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Abstract: No Hopf–Rinow Theorem is possible in Lorentzian Geometry. Nonetheless,
we prove that a spacetime is globally hyperbolic if and only if it is metrically complete
with respect to the null distance of a time function. Our approach is based on the obser-
vation that null distances behave particularly well for weak temporal functions in terms
of regularity and causality. Specifically, we also show that the null distances of Cauchy
temporal functions and regular cosmological time functions encode causality globally.

1. Introduction

The notion of global hyperbolicity was introduced by Leray [36] in 1952 to prove the
uniqueness of solutions for hyperbolic partial differential equations. Shortly thereafter,
global hyperbolicity entered the field of General Relativity through the proof of the global
well-posedness of the Einstein equations of Choquet–Bruhat and Geroch [19,24] and
the Singularity Theorems of Penrose and Hawking [27,46]. Via the topological splitting
result of Geroch [25] globally hyperbolic spacetimes manifestly settled in Lorentzian
Geometry in 1970.

Spacetimes are time-oriented Lorentzian manifolds (M, g). They are the geomet-
ric objects needed for formulating gravitation in General Relativity. Throughout this
manuscript, we use the sign convention (−, +, . . . , +) for g and assume that it is smooth
(although C2 is sufficient, and occasionally less). Global hyperbolicity establishes a
deep link between the topology of M and the causal structure induced by the metric
tensor g. The causal structure is induced on M by causal curves, i.e., locally Lipschitz
(with respect to any Riemannian metric [20, Sec. 2.3], [16, Thm. 4.5]) curves γ with
g(γ̇ , γ̇ ) ≤ 0, as follows. If q can be reached by a future-directed causal curve from p
we say that q is in the causal future of p, and write q ∈ J+(p) (dually for the causal past
J−(p)) or (p, q) ∈ J+. Leray’s original definition of global hyperbolicity was based on
the C0-compactness of the set of causal curves between any two points in a spacetime.
The modern definition of global hyperbolicity requires compactness of causal diamonds
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J+(p) ∩ J−(q) akin to the Heine–Borel property for complete Riemannian manifolds
(see [27, Sec. 6.6] and [10]).

Definition 1.1. A spacetime (M, g) is called globally hyperbolic if it is causal (there is
no closed causal curve) and all causal diamonds J+(p)∩ J−(q), p, q ∈ M , are compact.

If (M, g) is a noncompact spacetime of dimension greater than 2 then the causal condition
can be dropped [29].

A landmark result concerning global hyperbolicity is Geroch’s Topological Splitting
Theorem [25], later promoted to a smooth orthogonal splitting by Bernal and Sánchez
[9]. It states that any globally hyperbolic spacetime (M, g) admits a Cauchy orthogonal
splitting, i.e., an isometry

(M, g) ∼= (R × �,−αdτ 2 + ḡτ ), (1)

for α : R × � → (0,∞) a smooth function and (ḡτ )τ identifiable with a family of
Riemannian metrics on the Cauchy slices {τ } × �, smoothly varying in τ . The proof of
this splitting result is rooted in the construction of a suitable time function τ .

Definition 1.2. Let (M, g) be a spacetime. A continuous function τ : M → R is said to
be a time function if

q ∈ J+(p) \ {p} �⇒ τ(p) < τ(q).

Every stably causal spacetime admits a (non-unique) time function [28,38,39]. The
class of globally hyperbolic spacetimes can conveniently be characterized by the special
type of time functions they admit.

Theorem 1.3 (Geroch [25], Bernal–Sánchez [9]). A spacetime (M, g) is globally hy-
perbolic if and only if there exists a Cauchy time function τ on M, meaning that each of
its level sets τ−1(s), s ∈ R, is a Cauchy surface, i.e., intersected (exactly once) by every
inextendible causal curve.

From the compactness condition in Definition 1.1 it follows by a result obtained inde-
pendently by Avez [5] and Seifert [50] that there exists a length-maximizing geodesic be-
tween any two causally related points (length-maximizing with respect to the Lorentzian
distance, which is then also finite-valued and continuous [8, Ch. 4]). In that sense glob-
ally hyperbolic spacetimes again resemble complete Riemannian manifolds. But here
the analogy ends. The Lorentzian distance is far from inducing a metric space structure.
Even more troubled is the relationship with geodesic completeness. Neither does global
hyperbolicity imply geodesic completeness (the famous Penrose Singularity Theorem
[46] actually shows incompleteness under additional curvature bounds) nor the other
way round (anti-de Sitter space). In both cases these are actually features rather than
bugs of Lorentzian manifolds, and physically highly desired, for instance, for the mathe-
matical existence of black holes. Nonetheless, even the physically undesired assumption
of compactness does not guarantee geodesic completeness (Clifton–Pohl torus). Alto-
gether these properties render any Hopf–Rinow type statement for spacetimes virtually
a lost case (see the early works of Busemann [17], Beem [6]; and [7,18,22,26] for work
on completeness of spacelike submanifolds). We reopen the case and characterize global
hyperbolicity in an entirely new way.

Theorem 1.4. A spacetime (M, g) is globally hyperbolic if and only if there exists a
time function τ such that (M, d̂τ ) is a complete metric space.
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Here d̂τ is the null distance of Sormani and Vega [52], defined in 2016 with the
purpose of studying geometric stability problems in General Relativity by means of
a metric (measure) convergence theory, and to develop robust tools for spacetimes of
low regularity (partly already realized in [1,15,31,47,52,54]). The ˆ in d̂τ indicates the
dependence on the causal cone structure and τ the link to the time function.

Definition 1.5. Let (M, g) be a spacetime with time function τ . A piecewise causal path
β : [a, b] → M is given by a partition a = s0 < s1 < . . . sk−1 < sk = b on which each
restriction β|[si−1,si ] is either a future- or past-directed causal curve. The null length of
β is given by

L̂τ (β) :=
k∑

i=1

|τ(β(si )) − τ(β(si−1))|.

The null distance between two points p, q ∈ M is

d̂τ (p, q) := inf{L̂τ (β) | β piecewise causal path between p and q}.

Clearly, d̂τ is symmetric and satisfies the triangle inequality, but positive definiteness
does not hold for all τ . For locally anti-Lipschitz time functions one indeed obtains a
conformally invariant length-metric space (M, d̂τ ) that induces the manifold topology
(see [52, Thm. 4.6] and [1, Thm. 1.1]). Note that the relevance of an anti-Lipschitz
condition was recognized already earlier and is important for time functions also in
other contexts [4,21]. Throughout most of this manuscript we will assume slightly more,
namely that τ is a (weak) temporal function.

Definition 1.6. Let (M, g) be a spacetime with time function τ : M → R. Let h be
any Riemannian metric on M and dh the associated distance function. If for every point
x ∈ M there exists a neighborhood U of x and C ≥ 1 such that

(p, q) ∈ J+ ∩ (U ×U ) �⇒ 1

C
dh(p, q) ≤ τ(q) − τ(p) ≤ Cdh(p, q), (2)

then we say that τ is a weak temporal function. If τ satisfies only the first ≤ in (2) it is
called locally anti-Lipschitz, if only the second ≤ it is called locally Lipschitz.

Based on our extension of (2) to an entire open set in Sect. 2 we show that weak
temporal functions are indeed locally Lipschitz (in the usual sense) and have a timelike
gradient almost everywhere. The standard (smooth) temporal functions, and also regular
cosmological time functions à la Andersson–Galloway–Howard [4] and Wald–Yip [55],
are weak temporal functions. In fact, working with temporal functions is no restriction
since every smooth spacetime that admits a time function also admits a temporal func-
tion [9, Thm. 1.2]. The true advantage of temporal functions over other time functions
is the orthogonal decomposition g = −αdτ 2 + ḡτ (although no product splitting of
the manifold, see [43, Lem. 3.5]). This property is key in the proof of the subsequent
results. Time functions are, however, also a useful tool in weaker nonsmooth geometric
settings (see, for instance, [13,15,31]) and also regular cosmological time functions are,
in general, not smooth even on smooth spacetimes. Therefore, we decided to prove our
results for the optimal regularity class.
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Theorem 1.7. Let (M, g) be a spacetime, τ : M → R be a weak temporal function, and
h be a Riemannian metric on M. Then, for each compact set K ⊆ M, there exists a
constant C ≥ 1 such that for all p, q ∈ K,

1

C
dh(p, q) ≤ d̂τ (p, q) ≤ Cdh(p, q). (3)

Note that the lower bound follows from the locally anti-Lipschitz property of τ ,
and the upper bound from the corresponding locally Lipschitz bound. Theorem 1.7
immediately implies that two stably causal spacetimes are metrically equivalent on
compact sets in the following sense.

Corollary 1.8. Let M be a smooth manifold and g and g̃ be spacetime metrics on M
with weak temporal functions τ and τ̃ (and corresponding null distances d̂τ and d̂τ̃ ),
respectively. Then, for each compact set K ⊆ M, there exists a constant C ≥ 1 such
that for all p, q ∈ K,

1

C
d̂τ (p, q) ≤ d̂τ̃ (p, q) ≤ Cd̂τ (p, q).

Amongst others, the proof of Theorem 1.7 requires semiglobal techniques to go from
open sets to compact sets. On a global scale the situation is even more involved and it is
here where globally hyperbolic spacetimes really shine. We prove the following.

Theorem 1.9. Let (M, g) be a globally hyperbolic spacetime and τ a locally anti-
Lipschitz time function such that all nonempty level sets are future (or past) Cauchy.
Then the null distance encodes causality, that is, for any p, q ∈ M,

q ∈ J+(p) ⇐⇒ d̂τ (p, q) = τ(q) − τ(p). (4)

The �⇒ direction in Theorem 1.9 is trivial. Sormani and Vega [52, Thm. 3.25]
showed that the converse holds for warped product spacetimes with complete Rieman-
nian fiber and suitable temporal functions. It remained an open problem to determine
under which general circumstances causality is encoded. Our Theorem 1.9 provides a
sharp answer both in terms of regularity as well as the causality class (see counterex-
amples in Sect. 3.3). Initially we proved this result for Cauchy temporal functions in
Theorem 3.3. Independently and simultaneously, Sakovich and Sormani [47, Thm. 4.1]
have obtained a different global causality encoding result where they allow for general
anti-Lipschitz time functions, but require them to be proper. This properness assumption,
in fact, implies that the spacetime must be globally hyperbolic with compact Cauchy
level sets (see Sect. 3.2). Both approaches yield local encodement of causality on any
stably causal spacetime (see Theorem 3.4 and [47, Thm. 1.1]). Upon studying the proofs
of [47] we noticed that by combining part of their local arguments [47, Thm. 1.1] with
our global proof of Theorem 3.3 we can obtain Theorem 1.9 which is optimal both in
view of regularity as well as causality. It is precisely this optimality, together with the
observation that τ having future (or past) Cauchy level sets is actually sufficient, that
allows us to conclude with the following application.

