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Abstract: Given any symmetry acting on a d-dimensional quantum field theory, there
is an associated (d + 1)-dimensional topological field theory known as the Symmetry
TFT (SymTFT). The SymTFT is useful for decoupling the universal quantities of quan-
tum field theories, such as their generalized global symmetries and ’t Hooft anomalies,
from their dynamics. In this work, we explore the SymTFT for theories with Kramers-
Wannier-like duality symmetry in both (1 + 1)d and (3 + 1)d quantum field theories.
After constructing the SymTFT, we use it to reproduce the non-invertible fusion rules of
duality defects, and along the way we generalize the concept of duality defects to higher
duality defects. We also apply the SymTFT to the problem of distinguishing intrinsically
versus non-intrinsically non-invertible duality defects in (1 + 1)d.
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1. Introduction and Summary

Kramers-Wannier duality, originally identified in the (1+1)d Isingmodel, is the simplest
example of a so-called “non-invertible symmetry.” Non-invertible symmetries have been
the subject of an extensive literature in (1 + 1)d (see e.g. [1–20]), but have only recently
been generalized to spacetime dimensions greater than two [21–47]. The constructions
of non-invertible symmetries in higher dimensions that have appeared in the literature
so far involve the following techniques,

• Gauging a discrete symmetry in a theory with particular ‘t Hooft anomaly [21];
• Gauging a non-anomalous symmetry in half of the spacetime [22,24];
• Gauging a non-normal finite subgroup of the global symmetry [26,26,28,32,48];
• Gauging a higher form symmetry along a higher co-dimension submanifold [27];
• Gauging a diagonal symmetry between the quantum field theory and a lower di-
mensional topological theory on a defect [38].
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Applications of non-invertible symmetries have ranged from constraints on the IR phases
of supersymmetric and non-supersymmetric gauge theories [22,24,36] to the generation
of new strongly-coupled theories via twisted compactification [29], and also include the
obtaining of selection rules in real-world models such as QED and QCD [30,31].

Despite their newfound utility, sometimes statementsmade using non-invertible sym-
metries in a theoryX can be recast as statements involving only invertible symmetries in
a theory φ(X ), where φ is some appropriate topological manipulation. The set of topo-
logical manipulations φ includes gauging of finite (non-anomalous) symmetries, as well
as stacking with invertible phases. Non-invertible symmetries which cannot be recast as
(potentially anomalous) invertible symmetries upon appropriate application of φ were
dubbed “intrinsically” non-invertible in [29], whereas non-invertible symmetries which
can be recast as invertible symmetries were dubbed “non-intrinsically” non-invertible.
The upshot is that the non-invertibility of a given symmetry, and indeed the full fusion
(higher-)category, is not an invariant under topological manipulations.

With this in mind, it is interesting to search for an object which is invariant un-
der topological operations φ. Indeed, such an object is known to exist: given a d-
dimensional theory with symmetry captured by a fusion (d − 1)-category C, we may
define a (d + 1)-dimensional topological field theory SymTFT(C) with the property that
SymTFT(C) =SymTFT(φ(C)) for any topological manipulation φ. The topological the-
ory SymTFT(C) is known as the symmetry topological field theory [49–55] (see also
related developments in condensed matter physics [56–61]), and will be the main focus
of this paper.

1.1. SymmetryTFTandboundary conditions. TheSymTFTof a theoryX ind-dimensions
with global symmetry C is a topological theory SymTFT(C) in (d+1)-dimensions which,
when compactified on an interval with appropriate boundary conditions, gives back the
theoryX of interest. One of the many nice properties of the SymTFT is that it decouples
the dynamics of X from the symmetries. This makes the action of the various topo-
logical manipulations φ more transparent: indeed, by choosing appropriate topological
boundary conditions for the SymTFT before compactification to d-dimensions, we can
obtain not only the original X , but any theory of the form φ(X ).

The basic idea is illustrated in Fig. 1. The (d+1)-dimensional SymTFT is placed on an
interval,where the right boundary is endowedwith non-topological “enrichedNeumann”
boundary conditions capturing the dynamics of X , whereas the left boundary condition
is topological. Both boundaries can be labeled by appropriate elements of the state space
of SymTFT(C). The dynamical boundary of SymTFT(C) is taken to be

|X 〉 =
∑

a

ZX [a]|a〉 . (1.1)

When C is a finite group G, the a above represents the collective set of flat connections
of G, and ZX [a] denotes the partition function of X coupled to gauge fields a (on some
fiducial d-manifold). When C is a fusion (higher-)category rather than a group, the label
a is an appropriate collective label for the topological defects in the theory.

The topological boundary of SymTFT(C) can take a number of forms, with common
options beingDirichlet or Neumann boundary conditions. Dirichlet boundary conditions
fix the fields a to certain values A, whereas Neumann boundary conditions allow a to
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ZX [A]

SymTFT(C)

D(A)

ZX/G[A]

SymTFT(C)

N(A)

Fig. 1. Schematic picture of the SymTFT. By imposing Dirichlet (resp. Neumann) boundary conditions on
the left and the non-topological boundary condition (1.1) on the right, we may compactify to obtain X (resp.
X /G). In general, there exist other topological boundary conditions as well

fluctuate freely. In the state notation, these can be written as

Dirichlet : |D(A)〉 =
∑

a

δ(a − A)|a〉 ,

Neumann : |N (A)〉 =
∑

a

exp

(

−i
∫

a ∪ A

)

|a〉 .

(1.2)

The normalization factor in
∫

a ∪ A depends on the symmetry and is suppressed here.
We will restore it in the main text.

Because the SymTFT is topological, the length of the interval is unimportant and can
be shrank to zero size, upon which one obtains a d-dimensional theory whose partition
function can be computed by taking the inner product between the states on the left and
right boundaries. In the case of Dirichlet boundary conditions, one obtains

〈D(A)|X 〉 =
∑

a,a′
ZX (a) δ(a′ − A)〈a′|a〉 =

∑

a,a′
ZX (a) δ(a′ − A)δ(a − a′) = ZX (A)

(1.3)

and hence one reproduces the original d-dimensional theory X , coupled to background
fields A. On the other hand, by putting Neumann boundary conditions on the right, we
obtain

〈N (A)|X 〉 =
∑

a,a′
ZX (a) exp

(

i
∫

a′ ∪ A

)

〈a′|a〉

=
∑

a

ZX (a) exp

(

i
∫

a ∪ A

)

= ZX /G(A) . (1.4)
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(a) (b)

Invα(A)

Zα
X [A]

DW(α) =

a,b ei b∪δaInvα(a)

D(A)

Invα(A)

Fig. 2. A theory with anomaly α can be realized on the boundary of an invertible phase Invα(A). This is
possible if and only if the Symmetry TFT is a (generalized) DW theory

In other words, in this case we obtain a d-dimensional theory φ(X ), where φ in this case
represents gauging the discrete symmetry G (which is indeed a topological operation).
Choosing mixed Dirichlet-Neumann boundary conditions will allow us to obtainX with
a subgroup of G gauged.

More generally, one can dress either boundary condition in (1.2) by a d-cocycle
νd . The corresponding theories obtained by shrinking the slab are X stacked with a
counterterm, and X /G with the gauging done with discrete torsion associated with the
d-cocycle,

|D(A)νd 〉 =
∑

a

δ(a − A) exp

(

−i
∫

νd(a)

)

|a〉 ←→ 〈D(A)νd |X 〉

= ZX (A) exp

(

i
∫

νd(A)

)

|N (A)νd 〉 =
∑

a

exp

(

−i
∫

a ∪ A − i
∫

νd(a)

)

|a〉 ←→ 〈N (A)νd |X 〉

= Z(X×νd )/G(A) (1.5)

One therefore expects that any two theories X and X ′ that are related by a topological
manipulation φ, i.e.X ′ = φ(X ), can be obtained by the slab construction with the same
SymTFT but with different topological boundary conditions. In particular, this implies
that the SymTFT in the bulk is invariant under topological manipulations.

1.2. Invertible symmetry and Dijkgraaf-Witten theories. The SymTFT takes a particu-
larly simple form when the symmetry in question is group-like. To see this, begin by
considering a theory X with background gauge fields A and anomaly α. The anomaly
inflow paradigm [62], in modern language, says that such a theory may be realized on
the boundary of an appropriate invertible phase Invα(A); see Fig. 2a.

Given Fig. 2a, one can promote the background gauge field A to a dynamical gauge
field a both on the right boundary and in a slab in the bulk. The bulk theory within this
slab is then a nontrivial TQFT, namely a (generalized) Dijkgraaf-Witten (DW) theory1

DW(α) =
∑

a,b

exp

(

i
∫

b ∪ δa

)

Invα(a) , (1.6)

1 The qualifier “generalized” here refers to the fact that the relevant invertible phases are not restricted to
group cohomology elements.
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where both a and b are invariant G-valued cochains, and as commented above we sup-
press the normalization in the BF coupling for now. On the right of the slab, one further
imposes Dirichlet boundary conditions to pin the dynamical field a to the background A.
The theoryX is recovered by taking the thin slab limit where the non-topological bound-
ary condition |X 〉 and the Dirichlet boundary condition |D(A)〉 collide. We conclude
that the SymTFT for an invertible symmetry with an anomaly is given by a (generalized)
DW theory (1.6), i.e. a discrete gauge theory, potentially with a non-trivial twist.

1.3. Symmetry TFT for duality defects. Having understood the SymTFT for theories
with only group-like (i.e. invertible) symmetries, we may next proceed to consider the-
ories with non-invertible symmetries. In (1 + 1)d, the simplest categories with non-
invertible symmetries are the so-called Tambara-Yamagami categories TY (G) with G
an Abelian group. The objects of this category consist of invertible lines Lg for each
g ∈ G, together with a single non-invertible line N with fusion rules2

Lg1 × Lg2 = Lg1·g2 , Lg × N = N × Lg = N , N × N =
∑

g∈G
Lg. (1.7)

A higher-categorical analog of TY (G) fusion rules exists in higher dimensions, as will
be discussed for G = Z

(1)
N in (3 + 1)d in the main text. The goal of this paper is to

construct the SymTFTs for (1 + 1)d theories with TY (ZN ) symmetry, as well as the
analogs in (3 + 1)d.

Before beginning this analysis, we should note that the SymTFT is, at least implic-
itly, already known for any fusion (higher-)category. Indeed, given a theory with fusion
(higher-)category C, the SymTFT is always given by Turaev-Viro theory on C, or equiv-
alently as Reshetikhin-Turaev theory on the Drinfeld center Z(C) (subject to important
caveats3). The latter definition makes it clear that the SymTFT of C is the quantum dou-
ble Z(C) of C. This matches with the results obtained above for group-like symmetry
C = Vecα(G) discussed above, since Turaev-Viro theory on Vecα(G) is known to be
equivalent to DW theory with DW action α.

For the case of C = TY (ZN ) in (1 + 1)d, various properties of the Drinfeld center
Z(TY (ZN )) are known in detail in the mathematics literature [64,65], as well as in
the physics literature [66,67]. As such, the results we present in (1 + 1)d are not new.
However, the way in which we obtain these results will be new, and will carry the virtue
of being more easily generalizable to the case of higher dimensions.

As will be described in the rest of this work, the SymTFTs for theories with duality
symmetries can be obtained by starting with appropriate DW theories and gauging an
electro-magnetic (EM) exchange symmetry. As part of our analysis, we will identify an
explicit Lagrangian description of the EM-gauged theory, and will use it to obtain data
about the spectrum of objects and (higher-)morphisms in the relevant categories Z(C).

2 To fully specify the category TY (G), one must specify more than just the fusion rules; the additional data
required is the Frobenius-Schur indicator ε ∈ Z2 together with a bicharacter χ ∈ H2(G,U (1)). In this paper
we will mostly work with the case of trivial ε and χ .

3 It is known that in (2 + 1)d, given a spherical fusion category C, one can define the Turaev-Viro theory of
C as an extended TQFT, which is equivalent to Reshetikhin-Turaev theory on the Drinfeld center Z(C) [63].
For fusion higher-categories, the authors expect that a similar statement holds—namely that the defects of the
SymTFT are captured by the Drinfeld center of the corresponding fusion higher-category—though they are
unaware of a definition of Reshetikhin-Turaev theory in higher dimensions.
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1.4. Organization and conventions. This paper is organized as follows. In the first half of
the paper, we focus on the (2+1)d SymTFT for (1+1)d theories with TY (ZN ) symmetry.
To prepare for this, we begin in Sect. 2 by reviewing the construction of duality defects
in (1 + 1)d via half-space gauging, as well as the derivation of their fusion rules. We
pay special attention to the normalizations appearing in the fusion rules, which we feel
have not been carefully treated in the literature yet. After reviewing the fusion rules of
TY (ZN ), we then construct the SymTFT in two steps.Webegin in Sect. 3 by constructing
the SymTFT for a theory with non-anomalous Z

(0)
N symmetry. As discussed above, for

theories with only group-like symmetries the SymTFT should be a DW theory, and in the
current case we expect it to be ZN gauge theory with trivial DW action. The spectrum of
topological operators of thisZN gauge theory, including the so-called “twist defects,” are
studied in detail. Interestingly, the twist defects admit an interpretation as higher duality
interfaces, generalizing the constructions of non-invertible defects/interfaces listed in the
beginning of this introduction. To obtain the SymTFT for TY (ZN ), we next gauge the
Z
EM
2 symmetry of the bulkZN gauge theory. This is done in Sect. 4 in two different ways.

In Sect. 4.1, the gauging is done at the level of the category by tracing the behavior of all
of the simple objects of ZN gauge theory under gauging of EM and carefully adding in
the twisted sector objects. In Sect. 4.2, the gauging is done at the level of the Lagrangian
by promoting cocycles to twisted cocycles.

The second half of the paper gives the analogous construction of the (4+1)d SymTFT
for (3 + 1)d theories with duality defects. As before, we begin in Sect. 5 by reviewing
the construction of duality defects in (3 + 1)d via half-space gauging, as well as the
derivation of their fusion rules. Once again, we pay special attention to the normalization
appearing in these fusion rules. Having done so, we then construct the SymTFT for the
duality defects in two steps. First in Sect. 6 we construct the SymTFT for Z

(1)
N one-

form symmetry in (3 + 1)d, which is again simply a Z
(1)
N gauge theory, and analyze its

spectrum of topological operators as well as their fusions. Then in Sect. 7 we gauge the
Z
EM
4 EM duality of the Z

(1)
N gauge theory. This gauging is again done in two ways: in

Sect. 7.1 it is done by tracing the behavior of the various objects and morphisms of the
ungauged theory under gauging, while in Sect. 7.2 it is done by writing down an explicit
Lagrangian in terms of twisted cocycles.

Finally, we close in Sect. 8 by describing one application of the SymTFT, namely
to the question of intrinsic vs non-intrinsic non-invertibility discussed in the beginning
of this introduction. For example, we will see that when N is not a perfect square, all
duality defects in bosonic (1 + 1)d theories are intrinsically non-invertible.

Various computations needed in the main text are relegated to appendices. In Ap-
pendix A we derive the commutation relations between k-dimensional operators in
(2k + 1)d Z

(k−1)
N gauge theory, which are crucial for understanding the fusion rules

of objects in the SymTFT. In Appendix B, we explain how to measure the EM-charge
of junctions in ZN gauge theory, which is crucial for obtaining the fusion rules of the
EM-gauged theory. In Appendix C we provide details for the proof of gauge invariance
of the (2 + 1)d Lagrangian describing the EM-gauged theory, which is written in terms
of twisted cocycles. In Appendix D, we review results from the math literature regarding
the modular S and T matrices for the Drinfeld center of TY (ZN ). These results provide
a useful check of the results obtained in the first half of this paper. In Appendix Ewe give
details on the form of the EM duality defects in the (4 + 1)d SymTFT before gauging,
which depend crucially on whether N is odd, N = 2, or N is even with N > 2. Finally,
in Appendix F we provide a physical argument for the assignment of quantum defect
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lines after gauging Z
EM
4 to operators whose constituents are invariant under the Z

EM
2

normal subgroup of Z
EM
4 .

We close this introduction by listing some conventions that will be used throughout
the paper:

1. 1-form gauge fields are denoted as a or A (potentially with a hat or subscript) de-
pending on whether they are dynamical or background fields. Likewise 2-form gauge
fields are denoted by b or B depending onwhether they are dynamical or background.

2. Cup products are mostly suppressed, e.g. aA := a ∪ A. We will explicitly write
down the cup product only when it is necessary to distinguish it from the twisted cup
product.

3. We use Xd to denote the d-dimensional spacetime, and Mn to denote worldvolumes
of n-dimensional topological defects/interfaces in spacetime.

4. We denote the global fusion by × and the global direct sum as +. On the other hand,
we denote the local fusion by ⊗ and the local direct sum as ⊕. We will also use the
notation Oc ⊂ Oa ⊗ Ob to indicate that there exists a junction between incoming
topological defects Oa and Ob and an outgoing topological defect Oc.

2. Duality Interfaces in (1 + 1)d

Before analyzing the SymTFT for theories with duality defects, we begin with a detailed
discussion of the duality defects themselves, together with their fusion rules. Special
attention will be paid to normalizations, which are surprisingly subtle. We begin in
(1 + 1)d where things are somewhat simpler.

2.1. Duality interfaces from half-space gauging. Consider a non-spin QFT X in (1 +
1)d with an anomaly free Z

(0)
N zero-form global symmetry, defined on a closed two-

dimensional spacetime X2. We denote the Z
(0)
N background gauge field as A, and the

partition function as ZX [X2, A]. Gauging Z
(0)
N gives a new theory X /ZN ,

ZX /ZN [X2, A] = 1

|H0(X2, ZN )|
∑

a∈H1(X2,ZN )

ZX [X2, a] e 2π i
N

∫

X2
aA

, (2.1)

where now A ∈ H1(X2,̂ZN ) is the background field of the quantum symmetry ̂Z(0)
N

after gauging. The defect that generates this quantum symmetry is the Wilson line of a,

η(γ ) = exp

(

2π i

N

∮

γ

a

)

. (2.2)

Let us comment on the normalization factor in (2.1), which is introduced to subtract
out gauge redundancies. It is straightforward to check that gauging Z

(0)
N twice maps the

theory X back to itself, up to an additional Euler counterterm χ [X2, ZN ]−1, with

χ [X2, ZN ] = |H0(X2, ZN )||H2(X2, ZN )|
|H1(X2, ZN )| . (2.3)

The normalization of the partition function may be modified by multiplying by an ar-
bitrary power of the Euler counterterm χ [X2, ZN ]κ . The case of κ = 1

2 is of particular
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M1|0

X<0
2 X≥0

2

Fig. 3. Decomposition of X2 along a neck. The interface is located at x = 0

interest, since in this case the normalization in (2.1) becomes 1/
√|H1(X2, ZN )|, and

then gauging twicemapsX back to itself exactly, without any counterterm,4 We however
will not include this factor, and will instead adopt the normalization in (2.1).

Instead of gaugingZ
(0)
N over the entire X2, one can gauge in half of the spacetimewith

Dirichlet boundary conditions. This defines a topological duality interface N between
X and X /ZN [21,22].5 Let us decompose the spacetime manifold X2 into left and right
parts,

X2 = X<0
2 ∪ X≥0

2 , (2.4)

where ∂X≥0
2 = M1 is the interface. Locally around the interface, the topology of the

manifold isM1×R, and we can use a local coordinate x to parameterizeR. The interface
is located at x = 0, as shown in Fig. 3. The theory X lives on X<0

2 , while the theory
X /ZN lives on X≥0

2 .

This is also shown in Fig. 4, where the theory on the right side X≥0
2 is defined to be

ZX /ZN [X≥0
2 , A] = 1

|H0(X≥0
2 , M1|0, ZN )|

∑

a∈H1(X≥0
2 ,M1|0,ZN )

ZX [X≥0
2 , a] e

2π i
N

∫

X≥0
2

aA
.

(2.5)

The Dirichlet boundary condition implies that the dynamical gauge field a is an element
in relative cohomology H1(X≥0

2 , M1|0, ZN ). Here, we use M1|0 to emphasize that M1
is located at x = 0.

The orientation reversal of the duality defectN is defined by exchanging the theories
on the two sides of Fig. 4. Concretely, X /ZN lives on the left and X lives on the right.
By redefining the theory ˜X = X /ZN , the defectN can be rewritten as having ˜X on the
left and X = χ · ˜X /ZN on the right. In other words,

N = χ [X≥0
2 , ZN ] · N . (2.6)

Hence the duality interfaces in (1 + 1)d are orientation-reversal invariant, up to an Euler
counterterm. This is also a consequence of the fact that gauging twice maps the theory
to itself (up to a counterterm).

4 In obtaining this result, one uses the fact that |Hn(X2, ZN )| = |H2−n(X2, ZN )| for closed X2. For the
case of open manifolds X≥0

2 with boundary M1|0, to be discussed below, absolute cohomology should be

switched to relative cohomology, i.e. |Hn(X≥0
2 ZN )| = |H2−n(X≥0

2 , M1|0, ZN )|.
5 The duality interface defined here by half-gauging should not be confused with the topological interface

(also termed “duality wall”) between two dual theories (e.g. mirror symmetry pairs) discussed in e.g. [68–70].
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N

ZX [X<0
2 , A] ZX/ZN

[X≥0
2 , A]

(2.5)

x = 0

x

Fig. 4. The duality defect from gaugingZN over half of the spacetime X≥0
2 withDirichlet boundary conditions

In the special case that the theory X is self-dual under gauging, i.e. X = X /ZN ,
the duality interface discussed above which connects two different theories becomes a
duality defect within a single theory. In this section we will not assume the self-duality
condition; it will be the main focus of Sect. 4.

2.2. Fusion rules of duality interfaces. We now proceed to a discussion of the fusion
rules of the duality interface N defined in Sect. 2.1. In particular, we will find that N
is non-invertible. We warn the reader that the following analysis is somewhat technical,
and those interested only in the final answer may skip to (2.19).

