :[v]⊆B

ξ∈Aτn

Pn+τn+m(uξv)

≤ Cn

∑

u∈An :[u]⊆A
v∈Am :[v]⊆B

ξ∈Aτn

Pn(u)Pm(v)

= Cn

∑

ξ∈Aτn

P(A)P(B),

from which the result follows, since the sum over ξ contains |A|τn terms. ��
Lemma B.3. If P ∈ Pinv(�) satisfies SLD, then

max
0≤�≤τn

P

(
A ∩ T −n−� B

)
≥ Ĉ−1

n P(A)P(B)

for every n ∈ N, A ∈ Fn and B ∈ F , with Ĉn := (τn + 1)Cn = eo(n).

Proof. Consider the finite measure μ defined by μ(B) = ∑τn
�=0 P(A ∩ T −n−� B). If

B ∈ Fm for some m ∈ N, we obtain by SLD,

μ(B) =
∑

u∈An :[u]⊆A
v∈Am :[v]⊆B
ξ∈⋃n

�=0 A�

Pn+|ξ |+m(uξv)

≥ C−1
n

∑

u∈An :[u]⊆A
v∈Am :[v]⊆B

Pn(u)Pm(v)

= C−1
n P(A)P(B).

As in Lemma B.2, this extends to any B ∈ F . Since

μ(B) ≤ (τn + 1) max
0≤�≤τn

P

(
A ∩ T −n−� B

)

by definition, the proof is complete. ��
Remark B.4. It is obvious that the condition stated in Lemma B.2 is actually equiv-
alent to UD, by considering A = [u] and B = [v]. In the same way, the condi-
tion stated in Lemma B.2 is equivalent to SLD, although going back to the original
statement of SLD costs an additional (harmless) factor of |A|τn , since the inequality
P
([u] ∩ T −n−�[v]) ≥ Ĉ−1

n P([u])P([v]) only implies that there exists some ξ ∈ A�

such that P
([u] ∩ T −n[ξ ] ∩ T −n−�[v]) ≥ Ĉ−1

n |A|−�
P([u])P([v]).

Remark B.5. In general, boundedness of the sequence (Cn)n∈N does not imply bound-
edness of the sequences (C̃n)n∈N and (Ĉn)n∈N. However, this implication holds when
τn = O(1).
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B.2. Sufficient conditions. We start with a sufficient condition for PA to hold. In a
nutshell, the sufficient condition is that for every p ∈ N, v ∈ Ap, there is some ξ ∈ �fin
such that the probability of (vξ)n−1v satisfies a lower bound in terms of Pp(v)n . We
stress that SLD does not imply such a lower bound in general. Indeed, applying SLD a
total of n−1 times recursively yields a word vξ(n−1)v · · · vξ(2)vξ (1)v whose probability
is bounded below by Cn−1

p Pp(v)n , but there is no reason for the ξ (i) to be equal in general,
unless of course τn = 0 for all n, in which case SLD does imply the assumptions of
Lemma B.6 and thus PA.

Lemma B.6. Let P ∈ Pinv(�) and assume that there exists a family (cp,n)p∈N,n∈N
satisfying

lim
p→∞

1

p
lim sup

n→∞
ln cp,n

n
= 0, (B.1)

and such that for every p ∈ N and v ∈ Ap, there exists ξ ∈ �fin such that

Pnp+(n−1)|ξ |
(
(vξ)n−1v

)
≥ cp,n(Pp(v))n (B.2)

for all n ∈ N. Then, the measure P satisfies PA.

Proof. Let ε > 0 and P ∈ N be arbitrary. By definition of γ+, there exists p ≥ P and

v ∈ Ap such that Pp(v) > ep(γ+− 1
2 ε). With ξ ∈ �fin as in (B.2), we have

lim inf
n→∞

1

n(p + |ξ |) lnPn(p+|ξ |)((vξ)n) ≥ lim inf
n→∞

1

np
lnPn(p+|ξ |)((vξ)n)

≥ lim inf
n→∞

1

np
lnP(n+1)p+n|ξ |((vξ)nv)

≥ lim inf
n→∞

1

np
((n + 1) lnPp(v) + ln cp,n+1)

> γ+ − ε

2
+

1

p
lim inf
n→∞

ln cp,n

n
.

