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Abstract: The goal of the present paper is to establish a framework which allows to
rigorously determine the large-scale Gaussian fluctuations for a class of singular SPDEs
at and above criticality, and therefore beyond the range of applicability of pathwise
techniques, such as the theory of Regularity Structures. To this purpose, we focus on
a d-dimensional generalization of the Stochastic Burgers equation (SBE) introduced in
van Beijeren et al. (Phys Rev Lett 54(18):2026–2029, 1985. https://doi.org/10.1103/
PhysRevLett.54.2026). In both the critical d = 2 and super-critical d ≥ 3 cases, we
show that the scaling limit of (the regularised) SBE is given by a stochastic heat equation
with non-trivially renormalised coefficient, introducing a set of tools that we expect to
be applicable more widely. For d ≥ 3 the scaling adopted is the classical diffusive one,
while in d = 2 it is the so-called weak coupling scaling which corresponds to tuning
down the strength of the interaction in a scale-dependent way.
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1. Introduction

The study of (singular) Stochastic Partial Differential Equations (SPDEs) has known
tremendous advances in recent years. Thanks to the groundbreaking theory of regularity
structures [Hai14], paracontrolled calculus [GIP15] or renormalization group techniques
[Kup14], a local solution theory can be shown to hold for a large family of SPDEs in
the so-called sub-critical dimensions (see [Hai14] for the notion of sub-criticality in
this context). In contrast, SPDEs in the critical and super-critical dimensions are, from
a mathematical viewpoint, still largely unexplored and poorly understood. The aim of
the present paper is to establish a framework which allows to rigorously determine the
large-scale (Gaussian) fluctuations for a class of SPDEs at and above criticality under
(suitable) diffusive scaling.

To present the ideas and the techniques in our analysis, we will focus on a specific ex-
ample, the Stochastic Burgers Equation (SBE), which, in any dimension, can (formally)
be written as

∂tη = 1
2�η + w · ∇η2 + ÷ξ (1.1)

where the scalar field η = η(x, t) depends on t ≥ 0 and x ∈ R
d with d ≥ 1, w ∈ R

d

is a fixed vector and ξ = (ξ1, . . . , ξd) is a d-dimensional space-time white noise on
R+ × R

d , i.e. a centred d-dimensional Gaussian process whose covariance is formally
given by E[ξi (t, x)ξ j (s, y)] = δ(t − s)δ(x − y)1i= j .

The above equation was introduced by van Beijeren, Kutner and Spohn in [vBKS85]
as an approximation of the fluctuations of general driven diffusion systems with one
conserved quantity, e.g. the Asymmetric Simple Exclusion Process (ASEP) on Z

d . The
nonlinear term in (1.1) expresses the fact that the velocity at which the fluctuation density
travels depends on its magnitude. In the context of ASEP, comes from the gradient
of the current and is due to its asymmetry, so that in particular the vector w models
how the ASEP under consideration is asymmetric in the different spatial directions. In
the sub-critical dimension d = 1, (1.1) reduces to the (derivative of the) celebrated
Kardar–Parisi–Zhang (KPZ) equation [KPZ86] whose local solution theory is by now
well-understood [Hai13,GP17,GJ14,GP18] and whose large-scale statistics have been
recently determined [QS23,Vir20]. In higher dimensions the only available results are
in the discrete setting. For d ≥ 3, corresponding to the super-critical case, ASEP has
been shown to be diffusive at large scales [EMY94,LY97]—its fluctuations are Gaussian
and given by the solution of a Stochastic Heat equation (SHE) with additive noise, see
[CLO01,LOY04] and [KLO12] for a review. The critical dimensiond = 2 is more subtle.
Only qualitative information is available and no scaling limit has been obtained thus far.
The most important result is that of [Yau04], which states that two-dimensional ASEP
is logarithmically superdiffusive, meaning that the diffusivity D(t) satisfies D(t) ∼
(log t)2/3 for t large.1

As mentioned above, our focus is on the critical and super-critical dimensions, i.e.
we will be studying (1.1) (in the continuum) in d ≥ 2. In both cases, we will prove
that the large-scale behaviour is Gaussian and that the fluctuations evolve as a SHE with
renormalized coefficients (see Theorem 1.3), but while for d ≥ 3 the scaling adopted is
the classical diffusive scaling, for d = 2 we will consider the so-called weak coupling
scaling. This corresponds to tuning down the strength of the nonlinearity (morally, the
“norm” of the vector w) at a suitable rate together with the scale parameter, see (1.6).

1 The diffusivity measures how the correlations of a process grow in space as a function of time so that,
denoting by �(t) the correlation length, it formally satisfies �(t) ∼ √

t D(t).
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The tuning is chosen so that we can “tame” the growth caused by the non-linear term
without destroying its large-scale effects (see e.g. [CD20,CSZ20,Gu20,CES21,CETar]
for a similar choice of scaling in the critical dimension for different equations).

Let us mention that the study of large-scale Gaussian fluctuations of space-time
random fields with local non-linear random dynamics is not restricted the context of
SPDEs but is a classical topic in probability theory and mathematical physics. From the
more general point of view of theoretical physics, large-scale Gaussian fluctuations are
expected for equilibrium diffusive systems above their critical dimension and this belief
is informally explained via (non-rigorous) Renormalization Group (RG) arguments and
effective dynamical field theories.

A variety of tools have been used to mathematically justify these heuristics in the static
setting, i.e. for the equilibrium measure of local non-linear systems. RG methods have
been applied to derive the scaling limit of unbounded spin systems (and other statistical
mechanical models) at and above their critical dimension d ≥ 4 in [BBS15,BBS14,
BBS19]2. The related problem of triviality of �4

d theories for d > 4 was treated in
[Aiz82,Frö82,FFS92] using apriori bounds on correlation functions, an approach which
ultimately lead to a proof in the more challenging critical dimension d = 4, see [AD21].
Another class of equilibrium models for which scaling limits have been successfully
determined are equilibrium interface models, so called ∇ϕ models in all dimensions
[BY90,NS97,FS97,GOS01,AD22a], for which the Helffer-Sjöstrand representation of
correlations together with homogeneization arguments was exploited. Analogous results
have been proven, with very different methods, for discrete ∇ϕ models in dimension
d = 2 (in particular dimer models, both integrable ones [Ken01] and their non-integrable
perturbations [GMT20]).

On the other hand, establishing large-scale Gaussian fluctuations for dynamical prob-
lems has proven to be challenging and we are not aware of general results in this direction.
The major issue seems to stem from the fact that there is currently no framework which al-
lows to naturally identify the law of the limit process. A lot of attention has been recently
devoted to the above mentioned KPZ equation in high dimension, whose expression in
its most general form is as (1.1) but with nonlinearity given by 〈∇η, Q∇η〉, for Q a
d × d deterministic symmetric matrix, and a real valued space-time white noise in place
of ÷ξ . Most of the works focus on the case in which Q is given by the identity matrix and
the specific form of the resulting equation plays a crucial role. Indeed, one can use the
Cole–Hopf transformation to linearise the SPDE and turn it into a linear multiplicative
stochastic heat equation or the associated directed-polymer models. These latter models
possess an “explicit" representation (via, e.g., Feynman-Kac formula) and one can then
leverage Malliavin calculus tools to derive the scaling limit (see [DGRZ21,GRZ18b]
for the multiplicative stochastic heat equation and [GRZ18a,CCM20,LZ22,CNN20] for
KPZ). In this context, let us mention the recent striking results on the fluctuations of
KPZ at the critical dimension d = 2 in the weak coupling scaling (or the intermediate
disorder regime) starting with [CD20,CSZ20,Gu20] (for KPZ) and culminating with
the characterisation of the stochastic heat flow [CSZ23]. An alternative approach is that
used in [MU18], which is based on re-expressing the SPDE as a functional integral
via the Martin–Siggia–Rose formalism (essentially a Girsanov transformation, which
again is only possible in view of the specific form of the equation) and then leveraging
constructive quantum field theory techniques and RG ideas to control the large scale
fluctuations in the regime of small non-linearity.

2 The authors further claim that “Our emphasis here is on the critical dimension d = 4, which is more
difficult than dimensions d > 4."
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In the critical dimension d = 2, for Q diagonal and with diagonal entries 1 and −1
(so-called Anisotropic KPZ or AKPZ), progress has been made in [CET23], where it
is shown that the equation is logarithmically superdiffusive, and in [CETar], where the
large-scale behaviour in the weak coupling scaling is determined. In both articles, the
tools adopted are closer to those in the present paper and we will comment more on
them below.

Let us also mention recent work in extending the homogeneization methods (origi-
nated in the work of Naddaf and Spencer [NS97]) to dynamical problems [CDS22].

One of the main advantages of the approach taken in the present paper is that it moves
away from the usual technique of Cole–Hopf transformation, which is not applicable,
towards a set of tools which on the one hand makes a link with interacting particle sys-
tems, i.e. via the martingale problem and the associated infinite-dimensional generator,
and on the other has better chances to apply more generally. A crucial tool for us is the
fact that we have control over the invariant measure for (1.1), which significantly sim-
plifies the already involved analysis of the generator. While this is another non-generic
situation, there is a wide class of examples in which a similar control is available and to
which our tools potentially directly apply, e.g. (super-)critical Stochastic Navier–Stokes
[GT20,CK23,HZZ23], diffusions in divergence-free random vector fields [CHST22],
lattice gas models [LRY05] and many others.

Our results open the way to gradually attack more challenging models and we discuss
some open problems below in Sect. 1.2.

Before turning to the core of the proof, in the next section we will precisely state our
main result and outline the ideas behind our arguments.

1.1. The equation and main result. As written (1.1) is meaningless as the noise is too
irregular for the non-linearity to be well-defined. Nonetheless, as we are interested in the
large-scale behaviour, we regularise it, so to have a well-defined field at the microscopic
level, and our goal then becomes to control its fluctuations while zooming out at the
correct scale. We choose the regularisation in such a way to retain a fundamental property
of the solution, namely its (formal) invariant measure. This amounts to smoothening the
quadratic term via a Fourier cut-off as follows

∂tη = 1

2
�η + w · 
1∇(
1η)2 + (−�)

1
2 ξ, (1.2)

where for a > 0, 
a acts in Fourier space as


̂aη(k) = η̂(k)1|k|≤a . (1.3)

Without loss of generality, we also replaced div ξ in (1.1) with (−�)
1
2 ξ for ξ a space-

time white noise (see (1.16) for the definition of the fractional Laplacian), since the two
can be easily seen to have the same law. In order to avoid technicalities related to infinite
volume issues, we restrict (1.2) to the d-dimensional torus T

d
ε of side-length 2π/ε. Here,

ε is the “scale” parameter which will later be sent to 0.

Remark 1.1. In principle, the results below can be shown to hold using the same tech-
niques of the present paper, even if instead of the Fourier cut-off we used a more general
mollifier. This would correspond to taking the nonlinearity in (1.2) as w ·  ∗ ∇( ∗ η)2,
for  (smooth) radially symmetric function decaying at infinity sufficiently fast, which
means replacing the indicator function in (1.3) with ̂. That said, to simplify some (minor
but annoying) technical points, we will stick to 
1 and further assume that
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• for d ≥ 3, 1/ε ∈ N + 1/2 and that the norm in (1.3) is the sup-norm | · |∞,
• for d = 2, the norm in (1.3) is the Euclidean norm | · | (no further assumption on ε

is made).

We refer the reader to Remark 2.6 for some additional (technical) advantages of our
choice.

Note that via the diffusive rescaling

ηε(x, t)
def= ε− d

2 η
(

x/ε, t/ε2
)

, (1.4)

equation (1.2) becomes

∂tη
ε = 1

2
�ηε + λεw · 
1/ε∇(
1/εη

ε)2 + (−�)
1
2 ξ (1.5)

where now the spatial variable takes values in the d-dimensional torus T
d def= T

d
1 of side-

length 2π , and ξ is a space-time white noise on R
+ × T

d . The coefficient λε depends on
the dimension and is defined as

λε
def=
{ 1√

log ε−2
if d = 2

ε
d
2 −1 if d ≥ 3.

(1.6)

While in the super-critical case d ≥ 3, λε is directly determined by (1.4), for d = 2, (1.1)
is formally scale invariant under the diffusive scaling (another reason why such dimen-
sion is critical) so that one would have λε = 1. The choice made in (1.6) corresponds to
the so-called weak coupling scaling alluded to earlier and we will comment more on it
after we state the main result. Before doing so, let us give the notion of solution for (1.5)
we will be working with.

Definition 1.2. We say that ηε is a stationary solution to (1.5) with coupling constant λε

if ηε solves (1.5) and its initial condition is η(0, ·) def= μ, for μ a spatial white noise on
T
d , i.e. a mean zero Gaussian distribution on T

d such that

E[μ(ϕ)μ(ψ)] = 〈ϕ,ψ〉L2 , for all ϕ, ψ ∈ L2
0(T

d) (1.7)

where 〈·, ·〉L2 is the usual scalar product in L2(Td) and L2
0(T

d) is the space of zero-
average square integrable functions on T

d . We will denote by P the law of μ and by E

the corresponding expectation.

The reason why the solution ηε of (1.5) started from a spatial white noise is called
stationary is that P is its invariant measure and, as we will prove in Lemma 2.1 below,
this holds irrespective of the choice of w, ε. Instead, the law P (with corresponding
expectation E) of a stationary solution to (1.5) clearly depends on w, ε.

For T > 0, let us denote by C([0, T ],S′(Td)) the space of continuous functions with
values in the space of distributions S′(Td) and by F the Fourier transform on S′(Td)

(see (1.13) for a definition). We are now ready to state the main result of the paper.
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Theorem 1.3. Let w ∈ R
d \ {0} and T > 0. For ε > 0, let λε be defined according

to (1.6) and ηε be the stationary solution of (1.5) started from a spatial white noise μ.
Then, there exists a constant DSHE > 0, depending only on the dimension d and the
norm |w| of w, such that, as ε → 0, ηε converges in law in C([0, T ],S′(Td)) to the
unique stationary solution η of

∂tη = 1
2 (� + DSHE(w · ∇)2)η + (−� − DSHE(w · ∇)2)1/2ξ , η(0, ·) = μ , (1.8)

where (w · ∇)2 is the linear operator defined as F((w · ∇)2ϕ)(k)
def= −(w · k)2F(ϕ)(k),

for ϕ ∈ S′(Td) and k ∈ Z
d .

In the case d = 2, DSHE is explicit and given by the formula

DSHE = 1

|w|2

⎡

⎣

(

3|w|2
2π

+ 1

)
2
3

− 1

⎤

⎦ , (1.9)

|w| being the Euclidean norm of w.

Before proceeding to the proof of the above theorem, let us make a few comments on
its statement and on the choice of λε in (1.6). Notice that in any dimension d ≥ 2, the
constant DSHE appearing in the limiting equation is strictly positive. Hence, despite the
presence of the vanishing factor λε in front of the nonlinearity, not only the quadratic
term does not go to 0 but actually produces a new “Laplacian” and a new noise. Further,
this new Laplacian (and noise), in a sense, “feels” the small-scale behaviour of the field η

in (1.2) as it depends on the vector w, which in turn describes its microscopic dynamics.
A similar phenomenon has already been observed for other critical and super critical
SPDEs, even though we are not aware of examples in which a Laplacian of the form
above was derived.

We have already pointed out that in d = 2 (1.1) is formally scale invariant. That said,
the above mentioned result in [Yau04] for ASEP suggests that also (1.2) is logarithmi-
cally superdiffusive and the additional diffusivity can only come from the non-linear
term. What the previous theorem shows is that the choice in (1.6) guarantees that the
nonlinearity ultimately gives a non-vanishing order 1 contribution. What might appear
puzzling is that, by translating the result of Yau to (1.5), the diffusivity Dε(t) of the
scaled process grows as | log ε|2/3 so that one might be led to think that λε should be
chosen accordingly. While this is not the case, the expression in (1.9) formally implies
the result of Yau, as can be seen by taking w = wε such that |wε| def= λ−1

ε (remember
that the constant in (1.9) multiplies the operator (w · ∇)2).

Furthermore, a similar scaling has been considered in the critical dimension d = 2
in the context of the KPZ equation [CD20,CSZ20,Gu20,CSZ23], of the Anisotropic
KPZ equation [CES21,CETar] and of the stochastic Navier–Stokes equation [CK23].
What is interesting is that, even though these latter examples in principle have different
large scale diffusivity, i.e., D(t) ∼ tβ for some β > 0 [FT90] for KPZ, D(t) ∼ √

log t
for AKPZ and Navier–Stokes [CET23,WAG71], they all display non-trivial (in that the
non-linearity nontrivially contributes to the limit) Gaussian fluctuations under the same
weak coupling scaling λε = | log ε|−1/2, thus suggesting some sort of universality for it.
This is to be compared with the one-dimensional case, in which, setting λε

def= √
ε, one

recovers the so-called weakly asymmetric scaling under which convergence of ASEP to
the one-dimensional KPZ equation was first shown in [BG97] and since then for a wide
variety of models.
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1.2. Open problems. Our results raise several interesting questions, as

• obtain Gaussian fluctuations for (1.1) in the case of more general non-linearity, i.e.
w · ∇η2 replaced by w · ∇F(η), for instance for polynomial F . The main difficulty
is to obtain operator estimates similar to those of Lemma 2.4, which though seem
highly non-trivial.

• Prove the analog of Theorem 1.3 (for d = 2) for ASEP on Z
2 in the same limit of

weak asymmetry.
• In dimension d = 2, define η̃ε(x, t) = ε−1η(x/ε, t/(ε2τ(ε))) (to be compared with

(1.4)) and find the right correction τ(ε) to the diffusive scaling so that a non-trivial
scaling limit as ε → 0 exists. This corresponds to a strong coupling regime. On the
basis of [Yau04], the natural guess is τ(ε) = | log ε|2/3 but the identification of the
limit is hard as the regularising properties of the Laplacian vanish.

More challenging will be to move towards models for which the invariant measure is
non-Gaussian or non-explicit. One guiding heuristic could be that the limiting Gaussian
fluctuations and associated Gaussian stationary distribution could still provide a good
setting for the analysis.

1.3. Idea of the proof . The idea of the proof finds its roots in the approach detailed in
[KLO12] in the context of interacting particle systems. To summarise it and see how it
translates to the present context, let us consider the weak formulation of (1.5) started
from a spatial white noise μ, which, for a given test function ϕ, reads

ηε
t (ϕ) − μ(ϕ) − 1

2

∫ t

0
ηε
s (�ϕ)ds −

∫ t

0
Nε

ϕ (ηε
s )ds = Mt (ϕ) (1.10)

where Nε
ϕ stands for the nonlinearity tested against ϕ and M is the martingale associated

to the space-time white noise ξ . Now, upon assuming the sequence {ηε}ε to be tight in
the space C([0, T ]S′(Td)), we see that all the terms in the above expression converge
(at least along subsequences) but we have no information concerning the nonlinearity.
For Theorem 1.3 to be true, we need this latter term to produce both a dissipation
term of the form of DSHEL

w
0 η, where Lw

0
def= 1

2 (w · ∇)2, and a fluctuation part which
should encode the additional noise in (1.8). In other words, the problem is to identify a
fluctuation-dissipation relation [LY97], i.e. to determine DSHE > 0 and Wε such that

Nε
ϕ (ηε) = −Lε Wε(ηε) + DSHEL

w
0 ηε(ϕ) (1.11)

where Lε is the generator of ηε. Indeed, since by Dynkin’s formula, there exists a
martingale Mε(Wε) such that

Wε(ηε
t ) − Wε(μ) −

∫ t

0
Lε Wε(ηε

s )ds = Mε
t (W

ε),

given (1.11), we could rewrite the nonlinear term in (1.10) as
∫ t

0
Nε

ϕ (ηε
s )ds =

∫ t

0
DSHEL

w
0 ηε

s (ϕ)ds − Mε
t (W

ε) + o(1) , (1.12)

where o(1) is a vanishing summand which contains the boundary terms. The advantage
of the above is that we have expressed the nonlinearity in terms of a drift which captures
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the additional diffusivity and a martingale part which instead encodes the extra noise.
At this point, tightness would ensure convergence of the former and we would be left to
prove that the sequence Mε(Wε) converges to a martingale with the correct quadratic
variation.

The (hardest) problem is clearly the derivation of the fluctuation-dissipation relation
and this is the point from which our analysis departs from that in [KLO12]. Even though,
as we will see, it is enough to determine (1.11) approximately (i.e. that the difference
of left and right hand side is small in a suitable sense), in the equation there are two
unknowns, DSHEL

w
0 which is not apriori given to us, and Wε which, even if we were

given the previous, is the solution of an infinite dimensional equation. To separate the
two issues, we introduce a suitable truncation which removes the second summand from
the right hand side of (1.11), so that we can first solve for Wε and then project back
and determine DSHEL

w
0 . This is done in d ≥ 3 and d = 2 in very different ways. In the

former case, we will control Wε similarly to [LY97], as we can show it satisfies a graded
sector condition in the spirit of [KLO12, Section 2.7.4]. Nonetheless, their functional
analytic approach does not apply in our setting and in particular, for the identification
of DSHE and Lw

0 , we devise a new method which is detailed in Sect. 2.4. For d = 2
instead, we introduce a novel ansatz which is based on the idea that at large scales
the generator of ηε should approximate a modulated version of the generator of (1.8).
This ansatz simplifies dramatically the (iterative) analysis performed in [CETar] and is
heavily based on the Replacement Lemma in Sect. 2.1.1.