We first discuss the fusion rule η ×N . Since a has Dirichlet boundary conditions on
M1, a|M1|0 = 0, the Z

(0)
N symmetry defect η is trivial on M1|0. This justifies the fusion

rule

η × N = N . (2.7)

It is more interesting to study the fusion rule between two duality interfacesN ×N . Let
us place the two duality defects at x = 0 and x = ε, and let ε → 0+. The two duality
defects divide the spacetime X2 into three regions, X2 = X<0

2 ∪ X [0,ε)
2 ∪ X≥ε

2 . Since ε is

small, we may always take X [0,ε)
2 = M1 × I[0,ε). The theories living on the three regions

are as shown in Fig. 5. Instead of defining ZX /ZN [X [0,ε)
2 , A] and ZX /ZN /ZN [X≥ε

2 , A]
separately and discussing how to glue them together along M1|ε , it suffices to discuss
the theory on X≥0

2 all together. The theory living on X≥0
2 is given by

1

|H0(X≥0
2 , M1|0, ZN )||H0(X≥ε

2 , M1|ε, ZN )|
∑

a∈H1(X≥0
2 ,M1|0,ZN )

ã∈H1(X≥ε
2 ,M1|ε ,ZN )

ZX [X≥0
2 , a] e

2π i
N

∫

X [0,ε)
2

aA+ 2π i
N

∫

X≥ε
2

(a−A)̃a
(2.8)

and we will now evaluate (2.8) in detail.
Since ZX in the summand does not depend on ã, we would first like to sum over ã,

which intuitively should enforce a = A on X≥ε
2 . To perform this summation rigorously,

one must convert the sum over cohomologies into a sum over cochains (for reasons that
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N N

ZX [X<0
2 , A] ZX/ZN

[X [0 )
2 , A] ZX/ZN /ZN

[X≥
2 , A]

x = 0 x =

x

Fig. 5. Fusion of two duality interfaces. The partition function on X≥0 is given by (2.8)

will be explained below). Note that H1 = Z1/B1, |B1| = |C0|/|Z0|, and |B0| = 16;
these equations hold for both absolute and relative cohomologies. The sum 1

|H0|
∑

a∈H1

can thus be rewritten as 1
|H0||B0|

∑

a∈Z1 = 1
|C0|
∑

a∈Z1 . Equation (2.8) then becomes

1

|C0(X≥0
2 , M1|0, ZN )||C0(X≥ε

2 , M1|ε, ZN )|
∑

a∈Z1(M≥0
2 ,M1|0,ZN )

ã∈Z1(X≥ε
2 ,M1|ε ,ZN )

ZX [X≥0
2 , a] e

2π i
N

∫

X [0,ε)
2

aA+ 2π i
N

∫

X≥ε
2

(a−A)̃a
. (2.9)

The cocycle condition in the sum can further be relaxed by introducing additional dy-
namical scalars φ ∈ C0(X≥0

2 , ZN ) and ˜φ ∈ C0(X≥ε
2 , ZN ) with BF couplings acting as

Lagrange multiplier fields. The relative condition can likewise be eliminated by includ-
ing the couplings φa and ˜φã on the subloci M1|0 and M1|ε . Then all the variables in the
sum are cochains,

1

|C0(X≥0
2 , M1|0,ZN )||C0(X≥ε

2 , M1|ε ,ZN )|
1

|C0(X≥0
2 ,ZN )||C0(X≥ε

2 ,ZN )|

×
∑

a∈C1(X≥0
2 ,ZN ),̃a∈C1(X≥ε

2 ,ZN )

φ∈C0(X≥0
2 ,ZN ),˜φ∈C0(X≥ε

2 ,ZN )

ZX [X≥0
2 , a]e

2π i
N

∫

X [0,ε)
2

aA+ 2π i
N

∫

X≥ε
2

(a−A)̃a
e

2π i
N

∫

X>0
2

φδa− 2π i
N

∫

M1 |0 φa
e

2π i
N

∫

X>ε
2
˜φδã− 2π i

N

∫

M1 |ε ˜φã

(2.10)

Indeed, summing over φ in the bulk X≥0
2 enforces a to be a cocycle due to the coupling

∫

X>0
2

φδa, and summing over φ on the boundary X1|0 enforces a = 0, which makes the
cocycle relative to M1|0. The same comments apply to ã.

We are now ready to perform the sum over ã. By rewriting the final factor of the
summand as

e
2π i
N

∫

X>ε
2
˜φδã− 2π i

N

∫

M1|ε ˜φã = e
− 2π i

N

∫

X≥ε
2

δ˜φã
, (2.11)

6 We remind the reader that Cn is the set of n-cochains, Zn ⊂ Cn is the set of n-cocycles, and Bn ⊂ Zn

is the set of exact n-cocycles.
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we see that summing over ã produces a factor of |C1(X≥ε
2 , ZN )| and enforces that

a − A − δ˜φ = 0 on X≥ε
2 ,

1

|C0(X≥0
2 , M1|0, ZN )||C0(X≥ε

2 , M1|ε , ZN )|
|C1(X≥ε

2 , ZN )|
|C0(X≥0

2 , ZN )||C0(X≥ε
2 , ZN )|

×
∑

a∈C1(X≥0
2 ,ZN )

φ∈C0(X≥0
2 ,ZN ), ˜φ∈C0(X≥ε

2 ,ZN )

ZX [X≥0
2 , a]e

2π i
N

∫

X [0,ε)
2

aA
e
2π i
N

∫

X>0
2

φδa− 2π i
N

∫

M1|0 φa

δ(a − A − δ˜φ)|X≥ε
2

. (2.12)

Next we integrate out φ, which produces a factor of |C0(X≥0
2 , ZN )| and enforces a ∈

Z1(X≥0
2 , M1|0, ZN ),

1

|C0(X≥0
2 , M1|0, ZN )||C0(X≥ε

2 , M1|ε, ZN )|
|C1(X≥ε

2 , ZN )|
|C0(X≥ε

2 , ZN )|
∑

a∈Z1(X≥0
2 ,M1|0,ZN )

˜φ∈C0(X≥ε
2 ,ZN )

ZX [X≥0
2 , a]e

2π i
N

∫

X [0,ε)
2

aA
δ(a − A − δ˜φ)|X≥ε

2
.

(2.13)

The summand is now manifestly independent of ˜φ, so we may set ˜φ to zero in the
delta function and replace the sum with a factor of |C0(X≥ε

2 , ZN )|. The remaining delta

function then fixes a = A in X≥ε
2 , which makes a an element of a ∈ Z1(X [0,ε]

2 , M1|0 ∪
M1|ε, ZN ),

|C1(X≥ε
2 , ZN )|

|C0(X≥0
2 , M1|0, ZN )||C0(X≥ε

2 , M1|ε, ZN )|
∑

a∈Z1(X [0,ε]
2 ,M1|0∪M1|ε ,ZN )

ZX [X≥0
2 , a + A|M≥ε

2
]e

2π i
N

∫

X [0,ε]
2

aA
. (2.14)

where A|Mε
2
is equal to A if we’re onM≥ε

2 , and vanishes elsewhere. It is useful reorganize
the normalization by factorizing out the Euler counter term,

|C0(X≥ε
2 , ZN )||C2(X≥ε

2 , ZN )|
|C0(X≥0

2 , M1|0, ZN )||C0(X≥ε
2 , M1|ε, ZN )| · |C1(X≥ε

2 , ZN )|
|C0(X≥ε

2 , ZN )||C2(X≥ε
2 , ZN )| .

(2.15)

The second factor above is the inverse of the Euler counterterm χ [M≥ε
2 , ZN ]−1 on X≥ε

2 ,
which can be seen by direct evaluation

χ [X≥ε
2 , ZN ] = |H0(X≥ε

2 , ZN )||H2(X≥ε
2 , ZN )|

|H1(X≥ε
2 , ZN )| = |C0(X≥ε

2 , ZN )||Z2(X≥ε
2 , ZN )|

|C1(X≥ε
2 , ZN )|

(2.16)

and by further noting that Z2(X≥ε
2 , ZN ) = C2(X≥ε

2 , ZN ) since all top forms are
closed. Moreover, the first factor in (2.15) can be simplified by using |C2(X≥ε

2 , ZN )| =
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|C0(X≥ε
2 , M1|ε, ZN )| since the elements in C0(X≥ε

2 , M1|ε, ZN ) and the elements in
C2(X≥ε

2 , ZN ) are Fourier partners. We finally use the fact that
∣

∣

∣Cn
(

X≥0
2 , M1|0, ZN

)∣

∣

∣ =
∣

∣

∣Cn
(

X [0,ε]
2 , M1 |0 ∪ M1|ε , ZN

)∣

∣

∣

∣

∣Cn (X≥ε
2 , ZN

)∣

∣ ,

(2.17)

which is simply a decomposition of cochains on X≥0
2 into the sum of cochains on

X [0,ε]
2 with fixed boundary condition at M1|ε and cochains on X≥ε

2 with free boundary
conditions. Note crucially that such decomposition can not be achieved at the level of
cocycles or cohomologies, because the flatness condition is violated at M1|ε . The ability
to use this decomposition is the main reason for our reformulation of the sum over
cohomologies in (2.8) as a sum over cochains.

Using (2.17), we may now simplify the first term in (2.15) to 1/|C0(X [0,ε]
2 , M1|0 ∪

M1|ε, ZN )|. Substituting the simplified normalization in (2.15) into (2.14), we get

χ [X≥ε
2 , ZN ]−1 1

|C0(X [0,ε]
2 , M1|0 ∪ M1|ε, ZN )|

∑

a∈Z1(X [0,ε]
2 ,M1|0∪M1|ε ,ZN )

ZX [X≥0
2 , a + A|X≥ε

2
]e

2π i
N

∫

X [0,ε]
2

aA
. (2.18)

This formula admits a simple physical interpretation. First, in the region M≥ε
2 we have

two overlapping gaugings, which “annihilate” to produce a factor of χ [M≥ε
2 , ZN ]−1.

This is a consequence of the fact, mentioned before, that gauging twice takes the theory
X back to itself up to an Euler counterterm.7 As for the rest of (2.18), we notice that after
the two gaugings “annihilate” to give the Euler counterterm, we are left with a gauging
in the strip X [0,ε]

2 , with Dirichlet boundary conditions on both boundaries M1|0 ∪ M1|ε .
This gives the remaining portions of the formula.

By taking the limit ε → 0, it now follows that the N × N fusion rule is

N × N = χ [X≥ε
2 , ZN ]−1 1

∣

∣

∣C0
(

X [0,ε]
2 , M1|0 ∪ M1|ε , ZN

)∣

∣

∣

∑

a∈Z1
(

X [0,ε]
2 ,M1|0∪M1|ε ,ZN

)

η(LD(a))

= χ [X≥ε
2 , ZN ]−1 1

∣

∣

∣H0
(

X [0,ε]
2 , M1|0 ∪ M1|ε , ZN

)∣

∣

∣

∑

a∈H1
(

X [0,ε]
2 ,M1|0∪M1|ε ,ZN

)

η(LD(a))

= χ [X≥ε
2 , ZN ]−1

∑

γ∈H1(M1,ZN )

η(γ ) (2.19)

whereLD stands for theLefschetz dual, andwe have used |H0(X [0,ε]
2 , M1|0∪M1|ε, ZN )|

= 1. Using (2.6), we likewise find

N × N =
∑

γ∈H1(M1,ZN )

η(γ ) . (2.20)

This fusion rule more straightforwardly corresponds to gauging in a slab, and indeed
this “gauging in a slab” is precisely how the fusion rule of duality defects was originally

7 As mentioned around (2.3), this piece could be removed by modifying the definition of gauging by an
appropriate Euler counterterm.
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ZX [A]

x = 0

Expand / Shrink
2π
N

aδa

D(A)

x = 0 x = ε

Fig. 6. A (1+1)d QFTX with ZN symmetry can be expanded into a (2+1)d slab. The bulk is the (2+1)d ZN
SymTFT, the right boundary encodes the dynamical information of the (1 + 1)d QFT, and the left boundary is
a topological Dirichlet boundary condition for the bulk field a

derived in [21,22]. The method used here was more roundabout, but gives important
insight into the correct way to keep track of normalization factors.

In summary, the fusion rules for duality interfaces in (1 + 1)d are as follows,

N × N =
∑

γ∈H1(M1,ZN )

η(γ ) , η × N = N ,

N = χ [X≥0
2 , ZN ]N , ηN = 1 . (2.21)

These are, not coincidentally, the fusion rules of the ZN Tambara-Yamagami fusion
categories.

3. (2 + 1)d Symmetry TFT for Z
(0)
N Symmetry

In Sect. 2, we defined the duality interfaceN and studied its fusion rules. In this section,
we study the properties of the duality interface from the SymTFT point of view. In
particular, we find that the duality interface in a (1 + 1)d QFT can be realized as a twist
defect in a (2 + 1)d ZN TQFT, from which the fusion rules (2.21) can be reproduced.
We also study the F-symbols of the duality interfaces using the SymTFT. Throughout
this section, we will only assume that the (1 + 1)d QFT has a Z

(0)
N zero-form global

symmetry; in particular, we do not assume invariance under gauging Z
(0)
N .

Suppose X is a (1 + 1)d QFT with an anomaly-free Z
(0)
N global symmetry, whose

partition function is ZX [X2, A]. As discussed in the introduction, we can expand the
theory into a (2+1)d slab, as shown in Fig. 6. The SymTFT living in the bulk of the slab
is a (2 + 1)d ZN gauge theory, whose action is

S = 2π

N

∫

X3

âδa . (3.1)

Both a and â are dynamicalZ(0)
N -valued 1-cochains.Wewill take the bulk to be a product

X3 = X2 × I[0,ε], and will use the coordinate x to parameterize the interval I[0,ε]. The
two boundaries are X2|ε and X2|0.
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The boundary conditions on the left (x = 0) and right (x = ε) boundaries of the slab
are specified by appropriate boundary states. On the right boundary, the state is

|X 〉 =
∑

a∈H1(X2|ε,ZN )

ZX [X2|ε, a]|a〉 . (3.2)

It corresponds to a non-topological enriched Neumann boundary condition that encodes
all of the dynamical information of the (1 + 1)d QFT X . On the left boundary, the state
is

〈D(A)| =
∑

a∈H1(X2|0,ZN )

〈a|δ(a − A) , (3.3)

which corresponds to a topological Dirichlet boundary condition. Note that the back-
ground field dependence only enters in the left, topological boundary. By shrinking the
slab, i.e. taking ε → 0, the partition function of the (1 + 1)d theory is reproduced by the
inner product of the two boundary states,

〈D(A)|X 〉 =
∑

a,a′∈H1(X2|0,ZN )

ZX [X2|0, a]δ(a′ − A)〈a′|a〉 = ZX [X2|0, A] , (3.4)

where we have used 〈a′|a〉 = δ(a′ − a).
Gauging the Z

(0)
N symmetry ofX in (1+1)d corresponds to changing the topological

boundary condition on the left from Dirichlet to Neumann. To see this, we define the
Neumann boundary condition as

〈N (A)| = 1

|H0(X2|0, ZN )|
∑

a∈H1(X2|0,ZN )

〈a|e 2π i
N

∫

X2 |0 aA (3.5)

and check explicitly that

〈N (A)|X 〉 = 1

|H0(X2|0, ZN )|
∑

a,a′∈H1(X2|0,ZN )

ZX [X2|0, a]e 2π i
N

∫

X2 |0 a
′A〈a′|a〉 = ZX /ZN [X2, A] . (3.6)

More generally, when theZ
(0)
N symmetry has a nontrivial ’t Hooft anomaly, the SymTFT

will be a ZN gauge theory with a non-trivial twist, i.e. a Dijkgraaf Witten theory. In this
case, one cannot gauge Z

(0)
N in (1 + 1)d because of the anomaly. Correspondingly, there

is no Neumann topological boundary condition.

3.2. Lines and surfaces in ZN gauge theory. We now consider the line and surface
operators in ZN gauge theory, focusing for the moment on the ones without topological
boundaries. The operators with boundaries will be discussed in subsequent subsections.
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3.2.1. Line operators The ZN gauge theory (3.1) has N 2 genuine topological line op-
erators,

L(e,m)(γ ) = exp

(

2π i

N

∮

γ

ea

)

exp

(

2π i

N

∮

γ

mâ

)

, (e,m) ∈ ZN × ZN , (3.7)

where L(1,0) and L(0,1) together generate a Z
(1)
N × Z

(1)
N 1-form symmetry, or in other

words Z(VecZN ). They satisfy the following fusion and braiding rules:

1. Fusion rule:The lines L(e,m)(γ ) are invertible, and have straightforward fusion rules

L(e,m)(γ ) × L(e′,m′)(γ ) = L(e+e′,m+m′)(γ ) . (3.8)

2. Commutation relation: As derived in Appendix A, the correlation function between
L(e,m) on a closed, contractible loop γ and L(e′,m′) on another closed, contractible
loop γ ′ is

〈L(e,m)(γ )L(e′,m′)(γ
′) . . . 〉 = exp

(

−2π i

N
(em′ + me′)link(γ, γ ′)

)

〈. . .〉 , (3.9)

where link(γ, γ ′) is the Hopf linking number between γ and γ ′. The phase on the
right-hand side gives the braiding phase between the two anyons whose worldlines
are L(e,m) and L(e′,m′). Here, γ and γ ′ are contractible loops that do not intersect
each other and we also assume that the operators represented by “. . . ” in (3.9) do
not link with γ and γ ′. Equation (3.9) can be equivalently rewritten as an equal time
commutation relation by pushing γ and γ ′ to a 2d plane [71],

L(e,m)(γ )L(e′,m′)(γ
′) = exp

(

−2π i

N
(em′ + me′)〈γ, γ ′〉

)

L(e′,m′)(γ
′)L(e,m)(γ ),

(3.10)

where 〈γ, γ ′〉 represents the intersection number between γ and γ ′. Equation (3.10)
makes sense even when γ and γ ′ are line intervals. Note that the order of lines in the
correlation function matters: the operators are “time-ordered.” The correlation func-
tion L(e,m)(γ )L(e′,m′)(γ ′) on the left hand side of (3.10) means that the line segment
γ ′ is at time t , while the line segment γ is at time t + ε with ε an infinitesimal posi-
tive real number. Hence L(e,m) crosses L(e′,m′) from above. Likewise, the correlation
function L(e′,m′)(γ ′)L(e,m)(γ ) on the right-hand side of (3.10) means that the line
L(e,m) crosses L(e′,m′) from below. See Fig. 7 for a pictorial explanation.

3. Quantum torus algebra: The correlation function (3.10) implies a quantum torus al-
gebra on the plane. To see this, consider two lines of the same type but supported on
two seperate segments, L(e,m)(γ ) and L(e,m)(γ

′). From the definition in (3.7), it is
obvious that L(1,0)(γ + γ ′) = L(1,0)(γ )L(1,0)(γ

′) and similarly for L(0,1). However,
this is not true for general L(e,m) due to the non-commutativity (3.10). By using the
definition (3.7) to expand L(e,m) = (L(1,0)

)e (
L(0,1)

)m , and applying the commuta-
tion relations mentioned above, the quantum torus algebra is

L(e,m)(γ )L(e,m)(γ
′) = exp

(

−2π i

N
em〈γ, γ ′〉

)

L(e,m)(γ + γ ′) . (3.11)

This will be useful below when discussing the symmetry defect of the Z
EM
2 electro-

magnetic exchange symmetry.
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L(e,m)(γ) L(e ,m )(γ )

=

L(e,m)(γ) L(e ,m )(γ )

= e−2πi(em +me )/N

L(e,m)(γ) L(e ,m )(γ )

Fig. 7. Braiding between lines in the 3d bulk gives crossing between lines on a 2d plane

L(e,m) L(m,e)

DEM

Fig. 8. The piercing action of the Z
EM
2 symmetry defect DEM on the line L(e,m)

DEM

=

DEM

Fig. 9. One can punch a hole in the Z
EM
2 symmetry defect

3.2.2. Z
EM
2 symmetry and condensation defects The ZN gauge theory (3.1) has an elec-

tromagnetic exchange symmetry Z
EM
2 which interchanges the two gauge fields

a → â , â → a . (3.12)

Indeed, this manifestly leaves the action (3.1) (on a closed manifold) invariant. This
symmetry is a zero-form symmetry, and there is a corresponding codimension-one sur-
face defect DEM in the bulk implementing the symmetry transformation. It was proven
in [72] and rediscovered in [27] that the symmetry defect of any zero-form symmetry in
(2+1)d TQFT with a single vacuum can be realized as a condensation defect, including
the defect generating Z

EM
2 . In particular, it was pointed out in [27] that the defect for

Z
EM
2 in a ZN gauge theory can be realized by condensing L(1,N−1) on a surface. Below,

we provide further motivation for why DEM should be a condensation defect, and then
provide a rigorous definition. We then perform some consistency checks.

We first motivate the condensation construction of the Z
EM
2 symmetry defect DEM.

Note that in a (2+1)dTQFTwith a single vacuum, there are no non-trivial local operators.
Thismeans that DEM acts only on line operators via the piercing action depicted in Fig. 8,
resulting from (3.12). Furthermore, it means that DEM admits topological boundary
conditions that can be used to punch a hole in the defect (see Fig. 9), since there are
no local operators which could detect such a hole in the first place (see [72, Theorem
6.7] for the case of 2 + 1 dimensions, and [73, Theorem 4] for TQFTs in more general
dimensions).When a line L(e,m) enters DEM perpendicularly from the left, the line L(m,e)
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L(e,m) L(m,e)

DEM

=
L(e,m)

L(m,e)

DEM

= L
⊗(e−m)
(1,−1)

DEM

Fig. 10. The Z
EM
2 symmetry defect DEM can absorb the line L(1,−1)

should leave DEM perpendicularly from the right. We may then consider a configuration
in which the line L(m,e) is folded back through a hole to the left side of DEM, as shown in
Fig. 10. By reversing the orientation of the folded line,which flips the sign of both electric
and magnetic charges, we arrive at a configuration where a line L(e−m,m−e) = L⊗(e−m)

(1,−1)
enters from the left and is absorbed into the surface defect. In other words, DEM can
absorb L(1,−1). This implies that DEM should be a condensate of L(1,−1).

With the above motivation, we now give a precise definition of theZ
EM
2 condensation

defect supported on a surface M2, following [27],

DEM(M2) = 1

|H0(M2, ZN )|
∑

γ∈H1(M2,ZN )

L(1,−1)(γ ) . (3.13)

Note that condensing L(1,−1) on M2 amounts to gauging the Z
(1)
N one-form symmetry

only on the surface M2, which amounts to gauging a Z
(0)
N zero-form symmetry from

the point of view of the surface. The normalization in (3.13) comes precisely from the
gauge redundancy of gauging the Z

(0)
N zero-form symmetry on M2. However, as noted

in Sect. 2.1, such a gauging is always subjected to an Euler counterterm ambiguity. For
example, the convention adopted in [27] is to further multiply (3.13) by χ [M2, ZN ]1/2
such that D2

EM = 1. It turns out that the standard convention as in (3.13) is more
convenient when discussing operators with boundaries, soweworkwith that convention.

With this definition, we may verify that the fusion of L(e,m) with DEM from the left
is equivalent to fusion of L(m,e) with DEM from the right, as desired. To see this, we
consider L(e,m)(M1) and DEM(M2), where M1 is located to the left of M2 and parallel
to it. We begin by noting that

L(e,m)(M1) × DEM(M2) = 1

|H0(M2, ZN )|
∑

γ∈H1(M2,ZN )

L(e,m)(M1)L(1,−1)(γ )

= 1

|H0(M2, ZN )|
∑

γ∈H1(M2,Z2)

e
2π i
N (e−m)〈M1,γ 〉L(1,−1)(γ )L(e,m)(M1)

(3.14)

where we have used (3.10). Wemay then use the fusion rules (3.8) to split L(e,m)(M1) =
L(e−m,m−e)(M1) × L(m,e)(M1) = L(1,N−1)(M1)

(e−m) × L(m,e)(M1).
Using the quantum torus algebra (3.11), we obtain

L(e,m)(M1) × DEM(M2) = 1

|H0(M2, ZN )|
∑

γ∈H1(M2,ZN )

L(1,−1)(γ + (e − m)M1) × L(m,e)(M1)

= DEM(M2) × L(m,e)(M1) , (3.15)
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giving the desired result.
We may also verify the invertibility of DEM by computing DEM(M2) × DEM(M2),

DEM(M2) × DEM(M2) = 1

|H0(M2, ZN )|2
∑

γ,γ ′∈H1(M2,ZN )

L(1,N−1)(γ )L(1,N−1)(γ
′)

= 1

|H0(M2, ZN )|2
∑

γ,γ ′∈H1(M2,ZN )

e
2π i
N 〈γ,γ ′〉L(1,N−1)(γ + γ ′)

= |H1(M2, ZN )|
|H0(M2, ZN )|2 = χ [M2, ZN ]−1 (3.16)

where we used the quantum torus algebra (3.11) in the second equality. The result is an
Euler counterterm, which confirms that DEM is an invertible condensation defect.