Corollary 1.10. Let (M, g) be a spacetime that admits a regular cosmological time
function τ . Then d̂τ encodes causality globally.
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The manuscript is structured as follows. In Sect. 2 we prove Theorem 1.7 and Corol-
lary 1.8. In the proof we make use of the orthogonal decomposition of the spacetime
metric with respect to a temporal function and techniques developed in [16]. We also
present counterexamples that show that the weak temporal condition cannot be relaxed.
In Sect. 3 we prove Theorem 1.9 and provide counterexamples for non-Cauchy locally
anti-Lipschitz functions. Nonetheless, a local result for any temporal function on any
stably causal spacetime is also obtained. In Sect. 4 we prove Theorem 1.4 and show that
completely uniform temporal functions (very recently introduced in [11,12]) guarantee
completeness of (M, d̂τ ).

2. Bi-Lipschitz Bounds

In this section we prove Theorem 1.7 and Corollary 1.8 of the introduction.
Since weak temporal functions satisfy d̂τ (p, q) = τ(q) − τ(p) for causally related

points, the condition (2) can be viewed as a restricted local metric equivalence. In order
to extend this property to a true local metric equivalence we make use of several technical
results related to temporal functions obtained in Sect. 2.1, some of which are also used
in Sect. 3. To extend the corresponding local result to weak temporal functions and to
compact sets we employ semiglobal techniques similar to those in [16]. These final steps
of the proof of Theorem 1.7 are carried out in Sect. 2.2.

Theorem 1.7 implies that we can compare the null distances of any two spacetime
metrics with entirely different causal cones as stated in Corollary 1.8 of the introduction.
In particular, the null distance structures with respect to weak temporal functions are
equivalent on compact sets of a fixed spacetime.

Corollary 2.1. Let τ1, τ2 be two weak temporal functions on a spacetime (M, g), and
d̂τ1 , d̂τ2 their associated null distances. Then, for every compact set K ⊆ M, there exists
a constant C ≥ 1 such that for all p, q ∈ K,

1

C
d̂τ1(p, q) ≤ d̂τ2(p, q) ≤ Cd̂τ1(p, q).

Note that Corollary 2.1 was already announced in [1, p. 7739] with an alternative
direct proof. The advantage of such a proof is that it does not require the use of temporal
functions which, for instance, do not exist in theory of Lorentzian length spaces [15]
(while weak temporal functions only require local Lipschitz conditions and can still
be considered). We therefore provide this short alternative proof of Corollary 2.1 in
Sect. 2.3.

The question remains how optimal all the results just mentioned are with respect to the
regularity class of time functions considered. The lower bound in (2) is the standard local
anti-Lipschitz assumption on τ and needed to even obtain a sensible metric space (M, d̂τ )

[52, Thm. 4.6]. In Sect. 2.4 we show that the locally Lipschitz assumption (the upper
bound in (2)) cannot be dropped either. Besides,the two assumptions together imply that
weak temporal functions have a timelike gradient almost everywhere, motivating their
name (Sect. 2.5). Moreover, we show that even under the best circumstances, a general
global version of our weakest result presented in this section, namely Corollary 2.1,
cannot be expected. This implies that also Theorem 1.7 and Corollary 1.8 in general do
not hold globally.
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2.1. Temporal functions andWick-rotated metrics. The aim of this section is to compare
the null distance to the distance obtained with respect to the Wick-rotated metric that
exists for a temporal function. Recall that a spacetime admits a smooth temporal function
whenever it admits a time function by a well-known result of Bernal and Sánchez [9,
Thm. 1.2].

Definition 2.2. Let (M, g) be a spacetime. A temporal function is a smooth function
τ : M → R with past-directed timelike gradient ∇τ .

In the local proofs in this section we make use of a weaker splitting result for temporal
functions (compare to (1) in the globally hyperbolic case).

Lemma 2.3 (Müller–Sánchez [43, Lem. 3.5]). If a spacetime (M, g) admits a temporal
function τ , then the metric g admits an orthogonal decomposition

g = −αdτ 2 + ḡ, (5)

where α = |g(∇τ,∇τ)|−1 > 0 and ḡ is a symmetric 2-tensor which vanishes on ∇τ

and is positive definite on the complement.

The temporal function τ is said to be steep if g(∇τ,∇τ) ≤ −1, and hence α =
|g(∇τ,∇τ)|−1 ≤ 1. Not every (even causally simple) spacetime admits a steep temporal
function [43, Thm. 1.1 and Ex. 3.3], but we can always rewrite (5) as g = −α(dτ 2 + g̃),
for g̃ = α−1ḡ. Since the null distance is conformally invariant we assume from now on,
without loss of generality, that g is of the form

g = −dτ 2 + ḡ. (6)

Next we perform a standard trick to obtain a Riemannian metric gW from g and τ .
This technique is called Wick-rotation in the physics literature. The Wick-rotated metric
gW is given by

gW := dτ 2 + ḡ. (7)

We denote the associated norm, length functional, and Riemannian distance by ‖·‖W ,
LW , and dW respectively. We proceed to compare dW and d̂τ .

Lemma 2.4. Let (M, g) be a spacetime equipped with a smooth temporal function τ , so
that g and gW are given by (6) and (7), respectively. Let β : [a, b] → M be a piecewise
causal curve. Then

L̂τ (β) ≤ LW (β) ≤ √
2L̂τ (β),

and thus for any p, q ∈ M,

dW (p, q) ≤ √
2d̂τ (p, q). (8)

Proof. By assumption τ is smooth and also the tangent vector β̇ exists almost every-
where, thus we can write both length functionals in terms of the integrals

L̂τ (β) =
∫ b

a
|(τ ◦ β)′(s)|ds,

LW (β) =
∫ b

a
‖β̇(s)‖Wds =

∫ b

a

√
|dτ(β̇(s))|2 + ‖β̇(s)‖2

ḡds.
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Since β̇τ (s) := (τ ◦ β)′(s) = dτβ(s)(β̇(s)) and the curve β is piecewise causal, that is,
g(β̇, β̇) ≤ 0 almost everywhere, we have that

|β̇τ | ≥ ‖β̇‖ḡ,
and the inequalities for the lengths follow immediately.

The second inequality for lengths descends to the level of distances, because the
class of piecewise causal curves considered (for d̂τ ) is contained in the class of all
locally Lipschitz curves (strictly speaking, dW is obtained via piecewise smooth curves,
but [16, Cor. 3.13] shows that it is the same as the intrinsic metric obtained via the class
of absolutely continuous curves, each of which has a locally Lipschitz reparametrization
[2, Lem. 1.1.4]). ��

The next lemma proves a reverse inequality to (8), albeit only locally and via a more
involved proof (because dW requires knowledge also about non-causal curves).

Lemma 2.5. Let (M, g) be a spacetime equipped with a smooth temporal function τ , so
that g and gW are given by (6) and (7), respectively. Then, around every x ∈ M there is
a neighborhood U such that for all p, q ∈ U,

d̂τ (p, q) ≤ 4dW (p, q).

Proof. Let x ∈ M and dim M = N + 1. The idea is to use coordinates adapted to
the vector field ∇τ and the hypersurface Sτ(x) := τ−1(τ (x)) to explicitly construct
approximating piecewise causal curves βn in a neighborhood U of x . The construction
of these coordinates resembles that of the well-known Gaussian normal coordinates, the
only difference being that we use the flow of ∇τ instead of the normal geodesics to the
hypersurface.

Step 1. Construction of U and coordinates. The level set Sτ(x) is a hypersurface in
M (since dτ �= 0), therefore there exists a neighborhood V ⊆ Sτ(x) of x and a coordinate
map ϕ : V → ϕ(V ) ⊆ R

N . Let y ∈ ϕ(V ) ⊆ R
N and let cy denote the unique integral

curve of −∇τ in M with cy(0) ∈ V ⊆ Sτ(x) ⊆ M such that ϕ(cy(0)) = y. Since we
have assumed that dτ(−∇τ) = −g(∇τ,∇τ) = 1, we have that

τ(cy(t)) = τ(x) + t. (9)

The Flow Box Theorem [35, Thm. 2.91] guarantees the existence of a suitable a > 0
and a neighborhood of x (which we immediately restrict to our chart neighborhood on
Sτ(x) and again denote by V ) such that the map

φ : (−a, a) × ϕ(V ) → M,

(t, y) �→ cy(t),

is well-defined. By the Inverse Function Theorem, φ is a local diffeomorphism, hence
one obtains a coordinate system (t, y) on a neighborhood U of x in M . At any point
z = (t, y) ∈ φ−1(U ) ⊆ (−a, a) × R

N , the differential Dzφ : R × R
N → Tφ(z)M

maps (1, 0, . . . , 0) to ċy(t) = ∇τ |φ(z). Thanks to (9), Dzφ also maps {0} × R
N to

Tφ(z)Sτ(φ(z)) ⊆ Tφ(z)M . Since Tφ(z)Sτ(φ(z)) = (span ∇τ |φ(z))
⊥, pulling back the metric

tensor g with φ, we see that its components in the (t, y) coordinates are

g00 = −1 g0i = 0 for all i �= 0, (10)
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where the subindex 0 corresponds to the t-component and the subindex i to any of the
y-components. Finally, by further shrinking U , we may assume that it is gW -convex.

Step 2. Construction of piecewise causal curves βn approximating dW (p, q). Let
p, q ∈ U be given. By assumption on U , there exists a length-minimizing gW -geodesic
γ : [0, L] → U from p to q, parametrized by arclength. In particular,

L = LW (γ ) = dW (p, q).

We write γ = (γ τ , γ 1, ..., γ N ) to denote the coordinate expression of γ . Consider the
sequence (βn)n of curves given in coordinates by

βn(s) :=
(
γ τ (s) + 3 fn(s), γ

1(s), ..., γ N (s)
)

, (11)

for | fn| sufficiently small so that βn is contained in U . Furthermore, we choose ( fn)n in
a way that βn is piecewise causal, that is,

g(β̇n, β̇n) ≤ 0 almost everywhere,

and so that L̂τ (βn) ≤ 4LW (γ ) for n sufficiently large.
We show that the functions fn : [0, L] → R, given by

f0(s) :=
{
s for s ∈ [0, L

2 ],
L − s for s ∈ [ L2 , L], and

fn(s) := 1

2

{
fn−1(2s) for s ∈ [0, L

2 ],
fn−1(2s − L) for s ∈ [ L2 , L],

as depicted in Fig. 1(A) satisfy all these properties. The curves βn given by (11) are
shown in Fig. 1(B). By definition, β̇n exists almost everywhere, and by (10) it follows
that

g(β̇n, β̇n) = −|β̇τ
n |2 + ḡ(β̇n, β̇n)

= −|γ̇ τ
n + 3 f ′

n|2 + (ḡi j ◦ βn)γ̇
i γ̇ j . (12)

Since | f ′
n| = 1 almost everywhere, and |γ̇ τ

n | ≤ gW (γ̇ , γ̇ ) = 1, it follows that almost
everywhere

2 ≤ 3| f ′
n| − |γ̇ τ

n | ≤ |γ̇ τ
n + 3 f ′

n| ≤ 3| f ′
n| + |γ̇ τ

n | ≤ 4. (13)

We consider the second term in (12). Since γ is a gW -geodesic it is smooth and so are
all coordinate components γ̇ i of its tangent vector. Due to compactness of γ the γ̇ i must
therefore also be bounded, say |γ̇ i | ≤ M for some M > 0. Due to | fn(s)| ≤ L

2n+1 → 0
uniformly as n → ∞ it follows that βτ

n → γ τ
n uniformly, and thus βn → γ uniformly in

coordinates. The coordinate functions ḡi j ◦ βn → ḡi j ◦ γ converge uniformly on [0, L]
as n → ∞ as well. Thus for any ε ∈ (0, 1

M2 ) there is an n0 ∈ N such that for all n ≥ n0,
for all s ∈ [0, L],

ḡi j (βn(s))γ̇
i (s)γ̇ j (s)

≤ ḡi j (γ (s))γ̇ i (s)γ̇ j (s) + |ḡi j (βn(s)) − ḡi j (γ (s))||γ̇ i (s)||γ̇ j (s)|
≤ gW (γ̇ (s), γ̇ (s)) + εM2 ≤ 2. (14)
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Fig. 1. Illustration of the proof of Lemma 2.5

Together, (12)–(14) imply

g(β̇n, β̇n) ≤ −22 + 2 ≤ 0,

hence all βn for n ≥ n0 are piecewise causal.
Using again that (13) holds almost everywhere, it follows that for all n

L̂τ (βn) =
∫ L

0
|(τ ◦ βn)

′(s)|ds =
∫ L

0
|γ̇ τ (s) + 3 f ′

n(s)|ds ≤ 4L = 4LW (γ ),

and since γ is a length-minimizing gW -geodesic we conclude that

d̂τ (p, q) ≤ 4L = 4dW (p, q). ��

2.2. Proof of Theorem 1.7. In Sect. 2.1 we have already shown that the bi-Lipschitz
estimates (3) of Theorem 1.7 hold locally if we choose τ to be a temporal function and
h = gW to be the corresponding Wick-rotated Riemannian metric. We first extend these
local results to weak temporal functions and arbitrary Riemannian metrics, and then
prove Theorem 1.7 on compact sets.