Organisation of the article. The rest of this work is organised as follows. Below we
introduce notations, conventions, function spaces and elements of Wiener space analysis
which will be used throughout. Section 2 is the bulk of the paper. In Sect. 2.1, after
recalling basic properties of (1.5) and its generator, we discuss the one of the main
technical tools, i.e. the Replacement Lemma for d = 2. In Sect. 2.2 we determine apriori
estimates on the solution to the generator equation and in the next two we identify DSHE
and Lw

0 , so to obtain a refined version of the fluctuation-dissipation relation (1.11).
Section 3 is devoted to the proof of Theorem 1.3. At last, Appendix 3.2 contains some
technical steps necessary in the proof of the Replacement Lemma.

Notations, function spaces and Wiener space analysis. We let T
d be the d-dimensional

torus of side length 2π . We denote by {ek}k∈Zd the Fourier basis defined via ek(x)
def=

1
(2π)d/2 e

ik·x which, for all j, k ∈ Z
d , satisfies 〈ek, e− j 〉L2 = 1k= j .

The Fourier transform of a function ϕ ∈ L2(Td) will be denoted by F(ϕ) or ϕ̂ and,
for k ∈ Z

d is given by the formula

F(ϕ)(k) = ϕ̂(k)
def=
∫

Td
ϕ(x)e−k(x)dx , (1.13)

so that in particular
ϕ =

∑

k∈Zd

ϕ̂(k)ek , in L2(Td). (1.14)

Let S(Td) be the space of smooth functions on T
d and S′(Td) the space of real-valued

distributions given by the dual of S(Td). For any η ∈ S′(Td) and k ∈ Z
d , we will denote

its Fourier transform by
η̂(k)

def= η(e−k) . (1.15)
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Note that η̂(k) = η̂(−k). Since the zero mode η̂(0) of the solution is automatically
zero, we will only care about η̂(k) for k ∈ Z

d
0

def= Z
d \ {0}. Moreover, we recall that the

Laplacian � on T
d has eigenfunctions {ek}k∈Zd with eigenvalues {−|k|2 : k ∈ Z

d}, so

that the operator (−�)
1
2 in (1.2) is defined by its action on the basis elements

(−�)
1
2 ek

def= |k|ek , k ∈ Z
d . (1.16)

In particular, (−�)
1
2 is an invertible linear bijection on distributions with null 0-th

Fourier mode. We denote by H1(Td) the space of mean-zero functions ϕ such that the
norm

‖ϕ‖2
H1

def= ‖(−�)
1
2 ϕ‖2

L2
def=
∑

k∈Zd
0

|k|2|ϕ̂(k)|2

is finite.
Let (�,F, P) be a complete probability space and η be a mean-zero spatial white

noise on the d-dimensional torus T
d , i.e. η is a Gaussian field with covariance

E[η(ϕ)η(ψ)] = 〈ϕ,ψ〉L2 (1.17)

where ϕ,ψ ∈ H
def= L2

0(T
d), the space of square-integrable functions with 0 total

mass, and 〈·, ·〉L2 is the usual scalar product in L2(Td). For n ∈ N, let Hn be the n-th
homogeneous Wiener chaos, i.e. the closed linear subspace of L2(�) generated by the
random variables Hn(η(h)), where Hn is the n-th Hermite polynomial, and h ∈ H has
norm 1. By [Nua06, Theorem 1.1.1], Hn and Hm are orthogonal whenever m �= n and
L2(�) =⊕n Hn . Moreover, there exists a canonical contraction I :⊕n≥0 L

2(T2n) →
L2(�), which restricts to an isomorphism I : �L2 → L2(�) on the Fock space �L2 :=
⊕

n≥0 �L2
n , where �L2

n denotes the space L2
sym(Tdn) of functions in L2

0(T
dn) which

are symmetric with respect to permutation of variables. The restriction In of I to �L2
n ,

is itself an isomorphism from �L2
n to Hn and, by [Nua06, Theorem 1.1.2], for every

F ∈ L2(�) there exists a family of kernels ( fn)n∈N ∈ �L2 such that F =∑n≥0 In( fn)
and

E[F2] def= ‖F‖2 =
∑

n≥0

n!‖ fn‖2
L2
n

(1.18)

where L2
n

def= L2(Tdn), and we take the right hand side as the definition of the scalar
product on �L2, i.e.

〈 f, g〉 =
∑

n≥0

〈 fn, gn〉 def=
∑

n≥0

n!〈 fn, gn〉L2
n
. (1.19)

Remark 1.4. In view of the isometry between �L2 and L2(�), throughout the paper, we
will abuse notation and denote with the same symbol operators acting on �L2 and their
composition with the isometry I , which is an operator acting on L2(�).
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For F(η) = f (η(ϕ1), . . . , η(ϕn)), f : R
n → R smooth and growing at most poly-

nomially at infinity and ϕ1, . . . , ϕn ∈ L2
0(T

d), we define the Malliavin derivative DF
according to

DF(η)(·) def=
n
∑

i=1

∂i f (η(ϕ1), . . . , η(ϕn))ϕi (·) (1.20)

and, for k ∈ Z
d
0 , denote its Fourier transform by

DkF(v)
def= F(DF(v))(k) = 〈DF, e−k〉 . (1.21)

Notice that, for p ∈ Z
d , the action of Dp on f ∈ �L2

n is

F(Dp f )(k1:n−1) = n f̂ (k1:n−1, p) , (1.22)

so that in particular Dp f ∈ �L2
n−1. At last, we also recall the following integration by

parts formula on Wiener space, i.e.

E[GDkF] = E[G〈DF, e−k〉] = E[−FDkG + FGη̂(k)] . (1.23)

Throughout the paper, we will write a � b if there exists a constant C > 0 such that
a ≤ Cb. We will adopt the previous notations only in case in which the hidden constants
do not depend on any quantity which is relevant for the result. When we write �T for
some quantity T , it means that the constant C implicit in the bound depends on T .

2. The Equation and its Generator

In this section, we first collect a number of preliminary properties of the solution ηε to
the regularised Burgers equation (1.5) and its generator (Sect. 2.1). Then, we carry out a
detailed analysis of the generator equation (a.k.a. Poisson equation) and obtain the main
estimates we will need in order to determine the large–scale behaviour of ηε.

2.1. Multidimensional Burgers generator. As in Sect. 1.3, let us first write (1.5) in its
weak formulation. For ϕ ∈ S(Td) and t ≥ 0, it reads

ηε
t (ϕ) − ηε

0(ϕ) = 1

2

∫ t

0
ηε
s (�ϕ)ds +

∫ t

0
N ε

ϕ (ηε)ds +
∫ t

0
ξ(ds, (−�)1/2ϕ) (2.1)

where ηε
0 is the initial condition, ξ is a space-time white noise so that

ξ(dt, (−�)1/2ϕ) =
∑

k∈Zd
0

|k|ϕ̂(k)dBt (k)

for B(k)’s complex valued Brownian motions satisfying B(k) = B(−k) and d〈B(k),
B(�)〉t = 1{k+�=0} dt , and Nε

ϕ (η) is the nonlinearity tested against ϕ, i.e.

Nε
ϕ (η)

def= λεw · 
1/ε∇(
1/εη)2(ϕ)

= ι

(2π)
d
2

λε

∑

�,m

J
ε
�,mw · (� + m)ϕ̂(−� − m)η̂(�)η̂(m) (2.2)
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with ι = √−1 and

J
ε
�,m = 1{0 < ε|�|∞ ≤ 1, 0 < ε|m|∞ ≤ 1, 0 < ε|� + m|∞ ≤ 1} . (2.3)

In accordance with Remark 1.1, for d = 2 the sup-norm | · |∞ in (2.3) is replaced by the
Euclidean norm | · | instead.

From (2.1) it follows that the Fourier modes η̂ε(k), |k| ≥ ε−1 evolve like independent
(and ε-independent) Ornstein-Uhlenbeck processes.

Lemma 2.1. For every deterministic initial condition η0, the solution t �→ ηε
t of (2.1)

exists globally in time and is a strong Markov process. The generator Lε of ηε can be
written as Lε = L0 + Aε and the action of L0 and Aε on smooth cylinder functions F
is given by

(L0F)(η)
def= 1

2

∑

k∈Zd
0

|k|2(−η̂(−k)Dk + D−k Dk)F(η) (2.4)

(AεF)(η)
def= ι

(2π)d/2 λε

∑

m,�∈Zd
0

J
ε
�,mw · (� + m)η̂(m)η̂(�)D−m−�F(η). (2.5)

Moreover, L0 is symmetric with respect to P while Aε is skew-symmetric. Finally, the
law P of the average-zero space white noise is stationary.

Proof. Very similar arguments were provided in a number of references for equations
which share features similar to those of (2.1), e.g. [CES21,GJ13] and, more compre-
hensively, [Gub19], so we will limit ourselves to sketch some of the proofs.

For the global in time existence of (2.1) for fixed ε, we refer the reader to [CES21,
Prop. 3.4] or [GJ13, Section 3], while the expressions (2.4) and (2.5) can be easily
derived by Itô’s formula and the definition of Malliavin derivative in (1.20).

To see that P is stationary, we start by noting that stationarity for the linear equation
with w = 0 is well-known (and easy to check), see e.g. [Gub19, Section 2.3], where it is
further shown that L0 is symmetric with respect to P. Hence, by [Ech82], it suffices to
check that E[AεF] = 0 for every cylinder function F . In fact, this follows immediately
if we prove that Aε is skew-symmetric, since, if so, E[AεF] = −E[FAε1] = 0 as
the Malliavin derivative of the constant random variable F = 1 is 0. Now, to prove
skew-symmetry for Aε, we apply Gaussian integration by parts (1.23) and get

E[GAεF] = − E[FAεG]
+

ιλε

(2π)d/2

∑

m,�∈Zd
0

J
ε
�,mw · (� + m)E

[

η̂(−� − m)η̂(m)η̂(�)F(η)G(η)
]

= − E[FAεG] + E

[

Nε
η (η)F(η)G(η)

]

so that, since

Nε
η (η) = λε〈w · ∇(
1/εη)2, (
1/εη)〉 = λε

3
〈w · ∇(
1/εη)3, 1〉 = 0 (2.6)

the proof is completed. ��
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Next, we want to determine the action of L0 and Aε on the Fock space �L2. To
lighten notations, for a set of integers I , we will denote by kI the vector (ki )i∈I and

|kI |2 def=
∑

i∈I
|ki |2 and k1:n

def= k{1:n} , (2.7)

where {1 : n} def= {1, . . . , n}.
Lemma 2.2. Let ε > 0,L0 andAε be the operators defined according to (2.4) and (2.5)
respectively. Then, Aε can be written as

Aε = Aε
+ + Aε−, with Aε− = −(Aε

+)∗ . (2.8)

For any n ∈ N, the action of the operators L0,A
ε−,Aε

+ on f ∈ �L2
n is given by

F (L0 f )(k1:n) = − 1
2 |k1:n|2 f̂ (k1:n)

F (A ε
+ f )(k1:n+1) = − 2ι

(2π)d/2

λε

n + 1
×

×
∑

1≤i< j≤n+1

[w · (ki + k j )]Jε
ki ,k j f̂ (ki + k j , k{1:n+1}\{i, j})

F (A ε− f )(k1:n−1) = − 2ι

(2π)d/2 nλε

n−1
∑

j=1

(w · k j )
∑

�+m=k j

J
ε
�,m f̂ (�,m, k{1:n−1}\{ j}) ,

(2.9)

and, if n = 1, thenAε− f is identically 0. Moreover, for any i = 1, . . . , d, the momentum

operator Mi , defined for f ∈ �L2
n as F(Mi f )(k1:n) = (

∑n
j=1 k

i
j ) f̂ (k1:n), with kij the

i th component of the vector k j , commutes with L0,A
ε
+ and Aε−.

Proof. The proof is identical to that of [CES21, Lemma 3.5], to which we refer the
interested reader. Regarding the fact that the L0, Aε± commute with the momentum
operator, this is immediate to verify. ��

In order to state the following lemma, we introduce the so-called number operator.

Definition 2.3. We define thenumberoperatorN: �L2 → �L2 to be the linear diagonal
operator acting on ψ = (ψn)n ∈ �L2 as (Nψ)n

def= nψn .

Our analysis will need some preliminary estimates on the asymmetric part of the gen-
erator, which corresponds to proving the so-called graded sector condition in [KLO12,
Section 2.7.4].

Lemma 2.4. For d ≥ 2 here exist a constantC = C(d) > 0 such that for everyψ ∈ �L2

the following estimate holds

‖(−L0)
− 1

2 Aε
σ ψ‖ ≤ C‖√N(−L0)

1
2 ψ‖ , (2.10)

for σ ∈ {+,−}. In particular, for σ ∈ {+,−}, it implies

‖(−L0)
− 1

2 Aε
σ (−L0)

− 1
2 ψ‖ ≤ C‖√Nψ‖ . (2.11)
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Proof. Clearly, once we establish (2.10), (2.11) follows immediately by choosing ψ

therein to be (−L0)
−1/2 for  ∈ �L2.

For (2.10), we claim that we only need to prove that for any ψ ∈ �L2
n and  ∈ �L2

n+1,
we have

|〈,Aε
+ψ〉| �

√
n
(

γ ‖(−L0)
1/2ψ‖2 +

1

γ
‖(−L0)

1/2‖2
)

. (2.12)

We will show (2.12) at the end. Assuming it holds, we first derive (2.10) for Aε
+. The

variational characterisation of the (−L0)
−1/2�L2-norm gives

‖(−L0)
−1/2Aε

+ψ‖2

= sup
∈�L2

n+1

(

2〈,Aε
+ψ〉 − ‖(−L0)

1
2 ‖2

)

≤ sup
∈�L2

n+1

(

2C0
√
n
(

γ ‖(−L0)
1/2ψ‖2 +

1

γ
‖(−L0)

1/2‖2
)

− ‖(−L0)
1
2 ‖2

)

� n‖(−L0)
1/2ψ‖2 = ‖√N(−L0)

1/2ψ‖2

where in the first step we used (2.12) (and C0 is the universal constant implicit in that
inequality) while in the last we chose γ

def= 2C0
√
n.

For Aε− instead, we use that, by (2.8), Aε− = −(Aε
+)∗. Invoking again the variational

formula above, we deduce

‖(−L0)
−1/2Aε−ψ‖2

= sup
∈�L2

n−1

(

2〈,Aε−ψ〉 − ‖(−L0)
1
2 ‖2

)

= sup
∈�L2

n−1

(

−2〈Aε
+,ψ〉 − ‖(−L0)

1
2 ‖2

)

≤ sup
∈�L2

n−1

(

2C0
√
n
(

γ ‖(−L0)
1/2‖2 +

1

γ
‖(−L0)

1/2ψ‖2
)

− ‖(−L0)
1
2 ‖2

)

� n‖(−L0)
1/2ψ‖2 = ‖√N(−L0)

1/2ψ‖2

where this time we chose γ
def= 1/(2C0

√
n).

It remains to prove (2.12). By definition of Aε
+, we have

|〈,Aε
+ψ〉| =n! 2

(2π)
d
2

λε

∣

∣

∣

∑

k1:n+1

̂(−k1:n+1)×

×
∑

1≤i< j≤n+1

[w · (ki + k j )]Jε
ki ,k j ψ̂(ki + k j , k{1:n+1}\{i, j})

∣

∣

∣

= (n + 1)!n
(2π)

d
2

λε

∣

∣

∣

∑

k1:n+1

̂(−k1:n+1)[w · (k1 + k2)]Jε
k1,k2

ψ̂(k1 + k2, k3:n+1)

∣

∣

∣ .

Let us look at the sum over k1, k2. This equals
∣

∣

∣

∑

k1:2
̂(−k1:n+1)[w · (k1 + k2)]Jε

k1,k2
ψ̂(k1 + k2, k3:n+1)

∣

∣

∣
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=
∣

∣

∣

∑

q

(w · q)ψ̂(q, k3:n+1)
∑

k1+k2=q

J
ε
k1,k2

̂(−k1:n+1)

∣

∣

∣

�
(
∑

q

(w · q)2|ψ̂(q, k3:n+1)|2
)1/2(∑

q

∣

∣

∣

∑

k1+k2=q

J
ε
k1,k2

̂(−k1:n+1)

∣

∣

∣

2)1/2

=: A × (I) . (2.13)

We leave A as it stands and focus on (I). Note that this can be bounded by

(I) =
(
∑

q

∣

∣

∣

∑

k1+k2=q

J
ε
k1,k2

̂(−k1:n+1)

∣

∣

∣

2)1/2

≤
(
∑

q

∑

k1+k2=q

|k1:2|2|̂(−k1:n+1)|2
∑

k1+k2=q

J
ε
k1,k2

|k1:2|2
)1/2

� λ−1
ε

(
∑

q

∑

k1+k2=q

|k1:2|2|̂(k1:n+1)|2
)1/2 =: λ−1

ε B (2.14)

where we used that for d = 2, λ2
ε = (log ε−2)−1 and

λ2
ε

∑

k1+k2=q

J
ε
k1,k2

|k1:2|2 ≤ ε2

log ε−2

∑

ε<|εk1|≤1

1

|εk1|2 � 1

log ε−2

∫

|x |∈[ε,1]
dx

|x |2 � 1 (2.15)

while for d ≥ 3, λ2
ε = εd−2 and

εd−2
∑

k1+k2=q

J
ε
k1,k2

|k1:2|2 ≤ εd
∑

|εk1|≤1

1

|εk1|2 �
∫

|x |≤1

dx

|x |2 � 1 . (2.16)

As a consequence, for any γ > 0, we have

|〈,Aε
+ψ〉| � (n + 1)!n

∑

k3:n+1

AB ≤ (n + 1)!n
( γ√

n

∑

k3:n+1

A2 +

√
n

γ

∑

k3:n+1

B2
)

≤ (n + 1)!n
( 1

n!
γ

n3/2 ‖(−L0)
1/2ψ‖2 +

1

(n + 1)!
n−1/2

γ
‖(−L0)

1/2‖2
)

≤ √
nγ ‖(−L0)

1/2ψ‖2 +

√
n

γ
‖(−L0)

1/2‖2 (2.17)

where we used that, by the definition of A and B in (2.13) and (2.14) respectively, we
have

∑

k3:n+1

A2 �
∑

k1:n
|k1|2|ψ̂(k1:n)|2 ≤ n−1

n! ‖(−L0)
1/2ψ‖2

and similarly for B. Then, (2.12) follows. ��
Before turning to the analysis of the generator equation, we need some further esti-

mates which are specific to the case d = 2.
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2.1.1. The replacement lemma: d = 2 While in dimension d ≥ 3 the inverse Laplacian
is integrable close to the origin, and this will be crucial in identifying the limiting
diffusivity, in d = 2, this is not the case. To overcome the lack of integrability, we
devise an alternative route, which (morally) approximates the inverse of the generator
with a linear and diagonal (both in Fourier and in the chaos) operator, given by a non-
trivial order 1 perturbation of L0.

To be more precise, we need to introduce some notation. For ε > 0, let Lε be the
function defined on [1/2,∞) as

Lε(x)
def= λ2

ε log

(

1 +
1

ε2x

)

. (2.18)

Further, let G be the function

G(x)
def= 1

|w|2

⎡

⎣

(

3|w|2
2π

x + 1

)
2
3

− 1

⎤

⎦ , (2.19)

and Gε be the operator on �L2 given by

[e : G]Gε def= G(Lε(−L0)) (2.20)

which means that for ψ ∈ �L2
n , n ∈ N, the action of Gε on ψ is

F(Gεψ)(k1:n)
def= G(Lε( 1

2 |k1:n|2))ψ̂(k1:n) , k1:n ∈ Z
2n
0 .

We are now ready to state the main result of this section, namely, the replacement lemma.
Recall the definition of the scalar product 〈·, ·〉 on �L2 given in (1.19).

Lemma 2.5. (Replacement Lemma) There exists a constant C > 0 such that for every
ψ1, ψ2 ∈ �L2 we have

|〈[− Aε−(−L0 − Lw
0 Gε)−1Aε

+ + Lw
0 Gε

]

ψ1, ψ2〉|
≤ Cλ2

ε‖N(−L0)
1/2ψ1‖‖N(−L0)

1/2ψ2‖ (2.21)

where Gε is the operator defined according to (A.8) and (2.19) and, for n ∈ N, Lw
0 is

the operator acting on ψ ∈ �L2
n as

F(Lw
0 ψ)(k1:n) = − 1

2 (w · k)2
1:nψ̂(k1:n) , for all k1:n ∈ Z

2n
0 (2.22)

and (w · k)2
1:n

def=∑n
i=1(w · ki )2.

Remark 2.6. As it appears from the proof of Proposition A.1 in the appendix, the form
of the function G in (2.18) is dictated by the following fixed point equation

G(x) = 1

π

∫ x

0

dy
√

1 + |w|2G(y)
. (2.23)

Now, if we had chosen a different regularisation for the nonlinearity, e.g. the | · |∞-
distance in (2.3) instead of the Euclidean one or a smooth regularisation instead of the
Fourier cut-off in (2.2), then we would have not obtained an explicit G but the statement
above would have remained true.
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Apart from working with an explicit function, the advantage of our choice lies in
the fact that it allows us to make an explicit connection with the work of Yau [Yau04]
on the two-dimensional ASEP. Indeed, the exponent 2/3 in (2.19) precisely reflects that
obtained therein and strongly suggests that, if λε were taken to be a constant independent
of ε, then the diffusivity would diverge as (log t)2/3 for t → ∞.

Proof. Notice first that, for any n ∈ N, the operator Aε−(−L0 −Lw
0 Gε)−1Aε

+ maps �L2
n

into itself, so that, to establish (2.21), it suffices to consider ψ1, ψ2 ∈ �L2
n . Moreover,

we can write

〈[− Aε−(−L0 − Lw
0 Gε)−1Aε

+

]

ψ1, ψ2〉 = 〈(−L0 − Lw
0 Gε)−1Aε

+ψ1,A
ε
+ψ2〉. (2.24)

Recalling the form of Aε
+ in (2.9), we see that the scalar product at the right hand side

can be split into a diagonal part, corresponding to making the same choice for the
indices i, j in the two occurrences of Aε

+, an off-diagonal part of type 1, corresponding
to choosing i, j and i ′, j ′ with one element in common, and off-diagonal part of type 2,
corresponding to all remaining choices. (See for instance [CET23, Lemma 3.6], where
a similar distinction was made.)

