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Abstract: For hyperbolic systems with singularities, such as dispersing billiards, Pesin
theory as developed by Katok and Strelcyn applies to measures that are “adapted” in the
sense that they do not give too much weight to neighborhoods of the singularity set. The
zero-entropy measures supported on grazing periodic orbits are nonadapted, but it has
been an open question whether there are nonadapted measures with positive entropy.
We construct such measures for any dispersing billiard with a periodic orbit having a
single grazing collision; we then use our construction to show that the thermodynamic
formalism for such billiards has a phase transition even when one restricts attention to
adapted or to positive entropy measures.

1. Introduction

Sinai introduced dispersing billiards as a mathematically tractable example of a mechani-
cal system where the Boltzmann hypothesis can be verified [S]. Since then, mathematical
billiards, and the Lorentz gas in particular, have become central models in mathematical
physics. Although the billiard map associated with a Lorentz gas has discontinuities, it
preserves a smooth invariant measure, which we denote by μ SRB. Classical results focus
on establishing quantitative statistical properties such as the Central Limit Theorem,
decay of correlations and large deviation estimates with respect to μ SRB, and they use
a variety of techniques, including Markov partitions and sieves [BSC1,BSC2], Young
towers [Y], spectral analysis of the transfer operator [DZ] and, most recently, projective
cones [DL].

In recent years, there has been significant interest in the existence and properties of
other invariant measures for the billiard map. In particular, the existence and uniqueness
of equilibrium measures with respect to the geometric family of potentials, −t log JuT ,
t ≥ 0, where JuT denotes the unstable Jacobian of the billiard map T , are studied in
[BD1] (for t = 0) and [CWZ,BD2] (for t > 0). A renewed interest in the construction
of Markov partitions for surface diffeomorphisms stemming from [Sar] has also led to
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symbolic codings for more general hyperbolic measures for billiards [LM,ALP]. These
constructions in turn lead to more questions regarding properties of these invariant
measures, such as possible Lyapunov spectra and phase transitions in the associated
pressure functions.

For a class of planar dispersing billiard maps corresponding to a finite horizon Lorentz
gas, we present a construction that answers two open questions in the billiards literature.
The first relates to the construction of countable Markov partitions for billiards, which
relies on Pesin theory as developed by Katok and Strelcyn; this theory applies to invariant
probability measures μ that are adapted, meaning that

∫
| log d(x,S)| dμ < ∞, (1.1)

where S is the singular set for T .1 Using this theory, Lima and Matheus showed that if μ

is adapted and hyperbolic, then there is a countable Markov partition for the billiard map
T which provides a symbolic coding for μ-almost every point [LM]. Since measures
with large entropy are likely to be hyperbolic (this occurs e.g. when the Ruelle inequality
holds), a natural question arises: are there T -invariant nonadaptedmeasures with positive
entropy? We answer this question in the affirmative.

Theorem 1.1. There are finite horizon planar dispersing billiards with invariant prob-
ability measures of positive entropy that are not adapted.

The second question is related to the behavior of the pressure function P(t) for the
family of geometric potentials −t log JuT for t near 0, where JuT denotes the unstable
Jacobian of T . The pressure function is defined as

P(t) = sup
μ∈M

{
hμ(T ) − t

∫
log JuT dμ

}
, (1.2)

where M is the set of T –invariant probability measures. The function P(t) is finite and
decreasing for t ≥ 0, and [BD2] proved it is analytic on an interval (0, t∗), for some
t∗ > 1 depending on the billiard table. While P(0) < ∞ is the topological entropy of
the map2 [BD1], it is clear that for a table with a grazing periodic orbit, P(t) = ∞
for t < 0 due to the invariant measure supported on such an orbit. We arrive at the
following natural question: does one still see a jump in P(t) at t = 0 if one restricts the
supremum in (1.2) to a smaller class of measures? For example, letting Nε(S) denote
the ε–neighborhood of S, we can restrict the supremum to measures satisfying:

(a) There are constants C, α > 0 such that μ(Nε(S)) ≤ Cεα for all ε > 0 (such a
measure must be adapted); or

(b) μ has positive entropy.