Lemma 2.6. Let (M, g) be a spacetime equipped with a weak temporal function τ . Sup-
pose h is a Riemannian metric on M. Then, for every x ∈ M there exists a neighborhood
U of x and a constant C ≥ 1 such that for all p, q ∈ U

1

C
dh(p, q) ≤ d̂τ (p, q) ≤ Cdh(p, q). (15)

Proof. Let x ∈ M . We consider both inequalities in (15) separately for different Rie-
mannian metrics and chooseU to be intersection of the neighborhoods V1 and V2 derived
in each step. More precisely, the first inequality follows from the local anti-Lipschitz
assumption for τ in Definition 1.6, and the second inequality from Lemma 2.5 for an
auxiliary temporal functions. Without loss of generality we furthermore assume that
U is relatively compact. Then by a result of Burtscher [16, Thm. 4.5] the bi-Lipschitz
estimate extends to any Riemannian metric.
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Step 1. Lower bound. We show that 1
C dh(p, q) ≤ d̂τ (p, q) for C and h as in

Definition 1.6.
Let U1 be the neighborhood of x from Definition 1.6. Since d̂τ induces the manifold

topology there is a radius r > 0 such that for the open ball B̂τ
3r (x) ⊆ U1. Consider

p, q ∈ V1 := B̂τ
r (x). There exists a sequence (βn)n of piecewise causal curves in M

between p and q such that

L̂τ (βn) ≤ d̂τ (p, q) +
1

n
.

For all n > 1
r the curves βn cannot leave U1. Consider one such βn : [0, 1] → U1 and

its partition 0 = s0 < s1 < . . . < sk−1 < sk = 1 in causal pieces. Then for C and h as
in Definition 1.6

1

C
dh(p, q) ≤ 1

C

k∑

i=1

dh(βn(si ), βn(si−1))

≤
k∑

i=1

d̂τ (βn(si ), βn(si−1)) = L̂τ (βn) ≤ d̂τ (p, q) +
1

n
.

Thus the result follows as n → ∞.
Step 2. Upper bound. We show that d̂τ (p, q) ≤ 5CdW (p, q) for gW the Rieman-

nian metric (7) with respect to an auxiliary temporal function and corresponding C of
Definition 1.6.

Every spacetime which admits a time function also admits a temporal function τ̃ by
Bernal and Sánchez [9, Thm. 1.2]. We consider the Wick-rotated Riemannian metric
gW defined in (7) with respect to such a fixed τ̃ . Let V2 be a geodesically convex
neighborhood of x with respect to gW . Without loss of generality we assume that V2 is
contained in the neighborhoodsU2 of Definition 1.6 and Lemma 2.5. Suppose p, q ∈ V2
and γ is the gW -length minimizing geodesic γ between p and q in V2. In the proof of
Lemma 2.5 a piecewise causal curve β in V2, sufficiently close to γ , was constructed
for which

LW (β) =
∫ L

0
‖β̇(s)‖Wds =

∫ L

0

√
|β̇ τ̃ |2 + ḡ(β̇, β̇)ds

≤
∫ L

0

√
42 + 2ds < 5L = 5LW (γ ). (16)

Since β is piecewise causal, there is a partition 0 = s0 < s1 < . . . < sk−1 < sk = L
such that

L̂τ (β) =
k∑

i=1

d̂τ (β(si ), β(si−1)),

and τ being a weak temporal function implies that there is a constant C ≥ 1 (Defini-
tion 1.6) such that

L̂τ (β) ≤ C
k∑

i=1

dW (β(si ), β(si−1)) ≤ CLW (β).
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Together with (16) and the fact that γ is gW -length minimizing we thus obtain

d̂τ (p, q) ≤ L̂τ (β) ≤ CLW (β) ≤ 5CLW (γ ) = 5CdW (p, q). ��
Lemma 2.6 shows that the original local bi-Lipschitz bound (2) for causality related

points (as required for weak temporal functions in Definition 1.6) extends to the bi-
Lipschitz bound (15) on a whole neighborhood of each point. Finally, we adapt the
proof of Burtscher [16, Thm. 4.5] to extend this local estimate to compact sets.

Proof of Theorem 1.7. Let K be a compact subset of M . The argument proceeds by
contradiction. Suppose that for any n ∈ N, there exist points pn, qn ∈ K such that

d̂τ (pn, qn) > ndh(pn, qn). (17)

By passing to subsequences, we can assume that pn → p and qn → q (in one and hence
both metrics, since they both induce the manifold topology). Since K is compact it is
bounded with respect to the null distance d̂τ and the inequality (17) furthermore implies
that

dh(pn, qn) → 0 as n → ∞,

and hence p = q. Thus, for n large enough, pn, qn are contained in neighborhood U of
p that by Lemma 2.6 is small enough so that (15) holds for some C̃ ≥ 1. But then we
conclude that

C̃dh(pn, qn) ≥ d̂τ (pn, qn) > ndh(pn, qn),

a contradiction for n large. This proves that there is a constantC ≥ 1 such that d̂τ (p, q) ≤
Cdh(p, q), and the reverse inequality is obtained in the same way. ��
Remark 2.7. Bi-Lipschitz maps are a crucial tool in Metric Geometry. In particular, they
are useful in the study of Gromov–Hausdorff convergence of metric spaces. Moreover,
the estimates of Theorem 1.7 can be used to equip suitable spacetimes with a (local)
integral current space structure (see [3,23,30,33,34,53]) via the approach laid out in
Allen and Burtscher [1, Sec. 2.5, 2.6, and 4]. Thanks to our Completeness Theorem 1.4
and [1, Thm. 1.3] we know, for instance, that any globally hyperbolic spacetime viewed
as the metric space (M, d̂τ ) with completely uniform temporal function τ is a (local)
integral current space (see Sect. 4). This also makes it possible to use spacetime intrinsic
flat convergence to study geometric stability questions in General Relativity, as proposed
by Sormani.

2.3. Direct proof of Corollary 2.1. Corollary 2.1 is a very special case of Theorem 1.7.
Here we show that it can also be obtained directly without the use of temporal functions.
We first prove a local result.

Lemma 2.8. Let τ1, τ2 be two weak temporal functions (see Definition 1.6) on a space-
time (M, g), and d̂τ1 , d̂τ2 their associated null distances. Then, for every point x ∈ M,
there exists a neighborhood U of x and a constant C ≥ 1 such that for all p, q ∈ U,

1

C
d̂τ1(p, q) ≤ d̂τ2(p, q) ≤ Cd̂τ1(p, q).
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Proof. Fix a point x ∈ M and an arbitrary Riemannian metric h on M . Let U τ1
x and U τ2

x
be the neighborhoods around x where both τ1 and τ2 are Lipschitz and anti-Lipschitz
with positive constants C1,C2 with respect to h as in (2) of Definition 1.6. Since M is
locally compact there exists a relatively compact neighborhood V ⊆ U τ1

x ∩ U τ2
x of x .

Since both null distances d̂τ1 , d̂τ2 induce the manifold topology [52, Thm. 4.6], we find
r > 0 sufficiently small so that B̂τ1

4r (x) ∪ B̂τ2
4r (x) ⊆ V . Define a neighborhood of x by

U := B̂τ1
r (x) ∩ B̂τ2

r (x).

We claim that for i = 1, 2 and for all p, q ∈ U ,

d̂τi (p, q) = inf{L̂τi (β) | β a p.w. causal curve in V between p and q}. (18)

What we are saying is that the null distances in U can be approximated by sequences of
curves that never leave V . To prove this, let p, q ∈ U , consider an arbitrary ε ∈ (0, r),
and for each i = 1, 2 choose a piecewise causal curve β i

ε : I → M from p to q such
that

L̂τi (β
i
ε) < d̂τi (p, q) + ε.

Then, for all t ∈ I ,

d̂τi (x, β
i
ε(t)) ≤ d̂τi (x, p) + d̂τi (p, β

i
ε(t)) ≤ d̂τi (x, p) + L̂τi (β

i
ε)

≤ d̂τi (x, p) + d̂τi (p, q) + ε < 4r,

hence β i
ε lies entirely in B̂τi

4r (x) ⊆ V , proving the claim (18) for i = 1, 2.
For any causally related points ( p̃, q̃) ∈ J+ in U τ1

x ∩ U τ2
x , by (2), we have for

C := C1C2 ≥ 1 that

1

C
(τ1(q̃) − τ1( p̃)) ≤ τ2(q̃) − τ2( p̃) ≤ C(τ1(q̃) − τ1( p̃)). (19)

This implies that for all piecewise causal curves β contained in U τ1
x ∩U τ2

x ,

1

C
L̂τ1(β) ≤ L̂τ2(β) ≤ C L̂τ1(β). (20)

It remains to be shown that the bi-Lipschitz bounds on the null lengths extends to the
null distances between any two points p and q in the smaller set U . We have already
seen that for each n ∈ N exists a piecewise causal curve β1

n between p and q (by (18)
β1
n is entirely contained in V !) such that

L̂τ1(β
1
n ) ≤ d̂τ1(p, q) +

1

n
,

and by (20) therefore

d̂τ2(p, q) ≤ L̂τ2(β
1
n ) ≤ C L̂τ1(β

1
n ) ≤ Cd̂τ1(p, q) +

C

n
.

Since this inequality holds for all n and fixed C , we have that d̂τ2(p, q) ≤ Cd̂τ1(p, q) on
U . In the same way, for piecewise causal curves β2

n approximating d̂τ2(p, q), we obtain
d̂τ1(p, q) ≤ Cd̂τ2(p, q) on U , which proves the Lemma. ��
Proof of Corollary 2.1. Having established the local result in Lemma 2.8, the proof on
compact sets is now the same as that of Theorem 1.7. ��
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2.4. Counterexamples. Finally, we construct two examples showing that the assump-
tions and statement of Corollary 2.1, and hence also that of Theorem 1.7 and Corol-
lary 1.8, are sharp.

