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Abstract: Arguably, the largest class of stochastic processes generated by means of a
finite memory consists of those that are sequences of observations produced by sequential
measurements in a suitable generalized probabilistic theory (GPT). These are constructed
from a finite-dimensional memory evolving under a set of possible linear maps, and with
probabilities of outcomes determined by linear functions of the memory state. Examples
of such models are given by classical hidden Markov processes, where the memory
state is a probability distribution, and at each step it evolves according to a non-negative
matrix, and hidden quantum Markov processes, where the memory is a finite-dimensional
quantum system, and at each step it evolves according to a completely positive map. Here
we show that the set of processes admitting a finite-dimensional explanation do not need
to be explainable in terms of either classical probability or quantum mechanics. To
wit, we exhibit families of processes that have a finite-dimensional explanation, defined
manifestly by the dynamics of an explicitly given GPT, but that do not admit a quantum,
and therefore not even classical, explanation in finite dimension. Furthermore, we present
a family of quantum processes on qubits and qutrits that do not admit a classical finite-
dimensional realization, which includes examples introduced earlier by Fox, Rubin,
Dharmadikari and Nadkarni as functions of infinite-dimensional Markov chains, and
lower bound the size of the memory of a classical model realizing a noisy version of the
qubit processes.

1. Introduction

Modeling a hidden cause mechanism for the probability distribution of a time series
of observations is a ubiquitous task, from fundamental science experiments to data
analysis. Considering classical hidden dynamics gives rise to hidden Markov models
(HMM) [1,2], which have key applications in fields where time series arise [3], among
them speech recognition [4] and genomics [5], where they are still an important part of
the data analysis tools in these fields [6], but also new possible uses are emerging, such
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as in ecology [7]. On the other hand, repeated measurements on a quantum system also
define probabilities of sequences of outcomes with a hidden mechanism, in this case
a quantum one. Landmark experiments can be modeled as such [8]. Infinite sequences
of identical repeated measurements define the class of hidden quantum Markov models
(HQMM), a special case of C∗-finitely correlated state when the state is classical, i.e.
diagonal in a given product basis [9]. HQMMs not only can serve as tools for the analysis
of quantum experiments and for the modeling quantum technologies, but also as tools for
data analysis application, implemented in a classical simulator or on actual controllable
quantum systems (be it NISQ devices or universal quantum processors).

Removing the restriction to classical or quantum dynamics, and keeping only on the
linearity of the hidden dynamics and the nonnegativity of the function used to com-
pute the probabilities of sequences, enlarges the class of possible models and ensuing
processes to so-called quasi-realizations [2]. These generalized models are known un-
der several different names in different communities, e.g. operator observable models
(OOM) [10] or weighted finite automata [11], or indeed (classical) finitely correlated
states [9]. Considering this extended class simplifies greatly the inference of the hidden
mechanism from the probabilities of the sequences, as a minimal description can be
obtained by simple linear algebra, while this is not the case for a classical or quantum
one. Moreover, from a physical point of view, this extended space of models can be seen
as the class of models describing repeated measurement on a system in general proba-
bilistic theories (GPTs) [12,13], including alternatives or extensions of quantum theory.
The immediate question presenting itself is whether there is a strict inclusion between
the sets of HMM, HQMM and general models. For these sets and for any other subclass
of models that can be conceived, this is an interesting question from a fundamental point
of view, since one could say that the possibility of generating every stochastic process
with finite memory is a desirable property of a general theory of nature, but it also has
practical consequences for applications, since it can exhibit strengths or limitations of
specific classes. Already in [14,15] it was shown that there exist processes admitting
general models which however are not representable classically by any HMM. In [16]
it was shown that there exist processes given by HQMM which however cannot be rep-
resented by classical HMM. Perhaps then quantum mechanics is sufficiently powerful
to be able to realize any discrete process admitting a finite memory general model, by
means of finite-dimensional quantum systems [16]?

The main contribution of the present paper is a negative answer to this question, via
the explicit construction of processes admitting a general linear model, but for which
the underlying possible GPT is so tightly constrained that we can exclude the possibility
of a realization by HQMM by inspection. Our result also answers a question raised
in [9, Sec. 7.1]. The argument is geometric, as pioneered in [16] (there for separating
HMM and HQMM): our examples are such that the GPTs of their quasi-realizations
have unique mutually dual convex cones of effects and states, respectively; in other
words, there is only one possible operational probabilistic theory that can describe the
observable statistics. As HQMM give rise to semi-definite representable (SDR cones,
i.e. projections of sections of the positive-semidefinite cone of matrices), we can exclude
a quantum realisation by forcing our cone to be not semi-algebraic. On the other hand,
to better appreciate the power of HQMM and motivating the question of establishing
a separation with general theories, we show that the non-classical examples in [14,15]
are representable by HQMMs, and thus are not sufficient to show the new separation.
This is remarkable since these examples were naturally formulated as a functions of
infinite-alphabet classical Markov models, showing that small quantum systems can be
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expressive enough to represent rich stochastic processes that are not inherently quantum,
supporting the possibility that quantum systems can be useful for modeling real world
data streams. On the other hand, by simplifying the original examples, we remark that
already a class of binary sequential measurements on a qubit cannot be reproduced
by a HMM. This fact was already noticed by [17] where a HQMM for the so-called
probability clock of Jaeger [10,18] was found, which itself is a simplified version of the
older example in [14,15].

Before going into a mathematically precise description of our framework and results,
let us discuss further related work. The notion of quantum hidden Markov models seem
to have appeared in [19]. In [20] a process was constructed which can be represented
on a qubit but not on a binary classical space. Several papers analyzed how, for a quan-
tum process representing a hidden Markov model, the entropy of the average stationary
state can be less than in the classical case [21–25], and how to construct a quantum
representation of an HMM, or from the outcome probabilities [26,27]. In particular, an
example of a class of classical processes which require infinite memory in a so-called
unifilar HMM, but can be implemented on a qubit, was shown in [23]. A gap between
the memory requirement of an ε-machine to simulate sequential measurements in con-
textuality experiments was also observed [28]. Note however that it is well-known that
there exist processes generated by a finite HMM, yet its ε-machine and any other unifilar
HMM necessarily have infinite memory [29,30]. The non-asymptotic behaviour of the
sample mean of a HQMM has been studied in [31] giving bounds for the tail proba-
bilities and deriving a central-limit theorem type result. Algorithms to find a HQMM
modelling a sequence of observations have been presented in [17,32]. Note that HQMM
can equivalently be obtained from locally measuring C∗-finitely correlated states [9];
this implies that our work also shows the existence of finitely correlated states which are
not C∗-finitely correlated, answering an open questions of [9], which received attention
but not a conclusive answer. For example, [33] shows that a similar separation exists for
sequences of finite-size states in the non-translation invariant setting, while [34] shows
that a separation exists for sequences of periodic finite-size states. Moreover, several
works have investigated the use and advantages of tensor networks for probabilistic
modeling, e.g. [35–38].