1 See [H, p. 342] for the story of the genesis of this condition, or rather of the slightly stronger condition (a)
that appears in [KSLP,P]. The term “adapted” was introduced in [LS], in the context of smooth flows equipped
with an invariant measure, as a condition on a Poincaré section (requiring that the boundary S satisfies (1.1)
with respect to the induced measure). It has subsequently been used as a condition on measures in systems
with singularities [LM,BD1]. For planar dispersing billiards, it is equivalent to assuming the finiteness of the
positive Lyapunov exponent almost everywhere (see the proof of Theorem 1.2).

2 [BD1] constructs a unique measure of maximal entropy under a mild sparse recurrence condition to the
singularity set. (If a conjecture of Balint and Toth holds, then this condition is satisfied generically for finite
horizon tables [DK].) Yet even without assuming this condition, [BD1] proves that P(0) < ∞. We do not
make any assumption of sparse recurrence to singularities in the present paper.
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Our construction answers this question in the affirmative for both restricted suprema
under condition (a) or (b) whenever a certain type of periodic orbit exists on the billiard
table. This implies that, for some classes of dispersing billiards, there is a phase transition
at t = 0.

Theorem 1.2. There are finite horizon planar dispersing billiards such that each of them
possesses a sequence of periodic orbits (pn)with positive and finite Lyapunov exponents,
but tending to infinity as n → ∞. As a consequence, for all t < 0 we have

sup
μ∈M

{
hμ(T ) − t

∫
log JuT dμ : ∃C, α > 0 such that μ(Nε(S)) ≤ Cεα,∀ε > 0

}

= ∞. (1.3)

Moreover, it follows from Theorem 1.1 that for such dispersing billiards and for all t < 0
we have

sup
μ∈M

{
hμ(T ) − t

∫
log JuT dμ : μ has positive entropy

}
= ∞. (1.4)

The case of the infinite horizon Lorentz gas has been studied in [CT]. There, the
authors show that P(0) = ∞ and construct invariant measures with both infinite metric
entropy as well as invariant measures with finite entropy, but infinite Lyapunov exponent.

Remark 1.3. We remark that for t > 0, restricting to measures that satisfy both (a) and
(b) does not change the pressure P(t); specifically, the equilibrium states produced in
[BD2] satisfy both conditions for all t ∈ (0, t∗). However, it is not known whether the
measure of maximal entropy μ0 (in the case t = 0) satisfies (a). Indeed, [BD1] produces
the weaker bound μ0(Nε(S)) ≤ C | log ε|−γ for some γ > 1; this is sufficient for μ0 to
be adapted and hyperbolic.

We state Theorem 1.2 using the stronger condition (a) since it makes for a stronger
statement: even restricting to this smaller class of measures, the pressure is infinite when
t < 0.

2. Setting

Our billiard table is defined by placing finitely many pairwise disjoint closed, convex
sets Oi , i = 1, . . . , d, inT2 = R

2/Z2. We assume that the boundaries ∂Oi areC3 curves
with strictly positive curvature. The billiard table is then defined asQ := T

2\(⋃d
i=1 Oi ).

The billiard flow is induced by the motion of a point particle traveling at unit speed in Q
and reflecting elastically at collisions with ∂Q. The associated billiard map, which we
denote by T , is the Poincaré map under the flow with respect to ∂Q.

Parametrizing ∂Oi for each i by arclength r (oriented clockwise), and letting ϕ ∈
[−π/2, π/2] denote the angle made by the post-collision velocity vector and the outward
normal to ∂Oi at the point of collision, we represent the phase space of our billiard map as
M = ⋃d

i=1(∂Oi×[−π/2, π/2]). We denote by τ(x) the flight time from x = (r, ϕ) ∈ M
to T (x). We assume that the table has finite horizon, i.e. supx∈M τ(x) < ∞. The finite
horizon assumption together with the fact that the scatterers are disjoint implies that,
there exist constants τmin, τmax ∈ R, such that 0 < τmin ≤ τ(x) ≤ τmax < ∞ for all
x ∈ M .
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r0

(a) (b)
Fig. 1. a A periodic orbit of period 4 with grazing collision at r0. The corresponding periodic point is
x0 = (r0, π/2). Since there is only one grazing collision, this configuration satisfies our assumption. b A
periodic orbit of period 4 with two grazing collisions. It does not satisfy our assumption. Both figures are local
and are not meant to illustrate the finite horizon condition

It is well-known that T preserves a smooth invariant probability measure μ SRB, such
that

dμ SRB(x) = 1

2|∂Q| cos ϕ drdϕ.