Example 2.9 (Corollary 2.1 is false globally). Consider the Minkowski spacetime M =
R

1,n with the temporal functions τ1 = t and τ2 = exp(t) (which even have the same
level sets!). Since the exponential function is not globally Lipschitz, the time functions
τ1 and τ2 are not equivalent in the sense that the bi-Lipschitz condition (19) for causally
related points does not hold globally. Since τ(q) − τ(p) = d̂τ (p, q) for all q ∈ J+(p),
it follows that if (19) fails to hold globally, then the null distances d̂τ1 , d̂τ2 are globally
inequivalent.

Example 2.9 shows that although τ1 and τ2 are both temporal functions on the same
spacetime (M, g), there is a clear distinction globally between the metric structures
induced by the null distances d̂τ1 and d̂τ2 . In particular, in Sect. 4 we show that (M, d̂τ1)

is complete while (M, d̂τ2) is not.

Example 2.10 (Corollary 2.1 is false for time functions that are not locally Lipschitz).
Consider the Minkowski spacetime M = R

1,n with respect to the usual global coordi-
nates (t, x). Let τ1(t, x) := t be the standard (smooth and locally anti-Lipschitz) time
function and

τ2(t, x) := sgn(t)
√|t |.

Clearly, τ2 is continuous and a time function. It is, however, not locally Lipschitz at
t = 0 because ∂tτ2(t, x) → ∞ as t → 0. Nonetheless, τ2 is locally anti-Lipschitz (and
therefore d̂τ2 induces the manifold topology): Consider a point (t, x) with t > 0 and the
neighborhood U = (0, 2t) × R

n . Suppose q ∈ J+(p) with p = (tp, xp), q = (tq , xq).
By the Mean Value Theorem for √ on [0, 2t] we have

√
tq − √

tp ≥
(

inf
r∈(0,2t)

d

dr

√
r

)
(tq − tp) = 1

2
√

2t
|tq − tp|.

Hence due to the causal relation on Minkowski spacetime we obtain with respect to the
Euclidean distance d and with C := 1

4
√

2t
> 0 that on U

q ∈ J+(p) �⇒ τ2(q) − τ2(p) ≥ 1

4
√

2t

√
(tq − tp)2 + |xq − xp|2 ≥ Cd(q, p).

In the same fashion, τ2 is anti-Lipschitz in the neighborhood U = (2t, 0)×R of a point
(t, x) with t < 0. If t = 0, we can simply use the neighborhood U = (−1, 1) × R

n and
C = 1

4 (since the infimum is at |r | = 1). Hence τ2 is locally anti-Lipschitz everywhere
(but clearly not globally anti-Lipschitz with respect to the Euclidean distance).

Now assume that p = (0, 0) and let qt = (t, 0), t ∈ (0, 1), be arbitrarily close to p.
Then

d̂τ1(p, qt ) = t ≤ √
t = d̂τ2(p, qt )

but the bi-Lipschitz estimate (3) of Theorem 2.1 does not hold because

d̂τ2(p, qt )

d̂τ1(p, qt )
= 1√

t
→ ∞ as t → 0.
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2.5. Basic properties of weak temporal functions. The following result justifies the no-
tion of weak temporal functions.

Proposition 2.11. Let (M, g) be a spacetime and τ : M → R be a weak temporal
function. Then τ is locally Lipschitz with past-directed timelike gradient ∇τ almost
everywhere.

Proof. The local Lipschitz condition of Definition 1.6 implies the upper bound in
Lemma 2.6, i.e., for each Riemannian metric h and each point of M there is an open
neighborhood U and C ≥ 1 such that for p, q ∈ U

|τ(q) − τ(p)| ≤ d̂τ (p, q) ≤ Cdh(p, q).

In other words, τ is locally Lipschitz on M . By Rademacher’s Theorem ∇τ therefore
exits almost everywhere.

Suppose that ∇τ exists at point p. Consider a future-directed causal vector v ∈
TpM \ {0} and a smooth causal curve γ from p = γ (0) in direction v. Then

dτ(v) = d

ds

∣∣∣∣
s=0

(τ ◦ γ )(s) = lim
s→0

τ(γ (s)) − τ(p)

s
= lim

s→0

d̂τ (γ (0), γ (s))

s
,

which by the local anti-Lipschitz property of τ and [16, Prop. 4.10] implies that

dτ(v) ≥ 1

C
lim
s→0

dh(γ (0), γ (s))

s
= 1

C
‖v‖h > 0.

Hence ∇τ is past-directed timelike whenever it exists. ��
The converse is not true, in the sense that a function with almost everywhere timelike

gradient is not necessarily weak temporal, unless one assumes local upper and lower
bounds on ‖∇τ‖h . Indeed, the time functions in Example 2.10 and [52, Ex. 3.4] have
timelike gradient almost everywhere, but the first is not locally Lipschitz and the second
not locally anti-Lipschitz.

The following important classes of time functions are weak temporal.

Lemma 2.12. Temporal functions and regular cosmological time functions (à la
Andersson–Galloway–Howard [4] and Wald–Yip [55]) are weak temporal functions.

Proof. For temporal functions, locally Lipschitz follows by smoothness and locally
anti-Lipschitz by both [52, Cor. 4.16] and [21, Prop. 4.3] (together with Galloway’s
observation of compatibility [52, p. 19]). For regular cosmological time functions, locally
Lipschitz follows by [4, Thm. 1.2(v)] and locally anti-Lipschitz by [52, Thm. 5.4]. ��

3. Encoding Causality

In this section we prove Theorem 1.9 and a corresponding local result. By Definition
1.5 of the null distance for any p, q ∈ M

d̂τ (p, q) ≥ |τ(q) − τ(p)|.
Equality holds trivially for causally related points, i.e.,

(p, q) ∈ J+ �⇒ d̂τ (p, q) = τ(q) − τ(p).
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where J+ ⊆ M × M denotes the causal relation

J+ := {(p, q) | there exists a future-directed causal curve from p to q}.
We investigate when the converse holds, that is, when

(p, q) ∈ J+ ⇐⇒ d̂τ (p, q) = τ(q) − τ(p), (21)

in which case the null distance is said to encode causality, an open problem mentioned
in [52, Sec. 1]. We introduce a new notation for the right hand side of (21).

Definition 3.1. Let (M, g) be a spacetime equipped with a time function τ : M → R.
We define the null distance relation R̂+

τ ⊆ M × M by

(p, q) ∈ R̂+
τ : ⇐⇒ d̂τ (p, q) = τ(q) − τ(p).

Clearly, the relation R̂+
τ is reflexive and transitive. Antisymmetry requires definiteness

of d̂τ which, for instance, follows if τ is a locally anti-Lipschitz time function [52, Thm.
4.6]. Continuity of τ and d̂τ imply closedness of R̂+

τ . We can thus summarize the basic
properties of R̂+

τ as follows.

Lemma 3.2. Suppose (M, g) is a spacetime and τ is a locally anti-Lipschitz time func-
tion on M. Then the null distance relation R̂+

τ is a closed partial order on M satisfying
J+ ⊆ R̂+

τ . ��
In Sect. 3.1 we prove that globally hyperbolic spacetimes encode causality when τ is

carefully chosen, which can be reformulated in terms of R̂+
τ as follows.

Theorem 3.3. Let (M, g) be a globally hyperbolic spacetime and let τ be a temporal
function such that every nonempty level set is aCauchy surface. Then causality is encoded
in d̂τ , meaning J+ = R̂+

τ .

Note that the time functions τ : M → (T1, T2) of Theorems 1.9 and 3.3 are Cauchy
time functions (as per Theorem 1.3) up to composition with an increasing homeomor-
phism f : (T1, T2) → R. Our relaxed Cauchy assumption adds value in the weak context,
notably because cosmological time functions take values only on (0,∞).

Subsequently we also prove a local version of this result for any spacetime with a
temporal function.

Theorem 3.4. Let (M, g) be a spacetime and τ be a temporal function. Then, every
point x ∈ M has a neighborhood U such that

J+ ∩ (U ×U ) = R̂+
τ ∩ (U ×U ).

Upon completion of an earlier preprint of this manuscript and that of Sakovich and
Sormani [47] we noticed that our different proofs can be combined to yield a stronger
result of both Theorem 3.3 (to locally anti-Lipschitz τ ) and [47] (to noncompact Cauchy
slices). This stronger result is Theorem 1.9 and proven in Sect. 3.2.

In Sect. 3.3 we show that the assumptions for the global Theorem 1.9 are sharp in the
sense that there are globally hyperbolic spacetimes and locally anti-Lipschitz functions
τ for which J+

� R̂+
τ .
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3.1. Proofs of Theorems 3.3 and 3.4 for temporal functions. In this section, the Wick-
rotated metric gW of g introduced in Sect. 2.1 plays an important role again. Since gW
need not be complete even if the spacetime is globally hyperbolic (see Example 4.5) we
furthermore make use of the existence of a conformally equivalent complete Riemannian
metric

gR := �2gW , (22)

where � : M → [1,∞) is a smooth function [45, Thm. 1]. We denote the corresponding
norm, length functional and distance by ‖·‖R , LR and dR , respectively. The relation of
gR and gW carries over to the distances as follows, that is, for any curve γ : [a, b] → M ,

LW (γ ) ≤ LR(γ ),

and hence for any p, q ∈ M

dW (p, q) ≤ dR(p, q).

In the following lemma, we obtain reverse inequalities on compact sets.

Lemma 3.5. Let gR and gW be two conformally equivalent Riemannianmetrics on M as
in (22), and suppose K is a compact set in M. Then there exist constants CK ≥ cK ≥ 1
such that for any curve γ in K

LW (γ ) ≤ LR(γ ) ≤ cK LW (γ ).

and for any p, q ∈ K,

dW (p, q) ≤ dR(p, q) ≤ CKdW (p, q).

Proof. The first statement about the lengths follows immediately from the Definition
(22), and we may pick cK := maxx∈K �(x). The first inequality for the distances is
trivial and the second inequality follows from [16, Thm. 4.5] (note that, in general,
we need to pick CK > cK as minimizing curves may leave K , but the proof in [16]
guarantees boundedness of CK ). ��

With these tools, we proceed to prove the theorem.