The cones used to show the separation are the power cone and the exponential cone
[39], being the power cone more general since the exponential cone can be obtained
as a limiting case of the power cone plus a linear transformation. They have no clear
physical interpretation as general probabilistic theories (yet), but appear as models for
several practical optimization problems, with applications to chemical process control
[40], circuit design [41], or electric vehicle charging [42], among many others. Both the
power cone and the exponential cone have self-concordant barriers [39,43,44] which
make them suitable for conic optimization methods like interior point algorithms, and
although they are non-symmetric cones the implementation of the algorithms is fea-
sible [45]. The exponential cone also can be used to model relative entropy programs
which includes geometric programming [46] and second order conic programming [47].
Extensions to quantum relative entropy programs include tasks like quantum channel
capacity approximation [48] or quantum state tomography [49].

The paper is organized as follows. In the results section we start by reviewing key
properties of finite-dimensional linear models for stochastic processes, and of their clas-
sical and quantum realizations. Then we show that the processes in [14,15] which do
not admit a classical realization, do in fact admit a quantum realization. Moreover,
we quantitatively evaluate the robustness of this statement by considering perturbation
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of the quantum realizations of these processes by depolarizing noise. We then present
our main result: two families of processes with a three dimensional quasi-realization,
which we show however not to admit any finite-dimensional quantum realizations. In
the discussion section, we present generalizations of the convex state spaces of the GPTs
underlying the models, which also extend quantum theory. Finally, proofs are collected
in the last section.

2. Results

2.1. Stationary stochastic processes and quasi-realizations. We start by reviewing the
formalism for general linear models with memory of stochastic processes, or quasi-
realizations [2]. Let M be an alphabet with |M| = m symbols and let M

� be the set of
words of length �. This includes � = 0, in which case M

0 consists only of one word ε.
By M

∗ =⋃�≥0 M
� we denote the set of all finite words, which forms a semigroup under

concatenation and with neutral element ε. We focus on stationary processes, meaning
that the probability of a sequence of letters

p(u) ≡ Pr {Yt = u1,Yt+1 = u2, . . . ,Yt+�−1 = u�} , u = (u1, . . . , u�) ∈ M
� (1)

does not depend on t . For the empty word, we have p(ε) = 1. The largest class of hidden
cause models we consider is the class of quasi-realizations, defined as follows.

Definition 1. A quasi-realization of a stationary stochastic process p is a quadruple
(V, π, D, τ ), where V is a real vector space, τ ∈ V , π ∈ V∗, and D : M

∗ → L(V)

mapping a word u ∈ M
∗ to a linear map D(u) of V a semigroup homomorphism, i.e.

D(ε) = id, D(u)D(v) = D(uv) ∀u, v ∈ M
∗. (2)

In addition, the following fixed-point relations hold,

π

[
∑

u∈M
D(u)

]

= π,

[
∑

u∈M
D(u)

]

τ = τ, (3)

and p(u) = πD(u)τ ∀u ∈ M
∗. (4)

The right hand side of Eq. (4) can be visually represented as in Fig. 1. Quasi-
realizations that generate the same stochastic process are said to be equivalent. Quasi-
realizations of a process with minimal dimension of V are called regular, and they are
related by each other by a similarity transformation, (i.e. for two equivalent regular
realizations (V, π, D, τ ), (V ′, π ′, D′, τ ′), V is linearly isomorphic to V ′ through an
invertible linear map T , π ′ = πT−1, τ ′ = T τ , D′(u) = T D(u)T−1. Note that due to
the semigroup law Eq. (2), D is really given entirely by the maps Du := D(u), u ∈ M,
making a quasi-realization a finite object in linear algebraic terms, as it can be given by
a finite list of real numbers.

The linear structure of quasi-realizations alone is not sufficient to guarantee the
positivity of the probabilities. However, any quasi-realization of a stochastic process can
be understood as arising from the dynamics of a (possibly exotic) general probabilistic
theory. In fact, it is immediate to show that:

Proposition 1. A quasi-realization defines a non-negative measure if and only if there
is a convex cone C ⊂ V such that τ ∈ C, D(u)(C) ⊆ C, π ∈ C∗ := { f ∈ V∗ : f (x) ≥
0 ∀x ∈ C}, the dual cone of C.
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Fig. 1. A depiction of a general stationary process with finite memory. The probability of a sequence
u−k,..,u0,...,ul can be computed as the inner product between a left stationary state π , evolved through a
sequence of linear maps Du−k , .., Dul acting from the right, and a right stationary state τ . The hidden vec-
tor space in which πDu−k , ...Dul lives represents the memory of the process. For quantum hidden Markov
models, π is a state and τ is the trace functional in the dual of the state space, while Du are CP maps such
that

∑
u∈M Du is unital

Note that, without loss of generality, the cone in the last proposition can be chosen
to be closed: otherwise simply go to the closure of C, C = C∗∗, which is stable under the
maps D(u) and has the same dual C∗. In fact, the cone C can be viewed as the cone of
effects of a general probabilistic theory (GPT) with τ being the unit [12,13,50,51], and
C∗ as the cone of states. A pair of cones C, C′ ⊆ C∗ is what defines a general probabilistic
theory; the maps D(u) stabilize the cone C, and the D(u)ᵀ stabilize C∗, therefore they can
be considered as physical maps of the GPT. A quasi-realization does not immediately
identify a unique stable cone C in general. However, we can put inner and outer bounds
on it from the cones generated by the quasi-realization dynamics itself.

Proposition 2. Any convex cone C ⊂ V such that τ ∈ C, D(u)(C) ⊆ C, π ∈ C∗ := { f ∈
V∗ : f (x) ≥ 0 ∀x ∈ C} has to satisfy the inclusions

Cmin ⊆ C ⊆ Cmax, (5)

where

Cmin = cone{D(u)τ : u ∈ M
∗}, (6)

Cmax = cone{πD(u) : u ∈ M
∗}∗. (7)

An important result in the theory of quasi-realizations is that a stochastic process has
a finite-dimensional quasi-realizations if and only if the rank of a suitable Hankel-type
matrix constructed from the probabilities of the finite words is finite. This matrix H is an
infinite matrix with entries indexed by pairs of words, such that Hu,v = p(uv). Writing
the columns of H as hv = H·,v, a potentially infinite-dimensional quasi-realization in
the column space V = span{hv} is obtained by choosing π = (1, 0, 0, ...) + ker V ,
τ = hε and D(u)hv = huv. This is a bona fide finite-dimensional quasi-realization if and
only if the rank of H is finite. We will focus on such processes and denote their set as G,
with the idea in mind that they represent a privileged class of candidate processes, since
they can in principle be reconstructed from a finite number of quantities, obtainable from
observations of the process if enough data is available.

2.2. Classical and quantum processes. A subset P of G are those processes admit-
ting a classical probability interpretation in finite dimension, denoted as positive re-
alization, also known as hidden Markov models. In this case the process p admits
a quasi-realization (Rd , π, D, 1), such that D(u) are non-negative matrices and D =∑

u∈M D(u) is (right) stochastic, π ∈ (Rd)∗ is a stationary distribution of D, and
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1 = (1, 1, . . . , 1) ∈ R
d . A larger subsets is given by the processes CP which ad-

mit a finite-dimensional quantum explanation, that is a completely positive realization:
in this case the quasi-realization can be chosen to be (B(H)sa, ρ, D,1), where B(H) is
the space of bounded operators on some finite-dimensional Hilbert space H and B(H)sa

the space of selfadjoint operators, ρ is a positive semidefinite density operator in B(H),
such that D(u) are completely positive maps on B(H) and D = ∑

u∈M D(u) is unital,
and1 is the identity ofB(H). Positive and completely positive realization are guaranteed
to give positive probabilities.