By (B.1), we can choose P — and thus p — large enough so that the right-hand side is
bounded below by γ+−ε, so the choice u = vξ satisfies the requirement in the definition
of PA. ��
We now give a sufficient condition for UD which is used in the setup of Sects. 2.3 and
2.4.

Lemma B.7. Assume that there exists an eo(n)-sequence (Cn)n∈N such that

Pn+m(xn+m
1 ) ≤ CnPn(xn

1 )Pm(xn+m
n+1 ) (A.3)

for all x ∈ suppP and all n, m ∈ N. Then, the measure P satisfies UD with τn = 0.

Proof. Let u, v be as in the definition of UD. First, if Pn+m(uv) > 0, there exists
x ∈ [uv] ∩ suppP, and in this case (A.3) implies that Pn+m(uv) ≤ CnPn(u)Pm(v), as
required. The same inequality trivially holds if Pn+m(uv) = 0. ��
The next lemma gives sufficient conditions for SLD, JSLD and PA to hold in terms of
the properties introduced in Definition A.2. This is again particularly useful in the setup
of Sects. 2.3 and 2.4.
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Lemma B.8. Assume that there exists an eo(n)-sequence (Cn)n∈N such that

Pn+m(xn+m
1 ) ≥ C−1

n Pn(xn
1 )Pm(xn+m

n+1 ) (A.4)

for all x ∈ suppP and all n, m ∈ N. Then, the following hold:

i. If suppP satisfies the flexible specification property, then P satisfies SLD.
ii. If suppP satisfies the abundant periodic orbit property, then P satisfies PA.

iii. If suppP satisfies the flexible specification property, if Q ∈ Pinv is another measure
satisfying (A.4), and if suppP = suppQ, then the pair (P,Q) satisfies JSLD.

Proof. First note the following consequence of repeated applications of (A.4): for all
u, v ∈ L such that uv ∈ L, we have

P([uv]) ≥ δ|u|P([v]), (A.5)

with δ = C−1
1 infa∈suppP1(a) P1(a) ∈ (0, 1].

i. Let u, v be as in the definition of SLD. We assume that u, v ∈ L, for otherwise
there is nothing to prove. By the flexible specification property, there exists ξ with
|ξ | ≤ τn such that uξv ∈ L. Then, applying (A.4) to any x ∈ [uξv] implies that
Pn+|ξ |+m(uξv) ≥ C−1

n Pn(u)P|ξ |+m(ξv) ≥ C−1
n δτnPn(u)Pm(v), where we have used

(A.5). We have thus proved SLD with C ′
n := Cnδ−τn = eo(n).

ii. Let p ∈ N and v ∈ Ap. By the abundant periodic orbit property, there exists ξ with
|ξ | ≤ τp such that (vξ)n−1v ∈ L for all n ∈ N. By iterating the argument in the proof
of Part i, we obtain (B.2) with cn,p := (C ′

p)
1−n , so Lemma B.6 establishes PA.

iii. Under the stated assumptions, Pn and Qn are equivalent, and since the choice of ξ in
the proof of Part i only depends on the properties of the support, the same ξ can be
chosen to prove SLD for both P and Q, so JSLD holds. ��

Remark B.9. In the same way that we derived (A.5), we conclude that if (A.4) holds,
then P([u]) ≥ δ|u| for all u ∈ L, so the map x �→ − 1

n lnPn(xn
1 ) is bounded on suppP.

Thus, in this situation, the limit defining qP is finite whenever it exists. In the same
way, if Q,P ∈ Pinv(�) have common support and if Q satisfies (A.4), then qQ is finite
whenever the limit exists.

Remark B.10. If both (A.3) and (A.4) hold for all x ∈ suppP, then there exists a con-
tinuous potential ϕ on suppP such that the weak Gibbs condition (2.16) holds for all
x ∈ suppP, by Theorem 1.2 of [Cun20] applied to fn(x) = lnPn(xn

1 ). Unfortunately,
the weak Gibbs condition does not seem to imply (A.3) and (A.4), due to the lack of
uniformity in m, so Lemmas B.7 and B.8 do not apply to weak Gibbs measures in
general.

B.3. Decoupling properties of g-measures. The following lemma is used in Sect. 2.4.2
in order to show that g-measures satisfy our decoupling assumptions.