To write this in formulas, let Sε def= (−L0 −Lw
0 Gε)−1 and denote with σε = (σ ε

n )n≥1

its Fourier multiplier, i.e. for ψ ∈ �L2
n F(Sεψ)(k1:n) = σε

n (k1:n)ψ̂(k1:n) where

σε
n (k1:n) = 2

|k1:n|2 + (w · k)2
1:nG(Lε( 1

2 |k1:n|2))
. (2.25)

Then, the scalar product in (2.24) satisfies

〈SεAε
+ψ1,A

ε
+ψ2〉 = 〈SεAε

+ψ1,A
ε
+ψ2〉diag +

2
∑

i=1

〈SεAε
+ψ1,A

ε
+ψ2〉offi

where diagonal part, given by the first summand, is defined as

〈SεAε
+ψ1,A

ε
+ψ2〉diag

def= n! n 4λ2
ε

(2π)2 ×

×
∑

k1:n

1
2 (w · k1)

2ψ̂1(k1:n)ψ̂2(k1:n)
∑

�+m=k1

σε
n+1(�,m, k2:n)Jε

�,m

(2.26)

while off-diagonal parts of type 1 and 2 are respectively given by

〈SεAε
+ψ1,A

ε
+ψ2〉off1

def= n! n coff1(n)
∑

k1:n+1

σε
n+1(k1:n+1)J

ε
k1,k2

J
ε
k1,k3

×

× (w · (k1 + k2))(w · (k1 + k3))ψ̂1(k1 + k2, k3, k4:n+1)ψ̂2(k1 + k3, k2, k4:n+1) ,

(2.27)

and

〈SεAε
+ψ1,A

ε
+ψ2〉off2
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def= n! n coff2(n)
∑

k1:n+1

σε
n+1(k1:n+1)J

ε
k1,k2

J
ε
k1,k3

×

× (w · (k1 + k2))(w · (k3 + k4))ψ̂1(k1 + k2, k3:4, k5:n+1)ψ̂2(k3 + k4, k1:2, k5:n+1)

(2.28)

where, for i = 1, 2, coffi (n) is an explicit positive constant only depending on n and
such that coffi (n) = O(ni+1).

We are ready to control the left hand side of (2.21). At first, we split all the diagonal
parts from the off-diagonal

|〈[− Aε−(−L0 − Lw
0 Gε)−1Aε

+ + Lw
0 Gε

]

ψ1, ψ2〉|
≤
∣

∣

∣〈SεAε
+ψ1,A

ε
+ψ2〉diag + 〈Lw

0 Gεψ1, ψ2〉
∣

∣

∣ +
∑

i=1,2

|〈SεAε
+ψ1,A

ε
+ψ2〉offi | . (2.29)

Let us begin by estimating the first summand. By (A.8), (2.22) and (2.26), we see that
∣

∣

∣〈(−L0 − Lw
0 Gε)−1Aε

+ψ1,A
ε
+ψ2〉diag + 〈Lw

0 Gεψ1, ψ2〉
∣

∣

∣

= n!n
∣

∣

∣

∑

k1:n

1
2 (w · k1)

2ψ̂1(−k1:n)ψ̂2(k1:n)
(

Pε(k1:n) − G(Lε( 1
2 |k1:n|2))

)∣

∣

∣

where Pε is defined as

Pε(k1:n)
def= λ2

ε

π2

∑

�+m=k1

J
ε
�,m

�̃ + �̃wG(Lε(�̃))
(2.30)

and, to shorten the notations, we wrote

�̃
def= 1

2 (|�|2 + |m|2 + |k2:n|2) , �̃w def= 1
2 ((w · �)2 + (w · m)2 + (w · k)2

2:n) .

By Proposition A.1, we can upper bound the above by

n!n
∑

k1:n

1
2 (w · k1)

2|ψ̂1(k1:n)||ψ̂2(k1:n)|
∣

∣

∣Pε(k1:n) − G(Lε( 1
2 |k1:n|2))

∣

∣

∣

� λ2
εn!n

∑

k1:n
|k1|2|ψ̂1(k1:n)||ψ̂2(k1:n)| = λ2

εn!
∑

k1:n
|k1:n|2|ψ̂1(k1:n)||ψ̂2(k1:n)|

� λ2
ε‖(−L0)

1/2ψ1‖‖(−L0)
1/2ψ2‖ (2.31)

so that this term satisfies (2.21).
We are now left to estimate the off diagonal terms. This is done by following mutatis

mutandis the same steps as in the proof of [CETar, Lemma 3.4], so we will only point
out the necessary changes. For the off-diagonal terms of type 1, we need to control

|〈SεAε
+ψ1,A

ε
+ψ2〉off1 |

� n!coff1(n)λ2
ε

∑

j1:3,k3:n
| j1 + j2| | j1 + j3|

× ψ̂1( j1 + j2, j3, k3:n)ψ̂2( j1 + j3, j2, k3:n)σ ε
n+1( j1:3, k3:n) (2.32)
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where σε
n+1, given in (2.25), is the Fourier multiplier of Sε in �L2

n+1 and, as usual, we
have bounded |w ·k| � |k|. As in [CETar, Eq.(3.21)], an application of Cauchy-Schwarz
shows that (2.32) is upper bounded by

λ2
εcoff1(n)

2
∏

i=1

(

n!
∑

k1:n
|ψ̂i (k1:n)|2|k1|2|k2|

∑

j1+ j2=k1

1

| j2|σ
ε
n+1( j1:2, k2:n)

) 1
2
. (2.33)

This is the same expression as in [CETar, Eq. (3.21)], with σε
n+1 replacing J N there.

Since σε
n+1 satisfies

σε
n+1( j1:2, k2:n) � 1

| j1:2|2 + |k2:n|2 ,

which is the same estimate that J N satisfies, one can argue as in [CETar] and deduce

∑

j1+ j2=k1

1

| j2|σ
ε
n+1( j1:2, k2:n) � 1

|k1:n| ≤ 1

|k2| . (2.34)

Now, since coff1(n) � n2, (2.33) is upper bounded by a constant timesλ2
ε‖

√
N(−L0)

1
2 ψ1‖

‖√N(−L0)
1
2 ψ2‖.

As for the off-diagonal terms of type 2, we proceed similarly, recalling that, this time,
coff2(n) � n3. Namely, applying Cauchy-Schwarz and exploiting once more (2.34), we
bound them as

|〈SεAε
+ψ1,A

ε
+ψ2〉off2 |

� λ2
εcoff2(n)

2
∏

i=1

(

n!
∑

k1:n
|ψ̂i (k1:n)|2|k1|2|k2||k3|

∑

j1+ j2=k1

σε
n+1( j1:2, k2:n)

| j1|| j2|
) 1

2

� λ2
εn!coff2(n)

2
∏

i=1

(
∑

k1:n
|ψ̂i (k1:n)|2 |k1||k2||k3|

|k1:n|
)1/2

� λ2
εn

3
2
∏

i=1

(

n!
∑

k1:n
|ψ̂i (k1:n)|2|k1|2

)1/2
� λ2

ε

2
∏

i=1

‖N(−L0)
1/2ψi‖

as desired. ��

2.2. A priori estimates on the truncated generator equation. The goal of this section is
to derive a priori estimates on suitable elements of the n-th inhomogeneous Fock space,
which will be crucial in characterising the limit ε → 0 of the solution to (1.5). The
specific functions we need will depend on the dimension, as for d = 2 we want to take
full advantage of the Replacement Lemma 2.5. Let us begin with some definitions.

Let n ∈ N, i ≥ 2 and Pn
i be the projection onto n-th inhomogeneous Fock space

with the first i − 1 chaos removed, i.e. onto
⊕n

j=i �L2
j . The truncated generator Lε

i,n ,

and the corresponding truncated operators Aε
i,n , Aε,+

i,n and Aε,+
i,n are respectively defined

as

Lε
i,n

def= L0 + Aε
i,n , Aε

i,n
def= Pn

i A
εPn

i and Aε,σ
i,n

def= Pn
i A

ε
σ P

n
i , (2.35)
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for σ ∈ {+,−}.
Let g ∈ ⊕m

j=i �L2
j , i ≤ m ≤ n. For d ≥ 2, let uε,n be the unique solution of the

truncated generator equation which is defined as

−Lε
i,nu

ε,n = g . (2.36)

In the specific case of d = 2, we further consider ũε which satisfies

ũε def= (−L0 − Lw
0 Gε)−1Aε

+ũ
ε + (−L0 − Lw

0 Gε)−1g (2.37)

where Lw
0 and Gε are defined according to (2.22) and (A.8) respectively. Note that, even

if in (2.37) there is no truncation in the chaos, the equation admits a unique solution.
Indeed, it is a triangular equation which can be explicitly solved starting from ũε

1 =
· · · = ũε

i−1 = 0, and then inductively setting

ũε
j

def= (−L0 − Lw
0 Gε)−1Aε

+ũ
ε
j−1 + (−L0 − Lw

0 Gε)−1g j , j ≥ i .

That said, we will be concerned with the projection of ũε onto ⊕n
j=i�L2

j , that we denote
by ũε,n and can be easily seen to solve

ũε,n def= (−L0 − Lw
0 Gε)−1Aε

+P
n−1
i ũε,n + (−L0 − Lw

0 Gε)−1g . (2.38)

As we will see in the proof of the main convergence theorem (see Sect. 3.2), a case
which will play a crucial role for us is when the input g above coincides with the action
of Aε

+ on a smooth element of a fixed Fock space. For this, consider test functions
ϕ,ψ ∈ S(Td)

and let f1
def= ϕ ∈ �L2

1 and

f2 = [ϕ ⊗ ψ]sym def= ϕ ⊗ ψ + ψ ⊗ ϕ

2

be the symmetric version of ϕ ⊗ψ , which lives in �L2
2. For i = 2, 3, we will study vε,n

(that we distinguish from uε,n as the right-hand side is fixed Aε
+ fi−1), that is the solution

to the equation

−Lε
i,nv

ε,n = Aε
+ fi−1 . (2.39)

and for d = 2, ṽε,n that solves

ṽε,n = (−L0 − Lw
0 Gε)−1Aε

+P
n−1
i ṽε,n + (−L0 − Lw

0 Gε)−1Aε
+ fi−1 . (2.40)

We are ready to state the main result of this section.

Theorem 2.7. Let ϕ,ψ ∈ S(Td), f1
def= ϕ and f2 = [ϕ ⊗ ψ]sym be the symmetric

version of ϕ ⊗ ψ . Let i = 2, 3. For n ∈ N, let wε,n be the solution of the truncated
generator equation vε,n in (2.39) if d ≥ 3 or be ṽε,n given by (2.40) if d = 2. Then, for
any k ∈ N, there exists a constant C > 0, depending only on k,m and the dimension d,
and εd(n) > 0 such that for any ε < εd(n) the following estimate holds

‖(−L0)
− 1

2 (−Lεwε,n − Aε
+ fi−1 + Aε−w

ε,n
i )‖ ≤ C

nk
‖(−L0)

1
2 fi−1‖ , (2.41)

where we recall that wε,n
i is the component of wε,n in the i th chaos. If d ≥ 3, εd(n) can

be taken to be 1.
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As a first step in the proof of the previous theorem, we derive weighted estimates
on the solution to (2.39) which hold in any dimension d ≥ 2. The argument we exploit
follows closely that of [LY97, Lemma 2.5] and since the proof works for any choice of
g, we formulate and prove the result in the more general case of (2.36).

Proposition 2.8. Let m ∈ N, i = 2, 3 and g ∈⊕m
j=i �L2

j . For n ∈ N, n ≥ m, let uε,n

be the solution of the truncated generator equation in (2.36) in any dimension d ≥ 2.
Then, for every k ∈ N, there exists a positive constant C = C(m, k) independent of n, ε

and g, such that

‖Nk(−L0)
1
2 uε,n‖ ≤ C‖(−L0)

− 1
2 g‖ , (2.42)

where N is the number operator in Definition 2.3.

Proof. As n and ε are fixed throughout the proof, we will write u and u j , j = 1, . . . , n
in place of uε,n and uε,n

j , respectively. Also, by convention, we let un+1 = 0 = ui−1 =
· · · = u1. To denote constants which do not depend on ε, n or g we will use C , and such
C might change from line to line.

Let us test the j-th component, j ≥ i , with Lεu, which, since by Lemma 2.2
(Aε

+)∗ = −Aε−, gives

〈u j ,L
εu〉 = 〈u j ,L0u j 〉 + 〈u j ,A

ε
+u j−1〉 + 〈u j ,A

ε−u j+1〉
= 〈u j ,L0u j 〉 −

[

〈u j+1,A
ε
+u j 〉 − 〈u j ,A

ε
+u j−1〉

]

.

Via a summation by parts, for any a > 0, we have

n
∑

j=i

(a + j2k)〈u j , (−L0)u j 〉 =
n
∑

j=i

(a + j2k)〈u j , (−Lε)u〉

+
n
∑

j=i

( j2k − ( j − 1)2k)〈u j ,A
ε
+u j−1〉.

Next, note that −Lεu = g − Aε
+un − Aε−ui so that, by orthogonality of Fock spaces

with different indices,

|〈u j , (−Lε)u〉| = |〈u j , g j 〉| ≤ 1

2
〈u j , (−L0)u j 〉 +

1

2
〈g j , (−L0)

−1g j 〉.

As a consequence, there exists some finite strictly positive constantC = C(m, k), which
might change from line to line, such that

n
∑

j=i

(a + j2k)〈u j , (−L0)u j 〉

≤ C
(

‖(−L0)
− 1

2 g‖2 +
n
∑

j=i

( j2k − ( j − 1)2k)〈u j ,A
ε
+u j−1〉

)

≤ C
(

‖(−L0)
− 1

2 g‖2 +
n
∑

j=i

j2k−1〈u j ,A
ε
+u j−1〉

)

(2.43)
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where the constant C = C(k) was chosen in such a way that ( j2k − ( j − 1)2k)
√

j ≤
C j2k− 1

2 . To handle the last sum, we bound

|〈u j ,A
ε
+u j−1〉| ≤ ‖(−L0)

1
2 u j‖‖(−L0)

− 1
2 Aε

+u j−1‖
≤ C
√

j‖(−L0)
1
2 u j‖‖(−L0)

1
2 u j−1‖

≤ C
√

j
(1

2
‖(−L0)

1
2 u j‖2 +

1

2
‖(−L0)

1
2 u j−1‖2

)

(2.44)

where in the second bound we used (2.10) in Lemma 2.4. We now plug the result
into (2.43) and rearrange the terms, so that we conclude

n
∑

j=i

j2k
(

1 +
a

j2k − C√
j

)

〈u j , (−L0)u j 〉 ≤ C(1 + ‖(−L0)
− 1

2 g‖2) . (2.45)

Choosing a sufficiently large, in such a way that (1 + a
j2k − C√

j
) ≥ 1/2 for every

j ≥ 2, (2.42) follows. ��
In the next two lemmas, we consider the specific case of d = 2. In the first one, we

show that, for any g, ũε,n defined according to (2.38) can be estimated in terms of g.

Lemma 2.9. For d = 2, let g ∈ ⊕m
j=i �L2

j , n ∈ N, i ≤ m ≤ n and ũε,n be given
by (2.38). Then, there exists a constant C > 0 independent of n, ε and ε2(n) > 0 such
that for every ε < ε2(n)

‖(−L0)
1/2ũε,n‖2 ≤ C‖(−L0)

−1/2g‖2 . (2.46)

Proof. At first, we study how the generator Lε acts on ũε,n . We have

−Lεũε,n =(−L0 − Lw
0 Gε)ũε,n − Aε

+ũ
ε,n − Aε−ũε,n + Lw

0 Gεũε,n

=g − Aε−(−L0 − Lw
0 Gε)−1g − Aε

+ũ
ε,n
n + Lw

0 Gεũε,n
n

+
[− Aε−(−L0 − Lw

0 Gε)−1Aε
+ + Lw

0 Gε
]

Pn−1
i ũε,n (2.47)

where in the last step we used (2.38). Now, Aε
+ũ

ε,n
n ∈ �L2

n+1, so that, since ũε,n ∈
⊕n

j=i�L2
j , the two are orthogonal. Therefore, by testing both sides by ũε,n , we obtain

‖(−L0)
1/2ũε,n‖2

= 〈ũε,n, g − Aε−(−L0 − Lw
0 Gε)−1g〉 + 〈ũε,n

n ,Lw
0 Gεũε,n

n 〉
+ 〈ũε,n,

[− Aε−(−L0 − Lw
0 Gε)−1Aε

+ + Lw
0 Gε

]

Pn−1
i ũε,n〉

≤ 1
2‖(−L0)

1/2ũε,n‖2 + 1
2‖(−L0)

−1/2[g − Aε−(−L0 − Lw
0 Gε)−1g]‖2

− ‖(−Lw
0 Gε)1/2ũε,n

n ‖2 + Cλ2
εn

2‖(−L0)
1/2ũε,n‖2

≤ C ′‖(−L0)
−1/2g‖2 + ( 1

2 + Cn2λ2
ε)‖(−L0)

1/2ũε,n‖2 (2.48)

where in the last step we neglected the negative term at the right hand side, we used (2.11)
together with the positivity of −Lw

0 Gε and the fact that the operators L0,L
w
0 and Gε

commute to control the second term containing g, and the Replacement Lemma 2.5 to
bound the third summand. Now, we choose ε2(n) in such a way that Cn2λ2

ε2(n) < 1/2.
Therefore, (2.46) follows upon rearranging the terms in (2.48). ��

Gaussian Fluctuations for the Stochastic Burgers 89Page 21 of 60



In the next lemma, we turn our attention to ṽε,n given in (2.40) and prove that it satisfies
the same weighted estimates as those in (2.42). To do so, in view of Proposition 2.8 and
the previous Lemma, it suffices to control the difference between ṽε,n and the solution
of the truncated generator equation vε,n .

Lemma 2.10. Let d = 2. For n ∈ N and i = 2, 3, let ṽε,n be given by (2.40) and f1, f2
be as in Theorem 2.7. Then, for any k ∈ N there exists a constant C > 0 and ε2(n, k) > 0
such that for every ε < ε2(n, k)

‖Nk(−L0)
1
2 ṽε,n‖ ≤ C‖(−L0)

1
2 fi−1‖ . (2.49)

Proof. Let vε,n be the solution of (2.39) in d = 2. Notice that, trivially,

‖Nk(−L0)
1/2ṽε,n‖ ≤ nk‖(−L0)

1/2(ṽε,n − vε,n)‖ + ‖Nk(−L0)
1/2vε,n‖ . (2.50)

Now, in view of Proposition 2.8, the second summand is bounded by (a constant times)
‖(−L0)

−1/2Aε
+ fi−1‖. For the first, we claim that for any j there exists C > 0 such that

for ε small enough, we have

‖(−L0)
1/2(ṽε,n − vε,n)‖2 ≤ C

(

n− j + n2λ2
ε

)‖(−L0)
−1/2Aε

+ fi−1‖2 . (2.51)

Assuming the claim, we choose in (2.51) j = k and ε2(n, k) > 0 such that nk+2λε2(n,k) <

1, so that we obtain

‖Nk(−L0)
1/2ṽε,n‖ � ‖(−L0)

−1/2Aε
+ fi−1‖ � ‖(−L0)

1/2 fi−1‖2

where the last step follows by (2.10). Hence, (2.49) is proved.
We now prove (2.51). To shorten the notation, set g�

ε
def= (−L0 − Lw

0 Gε)−1Aε
+ fi−1.

We begin by evaluating −Lε on ṽε,n − vε,n . To do so, we exploit (2.47) and the fact
that, as noted in the proof of Proposition 2.8, since vε,n solves (2.39), we have

−Lεvε,n − Aε
+ fi−1 + Aε−v

ε,n
i = −Aε

+vε,n
n .

This means that

−Lε(ṽε,n − vε,n) = − Aε−(g�
ε − v

ε,n
i ) − Aε

+(ṽε,n
n − vε,n

n ) + Lw
0 Gεṽε,n

n

+
[− Aε−(−L0 − Lw

0 Gε)−1Aε
+ + Lw

0 Gε
]

Pn−1
i ṽε,n . (2.52)

Now, since g�
ε ∈ �L2

i , Aε−(g�
ε − v

ε,n
i ) ∈ �L2

i−1 and Aε
+(v

ε,n
n − ṽ

ε,n
n ) ∈ �L2

n+1, which
implies that they are orthogonal to both ṽε,n and vε,n as these belong to ⊕n

j=i�L2
j .

Hence, by testing both sides of (2.52) by ṽε,n − vε,n , we obtain

‖(−L0)
1/2(ṽε,n − vε,n)‖2 = 〈ṽε,n − vε,n,Lw

0 Gεṽε,n
n 〉

+ 〈ṽε,n − vε,n,
[− Aε−(−L0 − Lw

0 Gε)−1Aε
+ + Lw

0 Gε
]

Pn−1
i ṽε,n〉 .