As discussed in [27], there are actually more condensation defects in ZN gauge
theory than just DEM. These are obtained by condensing different line operators with
or without discrete torsion. Most of these condensation defects are non-invertible. In
the present work, we will only study the particular invertible condensation defect DEM
implementing the Z

EM
2 symmetry.

3.3. Twist defects as higher duality interfaces. So far we have only discussed topo-
logical defects without boundaries. We now consider those with boundaries. By gauge
invariance, the simple line operator L(e,m) cannot be given a boundary (unless it ends
at a non-trivial junction involving other lines, as discussed below). On the other hand,
there is a topological boundary condition for the condensation operator DEM, which can
be used construct a new topological defect while maintaining gauge invariance. This
is known as a twist defect [66,67]. As we will see below, such twist defects can be
interpreted as higher duality interfaces.

3.3.1. Twist defects A twist defect can be defined by condensing L(1,−1) on a surface
M2 with a nontrivial boundary M1 = ∂M2 and imposing Dirichlet boundary conditions
on M1. We denote this “minimal” twist defect by �(0). Concretely,

�(0)(M1, M2) = 1

|H0(M2, M1, ZN )|
∑

γ∈H1(M2,ZN )

L(1,−1)(γ ) , (3.17)

where M2 has a boundary. Equation (3.17) is almost identical to the definition of the
condensation defect (3.13), with the only difference being that absolute cohomology
Hn(M2, ZN ) is replaced by relative cohomology Hn(M2, M1, ZN ) due to the Dirichlet
boundary conditions.8 Moreover, thanks to the Dirichlet boundary conditions, the twist
defect is topological. The twist defect�(0)(M1, M2) can be understood as a non-genuine
topological line operator on M1 with a condensation surface on M2 attached it.

Whereas fusing L(1,−1) with DEM gives a new quantum operator (i.e. a line supported
on a surface), because of theDirichlet boundary conditions the non-genuine line operator
�(0) can absorb L(1,−1), and more generally any line of the form L(n,−n). On the other
hand, it cannot absorb lines L(e,m) for e + m = 0 mod N . We may thus obtain new

8 Note that via Lefschetz duality Hn(M2, M1, ZN ) � H2−n(M2, ZN ), so the homology in the summand
is still absolute.
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0

Σ(0) Σ(0)

=⇒

γ∈H1(M1,ZN ) L(1,−1)(γ)

Fig. 11. Fusion of two twist defects �(0)

twist operators by beginning with �(0) and fusing with such L(e,m). Due to the Dirichlet
boundary conditions, the resulting operator does not depend on e and m individually,
but only on the combination e +m mod N , and hence we have N distinct twist defects,
labeled by e + m = 0, 1, ..., N − 1, each being writable in N equivalent ways. Picking
one representative, we can define

�(e)(M1, M2) := L(n+e,−n)(M1) × �(0)(M1, M2), ∀ n = 0, 1, . . . , N − 1 .

(3.18)

It is useful to note that �(0) is Z
EM
2 invariant. As a consequence, �(e) is also Z

EM
2

invariant, since

Z
EM
2 : �(e)(M1, M2) → L(−n,n+e)(M1) × �(0)(M1, M2)

= L(n+e,−n)(M1) × L(−2n−e,2n+e)(M1) × �(0)(M1, M2)

= L(n+e,−n)(M1) × �(0)(M1, M2) = �(e)(M1, M2) .

(3.19)

3.3.2. Higher duality interfaces Before discussing the fusion of twist defects, let us
compare their construction with that of duality interfaces [21,22], which was reviewed
in Sect. 2. Duality interfaces are constructed by gauging a global symmetry in half of
the entire spacetime and imposing Dirichlet boundary conditions for the gauge fields.
Likewise, the twist defect is defined bygauging a global symmetry (a one-form symmetry
in the present context) along half of a codimension-q spacetime submanifold (q = 1
in the present context), with Dirichlet boundary conditions on the codimension-(q +
1) boundary. Hence the twist defects can naturally be interpreted as higher duality
interfaces—duality interfaces associated with higher gauging.

In Sect. 4, we will gauge the Z
EM
2 symmetry of the (2+1)d gauge theory. After gaug-

ing, the condensation defect (3.13) becomes transparent, and the twist defects become
genuine line operators onM1. Accordingly, the higher duality interface becomes a higher
duality defect since both sides of M1 in M2 support trivial operators after gauging.

3.3.3. Fusion rules of the twist defects We now proceed to study the fusion rules of the
twist defects. Interestingly, although the condensation defect DEM on a closed surface
is invertible, the twist defect obeys non-invertible fusion rules.

The fusion between �(e) and the invertible defects L(e′,m′) follows directly from the
definition (3.18),

�(e)(M1, M2) × L(e′,m′)(M1) = �(e+e′+m′)(M1, M2) . (3.20)
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More nontrivial are the fusion rules between the twist defects themselves �(e) × �(e′).
It is simplest to first understand the fusion rule for �(0) × �(0), and then to fuse the
outcome with an appropriate invertible line L(e+e′,0). The fusion rule �(0) ×�(0) can be
obtained by similar calculations as in Sect. 2. Near the boundary of M2, the manifold is
locally M1 × R+. As before, we parameterize R+ by x and label the manifolds as M≥0

2
and M1|0 in the bulk and on the boundary, respectively. We take the two twist defects to
be �(0)(M1|0, M≥0

2 ) and �(0)(M1|ε, M≥ε
2 ). They overlap on the same two-dimensional

manifold M≥ε
2 . Fusing two operators amounts to taking ε → 0, as seen in the left panel

of Fig. 11.
To proceed, we directly compute the fusion rule

�(0)(M1|0, M≥0
2 ) × �(0)(M1|ε, M≥ε

2 )

= 1

|H0(M≥0
2 , M1|0, ZN )||H0(M≥ε

2 , M1|ε, ZN )|
∑

γ∈H1(M
≥0
2 ,ZN )

γ ′∈H1(M
≥ε
2 ,ZN )

L(1,−1)(γ )L(1,−1)(γ
′) .

(3.21)

Evaluating this sum is analogous to evaluating (2.8). The idea is to first rewrite the
sum over lines γ, γ ′ in absolute homology as a sum over the Lefschetz duals aγ , aγ ′ in
relative cohomology. Then we further convert the sums over relative cohomology into
sums over cochains by introducing additional fields φ, φ′ and appropriate BF terms.
Integrating out aγ ′ on M≥ε

2 , the right-hand side of (3.21) becomes

χ [M≥ε
2 , ZN ]−1 1

|H0(M [0,ε]
2 , M1|0 ∪ M1|ε, ZN )|

∑

aγ ∈H1(M [0,ε]
2 ,M1|0∪M1|ε ,ZN )

L(1,−1)(γ )

(3.22)

which is of precisely the same form as (2.19). The first factor is the Euler counterterm
and can be removed by appropriate field redefinition. The remaining factors have the
physical interpretation of condensing L(1,−1) only on M [0,ε]

2 , with Dirichlet boundary
conditions on both M1|0 ∪ M1|ε . Interpreting this in terms of higher gauging, it is the
1-gauging of the one-form symmetry generated by L(1,−1) on the slab M [0,ε]

2 . Taking
the limit ε → 0, we find the fusion rule

�(0)(M1, M2) × �(0)(M1, M2) = χ [M2, ZN ]−1
∑

γ∈H1(M1,ZN )

L(1,−1)(γ ) , (3.23)

where we have used |H0(M [0,ε]
2 , M1|0 ∪ M1|ε, ZN )| = 1. One can likewise define the

orientation reversal of �(e) by switching the two sides of M1|0. As in (2.6), we have

�(e)(M1, M2) = χ [M2, ZN ] · �(−e)(M1, M2) . (3.24)

Thus (3.23) becomes

�(0)(M1, M2) × �(0)(M1, M2) =
∑

γ∈H1(M1,ZN )

L(1,−1)(γ ) . (3.25)
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The right hand side can be interpreted as 2-gauging of the one-form symmetry generated
by L(1,−1) on a codimension two manifold M1. When M1 = S1, the right-hand side is
simply the sum over L(e,−e) for all e ∈ ZN .

Given (3.23), we obtain the�(e) ×�(e′) fusion rule by further fusing with L(e,0)(M1)

and L(e′,0)(M1),

�(e)(M1, M2) × �(e′)(M1, M2) = χ [M2, ZN ]−1
∑

γ∈H1(M1,ZN )

L(e+e′,0)(M1)L(1,−1)(γ )

M1→S1= χ [M2, ZN ]−1
N−1
∑

n=0

L(n+e+e′,−n)(S
1) .

(3.26)

In the special case of N = 2, these fusion rules were discussed in [67] from a lattice
Hamiltonian perspective. It immediately follows from (3.26) that the twist defect �(e)

is non-invertible, and has quantum dimension
√
N .

3.4. Symmetry defects/interfaces in (1+1)d from topological defects in (2+1)d . Having
discussed the closed and open topological defects in ZN gauge theory, we now insert
these operators into the (2+1)d slab in Fig. 6 and examine their behavior upon shrinking
the slab. Schematically, we find the following correspondences

Twist defects �(e) ←→ Duality interface N
Magnetic line L(0,1) ←→ Z

(0)
N symmetry defect η

Electric line L(1,0) ←→ Z
(0)
N order parameter O

(3.27)

These correspondences have also been discussed in e.g. [51,54,55,61].

3.4.1. ZN symmetry defects and order parameters from the bulk line operators We first
insert a line operator into the (2+1)d slab. One can either place the line operator parallel
to the topological boundary X2|0, or orthogonal to the boundary. Because of theDirichlet
boundary condition of a, i.e. a|X2|0 = 0, the electric line L(1,0) can either end on the
boundary perpendicularly, or be completely absorbed into the boundary (in the sense that
it becomes a trivial operator) if it is parallel to it. Thus the only way that it can survive
upon shrinking the slab is to place it orthogonal to the boundary, with one end anchored
on the Dirichlet boundary on the left, and the other end anchored on the non-topological
boundary on the right. As a consequence of ending on the non-topological boundary,
one generically obtains a non-topological point-like operatorO upon shrinking the slab.
This point operator will be charged under the Z

(0)
N symmetry of the (1 + 1)d theory, and

hence serves as the non-topological Z
(0)
N order parameter.

On the other hand, the magnetic line L(0,1) can neither be absorbed into the Dirichlet
boundary nor terminate on it. Hence it survives as a line defect upon shrinking the slab.
This is the topological line η generating the Z

(0)
N symmetry of the (1 + 1)d QFT X .

Indeed, because L(0,1) and L(1,0) have a nontrivial correlation function when linked, it
follows that the correlation function between η and O is also nontrivial when η links
with the O. This link measures the Z

(0)
N charge of the order parameter O.
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D(A)|
DEM

=⇒

N(A)|

Fig. 12. Colliding DEM with Dirichlet boundary condition produces Neumann boundary condition

ZX [A]

ZX/ZN
[A]

N
Expand / Shrink

2π
N

aδa

D(A)

x = 0 x = ε

Fig. 13. A (1+1)d QFTX with ZN symmetry and another (1+1)d QFTX /ZN with quantum̂ZN symmetry
are separated by a topological interfaceN . This setup can be expanded into a (2+1)d slab, where the (2+1)d
ZN SymTFT has an insertion of a twist defect parallel to the Dirichlet boundary

3.4.2. Duality interfaces from the twist defects We next insert the condensation de-
fect DEM(M2) into the slab. When the condensation defect DEM(M2) collides with
the Dirichlet boundary condition 〈D(A)| on X2, it produces the Neumann boundary
condition 〈N (A)|; see Fig. 12. One can see this explicitly as follows,

〈D(A)| =
∑

a∈H1(X2,ZN )

〈a|δ(a − A)
DEM−−→

∑

â∈H1(X2,ZN )

〈̂a|δ(̂a − A)

= 1

|H0(X2, ZN )|
∑

a∈H1(X2,ZN )

〈a|e 2π i
N

∫

aA = 〈N (A)| ,

(3.28)

where we have used the fact that the EM dual bases are related by a discrete Fourier
transform, i.e.

〈̂a| = 1

|H0(X2, ZN )|
∑

a∈H1(X2,ZN )

〈a|ei 2πN
∫

aâ . (3.29)

We may now consider inserting a twist defect �(e)(M1, M2) into the slab. We place
it parallel to the Dirichlet boundary, as shown in Fig. 13.9 For convenience, we use y
to parameterize the horizontal direction in the slab, and x to parameterize the vertical
direction near the boundary of the twist defect,with the boundaryM1 located at x = 0.By
colliding the twist defect with the left boundary of the slab, the lower half of the Dirichlet

9 In [54], a similar configuration is considered. Their configuration can be obtained from our Fig. 13 by
bringing the endpoint of DEM to the left boundary and letting DEM stretch across the bulk towards the right
boundary.
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L(e1,m1) L(e2,m2) L(e3,m3)

L(e1+e2,m1+m2)
=

L(e1,m1) L(e2,m2) L(e3,m3)

L(e2+e3,m2+m3)

L(e1,m1) L(e2,m2)

= e− 2πi
N

e1m2

L(e1,m1) L(e2,m2) L(e1,m1) L(e2,m2)

= e
2πi
N

e2m1

L(e1,m1) L(e2,m2)

Fig. 14. F-symbols and half-braidings for genuine lines L(e,m)

boundary conditions (i.e. in X≥0
2 ) is transformed to Neumann boundary conditions. Thus

upon shrinking the slab, from Sect. 3.1 the (1 + 1)d QFT on X≥0
2 becomes X /ZN , as

shown in the left panel of Fig. 13. This implies that the twist defect �(e), when collided
with the Dirichlet boundary, becomes a duality interface N .

Because there are N twist defects in (2 + 1)d, one may initially expect N different
duality interfaces in (1 + 1)d. However, all N types of twist defects actually reduce to
a single type of duality interface upon colliding with the Dirichlet boundary condition.
To see this, note that the generic twist defect �(e) is related to the minimal twist defect
�(0) by fusing an electric line L(e,0) on its boundary. Such electric line can be absorbed
by the Dirichlet boundary condition of the SymTFT. As a consequence, when �(e) is
brought to the Dirichlet boundary, it reduces to �(0). We thus have

N (M1) = �(e)(M1, M2)|x→0 , ∀ e ∈ ZN . (3.30)

Furthermore, the fusion rules of the twist defects given in (3.20) and (3.26) descend
to the fusion rules of the duality interfaces. Upon colliding with the Dirichlet boundary,
�(e) and L(e′,m′) reduce to N and ηm

′
respectively, and (3.20) thus simplifies to

N × ηm
′ = N , (3.31)

which reproduces (2.7). Moreover, (3.26) simplifies to

N × N = χ [M2, ZN ]−1
∑

γ∈H1(M1,ZN )

η(γ ) , (3.32)

which reproduces (2.19).

3.5. F-symbols of twist defects and duality interfaces. We close this section by dis-
cussing the F-symbols for lines, both genuine and non-genuine, of the ZN gauge theory,
as well as the F-symbols of the duality interfaces. Additional details on the techniques
used here are given in Appendix B.

3.5.1. F-symbols of twist defects In the current context, it is possible towork in a basis of
the junction vector space such that the F-symbols for the genuine lines L(e,m) are trivial,
and the half-braiding is as shown in Fig. 14. Note in particular that this half-braiding
correctly reproduces the full braiding given in Fig. 7. Our goal is to now incorporate
twist defects.
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Σ(e )

Σ(e) L(e+e +n,−n)

Σ(e )

Σ(e)L(e+e +n,−n)

Σ(e), Σ(e )DEM

L(e+e +n,−n)

θ

Fig. 15. The triangle junction with θ = π , together with the square junction with θ = 0+. The Z
EM
2 duality

surface DEM, which is a mesh of algebra objectsA =⊕N−1
n=0 L(n,−n) that can end on �(e), is drawn in red.

When there is no ambiguity, we will suppress the DEM surface in our figures, taking it to go out to the left

A

Σ(e) L(e+e +n,−n)

μL

μ∨
L

=

Σ(e) L(e+e +n,−n)

A

Σ(e)L(e+e +n,−n)

μL

μ∨
L

=

Σ(e)L(e+e +n,−n)

Fig. 16. Consistency conditions for the triangle and square junctions

=

Fig. 17. Defining the square junction in terms of the triangle junction

Before considering the F-symbols involving twist defects, we must first discuss the
relevant trivalent junctions. From the fusion rules in (3.26), it is clear that each junc-
tion should involve two twist defects �(e) and �(e′), together with one genuine line
L(e+e′+n,−n) for arbitrary n. A crucial fact is that these junctions actually depend on the
angle θ between L(e+e′+n,−n) and the surface DEM on which�(e) and�(e′) are anchored,
the signature of framing dependence. We will consider two angles for our current anal-
ysis, namely θ = 0+ and π . The junction with θ = π will be labelled with a triangle,
while the junction with θ = 0+ will be denoted by a square. The notation θ = 0+ is to
emphasize that the DEM surface is behind the line anchored on the square junction. Both
of these configurations are illustrated in Fig. 15. They will be studied in more detail in
Appendix B.

Another important fact is that the junctions should not depend on where along �(e)
the line L(e+e′+n,−n) is anchored. To phrase this more concretely, we begin by defining
the algebra object A = ⊕N−1

n=0 L(n,−n). The condensation defect DEM can be resolved
into a mesh of such algebra objects [3,74,75], and in terms of this mesh the invariance
under change in the anchor point is equivalent to Fig. 16. The μL and μ∨

L appearing in
Fig. 16 are certain junction vectors, defined in Appendix B, which will not be important
to us here. What is important for us is that, given a solution to the consistency condition
for the triangle junction, a solution for the square junction can be obtained by defining
the junction as in Fig. 17. This is discussed in more detail in Appendix B. We will take
this as the definition of the square junction from now on.
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L(e1,m1) Σ(e) L(e2,m2)

=

L(e1,m1)Σ(e) L(e2,m2)

= n

L(e1,m1)L(e+n,−n) L(e2,m2)

= n e
2πi
N e1n

L(e1,m1)L(e+n,−n) L(e2,m2)

= n e
2πi
N e1n

L(e1,m1)L(e+n,−n) L(e2,m2)

L(e2+e+n,m2−n)

= n e
2πi
N e1ne

2πi
N e1(m2−n)

L(e1,m1)L(e+n,−n) L(e2,m2)

= e
2πi
N e1m2

L(e1,m1) Σ(e) L(e2,m2)

Fig. 18. Computation of the F-symbol for two genuine lines and one twist defect. The surface DEM is
suppressed at intermediate steps

Σ(e1) Σ(e2) Σ(e3)

L(e,m)

= N−1
m=0 e− 2πi

N em

Σ(e1) Σ(e2) Σ(e3)

L(e,m)

Fig. 19. F-symbol for three incoming twist defects. Thediagramsare non-vanishingonlywhen the intermediate
legs L(e,m) and L (̃e,m̃) satisfy e1 +e2 = e+m, e2 +e3 = ẽ+ m̃. The DEM surface attached to the twist defects
are assumed to be to the left of �(e1) as well as between �(e2) and �(e3)

We now return to the F-symbols. We begin with the case of two external genuine
lines and two external twist defect. From the form of the fusion rules in (3.26), it is clear
that the internal line is necessarily non-genuine, i.e. it is a twist defect. We may now
calculate the F-symbols using the tools developed above. The computation is shown
in Fig. 18. Summarizing it in words, one begins by using the definition of the square
junction in terms of the triangle junction, and then decomposes the boundary of �(e)

into A ⊗ L(e,0) = ⊕N−1
n=0 L(e+n,−n). The factor of A is included here so that the mesh

ofAmaking up DEM can end on �(e) from the left. One then uses the half-braiding and
fusion rules of the genuine lines, given in Fig. 14, to obtain the right-hand side of the
second line of Fig. 18. One finally does a half-braiding and reassembles �(e) to get the
end result.

We next consider the F-symbols involving four external twist defects. Note that
because of the fusion rules (3.26), the internal line is guaranteed to be genuine. Let us
take the three incoming twist defects to be �(e1), �(e2), and �(e3), and place the mesh
of A as shown in Fig. 19. The coefficient relating the configuration with internal line
L(e,m) to that with internal line L (̃e,m̃) is then given in Fig. 19, and derived in Fig. 20. The
various charges appearing here satisfy e1 +e2 = e+m, e2 +e3 = ẽ+m̃. For simplicity we
neglect real number normalization factors, and focus only on the phases. In the special
case of N = 2, the F-symbols in Figs. 18 and 19 are consistent with those found in [67].
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Σ(e1) Σ(e2) Σ(e3)

L(e,m)

=

Σ(e1) Σ(e2) Σ(e3)

L(e,m)

=

Σ(e1) Σ(e2) Σ(e3)

L(e,m)

= n1,n2,n3
e

2πi
N e(n2+n3)

L(e1+n1,−n1)L(e2+n2,−n2)L(e3+n3,−n3)

L(e,m)

= n1,n2,n3
e

2πi
N e(n2+n3)

L(e1+n1,−n1)L(e2+n2,−n2)L(e3+n3,−n3)

L(e2+e3+n2+n3,−n2−n3)

= N−1
m=0 e− 2πi

N em

Σ(e1) Σ(e2) Σ(e3)

L(e,m)
= N−1

m=0 e− 2πi
N em

Σ(e1) Σ(e2) Σ(e3)

L(e,m)

Fig. 20. Computation of the F-symbol for three incoming twist defects. For the diagrams in the second and
third line to be non-vanishing, we require e1 +e2 = m+e,m = −n1−n2, e2 +e3 = ẽ+m̃ and m̃ = −n2−n3.
The surface DEM is suppressed at intermediate steps

3.5.2. F-symbols of duality interfaces We finally obtain the F-symbols of duality inter-
faces in (1 + 1)d. As explained in Sect. 3.4, upon shrinking the slab the twist defects of
ZN gauge theory become the duality interface of a (1 + 1)d QFT. As a consequence, the
F-symbols of the duality interface naturally follow from those of the twist defects.

We first consider the F-symbols of duality interfaces descending from Fig.18. Upon
shrinking, �(e) reduces to N . Moreover, note that L(e2,m2) collides with the Dirichlet
boundary condition upon shrinking, and hence only its magnetic components survive the
ZN symmetry generators, i.e. L(e2,m2) reduces to ηm2 . On the other hand, L(e1,m1) is on
top of DEM, and hence upon shrinking it collides with the Neumann boundary condition
and its electric component survives, i.e. L(e1,m1) reduces to η̂e1 , where η̂ is the generator
of the quantum ZN symmetry. Hence the F-symbol involving one duality interface and
two ZN symmetry generators distributed on its two sides is as shown in Fig. 21. Note
that the duality interface is unoriented, i.e. N = N (up to an Euler counterterm, c.f.
(2.6)), and hence we do not place an arrow on it. In the next section wewill gaugeZ

EM
2 to

obtain the SymTFT for the TY (ZN ) category, for which the phase appearing in Fig. 21
implies a nontrivial bi-character.

We next consider the F-symbols involving three duality interfaces, which follows
from Fig. 19. The result is shown in Fig. 22. Note that e and m̃ can be arbitrary integers.
The nontrivial phase on the right hand side of Fig. 22 implies that, once we gauge Z

EM
2

to make N into a duality defect, the defect N is “self-anomalous,” in the sense that it
is an obstruction to the existence of a trivially gapped phase. This is consistent with the
results in [22].
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ηe1 N ηm2

= e
2πi
N

e1m2

ηe1 N ηm2

Fig. 21. F-symbol involving two external duality interfaces and two external ZN symmetry generators

N N N

ηe

= N−1
m=0 e− 2πi

N em

N N N

ηm

Fig. 22. F-symbol for four external duality interfaces

4. (2 + 1)d Symmetry TFT for Duality Defects

In Sect. 3 we discussed the SymTFT for a theory with Z
(0)
N symmetry, and derived the

fusion rules and F-symbols for the duality interface implementing Z
(0)
N gauging. In the

current section, we will demand more symmetries of the (1 + 1)d theory X : namely,
we require that it not only be ZN symmetric, but also invariant under gauging Z

(0)
N , i.e.