Lemma B.11. Let �′ be a subshift of �. Suppose thatP ∈ Pinv(�) is such that suppP =
�′ and that the sequence of functions on �′ defined by

gn(x) := Pn(xn
1 )

Pn−1(xn
2 )
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converges uniformly to some continuous function g : �′ → (0, 1]. Then, there exists an
eo(n)-sequence (Kn)n∈N such that

K−1
n

n−1∏

i=0

g(T i x) ≤ Pn(xn
1 ) ≤ Kn

n−1∏

i=0

g(T i x) (A.6)

and

K−2
n Pn(xn

1 )Pm(xn+m
n+1 ) ≤ Pn+m(xn+m

1 ) ≤ K 2
nPn(xn

1 )Pm(xn+m
n+1 ) (A.7)

for all x ∈ �′. In particular, (A.3) and (A.4) hold for all x ∈ �′ with Cn = K 2
n , and P

is weak Gibbs on �′ for the potential ϕ = ln g, i.e. (2.16) holds for all x ∈ �′.

Proof. Throughout the proof, we use the convention that P0(x0
1 ) = 1. Let �n(x) :=

ln gn(x) − ln g(x) for n ∈ N and x ∈ �′. By compactness, positivity and uniform
convergence, we find that �∗

n := supn′≥n supx∈�′ |�n′(x)| defines a bounded sequence
that converges to 0 as n → ∞. As a consequence, 1

n

∑n
k=1 �∗

n → 0, and Kn :=
exp
∑n

k=1 �∗
k defines an eo(n)-sequence. For all x ∈ �′, a telescoping argument yields

Pn(xn
1 ) =

n∏

k=1

gn−k+1(T
k−1x) = e

∑n
k=1 �k (T n−k x)

n∏

k=1

g(T k−1x), (A.8)

which establishes (A.6). In order to prove (A.7), we remark that by another telescoping
argument,

Pn+m(xn+m
1 ) = Pm(xn+m

n+1 )

n∏

k=1

gn+m−k+1(T
k−1x)

= Pm(xn+m
n+1 )e

∑n
k=1 �k+m (T n−k x)

n∏

k=1

g(T k−1x).

Combining the above with (A.8) and noting that �∗
k+m ≤ �∗

k , we obtain (A.7). ��

B.4. Relation to mixing. We recall that a measure P ∈ Pinv is said to be ψ-mixing if its
ψ-mixing coefficients (ψP(τ ))τ∈N∪{0}, defined by

ψP(τ ) := sup
n,m∈N

max

{∣
∣
∣
∣
P([u] ∩ T −n−τ [v])

Pn(u)Pm(v)
− 1

∣
∣
∣
∣ : u ∈ suppPn, v ∈ suppPm

}

,

satisfy limτ→∞ ψP(τ ) = 0.

Lemma B.12. If P is ψ-mixing, then P satisfies SLD and UD with τn = O(1) and
Cn = O(1).

Proof. By assumption, there exists τ ∈ N∪{0} such that ψP(τ ) < 1. But then UD holds
with τ+

n := τ and C+
n := 1 + ψP(τ ), and SLD holds with τ−

n := τ and C−
n := |A|τ

1−ψP(τ )
.

Both UD and SLD thus hold with Cn := max{C−
n , C+

n } and τn := τ . ��
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Remark B.13. We do not claim that ψ-mixing alone implies PA in general. It does,
however, when ψP(0) < 1. In this case, Lemma B.12 shows that SLD holds with τn = 0
for all n, which implies PA; recall Remark 1.5.14 In the same way, if P and Q are two
ψ-mixing measures with common support, we do not claim that JSLD holds in general,
except once again if ψP(0), ψQ(0) < 1; recall Remark 1.2.

C. From Weak LDPs to Full LDPs

C.1. General results for nonnegative random variables. We gather in the following
proposition a collection of results allowing to establish Legendre–Fenchel duality and
promote the weak LDP to a full one in the case of nonnegative random variables. They
rely on standard techniques, and we provide the details not only for completeness, but
also because our setup is slightly unusual: we do not assume the full LDP nor goodness of
the rate function, but we rely on the one-dimensional and convex nature of the problem,
in the same spirit as the proof of Proposition 5.2 of [CJPS19]. We again use the notation
of the beginning of Sect. 4.