(2.53)

Let us analyse the two terms at the right hand side separately. For the first, note that the
operator Lw

0 Gε is negative, so that

〈ṽε,n − vε,n,Lw
0 Gεṽε,n

n 〉 = 〈vε,n
n ,Lw

0 Gεṽε,n
n 〉 − 〈ṽε,n

n , (−Lw
0 Gε)ṽε,n

n 〉
≤ 〈−vε,n

n , (−Lw
0 Gε)ṽε,n

n 〉
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� ‖(−L0)
1/2vε,n

n ‖‖(−L0)
1/2ṽε,n

n ‖
and in the last bound we used that −Lw

0 Gε � −L0 and that L0,L
w
0 and Gε commute.

Now, the a priori estimates in Proposition 2.8 and Lemma 2.9 allow to upper bound the
previous by

n−k‖Nk(−L0)
1/2ṽε,n‖‖(−L0)

1/2vε,n
n ‖ � n−k‖(−L0)

−1/2Aε
+ fi−1‖2 .

For the second term in (2.53), we apply the Replacement Lemma 2.5 first and the same
a priori estimates as above, thus getting

〈ṽε,n − vε,n,
[

Aε−(−L0 − Lw
0 Gε)−1Aε

+ + Lw
0 Gε

]

Pn−1
i ṽε,n〉

≤ Cλ2
εn

2‖(−L0)
1/2(ṽε,n − vε,n)‖‖(−L0)

1/2ṽε,n‖
≤ 1

2Cλ2
εn

2
(

‖(−L0)
1/2(ṽε,n − vε,n)‖2 + ‖(−L0)

1/2ṽε,n‖2
)

≤ 1
2Cλ2

εn
2
(

‖(−L0)
1/2(ṽε,n − vε,n)‖2 + ‖(−L0)

−1/2Aε
+ fi−1‖2

)

,

where the constant C changed in the last two lines. Now, by using that for ε < ε2(n, k),
Cn2λ2

ε < 1, collecting the previous bounds and rearranging the terms, (2.51) follows. ��
We are now ready for the proof of Theorem 2.7, which is an easy consequence of

Lemma 2.4 and, for d ≥ 3, Proposition 2.8, while, for d = 2 Lemmas 2.9 and 2.10.

Proof of Theorem 2.7. Let us first treat the case of d ≥ 3. As noted in the proof of
Proposition 2.8, since vε,n solves (2.39), we have

−Lεvε,n − Aε
+ fi−1 + Aε−v

ε,n
i = −Aε

+vε,n
n . (2.54)

By (2.10), for any k ≥ 1, we have

‖(−L0)
− 1

2 Aε
+vε,n

n ‖ �
√
n‖(−L0)

1
2 vε,n

n ‖ ≤ 1

nk
‖Nk+1(−L0)

1
2 vε,n‖ . (2.55)

Hence, (2.41) follows directly by (2.42) and (2.10).
We now turn to d = 2, in which case ṽε,n satisfies (2.40). Notice that, by the recursive

definition of ṽε,n , ṽ
ε,n
1 = · · · = ṽ

ε,n
i−1 = 0 and therefore

ṽ
ε,n
i = (−L0 − Lw

0 Gε)−1Aε
+ fi−1 .

Hence, upon replacing ψ with Aε
+ fi−1 in (2.47), we see that

− Lεṽε,n − Aε
+ fi−1 + Aε−ṽ

ε,n
i

= −Lεṽε,n − Aε
+ fi−1 + Aε−(−L0 − Lw

0 Gε)−1Aε
+ fi−1

= −Aε
+ṽε,n

n + Lw
0 Gεṽε,n

n

+
[− Aε−(−L0 − Lw

0 Gε)−1Aε
+ + Lw

0 Gε
]

Pn−1
i ṽε,n .

Now, for the first two terms we use Lemma 2.4 and −Lw
0 Gε � −L0, so that we can

bound them by

‖(−L0)
−1/2[−Aε

+ṽε,n
n + Lw

0 Gεṽε,n
n ]‖ �

√
n‖(−L0)

1/2ṽε,n
n ‖

� n−k‖(−L0)
1/2 fi−1‖
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where the last step follows by Lemma 2.10. For the third term, we note that the �L2-norm
satisfies a variational formulation, i.e.

‖(−L0)
−1/2[− Aε−(−L0 − Lw

0 Gε)−1Aε
+ + Lw

0 Gε
]

Pn−1
i ṽε,n‖

= sup
‖‖=1

〈, (−L0)
−1/2[− Aε−(−L0 − Lw

0 Gε)−1Aε
+ + Lw

0 Gε
]

Pn−1
i ṽε,n〉

= sup
‖‖=1

〈(−L0)
−1/2,

[− Aε−(−L0 − Lw
0 Gε)−1Aε

+ + Lw
0 Gε

]

Pn−1
i ṽε,n〉

� Cλ2
ε sup

‖‖=1
‖‖‖N2(−L0)

1/2ṽε,n‖ = Cλ2
ε‖N2(−L0)

1/2ṽε,n‖

≤ Cλ2
εn

2‖(−L0)
1/2 fi−1‖ (2.56)

where in the third step we used the Replacement Lemma 2.5 and in the last, Lemma 2.9.
By choosing ε2(n, k) > 0 such that λ2

ε2(n,k)n
2+k < 1, (2.41) follows at once. ��

2.3. The diffusivity. The main advantage of Theorem 2.7 is that it allows to replace the
nonlinearity with the sum of two terms: one involves the generator of our process, and
therefore encodes its fluctuations, while the other consists of Aε− applied to an element
in the Fock space of degree i = 2, 3, so that overall it is of degree i − 1. This suggests
that this latter term should give us the additional diffusivity appearing in the limit (1.8).
The goal of this section is to analyse this object and determine its behaviour.

The analysis for d = 2 and d ≥ 3 will be very different, but the limits we need to
establish have the same expression. Let us first state the main theorem and then provide
different proofs in the two cases.

Theorem 2.11. Let ϕ,ψ ∈ S(Td), f1
def= ϕ and f2 = [ϕ ⊗ ψ]sym. For n ∈ N, let wε,n

be the solution of the truncated generator equation vε,n in (2.39) if d ≥ 3 or be ṽε,n

given by (2.40) if d = 2. Let i = 2, 3. Then

lim
n→∞ lim sup

ε→0
‖(−L0)

− 1
2 [Aε−w

ε,n
i − D fi−1]‖ = 0 , (2.57)

where D is the operator introduced in Theorem 1.3, given by D
def= DSHEL

w
0 for Lw

0
defined according to (2.22) and DSHE > 0 as in the aforementioned statement. Further,
we have

lim
ε→0

‖wε,n‖ = 0 . (2.58)

Let us begin with the proof the above theorem in d = 2 since, thanks to the replace-
ment lemma, it is way easier.

Proof of Theorem 2.11 in d=2. Notice first that the recursive definition of ṽε,n in (2.40)
immediately gives

Aε−ṽ
ε,n
i = Aε−(−L0 − Lw

0 Gε)−1Aε
+ fi−1 . (2.59)

As a consequence, we have

‖(−L0)
− 1

2 [Aε−ṽ
ε,n
i − D fi−1]‖
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= ‖(−L0)
− 1

2
[

Aε−(−L0 − Lw
0 Gε)−1Aε

+ fi−1 − D fi−1]‖
≤ ‖(−L0)

− 1
2
[

Aε−(−L0 − Lw
0 Gε)−1Aε

+ − Lw
0 Gε

]

fi−1]‖
+ ‖(−L0)

− 1
2 [Lw

0 Gε − D] fi−1‖ .

For the first term at the right hand side, we use the same variational formulation as
in (2.56) so that following the same steps, we deduce

‖(−L0)
− 1

2
[

Aε−(−L0 − Lw
0 Gε)−1Aε

+ − Lw
0 Gε

]

fi−1]‖
= sup

‖‖=1
〈(−L0)

− 1
2 ,
[− Aε−(−L0 − Lw

0 Gε)−1Aε
+ + Lw

0 Gε
]

fi−1〉

� λ2
ε sup

‖‖=1
‖‖‖(−L0)

1
2 fi−1‖ = λ2

ε‖(−L0)
1
2 fi−1‖

where in the last step we used the Replacement Lemma 2.5. For the second, the analysis
is identical for f1 or f2, so we only consider the latter. Using the explicit expression of
Lw

0 , Gε, D and f2, we see that

‖(−L0)
− 1

2
[

Lw
0 Gε − D

]

f2‖2

= 1

2

∑

k1:2

(w · k)4
1:2

|k1:2|2
[

G(Lε( 1
2 |k1:2|2)) − DSHE

]2

× (|ϕ̂(k1)|2|ψ̂(k2)|2 + ϕ̂(k1)ϕ̂(k2)ψ̂(−k1)ψ̂(−k2)) .

Since ϕ is smooth we can take the limit in ε inside the sum and, provided we take
DSHE = G(1), we conclude that the right hand side goes to 0. Hence, the proof of (2.57)
is completed.

Concerning (2.58), we note that for any j ∈ N and ψ ∈ �L2
j ,

‖(−L0 − Lw
0 Gε)−1Aε

+ψ‖2

� j2λ2
ε

∑

k1: j+1

J
ε
k1,k2

(w · (k1 + k2))
2|ψ̂(k1 + k2, k3: j+1)|2

[ 1
2 |k1: j+1|2 + 1

2 (w · k)2
1: j+1G(Lε( 1

2 |k1: j+1|2))]2

� j2λ2
ε

∑

k1: j
(w · k1)

2|ψ̂(k1: j )|2
∑

�+m=k1

1

(|�|2 + |m|2)2 .

Now, the inner sum is clearly finite, and therefore we deduce

‖(−L0 − Lw
0 Gε)−1Aε

+ψ‖2 � λ2
ε‖N(−L0)

1/2ψ‖2 . (2.60)

We apply the previous estimate to the definition of ṽε,n , so that we obtain

‖ṽε,n‖2 ≤ ‖(−L0 − Lw
0 Gε)−1Aε

+[ṽε,n + fi−1]‖2

� λ2
ε‖N(−L0)

1/2[ṽε,n + fi−1]‖2 (2.61)

where in the first step, we replaced the truncated operator Aε,+
i,n with Aε

+. By the weighted
a priori estimate on ṽε,n in Lemma 2.10, we see that the norm at the right hand side
of (2.61) is bounded uniformly in ε. Now, since λε goes to 0 as ε → 0, (2.58) follows. ��
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We now turn to the case d ≥ 3. The proof of (2.57) (and (2.58)) requires to be able
to pass to limit first in ε and then in n. Since the first limit is the most delicate, we single
it out in the statement below, which also includes (2.58), and postpone its proof to the
next subsection.

Proposition 2.12. Consider the setting of Theorem 2.11 for d ≥ 3. Then, for every n
fixed, there exists a unique constant Dn > 0 such that, for i = 2, 3,

lim
ε→0

‖(−L0)
− 1

2 [Aε−v
ε,n
i − Dn−i+2 fi−1]‖ = 0 , (2.62)

where Dn is the operator given by Dn def= DnLw
0 for Lw

0 defined according to (2.22).
Further, as ε → 0, vε,n converges to 0 in �L2.

We now turn to the proof of Theorem 2.11 for d ≥ 3, for which, thanks to Proposi-
tion 2.12 we only need to ensure that the limit in n of the constants Dn is unique and
strictly positive.
Proof of Theorem 2.11 in d ≥ 3. Notice that (2.58) was established in Proposition 2.12,
so that we only need to focus on (2.57). For this, in light of (2.62), it suffices to prove
that the sequence of operators {Dn}n converges to a unique limit, which translates into
showing that the sequence of constants {Dn}n is Cauchy. The definition of the operator
Dn ensures that for any f1 = ϕ ∈ S(Td), we have

‖(−L0)
− 1

2 [Dn+1 − Dn] f1‖ = |Dn+1 − Dn|‖(−L0)
− 1

2 (−Lw
0 ) f1‖ . (2.63)

Furthermore, the left hand side can be bounded by

‖(−L0)
− 1

2 [Dn+1 − Dn] f1‖ ≤‖(−L0)
− 1

2 [Aε−v
ε,n+1
2 − Dn+1 f1]‖

+ ‖(−L0)
− 1

2 [Aε−v
ε,n
2 − Dn f1]‖

+ ‖(−L0)
− 1

2 Aε−(v
ε,n+1
2 − v

ε,n
2 )‖ , (2.64)

where, for ε > 0, any n ∈ N and ϕ = f1 any smooth function, vε,n is the solution of the
corresponding generator equation (2.39) truncated at level n. To control the last term,
we apply (2.10) to get

‖(−L0)
− 1

2 Aε−(v
ε,n+1
2 − v

ε,n
2 )‖ � ‖(−L0)

1
2 (vε,n+1 − vε,n)‖ . (2.65)

By definition of vε,n+1 and vε,n , we deduce that

−Lε(vε,n+1 − vε,n) = − Lε
2,n+1v

ε,n+1 − Aε
+v

ε,n+1
n+1 − Aε−v

ε,n+1
2

+ Lε
2,nv

ε,n + Aε
+vε,n

n + Aε−v
ε,n
2

= − Aε
+(v

ε,n+1
n+1 − vε,n

n ) − Aε−(v
ε,n+1
2 − v

ε,n
2 ) .

We now test both sides by vε,n+1 − vε,n and, using the antisymmetry of Aε, obtain

‖(−L0)
1/2(vε,n+1 − vε,n)‖2 = 〈vε,n+1 − vε,n,−Aε

+(v
ε,n+1
n+1 − vε,n

n )〉
= 〈vε,n+1 − vε,n,Aε

+vε,n
n 〉 (2.66)
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where the terms containing Aε−(v
ε,n+1
2 − v

ε,n
2 ) ∈ �L2

1 and Aε
+v

ε,n+1
n+1 ∈ �L2

n+2 dropped

out because of orthogonality of Fock spaces with different indices (recall that v
ε,n+1
1 =

v
ε,n
1 = 0 = v

ε,n+1
n+2 = v

ε,n
n+1). Now, the right hand side can be bounded above by

〈vε,n+1−vε,n,Aε
+vε,n

n 〉
≤ 1

2‖(−L0)
1/2(vε,n+1 − vε,n)‖2 + 2‖(−L0)

−1/2Aε
+vε,n

n ‖2 .

We can go back to (2.66) and get

‖(−L0)
1
2 (vε,n+1 − vε,n)‖2 � ‖(−L0)

− 1
2 Aε

+vε,n
n ‖2 � ‖N(−L0)

1
2 vε,n

n ‖2 (2.67)

where the last step follows by Lemma 2.4. To control the last term, we apply Proposi-
tion 2.8, which, for any j > 1, gives

‖N(−L0)
1
2 vε,n

n ‖2 ≤ n−2( j−1)‖Nj (−L0)
1
2 vε,n

n ‖2 � n−2 j‖(−L0)
1
2 f1‖2 .

At this point, we upper bound the right hand side of (2.64) with the above so that, by
using (2.63) and taking the limit in ε, (2.62) ensures that

|Dn+1 − Dn|‖(−L0)
− 1

2 (−Lw
0 ) f1‖ � n−2 j‖(−L0)

1
2 f1‖2 .

Since f1 is an arbitrary smooth test function, we can choose it to be such that the norm at
the left hand side is non-zero. Consequently, the sequence {Dn}n is Cauchy and therefore
converges to a unique constant DSHE, so that the proof of (2.57) is concluded.

It remains to show that DSHE is strictly positive. To do so, fix f1
def= ek for k ∈ Z

2 such
that w · k �= 0 and set vε,n[−k] to be the solution of the truncated generator equation
whose input function is f1. Notice that

Dn (w · k)2

√
2|k| = ‖(−L0)

− 1
2 (−Dn) f1‖

≥ ‖(−L0)
− 1

2 Aε−v
ε,n
2 [−k]‖ − ‖(−L0)

− 1
2 [Aε−v

ε,n
2 [−k] − Dn f1]‖ .

(2.68)

Let us consider the first term at the right hand side more carefully. Since Aε−v
ε,n
2 [−k] ∈

�L2
1, we can expand it in the Fourier basis, i.e.

Aε−v
ε,n
2 [−k] =

∑

j∈Zd
0

〈Aε−v
ε,n
2 [−k], e− j 〉e j

= −
∑

j∈Zd
0

〈vε,n
2 [−k],Aε

+e− j 〉e j = −〈vε,n
2 [−k],Aε

+e−k〉ek , (2.69)

where the last step is a consequence of the translation invariance of the equation, i.e.
the commutation between the operators L0, Aε with the momentum operator as stated
in Lemma 2.2. We can now exploit orthogonality of Fock spaces with different indices
and the antisymmetry of Aε, to see that

〈vε,n
2 [−k],Aε

+e−k〉 = 〈vε,n[−k],−Lεvε,n[k]〉
= 〈vε,n[−k],−L0v

ε,n[k]〉 = ‖(−L0)
1/2vε,n[−k]‖2 .
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It follows that

‖(−L0)
− 1

2 Aε−v
ε,n
2 [−k]‖ = 1

|k| ‖(−L0)
1/2vε,n[−k]‖2

so that we will only establish a lower bound on the latter norm. We have

‖(−L0)
1/2vε,n[−k]‖2 = 〈Aε

+e−k, (−Lε
2,n)

−1Aε
+e−k〉

= sup
∈�L2

{

2〈,Aε
+e−k〉 − 〈, (−L0)〉 − 〈, (−Aε

2,n)
∗(−L0)

−1(−Aε
2,n)〉

}

≥ sup
∈�L2

2

{

2〈,Aε
+e−k〉 − 〈, (−L0)〉 − 〈Aε

+, (−L0)
−1Aε

+〉
}

, (2.70)

where in the second equality we used [KLO12, Theorem 4.1], in last step we restricted the
supremum to �L2

2, thus making it smaller, and exploited Lemma 2.2 and the truncation
Pn

2 in the definition of Aε
2,n in (2.35) to simplify the last term. According to (2.10), for

ψ ∈ �L2
2, there exists a constant C > 0 such that

〈Aε
+ψ, (−L0)

−1Aε
+ψ〉 = ‖(−L0)

−1/2Aε
+ψ‖2 ≤ C‖(−L0)

1/2ψ‖2

which implies a further lower bound of the form

‖(−L0)
1/2vε,n[−k]‖2 ≥ sup

ψ∈�L2
2

{

2〈ψ,Aε
+e−k〉 − 〈ψ, (−L0)ψ〉 − C〈ψ, (−L0)ψ〉}

= 1

1 + C
‖(−L0)

−1/2Aε
+e−k‖2 .

We are left with estimating ‖(−L0)
−1/2Aε

+ek‖2 from below. Thanks to (2.9), we have
an explicit expression for the latter, which reads

‖(−L0)
−1/2Aε

+ek‖2 = 2

(2π)d
λ2

ε

∑

�+m=k

J
ε
�,m

(w · (� + m))2

|�|2 + |m|2

= 2

(2π)d
(w · k)2

(

λ2
ε

∑

�+m=k

J
ε
�,m

|�|2 + |m|2
)

. (2.71)

As a consequence, from (2.68) and the previous estimates, we obtain

Dn �
(

λ2
ε

∑

�+m=k

J
ε
�,m

|�|2 + |m|2
)

− |k|
(w · k)2 ‖(−L0)

− 1
2 [Aε−v

ε,n
2 [−k] − Dn f1]‖ .

Now, taking the ε → 0 limit at both sides we see that, by (2.62), the second term
converges to 0, while the first goes to a strictly positive constant independent of n. Thus,
the strict positivity of DSHE follows by passing to the limit in n so that the proof of the
theorem is concluded. ��
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2.4. Proof of Proposition 2.12. The proof of Proposition 2.12 is the most delicate part
of the present paper. Since in d ≥ 3 we have no analogue of the replacement lemma (and
we do not even expect it to hold), we need to resort to a different strategy. Our proof is
centred around a suitable expansion of the norms of vε,n (see e.g. (2.80) below) which
involves several subsequent applications of the operators Aε

+, Aε− interposed by inverses
of −L0. In order to see why such an expansion is meaningful, it is convenient to write it
in terms of operators which are skew-Hermitian and bounded in �L2 (uniformly in ε),
and this is the first thing we will do.

Let n ∈ N, n ≥ 2, be fixed throughout the section. For i = 2, 3, let ε > 0 and Aε
i,n

be given as in (2.35). We introduce the operators T ε
i,n and for σ ∈ {+,−}, T ε,σ , T ε,σ

i,n ,
according to

T ε,σ def= (−L0)
−1/2(Aε

σ )(−L0)
−1/2 ,

T ε
i,n

def= (−L0)
−1/2(Aε

i,n)(−L0)
−1/2 ,

T ε,σ
i,n

def= (−L0)
−1/2(Aε,σ

i,n )(−L0)
−1/2 . (2.72)

Note that, by Lemma 2.4 and in particular (2.11), each of the operators above is bounded
in �L2 uniformly in ε (the bound depends on n, but this is irrelevant as n is fixed) and,
by Lemma 2.2, it is easy to see that T ε

i,n is skew-Hermitian.
To have a notation for multiple applications of the operators T ε,σ , σ ∈ {+,−}, we set,

for m ≥ 1 and a ≥ 0, 
(n)
a,m to be the set of simple random walk paths p = (p0, . . . , pa)

consisting of a steps, starting at height 1, i.e. p0 = 1, ending at height m, i.e. pa = m,
that do not reach height n + 1 and that can have height 1 only at the endpoints. Given
p ∈ 


(n)
a,m we let |p| def= a and Tε

p be defined according to

T ε
p

def= T ε,σa T ε,σa−1 . . . T ε,σ1 (2.73)

where σi = + if pi − pi−1 = 1, and σi = − if pi − pi−1 = −1, and Tε
p

def= 1 if |p| = 0.
In other words, there is a factor T ε,+ (resp. T ε,−) whenever the path takes a step up (resp.
down)3.

We enclose the most technical aspect of the proof of Proposition 2.12 in Proposi-
tion 2.13 below. Before giving the proof of the latter, we will show how it implies the
former.