A natural question is then to ask if the inclusions P ⊆ CP ⊆ G are strict. This
question makes sense only if one restricts to finite memory systems, since from the
infinite-dimensional quasi-realization we presented in the last paragraph, a HMM with
countably infinite classical memory can be constructed [2,52]. As already mentioned,
P � G was shown as an early result by [14,15], while P � CP was shown first in [16].
We are going to prove here that even CP � G holds. In order to show these separations,
it is useful to establish necessary and sufficient conditions for a process to have a positive
or completely positive realization.

For the classical case, these were provided by [53]: Given a quasi-realization
(V, π, D, τ ), an equivalent positive realization exists if and only if there is a convex
pointed polyhedral cone C ⊂ V such that τ ∈ C, D(v)(C) ⊆ C, π ∈ C∗. For the
quantum case, an analogous characterization was given in [16] highlighting the role of
semidefinite representable cones, defined as follows.

Definition 2. Let V be a finite-dimensional real vector space. A semidefinite repre-
sentable (SDR) cone is a set C ⊂ V such that there exists a subspace W ⊆ B(Cd)sa

for some d and a linear map L : W → V with

C = L(W+), (8)

where W+ = W ∩ S+, S+ being the cone of positive-semidefinite matrices.

For our purposes we will use that a necessary condition for a process to have a
completely positive realization is that any regular representation of the same process
must admit an SDR cone C ⊂ V such that τ ∈ C, D(v)(C) ⊆ C, π ∈ C∗ [16]. Note
that an SDR cone is semi-algebraic, that is, it can be defined through a finite number of
inequalities involving polynomials of the coordinates.

Since both the characterization of classical and of quantum processes do not give
a prescription for how to find the stable polyhedral or SDR cone, respectively, they
are not immediately usable to establish if a given process has a positive or completely
positive realization. However, they are powerful enough to exclude the existence of
such realizations if one is able to rule out the existence of stable cones with the desired
properties.

2.3. HMM vs HQMM. The processes presented in [14,15], which we refer to as Fox-
Rubin-Dharmadikari-Nadkarni (FRDN) processes, were shown to be in G by defining
them explicitly as a function of Markov chains with infinite memory (non-negative
integers as internal states), and then proving that the rank of the Hankel matrix H is
finite. As we have observed, this means that the processes can be explained with a finite-
dimensional quasi-realization. In particular, the transition probabilities of the Markov
chain are

P(Xi+1 = �|Xi = 0) = h�, where h� := λ� sin2 (�α/2) for � > 0, h0 := 1 −∑�>0 h�

P(Xi+1 = � − 1|Xi = �) = 1 for � > 0,
(9)
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and the function is defined as f (0) = a and f (x) = b if x > 0, α ∈ R and 0 <

λ ≤ 1/2. The resulting processes do not have a finite-dimensional classical realization
when π and α are not commensurate. It was unknown if the processes in [14,15] had
a quantum realization or not, and since the example was formulated naturally as an
infinite-dimensional classical model, it could have been that it was sufficient to show
the separation CP � G. We show that this is not the case, since a quantum realization
exists.

Theorem 1. The process given by Eq. (9) has a quantum realization on a qutrit, given
by maps of the form

D†
b = 	01 ◦ 
r,α ◦ 	01,

D†
a(ρ) = (Tr ρ − Tr D†

b(ρ)
)
(p|ξ 〉〈ξ | + (1 − p)|2〉〈2|), (10)

where 	01 is the cp map projecting onto span{|0〉, |1〉}, and 
r,α is the qubit map


r,α(ρ) = λe−r X eiαZ/2er Xρ er Xe−iαZ/2e−r X , (11)

for a suitable choice of r ∈ R, 0 ≤ p ≤ 1 and |ξ 〉 s.t. 〈ξ |2〉 = 0, depending on α and λ.

To obtain this result, we first derived an explicit quasi-realization of the model (which
was not given previously), and then looked for an equivalent quantum realization im-
itating the main features, in particular the eigenvalues of the maps. Thus, the FRDN
processes cannot separate CP from G.

Some remarks are in order:

• The non-existence of a positive realization was proven by showing that in any real-
ization the map Db must have eigenvalues with maximum modulus with arguments
that are non-commensurate with π , which is impossible for nonnegative matrices by
the Perron-Frobenius theorem [54].

• Theorem 1 defines bona fide HQMM even if p and ξ are not tuned to give exactly the
FRDN models (only r has to satisfy some constraints in order for D†

a to be completely
positive). The argument of the proof that there does not exist any finite-dimensional
classical HMM implementing the process is unchanged, since the eigenvalues of the
map Db do not change.

• The proof of the impossibility of a classical model for this family of quantum real-
izations differs somewhat from the argument provided for the family in [16], which
defines processes that are naturally representable by a 2-qubit quantum systems, and
the existence of a stable polyhedral cone was excluded directly by looking at the
symmetry properties of the stable cones, which are incompatible with polyhedral
cones. This approach of analyzing the problem geometrically proves to be decisive
to prove the separation between quantum and general theories, as we will show in
the next section. There, in fact, looking at spectra of the maps does not seem to help
much.

When α is commensurate with π , say α/π = s/t with coprime integers s and t ,
the FRDN models admit a positive (classical) realization, with a minimal dimension t
[15]. In fact, when there are no eigenvalues with arguments incommensurate with π , the
spectral argument cannot rule out classical realizations. However, the dimension of the
minimal positive realization can be bounded from below, since the allowed region for
eigenvalues of n × n matrices with non-negative elements is a subset of the convex hull
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of the k-roots of unity, k = 1, . . . , n, multiplied by the maximum positive eigenvalue
[55]. We use this fact to prove a noise robustness results for the quantum processes of
Theorem 1, in presence of depolarizing noise, in the special case of p = 1 where the
process effectively takes place on a qubit. We believe the argument can be adapted also
for general 0 ≤ p < 1.

Theorem 2. For 0 ≤ q < 1 and 0 < s ≤ 1, consider the processes defined by the
HQMM with cp maps

D†
b(q, s) = q
r,α + (1 − q)s

1

2
Tr (12)

D†
a(ρ)(q, s) = q Tr

(
(1 − 
†

r,α(1))ρ
)

|ξ 〉〈ξ | + (1 − q)(1 − s)
1

2
Tr(ρ), (13)

at fixed r �= 0 and varying α. If positive realizations exist for every α, their maximum

dimension (i.e. number of states of the HMM) must be ≥ �
(

λ

s
√

1−q(cosh 4r)

)
, assuming

that 1 − q is small enough.

2.4. Processes without quantum realization. Our main result is to present non-semi-
algebraic 3-dimensional cones which are the only closed stable cones for models of
certain stochastic processes, thus ruling out the possibility that these processes admit a
quantum realization. These cones are defined as follows:

• Exponential cone:

Kexp =
{

(x1, x2, x3) ∈ R
3 : x1

x2
≥ e

x3
x2 , x2 > 0

}

∪ {(x1, 0, x3) : x1 ≥ 0, x3 ≤ 0}.
(14)

• Power cones (for 0 < α < 1):

Kα =
{
(x1, x2, x3) ∈ R

3 : x1 ≥ 0, x3 ≥ 0, xα
1 x

1−α
3 ≥ |x2|

}
. (15)

Both Kexp and the Kα are closed convex cones, and they are all not semi-algebraic
(the latter for irrational α). Indeed, the boundary of Kexp ∩ {x2 = 1} is the graph of the
transcendental exponential function, {x1 = ex3}; likewise, the boundary ofKα∩{x2 = 1}
is the graph of the power function, {x1 = x

1− 1
α

3 }, which is transcendental for irrational
α.