Proposition C.1. Let (Zn)n∈N be a sequence of [0,∞)-valued random variables defined
on a probability space (�∗,P∗). Assume (Zn)n∈N satisfies the weak LDP with a rate
function I , and set

q(α) := lim inf
n→∞

1

n
ln
∫

eαnZn dP∗ and q(α) := lim sup
n→∞

1

n
ln
∫

eαnZn dP∗ (C.1)

for α ∈ R. When q(α) = q(α), let q(α) denote their common value. Then, the following
hold:

i. q, q are nondecreasing and satisfy q(0) = q(0) = 0.
ii. I (s) = ∞ for all s < 0.

iii. q ≥ I ∗.
iv. q(α) ≤ I ∗(α) for every α satisfying the tail condition

lim
K→∞ lim sup

n→∞
1

n
ln
∫

eαnZn 1Zn>K dP∗ = −∞. (C.2)

v. For every α < 0, q(α) exists and q(α) = I ∗(α).
vi. If q(α) < ∞ for some α > 0, then the full LDP holds, I is a good rate function and

the family (Zn)n∈N is exponentially tight.
vii. Assume I is convex. If q(α) exists (in [−∞,∞]) and q(α) = I ∗(α) for every α ∈ R,

then I = q∗ and the full LDP holds.

Remark C.2. Part v does not extend to α = 0 automatically, because the weak LDP alone
does not guarantee that I ∗(0) = 0. Indeed, we could in principle have, for example,
I (s) = 1 + ∞ · 1s<0 and q(α) = −1α<0 + ∞ · 1α>0.

Remark C.3. The convexity assumption in Part vii is required not only to derive I = q∗,
but also in order to prove the full LDP. In the situation where Part vii applies but Part vi
does not, that is when I is convex but q(α) = ∞ for all α > 0, we shall obtain in the
proof that, due to convexity, lims→∞ I (s) = 0, which makes the large-deviation upper
bound for unbounded sets somewhat trivial. In particular, in this situation I is not a good
rate function and (Zn)n∈N is not an exponentially tight family; recall Fig. 4.

14 The reader familiar with the terminology in e.g. [Bra05, §2.1] will note that ψ ′
P
(0) > 0 suffices.
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Proof. In this proof, we denote by μn the distribution of Zn under P∗, that is μn =
P∗ ◦ Z−1

n , which obviously satisfies μn([0,∞)) = 1. Parts i and ii are immediate
consequences of the definitions (C.1) and the fact that Zn ≥ 0.

iii. This is the standard lower bound of Varadhan’s lemma; see e.g. Lemma 4.3.4 in
[DZ09]. We include the proof for completeness. For any s, α ∈ R and ε > 0, we
have by the weak LDP

q(α) ≥ lim inf
n→∞

1

n
ln
∫

B(s,ε)
eαns′dμn(s′)

≥ (αs − |α|ε) + lim inf
n→∞

1

n
ln μn(B(s, ε))

≥ αs − |α|ε − I (s).

Letting ε → 0, we obtain q(α) ≥ αs − I (s). Since α and s are arbitrary, we indeed
have q ≥ I ∗.

iv. We give here the classical covering argument used in the proof of the upper bound
of Varadhan’s lemma; see e.g. Lemma 4.3.6 in [DZ09] for the same result under
slightly different assumptions. Let α verify (C.2) and fix ε > 0 and K > 0. For every
s ∈ [0, K ], there exists an open neighborhood Gs ' s such that

inf
s′∈Gs

I (s′) ≥ min
{
(I (s) − ε), ε−1

}
and sup

s′∈Gs

αs′ ≤ αs + ε.

These neighborhoods cover the compact set [0, K ] and we can extract a finite subcover
{Gs1 , Gs2 , . . . , Gsr }. Now, by the weak LDP,

lim sup
n→∞

1

n
ln
∫

Gsi

eαns′dμn(s′) ≤ lim sup
n→∞

1

n
ln
(
eαnsi +εnμn(Gsi )

)

≤ αsi + ε − min
{
(I (si ) − ε), ε−1

}

= max
{
αsi − I (si ) + 2ε, αsi + ε − ε−1

}

≤ max
{

I ∗(α) + 2ε, |α|K + ε − ε−1
}

for each i = 1, 2, . . . , r , and it follows that

q(α) ≤ lim sup
n→∞

1

n
ln

(∫

(K ,∞)

eαnsdμn(s) +
r∑

i=1

∫

Gsi

eαnsdμn(s)

)

≤ max{RK , I ∗(α) + 2ε, |α|K + ε − ε−1},

where RK = lim supn→∞
∫
(K ,∞)

eαnsdμn(s). Sending ε → 0 shows that

q(α) ≤ max{RK , I ∗(α)}.