Proposition 2.13. For j1, j2 ∈ Z
d
0 , let j be either j1 or j1:2, and denote by ej either

e j1 or e j1:2
def= [e j1 ⊗ e j2 ]sym, the symmetric version of e j1 ⊗ e j2 , where e ji is the ji -th

element of the Fourier basis. In the notations introduced above, for every a1, a2 ≥ 0 and
pr ∈ 


(n)
ar ,1

, r = 1, 2 (so that in particular ar ∈ 2N) the limit4

lim
ε→0

〈Tε
p1ej, T

ε
p2ej〉 = c(p1)c(p2)

(

‖(−L0)
− 1

2 (−Lw
0 )ej‖

|j|/√2

)

∑

r=1,2 1ar �=0

(2.74)

exists, with c(p) ∈ R depending only on the path p and such that c(p) = 1 if |p| = 0.

3 For instance, for a = 4 the path p = (1, 2, 3, 2, 3) ∈ 

(n)
4,3, n ≥ 4 corresponds to Tε

p =
T ε,+T ε,−T ε,+T ε,+.

4 in (2.74), the overbar denotes complex conjugation
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Furthermore, for every ar > 0, mr ≥ 2, and pr ∈ 

(n)
ar ,mr , r = 1, 2, one has

lim
ε→0

〈Tε
p1ej, (−L0)

−1Tε
p2ej〉 = 0 . (2.75)

Proof of Proposition 2.12 given Proposition 2.13. Let us first introduce a notation thanks
to which we can express both the norm in (2.62) and the �L2-norm of vε,n . For this, let S
and c be, respectively, a linear operator and a constant given by either S= Pi−1A

ε− and
c = 1 or S= (−L0)

1/2 and c = 0, with Pi−1 the orthogonal projector on the (i − 1)-th
chaos, �L2

i−1. Then, the quantity of interest in (2.62) is

‖(−L0)
− 1

2 [Svε,n − cDn−i+2 fi−1]‖ .

The rest of the proof will be divided in several steps, the first of which reduces our study
to the case where the test functions ϕ and ψ in the definition of fi−1 are two given
elements of the Fourier basis.
Step 1: Reduction to Fourier basis. For this step, we focus on the case i = 3 since i = 2
is easier and can be argued similarly. For j1, j2 ∈ Z

d
0 , let vε,n[− j1:2] be the solution

to (2.39) in which we take f2 to be e j1:2 = [e j1 ⊗ e j2 ]sym . By linearity, we clearly have
vε,n = ∑ j1, j2 ϕ̂( j1)ψ̂( j2)vε,n[− j1:2]. The definition of the norm in �L2 immediately
gives

‖(−L0)
− 1

2 [Svε,n − cDn−1 f2]‖2 =
∑

k1,k2

2

|k1:2|2
∣

∣

∣〈Svε,n − cDn−1 f2,
e−k1:2
‖ek1:2‖

〉
∣

∣

∣

2
.

Now, for α ≥ 0, we can apply Cauchy-Schwarz to get

∣

∣

∣〈Svε,n − cDn−1 f2, e−k1:2〉
∣

∣

∣

2

=
∣

∣

∣

∑

j1, j2

ϕ̂( j1)ψ̂( j2)〈Svε,n[− j1:2] − cDn−1e j1:2 , e−k1:2〉
∣

∣

∣

2

≤
∑

j1, j2

| j1:2|2α|ϕ̂( j1)|2|ψ̂( j2)|2
∑

j1, j2

1

| j1:2|2α

∣

∣

∣〈Svε,n[− j1:2] − cDn−1e j1:2 , e−k1:2〉
∣

∣

∣

2
,

so that we conclude

‖(−L0)
− 1

2 [Svε,n − cDn−1 f2]‖2

� ‖(−L0)
α f2‖2

∑

j1:2

1

| j1:2|2α

∑

k1,k2

2

|k1:2|2
∣

∣

∣〈Svε,n[− j1:2] − cDn−1e j1:2 , e−k1:2〉
∣

∣

∣

2

= ‖(−L0)
α f2‖2

∑

j1:2

1

| j1:2|2α
‖(−L0)

− 1
2 [Svε,n[− j1:2] − cDn−1e j1:2 ]‖2 .

Now, the norm inside the sum is bounded by (a constant times) | j1:2|2. Indeed, if S =
P2A

ε− and c = 1, thanks to (2.10), the apriori estimates in Proposition 2.8 and the
definition of Dn−1 in Proposition 2.12, we get

‖(−L0)
− 1

2 [Aε−v
ε,n
3 [− j1:2] − Dn−1e j1:2 ]‖2
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� ‖(−L0)
1/2v

ε,n
3 [− j1:2]‖2 + ‖(−L0)

− 1
2 Dn−1e j1:2‖2

� ‖(−L0)
−1/2Aε

+e j1:2‖2 + ‖(−L0)
1/2e j1:2‖2

� ‖(−L0)
1/2e j1:2‖2 � | j1:2|2 .

In instead, S= (−L0)
1/2 and c = 0, then

‖vε,n[− j1:2]‖2 ≤ ‖(−L0)
1/2vε,n[− j1:2]‖2 ≤ ‖(−L0)

1/2e j1:2‖2 � | j1:2|2 .

As a consequence, upon choosing α big enough, and we are allowed to since f2 is
smooth, by dominated convergence the statement follows if we prove that for all given
j1, j2 ∈ Z

d
0 , the norm in the sum vanishes. Now, by opening up the squared norm and

using the definition of Dn−1 we see that this is equivalent to showing that

lim
ε→0

‖(−L0)
− 1

2 Svε,n[− j1:2]‖ = cDn−1‖L− 1
2

0 Lw
0 e j1:2‖ (2.76)

and, if c �= 0, that

lim
ε→0

〈e− j1:2 , (−L0)
− 1

2 Svε,n[− j1:2]〉 = Dn−1‖L− 1
2

0 Lw
0 e j1:2‖ , (2.77)

and similarly for i = 2, in which case instead of vε,n[− j1:2], Dn−1 and e j1:2 , we have
vε,n[− j1], Dn and e j1 respectively.

From now on, we adopt the notations of Proposition 2.13 and let j be either j1 if
i = 2 or j1:2 if i = 3.
Step 2: Analysis of Svε,n[−j]. Recall the definition of the operators T ε

i,n and T ε,σ ,
σ ∈ {+,−} in (2.72). Thanks to (2.39),

vε,n[−j] = (−Lε
i,n)

−1Aε
+ej = (−L0)

−1/2(I − T ε
i,n)

−1T ε,+(−L0)
1/2ej

= |j|√
2
(−L0)

−1/2(I − T ε
i,n)

−1T ε,+ej

= |j|√
2
(−L0)

−1/2
(

∫ ∞

0
e−sesT

ε
i,nds
)

T ε,+ej . (2.78)

Hence, the scalar product in (2.77) satisfies
√

2

|j| 〈e−j, (−L0)
− 1

2 Svε,n[−j]〉

= 〈e−j, (−L0)
− 1

2 S(−L0)
−1/2
(

∫ ∞

0
e−sesT

ε
i,nds
)

T ε,+ej〉

=
∫ ∞

0
e−s〈e−j, (−L0)

− 1
2 S(−L0)

−1/2esT
ε
i,n T ε,+ej〉ds

where in the last step we applied Fubini, which is allowed as the operator esT
ε
2,n has norm

at most 1, since the spectrum of T ε
i,n is purely imaginary. For the same reason, once we

take the ε-limit at both sides we can apply dominated convergence and pass the limit
inside the integral in s, i.e.

lim
ε→0

√
2

|j| 〈e−j, (−L0)
− 1

2 Svε,n[−j]〉
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=
∫ ∞

0
e−s lim

ε→0
〈e−j, (−L0)

− 1
2 S(−L0)

−1/2esT
ε
i,n T ε,+ej〉ds

=
∫ ∞

0
e−s lim

ε→0
〈e−j, (−L0)

− 1
2 S(−L0)

−1/2
∑

b≥0

sb

b! (T
ε
i,n)

bT ε,+ej〉ds

=
∫ ∞

0
e−s
∑

b≥0

sb

b! lim
ε→0

〈e−j, (−L0)
− 1

2 S(−L0)
− 1

2 (T ε
i,n)

bT ε,+ej〉ds (2.79)

where in the last step we could exchange the limit with both the summation over b and
the scalar product because, for fixed n, s, the norm of sT ε

n is uniformly bounded (recall
that after the first, in the subsequent steps s can be treated as fixed).

For the norm in (2.76), we can follow the exact same arguments so that we are led to

lim
ε→0

2

|j|2 ‖(−L0)
− 1

2 Svε,n[−j]‖2

= lim
ε→0

2

|j|2 〈(−L0)
− 1

2 Svε,n[−j], (−L0)
− 1

2 Svε,n[−j]〉

=
∫ ∞

0

∫ ∞

0
ds1ds2 e

−s1−s2
∑

b1,b2≥0

sb1
1 sb2

2

b1!b2!×

× lim
ε→0

〈(−L0)
− 1

2 S(−L0)
− 1

2 (T ε
i,n)

b1T ε,+ej, (−L0)
− 1

2 S(−L0)
− 1

2 (T ε
i,n)

b2T ε,+ej〉 .

(2.80)

The previous arguments guarantee that we are left to determine, for every b1, b2 ≥ 0
and θ ∈ {0, 1}, the limit

lim
ε→0

〈[(−L0)
− 1

2 S(−L0)
− 1

2 (T ε
i,n)

b1T ε,+]θej, (−L0)
− 1

2 S(−L0)
− 1

2 (T ε
i,n)

b2T ε,+ej〉
(2.81)

and to do so we will separately consider the case in which S= Pi−1A
ε− and c = 1, or

S= (−L0)
1
2 and c = 0, starting with the former.

Step 3: The case S = Pi−1A
ε− and c = 1. With this choice of S and c we need to

prove both (2.76) and (2.77), which respectively correspond to taking θ = 1 and θ = 0
in (2.81). Furthermore, by (2.72), we have

(−L0)
− 1

2 S(−L0)
− 1

2 = (−L0)
− 1

2 Pi−1A
ε−(−L0)

− 1
2 = Pi−1T

ε,−

so that the scalar product in (2.81) becomes

〈[Pi−1T ε,−(T ε
i,n)

b1T ε,+]θej, Pi−1T
ε,−(T ε

i,n)
b2T ε,+ej〉 .

Let us begin with a few remarks. First of all, because of the projection Pi−1 and the fact
that ej ∈ �L2

i−1, b2 must necessarily be even, hence we set a2 ∈ N \ {0} to be such that
b2 = 2a2 − 2. The same holds for b1 if θ = 1 (and we write b1 = 2a1 − 2, a1 ∈ N \ {0})
while if θ = 0, b1 plays no role and for convenience we will set a1 ≡ 0. Next, we expand

〈[Pi−1T ε,−(T ε
i,n)

2a1−2T ε,+]θej, Pi−1T
ε,−(T ε

i,n)
2a2−2T ε,+ej〉
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= 〈[Pi−1T ε,−(T ε,+
i,n + T ε,−

i,n )2a1−2T ε,+]θej,
Pi−1T

ε,−(T ε,+
i,n + T ε,−

i,n )2a2−2T ε,+ej〉
=

∑

pr∈˜
2ar ,1
r=1,2

〈[T ε,σ2a1 T
ε,σ2a1−1

i,n . . . T ε,σ2
i,n T ε,σ1 ]θej,

T ε,σ2a2 T
ε,σ2a2−1

i,n . . . T ε,σ2
i,n T ε,σ1ej〉 (2.82)

where we define ˜
2a,1 to be the set of all walks p which start at time 1 from 1, i.e.
p0 = 1, end at time 2a at 1, i.e. p2a = 1, have increments of size 1 and are such that
p1 − p0 = 1 = p2a−1 − p2a . If either of the previous conditions were violated the
projection onto Pi−1 would set the scalar product to 0. Moreover, the last condition on
the p’s ensures that σ1 = + and σ2a = − (so that the T ε,− and T ε,+ in the line above
are present).

Because of the projector Pn
i entering the definition of T ε,σ

i,n , if a path pr reaches
height n + 3 − i or height i − 1 (except at the endpoints), then the corresponding scalar
product is annihilated. Hence, we can replace the index set of the sum at the right hand
side of (2.82) to 


(n+2−i)
2ar ,1

, and get

〈[Pi−1T ε,−(T ε
i,n)

2a1−2T ε,+]θej, Pi−1T
ε,−(T ε

i,n)
2a2−2T ε,+ej〉

=
∑

pr∈

(n+2−i)
2ar ,1

r=1,2

〈[T ε,σ2a1 T ε,σ2a1−1 . . . T ε,σ2T ε,σ1 ]θej, T ε,σ2a2 . . . T ε,σ2T ε,σ1ej〉

=
∑

pr∈

(n+2−i)
2ar ,1

r=1,2

〈T ε
p1
ej,T

ε
p2
ej〉

where in the first step we replaced all instances of T ε,σ
i,n with T ε,σ , since for pr ∈ 


(n+2−i)
2ar ,1

the projection Pn
i acts as the identity operator, and in the second we used the convention

that a1 = 0 if θ = 0, in which case p1 has length zero and T ε
p1

= 1.
At last, getting back to (2.79), and applying (2.74) in Proposition 2.13, we obtain

lim
ε→0

〈e−j, (−L0)
− 1

2 Svε,n[−j]〉

= |j|√
2

∫ ∞

0
e−s
∑

a≥1

s2a

(2a)! lim
ε→0

∑

p∈

(n+2−i)
2a,1

〈e−j,T
ε
p ej〉ds

= |j|√
2

∫ ∞

0
e−s
∑

a≥1

s2a

(2a)!
∑

p∈

(n+2−i)
2a,1

lim
ε→0

〈e−j,T
ε
p ej〉ds

= ‖(−L0)
− 1

2 (−Lw
0 )ej‖

∫ ∞

0
e−s
∑

a≥1

s2a

(2a)!
∑

p∈

(n+2−i)
2a,1

c(p)ds

=: ‖(−L0)
− 1

2 (−Lw
0 )ej‖Dn+2−i (2.83)
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where the last constant Dn+2−i is uniquely defined by the expression before, so that (2.77)
follows at once. Similarly, (2.76) holds since, from (2.80) and by (2.74), we get

lim
ε→0

‖(−L0)
− 1

2 Svε,n[−j]‖2

= |j|2
2

∫ ∞

0

∫ ∞

0
ds1ds2 e

−s1−s2
∑

a1≥1
a2≥1

s2a1
1 s2a2

2

(2a1)!(2a2)!
∑

pr∈

(n+2−i)
2ar ,1

r=1,2

lim
ε→0

〈T ε
p1
ej,T

ε
p2
ej〉

= ‖(−L0)
− 1

2 (−Lw
0 )ej‖2

(

∫ ∞

0
e−s
∑

a≥1

s2a

(2a)!
∑

p∈

(n+2−i)
2a,1

c(p)ds
)2

= ‖(−L0)
− 1

2 (−Lw
0 )ej‖2(Dn+2−i )2

for Dn+2−i be given as above. Therefore, the proof of (2.76) is concluded and so is that
of (2.62).
Step 4: The case S = (−L0)

1
2 and c = 0. This choice of S turns the scalar product

in (2.81) into

〈(T ε
i,n)

b1T ε,+ej, (−L0)
−1(T ε

i,n)
b2T ε,+ej〉 . (2.84)

By expanding and arguing as in the previous step, we deduce that

〈(T ε
i,n)

b1T ε,+ej, (−L0)
−1(T ε

i,n)
b2T ε,+ej〉

= 〈(T ε,+
i,n + T ε,−

i,n )b1T ε,+ej, (−L0)
−1(T ε,+

i,n + T ε,−
i,n )b2T ε,+ej〉

=
2
∑

r=1

br+i
∑

mr=i

∑

pr∈˜
br ,mr

〈T ε,σb1
i,n . . . T ε,σ2

i,n T ε,σ1ej, (−L0)
−1T

ε,σb2
i,n ...T ε,σ2

i,n T ε,σ1ej〉

=
2
∑

r=1

br+i
∑

mr=i

∑

pr∈

(n+2−i)
br ,mr

〈T ε,σb1
i,n . . . T ε,σ2

i,n T ε,σ1ej, (−L0)
−1T

ε,σb2
i,n ...T ε,σ2

i,n T ε,σ1ej〉

=
2
∑

r=1

br+i
∑

mr=i

∑

pr∈

(n+2−i)
br ,mr

〈T ε,σb1 . . . T ε,σ2T ε,σ1ej, (−L0)
−1T ε,σb2 ...T ε,σ2T ε,σ1ej〉

=
2
∑

r=1

br+i
∑

mr=i

∑

pr∈

(n+2−i)
br ,mr

〈T ε
p1ej, (−L0)

−1T ε
p2ej〉

where ˜
br ,mr , r = 1, 2, is the set of all walks pr which start at time 1 from 1, i.e.
p0 = 1, end at time br at mr , i.e. pbr = br , have increments of size 1 and are such that
p1 − p0 = 1. In the third step, because of the projector Pn

i in the definition of T ε,σ
i,n ,

we replaced the sum over ˜
br ,mr with that over 

(n+2−i)
br ,mr

and consequently removed the
projection.

Now, since the scalar product at the right hand side converges to 0 by (2.75),
from (2.80) we deduce that ‖vε,n‖2 converges to 0 so that the proof of Proposition 2.12
is concluded. ��
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We now turn to the proof of Proposition 2.13, for which we will need some notation
and a few preliminary results. First of all, the action of the operators Aε

+,Aε− of (2.9) on
�L2

n can be rewritten as follows:

F(Aε
+ f )(k1:n+1) = 1

n + 1

∑

1≤i<i ′≤n+1

Aε
+[(i, i ′)] f (k1:n+1)

F(Aε− f )(k1:n−1) = n
n−1
∑

q=1

Aε−[q] f (k1:n−1) , (2.85)

where, for 1 ≤ i < i ′ ≤ n + 1 and 1 ≤ q ≤ n − 1,

Aε
+[(i, i ′)] f (k1:n+1) = − 2ιε

d
2 −1

(2π)d/2 [w · (ki + ki ′)]Jε
ki ,ki ′ f̂ (ki + ki ′ , k{1:n+1}\{i,i ′})

Aε−[q] f (k1:n−1) = 2ι

(2π)d/2 ε
d
2 −1(w · kq)

∑

�+m=kq

J
ε
�,m f̂ (�,m, k{1:n−1}\{q}) . (2.86)

Let T ε,+[(i, i ′)] and T ε,−[q] be defined as in (2.72), but with Aε,+, Aε,− replaced by
Aε

+[(i, i ′)], Aε−[q].
The advantage of this decomposition is that the operators in (2.86) can be extended

to functions which are not necessarily symmetric, i.e. they can be viewed as operators
on
⊕

n L
2
n

def=⊕n L
2((Td)n).

Before detailing their properties, we also introduce operators Aε,δ
± , δ ≥ 0, which will

allow us to derive a uniform integrability-type condition. This will be the essential tool
to prove the limit in (2.74). For f ∈ L2

n , 1 ≤ i < i ′ ≤ n + 1, 1 ≤ q ≤ n − 1 and δ ≥ 0,
set

Aε,δ
+ [(i, i ′)] f (k1:n+1) = ε

d
2

∣

∣

∣

2ε−1[w · (ki + ki ′)]
(2π)d/2

∣

∣

∣

1+δ

J
ε
ki ,ki ′ f̂ (ki + ki ′ , k{1:n+1}\{i,i ′})

Aε,δ
− [q] f (k1:n−1) = ε

d
2

∣

∣

∣

2ε−1w · kq
(2π)d/2

∣

∣

∣

1+δ ∑

�+m=kq

J
ε
�,m f̂ (�,m, k{1:n−1}\{q}) , (2.87)

and

T ε,δ,+[(i, i ′)] def= (−L0)
− 1+δ

2 Aε,δ
+ [(i, i ′)](−L0)

− 1+δ
2 (2.88)

and similarly for T ε,δ,−[q]. In the following lemma, we collect estimates on the operators
introduced above.

Lemma 2.14. Let ε > 0 and n ∈ N. For every 1 ≤ i < i ′ ≤ n+1 and 1 ≤ q ≤ n−1, the
linear operators Aε

+[(i, i ′)] and Aε−[q] in (2.86) map L2
n to L2

n+1 and L2
n−1 respectively,

and commute with the momentum operator defined in Lemma 2.2. Moreover, there exists
a constant C > 0 such that for every f ∈ L2

n,

‖T ε,+[(i, i ′)] f ‖L2
n+1

∨ ‖T ε,−[q] f ‖L2
n−1

≤ C‖ f ‖L2
n

(2.89)

and for every δ ∈ [0, (d − 2)/2) we also have

‖T ε,δ,+[(i, i ′)] f ‖L2
n+1

∨ ‖T ε,δ,−[q] f ‖L2
n−1

≤ C(δ)‖ f ‖L2
n
. (2.90)
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Proof. Commutativity with the momentum operator is immediately checked from the
definition of the operators. Concerning (2.89), it follows from (2.90) upon noting that
for every f ∈ L2

n

‖T ε,+[(i, i ′)] f ‖L2
n+1

≤ ‖T ε,δ,+[(i, i ′)] f ‖L2
n+1

with δ = 0, and similarly for T ε,−[q]. Let δ ∈ [0, (d − 2)/2) and f ∈ L2
n . Then, with a

simple change of variables, we have

‖T ε,δ,+[(i, i ′)] f ‖2
L2
n+1

= ‖(−L0)
− 1+δ

2 Aε,δ
+ [(i, i ′)](−L0)

− 1+δ
2 f ‖2

L2
n+1

�
∑

k1:n

( |w · k1|
|k1:n|

)2+2δ| f̂ (k1:n)|2εd−2(1+δ)
∑

�+m=k1

J
ε
�,m

(|�|2 + |m|2)1+δ

� ‖ f ‖2
L2
n
εd−2(1+δ)

∑

|�|≤ε−1

1

|�|2+2δ
.