The minimal example we can find, using an alphabet of 3 letters, is the following.

Theorem 3. It is possible to choose ν, a, b ∈ R,m0, μ0 ∈ R
3, such that the linear

maps:

D1 = ν

⎛

⎝
a 0 0
0 1 0
0 ln a 1

⎞

⎠ , D2 = ν

⎛

⎝
b 0 0
0 1 0
0 ln b 1

⎞

⎠ , D0 = νm0μ
ᵀ
0 , (16)

are such that D = D0 + D1 + D2 has unique left and right eigenvectors with eigenvalue
1, respectively π, τ , so that, with D : {0, 1, 2} → L(R3) generated by D0, D1, D2:
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• (R3, π, D, τ ) is a bona fide regular quasi-realization of a stochastic process,
• Kexp is the unique stable closed convex cone admitted by (R3, π, D, τ ).

Thus, the resulting stochastic processes does not admit a quantum realization.

The crucial observation, as in [16], is that any candidate closed stable cone C has to
satisfy

Cmin = cone{D(u)τ : u ∈ M∗} ⊆ C ⊆ Cmax = cone{πD(u) : u ∈ M
∗}∗. (17)

On the other hand, for the given process the parameters are chosen in such a way that
Cmin = Kexp = Cmax, and therefore the only possible choice is C = Kexp. Indeed the
matrices are defined in such a way that after a reset, which must happen at some point,
the rays generated by the repeated action of the matrices D1 and D2 in any order, densely
explore the extremal rays of the exponential cone.

With the same strategy we can also show that also the power cones with irrational
power give processes that are not representable by a HQMM. In this case the invertible
matrices are diagonal, but we need an alphabet of four letters, rather than three.

Theorem 4. It is possible to choose ν′, a, b ∈ R,m0, μ0 ∈ R
3, such that the linear

maps:

D1 = ν′
⎛

⎝
a 0 0
0 1 0
0 0 a

α
α−1

⎞

⎠ , D2 = ν′
⎛

⎝
b 0 0
0 1 0
0 0 b

α
α−1

⎞

⎠ , (18)

D3 = ν′
⎛

⎝
1 0 0
0 −1 0
0 0 1

⎞

⎠ , D0 = ν′m0μ
ᵀ
0 (19)

are such that D = D0 + D1 + D2 + D3 has unique left and right eigenvectors with
eigenvalue 1, respectively π, τ , so that, with D : {0, 1, 2, 3} → L(R3) generated by
D0, D1, D2, D3:

• (R3, π, D, τ ) is a bona fide regular quasi-realization of a stochastic process,
• Kα is the unique stable closed convex cone admitted by (R3, π, D, τ ).

Thus, the resulting stochastic processes does not admit a quantum realization when α is
irrational.

3. Discussion

The result of the previous section has an important consequence: one could have hoped
that CP = G, meaning that quantum theory would be able to explain any sequence
of observations from a finite GPT dynamics, and this property could be a principle
that distinguishes quantum theory among general probabilistic theories. This is not the
case, and the study of extensions of quantum mechanics giving rise to larger sets of
quasi-realizations is interesting to pursue, with possible applications in data analysis
applications, in many-body physics and in the foundations of quantum mechanics. In
particular, the exponential and power cones discussed here, and their associated GPTs,
have a rich symmetry structure, as indeed the respective cones are generated by the
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Fig. 2. Exponential cone (14) (left) and power cone (15) (right) for α = 1√
2

action of a group of matrices on their boundary, reminiscent of the fact that in quantum
mechanics the pure states are the orbit of any fiducial pure state under the action of the
unitary group. This translates into a large set of essentially reversible dynamics of the
GPTs.

As classical and quantum models are actually not restricted to a specific dimension,
it is interesting to look for possible multivariate generalizations of power cones and
exponential cones, which can be used to provide richer quasi-realizations, and which
might unify classical, quantum and the present new state spaces (see e.g. [56]). Com-
mutative multivariate generalizations that come to mind are (α ∈ R

n with αi ≥ 0 and∑n
i=1 αi = 1):

• the multivariate power cone

Kn
α = {(x, z) ∈ R

n × R : xα
1 · · · xαn

n ≥ |z|, xi ≥ 0
} ; (20)

• and the multivariate exponential cone

Kn
α,exp =

{

(x, y, z) ∈ R × R
n × R : 1

z
yα1

1 · · · yαn
n ≥ e

x
z , yi ≥ 0, z ≥ 0

}

. (21)

These cones however can be represented with inequalities involving linear constraints
and vectors belonging to the previously discussed 3-dimensional exponential and power
cones [39], therefore they are not really giving new structural building blocks.

On the other hand, and perhaps more interestingly from the point of view of quantum
foundations, are extensions using positive semidefinite matrix cones, which reduce to
the power cones and the exponential cones on specific sections, and to the positive
semidefinite cone on others. As usual in non-commutative settings, there is more than
one natural extension to matrices, and we briefly discuss a few possibilities.

• Matrix exponential cone: as the exponential function is not matrix convex nor mono-
tone, we apply the logarithm (which is matrix monotone and concave), and define
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Lexp =
{

(A, B, t) ∈ Rd×d × Rd×d × R : log
A

t
≥ B

t
, A > 0, B = B†, t > 0

}

.

(22)

• There are at least two natural versions of matrix power cones (for 0 < α < 1 and a
fixed X ∈ R

d×d ), based on Lieb’s concavity theorem:

Lα,X =
{
(A, B, t) ∈ R

d×d × R
d×d × R : Tr XᵀAαXB1−α ≥ |t |, A, B ≥ 0

}
, (23)

Lα =
{
(A, B, T ) ∈ R

d×d × R
d×d × R

d2×d2 : Aα ⊗ B1−α ≥ T ≥ 0, A, B ≥ 0
}

, (24)

the latter admitting an obvious generalization to αi ≥ 0,
∑n

i=1 αi = 1 by way of
n-fold tensor products.

• Matrix relative entropy cone

D = {(A, B, t) ∈ S
d
+ × S

d
+ × R : Tr(A log A − A log B) ≤ t

}
. (25)

Notice that the section {t = 0} of Lexp is {(A, B) : A ≥ 0, B ≤ 0}. Both versions of
the matrix power cone have the property that the section with {t = 0} (resp. {T = 0}) give
just a double copy of the cone of positive semi-definite matrices in dimension d. Finally,
D intersected with {t = 0} is {(A, B) ∈ R

d×d × R
d×d : A, B ≥ 0, supp A ⊆ supp B,

Tr(A log A − A log B) = 0}. This means that quantum dynamics can be obtained by
projecting onto the t = 0, A = B hyperplane and applying the same CP map to A and B.
On the other hand, acting with the map which projects A and B to (Tr A)1 and (Tr B)1,
and does not touch t , and then with the maps seen in the examples, one recovers the
power cone and the exponential cone. Transcendental matrix cones could be also useful
in the study of finitely correlated states, and it would be interesting to exhibit genuinely
quantum (e.g. not diagonal in a product basis as in our examples) finitely correlated
states that are not C∗-finitely correlated.