Finally, sending K → ∞ and using (C.2) yields q(α) ≤ I ∗(α), as claimed.
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v. When α < 0,

lim sup
n→∞

1

n
ln
∫

(K ,∞)

eαnsdμn(s) ≤ αK + lim sup
n→∞

1

n
ln
∫

(K ,∞)

dμn(s) ≤ αK ,

so Part iv ensures that q(α) ≤ I ∗(q). Since also q(α) ≥ I ∗(q) by Part iii, we conclude
that q(α) = I ∗(α).

vi. If q(α) < ∞ for some α > 0, then a standard application of Chebyshev’s exponential
inequality yields

lim sup
n→∞

1

n
ln μn((K ,∞)) ≤ q(α) − αK ,

which establishes exponential tightness, and thus the full LDP and the goodness of
the rate function (in fact I (s) ≥ αs − q(α)), see e.g. Lemma 1.2.18 in [DZ09].

vii. Since I is convex and lower semicontinuous, we obtain I = I ∗∗ = q∗. In view of
Part vi, we need only prove the full LDP in the case where q(α) = ∞ for all α > 0.
In this situation, I (s) = q∗(s) = supα≤0(αs − q(α)) for all s ∈ R, so clearly the
function I is nonincreasing. Thus, since infs≥0 I (s) = −I ∗(0) = −q(0) = 0, we
must have lims→∞ I (s) = 0. In order to extend the weak LDP to a full one, consider
a closed set � ⊆ R. Since μn((−∞, 0)) = 0 and I (s) = ∞ when s < 0, it suffices
to prove the large-deviation upper bound for �′ := � ∩ [0,∞). If �′ is compact,
the weak LDP provides the desired upper bound. If �′ is not compact, then it is
unbounded, and since lims→∞ I (s) = 0 we conclude that infs∈� I (s) = 0, making
the large-deviation upper bound trivial. ��

C.2. Proof of Theorem 0. The proof relies on the weak LDP established in [CJPS19],
which we shall promote, using Proposition C.1, to a full LDP with suitable Legendre–
Fenchel duality relations.
Before we proceed, it should be noted that the arguments below can be simplified in the
special case where Q = P. Indeed, in this case, exponential tightness is immediate (see
Remark 2.8), and one can apply Theorem 2.8 of [CJPS19] to the pair (P, P̂), with P̂ the
uniform measure. Indeed, in this case, 1

n σn(x) = 1
n lnPn(xn

1 ) + ln |A|; see Remark 2.11
in [CJPS19].
Returning to the general case, we note that the combination of UD and JSLD implies,
in view of Lemma A.1 of [CJPS19], that the pair (P,Q) satisfies assumption SSD of
[CJPS19]. By an immediate adaptation of Proposition 3.1.2 of [CJPS19], we conclude
that the random variables x �→ − lnQn(xn

1 ) are ψ-compatible in the sense of Def-
inition 3.10 of [CJPS19] (the map ψn,t is constructed in Proposition 3.1.1 therein).
Thus, Proposition 3.11 of [CJPS19] implies that the sequence (Zn)n∈N defined by
Zn(x) := − 1

n lnQn(xn
1 ) satisfies the weak LDP with a convex rate function IQ. More

specifically, Proposition 3.11.2 of [CJPS19] ensures that there exists a sequence (γn)n∈N
with γn → 0 such that for all ε > 0, all n ∈ N and all s ∈ R,

1

n
ln μn(B(s, ε)) ≤ γn − inf

y∈B(s,ε+(1+|s|)γn)
IQ(y), (C.3)

where μn is the distribution of Zn with respect to P. Moreover, Lemma 3.12 in [CJPS19]
implies that the limit defining qQ exists for all α ∈ R and defines a lower semicontin-
uous, convex function qQ : R → (−∞,∞]. We are thus in a position to exploit
Proposition C.1, with �∗ := �, Zn as above, and I := IQ.
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Proof of Parts i–ii. In view of the above discussion and of Proposition C.1.i–ii, it only
remains to promote the weak LDP to a full one and to establish the Legendre–Fenchel
duality relations (1.14). These two conclusions will follow from Proposition C.1.vii,
once we have established the identity qQ = I ∗

Q
.