Since the sum above equals

εd−2(1+δ)
∑

|�|≤ε−1

1

|�|2+2δ
= εd

∑

|ε�|≤1

1

|ε�|2+2δ
�d

∫

|x |≤1

dx

|x |2+2δ
(2.91)

and the right hand side is bounded as long as δ < (d − 2)/2, (2.90) follows. Concerning
T ε,δ,−[q], we apply Cauchy-Schwarz so to obtain

‖T ε,δ,−[q] f ‖L2
n−1

= ‖(−L0)
− 1+δ

2 Aε,δ
− [q] f (−L0)

− 1+δ
2 ‖L2

n−1

�
∑

k1:n−1

( |w · kq |
|k1:n−1|

)2+2δ×

×
∣

∣

∣ε
d
2 −(1+δ)

∑

�+m=kq

J
ε
�,m

(|�|2 + |m|2 + |k1:n−1\{q}|2) 1+δ
2

f̂ (�,m, k1:n−1\{q})
∣

∣

∣

2

≤
∑

k1:n
| f̂ (k1:n)|2εd−(2+2δ)

∑

|�|≤ε−1

1

|�|2+2δ
(2.92)

and once again the inner sum is bounded uniformly over kq thanks to (2.91), so that the
proof of (2.90) is complete. ��

In the following lemma, we show that the main contribution to the norm ofT ε,+[(i, i ′)] f
and T ε,−[q] f comes from Fourier modes whose size diverges with ε.

Lemma 2.15. In the setting of Lemma 2.14, let γ ∈ (0, 1) and, for f ∈ L2
n, define the

operators

˜T ε,+[(i, i ′)] f (k1:n+1)
def= 1|ki |∧|ki ′ |>ε−γ T ε,+[(i, i ′)] f (k1:n+1)
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˜T ε,−[q] f (k1:n−1)
def= T ε,−[q] f >(k1:n−1) (2.93)

where f̂ >(k1:n)
def= 1|k1|∧|k2|>ε−γ f̂ (k1:n). Then, there exists a constant C > 0 such that

‖(T ε,+[(i, i ′)] − ˜T ε,+[(i, i ′)]) f ‖L2
n+1

≤ Cε(1−γ )(d−2)‖ f ‖L2
n

(2.94)

and the same bound holds for ‖(T ε,−[q] − ˜T ε,−[q]) f ‖L2
n−1

.

Proof. By the definition of the operator Aε
+[(i, i ′)] in (2.86) and that of ˜T ε,+[(i, i ′)]

in (2.93), we have

(T ε,+[(i, i ′)]−˜T ε,+[(i, i ′)]) f (k1:n+1) = 1|ki |∧|ki ′ |≤ε−γ T ε,+[(i, i ′)] f (k1:n+1) .

Hence,

‖(T ε,+[(i, i ′)] − ˜T ε,+[(i, i ′)]) f ‖2
L2
n+1

�
∑

k1:n+1

εd−2

|k1:n+1|2
[w · (ki + ki ′)]21|ki |∧|ki ′ |≤ε−γ

|ki + ki ′ |2 + |k1:n+1\{i,i ′}|2 | f̂ (ki + ki ′ , k1:n+1\{i,i ′})|2

≤
∑

k1:n+1

εd−2

|k1:n+1|2 1|ki |∧|ki ′ |≤ε−γ | f̂ (ki + ki ′ , k1:n+1\{i,i ′})|2

=
∑

k1:n
| f̂ (k1:n)|2

∑

�+m=k1

εd−2 1|�|∧|m|≤ε−γ

|�|2 + |m|2 + |k1:n+1\{i,i ′}|2

where in the last step we simply relabelled all the variables in the sum. Now, the inner
sum can be bounded as

∑

�+m=k1

εd−2 1|�|∧|m|≤ε−γ

|�|2 + |m|2 + |k1:n+1\{i,i ′}|2 ≤
∑

�+m=k1

εd−2 1|�|∧|m|≤ε−γ

(|�| ∧ |m|)2

�
∑

|�|≤ε−γ

εd
1

|ε�|2 �
∫

|x |≤ε1−γ

dx

|x |2 �
∫ ε1−γ

0
rd−3dr ≤ ε(1−γ )(d−2) (2.95)

from which (2.94) follows. The analogous statement for T ε,−[q] − ˜T ε,−[q] can be
obtained as in the previous lemma, i.e. applying Cauchy-Schwarz as in (2.92) and then
controlling the resulting sum with (2.95). ��

Before proceeding, we want to rewrite (2.73) in terms of the operators we just intro-
duced. Let a ≥ 0, m ≥ 1, p ∈ 


(n)
a,m , j, ej be as above. For f ∈ L2

i , let κ( f ) = i denote

the eigenvalue of the number operator, so that κ
def= κ(ej) = 1 if j = j1 and κ = 2 if

j = j1:2. Replacing each of the T ε,+, T ε,− with the sum of the T ε,+[(i, i ′)], T ε,+[q] (as
in (2.85)), we obtain

T ε
p ej = 1

Cm,κ

∑

g∈Gκ [p]
T ε

p [g]ej def= 1

Cm,κ

∑

g∈Gκ [p]
T ε,σa [ga] . . . T ε,σ1 [g1]ej (2.96)
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where Cm,κ = ∏m−1
j=1 (κ + j) (in particular, C1,κ = 1), Gκ [p] is a set whose elements

g = (gs)s=1,...,a are of the form

gs
def=
{

(is, i ′s) , if σs = +
qs , if σs = −,

for 1 ≤ is < i ′s, qs ≤ ps + κ − 1. In particular, the cardinality of Gκ [p] is finite and
independent of ε.

Thanks to the representation in (2.96), we are ready to state the next lemma which
will give (2.75) as a corollary.

Lemma 2.16. In the same setting as Proposition 2.13, let a > 0, m ≥ 2 and p ∈ 

(n)
a,m.

Then, for every g ∈ Gκ [p], we have

lim
ε→0

‖(−L0)
− 1

2 T ε
p [g]ej‖L2

mκ
= 0 , (2.97)

where κ = κ(ej) is defined as above, and mκ
def= m + κ − 1.

Proof. By the definition of T ε
p [g] in (2.96), we have

‖(−L0)
− 1

2 T ε
p [g]ej‖L2

mκ
= ‖(−L0)

− 1
2 T ε,σa [ga] . . . T ε,σ1 [g1]ej‖L2

mκ
.

Let γ ∈ (0, 1) and recall the definition of ˜T ε,σ [g] from Lemma 2.15. Thanks to (2.94),
we can replace every instance of T ε,σ [g] with ˜T ε,σ [g] since, by (2.89), the T ε,σa [ga]’s
are bounded operators and ej has clearly finite L2 norm. Therefore we are left to consider

‖(−L0)
− 1

2˜T ε,σa [ga] . . .˜T ε,σ1 [g1]ej‖2
L2
mκ

=
∑

k1:mj

2

|k1:mj |2
∣

∣

∣

˜T ε,σa [ga] . . .˜T ε,σ1 [g1]ej(k1:mκ )

∣

∣

∣

2

≤ ε2γ
∑

k1:mj

∣

∣

∣

˜T ε,σa [ga] . . .˜T ε,σ1 [g1]ej(k1:mκ )

∣

∣

∣

2

= ε2γ ‖˜T ε,σa [ga] . . .˜T ε,σ1 [g1]ej‖2
L2
mκ

(2.98)

where, in the second step, we used the fact that |k1:mκ | > ε−γ . To see this, notice
that, by definition, the new Fourier modes produced by ˜T ε,+[g] have modulus bigger
than ε−γ . Now, the assumption m ≥ 2 ensures that the number of variables on which
˜T ε,σa [ga] . . .˜T ε,σ1 [g1]ej depends (i.e. mκ ) is strictly bigger than that of ej. Therefore,
at least one among k1, . . . , kmκ must be generated by a ˜T ε,+[g], which then implies
|k1:mκ | > ε−γ . To conclude, it suffices to observe that by (2.94) and (2.89), the operators
˜T ε,σ [g] are bounded and that ej has finite L2-norm, so that the right hand side of (2.98)
converges to 0, thus proving (2.97). ��

To prove (2.74), let a ≥ 0, m ≥ 1, p ∈ 

(n)
a,m and g ∈ Gκ [p], for κ = 1, 2. We

introduce a graphical representation for g ∈ Gκ [p], which consists of associating to it a
graph as that depicted in Figure 1.
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Fig. 1. A graphical representation for a graph g ∈ Gj[p]. In this example, p ∈ 

(n)
a,m with a = |p| = 4,

n ≥ 3 and m = 1, κ = 2 and g = {(1, 3), (2, 3), 2, 1}. Columns are labelled from 0 to a starting from the left,
vertices are labelled by increasing integers starting from top. Vertices marked as empty squares are merging
points, full squares are branching points. The number of vertices in column j is p j + 1

The vertices of the graph are divided in a + 1 columns, labeled from 0 to a. The
column with label s contains ps + κ − 1 vertices; the vertices inside each column are
labeled with increasing positive integers, starting from the uppermost vertex. The edges
only connect vertices in consecutive columns, with each vertex in one column connected
to at least one and at most two vertices in the next. The edges between column s − 1 and
s, s ∈ {1, . . . , a}, are drawn starting from the vertices involved in the definition of gs :
if gs = (is, i ′s) then the first vertex from the top in column s − 1 is called a branching
point and we draw two edges connecting it to the vertices with label is and i ′s in column
s; if instead gs = qs , then the vertex with label qs in column s is called a merging point
and we draw an edge from the vertices with labels 1 and 2 in column s − 1 to qs ; for the
other vertices in column s−1 (i.e. those whose label is not 1 if gs = (is, i ′s), and neither
1 nor 2 if gs = qs), we inductively draw an edge from the vertex with the lowest label
to that of lowest label in column s which is not already connected to another vertex in
column s − 1.

One should think of the vertices as carrying a momentum, and of the edges as the
relation the momenta on the vertices connected by them satisfy. In particular, when
T ε

p [g] is applied to e j1 or5 e j1 ⊗ e j2 , the vertex in position 1 of the first column carries
momentum j1, that in position 2 (if there is one) carries momentum j2, a branching point
determines the creation of a new momentum, while a merging point, the annihilation of
one. Moreover, if x, y, z are vertices then

• if x in column s is either a branching or a merging point, and is connected to y, z in
column s + 1 or s−1 respectively, then the sum of the momenta at y, z must coincide
with the momentum at x ;

• if there is an edge between x in column s and y in column s + 1, x is not a branching
point and y is not a merging point, then the momenta at x and y coincide.

In the next lemma, we identify a large class of elements g ∈ G2[p] for whichT ε
p [g](e j1⊗

e j2) does not contribute to the limit in (2.74). To state it, let us define a path π in the
graph associated to g as a directed sequence of connected vertices in which π( j) is the
label of the vertex π encounters in column j .

Lemma 2.17. Let a ≥ 0, p ∈ 

(n)
a,1 and g ∈ G2[p]. If in the graph associated to g there

exists a path π starting from the second vertex of the 0-th column that contains either a
branching or a merging point, then

lim
ε→0

‖T ε
p [g](e j1 ⊗ e j2)‖L2

2
= 0 . (2.99)

5 here we atually mean e j1 ⊗e j2 , not its symmetrized version. Recall that the action of the operators Tε
p [g]

is well-defined on not necessarily symmetric functions
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Fig. 2. Left drawing: the path π from the vertex 2 of the 0-th column, until the first merging point (in column
labeled ā = 3). Right: the path π until the first branching point (in column labeled ā − 1 = 2)

Proof. Let π be a path starting from vertex with label 2 in the column of label 0 and
containing either a branching or a merging point. See Fig. 2. Let ā ∈ {2, . . . , a} be such
that, in the former case, the first branching point π encounters lies in the (ā − 1)-th
column, so that in particular π(ā − 1) = 1. In the latter case, ā is such that π(ā) is a
merging point, and π(ā − 1) ∈ {1, 2}. Then, invoking (2.89), we upper bound the norm
in (2.99) as

‖T ε
p [g](e j1 ⊗ e j2)‖L2

2
= ‖T ε,σa [ga] . . . T ε,σ1 [g1](e j1 ⊗ e j2)‖L2

2

� ‖T ε,σā [gā] . . . T ε,σ1 [g1](e j1 ⊗ e j2)‖L2
M+pā−pā−1

.

for M
def= 1 + pā−1. To simplify the notation, set

�
def= T ε,σā−1 [gā−1] . . . T ε,σ1 [g1](e j1 ⊗ e j2) , (2.100)

and � ∈ L2
M .

Let us begin by considering the case in which the path reaches a branching point.
Then, by definition, σā = pā − pā−1 = + and there exist iā < i ′̄a such that gā = (iā, i ′̄a).
Let us immediately point out that, by the description of the graph we have given above,
the momentum carried by the vertex at the branching point is necessarily j2 since this
is the first branching point on π by construction. Also, the sum of the momenta carried
by the vertices at iā, i ′̄a must be j2. Hence, the quantity we need to control equals

‖T ε,+[(iā, i ′̄a)]�‖2
L2
M+1

= 16

(2π)d
εd−2

∑

k1:M+1

1

|k1:M+1|2
[w · (kiā + ki ′̄a )]2

|kiā + ki ′̄a |2 + |k1:M+1\{iā ,i ′̄a}|2
×

× J
ε
kiā ,ki ′̄a

|�̂(kiā + ki ′̄a , k1:M+1\{iā ,i ′̄a})|2

= 16

(2π)d

∑

k1:M−1

[w · j2]2

| j2|2 + |k1:M−1|2 |�̂( j2, k1:M−1)|2×

× εd−2
∑

�+m= j2

J
ε
�,m

|k1:M−1|2 + |�|2 + |m|2
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where in the last step we renamed the variables (kiā , ki ′̄a ) = (�,m) and removed the
variable corresponding to j2 from the outer sum since j2 is fixed. Now, the inner sum is
bounded uniformly in k1:M−1 (as can be seen by (2.91) with δ = 0) so that we deduce

‖T ε,+[(iā, i ′̄a)]�‖2
L2
M+1

�
∑

k1:M−1

[w · j2]2

|k1:M−1|2 + | j2|2 |�̂( j2, k1:M−1)|2

≤ [w · j2]2
∑

k1:M

2

|k1:M |2 |�̂(k1:M )|2 = [w · j2]2‖(−L0)
− 1

2 �‖2
L2
M

.

Since by definition (2.100), � = T ε
p′ [g′] for a suitable choice of p′ and g′, the last norm

at the right hand side converges to 0 by (2.97).
We now turn to the case in which π reaches a merging point. This time, σā = − and

there exists qā such that gā = qā , and π(ā − 1) ∈ {1, 2}. Without loss of generality,
assume π(ā − 1) = 1. The norm under study is

‖T ε,−[qā]�‖2
L2
M−1

= 16

(2π)d

∑

k1:M−1

(w · kqā )2

|k1:M−1|2
∣

∣

∣ε
d
2 −1

∑

�+m=kqā

J
ε
�,m

�̂(�,m, k1:M−1\{qā})
(|�|2 + |m|2 + |k1:M−1\{qā} |2)1/2

∣

∣

∣

2

�
∑

k1:M−1

∣

∣

∣ε
d
2 −1

∑

�+m=kqā

J
ε
�,m

�̂(�,m, k1:M−1\{qā})
(|�|2 + |m|2 + |k1:M−1\{qā} |2)1/2

∣

∣

∣

2
(2.101)

Now, in the sum above, if � is the momentum carried by the vertex at π(ā − 1), then �

must be j2. In particular, � = j2 is fixed and, therefore, so is m since it must coincide
with kqā − j2 (kqā is already summed in the external sum). This means that the sum
inside the square at the right hand side of (2.101) has a unique summand. Hence, by
applying the change of variables kqā �→ kqā − j2 and lower bounding the denominator
with 1, we deduce that the right hand side of (2.101) is given by

εd−2
∑

k1:M−1

∣

∣

∣�̂( j2, kqā , k1:M−1\{qā})
∣

∣

∣

2 ≤ εd−2‖�‖2
L2
M

.

Since the norm of � is bounded uniformly in ε, (2.99) follows at once. ��
Recall that our final goal is to prove Proposition 2.13 and that each Tε

p ej has been
decomposed as a sum over g ∈ Gκ [p]. Thanks to Lemma 2.17, we are left to consider
only g ∈ G1[p] and those g ∈ G2[p] whose associated graph has two connected
components, one of which is a path with no branching points. We call the collection
of such graphs ˜G2[p]; see Fig. 4 for an example. In the next lemma we determine a
correspondence between G1[p] and ˜G2[p] valid in case m = 1.

Lemma 2.18. Let a ≥ 0 be even and p ∈ 

(n)
a,1. Then, for every g ∈ G1[p] there exist

exactly two elements of ˜G2[p], called ĝ and g̃, such that the graph associated to g can
be obtained from that of ĝ and g̃ by removing their connected component corresponding
to the single path π .
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1

2 π

1

2 π

Fig. 3. Left: a graph g ∈ G1[p]. Center and right: the graphs ĝ, g̃ ∈ G2[p] corresponding to g. In particular,
ĝ is obtained by simply attaching the path π below g, and g̃ is obtained from ĝ by changing π at the very last
step. Note that, when π is removed from g̃, the last column contains a single vertex, so the resulting graph is
again g. The path π cannot cross the other connected component anywhere else

0 1 2 3 4

j1

j2 π

Fig. 4. A graph corresponding to j = j1:2 and to p ∈ 

(n)
a,m with n ≥ 4, a = 4, m = 3. In this graph, the path

π has neither branching nor merging points: the graph is disconnected. The label of the unique vertex of π in
column i defines π(i)

Proof. The construction of the graphs ĝ, g̃ ∈ G2[p] given g ∈ G1[p] is explained in
Figure 3. The fact that there is no other g′ ∈ G2[p] that reduces to g once the path π

is removed, follows from the fact that the path π can cross the connected component
starting at the vertex 1 of colum labelled 0 only in the step from the second to last to the
last column. This can be seen for instance by induction, following the graph from right
to left. ��

Let p ∈ 

(n)
a,m and g ∈ G1[p] or in ˜G2[p]. Let, as above, mκ = m + κ − 1, where

κ = 1 if g ∈ G1[p] and 2 in the other case. Moreover, let

ej
def=
{

e j1 , if j = j1
e j1 ⊗ e j2 if j = j1:2

(2.102)

(note that in the latter case, ej �= ej if j1 �= j2). Then, T ε
p [g]ej ∈ L2

mκ
, and we write the

Fourier transform of its kernel in the form

f ε
g (k1:mκ , j) = ε

d
2 (mκ−1)Fε

g (εk1:mκ ; εj) , (2.103)

in which we singled out the scaling factor ε
d
2 (mκ−1). We derive an expression for Fε

g in
terms of ratios of polynomials, whose form and main properties are summarised in the
following lemma.

Lemma 2.19. Given p ∈ 

(n)
a,m and a ≥ 1, let M = (1 + a −m)/2 (≥ 0) be the number

of T ε,− in the product T ε
p .
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Let j1, j2 ∈ Z
d
0 , j = j1:2 and z = (z1, z2). For g ∈ ˜G2[p], the kernel Fε

g (x1:m+1; z)
in (2.103), corresponding to T ε

p [g]ej, can be written as

Fε
g (x1:m+1; z) = 1∑

i �=π(a) xi=z11xπ(a)=z2

(w · z1)

|z|
ιa

|x1:m+1|×

× εdM
∑

y1:M∈(εZd
0 )M :

|yi |∞≤1,i≤M

Pg(y1:M ; x1:m+1\{π(a)})
Qg(y1:M ; x1:m+1)

Ig(y1:M ; x1:m+1\{π(a)}) , (2.104)

where π(a) is the label of the vertex of the path π belonging to the a-th column and

(i) Ig is a product of indicator functions, each imposing that certain linear combinations
of its arguments have | · |∞ norm in (0, 1],

(ii) Pg (resp. Qg) is a homogenous real-valued polynomial of degree a−1 (resp. 2(a−1))
in y1:M ; x1:m+1\{π(a)} (resp. y1:M ; x1:m+1). Further, Qg ≥ 0 and it does not vanish on
the support of Ig,

(iii) if m = 1, then Qg(y1:M ; 0) > 0 for almost every y1:M .

Moreover, if m = 1 (so that, in particular, a is even and a ≥ 2), then there exists a
polynomial P̃g of degree a − 2 such that for every j ′1, j ′2 ∈ Z

d
0 and j′ = j ′1:2, we have

〈e−j′ ,T
ε
p [g]ej〉L2

mκ

= 1Aj;j′ (g)ι
a (w · j1)2

|j|2 εdM
∑

y1:M∈(εZd
0 )M :

|yi |∞≤1, i≤M

P̃g(y1:M ; ε j1)

Qg(y1:M ; εj)
Ig(y1:M ; ε j1) (2.105)

where ej is defined according to (2.102) and Aj;j′(g) = { j ′π(a)c = j1 ; j ′π(a) = j2}, for
π(a)c

def= {1, 2} \ {π(a)}.
Similarly, if j1, j ′1 ∈ Z

d
0 and g ∈ G1[p], then the analog of (2.104) and 2.105 holds

upon setting z = z1, removing the dependence on z2 (and π(a)) from the right hand
side of (2.104), replacing both x1:m+1 and x1:m+1\{π(a)} with x1:m in (2.104) and setting
Aj;j′(g) = { j ′1 = j1} in (2.105).

We emphasise that the functions Pg, Qg, Ig and P̃g are ε-independent. The only
ε-dependence in Fε

p comes from the fact that the Riemann sums runs over εZ
d
0 .

Proof. The argument for j = j1 is identical (and simpler) than that for j = j1:2, so we
will only focus on the latter.