Another important direction to investigate is the classical-quantum separation in the
presence of noise, to understand to which extent classical models can simulate noisy
dynamics. We have shown a specific example where the memory of the classical model

has to increase as �
(
(1 − q)− 1

2

)
, where q is the noise parameter and the noiseless case

corresponds to q = 1. This holds if we insists in looking for exact realizations, and it
is likely to be a generic feature of quantum models without classical realizations. What
happens if we allow some level of approximation has yet to be formalized and studied.

Finally, there is a lot of room for improvement of necessary and sufficient conditions
for a process to have a quantum realization. It would be interesting to single out some
criteria which are easily verifiable from a quasi-realization. For example, our proof for
excluding a quantum realization is heavily based on the fact that there is only one possible
stable cone, and its not SDR. In general the stable cone is not unique, and it would be
interesting to find a way to exclude quantum realizations in this case.

4. Proofs

In the following we give the proofs of the results presented in the preceding sections.
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4.1. Quantum realizations of the FRDN processes: proof of Theorem 1. Before proving
the theorem, we first give a quasi-realization of the FRDN process [14,15]. This allows
us to write explicit expressions for the probabilities of words, and elucidates certain
features inherited by the completely positive realization, which we then write down in
the second step.

4.1.1. Quasi-realization We present an explicit quasi-realization (V, π, D, τ ) of FRDN
processes. We fix V = R

4 and

τ =
⎛

⎜
⎝

1
1
1
1

⎞

⎟
⎠ . (26)

The matrix corresponding to the output b is defined as

Db := λ

⎛

⎜
⎝

0 0 0 0
0 1 0 0
0 0 cos(α) sin(α)

0 0 − sin(α) cos(α)

⎞

⎟
⎠ , (27)

and the matrix corresponding to input a is a rank one matrix defined as

Da := wπ
ᵀ
0 , (28)

for π0, w ∈ R
4 to be determined. We want to fix the vector π0 ∈ V . In order to do that

we consider the probabilities of the sequences bn = bb . . . b after an a is output, i.e.

p(bn|a) =
∞∑

l=n

hl = λn

4

(
2

1 − λ
− (eiα)n

1 − λeiα
− (e−iα)n

1 − λe−iα

)

. (29)

Using the above expression and p(bn|a) = π0Dn
bτ for every n ≥ 0 (this also fixes

(π0τ) = 1) we obtain the following:

π
ᵀ
0 =

(

1 −
2

1−λ
−aλ,α−bλ,α

4
1

2(1−λ)
− aλ,α

4
−bλ,α

4

)
, (30)

where aλ,α and bλ,α are defined as follows:

aλ,α := 1 − λ cos(α) + λ sin(α)

(1 − λ cos(α))2 + λ2 sin2(α)
(31)

bλ,α := 1 − λ cos(α) − λ sin(α)

(1 − λ cos(α))2 + λ2 sin2(α)
. (32)

Requiring that (Da + Db)τ = τ we get

w =
⎛

⎜
⎝

1
1 − λ

1 + λ (sin(α) − cos(α))

1 − λ (sin(α) + cos(α))

⎞

⎟
⎠ . (33)

This construction fully determines also p(bna|a), therefore all the probabilities
p(u|a).
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We are left with checking that p(a) is positive and equal to the desired value.
We have the condition πDa + πDb = π , which implies

(πw)π
ᵀ
0 (1 − Db)

−1 = π, (34)

since 1 − Db is invertible.
Now, the candidate left fixed point π satisfies

p(a) = πDaτ = (πw) = [πᵀ
0 (1 − Db)

−1τ ]−1 =
[

1 +
∞∑

l=1

hl

]−1

, (35)

which is the desired value. By virtue of the fixed point cosntraints and of the reset
property, the probabilities of all words are completely determined and they coincide
with those given by the FRDN process.

4.1.2. Quantum (completely positive) realization We are going to verify that the quan-
tum process given in Theorem 1 gives the probabilities of the FRDN process.

To start, observe that 
r,α is a completely positive map and that its non-zero eigen-
values coincide with those of Db. Recall


n
r,α(ρ) = λne−r X einαZ/2er Xρ er Xe−inαZ/2e−r X . (36)

Now, defining |ψ〉 = e−r X |0〉, |φ〉 = e−r X |1〉, the eigenvalues and eigenvectors of 
n
r,α

are


n
r,α(|ψ〉〈ψ |) = λn|ψ〉〈ψ |, (37)


n
r,α(|ψ〉〈φ|) = λneinα|ψ〉〈φ|, (38)


n
r,α(|φ〉〈ψ |) = λne−inα|φ〉〈ψ |, (39)


n
r,α(|φ〉〈φ|) = λn|φ〉〈φ|. (40)

We set |ξ 〉 = eiφ√
2
|0〉 + e−iφ√

2
|1〉 = β|ψ〉 + γ |φ〉, with

β〈0|ψ〉 + γ 〈0|φ〉 = β cosh r − γ sinh r = eiφ√
2
, (41)

β〈1|ψ〉 + γ 〈1|φ〉 = −β sinh r + γ cosh r = e−iφ

√
2

, (42)

therefore

β = 1√
2

eiφ cosh r + e−iφ sinh r

cosh2 r − sinh2 r
= eiφ cosh r + e−iφ sinh r√

2
, (43)

γ = 1√
2

e−iφ cosh r + eiφ sinh r

cosh2 r − sinh2 r
= e−iφ cosh r + eiφ sinh r√

2
. (44)

We must have

p(bn |a) = Tr[
n
r,α p|ξ〉〈ξ |] = Tr[
n

r,α

(|β|2|ψ〉〈ψ | + |γ |2|φ〉〈φ| + γ β|ψ〉〈φ| + βγ |φ〉〈ψ |)]
= λn(p(|β|2 + |γ |2) cosh 2r − pγ β sinh 2reinα − pβγ sinh 2re−inα). (45)
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In order to be compatible with Eq. (29), we thus need

p(|β|2 + |γ |2) cosh 2r = 1

2(1 − λ)
, (46)

pγ β sinh 2r = 1

4(1 − λeiα)
, (47)

and we note that β = γ , therefore we obtain, imposing r ≥ 0

tanh 2r = (1 − λ)

|1 − λeiα| , (48)

which is less than 1 if 0 < λ ≤ 1/2, and

arg β = arctan e−2r tan φ = 1

2
arctan

λ sin α

1 − λ cos α
, (49)

which has as a solution tan φ = e2r tan
(

1
2 arctan λ sin α

1−λ cos α

)
, and the expression for arg β

comes from√
2β = cos φ(cosh r + sinh r) + i sin φ(cosh r − sinh r) = er cos φ + ie−r sin φ

=
√

e2r cos2 φ + e−2r sin2 φei arctan e−2r tan φ. (50)

With this choice of r and φ, we have that the value of p that solves Eqs. (46) and (47)
is the same. To compute it, observe that

(|β|2 + |γ |2) cosh 2r − (γ β + βγ ) sinh 2r = 1, (51)

therefore we get

p = 1

2(1 − λ)
− 1

4(1 − λe−iα)
− 1

4(1 − λeiα)
= 1

2(1 − λ)
− 1 − λ cos α

2(1 + λ2 − 2λ cos α)
.