Since Parts iii and v of Proposition C.1 ensure that qQ(α) ≥ I ∗
Q
(α) for all α ∈ R and

that qQ(α) = I ∗
Q
(α) for all α < 0, it remains to prove that qQ(α) ≤ I ∗

Q
(α) for all α ≥ 0.

Values of α ≥ 0 will be split into two regions, separated by the limit

α+ := lim
s→∞

IQ(s)

s
,

which exists in [0,∞] by convexity of IQ.
Case 1: 0 ≤ α < α+. Let δ = 1

2 min{1, α+ − α}. Then, there exists c > 0 such that

IQ(s) ≥ αs + δs − c

for all s ≥ 0. Using this and (C.3), we deduce that

1

n
ln μn

(
B(k, 1)

) ≤ γn − inf
y∈B(k,1+(1+k)γn)

IQ(y) ≤ −αk − δk + c′ + c′′kγn

for all k ≥ 0, where γn → 0 as n → ∞, while the constants c′ and c′′ are independent
of n and k. It follows that

μn
(
B(k, 1)

) ≤ exp

(

n

(

−αk − δk

2
+ c′
))

for all n large enough so that c′′γn ≤ δ
2 . We thus obtain, for all K > 0,

∫

(K ,∞)

eαnsdμn(s) ≤
∞∑

j=1

eαn(K + j+1)μn(B(K + j, 1)) ≤
∞∑

j=1

e−n(K + j) δ
2 +n(c′+α).

By summing the geometric series, we conclude that

lim sup
n→∞

1

n
ln
∫

(K ,∞)

eαnsdμn(s) ≤ −(K + 1)
δ

2
+ c′ + α.

Therefore, the condition (C.2) is satisfied and Proposition C.1.iv yields the bound
qQ(α) ≤ I ∗

Q
(α).

Case 2: α ≥ α+. Of course, this is only to be considered if α+ < ∞. Since IQ(s) = ∞
for all s < 0, we have I ∗

Q
(α) = sups≥0(αs − IQ(s)) for all α ∈ R, so the function

I ∗
Q

is nondecreasing. Thus, both qQ and I ∗
Q

are nondecreasing, lower semicontinuous
functions, which implies that they are left continuous. It follows that the inequality
qQ(α) ≤ I ∗

Q
(α), which we have now established for all α ∈ (−∞, α+), extends to

α = α+.15

Finally, if α > α+, then obviously I ∗
Q
(α) ≥ lims→∞(αs − IQ(s)) = ∞ by the definition

of α+, so the inequality qQ(α) ≤ I ∗
Q
(α) is trivial.

15 While this extension to α+ may seem to be a technical detail, lower semicontinuity of qQ, which is ensured
by a subadditivity argument in Lemma 3.12 of [CJPS19], plays an important role here, preventing for example
the situation described in Remark C.2 (in that example α+ = 0).
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Combining the two cases, we have proved that qQ ≤ I ∗
Q

, and thus the proof of Theo-
rem 0.i–ii is complete.
Proof of Part iii. In this part Q = P. The four claims are proved in an order which differs
from that of the statement.

c. By the rightmost expression in (1.7),

qP(1) = lim
n→∞

1

n
ln | suppPn(u)| = htop(suppP), (C.4)

so (1.16) is a consequence of monotonicity in α.
b. We need to prove that

γ+ = lim
n→∞

1

n
sup

u∈An
lnPn(u) and γ− = lim

n→∞
1

n
inf

u∈suppPn
lnPn(u). (C.5)

By UD, the sequence (an)n∈N defined by an := supu∈An lnPn(u) satisfies an+m+τn ≤
an + am + ln Cn for all n, m ∈ N, and a variant of Fekete’s subadditive lemma applies
[Raq23, §2]. This proves the statement about γ+.