X = X /Z
(0)
N , or equivalently DEM|X 〉 = |X 〉. This means that the duality interface

N defined in Sect. 2 is not just a topological interface between two distinct theories,
but a topological defect within the theory X itself. In this case the full symmetry is the
Tambara-Yamagami fusion category TY (ZN ) (for particular choice of the Frobenius-
Schur index and bicharacter). Our goal now is to find the SymTFT for TY (ZN ).

4.1. Symmetry TFT for TY (ZN ). From a mathematical point of view, the SymTFT for
TY (ZN ) is the Turaev-Viro theory specified by the Tambara-Yamagami TY (ZN ) cate-
gory, or alternatively the Reshetikhin-Turaev theory for theDrinfeld centerZ(TY (ZN )).
As we have mentioned already in the introduction, the simple objects and fusion rules
of Z(TY (ZN )) have appeared already in the math and physics literature, so the results
to be obtained below are not, strictly speaking, new.

The presentation given here emphasizes the fact that the SymTFT of TY (ZN ) can be
obtained from that of Vec(ZN ) by gauging the Z

EM
2 electro-magnetic symmetry of the

latter.10 This fact is simple to see physically: indeed, recall that in the case of Vec(ZN ),
the duality interfaceN descended from the twist defects�(e) of the SymTFT,whichwere
the boundaries of the Z

EM
2 duality surface DEM. This was illustrated in Fig. 13. Upon

gauging the Z
EM
2 symmetry of the SymTFT this duality surface becomes transparent,

and hence the duality interface N becomes a duality defect, as shown in Fig. 23.
Note that the procedure of gauging a zero-form symmetry in a (2+1)d TFT has been

fully studied in the condensed matter literature [66,67], where the power of modular

10 Let us mention that in (2 + 1)d, one can twist the gauging by stacking with an SPT for the Z
(0)
N zero-

form symmetry, which is classified by H3(BZN ,U (1)). This could give rise to different variants of the
Tambara-Yamagami category. In this work, we consider only the untwisted gauging.
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Expand/Shrink Z(TY (ZN ))

DZX

N

Fig. 23. TheSymTFTof TY (ZN ) is obtained by gauging theZ
EM
2 symmetry of theZN gauge theory in Fig. 13.

Mathematically, it is given by RT theory on the Drinfeld center of TY (ZN ). The twist defect represented by
the red dot attached to a red line (which eas actually a line living on the boundary of a 2d surface) in Fig. 13
now becomes a genuine line operator (represented by a red dot) in the current figure. After shrinking, this
gives a genuine line defect N within the theory X

tensor categories was utilized. Since the ultimate goal of this paper will be to generalize
to higher dimensions, and since a full-fledged theory of higher modular tensor categories
has not been fully developed, we will not adopt this approach here. Instead, we will
give a more physical rederivation of the known results from both the math [64,65] and
physics [66,67] literature, being content with the operator contents and their fusion rules
(without worrying about braiding properties). Our rederivation will have the virtue of
being generalizable to higher dimensions.11 We will also present a second derivation
of the SymTFT of TY (ZN ) based on discrete twisted-cocycles. This will be (at least
partially) generalizable to higher dimensions as well.

4.1.1. Lines defects in the SymTFT of TY (ZN ) As we have just claimed, the SymTFT
for TY (ZN ) can be obtained from ZN gauge theory by gauging the Z

EM
2 zero-form

symmetry. This gauging may be split into two steps. First, we begin by keeping only
the lines invariant under Z

EM
2 . This leaves us with lines L(e,e) with equal electric and

magnetic charge. Next, we note that upon gauging the Z
EM
2 zero-form symmetry, we

obtain a quantum one-form symmetrŷZ(1)
2 generated by an operator K . Note that K is

labelled by a representation of Z
EM
2 . If in the pre-gauged theory a simple line is invariant

underZEM
2 , then in the gauged theory it can be assigned aZ2 representation distinguished

by whether or not it is stacked with a K -line. We therefore denote the invertible lines of
the gauged theory by ̂Lq

(e) where the q = ± labels whether K is stacked with it or not,

i.e. ̂L+
(e) := L(e,e) and ̂L

−
(e) := K L(e,e). There are a total of 2N invertible lines.

In additional to the invertible lines, we should also allow for the combinations
L(e,m) ⊕ L(m,e), which are invariant under Z

EM
2 when viewed as a single object.12 Such

combinations L(e,m) ⊕ L(m,e) are not simple before gauging, but become simple after
gauging, and will be denoted bŷL [e,m].13 Noting that when e = m the two factors in the
direct sum are individually Z

EM
2 invariant, and because by definition ̂L [e,m] ≡ ̂L [m,e],

11 Our derivation is similar to the approach in [28], where only the fusion rules of topological lines with
integer quantum dimensions were discussed. Here we will extensively discuss the fusion rules involving
topological lines with non-integer quantum dimensions, i.e. those descending from twist defects.
12 We will be mainly discussing things at a local level, with each line operator L(e,m) is supported on a

small interval. The direct sum/product between operators in such a small patch will be denoted by ⊕, ⊗. Note
however that since all the operators in the SymTFT of TY (ZN ) are lines, the local fusion coincides with the
global fusion, and thus it is equally fine to change ⊕, ⊗ to +, ×. The distinction will only be important in
higher dimensions.
13 We use the word “simple” here in the sense of category theory, where an object a is simple if Hom(a, a)

is one-dimensional.
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L[e,m]

K =
L[e,m]

Fig. 24. The line ̂L[e,m] can absorb the line K since whenever the K loop (red) is non-trivial, the ̂L[e,m] loop
(black) vanishes

we may assume without loss of generality that 0 ≤ e < m ≤ N − 1. Unlike for ̂L±
(e), in

the current case we cannot stack with a K defect since the constituent lines L(e,m) and
L(m,e) in the pre-gauged theory are not invariant under Z

EM
2 . Another way to say this is

that ̂L [e,m] can absorb K .
A physical picture for why this absorption can occur is given in Fig. 24. We consider

a configuration of coincident loops of ̂L [e,m] and K and ask if this configuration can be
distinguished from a loop of ̂L [e,m] in isolation. To answer this, we fix an arbitrary EM
gauge configuration and compute the vev of the loops. In order for the K loop to give
a non-trivial result, it must link with an odd number of units of EM flux. However, in
the presence of an odd number of units of EM flux, the loop of ̂L [e,m] gives vanishing
contribution, since each consitutent of̂L [e,m] is not EM invariant and hence cannot form
a closed loop around such flux. The configuration of ̂L [e,m] stacked with K is thus
indistinguishable from the configuration with only ̂L [e,m]. We conclude that there are
only 1

2N (N − 1) distinct non-invertible defects of quantum dimension 2, labeled by the
symmetric pair [e,m] ≡ [m, e] with e = m.

Finally, there are lines descending from the twist defects in the pre-gauged theory.
As shown in Fig. 23, after gauging Z

EM
2 the surface attached to the twist defect becomes

transparent, and hence the twist defect become a genuine line defect. Since, as discussed
in Sect. 3.3, before gauging Z

EM
2 the twist defect�(e) is Z

EM
2 invariant, the genuine lines

after gauging can be stacked with a K line. We will denote the resulting genuine lines
by ̂�q

(e), where q = ± again indicates whether or not we have stacked with K . There
are 2N lines of this type. Below, we will find that the fusion rules of these genuine lines
are almost identical to the fusion rules of the twist defects in (3.20), (3.23), and (3.26),
from which we can tell that the quantum dimensions are

√
N . The only new ingredient

in determining the fusion rules is determining how to assign factors of q.
To summarize the discussion so far, the theory with Z

EM
2 gauged has the following

simple objects:

• 2N invertible lines ̂L±
(e) ,

• 1
2N (N − 1) lines ̂L [e,m] of quantum dimension 2 ,

• 2N lines ̂�±
(e) of quantum dimension

√
N .

A first-order consistency check is that the total quantum dimension for these lines is
2N × (1)2 + 1

2N (N − 1) × (2)2 + 2N × (
√
N )2 = (2N )2, which is the square of the

total quantum dimension of TY(ZN ). We now obtain the fusion rules for these objects.

4.1.2. Fusion rules involving only ̂L±
(e) and ̂L [e,m] The fusion rule involving only the

lines ̂L±
(e) and ̂L [e,m] largely follow from those in the pre-gauged theory. The only new

ingredient is to determine the distribution of K lines (i.e. the value of q’s). To determine
this, we need to determine the Z

EM
2 charge localized at junctions in the pre-gauged
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theory; if the junction is Z
EM
2 even, then there should be an even number of K lines

anchored on the junction after gauging, whereas if the junction is Z
EM
2 odd there should

be an odd number of K lines anchored on the junction. The junction charges of the pre-
gauged theory can be measured by wrapping DEM surfaces around them, as discussed
in Appendix B. Using the tools developed there, one finds that e.g. the junction between
three operators L(e,e), L(e′,e′) and L(e+e′,e+e′) is Z

EM
2 even, and hence the number of K

lines is conserved under fusion, i.e. ̂Lq
(e) ⊗ ̂Lq ′

(e′) = ̂Lqq ′
(e+e′).

Another interesting case is the fusion between ̂L [e,m] ⊗ ̂L [e′,m′] when e + e′ = m +
m′,m + e′ = e + m′. Before gauging Z

EM
2 , the right hand side is a direct sum of two

lines L(e+e′,e+e′), L(m+e′,m+e′). Each of them are Z
EM
2 invariant separately, and hence we

must determine the assignment of q after gauging. One could again determine this via
computation of the junction charge, but a nice trick to circumvent this computation is to
observe that sincêL [e,m] ⊗̂L [e′,m′] can absorb a K line, the right-hand side of the fusion
rules must also be able to absorb a K line. The only possibility is then to sum over all
possible q values, i.e.̂L [e,m] ⊗̂L [e′,m′] = ̂L+

(e+e′) ⊕̂L−
(e+e′) ⊕̂L+

(m+e′) ⊕̂L−
(m+e′). See [28]

for more systematic discussions. In summary, we are able to determine the fusion rules
as follows,

̂Lq
(e) ⊗ ̂Lq ′

(e′) = ̂Lqq ′
(e+e′) ,

̂Lq
(e) ⊗ ̂L[e′,m′] = ̂L[e+e′,e+m′] ,

̂L[e,m] ⊗ ̂L[e′,m′] =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

̂L+
(e+e′) ⊕ ̂L−

(e+e′) ⊕ ̂L+
(m+e′) ⊕ ̂L−

(m+e′) e + e′ = m + m′,m + e′ = e + m′
̂L+

(e+e′) ⊕ ̂L−
(e+e′) ⊕ ̂L[m+e′,m+e′] e + e′ = m + m′,m + e′ = e + m′

̂L[e+e′,m+m′] ⊕ ̂L+
(m+e′) ⊕ ̂L−

(m+e′) e + e′ = m + m′,m + e′ = e + m′
̂L[e+e′,m+m′] ⊕ ̂L[m+e′,m+e′] e + e′ = m + m′,m + e′ = e + m′

(4.1)

Note that since all of the operators above are lines, the local fusion is identical to the
global fusion.

4.1.3. Fusion rules involving ̂�q
(e) We now describe the fusion rules involving the ̂�q

(e)

lines of quantum dimension
√
N .

Fusion rule ̂Lq
(e) ⊗̂�q ′

(e′): We start by considering the fusion between the invertible line

̂Lq
(e) and the non-invertible line ̂�q ′

(e′). The cases of N odd and even are qualitatively
different, and we begin by analyzing the former.

For odd N , it is useful to observe that before gauging, none of the twist defects map
to themselves under fusing with a non-trivial Z

EM
2 invariant invertible line,

L(e,e) ⊗ �(e′) = �(2e+e′) , (4.2)

where e′ = e′ + 2e for e = 0 mod N . This implies that after gauging Z
EM
2 one can

define the twist defect ̂�q
(e) by fusing ̂Lq

(̃e) with the minimal twist defect ̂�+
(0),

̂�
q
(e) = ̂Lq

(̃e) ⊗ ̂�+
(0) , e = 0, ..., N − 1, q = ± (4.3)

where ẽ = e/2 for even e, and ẽ = (e+ N )/2 for odd e. Note that since the operators are
always subject to relabeling, such a definition is always allowed. The fusion rule then
follows from (4.3),

̂Lq
(e) ⊗ ̂�q ′

(e′) = ̂Lqq ′
(e+̃e′) ⊗ ̂�+

(0) = ̂�qq ′
(2e+e′) , N odd . (4.4)
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We now proceed to the case of N even. The main conceptual difference is that we can
no longer obtain all defects ̂�q

(e) from ̂�
0
(0) by fusing with an appropriate choice of̂L

q
(e′).

Before gauging Z
EM
2 , every twist defect maps to itself upon fusing with L(N/2,N/2). This

means that after gauging one can define the twist defects as

̂�
q
(2e) = ̂Lq

(e) ⊗ ̂�+
(0) , ̂�

q
(2e+1) = ̂Lq

(e) ⊗ ̂�+
(1) , e = 0, 1, ..., N/2 − 1 . (4.5)

Once this definition is fixed though, we are no longer free to choose the sign that appears
in the fusion of ̂Lq

(N/2) with ̂�
+
(0) and ̂�

+
(1). Indeed, because before gauging the twist

defects are stabilized under this fusion, the q ′, q ′′ in the following fusion rules

̂�
q ′
(0) = ̂Lq

(N/2) ⊗ ̂�+
(0) , ̂�

q ′′
(1) = ̂Lq

(N/2) ⊗ ̂�+
(1) (4.6)

are unambiguously defined. In other words, it is not possible to relabel the twist defects
to change q ′ and q ′′ once q is given. To determine q ′ and q ′′, one must measure the Z

EM
2

charge of the relevant junction in the theory before gauging EM. Relegating the details
to Appendix B, we find that the junction associated with the first fusion rule in (4.6) is
Z
EM
2 even, and hence the number of K lines is conserved. On the other hand, the junction

associated with the second fusion rule in (4.6) is Z
EM
2 odd, and hence the number of K

lines jumps by one. In terms of the relation between q, q ′ and q ′′, we have

q ′ = q , q ′′ = −q . (4.7)

As a consequence, fusing ̂Lq
(e) and ̂�

+
(0,1) for the remaining choices of e, i.e. e = N/2 +

1, ..., N − 1, are given by

̂�
q
(2e) = ̂Lq

(e) ⊗ ̂�+
(0) , ̂�

−q
(2e+1) = ̂Lq

(e) ⊗ ̂�+
(1) , e = N/2 + 1, ..., N − 1 .

(4.8)

The fusion between generic ̂Lq
(e) and ̂�

q ′
(e′) then follows straightforwardly.

To summarize the results for even N , we have

̂Lq
(e) ⊗ ̂�q ′

(e′) =
{

̂�
qq ′
(2e+e′) , {e′ ∈ 2Z} ∪ {e′ ∈ 2Z + 1, 0 ≤ [e + e′−1

2 ]N ≤ N/2 − 1}
̂�

−qq ′
(2e+e′) , {e′ ∈ 2Z + 1, N/2 ≤ [e + e′−1

2 ]N ≤ N − 1}
(4.9)

where [x]N is the mod N reduction of x .

Fusion rule ̂L [e,m] ⊗ ̂�
q
(e): Since ̂L [e,m] before gauging Z

EM
2 consists of two lines

exchanged under Z
EM
2 , after gauging Z

EM
2 the fusion rules ̂L [e,m] ⊗ ̂�q

(e) contains two

fusion channels which differ by a Z
EM
2 representation. This leads to the fusion rule

̂L [e,m] ⊗ ̂�q ′
(e′) = ̂�+

(e+m+e′) ⊕ ̂�−
(e+m+e′) , q ′ = ± . (4.10)

Another way to argue for the sum of ̂�±
(e+m+e′) on the right-hand side is to notice that

since ̂L [e,m] can absorb a factor of K , the right-hand side must also be able to absorb a
factor of K . This can only be achieved by summing over the defects with and without
K stacked.
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Fusion rule ̂�q
(e) ⊗ ̂�q ′

(e′): The fusion rule ̂�
q
(e) ⊗ ̂�q ′

(e′) can be obtained from the fusion
rules derived in (4.4), (4.9), and (4.10). When N is odd, the fusion rules are

̂�
q
(e) ⊗ ̂�q ′

(e′) = ̂Lq
(ẽ) ⊗ ̂�+

(0) ⊗ ̂Lq ′
(ẽ′) ⊗ ̂�+

(0)

= ̂Lqq ′
(ẽ+ẽ′) ⊗

⎛

⎝̂L+
(0) ⊕

(N−1)/2
⊕

n=1

̂L [n,N−n]

⎞

⎠

= ̂Lqq ′
(ẽ+ẽ′) ⊕

(N−1)/2
⊕

n=1

̂L [ẽ+ẽ′+n,ẽ+ẽ′−n] ,

(4.11)

where in the second line, we used the commutativity of lines (since they are objects with
codimension higher than one). The ẽ appearing here is defined below (4.3) and similarly
for ẽ′. When N is even, one obtains the fusion rules

̂�
q
(e) ⊗ ̂�q ′

(e′)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

̂Lqq
′

((e+e′)/2) ⊕ ̂Lqq ′
((e+e′+N )/2) ⊕⊕N/2−1

n=1
̂L[(e+e′)/2+n,(e+e′)/2−n] , (e, e′) = (even, even)

⊕N/2−1
n=0

̂L[(e+e′−1)/2+n+1,(e+e′−1)/2−n] , (e, e′) = (even, odd)

⊕N/2−1
n=0

̂L[(e+e′−1)/2+n+1,(e+e′−1)/2−n] , (e, e′) = (odd, even)

̂Lqq
′

((e+e′)/2) ⊕ ̂L−qq ′
((e+e′+N )/2) ⊕⊕N/2−2

n=0
̂L[(e+e′)/2+n+1,(e+e′)/2−n−1] , (e, e′) = (odd, odd)

(4.12)

The lines in the SymTFT of TY (ZN ) form objects in the Drinfeld center of the fusion
category TY (ZN ), i.e. Z(TY (ZN )). This center Z(TY (ZN )) has been studied in the
mathematics literature, see e.g. [64,65]. In particular, the explicit expressions of the
modular Smatrices have been derived. InAppendixD,we collect themodular Smatrices,
and use the Verlinde formula to verify the fusion rules above.

4.1.4. Example: SymTFT for TY (Z2) To illustrate the results we have obtained, let us
apply them to the special case of N = 2. We first discuss the SymTFT for a theory with
only Z2 symmetry, which as described in Sect. 3 is simply Z2 gauge theory. There are
four invertible lines

L(0,0) ↔ 1 , L(1,0) ↔ e , L(0,1) ↔ m , L(1,1) ↔ ψ . (4.13)

There is also aZ
EM
2 zero-form global symmetry, generated by the 2d surface defect DEM.

In the current case DEM is obtained by condensing the ψ line on a 2d surface. There
are also twist defects obtained by condensing ψ on half of a 2d surface with Dirichlet
boundary conditions, and fusing with an appropriate invertible line in (4.13),

�(0) ↔ σ+ , �(1) ↔ σ− . (4.14)

The notation given on the right-hand side of ↔ is that used in [66,67]. By the results in
Sect. 3, the fusion rules among the lines and the twist defects are
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e ⊗ e = m ⊗ m = ψ ⊗ ψ = 1 ,

e ⊗ m = ψ ,

e ⊗ ψ = m ,

m ⊗ ψ = e ,

ψ ⊗ σ+ = σ+ ,

ψ ⊗ σ− = σ− ,

e ⊗ σ+ = m ⊗ σ+ = σ− ,

e ⊗ σ− = m ⊗ σ− = �+ ,

σ+ ⊗ σ+ = σ− ⊗ σ− = 1 ⊕ ψ ,

σ+ ⊗ σ− = σ− ⊗ σ+ = e ⊕ m . (4.15)

We now obtain the SymTFT for TY (Z2) by gauging Z
EM
2 . Upon gauging, we obtain

a quantum ̂Z(1)
2 symmetry generated by K . There are four line operators of quantum

dimension 1,

̂L+
(0) ↔ (I,+) , ̂L−

(0) ↔ (I,−) = K , ̂L+
(1) ↔ (ψ,+) , ̂L−

(1) ↔ (ψ, −) , (4.16)

one line operator of quantum dimension 2,

̂L [0,1] ↔ [em] , (4.17)

and four line operators of quantum dimension
√
2,

̂�+
(0) ↔ (σ+,+) , ̂�−

(0) ↔ (σ+,−) , ̂�+
(1) ↔ (σ−,+) , ̂�−

(1) ↔ (σ−, −) . (4.18)

By the formulas given in this section, the fusion rules are found to be,

(I, q) ⊗ (X, q ′) = (X, qq ′), X = I , ψ, σ+, σ−
(I, q) ⊗ [em] = [em] ,

(ψ, q) ⊗ (ψ, q ′) = (I, qq ′) ,

(ψ, q) ⊗ (σ±, q ′) = (σ±,±qq ′) ,

(ψ, q) ⊗ [em] = [em] ,

(σ±, q) ⊗ (σ±, q ′) = (I, qq ′) ⊕ (ψ,±qq ′) ,

(σ±, q) ⊗ (σ∓, q ′) = [em] ,

(σ±, q) ⊗ [em] = (σ∓,+) ⊕ (σ∓,−) ,

[em] ⊗ [em] = (I,+) ⊕ (I,−) ⊕ (ψ,+) ⊕ (ψ,−) . (4.19)

These fusion rules coincide with the ones given in [66,67], where it was further noted
that the fusion rules exactly match those of Ising × Ising, if we identify

(I,+) ↔ 1 , (I,−) ↔ η̄η , (ψ,+) ↔ η , (ψ,−) ↔ η̄ , [em] ↔ N̄N ,

(σ+,+) ↔ N , (σ+,−) ↔ η̄N , (σ−,+) ↔ N̄ , (σ−,−) ↔ ηN̄ .

(4.20)

This identification also matches with the expectation that the SymTFT should have
symmetry given by theDrinfeld center of TY (ZN ). Indeed, for amodular tensor category
(of which TY (Z2) = Ising is an example) the Drinfeld center is known to be the tensor
product of the original category with its orientation reversal.
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4.2. Twisted cocycle description. In Sect. 4.1 we obtained the simple objects and fusion
rules for the SymTFT of TY (ZN ). We now reobtain these results in a different way,
using an explicit Lagrangian description of the SymTFT. This in particular allows us to
give a concrete twisted cocycle description of all simple objects.

4.2.1. The action and restricted gauge transformations The starting point is once again
the ZN gauge theory in (3.1). We will find it convenient to symmetrize the two gauge
fields, and rewrite the BF theory (3.1) in the K-matrix form:

S = 2π

2N

∫

aT ∪ K δa , (4.21)

where a = (a, â) is a two-component cochain valued in Z, and K = σ x .14 In terms of
a, the Z

EM
2 symmetry acts as a → Ka. Beginning in the pre-gauged theory, the action is

as given in (4.21), and the line operators are as given in (3.7). We now attempt to gauge
Z
EM
2 . To do so, we must first understand how to couple the action (4.21) to a background

field C for Z
EM
2 .