The statement is proven via induction on |p| = a ≥ 1. In order to verify condition
(iii), we will simultaneously show that Qg further satisfies

(i i i ′) Qg(y1:M ; x1:m+1) is the product of homogeneous quadratic polynomials Qr , 1 ≤ r ≤
a − 1, each being the sum of |xπ(a)|2 and the squared norms of linear combinations
of the other arguments (which are (y1:M ; x1:m+1\{π(a)})). For every 1 ≤ r ≤ a − 1,
Qr �= |∑i �=π(a) xi |2 , |xπ(a)|2 or the sum of the two.

We begin our induction with a = 1. In this case, if p ∈ 

(n)
a,m , then necessarily m =

2, M = 0, σ1 = + and g1 = (i, i ′) for some 1 ≤ i < i ′ ≤ 3. From (2.86) and the
definition of T ε,+[(i, i ′)], one sees that

Fε
g (x1:3; z) = 1∑

i �=π(a) xi=z11xπ(a)=z2

(w · z1)

|z|
ι

|x1:3|
−4

(2π)d/2 J
1
xi ,xi ′ (2.106)
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where the first indicator function comes from the fact that T ε,+[(i, i ′)] commutes with
the momentum operator (see Lemma 2.14) and that the kernel of e j1 ⊗ e j2 at (k1, k2) is
1k1= j11k2= j2 , This expression is of the correct form (2.104), with Pg ≡ −4/(2π)d/2,
Qg ≡ 1, Ig ≡ J

1
xi ,xi ′ , so that (i), (i i) and (i i i ′) are clearly satisfied. As for the induction

step, we assume the validity of the statement for a given a ≥ 1 and take p ∈ 

(n)
a+1,m

and g ∈ ˜G2[p]. Write T ε
p [g] = T ε,σ [ga+1]Tε

p′ [g′] for some p′ ∈ 

(n)
a,m−σa+1

and

g′ ∈ ˜G2[p′]. Consider first the case σa+1 = + and let i, i ′ be such that ga+1 = (i, i ′).
Recalling the definition of T ε,+[(i, i ′)] and (2.103), we have

(T ε,+[(i, i ′)] f ε
g′)(k1:m+1; j)

= − 4ι

(2π)
d
2

ε
d
2 −1+ d

2 (mκ−2) 1

|k1:m+1|×

×
w · (ki + ki ′)Jε

ki ,ki ′
√

|ki + ki ′ |2 + |k1:m+1\{i,i ′}|2
Fε
g′(εki + εki ′ , εk1:m+1\{i,i ′}; εj)

= ε
d
2 (mκ−1)Fε

g (εk1:m+1; εj), (2.107)

with

Fε
g (x1:m+1; z) = ι

|x1:m |
−4

(2π)
d
2

×

× w · (xi + xi ′)
√

|xi + xi ′ |2 + |x1:m+1\{i,i ′}|2
J

1
xi ,xi ′ F

ε
g′(xi + xi ′ , x1:m+1\{i,i ′}; z) .

(2.108)

By induction, Fg′ has the form in (2.104), and therefore so does Fg once we set

Pg(y1:M ; x1:m+1\{π(a+1)}) = − 4

(2π)
d
2

(w · (xi + xi ′))Pg′

Qg(y1:M ; x1:m+1) = (|xi + xi ′ |2 + |x1:m+1\{i,i ′}|2)Qg′

Ig(y1:M ; x1:m+1\{π(a+1)}) = J
1
xi ,xi ′ Ig′

(2.109)

where now the arguments of Pg′ and Ig′ are (y1:M ; xi + xi ′ , x1:m+1\{i,i ′,π(a+1)}) (and the
lack of dependence on xπ(a+1) follows from the fact that, by construction, π(a+1) �= i, i ′)
while the arguments of Qg′ are (y1:M ; xi + xi ′ , x1:m+1\{i,i ′}).

If σa+1 = −, then there exists q such that ga+1 = q. By (2.86),

(T ε,−[q] f ε
g′)(k1:m−1; j) = 4ι

(2π)
d
2

ε
d
2 −1 (w · kq)

|k1:m−1|×

×
∑

y,z∈Zd : y+z=kq

J
ε
y,z

ε
d
2 mκ Fε

g′(εy, εz, εk1:m−1\{q}; εj)
√

|y|2 + |z|2 + |k1:m−1\{q}|2

=ε
d
2 (mκ−1)Fε

p(εk1:m; εk),
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where in this case

Fε
g (x1:m; z) = 4ι

(2π)
d
2

1

|x1:m−1| (w · xq)10<|xq |∞≤1

×
∑

y∈εZd
0 :

|y|∞≤1

εd10<|xq−y|∞≤1

Fε
g′(y, xq − y, x1:m−1\{q}; z)

√

|y|2 + |xq − y|2 + |x1:m−1\{q}|2
. (2.110)

Again, as Fε
g′ is of the form (2.104) by the induction hypothesis, the same holds for Fε

g ,
where this time we need to set

Pg(y1:M ; x1:m−1\{π(a+1)}) = 4

(2π)
d
2

(w · xq)Pg′ ,

Qg(y1:M ; x1:m−1) = (|yM |2 + |xq − yM |2 + |x1:m−1\{q}|2)Qg′

Ig(y1:M ; x1:m−1\{π(a+1)}) = 10<|xq |∞≤1,0<|yM−xq |≤1 Ig′ , (2.111)

where the omitted arguments of the functions Pg′ and Ig′ are (y1:M−1; yM , xq − yM ,

x1:m−1\{q,π(a+1)}), while those for Qg′ are (y1:M−1; yM , xq − yM , x1:m−1\{q}). Once
again, the lack of dependence of Pg and Ig on xπ(a+1) is due to the fact that, by con-
struction, q �= π(a).

Now, for both σa+1 = ±, (2.109) and (2.111) clearly ensure that if Pg′ , Qg′ and Ig′
satisfy conditions (i) − (i i) so do Pg , Qg and Ig . The first part of (i i i ′) is obvious since
the variable corresponding xπ(a) is simply turned in xπ(a+1) and is not affected by the
operators Aε,±[ga+1] in the definition of T ε,±[ga+1]. For the second part of (i i i ′), note
that the first factor in the expression for Qg in (2.109) and (2.111) is different from
|∑i �=π(a+1) xi |2, |xπ(a+1)|2 or their sum. While this is clear for (2.111) because of the
non-trivial yM dependence, for (2.109) this follows by the fact that m + 1 ≥ 4. Indeed,
in the base induction step (see (2.106)) corresponding to a = 1, m + 1 = pa + 1 = 3.
Now, for a > 1 and σa = +, by definition of p ∈ 


(n)
a,m , pa = m > 2, which implies

that the first factor in (2.109) has at least three summands. It remains to show that Qg′ ,
evaluated at its new arguments, does not contain a term of the aforementioned form.
But this can only happen if a similar term was there in the old variables and this is
ruled out by the induction hypothesis. As for property (i i i), note that by (i i i ′), Qg
can be written as the product of quadratic polynomials Qr , 1 ≤ r ≤ a − 1, and if Qr

depends on at least one of the yi , i ≤ M , then necessarily Qr (y1:M ; 0) �= 0 for almost
all y1:M . The only potentially problematic case arises when one of the Qr is such that
Qr (y1:M ; x1:2) = |x1|2, |x2|2 or their sum, but this is ruled out by (i i i ′) for m = 1.

At last, to verify (2.105), we note that (2.103) and (2.104) give

〈e−j′ ,T
ε
p [g]ej〉L2

mκ

= 1Aj;j′ (g)ι
a (w · j1)

|j|
1

ε|j|ε
dM

∑

y1:M∈(εZd
0 )M :

|yi |≤1,i≤M

Pg(y1:M ; ε j1)

Qg(y1:M ; εj)
Ig(y1:M ; ε j1) . (2.112)

But, since m = 1, the left-most operator in the product T ε
p [g] is T ε,−[q], q ∈ {1, 2}, so

that T ε
p [q]ej = T ε,−[q]T ε

p′ [g′]ej and T ε
p′ [g′]ej ∈ L2

3. Then, from (2.111) we see that

Pg(y1:M ; ε j1) = 4

(2π)
d
2

(w · (ε j1))Pg′(y1:M−1; yM , ε j1 − yM )
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which, upon defining

P̃g(y1:M ; ε j1)
def= 8

(2π)
d
2

Pg′(y1:M−1; yM , ε j1 − yM ) ,

reduces to (2.105) once plugged into (2.112). ��
As a last result before turning to the proof of Proposition 2.13, in the next lemma we

show that (2.105) converges in the limit for ε → 0.

Lemma 2.20. In the setting and notation of the previous lemma, let a ≥ 1 be even and
p ∈ 


(n)
a,1. Let g be an element of either G1[p] or ˜G2[p]. Then, there exists a constant

cg(p) ∈ R independent of j such that for every j′

lim
ε→0

〈e−j′ ,T
ε
p [g]ej〉 = 1Aj;j′ (g)

(w · j1)2

|j|2 cg(p) . (2.113)

Furthermore, if g ∈ G1[p] and ĝ, g̃ ∈ ˜G2[p] are those in Lemma 2.18, then

cg(p) = cĝ(p) = cg̃(p) . (2.114)

Proof. Since a is even, set a = 2b so that M = b. Our goal is to show that the Riemann-
sum in (2.105) converges and that the limit is independent of j. Formally, such limit
should be

2bd
∫

μ(dy1:b)
P̃g(y1:b; 0)

Qg(y1:b; 0)
Ig(y1:b; 0) =: c[g] ∈ R (2.115)

where6 μ is the uniform probability measure on [−1, 1]bd and the integrand is well-
defined and finite (except possibly on a zero-measure set) thanks to the properties of Qg
stated in Lemma 2.19. Note that if c[g] is given by the expression above, then not only
it is independent of j but also (2.114) clearly holds. Hence, it remains to prove that the
sum indeed converges to the integral, and that the integral is finite.

At first, we want to write the Riemann-sum in (2.105) as an integral with respect to
the uniform probability measure on [−1, 1]bd . This is quite standard as it suffices to take
a piece-wise constant extension of the polynomials P̃g and Qg , but since the quotient
displays singularities, we provide the details below.

Recall that we assume 1/ε ∈ N+1/2. Then, the box [−1, 1]d contains exactly (2/ε)d

points of εZ
d and it can be written as the union of cubes C(y∗) of side ε, centred at each

of the points y∗ ∈ εZ
d ∩[−1, 1]d . Given y ∈ [−1, 1]d , we let y∗(y) denote the (unique,

up to Lebesgue-measure zero sets) y∗ such that y ∈ C(y∗). The sum in (2.105) is then

2bd
∫

μ(dy1:b)
P̃(ε)
g (y1:b; ε j1)

Q(ε)
g (y1:b; εj)

I (ε)
g (y1:b; ε j1), (2.116)

where μ is the uniform probability measure on [−1, 1]ad , P(ε)
g is given by

P̃(ε)
g (y1:b; ε j1)

def= P̃g(y
∗(y1), . . . , y

∗(yb))1yi �∈[−ε/2,ε/2]d ,i≤b ,

6 Note that we added the volume factor 2ad to pass from the Lebesgue measure to the uniform one. The
scope of this change of measure will soon become apparent.
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and similarly Q(ε)
g , I (ε)

g , and the indicator function has been added because in (2.105)
the sums are restricted to yi �= 0. By construction, the integrand is piecewise constant.

At this point, existence, finiteness of the ε → 0 limit of (2.116) and its independence
w.r.t. j follow if we can prove uniform integrability of the integrand. For this, we will
exploit the operators T ε,δ,σ [·] introduced in (2.88), and their composition T ε,δ

p [g]. The
same argument as in Lemma 2.19 together with the derivation of (2.116), shows that

〈e−j′ ,T
ε,δ
p [g]ej〉

= 1Aj;j′ (g)2
db |w · j1|2(1+δ)

|j|2(1+δ)

∫

μ(dy1:b)
∣

∣

∣

∣

∣

P̃(ε)
g (y1:b, ε j1)
Q(ε)

g (y1:b, εj)

∣

∣

∣

∣

∣

1+δ

I (ε)
g (y1:b, ε j1) .

(2.117)

Note that, the integral at the right hand side of (2.117) is the same as that in (2.116),
but in which the modulus of the integrand is raised to the power 1 + δ. Now, for any
δ ∈ [0, (d − 2)/2), the quantity at the left hand side is bounded uniformly in ε (but
the bound might depend on m and b, which is though irrelevant as they are fixed)
since T ε,δ

p [g] is just a composition of T ε,δ,σ [·] and, by (2.90), these operators are
uniformly bounded. Hence, the integral at the right hand side of (2.117) is also uniformly
bounded which then ensures uniform integrability of the integrand in (2.116). As a
consequence, (2.115) is well-defined and (2.113) holds. ��

Let us now collect all the results obtained so far and complete the proof of Proposi-
tion 2.13.

Proof of Proposition 2.13. Let us begin with (2.75). Let ar > 0, mr ≥ 2 and pr ∈



(n)
ar ,mr , r = 1, 2. By Cauchy-Schwarz, we have

〈Tε
p1ej, (−L0)

−1Tε
p2ej〉 ≤ ‖(−L0)

− 1
2 Tε

p1ej‖‖(−L0)
− 1

2 Tε
p2ej‖ ,

so that we can reduce to study the norm at the right hand side for a single p ∈ 

(n)
a,m .

We expand T ε
p ej as in (2.96), thus obtaining

‖(−L0)
− 1

2 T ε[p]ej‖ �
∑

g∈Gκ [p]
‖(−L0)

− 1
2 T ε,σa [ga] . . . T ε,σ1 [g1]ej‖ .

Since the sum above has finitely many terms whose number does not depend on ε, it
suffices to show that each summand converges to 0, which in turn is a direct consequence
of (2.97).

We now turn to (2.74), for which we consider pr ∈ 

(n)
ar ,1

, r = 1, 2. As above, we
expand the scalar product via (2.96)

lim
ε→0

〈Tε
p1ej, T

ε
p2ej〉 =

∑

gr∈Gκ [pr ]
r=1,2

lim
ε→0

〈T ε
p1 [g1]ej,T ε

p2 [g2]ej〉L2
mκ

, (2.118)

where we used that C1,κ = 1 and, to pass the limit inside the sum, that the sums above
have finitely many terms.
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First, we focus on the case j = j1, so that κ = 1 = m. The limit in (2.118) is given
by

lim
ε→0

〈T ε
p1 [g1]e j1,T ε

p2 [g2]e j1〉
= lim

ε→0

∑

j ′1

〈e− j ′1 ,T
ε
pr [gr ]e j1〉〈e− j ′1 ,T

ε
p2 [g2]e j1〉

= lim
ε→0

∏

r=1,2

〈e− j1 ,T
ε
pr [gr ]e j1〉 =

∏

r=1,2

( (w · j1)2

| j1|2
)1ar �=0

cgr (p
r )

=
(‖(−L0)

− 1
2 (−Lw

0 )e j1‖
| j1|/

√
2

)

∑

r 1ar �=0
cg1(p1)cg2(p2) (2.119)

where the first equality follows by the fact that, by Lemma 2.20 the scalar products
are real, the second by the fact that, since for every ε > 0 fixed, at the right hand side
of (2.105) there is the indicator function 1A j1, j ′1

(g) = 1 j ′1= j1 , the sum over j ′1 only

consists of 1 term, the third comes from (2.113) and the last from the definition of L0
and Lw

0 . Therefore, upon setting

c(p)
def=
∑

g∈G1[p]
cg(p) (2.120)

(2.74) follows at once.
For j = j1:2 (so that κ = 2), assume first that the graph associated to g1 (or, equiva-

lently, g2) is in G2[p1] \ ˜G2[p1], Then, we apply Cauchy-Schwarz and obtain

〈T ε
p1 [g1]ej,T ε

p2 [g2]ej〉 ≤ ‖T ε
p1 [g1]ej‖‖T ε

p2 [g2]ej‖ � ‖T ε
p1 [g1]ej‖

which holds since, by Lemma 2.14, T ε
p2 [g2] is a bounded operator and ej has bounded

L2 norm. Now,

‖T ε
p1 [g1]ej‖ ≤ 1

2
‖T ε

p1 [g1](e j1 ⊗ e j2)‖ +
1

2
‖T ε

p1 [g1](e j2 ⊗ e j1)‖
and Lemma 2.17 implies that both summands at the right hand side converge to 0.

As a consequence, for j = j1:2, we can replace G2[pr ] with ˜G2[pr ] in (2.118), the
latter being defined as in Lemma 2.18. Arguing as in (2.119), we have

〈Tε
p1ej, T

ε
p2ej〉

=
∑

gr∈˜G2[pr ]
r=1,2

〈T ε
p1 [g1]ej,T ε

p2 [g2]ej〉L2
2

=
∑

gr∈˜G2[pr ]
r=1,2

∑

j′
〈e−j′ ,T

ε
p1 [g1]ej〉L2

2
〈e−j′ ,T

ε
p2 [g2]ej〉L2

2

=
∑

j′

∑

gr∈˜G2[pr ]
r=1,2

∏

r=1,2

〈e−j′ ,T
ε
pr [gr ]ej〉L2

2
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where ej′ is defined according to (2.102) and we used that, thanks to the indicator
function at the right hand side of (2.105), the sum over j′ has only finitely many terms
corresponding to j′ = j1:2 and j′ = j2:1. Since by Lemma 2.18, to each g ∈ G1[p] there
exist exactly two elements of ˜G2[p], denoted by ĝ and g̃, whose associated graph turns
into that of g by removing the unique connected component consisting of a path, the
sum over the gr ’s satisfies

∑

gr∈˜G2[pr ]
r=1,2

∏

r=1,2

〈e−j′ ,T
ε
pr [gr ]ej〉

=
∑

gr∈G1[pr ]
r=1,2

∏

r=1,2

(

〈e−j′ ,T
ε
pr [ĝr ]ej〉 + 〈e−j′ ,T

ε
pr [g̃r ]ej〉

)

so that

lim
ε→0

〈Tε
p1ej, T

ε
p2ej〉

=
∑

gr∈G1[pr ]
r=1,2

∑

j′

∏

r=1,2

lim
ε→0

(

〈e−j′ ,T
ε
pr [ĝr ]ej〉 + 〈e−j′ ,T

ε
pr [g̃r ]ej〉

)

. (2.121)

To compute the inner limit, we expand ej and use Lemma 2.20, from which we deduce

lim
ε→0

〈e−j′ ,T
ε
pr [ĝr ]ej〉 + lim

ε→0
〈e−j′ ,T

ε
pr [g̃r ]ej〉

= 1
2 lim

ε→0
〈e−j′ ,T

ε
pr [ĝr ](e j1 ⊗ e j2)〉 + 1

2 lim
ε→0

〈e−j′ ,T
ε
pr [ĝr ](e j2 ⊗ e j1)〉

+ 1
2 lim

ε→0
〈e−j′ ,T

ε
pr [g̃r ](e j1 ⊗ e j2)〉 + 1

2 lim
ε→0

〈e−j′ ,T
ε
pr [g̃r ](e j2 ⊗ e j1)〉

= 1
2

[

1A( j1, j2);j′ (ĝr )
( (w · j1)2

|j|2
)1ar �=0

+ 1A( j2, j1);j′ (ĝr )
( (w · j2)2

|j|2
)1ar �=0

]

cĝr (p
r )

+ 1
2

[

1A( j1, j2);j′ (g̃r )
( (w · j1)2

|j|2
)1ar �=0

+ 1A( j2, j1);j′ (g̃r )
( (w · j2)2

|j|2
)1ar �=0

]

cg̃r (p
r )

= 1
2

( (w · j1)2

|j|2 +
(w · j2)2

|j|2
)1ar �=0

cgr (p
r )
(

1j′= j1:2 + 1j′= j2:1

)

= 1

2‖ej‖
(‖(−L0)

− 1
2 (−Lw

0 )ej‖
|j|/√2

)1ar �=0
cgr (p

r )
(

1j′= j1:2 + 1j′= j2:1

)

where, in the third step, we used (2.114) and that the only j′ which contribute to the sum
in (2.121) are j′ = j1:2 and j2:1, so that exactly one of the indicator functions multiplying
(w · ji )2/|j|2 is 1. Hence, getting back to (2.121), we obtain

lim
ε→0

〈Tε
p1ej, T

ε
p2ej〉

=
(‖(−L0)

− 1
2 (−Lw

0 )ej‖
|j|/√2

)

∑

r 1ar �=0 ∑

gr∈G1[pr ]
r=1,2

cgr (p
r )
∑

j′

(1j′= j1:2 + 1j′= j2:1
2‖ej‖

)2
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=
(‖(−L0)

− 1
2 (−Lw

0 )ej‖
|j|/√2

)

∑

r 1ar �=0
c(p1)c(p2) ,

using that ‖ej‖ = 1 or = 1/
√

2 according to whether j = j1 or j = j1:2, so that (2.120)
is proven and the proof of Proposition 2.13 is complete. ��

3. Convergence of Burgers to Renormalised SHE

Thanks to the results in the previous section, we have all the ingredients we need in order
to prove Theorem 1.3. To do so, we will first show that the sequence ηε is tight and then
verify that every limit point solves the stationary stochastic heat equation (SHE)

∂tη = 1
2 (� + DSHE(w · ∇)2)η + (−� − DSHE(w · ∇)2)1/2ξ , η(0, ·) = μ (3.1)

where μ is a zero-average space white noise and DSHE > 0 is the constant identified in
Theorem 2.11.