Proof of Theorem 3.3. Trivially, J+ ⊆ R̂+
τ , so we only need to prove R̂+

τ ⊆ J+. Suppose
that (p, q) ∈ R̂+

τ , that is, d̂τ (p, q) = τ(q)−τ(p). Since (p, p) ∈ J+ is trivially satisfied,
we can assume that p �= q and thus necessarily τ(q) > τ(p). By definition of d̂τ there
exists a sequence of piecewise causal curves (βn)n such that

0 < τ(q) − τ(p) ≤ L̂τ (βn) ≤ τ(q) − τ(p) +
1

n
. (23)

In what follows we construct a future-directed causal curve β between p and q, which
then immediately implies (p, q) ∈ J+. We proceed as follows: After a preliminary local
estimate we construct a candidate limit curve near p in (M, gR), and then show that it is
both locally Lipschitz and future-directed causal. Finally, we show it naturally extends
all the way up to q.
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Step 1. A local version of (23). We consider βn : [0, Ln] → M on arbitrary subin-
tervals of its domain. Suppose there exists a subinterval [s, t] ⊆ [0, Ln] such that
L̂τ (βn|[s,t]) > τ(βn(t)) − τ(βn(s)) + 1

n . Then by the additivity of null lengths

L̂τ (βn) = L̂τ (βn|[0,s]) + L̂τ (βn|[s,t]) + L̂τ (βn|[t,Ln ])

> |τ(βn(s)) − τ(p)| + |τ(βn(t)) − τ(βn(s)) +
1

n
| + |τ(q) − τ(βn(t))|

≥ τ(q) − τ(p) +
1

n
,

a contradiction to (23). Thus for all subintervals [s, t] of the domain of βn

|τ(βn(t)) − τ(βn(s))| ≤ L̂τ (βn|[s,t]) ≤ τ(βn(t)) − τ(βn(s)) +
1

n
. (24)

(Note that at this point we cannot yet rule out that τ(βn(t)) − τ(βn(s)) < 0, which is
why we do not want to drop the absolute value on the left hand side.)

Step 2. Construction of a candidate limit curve β near p. Suppose, that each
βn : [0, Ln] → M is parametrized by gR-arclength with βn(0) = p and βn(Ln) = q.
In addition, we attach a future-directed inextendible causal curve β̃ at q. Since gR is
complete, β̃ must have infinite gR-length. Thus we can extend all βn by β̃ to obtain
future-inextendible piecewise causal curves with gR-arclength parametrization, again
denoted by βn : [0,∞) → M and satisfying (24). In particular, for each n and any
s, t ∈ [0,∞),

dR(βn(s), βn(t)) ≤ LR(βn|[s,t]) = |t − s|. (25)

By construction, βn(0) = p for all n. Fix any other t0 ∈ (0,∞). Then, due to the
gR-arclength parametrization, each curve segment βn|[0,t0] is contained in the bounded
set (which, by the Hopf–Rinow Theorem for gR is also compact)

Bt0(p) := {x ∈ M : dR(p, x) ≤ t0}.
In particular, the family (βn|[0,t0])n is uniformly bounded and uniformly equicontinuous.
Thus, by the Arzelà–Ascoli Theorem (see, for instance, [44, Thm. 47.1] or [8, Thm.
3.30]), there exists a continuous curve β : [0,∞) → M , such that a subsequence of
(βn)n converges uniformly to β on all compact subintervals. Since 1

nk
≤ 1

k for any
subsequence, we can denote this subsequence again by (βn)n . Moreover, (25) implies
that β is a locally Lipschitz curve with

dR(β(s), β(t)) ≤ |t − s| (26)

for all s, t ∈ [0,∞).
Step 3. The curve β is future-directed causal. Since β is locally Lipschitz, together

with Rademacher’s Theorem, we know that β̇ exists almost everywhere. To conclude
that β is a future-directed causal curve, it remains to be shown that g(β̇, β̇) ≤ 0 and
(τ ◦ β)′ > 0 almost everywhere.

By [16, Prop. 4.10] the gR-norm of the analytic derivative and dR-metric derivative
of β exist and coincide almost everywhere. Combined with the Lipschitz estimate (26)
for β we thus have for almost all s ∈ [0,∞)

0 ≤ ‖β̇(s)‖R = lim
h→0

dR(β(s + h), β(s))

|h| ≤ lim
h→0

|h|
|h| = 1. (27)



90 Page 18 of 35 A. Burtscher, L. García-Heveling

In order to show that β̇ is almost everywhere causal we need to control the τ -component
β̇τ = (τ ◦ β)′ of the tangent vectors. Suppose β̇(s0) exists for a fixed s0 ∈ (0,∞),
and consider the closed (and hence compact) dR-ball Bε of radius ε at β(s0) in M . By
Lipschitz continuity (26) of β the whole interval [s0 − ε/2, s0 + ε/2], is mapped into
Bε/2. We use the approximating sequence (βn)n of β next, more precisely, that the βn
are piecewise causal and converge uniformly on compact intervals. Thus for sufficiently
large n all βn([s0 − ε/2, s0 + ε/2]) ⊆ Bε. By the local estimate (24)

lim
n→∞ L̂τ (βn|[s0−ε/2,s0+ε/2]) = τ(β(s0 + ε/2)) − τ(β(s0 − ε/2)). (28)

On the other hand, due to the gR-arclength parametrization of βn and Lemmas 2.4 and
3.5 (with constant cε = maxx∈Bε �(x) ≥ 1)

ε = LR(βn|[s0−ε/2,s0+ε/2]) ≤ cεLW (βn|[s0−ε/2,s0+ε/2])
≤ √

2cε L̂τ (βn|[s0−ε/2,s0+ε/2]).

Hence by (28)

1√
2cε

≤ 1

ε
lim
n→∞ L̂τ (βn|[s0−ε/2,s0+ε/2]) = τ(β(s0 + ε/2)) − τ(β(s0 − ε/2))

ε
.

Due to the continuity of �, it follows that cε → �(β(s0)) as ε → 0, while the difference
quotient of τ ◦ β converges to the derivative β̇τ (s0) = (τ ◦ β)′(s0). Thus in the limit we
obtain

β̇τ (s0) ≥ 1√
2�(β(s0))

> 0.

Due to the Wick-rotation gW of g as well as the gR-bound (27)

g(β̇(s0), β̇(s0)) = −2|β̇τ (s0)|2 + ‖β̇(s0)‖2
W

≤ −�−2(β(s0)) + �−2(β(s0))‖β̇(s0)‖2
R ≤ 0.

This proves that β̇ is future-directed causal almost everywhere.
Step 4. The point q lies on β. By construction β(0) = p, and by Step 3 we know

that τ ◦ β is strictly increasing on [0,∞). We distinguish two cases:

(i) If there is an s0 ∈ [0,∞) such that τ(β(s0)) = τ(q), then the following argument
implies that β(s0) = q:
Let ε > 0 be arbitrary. Since both d̂τ and dR induce the manifold topology, there
exists a δ > 0 such that dR(β(s0), x) < δ implies d̂τ (β(s0), x) < ε. Due to the
convergence βn(s0) → β(s0) (obtained with respect to dR in Step 2), for any n
sufficiently large

d̂τ (β(s0), βn(s0)) < ε. (29)

Moreover, due to the continuity of τ ◦ β, for all n > 1
ε

sufficiently large

|τ(βn(s0)) − τ(q)| = |τ(βn(s0)) − τ(β(s0))| < ε.
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Since βn(Ln) = q, the local estimate (24) on [s0, Ln] (or [Ln, s0] if Ln < s0) yields

d̂τ (βn(s0), q) ≤ L̂τ (βn|[s0,Ln ])

≤ τ(q) − τ(βn(s0)) +
1

n
< 2ε. (30)

Combining (29) and (30) implies that d̂τ (β(s0), q) < 3ε for any ε > 0. Thus
β(s0) = q.

(ii) The only obstruction to the desired conclusion is therefore that for all s ∈ [0,∞)

τ (β(s)) < τ(q). (31)

We show that this case cannot occur. Since the level set τ−1(q) is a Cauchy surface
and τ increases along β, (31) implies that the causal curve β is future extendible as
a future-directed causal curve. In particular, the future endpoint x := lims→∞ β(s)
of β exists (since it is necessarily part of any extension) and by (31), τ(x) ≤ τ(q).
If x = q we are done, otherwise there exists a relatively compact open set W around
β ∪ {x} such that q �∈ W .
We will use the approximating curves βn to show that β must in fact leave W : Since
βn(0) = p ∈ W and βn(Ln) = q �∈ W there exists

bn := sup{s | βn(t) ∈ W for all t ∈ [0, s]} ∈ (0, Ln),

and βn(bn) ∈ ∂W . Since W is compact, by Lemmas 2.4 and 3.5, there exists a
constant C > 0 such that

bn = LR(βn|[0,bn ]) ≤ √
2C L̂τ (βn|[0,bn ]) ≤ √

2C L̂τ (βn|[0,Ln ])

≤ √
2C

(
τ(q) − τ(p) +

1

n

)
.

Hence all bn are uniformly bounded from above by a constant a := √
2C

(τ (q) − τ(p) + 1). In particular, a subsequence converges to b := lim sup bn ∈
[0, a). Let ε > 0. By uniform convergence βn → β on [0, a] for all sufficiently
large n (along the previous subsequence), we have

dR(β(bn), βn(bn)) < ε. (32)

Since βn(bn) ∈ ∂W and ∂W is compact as closed subset of the compact set W ,
there exists a subsequence of points βnk (bnk ) that converges to a point y ∈ ∂W , i.e.,
for k sufficiently large

dR(βnk (bnk ), y) < ε. (33)

Combining (32)–(33) yields

dR(β(b), y) ≤ dR(β(b), βnk (bnk )) + dR(βnk (bnk ), y) < 2ε.

In other words, β(b) = y ∈ ∂W , a contradiction to the assumption that β is entirely
contained in the open set W . Hence the assumption (31) must be false, and thus by
case (i) β indeed reaches q.

To sum up, we have constructed a future-directed causal (Step 3) curve β from p (Step
2) to q (Step 4). Therefore, (p, q) ∈ J+, and thus J+ = R̂+

τ . ��
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Remark 3.6 (Future/Past Cauchy level sets). Inspecting the proof of Theorem 3.3 one
observes that the assumption that the level sets of τ are Cauchy is only used in Step 4(ii).
In fact, it is only needed that the level sets are past Cauchy because we construct the
limiting curve β from p to q (and τ(p) < τ(q)). We could have equally well constructed
the curve from q in which case we would have used that the level sets are future Cauchy
(see definition in [4, p. 315]). Since either case yields the desired result, τ having future
(or past) Cauchy level sets is already sufficient for d̂τ to encode causality.

We can adapt the proof of Theorem 3.3 to show its local counterpart Theorem 3.4,
which holds for every stably causal Lorentzian manifold (since every such manifold
admits a smooth temporal function by [42, Thm. 4.100]).

Proof of Theorem 3.4. Let x ∈ M . Since J+ ⊆ R̂+
τ is always true, the ⊆ inclusion is

trivial. In order to show ⊇ we construct a suitable relatively compact open neighborhood
U of x and construct causal curves locally similar to the proof of Theorem 3.3. Only Step
2 made use of the complete Riemannian metric gR and Step 4 used global hyperbolicity
of (M, g) and have to be carried out slightly different.

By local compactness of M there is an r > 0 sufficiently small such that B̂τ
3r (x) is

relatively compact (the open ball with respect to d̂τ of radius 3r ). ConsiderU := B̂τ
r (x).

Suppose now p, q ∈ U and (p, q) ∈ R̂+
τ , i.e.,

d̂τ (p, q) = τ(q) − τ(p) > 0.

By definition ofU and the triangle inequality also d̂τ (p, q) < 2r . Let (βn)n be a sequence
of piecewise causal paths βn : [0, Ln] → M that approximates d̂τ (p, q). Hence we may
fix any ε ∈ (0, d̂τ (p, q)) and assume without loss of generality that for all n,

L̂τ (βn) < d̂τ (p, q) + ε < 2r. (34)

In particular, all βn are contained in B̂τ
3r (x).