(52)

Note that
1

2(1 − λ)
≥ 1

2(1 − λ)
− 1 − λ cos α

2(1 + λ2 − 2λ cos α)
≥ 1

2(1 − λ)
− 1

2(1 − λ)
= 0 (53)

since

(1 − λ cos α)(1 − λ) = 1 + λ2 − λ(1 + cos α) ≤ (1 + λ2 − 2λ cos α), (54)

therefore 0 ≤ p ≤ 1 as desired.
We also need to check that 
r,α(ρ) is trace-non-increasing, that is


†
r,α(1) = λer Xe−iαZ/2e−2r X eiαZ/2er X ≤ 1, (55)

which is guaranteed since the eigenvalues of 

†
r,α(1) are

ω± = λ cosh2 2r − cos α sinh2 2r

± 1

2

√

sinh2 2r(5 + 3 cosh 4r + 2 cos α sinh2 2r) − 2 cos α sinh2 4r , (56)

which evaluate to ω+ = 1 and ω− = λ2 when we substitute the value of r given by
Eq. (48). Finally, p(a) is fixed as in the quasi-realization.
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4.2. Noise robustness of the size of classical memory: proof of Theorem 2. The impos-
sibility of classical realization fo FRDN models crucially use the fact that the maps have
eigenvalues with phases which are not powers of roots of unity. This cannot happen for
irreducible maps [57]. Taking the qubit reduction of our example quantum realization
(just take (p = 1) and choose the initial state to be in the {|0〉, |1〉} subspace), mixing
our invertible map with completely depolarizing noise, say

D†
b(q, s) = q
r,α + (1 − q)s

1

2
Tr, (57)

D†
a(q, s) = q Tr

(
(1 − 
†

r,α(1))(·)
)

|ξ 〉〈ξ | + (1 − q)(1 − s)
1

2
Tr, (58)

when q �= 1, s �= 0, and the maximum modulus eigenvalues of D†
b(q, s) have phases

that are commensurate with π , since D†
b(q, s) is irreducible [57]. Classical realizations

cannot be excluded in this way, but it is interesting to understand how large the dimension
of the memory should be as q approaches one, and this can be understood again looking
at eigenvalues.

In fact we have that
∞∑

n=0

z−n p(abna) =
∞∑

n=0

z−nπDa(q, s)Dn
b (q, s)Da(q, s)τ

= πDa(q, s)(1 − z−1Db)
−1Da(q, s)τ (59)

= z−1πDa(q, s)(z1 − Db)
−1Da(q, s)τ. (60)

These relation hold for any quasi-realization, for every value of 1/z inside the ra-
dius of convergence of

∑∞
n=0 z

−nDn
b (q, s) =: f (1/z), i.e. |1/z| ≤ ||Db(q, s)||, with

||Db(q, s)|| being the operator norm. This holds in particular if the quasi-realization
is classical. From the quantum realization one obtains a meromorphic continuation of
f (1/z) on all C, since f (1/z) is rational; by inspection, the continuation can have poles
only for 1/z = 1/λ, where λ is an eigenvalue of Db(q, s). Any classical realization
will result in a function of 1/z coinciding with the function obtained from the quantum
realization inside the minimum radius of convergence, therefore resulting in the same
meromorphic continuation. We note that, again by inspection, the meromorphic contin-
uation for a given quasi-realization has poles only at z = λ, where λ is an eigenvalue of
Db(q, s), and thus if a pole at λ exists for the meromorphic continuation of the quantum
realization, λ has to be an eigenvalue of Db(q, s) in any realization.

For n × n non-negative stochastic matrices, the allowed region of the eigenvalues
is contained in the convex hull of k-roots of unity, k≤n [54,55], and this holds also
for general non-negative matrices once their maximum eigenvalue is renormalized to
one, since they are similar to a stochastic one [58]. We can thus determine a lower
bound on the dimension of the classical memory by showing that there are eigenval-
ues of the quantum map Db(q, s), associated to poles in Eq. (59), which are outside
the allowed region unless n is large enough. Suppose that two eigenvalues of D†

b(1, 0)

are ηmax (which is on the maximal circle and real) and η. First of all, we observe
that a perturbation bound constrains the eigenvalues of D†

b(q, s) for q �= 1. First of

all, D†
b(q, s) is similar (similarity of matrices R, R′ here means R′ = SRS−1 for

some invertible matrices S) to er X D†
b[e−r X · e−r X ]er X = qλeiαZ/2 · e−iαZ/2 + (1 −

q)sTr[e−2r X ·] e2r X

2 . Let η′
max be its maximum modulus eigenvalue, which is real and
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positive. qλeiαZ/2 · e−iαZ/2 + (1 − q)sTr[e−2r X ·] e2r X

2 has an eigenvector |0〉〈0| − |1〉〈1|
with eigenvalue qλ, therefore η′

max ≥ qλ. We denote σ(A) the n-tuple of eigenval-
ues of the n × n matrix A, counted with algebraic multiplicity. The optimal matching
distance between two n-tuples u, v is d(u, v) = ming permutation max1≤i≤n |ui − vg(i)|.
Theorem VI.5.1 in [59] says that for a normal matrix A and an arbitrary matrix B such
that ||A − B|| is less than half the distance between any two distinct eigenvalues of A,
then d(σ (A), σ (B)) ≤ ||A− B||. In our case, the eigenvalues of A = qλU ·U †, where
U = eiαZ/2, are {qλ, qλ, qλeiα, qλe−iα}, and the half the minimum distance between
distinct eigenvalues is more than qλ| sin(α)|. By taking B = A+(1−q)s Tr[e−2r X ·] e2r X

2
we have that ||A−B|| = (1−q)s2 cosh(4r). Denoting {ηi } and {η′

i } the eigenvalues of re-
spectively A and B, note also that d(σ (A), σ (B)) ≥ ming permutation |η′

i −ηg(i)| for any i ,
and that mini=1,..,4 |η′

max−ηi | = |η′
max−ηmax |. Supposing that q is such that ||A−B|| ≤

qλ| sin(α)|, we can find |η′
max − ηmax | ≤ d(σ (A), σ (B)) ≤ (1 − q)s2 cosh(4r) and

also an eigenvalue η′ such that |η′ − η| ≤ d(σ (A), σ (B)) ≤ (1 − q)s2 cosh(4r).
By repeated application of the triangle inequality, and supposing 2(1−q)s cosh(4r) ≤

qλ| sin α|, we have the following:
∣
∣
∣
∣1 − η

ηmax
− (1 − η′

η′
max

)

∣
∣
∣
∣ =

∣
∣
∣
∣−

η

ηmax
+

η′

η′
max

∣
∣
∣
∣ =

∣
∣
∣
∣−

η − η′

η′
max

+ η

(
1

ηmax
− 1

η′
max

)∣
∣
∣
∣

≤ 4(1 − q)s cosh(4r)

qλ
. (61)

Let us focus on the segment between 1 and ei
2π
n : if

(
1 − η′

η′
max

)
is outside the big-

ger circular segment individuated by the segment, then there is no classical model
with such eigenvalues in dimension n, because this point is outside the convex hull
of eirπ/k, r = 0, ..., k − 1, k = 0, ..., n. The maximum distance between this segment
and the boundary of the circle is 1 − cos(π/n), which happens at α = π/n. Assuming
there are poles of f (1/z) corresponding to η′

max and η′, for this value of α there is not
a classical model of memory smaller than n if 2(1 − q)s cosh(4r) ≤ qλ| sin(π/n)|
and 4(1 − q)s cosh(4r) ≤ qλ(1 − cos(π/n)) from Eq. (61). Since | sin(π/n)| ≥
(1−cos(π/n))/2 ≥ 1

6 (π/n)2, it is sufficient to require 4(1−q)s cosh(4r) ≤ qλ 1
6 (π/n)2

to exclude the existence of a classical model. Therefore if a classical model exists we
need 1

6 (π/n)2 <
4(1−q)s cosh(4r)

qλ
.