3.1. Tightness. The proof of tightness follows a by now standard route (see e.g. [GJ13,
GT20,CK23,CES21]) which exploits Mitoma’s criterion [Mit83], Kolmogorov’s conti-
nuity theorem and, more importantly, the so-called Itô trick, introduced in [GJ13] and
since then exploited in a variety of contexts, see [Gub19] for a pedagogical introduction.
For the reader’s convenience, we recall below the statement of the latter:

Lemma 3.1. (Itô trick) Let d ≥ 2, ηε be the stationary solution to (1.5) with λε given
as in (1.6). For any p ≥ 2, T > 0 and F ∈ L2(�) with finite chaos expansion, i.e.
F ∈ ⊕n

j=1Hj for some n ∈ N, there exists a constant C = C(p, n) > 0 such that

E

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0
F(ηε

s )ds

∣

∣

∣

∣

p
]1/p

≤ CT 1/2‖(−L0)
−1/2F‖ . (3.2)

For p = 2, C can be taken independent of n.

We refer the reader to [CES21, Lemma 4.1] for a proof. The n-dependence of C for
p > 2 arises when estimating the L p norm in the right-hand side of [CES21, Eq. (4.7)]
with the L2 norm, using Gaussian hypercontractivity.

We now move to the proof of tightness.

Proposition 3.2. The sequence {ηε}ε is tight in C([0, T ],S′(Td)).

Proof. By Mitoma’s criterion [Mit83], the sequence {ηε}ε is tight in C([0, T ],S′(Td))

if and only if {ηε(ϕ)}ε is tight in C([0, T ], R) for all ϕ ∈ S(Td). Therefore, we fix
ϕ ∈ S(Td) and consider the process {ηε

t (ϕ)}t∈[0,T ]. In view of (2.1), it suffices to show
that each of the terms at the right hand side is tight. This is clear for the last, as it
is independent of ε, while for the first and second, Lemma 3.1 implies that, for every
0 ≤ t ≤ T and p > 2, we have

E
[(∫ t

0
ηε
s (�ϕ)ds

)p] 1
p

� t1/2‖(−L0)
−1/2(�ϕ)‖ = t1/2‖ϕ‖H1(Td ) (3.3)
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and

E
[(∫ t

0
Nε

ϕ (ηε)ds

)p] 1
p

� t1/2‖(−L0)
−1/2Aε

+ϕ‖ � t1/2‖ϕ‖H1(Td ) (3.4)

where in the last step we used that the kernel of Nε
ϕ (ηε) is Aε

+ϕ, and (2.10). Since
the process {ηε

t (ϕ)}t∈[0,T ] is Markov, (3.3) and (3.4) together with Kolmogorov’s crite-
rion ensure that the sequence {ηε(ϕ)}ε is tight in C([0, T ], R), so that the proof of the
statement is concluded. ��

3.2. Convergence. In order to identify the limit equation, we will prove that any limit
point satisfies the martingale problem associated to (3.1) which we now recall.

Definition 3.3. Let T > 0, � = C([0, T ],S′(Td)) and B the canonical Borel σ -algebra
on C([0, T ],S′(Td)). Let μ be a zero-average space white noise on T

d . We say that a
probability measure P on (�,B) solves the martingale problem for Leff def= L0 + D =
1
2 (� + DSHE(w · ∇)2) with initial distribution μ, if for all ϕ ∈ S(Td), the canonical
process η under P is such that

Mt (Fj )
def= Fj (ηt ) − Fj (μ) −

∫ t

0
LeffFj (ηs)ds , j = 1, 2 (3.5)

is a local martingale, where F1(η)
def= η(ϕ) and F2(η)

def= η(ϕ)2 − ‖ϕ‖2
L2(Td )

.

In the next theorem, we state well-posedness for the previous martingale problem.

Theorem 3.4. The martingale problem for Leff with initial distribution μ in Defini-
tion 3.3 has a unique solution and uniquely characterises the law of the solution to (3.1)
on C([0, T ],S′(Td)).

Proof. Translating the results of [MW17, Appendix D] to our setting, we have that
Theorem D.1 therein ensures that the martingale problem is well-posed provided that

condition (3.5) holds for j = 1 and, in addition, (Mt (F1))
2 −2t‖(−Leff)

1
2 ϕ‖2 is a local

martingale. On the other hand, for j = 2, (3.5) gives

Mt (F2) = ηt (ϕ)2 − μ(ϕ)2 − 2
∫ t

0
ηs(ϕ)ηs(L

effϕ)ds − 2t‖(−Leff)
1
2 ϕ‖2

because, for F2(η) = η(ϕ)2 − ‖ϕ‖2
L2(Td )

=: η(ϕ)2 :, one has

LeffF2(η) = 2 : η(ϕ)η(Leffϕ) := 2η(ϕ)η(Leffϕ) + 2‖(−Leff)
1
2 ϕ‖2 .

As a consequence,

(Mt (F1))
2 − 2t‖(−Leff)

1
2 ϕ‖2

= Mt (F2) − 2μ(ϕ)Mt (F1) +
∫ t

0
ds
∫ t

0
ds̄ ηs(L

effϕ)ηs̄(L
effϕ)

− 2
∫ t

0
(ηt (ϕ) − ηs(ϕ))ηs(L

effϕ)ds
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= Mt (F2) − 2μ(ϕ)Mt (F1) − 2
∫ t

0
ηs(L

effϕ)

(∫ t

s
dMs̄(F1)

)

ds

= Mt (F2) − 2μ(ϕ)Mt (F1) − 2
∫ t

0

(∫ s̄

0
ηs(L

effϕ)ds

)

dMs̄(F1).

Now, all terms at the right hand side are local martingales, which implies that so is the
left hand side. Hence, the proof of the statement is complete. ��

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. By Proposition 3.2, we know that the sequence {ηε}ε is tight in
C([0, T ],S′(Td)), hence it converges along subsequences. If we prove that any limit
point is a solution of the martingale problem in Definition 3.3 then the statement follows
by Theorem 3.4.

Let η ∈ C([0, T ],S′(Td)) be a limit point. To verify that η satisfies the martingale
problem, we need to show that for every given ϕ ∈ S(Td) the processes M(Fi−1),
i = 2, 3, defined according to (3.5) with F1 = η(ϕ) and F2 = η(ϕ)2 − ‖ϕ‖2

L2(Td )
,

are local martingales, for which it suffices to prove that for every s ∈ [0, T ] and
G : C([0, T ],S′(Td)) → R bounded continuous we have

E[δs,tM·(Fi−1)G(η�[0,s])] = 0 , (3.6)

where we introduced a convenient notation for the time increment, i.e. δs,t f
def= f (t) −

f (s). Now, by the definition of M(Fi−1), we deduce that

E[(Mt (Fi−1) − Ms(Fi−1))G(η�[0,s])]
= E
[(

Fi−1(ηt ) − Fi−1(ηs) −
∫ t

s
LeffFi−1(ηr )dr

)

G(η�[0,s])
]

= lim
ε→0

E
[(

Fi−1(η
ε
t ) − Fi−1(η

ε
s ) −

∫ t

s
LeffFi−1(η

ε
r )dr
)

G(ηε�[0,s])
]

(3.7)

where we used that ηε converges in law to η in C([0, T ],S′(Td)) together with [CETar,
Eq. (5.11)] to approximate the first factor in the expectation with bounded continuous
functionals. To analyse this latter term, let us write the equation for ηε in such a way
that we can identify the elements which are relevant to the limit.

By Dynkin’s formula and the weak formulation of (1.5) in (2.1), we have

Fi−1(η
ε
t ) − Fi−1(η

ε
s ) −

∫ t

s
L0Fi−1(η

ε
r )dr −

∫ t

s
AεFi−1(η

ε
r )dr = δs,t M

ε· (Fi−1)

(3.8)

where Mε(Fi−1) is the martingale whose quadratic variation is

〈Mε· (Fi−1)〉t =
∫ t

0

∑

k

|k|2|[DkFi−1](ηε
s )|2ds (3.9)

and Dk is the Malliavin derivative in (1.21).
The term which is responsible for creating the new noise and the new Laplacian, is

that containing Aε
+Fi−1. In order to describe it, notice that the kernel of F1 in �L2 is

f1 = ϕ, while that of F2 is ϕ⊗ϕ. Then, we consider the random variable Wε,n ∈ L2(P),
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for n ∈ N, whose kernel is wε,n , which is the solution of the truncated generator equation
vε,n in (2.39) if d ≥ 3 or ṽε,n given by (2.40) if d = 2. By Dynkin’s formula applied to
Wε,n , we have

Wε,n(ηε
t ) − Wε,n(ηε

s ) −
∫ t

s
Lε Wε,n(ηε

r )dr = δs,t M
ε· (Wε,n) (3.10)

where Mε(Wε,n) is the martingale whose quadratic variation is the same as (3.9) with
Fi−1 replaced by Wε,n . We now go back to (3.8) which we rewrite as

Fi−1(η
ε
t ) − Fi−1(η

ε
s ) −

∫ t

s
LeffFi−1(η

ε
r )dr = δs,t (M

ε· (Fi−1) + Mε· (Wε,n)) + δs,t R
ε,n

(3.11)

where Rε,n def=∑4
j=1 Rε,n

j and the Rε,n
j ’s are defined as

Rε,n
1 (t)

def= Wε,n(μ) − Wε,n(ηε
t ) ,

Rε,n
2 (t)

def=
∫ t

0

(

Lε Wε,n + Aε
+Fi−1 − Aε− Wε,n

i

)

(ηε
s )ds ,

Rε,n
3 (t)

def=
∫ t

0

(

Aε− Wε,n
i (ηε

s ) − DFi−1(η
ε
s )
)

ds ,

Rε,n
4 (t)

def=
∫ t

0
Aε−Fi−1(η

ε
s )ds .

We now get back to (3.7), which, in view of (3.10) equals

lim
n→∞ lim

ε→0
E
[(

δs,t (M
ε· (Fi−1) + Mε· (Wε,n)) + δs,t R

ε,n
)

G(ηε�[0,s])
]

.

Now, since Mε(Fi−1) and Mε(Wε,n) are martingales, for every n and every ε we have

E
[

δs,t (M
ε· (Fi−1) + Mε· (Wε,n))G(ηε�[0,s])

]

= 0 . (3.12)

For the other term instead, we apply Cauchy-Schwarz and exploit the boundedness of
G, from which we obtain

E
[

δs,t R
ε,nG(ηε�[0,s])

]

≤ ‖G‖∞E
[

|δs,t Rε,n|2
] 1

2 ≤ ‖G‖∞
4
∑

j=1

E
[

|δs,t Rε,n
j |2
] 1

2
,

so that we are left to show that each of the summands at the right hand side converges
to 0. Let us begin with the first, which can be controlled as

E
[

|δs,t Rε,n
1 |2
] 1

2 = E
[

|Wε,n(ηε
t ) − Wε,n(ηε

s )|2
] 1

2

≤ E
[

|Wε,n(ηε
t )|2
] 1

2
+ E
[

|Wε,n(ηε
s )|2
] 1

2 = 2‖wε,n‖
and the right hand side converges to 0 as ε goes to 0 by (2.58). For the others, we apply
the Itô trick, Lemma 3.1, which gives

E
[

(δs,t R
ε,n
2 )2

] 1
2 ≤ Ct

1
2 ‖(−L0)

− 1
2 (−Lεwε,n − Aε

+ fi−1 + Aε−w
ε,n
i )‖ , (3.13)
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E
[

(δs,t R
ε,n
3 )2

] 1
2 ≤ Ct

1
2 ‖(−L0)

−1/2[Aε−w
ε,n
i − D fi−1]‖ , (3.14)

E
[

(δs,t R
ε,n
4 )2

] 1
2 ≤ Ct

1
2 ‖(−L0)

−1/2Aε− fi−1‖ , (3.15)

with C independent of n. Now, (3.13) and (3.14) converge to 0 in the double limit as
ε → 0 first and n → ∞ then, by (2.41) and (2.57). Concerning (3.15), for i = 2,
Aε− f1 = 0, while for i = 3 we leverage the smoothness of f2. Indeed,

‖(−L0)
−1/2Aε− f2‖2 ≤

∑

k

(w · k)2

|k|2 λ2
ε

(
∑

�+m=k

J
ε
�,m f̂2(�,m)

)2

�
(

λ2
ε

∑

|�|<ε−1

1

|�|2α

)
∑

�,m

(|�|2 + |m|2)α| f̂2(�,m)|2

=
(

λ2
ε

∑

�

1

|�|2α

)

‖(−L0)
α/2 f2‖2

for α > 1. The last norm is finite and it is not hard to see that the quantity in parenthesis
is converging to 0, thus implying that the ε → 0 limit of (3.15) is 0.

Collecting the results above together with (3.7) and (3.12), (3.6) follows at once so
that the proof of the theorem is complete. ��
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Appendix A Some Technical Results

In this appendix, we show the technical part of the Replacement Lemma 2.5.

Proposition A.1. For ε > 0, n ∈ N and k1:n ∈ Z
2n
0 , define Pε as in (2.30), i.e.

Pε(k1:n)
def= λ2

ε

π2

∑

�+m=k1

J
ε
�,m

�̃ + �̃wG(Lε(�̃))
(A.1)

for

�̃
def= 1

2 (|�|2 + |m|2 + |k2:n|2) , �̃w def= 1
2 ((w · �)2 + (w · m)2 + (w · k)2

2:n)
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and G is as in (2.19). Then, there exists a constant C > 0 independent of ε, n such that

sup
n∈N,k1:n∈Z2n

0

∣

∣

∣Pε(k1:n) − G
(

Lε( 1
2 |k1:n|2)

)

∣

∣

∣ ≤ Cλ2
ε . (A.2)

Proof. Note first of all that we can assume that |k1| ≤ 1/(2ε). Indeed, in the comple-
mentary case both Pε(k1:n) and G(Lε( 1

2 |k1:n|2)) would be o(λ2
ε) (uniformly in n and

k1:n). For G(Lε( 1
2 |k1:n|2)), this easily follows from the definition of G and Lε. As for

Pε(k1:n), if |k1| ≥ 1/(2ε), then either |�| or |m| are larger than 1/(4ε). Assume, for
instance, that the former is the case. Then,

Pε(k1:n) � λ2
ε

∑

1
4ε

≤|�|≤ 1
ε

1

|�|2 � λ2
ε. (A.3)

For |k1| ≤ 1/(2ε), we rewrite (A.1) as

Pε(k1:n)
def= λ2

ε

π2

∑

�+m=k1
|�|,|m|≤ε−1

1

�̃ + �̃wG(Lε(�̃))
(A.4)

Note that, when � + m = k1,

�̃ = � − � · k1, �
def= |�|2 +

1

2
|k1:n|2,

�̃w = �w − (w · k1)(w · �), �w def= (w · �)2 +
1

2
(w · k)2

1:n .

For future reference, we point out that � and �̃ are comparable in that, by the triangle
inequality, we have

� � �̃ � � (A.5)

uniformly in �,m = k1 − � and k1:n ∈ Z
2n
0 .

The proof of Proposition A.1 follows from a sequence of technical steps in which the
summand in the definition of Pε is progressively simplified and the Riemann sum is
replaced by an integral. More precisely, we will first replace Pε

0
def= Pε with Pε

1 and then
Pε
i with Pε

i+1, i = 1, . . . , 4, in such a way that for all i = 0, . . . , 5,

sup
n∈N,k1:n∈Z2n

0

∣

∣

∣Pε
i (k1:n) − Pε

i+1(k1:n)
∣

∣

∣ � λ2
ε . (A.6)

At last, we will compute Pε
5 and show that it equals G(Lε).

Step 1 First of all, we define Pε
1 (k1:n) as Pε(k1:n) in (A.4), except that �̃ and �̃w are

replaced by � and �w, respectively. The absolute value of the difference is upper bounded
by a constant times

λ2
ε

∑

�+m=k1|�|,|m|≤1/ε

A + B

(|�|2 + |k1|2)2
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where in the denominator we used � ∧ �̃ � |�|2 + |k1|2 and �w ∧ �̃w ≥ 0, while in the
numerator A and B are defined as

A
def= |� · k1 + (w · �)(w · k1)G(Lε(�̃))|,

B
def= |G(Lε(�̃)) − G(Lε(�))|

(

|�|2 +
1

2
|k1:n|2

)

.

Now, A � |�||k1| so that

λ2
ε

∑

�+m=k1|�|,|m|≤1/ε

A

(|�|2 + |k1|2)2 � λ2
ε,

as can be immediately seen by splitting the sum according to whether |�| ≤ |k1| or the
converse. The term containing B is dealt with similarly. Indeed, since |� − �̃| ≤ |�||k1|,
one has

|G(Lε(�̃)) − G(Lε(�))| � |�||k1| sup
y∈[�,�̃]

∣

∣

∣

∣

1

| log ε|
G ′(Lε(y))

y(εy + 1)

∣

∣

∣

∣

� |�||k1|
|�|2 + 1

2 |k1:n|2

where we further used that the derivative of G is bounded and (A.5) holds. Hence,
B � |�||k1| and one concludes as above. Inequality (A.6) for i = 0 is then proven.

Step 2 Secondly, we define Pε
2 (k1:n) as Pε

1 (k1:n), except that �w is replaced by (w · �)2,
that is,

Pε
2 (k1:n)

def= λ2
ε

π2

∑

�+m=k1
|�|,|m|≤ε−1

1

� + (w · �)2G(Lε(�))
.

The difference between Pε
1 and Pε

2 is bounded by a constant times

λ2
ε

∑

�+m=k1
|�|,|m|≤ε−1

(w · k)2
1:n

(|�|2 + |k1:n|2)2 � λ2
ε

∑

�+m=k1
|�|,|m|≤ε−1

|k1:n|2
(|�|2 + |k1:n|2)2 � λ2

ε ,

where we used that G(Lε(�)) � 1.

Step 3 As a third step, we replace Pε
2 (k1:n) with

Pε
3 (k1:n)

def= λ2
ε

π2

∑

|�|≤ε−1

1

� + (w · �)2G(Lε(�))
.

With respect to Pε
2 , we have only removed the indicator function of |m| = |k1−�| ≤ ε−1.

Hence, the difference between Pε
2 and Pε

3 only involves the sum over those values of �

such that |k1 − �| ≥ 1/ε while |�| ≤ 1/ε. But, since |k1| ≤ 1/(2ε), this corresponds to
1/(2ε) ≤ |�| ≤ 1/ε and the resulting sum can be bounded as in (A.3).

Step 4 Next, we turn the sum into an integral. Setting αε
def= 1

2 |εk1:n|2, we define Pε
4 as

Pε
4 (k1:n)

def= λ2
ε

π2

∫

|x |≤1

dx

|x |2 + αε + (x · w)2G(Lε(ε−2(|x |2 + αε)))
. (A.7)
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To obtain (A.6) for i = 3, we argue as in [CET23, Lemma C.7]. Denoting by I the
integrand in (A.7) and by Qε

� the square of side-length ε centred at � ∈ Z
2
0, the difference

between Pε
3 and Pε

4 is bounded above by

λ2
ε

∑

1≤|�|≤ε−1

∫

Qε
�

|I (ε�) − I (x)|dx

≤ λ2
εε

∑

1≤|�|≤ε−1

∫

Qε
�

sup
y∈Qε

�

|∇ I (y)|dx

≤ λ2
εε

3
∑

1≤|�|≤ε−1

sup
y∈Qε

�

|∇ I (y)| .

Now, a simple computation yields

sup
y∈Qε

�

|∇ I (y)| � λ2
ε

1

(|ε�|2 + αε)3/2

so that (A.6) follows at once.
Before moving to the next step, note that, by passing to polar coordinates, i.e. setting
x = rvθ for vθ = (cos θ, sin θ), we have

Pε
4 (k1:n) = λ2

ε

π2

∫ 2π

0
dθ

∫ 1

0

rdr

r2 + αε + r2(w · vθ )2G(Lε(ε−2(r2 + αε)))

= λ2
ε

2π2

∫ 2π

0
dθ

∫ 1

0

dr

r + αε + r(w · vθ )2G(Lε(ε−2(r + αε)))

= λ2
ε

2π2

∫ 2π

0
dθ

∫ 1

0

dr

r + αε + r |w|2 cos2(θ − θw)G(Lε(ε−2(r + αε)))

= λ2
ε

π2

∫ 1

0
dr
∫ π

0

dθ

r + αε + r |w|2 cos2(θ)G(Lε(ε−2(r + αε)))

where we set w = |w|vθw and used periodicity of the integrand in θ .

Step 5 In this step, we insert two elements at the denominator of the integrand of Pε
4 ,

that will allow us to make a simple change of variables. More precisely, we replace Pε
4

with Pε
5 , the latter being defined as

Pε
5 (k1:n)

def= λ2
ε

π2

∫ π

0

∫ 1

0

dθdr

(r + αε)(r + αε + 1)[1 + |w|2 cos2(θ)G(Lε(ε−2(r + αε)))] .

Now, (A.6) for i = 4 can be easily seen to hold by arguing as in the proof of [CETar,
Eq. (A.9)].
At this point, it remains to analyse the last integral. With the change of variables

y = Lε(ε−2(r + αε)) = λ2
ε log

(

1 +
1

r + αε

)

,

dr

(r + αε)(1 + r + αε)
= −λ−2

ε dy,
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one finds

Pε
5 (k1:n) = 1

π2

∫ π

0
dθ

∫ Lε( 1
2 |k1:n |2)

Lε(ε−2+ 1
2 |k1:n |2)

dy

1 + |w|2 cos2(θ)G(y)

It is then immediate to verify that, again at the price of an error of order λ2
ε , we can

replace the lower integration index by 0, and obtain

1

π2

∫ Lε( 1
2 |k1:n |2)

0
dy
∫ π

0

dθ

1 + |w|2 cos2(θ)G(y)

= 1

π

∫ Lε( 1
2 |k1:n |2)

0

dy
√

1 + |w|2G(y)
= G(Lε(

1

2
|k1:n|2)) (A.8)

where the last step is a consequence of our choice of G (actually, we have chosen G in
such a way that it holds). Hence, (A.2) follows at once and the proof of the proposition
is concluded. ��
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