Since τ is assumed to be temporal the Wick-rotated metric gW of g exists (see
Sect. 2.1). We assume that the βn are parametrized by gW -arclength, and therefore Ln =
LW (βn). By Lemma 2.4 and (34) we then obtain the following estimates:

d̂τ (p, q) ≤ L̂τ (βn) ≤ Ln ≤ √
2L̂τ (βn) ≤ √

2
(
d̂τ (p, q) + ε

)
. (35)

It is more convenient to have all the βn defined on the same interval [0, L], which we
achieve by extending each βn as follows: Set L := √

2(d̂τ (p, q)+ε). Then attach to each
βn a future-directed causal curve β̃n starting at q of gW -length L̃n ≤ L − Ln . Notice
that

L̃n ≤ L − Ln < (
√

2 − 1)d̂τ (p, q) +
√

2ε < 2(
√

2 − 1)r +
√

2ε < r

for ε small enough. Since L̂τ (β̃n) ≤ L̃n (by Lemma 2.4) and β̃n starts at q ∈ B̂τ
r (x),

it follows that β̃n is contained in B̂τ
3r (x). This also proves that indeed a long enough

extension up to L̃n = L − Ln exists, given that B̂τ
3r (x) is relatively compact and the

spacetime (M, g) is non-totally imprisoning (because it admits a time function). We have
thus obtained a sequence of piecewise causal curves, denoted again as βn : [0, L] →
B̂τ

3r (x). The curves βn start at p = βn(0), reach q = βn(Ln), and then continue to their
endpoint βn(L). The local estimate (24) of Step 1 holds, too, because the extension is
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causal: If s ≤ t ≤ Ln it follows as in the proof of Theorem 3.3. If s ≤ Ln ≤ t ≤ L it
follows from (24) on [0, Ln] and future causality on [Ln, L] via

|τ(βn(t)) − τ(βn(s))| ≤ L̂τ (βn|[s,t]) = L̂τ (βn|[s,Ln ]) + L̂τ (βn|[Ln ,t])
= L̂τ (βn|[s,Ln ]) + τ(βn(t)) − τ(βn(Ln))

≤ τ(βn(t)) − τ(βn(s)) +
1

n
.

If Ln ≤ s ≤ t ≤ L the inequality (24) follows directly from the future causality of
βn|[Ln ,L] even without error term 1

n .

Let B := B̂τ
3r (x). By the Arzelà–Ascoli Theorem applied on the compact metric

space (B, dW |B), there exists a subsequence, again denoted by (βn)n , that uniformly
converges to a 1-Lipschitz continuous limit curve β : [0, L] → B as in Step 2 of the
proof of Theorem 3.4.

Step 3 in the proof of Theorem 3.4 can be used verbatim with gR = gW (and � ≡ 1)
since completeness of gR was not needed here. Thus β is future-directed causal.

It remains to prove that β reaches the point q, which is now easier thanks to the fact
that (βn)n converges to β uniformly on [0, L]. Recall that βn(Ln) = q for all n ∈ N. By
passing to a subsequence, if necessary, we may assume that Ln → L∞ ≤ L . But then,
given δ > 0, for all n large enough we obtain

dW (β(L∞), q)

≤ dW (β(L∞), βn(L∞)) + dW (βn(L∞), βn(Ln)) + dW (βn(Ln), q)

≤ δ + |L∞ − Ln| + 0 < 2δ,

and therefore conclude that β(L∞) = q.
Thus β is indeed a future-directed causal curve from p through q and hence (p, q) ∈

J+. ��

3.2. Alternative approaches and proof of Theorem 1.9. In earlier work of Sormani and
Vega the important class of warped product spacetimes I × f � with interval I ⊆ R

and complete Riemannian fibers � was already shown to encode causality for certain
temporal functions [52, Thm. 3.25]. It is also easy to see that d̂τ encodes causality if
all null distances are realized by piecewise causal curves and τ is locally anti-Lipschitz
[1, Rem. 3.22]. It remained an open problem to understand causality encoding in the
general case. Independently to our approach, Sakovich and Sormani [47] very recently
obtained some results that are comparable to Theorem 3.3 and Theorem 3.4. We briefly
discuss their setting and how it compares to ours.

The global causality encoding result [47, Thm. 4.1] of Sakovich and Sormani is for-
mulated for spacetimes with proper locally anti-Lipschitz time functions, requiring that
all time slabs τ−1([τ1, τ2]) with [τ1, τ2] ⊆ τ(M) are compact. The following argument
shows that the level sets of a proper time function τ are (compact) Cauchy hypersurfaces
and thus the spacetimes that Sakovich and Sormani consider are, in particular, globally
hyperbolic: Suppose, for the sake of contradiction, that γ is an inextendible causal curve
on M that does not intersect some τ -level set. Without loss of generality, suppose that
[0, 1] ∈ τ(M) and that γ intersects {τ = 0} but not {τ = 1}. Then the piece of γ

lying in the compact set τ−1([0, 1]) is future inextendible, contradicting the fact that
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any spacetime with a time function is non-totally imprisoning. Hence γ must intersect
every level set of τ .

Therefore, our global Theorem 3.3 is applicable to a wider class of spacetimes (also
those having noncompact Cauchy surfaces) while the result [47, Thm. 4.1] of Sakovich
and Sormani is applicable to a wider class of time functions (locally anti-Lipschitz
instead of temporal).

In Sect. 3.3 we show that the assumption of Cauchy level sets can, in general, not
be relaxed (see Remark 3.6 for a mild trivial extension). An example of Sakovich and
Sormani [47, Ex. 2.2] that was constructed to show that noncompact level sets are
problematic, in fact also already fails on a much more fundamental level because the
spacetime is not globally hyperbolic.

Both proofs, that of Theorem 3.3 and that of Sakovich and Sormani [47, Thm. 4.1],
rely on constructing a limit of a d̂τ -minimizing sequence of piecewise causal curves,
and showing that the limit is a (continuous) causal curve. Both proofs do this via the
Arzelà–Ascoli Theorem, but while Sakovich and Sormani apply it using the null distance,
we employ a complete Riemannian metric gR (directly related to g via Wick-rotation,
hence requiring τ temporal). This added regularity in our proof allows us to indeed
obtain a locally Lipschitz (with respect to any Riemannian metric) limit curve β and
compute g(β̇, β̇) explicitly. Sakovich and Sormani can work with locally anti-Lipschitz
time functions by using special coordinate systems and do not rely on the regularity of
β to show that points are causally related. The important step to prove that the limit
curve indeed reaches the desired endpoint is achieved by Sakovich and Sormani by the
properness of τ (which implies that the whole sequence lies in a compact set) while we
employ Cauchyness of the level sets (which can be noncompact, placing less restrictions
on the spacetime, as discussed above).

In Theorem 1.9 we combine both approaches to obtain causality encodement for
all locally anti-Lipschitz time functions with (future/past) Cauchy level sets (neither
required to be proper nor temporal). See Example 3.7 for a physically relevant case
where our result applies.

Proof of Theorem 1.9. Suppose the level sets of τ are past Cauchy. We use the notation
of Theorem 3.3 and sequence (βn)n satisfying (23). Note that Step 1 in the proof of
Theorem 3.3 does not require any specific property of τ either, so (24) also holds. We
can carry out Step 2 with respect to any complete Riemannian metric h on M (instead
of gR). Thus by the Arzelà–Ascoli Theorem we obtain a locally Lipschitz limit curve
β : [0,∞) → M from p.

Since dh and d̂τ both induce the manifold topology, the uniform convergence with
respect to dh on compact subintervals implies pointwise convergence βn(t) → β(t) with
respect to the null distance d̂τ for all t ∈ [0,∞) as n → ∞. Since the induced length
structure of d̂τ , i.e.,

Ld̂τ
(γ ) = sup

{
k∑

i=1

d̂τ (γ (si ), γ (si−1)) | a = s0 < s1 < . . . < sk = b

}

for rectifiable paths γ : [a, b] → M , is lower semicontinuous [14, Prop. 2.3.4] and
agrees with L̂τ on the class of piecewise causal curves [1, Prop. 3.8] we obtain

Ld̂τ
(β|[s,t]) ≤ lim

n→∞ Ld̂τ
(βn|[s,t]) = lim

n→∞ L̂τ (βn|[s,t]).
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Together with property (24) and the continuity of τ we thus have that

Ld̂τ
(β|[s,t]) ≤ τ(β(t)) − τ(β(s)) ≤ d̂τ (β(s), β(t)) ≤ Ld̂τ

(β|[s,t]).
Hence β is not only a d̂τ -minimizing curve but also satisfies for all s, t ∈ [0,∞)

Ld̂τ
(β|[s,t]) = τ(β(t)) − τ(β(s)).

As in the proof of Sakovich and Sormani [47, Thm. 4.3] their local causality encoding
property thus implies that β is future-directed causal as continuous curve (in the sense
of [27, p. 184]) starting at p. This completes Step 3.

It remains to be shown that β reaches q (in fact, at this point it could still be constant
p). We proceed in a similar fashion as in Step 4 of the proof of Theorem 3.3 (also taking
into account Remark 3.6) and distinguish the two cases (i) τ(β(s0)) = τ(q) for some
s0 ∈ [0,∞) and (ii) τ(β(s)) < τ(q) for all s:

(i) extends verbatim (replacing dR by dh) and implies that β(s0) = q.
(ii) requires us to prove that bn is uniformly bounded from above. Note that, again

with respect to the arbitrary complete Riemannian metric h chosen for the convergence
in Step 2, by [16, Thm. 4.11],

bn = Lh(βn|[0,bn ])

= sup

{
k∑

i=1

dh(βn(si ), βn(si−1)) | 0 = s0 < s1 < . . . < sk = bn

}
.

Since τ is locally anti-Lipschitz, by Step 1 in the proof of Lemma 2.6, for every point
in M there exists a neighborhood U and a constant C > 0 such that

dh(x, y) ≤ Cd̂τ (x, y) (36)

for all x, y ∈ U . By the (reverse) argument in the proof of Theorem 1.7 on page 11, we
can even assume that C is such that (36) holds on the entire compact set W . Since all
βn(si ) ∈ W by construction, and again by [1, Prop. 3.8], we have

bn ≤ sup

{
k∑

i=1

Cd̂τ (βn(si ), βn(si−1)) | 0 = s0 < s1 < . . . < sk = bn

}

≤ CLd̂τ
(βn|[0,bn ]) = C L̂τ (βn|[0,bn ]) ≤ C(τ (q) − τ(p) + 1).

Proceeding again as in the proof of Theorem 3.3 yields a contradiction.
Therefore, β is a locally Lipschitz future-directed causal curve from p to q, and

q ∈ J+(p). ��
Theorem 1.9 (for future Cauchy level sets) allows us to immediately prove global

causality encodement for a large and physically relevant class of time functions for which
local causality encodement was already shown by Sakovich and Sormani [47, Cor. 1.2].

Proof of Corollary 1.10. By Lemma 2.12 the regular cosmological time function τ : M →
(0,∞) is weak temporal. By [4, Prop. 2.6] the level sets of τ are future Cauchy, hence
the result follows from Theorem 1.9. ��

We conclude with a basic cosmological example for which Theorem 1.9 is directly
applicable.
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Example 3.7 (Milne model). Recall that the n + 1-dimensional Milne model (M, g) is a
globally hyperbolic spacetime which can be viewed as the chronological future I +(0) of
the origin in the Minkowski spacetime R

1,n (see, for instance, [37]). The cosmological
time function τ : M → (0,∞) is the Lorentzian distance dg from the origin, i.e.,

τ(p) := sup
q∈J−(p)

dg(q, p).