YetT has discontinuities created by grazing collisions. SetS0 = {
(r, ϕ) ∈ M : ϕ = ±π

2

}
and denote by Sn = ⋃n

i=0 T
−iS0 and S−n = ⋃n

i=0 T
iS0 the singularity sets for T n and

T−n , respectively. Then T n is a C2 diffeomorphism of M\Sn onto M\S−n . Note that
in this notation, S1 is precisely the same as the set S discussed in Sect. 1.

2.1. Strategy of proof. The class of billiards tables Q we will consider admits the fol-
lowing type of periodic orbit with a grazing collision. If we choose a direction and follow
the orbit around one full cycle, then either all grazing collisions along the orbit occur
on our right, or all grazing collisions along the orbit occur on our left. See Fig. 1a for
an example of an orbit that satisfies our assumption, and Fig. 1b for an example of an
orbit that does not. As we will see in the next section, this assumption allows us to easily
understand how a neighborhood in S0 of the periodic point is cut under iterations.

The proofs of Theorems 1.1 and 1.2 will both use the existence of a Cantor rectangle
defined in a one-sided neighborhood of the periodic point x0 ∈ S0, and it will be divided
into the following steps:

1. The point x0 has a local stable manifoldWs(x0) and a local unstable manifoldWu(x0)

of positive length that terminate at x0. Both manifolds are C1+Lip, and the wedge
between Ws(x0) and Wu(x0) belongs to a single component of M \ (Sp ∪ S−p),
where p is the period of the orbit.

2. Construct a Cantor rectangle R formed by intersections of local stable and local
unstable manifolds, with Ws(x0) and Wu(x0) comprising two boundaries of R, and
such that μ SRB(R) > 0.

3. Use the product structure of the Cantor set and the mixing property of μ SRB to define
a horseshoe K on R.
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4. Use the coding provided by the horseshoe K to construct periodic orbits with large
period and arbitrarily large Lyapunov exponent.

5. Use the coding for the induced map on the horseshoe K to define a Bernoulli measure
whose projection to M is nonadapted.

One of the difficulties involved in the construction is that DT (x0) is not defined, and
DT (x) converges to infinity as x converges to x0. This means that T has huge expansion
near x0, and it prevents the use of classical techniques, such as the graph transform
method. Nevertheless, the assumption on the periodic orbit allows us to bypass this
issue.
Notation. Throughout the text, we will use the notation A ≈ B if there exists a constant
C > 0, depending only on the billiard table and the definition of the homogeneity strips
(defined in (3.3)), such that C−1A ≤ B ≤ CA.

3. Construction of the Cantor Rectangle R
For ease of the presentation, we assume that the configuration of x0 = (r0, π/2) is the
one depicted in Fig. 1a, i.e. T 4(x0) = x0 with a single grazing collision in one full cycle.3

Let K denote the curvature function of the obstacles. We recall from [CM, Section 4.5]
that T has invariant cones:

Csx = {(dr, dϕ) ∈ TxM : −K − cos ϕ/τ ≤ dϕ/dr ≤ −K}
Cux = {(dr, dϕ) ∈ TxM : K ≤ dϕ/dr ≤ K + cos ϕ/τ }.

(3.1)

Since the table has finite horizon and the obstacles are disjoint and C3 with strictly
positive curvature, these cones are uniformly transverse and bounded away from the
lines r = const and ϕ = const. According to [CM, Eq. (4.19)], vectors in these cones
contract and expand uniformly: there exists Ce > 0 such that

‖DTn(x)v‖ ≥ Ce	
n‖v‖ for all v ∈ Cux and all n ≥ 1, (3.2)

where 	 = 1 + 2Kminτmin. Similar bounds hold for v ∈ Csx .
We call a C1 curve W a stable curve if the tangent vector at each x ∈ W lies in Csx .

Unstable curves are defined similarly.

3.1. Existence of stable and unstable manifolds for x0. In this section, we will construct
one-sided stable and unstable manifolds for x0. The main result of this section is the
following proposition.

Proposition 3.1. Let x0 ∈ S0 be a periodic point with grazing collision as described
above. Then x0 has one-sided local stable and unstable manifolds, which are C1+Lip

curves in M.