We now have to show that in fact there are poles of f (1/z) corresponding to η′
max

and η′. Since probabilities are real, if a complex eigenvalue is a pole, its conjugate
must be too. We also note that in our example Db(q, s) is guaranteed diagonalizable
if 2(1 − q)s cosh(4r) ≤ qλ| sin α|. In fact, that this map is completely positive, there-
fore it admits a positive semi-definite eigenvector with real eigenvalue. We note that
the operator er X (|0〉〈0| − |1〉〈1|)er X is an eigenvector with eigenvalue qλ, therefore a
linear independent eigenvector with real eigenvalue exists. Finally, for these values of q,
D†
b(q, s) admits two distinct complex eigenvalues, again by d(σ (A), σ (B)) ≤ ||A−B||.

Since Db(q, s) is a 4×4 matrix, it must be diagonalizable. This implies that if a complex
eigenvalue η′ is not a pole, it means that either Da(q, s)τ = 0 or πDa(q, s) = 0, which
is excluded by looking at the definition of Da(q, s) for q �= 1, s �= 1, or that Da(q, s)τ is
orthogonal to the left eigenspace of Db(q, s) corresponding to η′, or πDa(q, s) is orthog-
onal to the right eigenspace of Db(q, s) corresponding to η′. The latter two conditions
are excluded by observing that the span of the orbits span{Db(q, s)nDa(q, s)τ, n ≥ 0},
span{πDa(q, s)Db(q, s)n, n ≥ 0}, are at least three-dimensional (therefore both com-
plex eigenvalue are poles). This is seen explicitly for q = 1, and for other values one
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can observe that the orbit is generated by linear combinations of the vectors in the orbit
of the case q = 1 and 1, in both cases. Since the orbits for q = 1 densely explore a cone
which is a linear transformation of a circular cone, there are always at least two points
on the cone such that 1 is not in their span, therefore also in the case q �= 1 the orbits
must span at least a three-dimensional space.

4.3. Processes without a quantum realization. In this section we prove that there exist
stochastic processes with a finite-dimensional quasi-realization and that are not quantum
realizable.

4.3.1. Proof of Theorem 3: Exponential cone Recall the definition of the exponential
cone:

Kexp = {(x1, x2, x3) ∈ R
3 : x1 ≥ x2e

x3
x2 , x2 > 0} ∪ {(x1, 0, x3) : x1 ≥ 0, x3 ≤ 0}.

(62)

We consider a quasi-realization on V = R
3, alphabet M = {0, 1, 2} and generators

D1 = ν

⎛

⎝
a 0 0
0 1 0
0 ln a 1

⎞

⎠ , D2 = ν

⎛

⎝
b 0 0
0 1 0
0 ln b 1

⎞

⎠ , D0 = νm0μ
ᵀ
0 , (63)

where a > 1 > b > 0, a + b �= 2, ln(a)
ln(b) ∈ R\Q (incommensurate), and

m0 =
⎛

⎝
m01
m02
m03

⎞

⎠ μ
ᵀ
0 = (μ01 μ02 μ03

)
. (64)

Here, ν is a normalization constant such that the largest absolute value of the (in
general complex) eigenvalues of D0 + D1 + D2 is 1.

In order to check that the above quasi-realization defines a non-negative measure we
are going to use a standard result that states this happens if and only if there is a convex
cone C ⊂ V such that τ ∈ C, D(u)(C) ⊆ C, π ∈ C∗ = { f ∈ V∗ : f (x) ≥ 0 ∀x ∈ C}.
Thus we need to describe what kind of cone C is preserved under the transformations
{D(u)}u∈M. In fact, we argue that for any non zero stable convex cone C under all
the transformations Du we can find τ ∈ C such that

[∑
u∈M Du

]
τ = τ . This is a

consequence of a generalized version of Perron-Frobenius theorem [60–62] that states
that if K is a convex cone preserved by a nonzero matrix A then:

• The spectral radius ρ(A) is an eigenvalue of A.
• The cone K contains an eigenvector of A corresponding to ρ(A).

It can be shown by inspection that D1, D2 preserve Kexp acting from the left on
column vectors, and D0 also does it provided that we choose μ0 ∈ K∗

exp and m0 ∈ Kexp,
therefore one can find ν > 0 such that (D0 + D1 + D2)τ = τ , τ ∈ Kexp. The same
argument can be applied to D0, D1, D2 acting from the right on row vectors, which
preserve K∗

exp, therefore there exists π ∈ K∗
exp such that π(D0 + D1 + D2) = π .
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The minimal stable cone is given by

Cmin = cone{D(u)τ : u ∈ M
∗}, (65)

and what we just observed shows that Cmin ⊆ Kexp.
On the other hand, provided that D0τ �= 0, we also have

Cmin ⊇ cone{ν−s−t Ds
1D

t
2m0 : s ∈ N, t ∈ N}. (66)

Indeed, when exploring the dynamics of this quasi-realization the operator D0 acts
as a "reset" to m0 since it is defined as a rank-1 map. We can ensure that D0τ �= 0 in the
following way.

If D0τ = 0 then if ln(ab) �= 0 (which is true by the incommensurate condition) and

a + b �= 2 we have by definition of τ that, defining e1 :=
⎛

⎝
1
0
0

⎞

⎠ and e3 :=
⎛

⎝
0
0
1

⎞

⎠, we get

τ ∈ span{e1} or τ ∈ span{e3}. (67)

If we now fix D0 such that D0e1 �= 0, D0e3 �= 0 (simply choose μ01 �= 0, μ03 �= 0),
then we have a contradiction.