The coupling to C can be achieved by promoting the cochain a to a Z
EM
2 -twisted

cochain. Let us begin by recalling this notion. A 1-cochain is most easily understood as
a link between sites on a lattice. Such a 1-cochain can be labelled by two indices αi j ,
which label the lattice sites between which the link is stretched. In this index notation,
the usual cup product and coboundary operator are defined as

(α ∪ β)i jk = αi jβ jk , (δα)i jk = α jk − αik + αi j . (4.22)

It is straightforward to check that δ2 = 0. The gauge transformation α → α + δg in
index notation becomes

αi j → αi j + g j − gi . (4.23)

For a Z2-twisted cocycle αi j with background C and matrix K , the twisted cup
product and twisted coboundary operations are defined as

(α ∪C β)i jk := αi j K
Ci j β jk , (δCα)i jk := KCi j α jk − αik + αi j , (4.24)

and the twisted gauge transformation is given by

αi j → αi j + KCi j g j − gi ; (4.25)

see Appendix B of [76] for more details. One can again check that δ2C = 0 as long as C
is flat. Intuitively, in the current context promoting α to a Z2-twisted cocycle α means
that we take α to be a 2-vector, and allow the transition functions between patches to
include a matrix swapping the entries of α.

We may now write the action of (4.21) coupled to a background for Z
EM
2 as

S[C] = 2π

2N

∫

aT ∪C K δCa , (4.26)

where the integrand, in components, is
(

aT ∪C K δCa
)

i jkl
= aTi j K

Ci j+1
(

KC jkakl − a jl + a jk

)

. (4.27)

14 We hope that the reader will not confuse the K -matrix here with the quantum line K defined above.
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ji k

aij ajk a ajk→K−ωjajk−−−−−−−−−−→
Cjk→Cjk+ωk−ωj

ji k

aij ajk a

Fig. 25. The schematic form of Z
EM
2 gauge transformations. The background gauge field is C . The red and

green lines are Wilson lines of a, while the blue dotted lines represent the surface defects implementing the
Z
EM
2 transformation

It is a good exercise to verify that (4.26) is invariant under dynamical gauge trans-
formations (4.25). Details of this exercise are provided in Appendix C. The action is
furthermore invariant under background gauge transformations of C , which are given
by

Ci j → Ci j + ω j − ωi , ai j → K−ωi ai j , gi → K−ωi gi . (4.28)

The form of these transformations can be understood pictorially as in Fig. 25.
Since the action (4.26) is completely invariant under background gauge transforma-

tions, we may now gauge Z
EM
2 . To do so, we promote the background gauge field C to

a dynamical gauge field c, upon which the action (4.26) becomes

SSymTFT = 2π

2N

∫

aT ∪c K δca + π

∫

x ∪ δc . (4.29)

The last term is a BF term, such that integrating out x enforces that c is a Z2 cocycle.
Because of the complicated dependence on c in the kinetic term, we see that c is now
flat only on-shell. This means that the action is no longer invariant under (4.25), since
without c being flat the first term in (4.29) transforms by

δS = 2π

2N

(

gTi
(

Kci j+c jk+ckl − Kcik+ckl − Kci j+c jk + Kcik
)

Kakl
)

+
2π

2N

(

(gTj K
−ci j − gTi )Kci j+1(Kcjk+ckl − Kcjl )gl

)

,

(4.30)

as follows from the computation in Appendix C. For generic g, this is non-vanishing,
and our action would seemingly not be gauge invariant. However, for g satisfying

(K δci jk − 1)gk = 0 , (4.31)

the problematic term (4.30) vanishes. Thus as long aswe restrict to gauge transformations
satisfying this constraint, the action is indeed gauge invariant. Note that this is a non-
trivial constraint on g only at points where c is not flat. We will see below that this
constraint has a simple physical interpretation.
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4.2.2. Cocycle description of line operators We now give a cocycle description for all
of the lines identified in Sect. 4.1.1. The combined gauge transformations (4.25) and
(4.28) take the form

ai j → K−ωi
(

ai j + Kci j g j − gi
)

, ci j → ci j + ω j − ωi , xi j → xi j + η j − ηi , (4.32)

with g constrained as in (4.31), and our goal is to construct the full spectrum of gauge-
invariant line operators.

Invertible Operators We first study the invertible operators. Begin by rewriting the line
operators (3.7) of the pre-gauged theory as15

Ln(γ ) = ei
2π
N

∮

γ nT · a
, n ∈ ZN × ZN . (4.33)

Under the gauge transformations given in (4.32), these lines transform as

Ln(γ ) −→ ei
2π
N

∑

i∈γ nT K−ωi (ai,i+1+K
ci,i+1gi+1−gi ) . (4.34)

For Ln to be gauge-invariant, we must first remove the ωi dependence from the right-
hand side, which means enforcing

nT K = nT ⇒ n = (e, e)T , e ∈ ZN . (4.35)

This immediately removes the gi dependence as well, since subject to this condition we
have

∑

i

nT K−ωi (Kci,i+1gi+1 − gi ) = nT
∑

i

(gi+1 − gi ) = 0 . (4.36)

We thus conclude that the following line operators

L(e,e)(γ ) = ei
2π
N

∮

γ e(a+̂a)
, e = 0, . . . , N − 1 (4.37)

are the only gauge invariant operators of this form.
There exist two other obvious invertible gauge-invariant line operators, namely

χ(γ ) = eiπ
∮

γ x
, K (γ ) = eiπ

∮

γ c
. (4.38)

The line χ(γ ) is naively not topological, since δx is not generically zero—this is because
c cannot act as a Lagrange multiplier due to its appearance in the kinetic term. The line
χ(γ ) will reappear below in our analysis of non-invertible lines, but for the moment we
will ignore it. On the other hand, the line K (γ ) is topological, and is the generator of the
dual ̂Z(1)

2 symmetry which we have already met before. Hence we conclude that there
are 2N invertible topological line operators ̂L+

(e) := L(e,e) and ̂L
−
(e) := K L(e,e).

Non-invertible Operators We now proceed to the non-invertible operators. The non-
invertible operators with quantum dimension 2 are the simplest to construct, and are

15 This definition of Ln is the same as the definition (3.7), as can be seen by using (3.10) together with the
fact that 〈γ, γ 〉 is vanishing in (2 + 1)d.
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L[e,m] =
cji,ji+1

exp

⎡
⎣2πi

N {ji} Kcj1,j2 Kcjn,jn+1

(ea + ma)j0,j1 (ma + ea)... (ea + ma)jn+1,jn+2

⎤
⎦

Fig. 26. The schematic form of̂L[e,m]. This definition effectively corresponds to insertion of L(e,m) ⊕ L(m,e)
on each link

obtained by noting that alternating chains of ea +mâ and ma + êa on links can be made
gauge-invariant by inserting appropriate factors of K . Concretely, the line

̂L [e,m] =
∏

j

∑

c̃ j, j+1∈{0,1}
e
2π i
N (e,m)K c̃ j, j+1a j, j+1 , (4.39)

is gauge invariant. As shown in Fig. 26, this intuitively corresponds to the insertion
of L(e,m) ⊕ L(m,e) on each link. There are 1

2N (N − 1) distinct such operators. These
operators can absorb the line K , as follows from precisely the same argument as was
given in Sect. 4.1.1.

We next consider the non-invertible lines with quantum dimension
√
N . In fact,

searching for gauge invariant operators involving only a and c does not turn up anything
new besides the operators identified above. We are thus led back to consideration of
the non-topological operator χ(γ ) defined in (4.38). To understand this better, we may
begin by using the equations of motion of c to obtain

δi ĩδ j j̃ (δx) jk� = 1

N

[

δi ĩδ j j̃ (a
T ∪c (K − 1)δca)i jk� + δ j ĩ δk j̃a

T
i j K

ci j+c jk (K − 1) ak�
]

.

(4.40)

Note that the repeated indices are not summed over. In obtaining this, we used

∂

∂cĩ j̃
K ci j := δi ĩδ j j̃ (K

ci j+1 − Kci j ) = δi ĩδ j j̃ K
ci j (K − 1) (4.41)

where the derivative with respect to the Z2 valued cochain ci j is defined to be the finite
difference. Thanks to the factor of (K − 1), we see that δx actually can be made to
vanish as long as a = â at the location of the line. This condition is also physically
sensible, since x acts as a source of c flux, meaning that traversing any cycle linking it
causes (a, â) → (̂a, a). Subject to this condition, the line χ(γ ) becomes topological
and can be used to define the non-invertible lines of quantum dimension

√
N . We may

also stack with K (γ ) or L(e,0) to obtain

̂�
q
(e)(γ ) :=

√

|H0(γ, ZN )| χ(γ )L(e,0)(γ )K (γ )log q/ iπ δ(a − â)|γ . (4.42)

Note that stacking with L(e,0) still gives something gauge invariant since a and â are
identified on the locus γ . The factor of

√

H0(γ, ZN )| included here is such that we
reproduce the correctly normalized fusion rules obtained in Sect. 4.1.1.
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To reproduce the results for parallel fusion identified before, we may first note that
the delta function above can be rewritten as16

δ(a − â)
∣

∣

γ
= 1

|H0(γ, ZN )|
∑

λ∈H0(γ,ZN )

e
2π i
N

∫

γ λ(a−â) = 1

|H0(γ, ZN )|
∑

n∈ZN

L(n,−n)(γ ) .

(4.43)

For e.g. N odd, we then note that

∑

n∈ZN

L(n,−n)(γ ) =
N−1
2
∑

n=− N−1
2

L(n,−n)(γ ) = ̂L+
(0)(γ ) +

N−1
2
∑

n=1

̂L [n,N−n](γ ) , (4.44)

which allows us to reproduce the results for parallel fusion given in (4.11). The other
results for parallel fusion follow straightforwardly.

4.2.3. Trivalent junctions In addition to studying parallel fusion, we may also study
gauge-invariant trivalent junctions. Once one has all of the trivalent junctions, the parallel
fusion may be reproduced. This analysis is conceptually straightforward but somewhat
technical, and can be skipped on a first read.

To begin, consider̂L±
(e) on a chain γ with boundary. Such a configuration is not gauge

invariant under (4.25), but rather transforms as

̂L±
(e)(γ ) → ̂L±

(e)(γ ) ei
2π
N (e,e)g|∂γ . (4.45)

However, this configuration can be made consistent if

• It ends on a point with other lines ̂L±
(e′)(γ ) such that the total charge cancels.

• It ends on a locus with non-zero c flux.
• A mix of the above.

The first of these allows for gauge-invariant junctions between three invertible defects
̂L±

(e)(γ ), ̂L±
(e′)(γ ), and ̂L±

(e+e′)(γ ); we will write this in the notation

̂Lqq ′
(e+e′) ⊂ ̂Lq

(e) ⊗ ̂Lq ′
(e′) , (4.46)

where we take the convention that ̂Lq
(e) and ̂L

q ′
(e′) are incoming and ̂Lqq ′

(e+e′) is outgoing.
The factors of q, q ′ shown follow from the fact that, under c gauge transformations the
lines K (γ ) transform as

K (γ ) → K (γ ) eiπω|∂γ (4.47)

and hence cannot end unless the junction point itself transforms under gauge transfor-
mations of c. When the junction point is invariant, as is the case here, there must be an
even number of K -lines.

Note that this is the only gauge-invariant junction between ̂Lq
(e) and ̂L

q ′
(e′). Indeed,

no ̂L [e,m] or ̂�q
(e) can appear on the right-hand side: for ̂L [e,m] this follows from charge

conservation,while for̂�q
(e) this is because there does not exist a gauge-invariant endpoint

16 We assume γ to be connected so that H0(γ, ZN ) = ZN .
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for χ(γ ), and hence any trivalent junction involving ̂�q
(e) must contain both an incoming

and outgoing ̂�. Because (4.46) is the only allowed gauge-invariant junction, we may
conclude that the local fusion rules are

̂Lq
(e) ⊗ ̂Lq ′

(e′) = ̂Lqq ′
(e+e′) . (4.48)

The overall normalization is fixed by the fact that ̂Lq
(e) is invertible, and hence has

quantum dimension 1. This reproduces the result in (4.1).
The second option above relies on the fact that, on a locus with non-zero c flux,

we have (e,−e)g = 0 by the constraint (4.31). This gives rise to a gauge-invariant
configuration of̂L±

(e) ending on̂�
±
(e′) as long as e = −e mod N . This happens whenever

N is even and e = N
2 , giving rise to the junction

̂�
q ′′
(e′) ⊂ ̂Lq

(N/2) ⊗ ̂�q ′
(e′) , (4.49)

whereq ′′ = ±qq ′ depends on e′ being even/odd.This junction contains both an incoming
and outgoing factor of χ(γ ), consistent with the fact that χ(γ ) cannot end.

For more general e = N/2, the lines ̂L±
(e) cannot end on ̂�

±
(e′) alone, but by the third

option there can be a trivalent junction between ̂L±
(e), ̂�

±
(e′), and ̂�

±
(2e+e′),

̂�
q ′′
(2e+e′) ⊂ ̂Lq

(e) ⊗ ̂�q ′
(e′) . (4.50)

The sign q ′′ must be fixed by checking if the junction point transforms under c gauge
transformations. If not, then by (4.47) the K line cannot end and thus q ′′ = qq ′. On
the other hand, if the junction point does transform non-trivially, then the K line must
end, and we have q ′′ = −qq ′. Unfortunately, it is not clear to us how to understand this
aspect of the junction point in the cocycle description, so here we simply quote the result
from the analysis in Sect. 4.1,

q ′′ =
{

qq ′ , {e′ ∈ 2Z} ∪ {e′ ∈ 2Z + 1, 0 ≤ [e + e′−1
2 ]N ≤ N/2 − 1}

−qq ′ , {e′ ∈ 2Z + 1, N/2 ≤ [e + e′−1
2 ]N ≤ N − 1} (4.51)

These turn out to be the only junctions between ̂Lq
(e) and ̂�

q ′
(e′), and hence we may now

reproduce the fusion rules in (4.9). As we will see momentarily though, these are not the
only gauge-invariant junction involving two ̂�q

(e), so we cannot yet read of the fusion

rules for ̂�q
(e) ⊗̂�q ′

(e′). For future purposes though, let us note that (4.50) can be rewritten
as

̂Lq ′′
((e+e′)/2) ⊂ ̂�q

(e) ⊗ ̂�q ′
(e′) , (4.52)

for e+e′ even, being careful about the conventions for orientation of lines at the junction.
We next consider junctions involvinĝL [e,m]. To do so, let us first notice that the given

three curves γ1, γ2, γ3 with the same boundary point ∂γi , we have the following shift
under gauge transformations,

L(e,m)(γ1)L(e′,m′)(γ2)L(e′′,m′′)(γ3)

−→ L(e,m)(γ1)L(e′,m′)(γ2)L(e′′,m′′)(γ3)e
2π i
N (e+e′−e′′,m+m′−m′′)g|∂γi . (4.53)
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If the boundary is not located on a locus of non-trivial c flux, then we conclude that
gauge invariant junctions must have

e + e′ − e′′ = 0 mod N , m + m′ − m′′ = 0 mod N , (4.54)

which leads to junctions of the form

̂L [e+e′,m+m′] ⊂ ̂Lq
(e) ⊗ ̂L [e′,m′] . (4.55)

These are the only junctions involving ̂Lq
(e) and ̂L [e′,m′], and hence we determine the

fusion rules

̂Lq
(e) ⊗ ̂L [e′,m′] = ̂L [e+e′,m+m′] , (4.56)

where the coefficient is again fixed by knowing that the quantum dimension of ̂Lq
(e) is

1. One may similarly determine the fusion rules between ̂L [e,m] and ̂L [e′,m′].
On the other hand, assume that the boundary is located on a locus of non-trivial c flux,

i.e. on an (ingoing) ̂�q
(e′). Since there is no gauge-invariant endpoint for χ(γ ), the third

(outgoing) leg in the trivalent junction must also be a ̂�q ′′
(e′′). In this case m′ = m′′ = 0

and (1,−1)g = 0, so the condition for gauge-invariance is that

e + m + e′ − e′′ = 0 mod N . (4.57)

We thus obtain junctions of the form

̂�
q ′′
(e+m+e′) ⊂ ̂L [e,m] ⊗ ̂�q ′

(e′) . (4.58)

Note that in this case the sign q ′ is uncorrelated with q ′′, since as discussed in Sect. 4.2.2
the line ̂L [e,m] can absorb a K line. Hence for every pair of ̂L [e,m] and ̂�q ′

(e′), there are

two possible gauge invariant junctions, with the outgoing leg being either ̂�+
(e+m+e′) or

̂�−
(e+m+e′). The local fusion rules involve a sum over these possibilities, with the result

given by

̂L [e,m] ⊗ ̂�q ′
(e′) = ̂�+

(e+m+e′) ⊕ ̂�−
(e+m+e′) . (4.59)

We have now finally obtained the full set of gauge-invariant junctions, and can use

this to read off the fusion rules of ̂�q
(e) and ̂�

q ′
(e). First, being careful about orientation

of lines in the junction, we may rewrite (4.58) as

̂L [e′′
n ,m

′′
n ] ⊂ �

q
(e) ⊗ �

q ′
(e′) (4.60)

where (e′′
n ,m

′′
n) are the solutions, parameterized by n ∈ ZN , to the equation

e′′
n + m′′

n = e + e′ mod N . (4.61)

This equation descends from (4.57) by appropriate relabeling and changing of orienta-
tion. The solutions are given by

(e′′
n ,m

′′
n) =

⎧

⎪

⎨

⎪

⎩

( e+e
′

2 + n, e+e′
2 − n) e + e′ even

( e+e
′+N
2 + n, e+e′+N

2 − n) e + e′ odd, N odd
( e+e

′−1
2 + n, e+e′+1

2 − n) e + e′ odd, N even

(4.62)
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TXX =
1

dX
X SXY =

1
D X Y

Fig. 27. Pictorial representation of entries of the S and T matrices. Note that TXX is also denoted θ(X) and
referred to as the spin

We may restrict to n = 1, . . . , � N−1
2 � to obtain the full set of non-redundant pairs.

The junctions (4.52) and (4.60) give the full set of gauge-invariant junctions involving
̂�

q
(e) and ̂�

q ′
(e). We may thus obtain the fusion rules by summing over these possibilities,

successfully reproducing the results in (4.11) and (4.12).

4.2.4. S-matrix elements We have now reproduced the fusion rules of Sect. 4.1 via both
parallel fusion and analysis of gauge-invariant junctions. Before moving on to higher
dimensions, let us briefly mention a third strategy towards obtaining the fusion rules,
which is to first compute the S-matrix elements and then utilize the Verlinde formula.
This is relatively straightforward in (2 + 1)d since the S-matrix element SXY between
two line operators X and Y is given by the amplitude of the Hopf link shown in Fig. 27,
up to an overall factor of the total quantum dimension

D :=
√

∑

X

d2X = 2N . (4.63)

The Hopf link amplitude can in turn be obtained directly from the path integral. Unfortu-
nately, for the (4 + 1)d case this third strategy will no longer be viable, since there is not
yet an established analog of the S-matrix (though see [77,78] for work in this direction)
or of the Verlinde formula. Because of this, we will not give an exhaustive treatment of
this strategy, but only a flavor of it.

Begin by considering the S-matrix element between ̂Lq
(e) and ̂L

q ′
(e′). Take

̂Lq
(e) to be

inserted on γ and ̂Lq ′
(e′) to be inserted on γ ′, such that link(γ, γ ′) = 1 as in Fig. 27. The

action in the presence of these insertions becomes

S = 2π

2N

∫

M3

aT ∪c K δca + π

∫

x ∪ δc +
2π

N
(e, e)

∮

γ

a − i log q
∮

γ

c

+
2π

N
(e′, e′)

∮

γ ′
a − i log q ′

∮

γ ′
c

= 2π

2N

∫

M3

aT ∪c K δca + π

∫

x ∪ δc +
2π

N

∫

M3

[

(e, e)ωγ + (e′, e′)ωγ ′
] ∪ a

−i log q
∮

γ

c − i log q ′
∮

γ ′
c (4.64)

whereωγ is thePoincaré dual to the one-cycleγ andwe take log q = 0, iπ forq = 1,−1.
We would now like to carry out manipulations similar to those used in Appendix A to

compute the braidings. Because of the complicated appearance of c in the kinetic term
for a, this would at first sight seem impossible, but under certain circumstances it turns
out to not be a problem. Indeed, the S-matrix element SXY involves only the linking of
the lines X and Y , and hence as long as we are considering lines X and Y which do not
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act as sources for c, we are allowed to consider the link in a small patch of M3 in which
c is turned off. This means that the computation proceeds exactly as in Appendix A;
namely, we can focus on a patch U3 ⊂ M3 in which we have

S = 2π

N

∫

U3

â ∪ δa +
2π

N

∫

U3

(eωγ + e′ωγ ′) ∪ a +
2π

N

∫

U3

(eωγ + e′ωγ ′) ∪ â,

and integrating out â then gives

δa = −(eωγ + e′ωγ ′) . (4.65)

Defining M2 such that ∂M2 = eγ + e′γ ′ and plugging back into the action then gives a
factor of

− 4π

N
ee′ link(γ, γ ′) = −4π

N
ee′ . (4.66)

We thus conclude that

S
̂Lq

(e),
̂Lq′

(e′)
= 1

2N
e− 4π i

N ee′
. (4.67)

We next consider the S-matrix element between ̂L±
(e) and ̂L [e′,m′]. Since neither of

these is a source of c flux, we may again focus on a region in which c is trivial. Using
̂L [e′,m′] = L(e′,m′) ⊕ L(m′,e′), we see that the relevant S-matrix element is given by the
sum of amplitudes for the Hopf link between ̂L±

(e) and L(e′,m′) or L(m′,e′). Using the
general formula in (A.8), we conclude that

S
̂L±

(e),
̂L[e′,m′] = 1

2N
e− 2π i

N e(e′+m′) +
1

2N
e− 2π i

N e(e′+m′) = 1

N
e− 2π i

N e(e′+m′) . (4.68)

Finally, the S-matrix element between̂L [e,m] and̂L [e′,m′] can be easily computed, giving
rise to

S
̂L[e,m],̂L[e′,m′] = 1

N

(

e− 2π i
N (em′+me′) + e− 2π i

N (ee′+mm′)
)

. (4.69)

All of the results so far match precisely with those identified in the math literature for
Z(TY (ZN )); see Appendix D and in particular (D.1) for a summary of those results.
Plugging them into the Verlinde formula (D.4), they also match with the fusion rules
obtained before.

We now turn towards the more difficult case involving ̂�q
(e). These defects involve

χ = eiπ
∮

x , and hence act as a source for c flux. This means that our previous strategy
of evaluating the link in a patch with zero c is invalid. We will not try to give a complete
treatment here, but instead just note that a surprising amount of information about the
S-matrices can be obtained even without a deep understanding of this complication.