To prove the statement about γ−, set this time an := infu∈suppPn lnPn(u) and let
n, m ∈ N be arbitrary. Pick u ∈ An such that lnPn(u) = an and v ∈ Am such that
lnPm(v) = am . Since Pm(v) > 0, there exists b ∈ Aτn such that Pτn+m(bv) > 0,
and by SLD, there exist 0 ≤ � ≤ τn and ξ ∈ A� such that Pn+�+τn+m(uξbv) > 0. But
then, in view of UD,

0 < Pn+�+τn+m(uξbv) ≤ CnPn(u)Pm+�(b
τn
τn−�+1v) ≤ CnPn(u)Pm(v),

with the convention that ξ
τn
τn+1 is the empty word. Therefore, uξbv ∈ suppPn+�+τn+m

and thus

an+�+m+τn ≤ lnPn+�+τn+m(uξbv) ≤ an + am + ln Cn .

Since the sequence (an)n∈N is nonincreasing, we conclude that an+m+2τn ≤ an + am +
ln Cn , so the same variant of Fekete’s subadditive lemma yields the claim.

a. In view of (1.16), Proposition C.1.vi applies, so (Zn)n∈N is exponentially tight and
IP is a good rate function. We now prove (1.15). First, by (C.4) and since qP(1) =
I ∗
P
(1) = sups∈R(s − IP(s)), we conclude that IP(s) ≥ s −htop(suppP) for all s ∈ R.

By the Ruelle–Lanford representation of IP, and since

μn(B(s, ε)) ≤ e−n(s−ε)

∣
∣
∣
∣

{

u ∈ An : −1

n
lnPn(u) ∈ B(s, ε)

}∣
∣
∣
∣

with a similar lower bound (with e−n(s+ε)), we obtain

IP(s) = s − lim
ε→0

lim sup
n→∞

1

n
ln

∣
∣
∣
∣

{

u ∈ An : −1

n
lnPn(u) ∈ B(s, ε)

}∣
∣
∣
∣ . (C.6)

The limit superior can be replaced by a limit inferior. Then, since the logarithm is
either nonnegative or equal to−∞, we conclude that IP(s) is either bounded above by
s or infinite. If s < −γ+ or s > −γ−, then the definition of γ± implies that for ε > 0
small enough and n large enough there is no u ∈ An such that − 1

n lnPn(u) ∈ B(s, ε),
so IP(s) = ∞. Next, by (C.5), we have for all ε > 0 that the set on the right-hand side
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of (C.6) with s = −γ+ is nonempty for all n large enough, so IP(−γ+) ≤ −γ+. When
γ− > −∞, a symmetric argument shows that IP(−γ−) ≤ −γ−, so by convexity, we
indeed obtain IP(s) ≤ s for all s ∈ [−γ+,−γ−]. Now, if γ− = −∞, then by (C.5)
we can pick, for each n ∈ N, some u(n) ∈ An so that sn := − 1

n lnPn(u(n)) → ∞ as
n → ∞. By (C.3) with ε = 1, we obtain

inf
s′∈B(sn ,1+(1+sn)γn)

IP(s′) ≤ −1

n
ln μn(B(sn, 1)) + γn ≤ sn + γn .

As a consequence, for each n, there is some s′n ∈ B(sn, 1 + (1 + sn)γn) such that
IP(s′n) ≤ sn + γn + 1 < ∞, and thus IP(s′n) ≤ s′n by (C.6). Noting that s′n → ∞, and
recalling that IP(−γ+) ≤ −γ+, convexity allows to conclude that IP(s) ≤ s for all
s ≥ −γ+. The proof of (1.15) is complete.

d. If γ− > −∞, then (1.15) yields qP(α) = sups∈[−γ+,γ−](αs − IP(s)) < ∞ for all
α ∈ R. If on the contrary γ− = −∞, then (1.15) implies that IP(s) ≤ s for all
s ∈ [−γ+,∞), so that, for α > 1, we obtain qP(α) ≥ lims→∞(αs − IP(s)) = ∞. ��
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[CDEJR23a] Cristadoro, G., Degli Esposti, M., Jakšić, V., Raquépas, R.: On a waiting-time result of Kon-

toyiannis: mixing or decoupling? Stoch. Proc. Appl. 166, 104222 (2023)
[CDEJR23b] Cristadoro, G., Degli Esposti, M., Jakšić, V., Raquépas, R.: Recurrence times, waiting times
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