Proposition 3.1 follows from Lemma 3.3.
Let O1 be the obstacle of the grazing collision and let M1 denote the correspond-

ing component of the phase space. We assume that the orientation of the trajectory is
counter-clockwise, and that the parametrization of the obstacles is clockwise. Consider

3 The period 4 is not essential to our construction, yet a second grazing collision along the periodic orbit
could complicate the argument and indeed might destroy the horseshoe entirely.
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S0
I− I+x0

T 4I−
W u(x0) W s(x0)

T−4I+

Δ

Fig. 2. A δ0-neighborhood of x0

a neighborhood I = [r1, r2] × {π/2} ⊂ S0 of x0 and let I− = [r1, r0] × {π/2} and
I+ = (r0, r2] × {π/2}. Since S0 is a dispersing wave front, we may choose r1 and r2
sufficiently close to r0 such that the following behavior holds for the first four iterates
of I :

• If x ∈ I− \ {x0} then r(T (x)) > r(T (x0)), r(T 2(x)) < r(T 2(x0)), r(T 3(x)) >

r(T 3(x0)), so that T 4(x) hits O1 with r(T 4(x)) < r(T 4(x0)) = r0.
• If x ∈ I+ then r(T (x)) < r(T (x0)), r(T 2(x)) > r(T 2(x0)), r(T 3(x)) < r(T 3(x0)),

so that T 4(x) does not hit O1 in a neighborhood Nε(x0) of x0.

This means that I gets cut after four iterations: T 4(I−) is a curve in M1 terminating at
x0, and T 4(I+) ∩ Nε(x0) = ∅ for some ε > 0. Analogous facts hold for I+ under T−1.
Thus we may choose r1 and r2 sufficiently close to r0 so that T 4 is continuous on I−
and T−4 is continuous on I+. See Fig. 2.

Consider the sector A defined by rotating the horizontal segment I− = {(r, ϕ) : ϕ =
π/2, r ∈ [r1, r0]} around x0 by an angle of π/2 radians, until I− reaches the vertical
segment V = {(r, ϕ) : r = r0, ϕ ∈ [π/2 − (r0 − r1), π/2]}. Both segments I− and V
terminate on x0, a fixed point for T 4. Moreover, both T 4(I−) and T 4(V ) are unstable
curves, tangent at x0 (the cone at x0 consists of a single line with slope K(r0), see (3.1)),
and contained strictly between I− and V . Since T is orientation preserving, T 4(I−)

comprises the upper boundary of T 4(A) and T 4(V ) comprises its lower boundary.
Repeating this argument, since the sector A is strictly contracted by T 4, the intersection
T 8(A) ∩ A, which has upper boundary T 8(I−) ∩ A and lower boundary T 8(V ) ∩ A,
lies strictly inside the region with upper boundary T 4(I−) and lower boundary T 4(V ).

Inductively, we see that for each n ≥ 1 the curve T 4n(I−) contains an unstable curve
γn(x0), defined by an equation {(r, ϕn(r)) : r ∈ [r1, r0]} where ϕn : [r1, r0] → R is an
increasing C2 function with ϕn(r0) = π/2 and ϕ′

n(r0) = K(r0). Moreover, the sequence
(ϕn) is decreasing, and (ϕ′

n) is bounded since it must belong to the unstable cone for
each n. Thus, (ϕn) converges to a function ϕu : [r1, r0] → R. This function defines
an unstable curve, which indeed is the local unstable manifold at x0, as we will prove
below. We need the following auxiliary lemma.

Lemma 3.2. Suppose n ≥ 1 and W is an unstable curve passing through x0 such that
T−4kW is an unstable curve for all 1 ≤ k ≤ n. The following holds for all z ∈ W:

(a) d(T−4z, x0) ≈ d(z, x0)
2;

(b) d(T−4nz, x0) ≤ C0d(z, x0)
(3/2)n , for some C0 > 0 independent of W and n.

The analogous statement holds for stable curves W passing through x0 such that T 4kW
is a stable curve for all 1 ≤ k ≤ n.

This means that near x0, the map T 4 exhibits a huge expansion along unstable curves.
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Proof. We consider the homogeneity strips

Hk =
{
x = (r, ϕ) ∈ M : ϕ ∈

[
π
2 − k−2, π

2 − (k + 1)−2
)}

, k ≥ 1. (3.3)

Notice that cos ϕ(x) ≈ k−2 for x ∈ Hk . Let z and W be as in the statement of the lemma
and suppose z ∈ Hj . Let V denote the subcurve of W with endpoints z and x0, and write
V = ⋃

k≥ j Vk , where Vk = V ∩ Hk . Since Vk is uniformly transversal to the boundaries

of Hk , we have |Vk | ≈ k−3, hence

|V | =
∑
k≥ j

|Vk | ≈
∑
k≥ j

k−3 ≈ j−2.