Looking back at the orbit of m0, The matrices D1 and D2 commute, so it suffices to
consider

ν−s−t Ds
1D

t
2 =

⎛

⎝
ex 0 0
0 1 0
0 x 1

⎞

⎠ , (68)

where x = s ln(a) + t ln(b). Note that x ∈ R is dense due to the incommensurability
condition and Kronecker’s Theorem. Thus,

cone
{
ν−s−t Ds

1D
t
2m0 : s ∈ N, t ∈ N

} = cone

⎧
⎨

⎩

⎛

⎝
ex 0 0
0 1 0
0 x 1

⎞

⎠m0 : x ∈ R

⎫
⎬

⎭
. (69)

It is easy to see that

t ≥ ex ⇐⇒ (t, 1, x) ∈ Kexp, (70)

or in other words that the epigraph t ≥ ex is a section of Kexp. Setting m02 = 1 and
m01 = em03 we thus have that the orbit of τ densely explores the curve (ex , 1, x), and
its closed conic hull is

cone{ν−s−t Ds
1D

t
2m0 : s ∈ N, t ∈ N} = cone{(ex , 1, x) : x ∈ R} = Kexp. (71)

This can be seen as follows:

• Kexp = {(x1, x2, x3) ∈ R3 : x1 ≥ x2e
x3
x2 , x2 > 0} [39], and

• int
(Kexp

) := {(x1, x2, x3) ∈ R
3 : x1 ≥ x2e

x3
x2 , x2 > 0} = cone{(ex , 1, x) : x ∈ R},

since for any (x1, x2, x3) ∈ int
(Kexp

)
,
(
x1
x2

, 1, x3
x2

)
is contained in the convex hull of

{(ex , 1, x) : x ∈ R} by convexity of the exponential function, and thus convexity of
its epigraph (as a set).
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This means that

Cmin = Kexp. (72)

The dual of Kexp is given by

int
(
K∗

exp

)
:= cone

{

(y1, y2, y3) ∈ R
3 : y1 ≥ −y3e

y2
y3

−1
, y1 > 0, y3 < 0

}

(73)

K∗
exp = int

(
K∗

exp

)
. (74)

The argument to characterize C∗
max = cone{πD(u) : u ∈ M∗} repeats identically. Since

D0, D1, D2 preserve K∗
exp, C∗

max ⊆ K∗
exp. On the other hand, asking that D0 is such that

πD0 �= 0 and choosing μ03 = −1, μ01 = e−μ02−1 we obtain that

C∗
max = cone{πD(u) : u ∈ M∗} = cone{(μ01ex μ02 + μ03x μ03

) : x ∈ R}
= cone{(e−x−1, x,−1) : x ∈ R} = K∗

exp, (75)

where the last passage is due to the fact that for any (y1, y2, y3) ∈ int
(
K∗

exp

)
,
( − y1

y3
,

− y2
y3

,−1
) ∈ int

(
K∗

exp

)
, but

(
− y1

y3
,− y2

y3
,−1

)
is also in the convex hull of {(e−x−1, x,−1):

x ∈ R}, by the convexity of the function e−x−1. Note that any stable cone C has to satisfy
Cmin ⊆ C ⊆ Cmax. Thus, by the observations above our quasi-realizations has Kexp as
the only closed stable cone. Since Cmin and C∗

max both span the full three-dimensional
space, the quasi-realizations are also regular [2,16]. Moreover, since Kexp is not semi-
algebraic, by the conditions in [16] the quasi-realization does not admit a completely
positive realization.

Now considering the arguments above, we can give a specific example with a = e,
b = 1

2 and

mᵀ
0 = (1 1 0

)
μ0 = (1 −1 −1

)
, (76)

satisfying the conditions that πm0 > 0 and μ0τ > 0. As a check of consistency, notice
that since Cmin and Cmax span R

3 and πD(u)τ ≥ 0 for every u ∈ M
∗, there must exist a

word u∗ such that τD(u∗)π > 0, which implies that πτ > 0, otherwise the probabilities
would be all zero. In practice, this is shown already by τD0π > 0. We can compute the
following fixed points (up to normalization)

τ = (17.855... 5.959... 1
)ᵀ

, π = (2.996... −1.167... −1
)
, (77)

and numerically check that D0τ �= 0,πD0 �= 0.

We can then check that τ ∈ int
(Kexp

)
and π ∈ int

(
K∗

exp

)
explicitly using the

expressions (62) and (73), which must be true in general because our quasi-realization
has minimum dimension (3) among all for the generated process.
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4.3.2. Proof of Theorem 4: Power cone Using the same techniques as before we can give
a quasi-realization that does not admit a quantum realization using a reset matrix and
diagonal invertible matrices. Since the reasoning is very similar to the one of the previous
section the argument is streamlined. We consider the quasi-realization on V = R

3 with
alphabet M = {0, 1, 2, 3} and generators

D1 = ν′
⎛

⎝
a 0 0
0 1 0
0 0 a

α
α−1

⎞

⎠ , D2 = ν′
⎛

⎝
b 0 0
0 1 0
0 0 b

α
α−1

⎞

⎠ , (78)

D3 = ν′
⎛

⎝
1 0 0
0 −1 0
0 0 1

⎞

⎠ , D0 = ν′m0μ
ᵀ
0 (79)

where a > 1 > b > 0, a + b �= 1, a
α

α−1 + b
α

α−1 �= 1,a + b �= a
α

α−1 + b
α

α−1 , log a
log b ∈ R \ Q

(incommensurate), α ∈ R \ Q, 0 < α < 1 and ν′ is such that the maximum absolute
value of the eigenvalues of D0 + D1 + D2 + D3 is 1.

The power cone and its dual are given by (see Section 4 in [39])

Kα =
{
(x1, x2, x3) ∈ R

3 : x1 ≥ 0, x3 ≥ 0, xα
1 x

1−α
3 ≥ |x2|

}
, (80)

(Kα)∗ = Bα · Kα, (81)

where

Bα =
⎛

⎝
α 0 0
0 1 0
0 0 1 − α

⎞

⎠ . (82)

Observe that choosing m0 ∈ Kα, μ
ᵀ
0 ∈ (Kα)∗, Du, u = 0, 1, 2, 3 preserve the power

cone acting from the left and preserve its dual acting from the right. Therefore we can
find stationary states π ∈ K∗

α and τ ∈ Kα , and Cmin ⊆ Kα , C∗
max ⊆ K∗

α .
Now note that

Dt
1D

s
2D

k
3 ∝

⎛

⎝
x 0 0
0 (−1)k 0
0 0 x

α
α−1

⎞

⎠ , (83)

where x = atbs , which is dense in R
+ due to the incommensurability condition and

Kronecker’s Theorem.
Using that a + b �= 1 and a

α
α−1 + b

α
α−1 �= 1 we have that if D0τ = 0 then

τ ∈ L = span(1, 0, 0)ᵀ or τ ∈ L = span(0, 1, 0)ᵀ or τ ∈ L = span(0, 0, 1)ᵀ.

(84)

We can use the above observation in order to choose D0 such that D0τ �= 0, having a
contradiction. In a similar way we can ensure πD0 �= 0. Using the reasoning of Sect. 3
we can argue that the boundaries of the minimal and maximal stable cones are generated
by Dt

1D
s
2D

k
3τ and we have

Cmin = cone{
(
m01x ±m02 m03x

α
α−1

)
: x > 0}. (85)

Similarly, the boundaries of the maximal stable cone are generated by πD0Dt
1D

s
2D

k
3

and
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C∗
max = cone{

(
μ01x ±μ02 μ03x

α
α−1

)
: x > 0}. (86)

Note that

t ≥ s
α−1
α ⇐⇒ (t,±1, s) ∈ Kα t ≥ α

(
s

1 − α

) α−1
α ⇐⇒ (t,±1, s) ∈ K∗

α.

(87)

Thus we can set Cmin = Kα and C∗
max = K∗

α by choosing m01 = m
α−1
α

03 , m02 = μ02 =
1 and μ01 = α

(
μ03
1−α

) α−1
α

. Using that any stable cone has to satisfy Cmin ⊆ C ⊆ Cmax

we have that our quasi-realization only has Kα as a stable cone and by the choice of
α it is not semi-algebraic, implying that the quasi-realization cannot have a quantum
realization.
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