By Lemma 2.12 τ is a weak temporal function and the level sets of τ are the noncompact
hyperboloids (which are Cauchy). Thus by our Theorem 1.9 we see that d̂τ encodes
causality globally. Due to noncompactness the result [47, Thm. 4.1] is not applicable.
Since, however, the Milne model can be viewed as a warped product when expressed in
the right coordinates [37, Eq. 1.1], causality encodement already follows from an earlier
result of Sormani and Vega [52, Thm. 3.25].

Remark 3.8 (Local causality-encoding results). One can extend the local causality-
encoding Theorem 3.4 to locally anti-Lipschitz time functions along the same lines.
Note that in this local result a neighborhood U of x is constructed on which any two
points p, q ∈ U can be compared as in (21), while in the local result [47, Thm. 1.1] of
Sakovich and Sormani the point p = x is fixed and only q can be chosen freely.

3.3. Counterexamples. We conclude this section with a series of examples that show that
the local Theorem 3.4 with respect to temporal functions cannot be promoted to a global
statement in the spirit of Theorem 3.3, even if the spacetime is globally hyperbolic, but
the τ -level sets are not Cauchy (Example 3.12).

In order to better contextualize our examples, we also consider the K + relation. Recall
that K + is defined as the (unique) smallest closed and transitive relation containing J+.
By Lemma 3.2 we therefore know that

J+ ⊆ K + ⊆ R̂+
τ .

The definition of K + is due to Sorkin and Woolgar [51]. Furthermore, a spacetime
(M, g) is called K +-causal if the K + relation is antisymmetric, a condition later shown
to be equivalent to stable causality by Minguzzi [38], and hence also equivalent to the
existence of time function [28,41].

Example 3.9 (J+
� K + = R̂+

τ ). Allen and Burtscher constructed examples [1, Ex. 3.23,
3.24] by removing points and lines from Minkowski space for which causality is not
encoded, i.e., J+ �= R̂+

τ . Notably, K -causality is still encoded, meaning that K + = R̂+
τ .

Sormani and Vega gave another example [52, Prop. 3.4] for which one can check
that J+

� K +
� R̂+

τ . Their example is Minkowski space with the time function τ = t3,
which is is not locally anti-Lipschitz, and the null distance is not definite. We modify
said example to obtain a definite null distance for which neither J+ nor K + are encoded.

Example 3.10 (J+
� K +

� R̂+
τ ). Consider M := R

1,1 \ {(0, x) | x ≥ 0} equipped with
the usual Minkowski metric g := −dt2 + dx2. We define the function τ : M → R by

τ(t, x) :=
{
t3 if x > 0,

t3 + t x2 if x ≤ 0.
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p

q1
q2

q3

q

x

t

Fig. 2. A piecewise causal curve that approximates the distance between the points p and q in Example 3.10,
giving the upper bound (40)

First observe that τ is a temporal function on (M, g) because its gradient vector is
timelike: For x > 0, this is trivial (note that then t �= 0, by definition of M). For x ≤ 0,
since (0, 0) �∈ M , it follows from

g(∇τ,∇τ) = − (∂tτ)2 + (∂xτ)2

= −
(

3t2 + x2
)2

+ (2t x)2

= −9t4 − x4 − 6t2x2 + 4t2x2 < 0.

Next we show that every pair of points p = (tp, xp), q = (tq , xq) with xp, xq > 0
and tq < 0 < tp satisfies

d̂τ (p, q) = τ(p) − τ(q), (37)

despite the fact that clearly not all such p and q are related by J+ or K +: Let k ∈ N be
large enough so that tp > xp/k and |tq | > xq/k. Consider the points (see Fig. 2)

q1 := (xp/k, xp), q2 := (xp/k, 0), q3 := (0,− min{xp, xq}/k).
Since p ∈ J+(q1) and q2 ∈ J+(q3) trivially

d̂τ (p, q1) = t3
p −

( xp
k

)3
, d̂τ (q2, q3) =

( xp
k

)3
. (38)

Moreover, taking a piecewise null curve from q1 to q2 that consists of 2k segments
between t = xp/k and t = 2xp/k (see Fig. 2), we get that

d̂τ (q1, q2) ≤ 2k

((
2xp
k

)3

−
( xp
k

)3
)

= 14
x3
p

k2 . (39)

Combining (38) and (39) with the triangle inequality proves

d̂τ (p, q3) ≤ t3
p + 14

x3
p

k2 ,



90 Page 26 of 35 A. Burtscher, L. García-Heveling

and by symmetry we obtain the analogous estimate for d̂τ (q, q3), thus

d̂τ (p, q) ≤ d̂τ (p, q3) + d̂τ (q3, q) ≤ t3
p + 14

x3
p + x3

q

k2 +
∣∣tq

∣∣3
, (40)

and taking the limit k → ∞ implies (37), as desired.

In the previous example, we have constructed a minimizing sequence of piecewise
causal curves by choosing curves that are close to a “barrier" (the removed positive x
axis). This barrier, however, also makes the spacetime causally discontinuous. Since the
time function τ is perfectly regular (it is C1 with timelike gradient, and can easily be
smoothed out), one might suspect that causal discontinuity is the reason that causality is
not encoded by d̂τ in Example 3.10. This motivates the next example, where we construct
a causally simple spacetime with a temporal function τ but causality is still not encoded
in d̂τ . Recall that causal simplicity means that the causal relation J+ is antisymmetric
and closed, and sits only one step below global hyperbolicity on the causal ladder. In
order to achieve this effect, instead of approaching a barrier, we construct an example
with a minimizing sequence of piecewise null curves that runs off to infinity.

Example 3.11 (J+ = K +
� R̂+

τ ). Let M := R
3 with coordinates (t, x, y) and warped

product metric tensor

g := cosh2(x)
(
−dt2 + dy2

)
+ dx2. (41)

A change of coordinates z := arctan (sinh(x)) reveals that g is conformal to the
Minkowski metric −dt2 +dy2 +dz2, where z ∈ (−π/2, π/2). Hence (M, g) is causally
simple with J+ = K +.

Furthermore, note that all {x = x0} planes are conformal to Minkowski space R
1,1,

while each {y = y0} plane is isometric to the universal cover of AdS2. Therefore, the
induced null geodesics s �→ (t±(s), x±(s)) in the {y = y0} plane going through a point
(t0, 0) are given by

t±(s) = 2 arctan
(

tanh
( s

2

))
+ t0,

x±(s) = ±s, (42)

the subscript + or − indicating the right- or left-going geodesics respectively [32, Sec.
5.10]. Moreover, the function

τ(t, x, y) := cosh−1(x)t + t3,

is a steep temporal function on (M, g) since

g(∇τ,∇τ) = − cosh2(x) (∂tτ)2 + (∂xτ)2

= − cosh2(x)
(

cosh−1(x) + 3t2
)2

+
(
− cosh−1(x) tanh(x)t

)2

= −1 − cosh2(x)9t4 −
(

6 cosh(x) − cosh−2(x) tanh2(x)
)
t2 ≤ −1,

where in the last line, we have used that | tanh(x)| < 1 ≤ cosh(x) for all x ∈ R.
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Consider now two points p, q ∈ M of the form

p :=
(
−π

2
, 0, yp

)
, q :=

(π

2
, 0, yq

)
,

where |yp − yq | > π . We are going to show that (p, q) ∈ R̂+
τ , i.e., that

d̂τ (p, q) = τ(q) − τ(p), (43)

despite the fact that (p, q) �∈ J+. To see that (p, q) �∈ J+, note that by definition of g
in (41) the {x = 0} plane is isometric to 1 + 1-Minkowski space, and that the projection
(t, x, y) �→ (t, y) of any causal curve from p to q in M to {x = 0} remains causal in
{x = 0}. The condition |yp − yq | > π then implies that (p, q) �∈ J+{x=0}, and therefore
also (p, q) �∈ J+.

In order to show (43), we proceed in three steps. First, define

ps = (0, s, yp), qs = (0, s, yq),

where s ∈ R is arbitrary. By (42), a null geodesic in the {y = yp} plane starting at p
eventually reaches the point (t+(s), s) where t+(s) < 0. It follows that (p, ps) ∈ J+,
and by the time reversed argument on the {y = yq} plane, that (qs, q) ∈ J+, altogether
implying that

d̂τ (p, ps) = τ(ps) − τ(p) = −τ(p),

d̂τ (qs, q) = τ(q) − τ(qs) = τ(q). (44)

The second step is to estimate the null distance between ps and qs . Given that the {x = s}
plane is conformal to Minkowski space and the null distance is conformally invariant
it is easy to construct piecewise causal curves between ps and qs . The null distance
induced on each plane is different though, and since τ |{x=xs } → t3 as s → ∞ we have
at the “boundary” of our spacetime an indefinite null distance that cannot distinguish
any points in the {t = 0} slice [52, Prop. 3.4]. We make this intuitive picture precise by
constructing in each {x = xs} plane a piecewise null curve βs,k that bounces k times
between t = 0 and t = |yp − yq |/k (see Fig. 3). Using the curves βs,k to estimate the
null distance, we obtain the upper bound

d̂τ (ps, qs) ≤ lim inf
k→∞ L̂τ (βs,k)

= lim inf
k→∞ 2k

(∣∣yp − yq
∣∣3

k3 + cosh−1(s)

∣∣yp − yq
∣∣

k

)

= 2 cosh−1(s)
∣∣yp − yq

∣∣ . (45)

Finally, the triangle inequality together with (44) and (45) yields

d̂τ (p, q) ≤ lim
s→∞

(
d̂τ (p, ps) + d̂τ (ps, qs) + d̂τ (qs, q)

)
= τ(q) − τ(p).

This finishes the proof of (43), since the opposite inequality is always true.
Note that in our proof, |yp − yq | can be chosen arbitrarily large while d̂τ (p, q) =

π + π3

4 remains the same. Therefore the d̂τ -ball at p of radius R > π + π3

4 is unbounded
with respect to the usual Euclidean distance.
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0
s0

s1 yp

yq−π
2

0

π
2

p

q

x
y

t

Fig. 3. Two piecewise causal curves going trough the points ps0 and qs0 (thick) and ps1 and qs1 (thin),
respectively, that approximate the null distance between p and q in Example 3.11. The thin curve yields a
better approximation

Given that in the causal ladder of spacetimes, causal simplicity comes just before
global hyperbolicity, the previous Example 3.11 shows that the assumptions in The-
orem 3.3 are sharp in view of the causal structure required. The following and final
example shows that even on a globally hyperbolic spacetime, Cauchyness of the time
function cannot simply be dropped in Theorem 1.9. This is not surprising, because non-
Cauchy temporal functions on globally hyperbolic spacetimes can have a much wilder
behavior than their Cauchy counterparts, such as topology changes of the level sets [49].