We will show that |T−4V | ≈ j−4, which will complete the proof of part (a).
By [CM, Equation (4.20)], for all x ∈ Hk we have

JuT 4(T−4x) ≈ 1

cos ϕ(x)
≈ k2.

Hence |T−4Vk | ≈ |Vk | · k−2 ≈ k−5 and so

|T−4V | =
∑
k≥ j

|T−4Vk | ≈
∑
k≥ j

k−5 ≈ j−4,

which concludes the proof of part (a).
To prove (b), note that (a) yields a constant C > 0 such that d(T−4z, x0) ≤

Cd(z, x0)
2. Without loss of generality, we may assume that d(z, x0) ≤ C−2, as this must

occur in a fixed number of iterates due to the uniform expansion given by (3.2). Statement
(b) then follows directly by iterating (a) since for such z we have Cd(T−4k z, x0)

2 ≤
d(T−4k z, x0)

3/2. ��
Lemma 3.3. The curve

Wu(x0) := {(r, ϕu(r)) : r ∈ [r1, r0]}
is the local unstable manifold at x0 for T 4, i.e. d(T−4nx, x0)

n→∞−−−→ 0 for every x ∈
Wu(x0). In particular, Wu(x0) is a C1+Lip curve.

By time reversibility of billiard systems, x0 also has a C1+Lip local stable manifold
Ws(x0), see Fig. 2.

Proof. It is clear that the function ϕu is Lipschitz and that Wu(x0) is an unstable curve.
Fix x ∈ Wu(x0), and consider a stable curve W passing through x . Fix n ≥ 1. For
1 ≤ k ≤ n, recall that γk ⊂ T 4k I− denotes the graph of ϕk over the interval [r1, r0]. Let
y be the intersection point of W and γn . Consider the pre-images T−4nx and T−4n y,
and consider the triangle α1α2α3 formed by the three curves:

α1 = segment of S0 joining x0 and T−4n y

α2 = curve of T−4nW joining T−4n y and T−4nx

α3 = curve of Wu(x0) joining T−4nx and x0.

Since α2 is a stable curve and α3 is an unstable curve, and cones make angles bounded
away from zero with respect to horizontal and vertical curves of M , it follows that
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d(T−4nx, x0) ≤ const × d(T−4n y, x0). Since γk is an unstable curve for each k ≥ 1
and T 4(k−n)y ∈ γk , by Lemma 3.2(b) we have

d(T−4n y, x0) ≤ Cd(T−4(n−1)y, x0) ≤ CC0d(y, x0)
(3/2)n−1

,

and so d(T−4nx, x0) ≤ const × d(y, x0)
(3/2)n−1

, which converges to 0 as n → ∞.
It remains to prove that ϕu is C1+Lip. According to the first part of the proof, for

each x ∈ Wu(x0)\{x0}, the curve Wu(x0) is the unstable manifold of x . By [CM,
Corollary 4.61], Wu(x0) is C1 and its derivative is Lipschitz. ��

3.2. The Cantor rectangle R. In the last section, we showed the existence of C1+Lip

local stable/unstable manifolds Ws/u(x0) at x0 for the map T 4. Note that, since these
are a stable/unstable curve respectively, they make an angle at x0 that is in4 (0, π). We
denote by � the region between these two curves, see Fig. 2. In this section, we will
construct a Cantor rectangle of stable and unstable manifolds with x0 as one corner point
of the rectangle.

First we recall some terminology. We call D a solid rectangle in M if ∂D comprises
four smooth curves, two local stable and two local unstable manifolds. Given a solid
rectangle D, let Ss(D) and Su(D) denote the set of local stable and unstable manifolds,
respectively, of points in D that do not terminate in the interior of D. Define the Cantor
rectangle

R(D) = Ss(D) ∩ Su(D) ∩ D.

By construction, R(D) has a locally maximal hyperbolic product structure. We will work
with such Cantor rectangles R, closed sets formed by locally maximal intersections of
stable and unstable manifolds such that Leb(R) > 0. Conversely, given such a Cantor
rectangle R, we denote by D(R) the smallest solid rectangle containing R.