Begin by considering the S-matrix element between ̂Lq
(e) and the basic twist line

̂�
q ′
(0) ∼ χ × K log q ′/ iπδ(a − â)|γ . The action in the presence of these insertions is given

by

S = 2π

2N

∫

M3

aT ∪c K δca + π

∫

M3

x ∪ δc + π

∮

γ ′
x − i log q ′

∮

γ ′
c
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+
2π

N
(e, e)

∮

γ

a − i log q
∮

γ

c +
2π

N

∮

γ

λ(a − â) (4.70)

where as before log q = 0, iπ for q = 1,−1 and λ is a Lagrange multiplier field
implementing the delta function. To evaluate this, we first path integrate over x , which
restricts

δc = −ωγ ′ . (4.71)

As before, we may define M2 such that ∂M2 = γ ′, in which case c = −PD(M2).
Plugging this back into the action gives a term log q link(γ, γ ′); note that there is no
term proportional to log q ′ since the unknot does not have self-linking. The amplitude
thus has an overall factor of elog q link(γ,γ ′) = q. When we consider the more general

twist lines ˜�q ′
(e), we must also consider the linking between ̂Lq

(e) and L(e,0), which by

(A.8) gives a factor of e− 2π i
N ee′

. To summarize then, thus far we find

S
̂Lq

(e),
˜�
q′
(e′)

?= q

2N
e− 2π i

N ee′
. (4.72)

This is almost the correct result, c.f. (D.1), up to an overall factor of
√
N , which comes

from the quantum dimension of ̂�q ′
(e). Obtaining this factor would require a more careful

treatment of the path integral over a in the presence of c flux.
Next, we consider the S-matrix between ̂�±

(e) and ̂L [e′m′]. In fact, in this case the

result is rather easy to understand. Because ̂L [e′m′] = L(e,m) ⊕ L(m,e), computing this
S-matrix element would involve summation over the Hopf link of ̂�±

(e) with L(e,m),

together with the Hopf link of ̂�±
(e) with L(m,e). However, both of these configurations

are not gauge invariant, and hence both correlators must individually vanish. Indeed,
because ̂�±

(e)(γ ) acts as a source for c flux on γ , then traversing a cycle γ ′ with linking
link(γ, γ ′) = 1 leads to exchange (a, â) → (̂a, a). Thus only the lines L(e,m) with
e = m can consistenly wrap γ ′, and we conclude that S

˜�±
(e),L[e′m′] = 0, matching with

the known results given in (D.1).

Finally, let us briefly mention the S-matrix between ̂�q
(e) and ̂�

q ′
(e′). In this case the

naive considerations above are not enough to obtain the full form of the matrix elements,
but we can at least correctly predict that we should have S

̂�
q
(e),
̂�
q′
(e)

∝ qq ′. This follows

since the χ = eiπ
∮

x of each line can link with the K log q/ iπ = elog q
∮

c of the other. It
would be interesting to carry out this analysis more thoroughly.

5. Duality Interfaces in (3 + 1)d

Having introduced the relevant tools for studying duality defects in (1 + 1)d, we may
now proceed to the analogous discussion in (3 + 1)d. As before, we will first review
the construction of the duality interfaces/defects themselves, and then move on to the
construction of the corresponding SymTFT. Note that the fusion rules of duality defects
in (3 + 1)d have already been discussed in [21,22,24], though the discussion here will
be more explicit about the precise normalization and counterterms involved.
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N

ZX [X<0
4 , B] ZX/ZN

[X≥0
4 , B]

(5.5)

x = 0

x

Fig. 28. The duality defect from gauging Z
(1)
N over half of the spacetime X≥0

4 with Dirichlet boundary
condition

5.1. Duality interfaces from half-space gauging. We begin by considering a non-spin
QFT X in (3 + 1)d with an anomaly free Z

(1)
N one-form global symmetry, defined on a

closed four-dimensional spacetime X4. We denote the Z
(1)
N background gauge field as

B, and the partition function as ZX [X4, B]. Gauging Z
(1)
N gives a new theory X /ZN ,

ZX /ZN [X4, B] = |H0(X4, ZN )|
|H1(X4, ZN )|

∑

b∈H2(X4,ZN )

ZX [X4, b]e
2π i
N

∫

X4
bB

, (5.1)

where B ∈ H2(X4, ZN ) is the background field of the quantum symmetry Z
(1)
N after

gauging. The defect that generates this quantum symmetry is the Wilson surface of b,

η(σ ) = exp

(

2π i

N

∮

σ

b

)

. (5.2)

The denominator of the normalization in (5.1) comes from the volume of the gauge
redundancy, while the numerator comes from the volume of the gauge redundancies for
the previous gauge redundancies. It is straightforward to check that gauging Z

(1)
N twice

does not quite map the theory X back to itself, but rather to the charge conjugate of X ,
up to an Euler counterterm χ [X4, ZN ], where

χ [X4, ZN ] = |H0(X4, ZN )||H2(X4, ZN )||H4(X4, ZN )|
|H1(X4, ZN )||H3(X4, ZN )| . (5.3)

This means that gauging Z
(1)
N is, up to the Euler counterterm, an order four operation.

As in (1 + 1)d, we are allowed to redefine our gauging such that it is exactly order

four, which involves multiplying (5.1) by χ [X4, ZN ]− 1
2 . In this case the normalization

becomes 1/
√|H2(X4, ZN )|, and gauging twice maps the theoryX exactly to the charge

conjugate of X . We will however continue to work with the normalization (5.1).
Instead of gaugingZ

(1)
N over the entire X4, one can gauge in half of the spacetimewith

Dirichlet boundary conditions. This defines a topological duality interface N between
X and X /ZN . We decompose the spacetime into two parts,

X4 = X<0
4 ∪ X≥0

4 (5.4)

where ∂X≥0
4 = X3 is the interface. Depending on the situation, we sometimes also

include X3 in X≤0
4 . Around the interface, the geometry is X3 × R, and we use the
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N

ZX/ZN
[X≤0

4 , B] ZX [X>0
4 , B]

x = 0

x

||

N

ZX [X<0
4 , B] χ[X≥0

4 ,ZN ]−1 · ZX/ZN
[X≥0

4 , −B]

x = 0

x

Fig. 29. Orientation reversal of the duality interface

coordinate x to parameterize R. The interface sits at x = 0, and we denote this locus by
M3|0. The duality interface is defined by specifying the theories on its two sides. The
theoryX lives on X<0

4 , while the theoryX /ZN lives on X≥0
4 . A definition of the duality

defect is given in Fig. 28, where the theory on the right side X≥0
4 is

ZX /ZN [X≥0
4 , B] = |H0(X≥0

4 , M3|0, ZN )|
|H1(X≥0

4 , M3|0, ZN )|
∑

b∈H2(X≥0
4 ,M3|0,ZN )

ZX [X≥0
4 , b]e

2π i
N

∫

X≥0
4

bB
.

(5.5)

The Dirichlet boundary condition implies that the dynamical gauge field b is an element
in relative cohomology H2(X≥0

4 , M3|0, ZN ).
The orientation reversal of the duality defect is defined by exchanging the theories on

the two sides of Fig. 28. This is illustrated in the upper panel of Fig. 29. By reorganizing
X to the left of the defect, we obtain an equivalent expression of N as shown in the
lower panel of Fig. 29. Therefore we have

N = χ [X≥0
4 , ZN ]−1C · N , (5.6)

where C is the charge conjugation operator mapping B → −B.

5.2. Fusion rule of duality interfaces. We proceed to discuss the fusion rules of the
duality interfaceN defined inSect. 5.1. In particular,wewill find thatN is non-invertible.
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N N

ZX [X<0
4 , B] ZX/ZN

[X [0 ]
4 , B] χ[X≥

4 ,ZN ]−1 · ZX/ZN /ZN
[X≥

4 , −B]

x = 0 x =

x

Fig. 30. Fusion of two duality interfaces. The partition function on X≥0 is given by (2.8)

The discussion here is somewhat technical, and the reader interested in only the answer
may skip to (5.14).

We first discuss the fusion rule η ×N . Since b has Dirichlet boundary conditions on
M3|0, i.e. b|M3|0 = 0, the Z

(1)
N symmetry defect η is trivial on M3|0. This justifies

η × N = N . (5.7)

It is more interesting to study the fusion rules between two duality interfaces. We will
first considerN ×N , from whichN ×N can be derived using (5.6). The derivation is
similar to the computation in Sect. 2.2.We begin by placingN andN at x = 0 and x = ε

respectively, and let ε → 0+. The two duality defects divide the spacetime X4 into three
regions, X4 = X<0

4 ∪X [0,ε)
4 ∪X≥ε

4 . Since ε is small, we always take X [0,ε)
4 = M3× I[0,ε).

The theories living on the three regions are as shown in Fig. 30. Instead of defining the
theories in the two regions to the right ofN separately and discussing how to glue them
together along M3|ε , we will instead discuss the theory on X≥0

4 all together. The theory
living on X≥0

4 is given by

χ [X≥ε
4 , ZN ]−1 |H0(X≥0

4 , M3|0, ZN )||H0(X≥ε
4 , M3|ε, ZN )|

|H1(X≥0
4 , M3|0, ZN )||H1(X≥ε

4 , M3|ε, ZN )|
×

∑

b∈H2(X≥0
4 ,M3|0,ZN )

˜b∈H2(X≥ε
4 ,M3|ε ,ZN )

ZX [X≥0
4 , b] e

2π i
N

∫

X [0,ε)
4

bB+ 2π i
N

∫

X≥ε
4

(b−B)˜b
.

(5.8)

The techniques used to evaluate (5.8) are similar to those used to evaluate (2.8), and
hence we will only mention the main steps, highlighting new features.

To evaluate (5.8), the first step is to convert the sum over relative cohomologies to
absolute cochains by introducing additional 1-form cochains and BF couplings. This
gives
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χ [X≥ε
4 , ZN ]−1 |C0(X≥0

4 , M3|0, ZN )|
|C1(X≥0

4 , M3|0, ZN )|
|C0(X≥ε

4 , M3|ε, ZN )|
|C1(X≥ε

4 , M3|ε, ZN )|
1

|C1(X≥0
4 , ZN )||C1(X≥ε

4 , ZN )|

×
∑

b∈C2(X≥0
4 ,ZN ),˜b∈C2(X≥ε

4 ,ZN )

u∈C1(X≥0
4 ,ZN ),̃u∈C1(X≥ε

4 ,ZN )

ZX [X≥0
4 , b]e

2π i
N

∫

X [0,ε)
4

bB+ 2π i
N

∫

X≥ε
4

(b−B)˜b

e
2π i
N

∫

X>0
4

uδb+ 2π i
N

∫

M3 |0 ube
2π i
N

∫

X>ε
4

ũδ˜b+ 2π i
N

∫

M3 |ε ũ˜b
. (5.9)

We then integrate out˜b, u, and ũ subsequently. The final result is

χ[X≥ε
4 , ZN ]−1 |C0(X≥0

4 , M3|0, ZN )||C0(X≥ε
4 , M3|ε, ZN )||C2(X≥ε

4 , ZN )|
|C1(X≥0

4 , M3|0, ZN )||C1(X≥ε
4 , M3|ε, ZN )|

∑

b∈Z2(X [0,ε]
4 ,M3|0∪M3|ε ,ZN )

ZX [X≥0
4 , b + B|M≥ε

4
]e

2π i
N

∫

X [0,ε]
4

bB

(5.10)

where b = B on X≥ε
4 . Using the identity for cochains |Cn(X4, M3, ZN )| = |C4−n(X4,

ZN )| as well as the analogue of (2.17),

|Cn(X≥0
4 , M3|0, ZN )| = |Cn(X [0,ε]

4 , M3|0 ∪ M3|ε, ZN )||Cn(X≥ε
4 , ZN )| , (5.11)

the normalization factors in the first line of (5.10) can be simplified to

|C0(X [0,ε]
4 , M3|0 ∪ M3|ε, ZN )|

|C1(X [0,ε]
4 , M3|0 ∪ M3|ε, ZN )|

∑

b∈Z2(X [0,ε]
4 ,M3|0∪M3|ε ,ZN )

ZX [X≥0
4 , b + M≥ε

4 ]e
2π i
N

∫

X [0,ε]
4

bB
.

(5.12)

Converting the sum back to cohomologies, we find the fusion rule

N × N = |H0(X [0,ε]
4 , M3|0 ∪ M3|ε, ZN )|

|H1(X [0,ε]
4 , M3|0 ∪ M3|ε, ZN )|

∑

b∈H2(X [0,ε]
4 ,M3|0∪M3|ε ,ZN )

η(LD(b))

= 1

|H0(M3, ZN )|
∑

σ∈H2(M3,ZN )

η(σ ) ,

(5.13)

where LD stands for Lefschetz dual. The right-hand side is the condensation defect
[24] associated with 1-gauging of the Z

(1)
N one-form symmetry on a codimension-one

submanifold M3.
In summary, the fusion rules are

N × N = 1

|H0(M3, ZN )|
∑

σ∈H2(M3,ZN )

η(σ ) ,

η × N = N , ηN = 1 , N = χ [X≥0
4 , ZN ]−1C · N .

(5.14)
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ZX [X4, B]

x = 0

Expand / Shrink
2π
N

bδb

D(B)

x = 0 x = ε

Fig. 31. A (3 + 1)d QFT X with Z
(1)
N one-form symmetry can be expanded into a (4 + 1)d slab. The bulk is a

(4 + 1)d Z
(1)
N gauge theory, with the right boundary encoding the dynamical information of the (3 + 1)d QFT

and the left boundary being a topological Dirichlet boundary condition for the bulk field b

Note that the right-hand side of the first equation is the condensation defect of the
algebra made of η [24,27,79]. This is reminiscent of the fusion rules for the Tambara-
Yamagami category TY (ZN ) given in (2.21), which in particular contained an object
whose fusion with its conjugate was an algebra made of invertible symmetry defects.
For this reason, we consider the fusion rules in (5.14) to be the higher-dimensional
analogues of the fusion rules for the Tambara-Yamagami category. The reason that we
have a condensation defect on the right-hand side of the first equation, as opposed to
the algebra object itself, is to match the dimensionality of the defects on both sides. To
better understand this higher-category, we now turn to the SymTFT.

6. (4 + 1)d Symmetry TFT for Z
(1)
N Symmetry

In Sect. 5, we defined the duality interface N in (3 + 1)d and studied its (global) fusion
rules. In this section we study properties of the duality interface from the SymTFT point
of view. As in the lower-dimensional case, we will aim to classify the twist defects,
exhibit their relation with the duality interface upon shrinking, and derive their fusion
rules.

6.1. Z
(1)
N gauge theory as the symmetry TFT. Suppose X is a (3 + 1)d QFT with an

anomaly-free Z
(1)
N global symmetry, whose partition function is ZX [X4, B]. In the cur-

rent section we will not assume that X is self-dual under gauging Z
(1)
N . It is always

possible to expand this theory into a (4 + 1)d slab, as shown in Fig. 31. The theory in the
bulk of the slab is a (4 + 1)d Z

(1)
N gauge theory with action

S = 2π

N

∫

X5

̂bδb . (6.1)

Both b and ̂b are dynamical ZN valued 2-cochains. We will take the bulk to be the
product X5 = X4 × I[0,ε] and will use the coordinate x to parameterize the interval
I[0,ε]. The two boundaries are X4|ε and X4|0 respectively.

The boundary conditions on the left (x = 0) and right (x = ε) boundaries of the slab
are specified by appropriate boundary states. On the right boundary, the state is

|X 〉 =
∑

b∈Hb(X4|ε,ZN )

ZX [X4|ε, b]|b〉. (6.2)
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This state encodes all the dynamical information of the (3 + 1)d QFT X . On the left
boundary, the state is

〈D(B)| =
∑

b∈H2(X4|0,ZN )

〈b|δ(b − B) . (6.3)

Note that the background field dependence only enters at the topological boundary. By
shrinking the slab ε → 0, the partition function of the (3 + 1)d theory is reproduced by
the inner product of the two boundary states,

〈D(B)|X 〉 =
∑

b,b′∈H2(X4|0,ZN )

ZX [X4|0, b]δ(b′ − B)〈b′|b〉 = ZX [X4|0, B] (6.4)

where we have used 〈b′|b〉 = δ(b′ − b).
GaugingZ

(1)
N ofX in (3+1)d amounts to changing the topological boundary condition

on the left boundary from Dirichlet to Neumann. To see this, we define the Neumann
boundary condition as

〈N (B)| = |H0(X4|0, ZN )|
|H1(X4|0, ZN )|

∑

b∈H2(X4|0,ZN )

〈b|e 2π i
N

∫

X4|0 bB (6.5)

and check explicitly that

〈N (B)|X 〉 = |H0(X4|0, ZN )|
|H1(X4|0, ZN )|

∑

b,b′∈H2(X4|0,ZN )

ZX [X4|0, b]e
2π i
N

∫

X4|0 b
′B〈b′|b〉 = ZX /ZN [X4, B] . (6.6)

6.2. Extended defects in Z
(1)
N gauge theory. In this section, we consider the extended

defects in Z
(1)
N gauge theory that do not have topological boundaries. The operators with

boundaries will be discussed in Sects. 6.3, 6.5 and 6.7.

6.2.1. Fusion, braiding and higher quantum torus algebra of surfaces The Z
(1)
N gauge

theory has N 2 genuine topological surfaces, defined by

S(e,m)(σ ) ≡ exp

(

2π i

N

∮

σ

ea(2)
)

exp

(

2π i

N

∮

σ

mb(2)
)

≡ S(e,0)(σ )S(0,m)(σ ) ,

(e,m) ∈ ZN × ZN .

(6.7)

Above, σ is a two-dimensional surface. The surfaces S(1,0) and S(0,1) together generate

a Z
(2)
N ×Z

(2)
N two-form symmetry in the bulk. From canonical quantization, we have the

commutation relations

S(1,0)(σ )S(0,1)(σ
′) = e−2π i/N 〈σ,σ ′〉S(0,1)(σ

′)S(1,0)(σ ) , (6.8)

where 〈σ, σ ′〉 is the intersection pairing between the two surfaces σ, σ ′ within the four
manifold; see Appendix A for a derivation. Since σ is two-dimensional, the pairing is
symmetric—this is to be contrasted with the case in (2 + 1)d, in which case the relevant
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pairing was anti-symmetric. The fact that the pairing is symmetric implies that we are
allowed to consider the self-pairing 〈σ, σ 〉, which will be important below. Based on the
definition (6.7) and the basic commutation relation (6.8), one can derive the fusion rule

S(e,m)(σ )S(e′,m′)(σ ) = exp

(

2π i

N
me′〈σ, σ 〉

)

S(e+e′,m+m′)(σ ) . (6.9)

We should view the phase exp
( 2π i

N me′〈σ, σ 〉) as a counterterm living on σ . This is
related to the ambiguity in the definition of S(e,m) in (6.7). Indeed, one can instead
define S(e,m)(σ ) in the opposite order as S(0,m)(σ )S(e,0)(σ ), which differs from (6.7) by
a phase exp (−2π iem/N 〈σ, σ 〉).

Combining (6.7) and (6.8), we also have the commutation relation between arbitrary
two surfaces S(e,m)(σ ) and S(e′,m′)(σ ′),

S(e,m)(σ )S(e′,m′)(σ
′) = exp

(

−2π i

N
(em′ − me′)〈σ, σ ′〉

)

S(e′,m′)(σ
′)S(e,m)(σ )

(6.10)

and the higher quantum torus algebra

S(e,m)(σ )S(e,m)(σ
′) = exp

(

2π i

N
em〈σ, σ ′〉

)

S(e,m)(σ + σ ′) . (6.11)

The σ and σ ′ in these equations can be either local patches of surfaces or entire surfaces
without boundary.

6.2.2. Z
EM
4 symmetry and co-dimension one condensation defect in (4 + 1)d Just as the

ZN gauge theory in (2 + 1)d had a Z
EM
2 symmetry, so too does the Z

(1)
N gauge theory

(6.1) have an electro-magnetic exchange symmetry. The symmetry is defined by acting
on the gauge fields as

b →̂b, ̂b → −b , (6.12)

and thus acts on the invertible surface operators as

S(e,m)(σ ) → S(0,e)(σ )S(−m,0)(σ ) = exp

(

−2π i

N
em〈σ, σ 〉

)

S(−m,e)(σ ) . (6.13)

This operation leaves the action (6.1) invariant on a closed 5dmanifold. The groupwhich
the operation (6.12) generates depends on the value of N .When N > 2, it generatesZ

EM
4 .

Moreover, the square of (6.12) generates the charge conjugation symmetry, transforming
both b and̂b by a minus sign. When N = 2, since the charge conjugation transformation
is trivial, (6.12) generates Z

EM
2 .

Like the Z
EM
2 symmetry in (2 + 1)d for which the corresponding surface was a

condensation defect, the Z
EM
4 symmetry generator in (4+1)d can also be constructed as

a condensation defect. The intuition is analogous to that in Fig. 10. As shown in (6.13),
when a surface S(e,m) intersects the 4d defect DEM from the left, an operator S(−m,e)
intersects the 4d defect DEM from the right (up to a phase to be specified later). Using
the folding trick, we see that the surface S(e+m,m−e) = S⊗e

(1,−1) ⊗ S⊗m
(1,1) can be absorbed



1072 J. Kaidi, K. Ohmori, Y. Zheng

into the 4d defect for arbitrary e,m. This implies that the defect is now a condensation
of two species of surfaces, with charges

(1,−1) , (1, 1) . (6.14)

This should be contrasted with the defect (3.13), for which there was only one species
of defect condensed.

The two types of surfaces generate different higher form symmetries depending on the
value of N .When N is odd, the surfaces S(1,−1) and S(1,1) generate aZ

(2)
N ×Z

(2)
N two-form

symmetry in the bulk, or aZ
(1)
N ×Z

(1)
N one-form symmetry on the worldvolumeM4 of the

defect DEM.When N is even, because of the identification S(N/2,−N/2) = S(N/2,N/2), the

surfaces S(1,−1) and S(1,1) generate a (Z
(2)
N × Z

(2)
N )/Z2 two-form symmetry in the bulk,

or a (Z
(1)
N × Z

(1)
N )/Z2 one-form symmetry on the worldvolume of the defect M4. When

N = 2, the two surfaces coincide, and generate a Z
(1)
2 symmetry on M4. In summary,

the symmetries generated by the surfaces in (6.14) within the worldvolume of the Z
EM
4

defect are

odd N : Z
(1)
N × Z

(1)
N , N = 2 : Z

(1)
2 , even N ≥ 4 : Z

(1)
N × Z

(1)
N

Z2
. (6.15)

With the above intuition, we now give a precise definition of the Z
EM
4 condensation

defect on a 4d manifold M4. When N is odd, the condensation defect is

DEM(M4) = |H0(M4, ZN )|2
|H1(M4, ZN )|2

∑

σ,σ ′∈H2(M4,ZN )

exp

(

2π i

N
(〈σ ′, σ ′〉 + 〈σ, σ ′〉)

)

S(1,−1)(σ )S(1,1)(σ
′) . (6.16)

When N = 2, the condensation defect is

DEM(M4) = |H0(M4, Z2)|
|H1(M4, Z2)|

∑

σ∈H2(M4,Z2)

S(1,0)(σ )S(0,1)(σ + [wT M
2 ]) . (6.17)

When N is even and N ≥ 4, the condensation defect is

DEM(M4) = |H0(M4, (ZN × ZN )/Z2)|
|H1(M4, (ZN × ZN )/Z2)|

∑

(σ,σ ′)∈H2(M4,(ZN×ZN )/Z2)

exp

(

2π i

N
(〈σ ′, σ ′〉 + 〈σ, σ ′〉)

)

× S(1,−1)(σ )S(0,1)(
N

2
[wT M

2 ])S(1,1)(σ
′) . (6.18)

We relegate the derivation of these condensation defects toAppendixE, butwill comment
on a couple of interesting features which are new compared to the Z

EM
2 defect in (2+1)d

ZN gauge theory:

1. The defect depends on the parity of N . Summing over surfaces on M4 amounts to
1-gauging of Z

(2)
N × Z

(2)
N for odd N , and 1-gauging of (Z

(2)
N × Z

(2)
N )/Z2 for even N .
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2. In contrast to the condensation defect in (2 + 1)d ZN gauge theory, for which there
was no discrete torsion due to H2(BZN ,U (1)) being trivial, in the (4+1)dZ

(1)
N gauge

theory we are allowed to include discrete torsion when constructing the condensation
defect. In fact, it turns out that the discrete torsion as shown in (6.16) is required in
order to produce the correct fusion rules between S(e,m) and DEM. Furthermore, the
discrete torsion depends on the ordering of the surfaces. According to (6.10), moving
S(1,1)(σ

′) to the left of S(1,−1)(σ ) produces an additional phase exp
(− 4π i

N 〈σ, σ ′〉).
The fusion rules involving the defect DEM(M4) canbeworkedout byusing the definitions
(6.16), (6.17), and (6.18), as well as the properties of the surface operators (6.9), (6.8),
and (6.11). The fusion rules are found to be

S(e,m)(τ )DEM(M4) = exp

(

−2π i

N
em〈τ, τ 〉

)

DEM(M4)S(−m,e)(τ ) ,

N = 2 : DEM(M4)
2 = χ [M4, Z2] ,

N ≥ 3 : DEM(M4)
4 = χ [M4,G]2ZY [M4,G]2 .