Example 3.12. (J+ = K +
� R̂+

τ for non-Cauchy locally anti-Lipschitz time function
in globally hyperbolic spacetime) We show that the (future/past) Cauchy assumption
in Theorem 1.9 cannot be relaxed. To this end we construct an example that combines
aspects of Examples 3.10 and 3.11 in the sense that a d̂τ -minimizing sequence of piece-
wise causal curves between certain points approaches both a barrier (in the x direction)
and runs off to infinity (in the y direction).

The spacetime under consideration is

M := {(t, x, y) | t > 0, x > t − 1}
∪ {(t, x, y) | t < 0, x < t + 1}
∪ {(0, x, y) | −1 < x < 1} ⊆ R

1,2,

considered as subset of the (2 + 1)-dimensional Minkowski space with metric g :=
−dt2 + dx2 + dy2 (see Fig. 4). Clearly, M is globally hyperbolic. We equip M with the
continuous function

τ(t, x, y) := t3 + �(t, x) cosh−1
( y

2

)
,

where

�(t, x) :=
{√

(t + 1)2 − x2 if |t + 1| > |x |,
0 otherwise.
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q2

p

q

q1

q3
q4

q5

x
y

t

Fig. 4. A piecewise causal curve that approximates the null distance between p and q in Example 3.12. Only
the space in between the two grey surfaces is part of the spacetime. The curve comes ε-close to the boundary,
but remains entirely within M

We show that (i) τ is a time function for (M, g) and (ii) that the corresponding null
distance d̂τ does not encode causality globally. Theorem 1.9 thus implies that τ is not
(future/past) Cauchy, as can also be seen by considering causal curves in Minkowski
spacetime which leave the region M .

(i) We show that the gradient vector field ∇τ is timelike almost everywhere, which is
a sufficient condition for being a time function. In the region where � = 0, our function
is simply t3, and since said region does not include {t = 0}, we have that ∇τ is timelike
there. It remains to consider the region where � �= 0. There the gradient of τ is given
by

∇τ = −
(

3t2 +
t + 1√

(t + 1)2 − x2
cosh−1

( y

2

))
∂t

− x√
(t + 1)2 − x2

cosh−1
( y

2

)
∂x

− 1

2

√
(t + 1)2 − x2 cosh−1

( y

2

)
tanh

( y

2

)
∂y,

and therefore its norm is

g(∇τ,∇τ) = − 9t4 − 3t2 t + 1√
(t + 1)2 − x2

cosh−1
( y

2

)

− cosh−2
( y

2

)
+

1

4

(
(t + 1)2 − x2

)
cosh−2

( y

2

)
tanh2

( y

2

)
.

On the RHS, the terms on the first line are always negative (since t + 1 > 0 in the
region we are considering). If t ≤ 1, then the second line is also negative, since then
(t + 1)2 − x2 ≤ 4 and | tanh(z)| < 1. If, on the other hand, t ≥ 1, then the 9t4 term
dominates the whole expression (since also cosh(z) > 1). In either case, we have shown
that g(∇τ,∇τ) < 0, as desired.
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(ii) It remains to be shown that causality is not encoded in the null distance. Concretely,
we show that for all p = (tp, xp, yp) and q = (tq , xq , yq) with tp < −2 < 2 < tq and
xp < tp + 1, xq > tq + 1,

d̂τ (p, q) = τ(q) − τ(p),

despite the fact that clearly not every two such points are causally related. The argument
is depicted in Fig. 4, and we omit some computations that are analogous to the ones
in the previous examples. Choose ε > 0 and follow a causal segment from p to q1 =
(−ε, xp, yp), so that

d̂τ (p, q1) = τ(p) − ε3.

Note that q1 lies in a region where τ = t3. Therefore, given any (arbitrarily large) R > 0,
for q2 = (−ε, xp, R) we have

d̂τ (q1, q2) → 0 as ε → 0,

similarly to the situation in Example 3.10. Next, let q3 = (0, 0, R). Then

d̂τ (q2, q3) ∼ ε for R such that cosh−1(R) ≤ ε2,

similar to what happens in Example 3.11. Finally, do a similar procedure backwards to
get from q3 to q4 = (ε, xq , R) to q5 = (ε, xq , yq) (with arbitrarily small length) and
then to q (with length τ(q) − ε3).

In conclusion, by choosing R(ε) such that cosh−1(R(ε)) ≤ ε2 (as required above),
we have that

lim
ε→0

4∑

i=1

d̂τ (qi , qi+1) = 0,

and by the triangle inequality

d̂τ (p, q) ≤ lim
ε→0

[
d̂τ (p, q1) +

4∑

i=1

d̂τ (qi , qi+1) + d̂τ (q5, q)

]
= τ(q) − τ(p),

as claimed (the opposite inequality always holds).

We end this section noting that the temporal function in Example 3.11 is steep, a notion
already discussed at the beginning of Sect. 2.1. Since any temporal function is steep for
a conformal transformation of g (which leaves the null distance invariant) steepness
is unrelated to causality encodement. The situation is different for completely uniform
temporal functions (also called h-steep), because they are special Cauchy temporal
functions. We define and make use of them in the following section.
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4. Completeness

In this final section we prove our Main Theorem 1.4 which characterizes global hyper-
bolicity of (M, g) by metric completeness of (M, d̂τ ). Completeness is a global property,
therefore we cannot expect (M, d̂τ ) to be complete for all choices of τ (even though they
are locally equivalent by Sect. 2). In Sect. 3 we have observed that locally anti-Lipschitz
Cauchy functions encode causality globally. Therefore, it comes at no surprise that this
is a necessary ingredient for a completeness result. We use and generalize the following
class of time functions recently introduced by Bernard and Suhr [11,12] to study closed
cone fields.

Definition 4.1. Let (M, g) be a spacetime. A smooth function τ : M → R is called a
completely uniform temporal function if there exists a complete Riemannian metric h
on M such that for all causal vectors v ∈ T M

dτ(v) ≥ ‖v‖h . (46)

We call τ a completely uniform weak temporal function if it is weak temporal and (46)
holds almost everywhere.

Originally these functions were called steep with respect to a (complete) Riemannian
metric in [11, p. 473] and later renamed in [12, Def. 1.2]. Subsequently, f -steep functions
with respect to any positive homogeneousC1 function (not just f = ‖.‖h forh a complete
Riemannian metric) were also used by Minguzzi [40, p. 2] in the analysis of Lorentz–
Finsler spaces.

It was shown by Bernard and Suhr [11, Thm. 3] and later also by Minguzzi [40, Thm.
3.1] that the existence of completely uniform temporal function is equivalent to global
hyperbolicity of the spacetime.

These results are key in the following refined version of Theorem 1.4.

Theorem 4.2. Let (M, g) be a spacetime.

(i) If τ is a time function such that (M, d̂τ ) is a complete metric space, then τ is a Cauchy
time function. In particular, (M, g) is globally hyperbolic.

(ii) If (M, g) is globally hyperbolic then there exists a completely uniform weak temporal
function τ , and for every such τ , (M, d̂τ ) is a complete metric space.

Theorem 1.4 is a direct corollary of Theorem 4.2.

Proof. (i) Assume that (M, d̂τ ) is complete but τ is not a Cauchy time function. Then
there exists, without loss of generality, a future-directed future-inextendible causal curve
γ : R → M such that lims→∞ τ(γ (s)) < ∞. Consider the sequence (pn)n of points
given by pn = γ (n). Since the pn are causally related among each other d̂τ (pn, pm) =
|τ(pn)−τ(pm)|. Then the fact that τ ◦γ : R → R is strictly increasing and bounded from
above implies that (pn)n is a Cauchy sequence in (M, d̂τ ). By completeness there exists
a limit point p, and since γ is continuous, p ∈ γ , a contradiction to the inextendibility
of γ . Hence τ must be a Cauchy time function, and (M, g) globally hyperbolic by
Theorem 1.3.

(ii) By [11,40] (M, g) is globally hyperbolic if and only if there is a completely
uniform temporal function τ which with respect to a complete Riemannian metric h
satisfies (46). We show that any such (even only weak temporal) τ is anti-Lipschitz with
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respect to the (complete) distance dh induced by h, i.e., there is a C > 0 such that for
all p, q ∈ M

(p, q) ∈ J+ �⇒ τ(q) − τ(p) ≥ Cdh(p, q). (47)

Pick any q ∈ J+(p) and γ : [0, 1] → M a causal curve with γ (0) = p, γ (1) = q. Then
by (46)

τ(q) − τ(p) =
∫ 1

0
dτ (γ̇ (s)) ds

≥
∫ 1

0

√
h (γ̇ (s), γ̇ (s))ds = Lh(γ ) ≥ dh(p, q).

Thus (47) holds globally, and a theorem of Allen and Burtscher [1, Thm. 1.6] implies
that (M, d̂τ ) is complete (and definite). ��
Remark 4.3. Recall that (M, d̂τ ) is always a locally compact length-metric space [1,
Thm. 1.1]. If (M, d̂τ ) is also complete, the Hopf–Rinow–Cohn-Vossen Theorem implies
that any pair of points can be joined by a d̂τ -length minimizing curve. Beware that the
minimizer is, in general, only d̂τ -rectifiable, but not necessarily piecewise causal [1, Ex.
3.17]. If τ is besides Cauchy also locally anti-Lipschitz, thanks to Theorem 1.9, we still
do know that the null distance between two points is their difference in time precisely
when there is a causal curve between them.

Applying Theorem 4.2(ii) and then (i) proves the following result, originally shown
by Bernard and Suhr [11, Thm. 3] for temporal functions (see also [12, Lemma 1.3]).

Corollary 4.4. If a weak temporal function τ is completely uniform, then τ is
Cauchy. ��

Since the cosmological time function does not attain negative values it is not Cauchy,
and hence by Theorem 4.2(i) the corresponding null distance is not complete. We con-
clude our paper with a counterexample that shows that non-completely uniform Cauchy
temporal functions on globally hyperbolic spacetimes do, in general, also not imply
metric completeness.

Example 4.5 (Cauchy temporal function with incomplete null distance). In [48, Sec. 6.4],
Sánchez constructs a globally hyperbolic spacetime (M, g) = (R2,−dt2 + f 2(t, x)dx2)

with a certain piecewise defined L1-function f : M → (0,∞) and such that t is a
Cauchy temporal function, but the spacelike slice {t = 0}, is geodesically incomplete as
Riemannian manifold (R, f 2(0, x)dx2). Let (0, x), (0, y) be two points on the {t = 0}
slice. Then we can estimate their null distance by a sequence of piecewise null curves
γn(s) = (γ t

n(s), s) satisfying 0 ≤ γ t
n(s) ≤ 1

n . We obtain

d̂t ((0, x), (0, y)) ≤ L̂ t (γn) =
∫ y

x
|γ̇ t

n(s)|ds =
∫ y

x
f (γ t

n(s), s)ds.

Applying dominated convergence to the right hand side yields

lim
n→∞

∫ y

x
f (γ t

n(s), s)ds =
∫ y

x
f (0, s)ds ≤ ‖ f (0, ·)‖L1(R) < ∞.
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This implies that the sequence (n)n is Cauchy because for any ε > 0, assuming that
m ≤ n sufficiently large,

d̂t ((0,m), (0, n)) ≤
∫ n

m
f (0, s)ds ≤

∫ ∞

m
f (0, s)ds < ε.

The hypothetical limit point at ∞, however, is not in M . Therefore, (M, d̂t ) is incomplete.
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