Unlike [CM, Section 7.11], we do not restrict ourselves to H–manifolds, i.e. to
local stable (respectively unstable) manifolds whose forward (respectively backward)
trajectories lie in a single homogeneity strip at each step. We do this because the rectangle
we construct, R, will necessarily cross infinitely many homogeneity strips in order to
incorporate x0 in its boundary.

Now consider a segment of Wu(x0) that lies between homogeneity strips of index k1
and k2

1. Call this curve A1. Since A1 is a finite union of homogeneous unstable manifolds,
almost every point on A1 has stable manifolds of positive length [CM, Theorem 5.70].

Now consider T−4A1 ⊂ Wu(x0). If W is a local stable manifold of a point in A1,
then T−4W is a local stable manifold of a point in T−4A1, and it has one connected
component intersecting �. This component cannot be cut until it exits a δ0–neighborhood
of x0, and it cannot cross Ws(x0) (since stable manifolds do not intersect). Therefore,

|Ws(y)| ≥ min

{ |Ws(T 4y)|
J sT 4(y)

, δ0

}
for all y ∈ T−4A1.

Note that J sT 4(y) ≈ cos ϕ(y) so that the expansion is large in a δ0–neighborhood of
x0.

4 Indeed, since the slopes are −K(x0) and K(x0), respectively, they form an angle equal to
2Arctan(1/K(x0)).
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Applying this construction inductively, we are guaranteed the existence of increas-
ingly longer stable manifolds for points in Wu(x0) as we approach x0, and so a positive
measure of such manifolds extend a minimum distance of δ1 > 0 inside �.

By time-reversal symmetry, this construction also implies that almost every point on
Ws(x0) has an unstable manifold of positive length, and that unstable manifolds of a
minimum length δ1 comprise a positive measure set of points inside Ws(x0).

Fixing once and for all δ0, δ1 > 0 small enough such that the above constructions hold
in the δ0–neighborhood of x0, we obtain a (locally maximal) closed, Cantor rectangle R
comprised of the intersection of a positive measure set of stable and unstable manifolds,
having a segment of Ws(x0) along one boundary, a segment of Wu(x0) along another,
and containing the point x0 as one of its corner points.

3.3. Definition of the horseshoe. We let G = T 4, and construct a horseshoe for a power
of G. The idea is to have two branches for the horseshoe, which are two stable rectangles
in R, one of them containing x0. We first show that an iterate of Wu(x0) crosses Ws(x0),
i.e. there is an homoclinic intersection. This is a consequence of standard results in the
theory of dispersing billiards.

We need a little more terminology. Given a Cantor rectangle R, we call S ⊂ R an
s–subrectangle of R if for each x ∈ S, Ws(x) ∩ S = Ws(x) ∩ R. Similarly, U ⊂ R is
a u–subrectangle if Wu(x) ∩ U = Wu(x) ∩ R for all x ∈ U . We say a local unstable
manifold Wu fully crosses R if Wu∩ D̊(R) �= ∅ and Wu does not terminate in the interior
of D(R). A Cantor rectangle R′ u–crosses R if every unstable manifold Wu ∈ Su(R′)
fully crosses R. Analogous definitions hold for stable manifolds and s–crossings.

Given a Cantor rectangle R, T n(R) is a finite union of (maximal) Cantor rectangles
(recall that stable manifolds cannot be cut by singularities of T ). We label them Rn,i .
Then each T−n(Rn,i ) is an s–subrectangle of R.

With these preliminaries, we are ready to proceed with the construction of our horse-
shoe.

• By [CM, Lemma 7.87], there is a finite collection of rectangles R1, . . . , RN of
positive measure each such that any stable and unstable curve of length at least δ1/2
properly crosses at least one of the rectangles. Without loss of generality, we can
assume that Wu(x0) properly crosses R1 and Ws(x0) properly crosses R2.

• By [CM, Lemma 7.90], there is a ‘magnet’ rectangle R∗ of positive measure, and
a ‘high density’ subset P∗ ⊂ R∗, satisfying the following property: if Rk,n,i is a
maximal rectangle in T n(Rk) and Rk,n,i ∩ P∗ �= ∅ where n is large enough, then
Rk,n,i u–crosses R∗.5 The analogous properties hold for maximal rectangles Rk,−n,i
of T−n(Rk) and s–crossings of R∗.