(6.19)

For the third line, the groupG is givenby (6.15).Hereχ [M4,G] is theEuler characteristic
of M4 defined in (5.3), while ZY [M4,G] is the partition function of an invertible TQFT
defined in (E.39). Concretely, for odd N one hasG = ZN ×ZN and the invertible TQFT
ZY [M4, ZN ×ZN ] := ZY [M4, ZN ]2 whereZY [M4, ZN ] is given by (E.11). For N = 2,
one has G = Z2 and we don’t include any invertible TQFT. Finally, for even N and
N ≥ 4, one has G = (ZN ×ZN )/Z2, and the invertible TQFTZY [M4, (ZN ×ZN )/Z2]
is defined as in (E.39).

The first fusion rule in (6.19) is exactly as expected from (6.13). The last two fu-
sion rules in (6.19) confirm that the condensation defect DEM is an invertible defect,
generating a Z

EM
4 symmetry for N > 2 and a Z

EM
2 symmetry for N = 2.

6.3. Twist defects and their fusion rules for odd N. We next discuss the twist defects in
(4 + 1)d Z

(1)
N gauge theory. Since the cases of odd N , N = 2, and even N for N ≥ 4

differ significantly, we will treat them separately, beginning with the case of N odd.

6.3.1. Twist defects as higher duality interfaces As in (2+1)d, twist defects are defined
by placing the Z

EM
4 symmetry operator DEM defined in (6.16) on a manifold M4 with

boundary M3 = ∂M4, with Dirichlet boundary conditions imposed on M3. We first
define the “minimal” twist defect as

V(0)(M3, M4) = |H0(M4, M3, ZN )|2
|H1(M4, M3, ZN )|2

∑

σ,σ ′∈H2(M4,ZN )

exp

(

2π i

N
(〈σ ′, σ ′〉 + 〈σ, σ ′〉)

)

S(1,−1)(σ )S(1,1)(σ
′) . (6.20)

Let us point out that, despite the fact that we have a boundary with Dirichlet boundary
conditions, the sum is still over elements of absolute homology, not relative homology,
as would be the case if we were working with cohomology.17

17 Indeed, by rewriting the surface operator as S(1,1)(σ ) = e2π i/N
∫

σ be2π i/N
∫

σ
̂b =

e
2π i/N

∫

M4
bσ ∪b

e
2π i/N

∫

M4
bσ ∪̂b

where bσ is the Lefschetz dual of σ on M4, summing over the surfaces σ
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The Dirichlet boundary conditions mean that the surfaces S(1,±1)(τ ) for τ ∈ H2(M3,

ZN ) can be absorbed by fusing with the twist defect V(0) along the boundary M3,

S(1,−1)(τ )V(0)(M3, M4) = V(0)(M3, M4) , S(1,1)(τ
′)V(0)(M3, M4) = V(0)(M3, M4) .

(6.21)

For the two conditions above to be compatible, it must be the case that the phase
exp(4π i/N 〈τ, τ ′〉) coming from exchanging the order of S(1,−1)(τ ) and S(1,1)(τ

′) is
trivial for any τ, τ ′ ∈ H2(M3, ZN ). This means that the intersection pairing must be
trivial mod N . To justify this, we note that M3 is the boundary of M4, and that one
can regularize the intersection between τ and τ ′ within M3 to be an intersection be-
tween τ in M3 and τ ′ in M ′

3, where M ′
3 is obtained by parallel transporting M3 along

the direction orthogonal to M3 into M4. This ensures that M3 and M ′
3 do not share a

common submanifold, and thus implies that 〈τ, τ ′〉 = 0. Since the intersection pairing is
between elements in homology, and since the regularization prescribed above amounts
to choosing different representatives within the same homology class, we conclude that
the pairing always vanishes. This justifies the simultaneous validity of the two equations
in (6.21).

Using (6.21), we further find that there is only one type of twist defect. To see this, we
fuse an arbitrary surface S(e,m)(τ ) with V(0)(M3, M4). Noting that we may decompose

S(e,m)(τ ) =

⎧

⎪

⎨

⎪

⎩

S
e−m
2

(1,−1)(τ )S
e+m
2

(1,1)(τ ) , e ± m ∈ 2Z

S
e−m+N

2
(1,−1) (τ )S

e+m+N
2

(1,1) (τ ) , e ± m ∈ 2Z + 1
(6.22)

where we have used 〈τ, τ 〉 = 0 mod N for τ ∈ H2(M3, ZN ), we find that V(0) can
absorb arbitrary S(e,m)(τ ) under fusion.

We define the orientation reversal of V(0) to be

V (0)(M3, M4) =χ [M≥0
4 , ZN × ZN ]−1 |H0(M4, M3, ZN )|2

|H1(M4, M3, ZN )|2 ×
∑

σ,σ ′∈H2(M4,ZN )

exp

(

−2π i

N
(〈σ, σ 〉 + 〈σ, σ ′〉)

)

S(1,1)(−σ ′)S(1,−1)(−σ)

(6.23)

where the right-hand side is, apart from the Euler counterterm, the Hermitian conjugate
of V(0). The inclusion of the Euler counterterm is motivated by (5.6). As shown in
Appendix E, including the same Euler counterterm in the orientation reversal of DEM
ensures the expected behavior DEMDEM = 1.

Since the twist defect is defined to be the higher gauging of a two-form symmetry
along half of the codimension-one submanifold M4 of the spacetime with Dirichlet
boundary conditions on M3, it can be interpreted as a higher duality interface.

amounts to summing over 2-cohomologies bσ . The Dirichlet boundary condition means that bσ takes value in
relative cohomology H2(M4, M3, ZN ). By Lefschetz duality, σ takes value in standard, absolute homology
H2(M4, ZN ). Similar statements hold for σ ′.
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6.3.2. Fusion rules of the twist defects We now discuss the fusion rules involving twist
defects for N odd.
Fusion rule S(e,m) × V(0): As discussed in the previous subsection, any simple surface
operator S(e,m) can be absorbed into the twist defect V(0), and hence we have the fusion
rule

S(e,m)(τ ) × V(0)(M3, M4) = V(0)(M3, M4) . (6.24)

Fusion rule V(0) × V (0): More interesting is the fusion rule between two twist defects.
For simplicity, we first consider V(0) × V (0). It is useful to again specify the geometry
near the boundary of M4 as M3 × R+, and to use the coordinate x to parameterize the
direction orthogonal to the boundary. We take V(0) to be on M≥0

4 and V (0) to be on M≥ε
4 .

From the definition of the twist defect (6.20) and its Hermitian conjugate (6.23), we find
that

V(0)(M3, M4) × V (0)(M3, M4) = χ [M≥ε
4 , ZN ]−2 |H0(M≥0

4 , M3|0, ZN )|2
|H1(M≥0

4 , M3|0, ZN )|2
|H0(M≥ε

4 , M3|ε, ZN )|2
|H1(M≥ε

4 , M3|ε, ZN )|2

×
∑

σ,σ ′,∈H2(M
≥0
4 ,ZN )

τ,τ ′,∈H2(M
≥ε
4 ,ZN )

exp

(

2π i

N
(〈σ ′, σ ′〉 + 〈σ, σ ′〉 + 〈σ + σ ′, τ ′〉 + 〈σ − σ ′, τ 〉)

)

S(1,−1)(σ )S(1,1)(σ
′) . (6.25)

To evaluate this expression, we apply steps similar to those in Sect. 5.2, upon which the
above expression simplifies to

|H0(M [0,ε]
4 , M3|0 ∪ M3|ε, ZN )|2

|H1(M [0,ε]
4 , M3|0 ∪ M3|ε, ZN )|2

∑

σ,σ ′∈H2(M
[0,ε]
4 ,ZN )

exp

(

2π i

N
〈σ ′, σ ′〉

)

S(1,0)(σ + σ ′)S(0,1)(σ
′ − σ) (6.26)

which is exactly the result one would obtain by placing the DEM defect on an interval
M [0,ε]

4 � M3 × I[0,ε], with Dirichlet boundary conditions on both sides. Note that on
the interval, the intersection pairing 〈·, ·〉 is trivial, which also holds when shrinking the
slab to M3. After making a change of variables σ + σ ′ → ρ′, σ ′ − σ → ρ (which is
possible for odd N ), the fusion rule then simplifies to

V(0)(M3, M4) × V (0)(M3, M4) = 1

|H0(M3, ZN )|2
∑

ρ,ρ′∈H2(M3,ZN )

S(1,0)(ρ
′)S(0,1)(ρ) .

(6.27)

Fusion rule V(0) × V(0): We next consider the fusion between V(0) and itself, with both
defined on M≥0

4 . Taking the square of (6.20), we find

V(0)(M3|0, M≥0
4 ) × V(0)(M3|0, M≥0

4 ) = |H0(M≥0
4 , M3|0, ZN )|4

|H1(M≥0
4 , M3|0, ZN )|4

⎛

⎝

∑

τ∈H2(M4,ZN )

e2π i/N 〈τ,τ 〉
⎞

⎠

2
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×
∑

σ,σ ′∈H2(M4,ZN )

exp

(

2π i

N
(−〈σ, σ 〉 + 〈σ ′, σ ′〉 + 2〈σ, σ ′〉)

)

S(1,−1)(σ
′ − σ)S(1,1)(σ

′ + σ)

= χ [M≥0
4 , ZN ]ZY [M≥0

4 , ZN ]2 |H0(M≥0
4 , M3|0, ZN )|2

|H1(M≥0
4 , M3|0, ZN )|2

∑

σ,σ ′∈H2(M4,ZN )

exp

(

2π i

N
2〈σ, σ ′〉

)

S(1,0)(2σ
′)S(0,1)(2σ) (6.28)

where we define ZY [M≥0
4 , ZN ] for an open M≥0

4 to be

ZY [M≥0
4 , ZN ] = χ [M≥0

4 , ZN ]− 1
2
|H0(M≥0

4 , M3|0, ZN )|
|H1(M≥0

4 , M3|0, ZN )|
∑

τ∈H2(M
≥0
4 ,ZN )

e
2π i
N 〈τ,τ 〉 .

(6.29)

Although ZY is an invertible TQFT on a closed manifold, ZY is no longer invertible on
an open manifold. Equation (6.28) is precisely the charge conjugation defect (E.15) on
M≥0

4 , i.e. C(M≥0
4 ).

6.4. Duality defect in (3 + 1)d from twist defects in (4 + 1)d for odd N. Still restricting
to N odd, we now insert the extended defects into the (4 + 1)d slab and examine their
fate upon shrinking the slab. We will find the following correspondence,

Twist defect V(0) ←→ Duality interface N
Magnetic surface S(0,1) ←→ Z

(1)
N symmetry defect η

Electric line S(1,0) ←→ Z
(1)
N Order parameter L

(6.30)

6.4.1. Z
(1)
N symmetry defects and order parameters from bulk surface operators When

inserting a surface operator S(e,m) into the (4 + 1)d slab, one can either place the surface
parallel to the boundary X4|0, or with one of its directions orthogonal to the boundary.
Because of the Dirichlet boundary conditions of b, i.e. b|X4|0 = 0, the electric surface
S(1,0) can either end on the boundary perpendicularly, or be absorbed into the boundary
when parallel to it. Thus upon shrinking, the only way for it to survive as a non-trivial
operator is to place it orthogonal to the boundary, with one of its boundaries terminating
on the Dirichlet boundary and the other terminating on the non-topological boundary.
As a consequence, S(1,0) becomes a non-topological line operator, which can act as the

Z
(1)
N order parameter L .
On the other hand, the magnetic surface S(0,1) survives upon shrinking, and becomes

the Z
(1)
N symmetry defect η in the (3 + 1)d QFT X . The η surface can link with L on X4

and produces a nontrivial phase measuring the charge of L .

6.4.2. Duality interface from the twist defect We can also insert a twist defect V(0) into
the (4 + 1)d slab. Like in (2 + 1)d, colliding the DEM defect with the Dirichlet boundary
yields Neumann boundary conditions. Hence colliding a twist defect with the Dirichlet
boundary yields an interface between X and X /ZN ; see Fig. 32.
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ZX [B]

ZX/ZN
[B]

N
Expand / Shrink

2π
N

bδb

D(B)

x = 0 x = ε

Fig. 32. A (3 + 1)d QFT X with Z
(1)
N one-form symmetry and another (3 + 1)d QFT X /ZN with a quantum

̂Z
(1)
N one-form symmetry are separated by a topological interfaceN . This setup can be expanded into a (4+1)d

slab. The (4 + 1)d Z
(1)
N SymTFT has an insertion of a twist defect parallel to the Dirichlet boundary

To reproduce the fusion rules of duality defects (5.14) from the twist defects, let
us first consider the collision of the twist defect with the Dirichlet boundary condi-
tion.18 The Dirichlet boundary condition of the dynamical field b of the SymTFT means
that b in S(1,0)(τ ) = e2π i/N

∫

τ b is valued in relative cohomology H2(X5, X4, ZN ).
To integrate such b on a two-cycle τ , the two-cycle τ should be in relative homology
H2(X5, X4, ZN ). Moreover, when τ lives on the boundary M3 of a twist defect, we re-
quire τ ∈ H2(M3, ZN ). Hence uponmoving the twist defect onto theDirichlet boundary,
τ is restricted to lie in

H2(M3, ZN ) ∩ H2(X5, X4, ZN ) . (6.31)

Since after colliding the twist defectwith theDirichlet boundary conditionwehaveM3 =
∂M4 ⊂ X4 = ∂X5, it follows that τ is relative to itself, i.e. τ ∈ H2(M3, M3, ZN ) = ∅.
This fact will be important below.

Returning to the fusion, the fusion rule η × N = N clearly follows from (6.24).
Concretely, bringing the operators to the Dirichlet boundary we have S(e,m) → η and
V(0) → N , and hence (6.24) immediately leads to the desired fusion rule.

More interesting is the fusion rule of two duality interfaces N × N , which should
descend from (6.27), which we reproduce here for convenience,

V(0)(M3, M4) × V (0)(M3, M4) = 1

|H0(M3, ZN )|2
∑

ρ,ρ′∈H2(M3,ZN )

S(1,0)(ρ
′)S(0,1)(ρ) .

(6.32)

Upon colliding the twist defect with the Dirichlet boundary, ρ′ should be valued in
the relative homology of M3 with respect to itself as discussed above, meaning that
it is trivial. We should also change one of the normalization factors to be in relative
cohomology. The above fusion rule then simplifies to

N × N = 1

|H0(M3, ZN )||H0(M3, M3, ZN )|
∑

ρ∈H2(M3,ZN )
ρ′∈H2(M3,M3,ZN )

S(1,0)(ρ
′)S(0,1)(ρ)

18 We emphasize that there are two Dirichlet boundary conditions appearing in the current discussion. One
is the Dirichlet boundary condition for [σ ] and [σ ′] on the boundary M3 of the twist defect, while the other
is the Dirichlet boundary condition for the gauge field b in the ambient SymTFT.
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= 1

|H0(M3, ZN )|
∑

ρ∈H2(M3,ZN )

S(0,1)(ρ)

= 1

|H0(M3, ZN )|
∑

ρ∈H2(M3,ZN )

η(ρ) . (6.33)

This reproduces the results given in (5.14).

6.5. Twist defects and their fusion rules for N = 2. We now proceed to a discussion
of twist defects in (4 + 1)d Z

(1)
N gauge theory for N = 2. Because the discussion is

parallel to that in the previous subsection we will be brief, mainly just emphasizing the
differences. The busy reader may wish to skip directly to Sect. 7.

6.5.1. Twist defects We begin by defining the minimal twist defect by placing the Z
EM
2

symmetry defect DEM defined in (6.17) on an open 4d manifold M4, with Dirichlet
boundary conditions on M3 = ∂M4,

V(0)(M3, M4) = |H0(M4, M3, ZN )|
|H1(M4, M3, ZN )|

∑

σ∈H2(M4,Z2)

S(1,1)(σ )S(0,1)([wT M
2 ]). (6.34)

Above, [wT M
2 ] ∈ H2(M4, Z2) is the Lefschetz dual of the second Stiefel-whitney class

wT M
2 ∈ H2(M4, M3, ZN ). Note that wT M

2 is trivialized on M3 by a spin structure, and
hence V(0) depends on the presence of a spin structure. Since the defect has Dirichlet
boundary conditions on M3, the surface S(1,1)(τ ) for τ ∈ H2(M3, Z2) can be absorbed
by V(0), giving

S(1,1)(τ )V(0)(M3, M4) = V(0)(M3, M4) . (6.35)

On the other hand, since S(1,0)(τ ) and S(0,1)(τ ) do not belong to the condensate, fusing
them with V(0) on the boundary produces a new twist defect,

V(1)(τ, M3, M4) := S(1,0)(τ )V(0)(M3, M4) = S(0,1)(τ )V(0)(M3, M4) . (6.36)

Note that fusing V(0) with S(1,0)(τ ) and S(0,1)(τ ) yields the same defect, because they
differ by a phase (−1)〈τ,τ 〉 which vanishes for τ ∈ H2(M3, Z2); c.f. the discussion below
(6.21). The presence of multiple twist defects here should be contrasted with the case of
N odd. Moreover, we note that V(1) depends explicitly on τ , and hence it is best thought
of as a surface operator living inside M3, which is in turn the boundary of M4.

The orientation reversal of V(0) is given by

V (0)(M3, M4) = χ [M4, Z2]−1 |H0(M4, M3, ZN )|
|H1(M4, M3, ZN )|

∑

σ∈H2(M4,Z2)

S(1,1)(σ )S(0,1)([wT M
2 ]) (6.37)

which is precisely the same as placing the orientation reversal of the Z
EM
2 defect (E.25)

on half of the space.
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6.5.2. Fusion rules of the twist defects We now discuss fusion rules involving the twist
defects for N = 2.
Fusion rule: S(e,m) ×V(e′): The fusion rule between a surface operator and a twist defect
follows almost by definition,

S(e,m)(τ ) × V(e′)(τ, M3, M4) = V(e−m+e′)(τ, M3, M4) . (6.38)

When e − m + e′ = 0 mod N , the right hand side is independent of the surface τ .
Fusion rule: V(0) × V (0): We further consider the fusion between two twist defects.
Since all variants of twist defects can be obtained from the minimal one by fusing a
surface operator, it suffices to only discuss the fusion rule for the minimal twist defect
V(0). From (6.34) and (6.37), we compute the fusion to be

V(0)(M3|0, M≥0
4 ) × V (0)(M3|ε, M≥ε

4 )

= χ [M≥ε
4 , Z2]−1 |H0(M≥0

4 , M3|0, Z2)|
|H1(M≥0

4 , M3|0, Z2)|
|H0(M≥ε

4 , M3|ε, Z2)|
|H1(M≥ε

4 , M3|ε, Z2)|
∑

σ∈H2(M
≥0
4 ,Z2)

σ ′∈H2(M
≥ε
4 ,Z2)

eiπ〈σ,σ ′〉S(1,1)(σ ). (6.39)

here we have used the fact that wT M
2 on M [0,ε]

4 = M3 × I[0,ε] is always trivial.19

Simplifying the above expression in the way done in previous subsections, we obtain
exactly the Z

EM
2 topological operator on an interval M [0,ε]

4 with two Dirichlet boundary
conditions, which can be further simplified to

V(0) × V (0) = 1

|H0(M3, Z2)|
∑

σ∈H2(M3,Z2)

S(1,1)(σ ) . (6.40)

Using the relation V(0) = χ [M4, Z2] · V (0), the fusion rule for V(0) × V(0) can also be
obtained.

6.6. Duality defect in (3 + 1)d from twist defects in (4 + 1)d for N = 2. Still restricting
to N = 2, we proceed to insert the extended defects into the (4 + 1)d slab and examine
their fate upon shrinking the slab. We will find the following correspondence,

Twist defect V(e) ←→ Duality interface N
Magnetic surface S(0,1) ←→ Z

(1)
2 symmetry defect η

Electric line S(1,0) ←→ Z
(1)
2 Order parameter L

(6.41)

19 This is because wT M
2 is always trivial on any 3d oriented manifold, i.e. they are all spin manifolds. It

follows that the product space M [0,ε]
4 is also spin.
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6.6.1. Z
(1)
2 symmetry defects and order parameters from bulk surface operators Wefirst

consider inserting a surface operator S(e,m) into the (4+1)d slab.As before, by placing the
surface operator along different directions, we obtain different operators upon shrinking.
Summarizing the results,

1. The surface operator S(1,0) can terminate on the boundary orthogonally or be absorbed
into the boundary parallelly. Hence upon shrinking, it survives as a line operator L ,
which is the order parameter of the Z

(1)
2 one-form symmetry of the (3 + 1)d QFT X .

2. The surface operator S(0,1), when placed parallel to the boundary, survives upon

shrinking. It becomes the symmetry defect η for the Z
(1)
2 one-form symmetry. The

surface η can link with L with a nontrivial phase, which measures the Z
(1)
2 charge of

L .

6.6.2. Duality interface from twist defects We can also insert a twist defect into the
(4 + 1)d slab, giving the configuration shown in Fig. 32. We again find that the twist
defect in the (4+1)d bulk becomes a duality interface upon shrinking. Moreover, thanks
to the Dirichlet boundary conditions of the SymTFT, the resulting duality defect is
independent of the type of the twist defect,

N (M3, M4) = V(e)(τ, M3, M4)|x→0 , e = 0, 1 . (6.42)

In other words, there is only a single type of duality interface.
It is interesting to see how the fusion rules of the duality interfaces are reproduced

from those of the twist defects. We start from (6.40) and collide the defects in the fusion
rule with the Dirichlet boundary condition, which amounts to replacing V(0) → N ,

V (0) → N , and S(1,1)(σ ) → η(σ ).20 The fusion rule (6.40) then simplifies to

N × N = 1

|H0(M3, Z2)|
∑

σ∈H2(M3,Z2)

η(σ ) . (6.43)

The right-hand side is exactly the condensation defect associated with higher gauging of
Z

(2)
2 one-form symmetry on a codimension one defect M3. This agrees with the results

of (5.14).