• Since μ SRB is mixing, there arem, n > 0 such thatGn(R1)∩P∗ �= ∅ andG−m(R2)∩
P∗ �= ∅. Therefore there are an s-subrectangle R′ ⊂ R1 and a u-subrectangle
R′′ ⊂ R2 such that Gn(R′) u-crosses R∗ and G−m(R′′) s-crosses R∗. This implies
that Gn(Wu(x0)) ∩ G−m(Ws(x0)) �= ∅, proving the desired transverse intersection.

Let x1 ∈ Wu(x0) ∩ G−(m+n)Ws(x0). Take points z ∈ Wu(x0) ∩ R and w ∈
Ws(x0) ∩ R such that x1 belongs to the segment of Wu(x0) joining x0 and z. The
points x0, z, [z, w], w define a solid rectangle D. Let U0,U1 be disjoint s-subrectangles

5 Indeed, a slightly stronger property holds: for every x ∈ Rk,n,i its local unstable manifold Wu(x) properly
crosses R∗, a proper crossing being a full crossing whose distance from the unstable boundary of R∗ is at
least a fixed fraction of the unstable diameter of R∗.



24 Page 10 of 13 V. Climenhaga, F. Demers, Y. Lima, H. Zhang

of D such that U0 contains x0 as a vertex and the solid rectangle of U1 contains x1 in
the interior of its u–side. If � > 0 is large, then G�(U0) u-crosses D. Also, by construc-
tion, Gm+n(U1) intersects Ws(x0) transversally, and so if �0 > 0 is large enough then
G�0+m+n(U1) also u-crosses D. Hence, we can fix �0 > 0 such that for � = �0 + m + n
the sets G�(U0),G�(U1) both u-cross D. Letting f = G�, we obtain a horseshoe for f
as the intersection

K :=
∞⋂

n=−∞
f n(U0 ∪U1) .

By construction, K is conjugate to a full shift in two symbols, i.e. if (, σ ) is the
topological Markov shift with  = {0, 1}Z, then there is a measurable bijection π :
 → K such that π ◦ σ = f ◦ π .

4. Proof of Theorem 1.1

The idea to prove Theorem 1.1 is the following: points that spend many iterates near
x0 approach x0 super-exponentially fast. This is expressed for unstable curves (and
analogously for stable curves) by Lemma 3.2. Given x ∈ �, let Ws,Wu be a stable,
unstable curve passing through x such that {xs} = Wu∩Ws(x0) and {xu} = Ws∩Wu(x0)

are defined. Hence
d(x, x0) ≈ max{d(xs, x0), d(xu, x0)}.

Denote an element of  by v = (vn)n∈Z. Let C = {v ∈  : v0 = 1}, Cn = {v ∈ C :
v1 = · · · = vn−1 = 0 and vn = 1} for n ≥ 1, andC∞ = {v ∈ C : vn = 0 for all n ≥ 1}.
Clearly C\C∞ = ⋃

n≥1 Cn , and the first return map σ̃ : C → C of σ to C is a full
topological Markov shift in an infinite countable alphabet with σ̃ = σ n on Cn . For
n ≥ 1, let x = π(v) with v ∈ Cn .

As in the previous paragraph, let Wu be an unstable curve connecting f (x) and
Ws(x0) and define {x1

s } = Wu ∩Ws(x0). Let Ws be a stable curve connecting f n−1(x)
andWu(x0) and define {xn−1

u } = Ws∩Wu(x0). Since f k(x1
s ) ∈ Ws(x0) and f −k(xn−1

u ) ∈
Wu(x0) for k ≥ 0, we may apply Lemma 3.2(b) and obtain that:

• d( f � n
2 �x1

s , x0) ≤ C0d(x1
s , x0)

(3/2)� n
2 � .

• d( f −� n
2 �xn−1

u , x0) ≤ C0d(xn−1
u , x0)

(3/2)� n
2 � .

Since Ws is a stable curve, f −� n
2 �(Ws) is again a stable curve connecting f � n

2 �(x)
with Wu(x0). Similarly, since Wu is an unstable curve, f � n

2 �(Wu) is an unstable curve
connecting f � n

2 �(x) with Ws(x0). In particular, letting δ = diam(D) < 1, there is a
constant C ≥ 1 such that

d( f � n
2 �x,S0) ≤ Cδ(3/2)� n

2 �
, ∀x ∈ π(Cn). (4.1)

Let b = ∑
n≥1

( 3
2

)−� n
2 �

< ∞. Take pn = b−1
( 3

2

)−� n
2 �

for n ≥ 1, and consider a
Bernoulli probability measure ν̃ onC ∼= N

Z such that ν̃(Cn) = pn . This measure induces
a σ–invariant probability measure ν on , which descends by π to a f –invariant proba-
bility measureη on K . Note that ν is supported on the disjoint union

⋃
n≥1

⋃
0≤k<n σ kCn ,

and η is supported on the disjoint union
⋃

n≥1
⋃

0≤k<n f kπ(Cn). Applying (4.1),∫
| log d(x,S0)| dη ≥

∫
⋃

n≥1 f � n2 �
π(Cn)

| log d(x,S0)| dη
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=
∑
n≥1

∫
π(Cn)

| log d( f � n
2 �x,S0)| dη

≥
∑
n≥1

∣∣∣∣log

(
Cδ(3/2)� n

2 �)∣∣∣∣ η[π(Cn)]

≥ − logC + | log δ|
∑
n≥1

pn
( 3

2

)� n
2 � = ∞.

Now we estimate hη( f ). Let n be the return time function defining σ̃ . By the Abramov
formula, and using that ν̃ is a Bernoulli measure, we have

hη( f ) = hν(σ ) = hν̃ (̃σ )∫
C n(v)d ν̃(v)

=

∞∑
n=1

−pn log pn

∞∑
n=1

npn

≈

∞∑
n=1

( 3
2

)−� n
2 � ⌊ n

2

⌋
log(3/2)

∞∑
n=1

n
( 3

2

)−� n
2 �

≈ log(3/2)

2
> 0.

Finally, let μ = 1
4�

4�−1∑
k=0

η ◦ T−k , which is a T –invariant probability measure. We claim

that μ is a measure satisfying Theorem 1.1. Firstly, we have

∫
| log d(x,S0)| dμ = 1

4�

4�−1∑
k=0

∫
| log d(x,S0)| d(η ◦ T−k)

≥ 1

4�

∫
| log d(x,S0)| dη = ∞. (4.2)

Since S0 ⊂ S1, this implies that the measure μ is not adapted.
Now, using that each η◦T−k is f –invariant, it follows again by the Abramov formula

and the linearity of the metric entropy that

hμ(T ) = 1

4�
hμ( f ) = 1

16�2

4�−1∑
k=0

hη◦T−k ( f ) ≥ log(3/2)

32�2 > 0.

This concludes the proof of Theorem 1.1.

5. Proof of Theorem 1.2

The subset π(Cn) contains a periodic orbit of period n for f , equal to yn = π(v) where

v0 = 1 and v1 = · · · = vn−1 = 0. Due to (4.1), we have d( f � n
2 �yn,S0) ≤ Cδ(3/2)� n

2 �
and so, using again [CM, eq. 4.20],

Ju f ( f � n
2 �−1yn) ≥ (cos ϕ( f � n

2 �yn))−1 ≈ d( f � n
2 �yn,S0)

−1 ≥ C−1δ−(3/2)� n
2 �

.
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The Lyapunov exponent for the point yn with respect to f is at least

lim
j→∞

1

jn
log Ju f jn(yn) ≥ lim

j→∞
1

jn
j log Ju f ( f � n

2 �−1yn)

≥ 1

n
log

(
C−1δ−(3/2)� n

2 �)
≈

( 3
2

)� n
2 � | log δ|
n

.

Therefore, the Lyapunov exponent for the point yn with respect to T is at least of the

order of
( 3

2

)� n
2 �

/4�n. We have thus constructed a sequence of periodic orbits with finite,
but arbitrarily large Lyapunov exponents. This proves the first statement of Theorem 1.2.

Equation (1.3) follows immediately since each of the above periodic orbits contains
no grazing collisions and therefore each corresponding invariant measure is supported
outside of an ε–neighborhood of S0 for some ε > 0.

To prove the final statement of the theorem, equation (1.4), let μ be the T –invariant
measure constructed in the proof of Theorem 1.1. Using again [CM, (4.20)], or [CM,
eq. (5.36)], we have JuT (x) ≈ (cos ϕ(T x))−1. By the invariance of μ and estimate
(4.2), we get that

∫
log JuT dμ ≈

∫
− log cos(ϕ ◦ T ) dμ

=
∫

− log cos ϕ dμ ≥
∫

| log d(x,S0)| dμ(x) = ∞ .

Since hμ(T ) > 0, this proves (1.4).
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