6.7. Twist defects and fusion rules for even N and N ≥ 4. We finally discuss the
remaining case, namely twist defects in (4 + 1)d Z

(1)
N gauge theory with even N and

N ≥ 4. This proceeds as before, and the busy reader may wish to skip directly to Sect. 7.

20 One may wonder about the subtlety of absolute versus relative homology discussed around (6.31). Note

that S(1,1)(σ ) = eiπ
∫

σ b+̂b . Because b obeysDirichlet boundary conditions whilêb obeysNeumann boundary
conditions, the sum b +̂b is still Neumann, and hence σ is still in absolute homology. The same comment also
applies to the fusion rule of duality defects in (1 + 1)d in Sect. 3.4.
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6.7.1. Twist defects We start by defining the minimal twist defect by placing the Z
EM
4

defect (6.18) on an open 4d manifold with Dirichlet boundary conditions

V(0)(M3, M4) = |H0(M4, M3, (ZN × ZN )/Z2)|
|H1(M4, M3, (ZN × ZN )/Z2)|

×
∑

(σ,σ ′)∈H2(M4,(ZN×ZN )/Z2)

exp

(

2π i

N
(〈σ ′, σ ′〉 + 〈σ, σ ′〉)

)

S(1,−1)(σ ) S(0,1)

(

N

2
[wT M

2 ]
)

S(1,1)(σ
′) .

(6.44)

The Dirichlet boundary conditions for σ, σ ′ imply that fusing S(1,±1)(τ ) with (τ, τ ′) ∈
H2(M3, (ZN × ZN )/Z2) does not change the twist defect,

S(1,−1)(τ )V(0)(M3, M4) = V(0)(M3, M4) , S(1,1)(τ
′)V(0)(M3, M4) = V(0)(M3, M4) .

(6.45)

The two conditions can be simutaneously satisfied for the same reasons as given below
(6.21). Moreover, by sequentially fusing with either S(1,1) or S(1,−1), a surface operator
with arbitrary charge can be decomposed as

S(e,m)(τ ) =
⎧

⎨

⎩

S
e−m
2

(1,−1)(τ )S
e+m
2

(1,1)(τ ) e + m ∈ 2Z

S(1,0)(τ )S
e−m−1

2
(1,−1) (τ )S

e+m−1
2

(1,1) (τ ) e + m ∈ 2Z + 1
(6.46)

Hence as in the N = 2 case, there are two types of the twist defects, V(0) and V(1),
defined as

V(1)(τ, M3, M4) = S(1,0)(τ )V(0)(M3, M4) . (6.47)

When e+m is even, fusing S(e,m)(τ )with theminimal twist defect V(0)(M3, M4) does not
give rise to a new operator, while when e +m is odd fusing S(e,m)(τ ) with V(0)(M3, M4)

yields V(1)(τ, M3, M4).
We define the orientation reversal of V(0) as

V (0)(M3, M4) = χ [M4, (ZN × ZN )/Z2]−1 |H0(M4, M3, (ZN × ZN )/Z2)|
|H1(M4, M3, (ZN × ZN )/Z2)|

×
∑

(σ,σ ′)∈
H2(M4,(ZN×ZN )/Z2)

exp

(

−2π i

N
(〈σ, σ 〉 + 〈σ, σ ′〉)

)

× S(1,1)(−σ ′) S(0,−1)

(

N

2
[wT M

2 ]
)

S(1,−1)(−σ) ,

(6.48)

which is precisely the orientation reversal of the Z
EM
4 defect (E.50) on an open 4d

manifold.
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6.7.2. Fusion rules of twist defects We now discuss fusion rules involving the twist
defects for N even and N ≥ 4.
Fusion rule S(e,m)×V(e′): The fusion rules between a surface operator and a twist defect
are a straightforward generalization of those for N = 2. When both of them depend on
the same τ , we have

S(e,m)(τ ) × V([e′]2)(τ, M3, M4) = V([e−m+e′]2)(τ, M3, M4) (6.49)

where [e]2 ≡ e mod 2.
Fusion rule V(0)×V (0): We next consider the fusion between two twist defects.Without
loss of generality, we only discuss the fusion betweenminimal twist defects. From (6.44)
and (6.48), the fusion V(0) ⊗ V (0) is exactly the Z

EM
4 topological defect on an interval

with Dirichlet boundary conditions on both sides,

V(0)(M3|0, M≥0
4 ) × V (0)(M3|ε, M≥ε

4 )

= |H0(M [0,ε]
4 , M3|0 ∪ M3|ε, (ZN × ZN )/Z2)|

|H1(M [0,ε]
4 , M3|0 ∪ M3|ε, (ZN × ZN )/Z2)|

×
∑

(σ,σ ′)∈
H2(M

[0,ε]
4 ,(ZN×ZN )/Z2)

exp

(

2π i

N
(〈σ ′, σ ′〉 + 〈σ, σ ′〉)

)

S(1,−1)(σ )S(1,1)(σ
′), (6.50)

where we have used S(0,1)(
N
2 [wT M

2 ]) = 1 on M3 × I . The sum can further be reduced

to one over M3 by using H2(M
[0,ε]
4 ,G) = H2(M3,G), which also allows us to drop the

phase in the sum. This gives

V(0)(M3, M4) × V (0)(M3, M4) = 1

|H0(M3, (ZN × ZN )/Z2)|
∑

(σ,σ ′)∈
H2(M3,(ZN×ZN )/Z2)

S(1,0)(σ + σ ′)S(0,1)(σ
′ − σ) .

(6.51)

6.8. Duality defect in (3 + 1)d from twist defects in (4 + 1)d for even N and N ≥ 4.
We finally insert the extended defects into the (4 + 1)d slab and examine their fate upon
shrinking the slab. Like in the previous cases, we find the correspondence

Twist defects V(e) ←→ Duality interface N
Magnetic surface S(0,1) ←→ Z

(1)
N symmetry defect η

Electric line S(1,0) ←→ Z
(1)
N order parameter L

(6.52)

6.8.1. Z
(1)
N symmetry defects and order parameters from bulk surface operators For

insertions of invertible surfaces, the discussion is identical to the previous cases. In
short,

1. The surface operator S(1,0) can terminate on the boundary orthogonally or be absorbed
into the boundary parallelly. Upon shrinking, it survives as a line operator L , which
is the order parameter of the Z

(1)
N one-form symmetry of the (3 + 1)d QFT X .
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2. The surface operator S(0,1), when placed parallel to the boundary, survives upon

shrinking. Hence it becomes the symmetry defect η for the Z
(1)
N one-form symmetry

on the boundary. The surface η can have non-trivial linking with L , which measures
the Z

(1)
N charge of L .

6.8.2. Duality interface from twist defects We next insert a twist defect into the (4+1)d
slab, giving the configuration shown inFig. 32. From thiswe see that the twist defect in the
(4+1)d bulk induces a duality interface upon shrinking.Moreover, thanks to theDirichlet
boundary condition of the SymTFT, the resulting duality interface is independent of the
type of the twist defect,

N (M3, M4) = V(e)(τ, M3, M4)|x→0 , e = 0, 1 . (6.53)

In other words, there is only one type of duality interface.
It is interesting to see how the fusion rules of the duality interface are reproduced from

those of the twist defects.We start from (6.51). It is useful to introduce the new variables,
τ ′ = σ + σ ′ and τ = σ ′ − σ . Then τ and τ ′ both belong to H2(M3, ZN ) subject to one
constraint, namely that there exists a primitive λ ∈ H2(M3, ZN ) such that τ ′ − τ = 2λ.
Then summing over (σ, σ ′) ∈ H2(M3, (ZN × ZN )/Z2) is equivalent to summing over
τ, τ ′ ∈ H2(M3, ZN ) with the constraint that τ ′ − τ = 2λ for certain λ ∈ H2(M3, ZN ).
Because λ and λ+ N/2η do not give rise to different (τ, τ ′) for arbitrary η, the sum over
H2(M3, (ZN × ZN )/Z2) is further equivalent to summing over τ ∈ H2(M3, ZN ) and
λ ∈ H2(M3, ZN/2). In other words, we have

V(0)(M3, M4) × V (0)(M3, M4) = 1

|H0(M3, ZN )||H0(M3, ZN/2)|
∑

τ∈H2(M3,ZN )
λ∈H2(M3,ZN/2)

S(1,0)(2λ)S(1,1)(τ ) . (6.54)

We further apply the discussion around (6.31), demanding that λ ∈ H2(M3, M3, ZN )

when colliding with the Dirichlet boundary condition, and correspondingly also chang-
ing the normalization |H0(M3, ZN/2)| → |H0(M3, M3, ZN/2)| = 1. Furthermore,
S(1,1)(τ ) → S(0,1)(τ ) = η(τ). Hence

N × N = 1

|H0(M3, ZN )||H0(M3, M3, ZN/2)|
∑

τ∈H2(M3,ZN )

S(0,1)(τ )

= 1

|H0(M3, ZN )|
∑

τ∈H2(M3,ZN )

η(τ )

(6.55)

which is the condensation defect. This matches the fusion rule found in (5.14).

7. (4 + 1)d Symmetry TFT for Duality Defects

In Sect. 6 we studied the SymTFT for a (3 + 1)d theory with Z
(1)
N global symmetry, and

rederived the fusion rules for the duality interface implementing Z
(1)
N gauging. In the

current section we demand that the (3 + 1)d theory be self-dual under gauging Z
(1)
N ,
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which means that the duality interface identified before becomes a duality defect in a
single theory. The full symmetry (higher-)category is now some analog of the Tambara-
Yamagami category TY (ZN ) in (1 + 1)d. In order to obtain the SymTFT corresponding
to this larger symmetry, we proceed as in (2+1)d by gauging the EM duality symmetry.
As before, we do this in two separate ways: first, by tracing the fate of the various
topological operators identified in Sect. 6 under gauging; and second, by writing down
an explicit expression for the action in terms of twisted cocycles.

7.1. Symmetry TFT for duality defects. We begin by using the topological operators and
fusion rules obtained in Sect. 6 to identify the topological operators and fusion rules of
the SymTFT after gauging the EMduality symmetry. In Sect. 7.2 we give an independent
cocycle rederivation of many of these results.

7.1.1. Topological operators Recall that in (2+1)d, after gauging theZ
EM
2 symmetry the

surface operator DEM became transparent and the twist defects�(e) became genuine line
operators. As a result, the SymTFT involved only line operators. In (4+1)d, the spectrum
of topological operators after gauging the Z

EM
4 symmetry is richer: the SymTFT will

have line, surface, and three-manifold operators. Because of this diversity, it will be
important to distinguish between local and global fusions of the operators. We begin in
this subsection by listing the operators of various dimensions.

Three-manifold operatorsWe begin with the three-manifold operators. These operators
descend from the twist defects V(e)(σ, M3, M4) in the ZN gauge theory, which were the
boundaries of the four-manifold operator implementing EM duality transformations.
Upon gauging EM duality this four-manifold becomes transparent, and V(e)(σ, M3, M4)

becomes a genuine three-manifold operator ̂V(e)(σ, M3) (note that throughout this sec-
tion, we denote the operators in the Z

EM
4 -gauged theory with a hat). Recall that for N

odd we have e = 0, whereas for N even we have e = 0, 1. When e = 0, the dependence
on the surface σ drops out.

It is convenient to consider the operators defined on a local patch. Then there are two
types of three-manifold operators,

I3, ̂V(0) , (7.1)

where I3 is the trivial three-manifold operator. Note that this holds for both even and odd
N ; for N even ̂V(0) and ̂V(1) are indistinguishable on a local three-dimensional patch,
though they can be distinguished at the level of local surface operators, as described in
the next paragraph.

Surface operators We now turn to surface operators. Before gauging Z
EM
4 there were

a total of N 2 surface operators S(e,m) defined in (6.7), which transformed under EM
duality as in (6.13). In the current context it is useful to define an equivalent basis of
surfaces ˜S(e,m) as

˜S(e,m)(σ ) := ei
2π
N

∮

σ (e b+m̂b) = e
π i
N emP([σ ]) S(e,m) , (7.2)

where P([σ ]) is the Pontryagin square of the Poincaré dual of σ . Unlike for the lines
encountered in (2 + 1)d, for surfaces in (4 + 1)d the self-pairing 〈σ, σ 〉 (and hence
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P([σ ])) is not in general trivial, and hence ˜S(e,m)(σ ) is not identical to S(e,m). The
surfaces ˜S(e,m)(σ ) have the virtue of transforming more simply under EM duality,

˜S(e,m)(σ ) → ˜S(−m,e)(σ ) . (7.3)

We may now search for EM invariant combinations of ˜S(e,m)(σ ) which can survive the
gauging. A single surface˜S(e,m)(σ ) is EM invariant in isolation when (e,m) = (−m, e)
mod N . For N odd the only solution to this constraint is (e,m) = (0, 0), whereas for
N even there are two solutions (e,m) = (0, 0) and (N/2, N/2). We will denote these
surfaces as

̂S(0,0) := ˜S(0,0) , ̂S(N/2,N/2) := ˜S(N/2,N/2) . (7.4)

This notation can refer either to the operators defined locally on a patch or globally
on a surface, though for the latter we will write the surface dependence explicitly, e.g.
̂S(0,0)(σ ).

We may next consider a sum of two surfaces ˜S(e,m) ⊕˜S(e′,m′). This is non-simple in
the original theory, but after gauging can become simple. We will assume that neither
(e,m) nor (e′,m′) is itself gauge invariant, lest we obtain a direct sum of the simple
surfaces in (7.4). The condition for the sum to be EM invariant is then

(−m, e) = (e′,m′) , (−m′, e′) = (e,m) . (7.5)

For N odd there is only a trivial solution (e,m) = (e′,m′) = (0, 0) which reduces to
the first entry in (7.4). For N even, in addition to the trivial solution we may also choose
(e,m) = (N/2, 0) and (e′,m′) = (0, N/2). We will denote the resulting surface by

̂S{N/2,0} := ˜S(N/2,0) ⊕˜S(0,N/2) . (7.6)

Likewise we may consider sums of four surfaces,

̂S[e,m] := ˜S(e,m) ⊕˜S(−m,e) ⊕˜S(−e,−m) ⊕˜S(m,−e) . (7.7)

For N odd there are a total of 1
4 (N

2 −1) such surfaces, while for N even there are a total

of
( N
2

)2 − 1 of them (and in particular for N = 2 there are no surfaces of this type).
Finally we can also consider the non-genuine surface operators that are constrained

to live on three-manifolds. For odd N , there is a single type of non-trivial non-genuine
surface operator

I2(̂V(0)) , (7.8)

which is the identity surface living on ̂V(0). For even N , there are two types of non-
genuine surface operators,

I2(̂V(0)) , I2(̂V(1)) . (7.9)

The surface I2(̂V(1)) is obtained by fusing the identity surface living on the boundary
M3 of V(0)(M3, M4) with S(1,0)(σ ) before gauging Z

EM
4 . Note that despite our notation

here, I2(̂V(1)) is not the identity surface on a three-manifold ̂V(1), and indeed there is no
three-manifold operator ̂V(1). Instead, it is a non-identity surface on ̂V(0).

In summary, the list of non-trivial surfaces is as follows,

N odd : I2(̂V(0)) , ̂S(0,0) , ̂S[e,m] ,
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N even : I2(̂V(0)) , I2(̂V(1)) , ̂S(0,0) , ̂S
( N
2 , N2 )

, ̂S{ N
2 ,0} , ̂S[e,m]. (7.10)

The operators labelled with an I2 are non-genuine surface operators, while those without
are genunine surface operators. When N = 2, we drop the ̂S[e,m] in the even N case.
Line operators We finally proceed to the line operators. The spectrum of lines is even
richer than for surfaces. Upon gauging the Z

EM
4 (or Z

EM
2 for N = 2) duality symmetry,

one obtains a quantum Z
(3)
4 (or Z

(3)
2 ) three-form symmetry. This symmetry is generated

by a topological line in (4 + 1)d, which we denote by K in analogy to (2 + 1)d. This is
the only non-trivial genuine line operator in the SymTFT.

We should also consider the non-genuine line operators living on three-manifolds
and surfaces. We can first consider the identity operators living on each three-manifold
or surface,

N odd : I01(̂V(0)) , I01(̂S(0,0)) , I1(̂S[e,m]) ,

N even : I01(̂V(0)) , I01(̂V(1)) , I01(̂S(0,0)) , I01(̂S( N
2 , N2 )

) , I01(̂S{ N
2 ,0}) , I1(̂S[e,m]) .

(7.11)

The meaning of superscripts 0 will be explained below. Since ̂S(0,0) is a trivial surface
operator, the identity line I01(̂S(0,0)) living on it is also a trivial, genuine line. The other
line operators are non-genuine.

One can now stack the non-trivial genuine line K on top of the line operators in
(7.11). First, since the trivial line I01(̂S(0,0)) can be rewritten as K 0, it is useful to rewrite
Kq as Iq1(̂S(0,0)). Here q runs from 0, . . . , 3 for N > 2, and through 0, 1 for N = 2. We
then consider stacking K with the non-genuine line operators in (7.11). To determine
whether such stacking will generate a new line operator, we apply a discussion similar
to the one around Fig. 24. Since the pre-gauged counterparts of I01(̂V(0)), I01(̂V(1)), and
I01(
̂S(N/2,N/2)) are Z

EM
4 invariant, attaching a K line to them generates new lines, which

we denote by Iq1(̂V(0)), I
q
1(
̂V(1)), and I

q
1(
̂S(N/2,N/2)), with q � q +4. On the other hand,

since each of the pre-gauged counterparts of the constituents of I01(̂S[e,m]) is not Z
EM
4

invariant, the K line can be completely absorbed by I01(
̂S[e,m]). In this case we simply

drop the 0 superscript.
Somewhat more subtle is the fact that, although each of the pregauged counterparts

of the constituents of I01(̂S{N/2,0}) is not ZEM
4 invariant, they are invariant under the Z

EM
2

normal subgroup of Z
EM
4 . As discussed in Appendix F, this means that I01(̂S{N/2,0})

cannot absorb K , but can absorb K 2. Hence one can still stack K and define Ip
1 (̂S{N/2,0})

with p � p + 2.
In summary, we have the following line operators,

N odd : I
q
1(
̂V(0)) , I

q
1(
̂S(0,0)) , I1(̂S[e,m]) ,

N even : I
q
1(
̂V(0)) , I

q
1(
̂V(1)) , I

q
1(
̂S(0,0)) , I

q
1(
̂S

( N
2 , N2 )

) , I
p
1 (̂S{ N

2 ,0}) , I1(̂S[e,m]) ,

q = 0, 1, 2, 3, p = 0, 1 (7.12)

For N = 2, we drop I1(̂S[e,m]), take q to be defined mod 2, i.e. q = 0, 1, and drop the
label p on I

p
1 (̂S{ N

2 ,0}).
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Theoperators described in (7.1), (7.10), and (7.12) together form the (non-condensate)
objects, 1-morphisms, and 2-morphisms of the 3-category of the (4 + 1)d SymTFT,21

We note that all line (resp. surface) operators are endomorphisms of surface (resp. vol-
ume) operators. For example, ̂S[e,m] in (7.10) is an endomorphism of I3 in (7.1), and
I1(̂S[e,m]) in (7.12) is an endomorphism of ̂S[e,m] in (7.10).

7.1.2. Fusion rules for N odd We now discuss the fusion rules of the topological oper-
ators discussed above, starting with the case of N odd. We will be somewhat brief in our
presentation here, postponing details (and derivation of the F-symbols) to future work.
We will follow the method described in [28], where one first derives the local fusion
rules, from which the global fusion rules can then be obtained.

Local fusion of three-manifolds Beginning with local fusions of three-manifold opera-
tors, we have simply

̂V(0) ⊗ ̂V(0) = I3 . (7.13)

Local fusion of surface operators The local fusion rules for the surface operators are

̂S[e,m] ⊗̂S[e′,m′] = ̂S[e+e,m+m′] ⊕̂S[e+m′,m−e′] ⊕̂S[e−e′,m−m′] ⊕̂S[e−m′,m+e′] ,

(e ± e′, e ± m′,m ± e′,m ± m′ = 0)
̂S[e,m] ⊗̂S[e,m] = ̂S[2e,2m] ⊕ 2̂S[e+m,m−e] ⊕ 4̂S(0,0) ,

I2(̂V(0)) ⊗ I2(̂V(0)) = ̂S(0,0) ⊕
N−1
2
⊕

m=0

N−1
2
⊕

n=1

̂S[n,m] ,

I2(̂V(0)) ⊗̂S[e,m] = 4 I2(̂V(0)) . (7.14)

We make some remarks about these fusion rules:

1. The fusion rules amongst ̂S[e,m] follow straightforwardly from the fusion rules (6.9)
amongst S(e,m) in the ungauged theory. Note that the result depends on the value of
(e,m) and (e′,m′), and we list only two representative cases. In the first case, the
condition on (e,m) and (e′,m′) is such that none of the terms on the right-hand side
reduce to ̂S(0,0). When this condition is violated, such as in the fusion between two
̂S[e,m] of the same charge (given in the second line), onemust replacêS[0,0] by 4̂S(0,0).
Let us add a cautionary remark that the first fusion rule in (7.14) does not strictly
hold since, before gauging Z

EM
4 , the global fusion rule ˜S(e,m)(σ ) × ˜S(e′,m′)(σ ) =

˜S(e+e′,m+m′)(σ ) does not hold. One should instead include a phase factor

e
π i
N (me′−em′)P([σ ]) on the right hand side of the fusion rule, and we expect a similar

phase in the local fusion. However, if we restrict these operators to a three dimen-
sional submanifold M3, the phase factor trivializes, and (7.14) holds. For simplicity,
we will assume this throughout this section.

21 In general, a (4 + 1)d TFT can contain 0-, 1-, 2-, 3- and 4-dimensional operators forming a monoidal
4-category. The 3-category in the main text is the endo-category on the trivial 4-dimensional operator. By [73,
Theorem 4] when there is no nontrivial point operator in a (4 + 1)d TFT, all the 4-dimensional operators are
condensation operators.
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2. The fusion rule between I2(̂V(0)) and its orientation reversal follows from (6.27)
before gauging Z

EM
4 . Indeed, one can rewrite the global fusion rule (6.27) as

V(0)(M3, M4) × V (0)(M3, M4) = I3(M3)

Z
(0)
N × Z

(0)
N

, (7.15)

where the denominator on the right-hand side means gauging aZ
(0)
N ×Z

(0)
N symmetry

on M3. Gauging the zero-form symmetry amounts to inserting a mesh of algebra
objects, given by A = ⊕N−1

m,n=0
˜S(m,0) ⊗ ˜S(0,n) = ⊕N−1

m,n=0
˜S(m,n). After gauging

Z
EM
4 , we need to recast the algebra object in terms of a linear combination of ̂S(0,0)

and ̂S[e,m],

A = ̂S(0,0) ⊕
N−1
2
⊕

m=0

N−1
2
⊕

n=1

̂S[n,m] . (7.16)

We thus conclude that the local fusion rule is I2(̂V(0)) ⊗ I2(̂V(0)) = A, which is
precisely the third fusion rule in (7.14).

3. The fusion rules between I2(̂V(0)) and ̂S[e,m] follow from the fact that S(e,m) can be
absorbed by the twist defect in the ungauged theory.

4. Apart from the fusions discussed above, one can also consider the fusion of two
surfaces within the same three manifold (i.e. “composition” of surface operators).
For simplicity, we will not consider those fusion rules in this work.

Local fusion of line operators The local fusion rules between line operators are as
follows,

I
q
1(
̂V(0)) ⊗ I

q ′
1 (̂V(0)) = I

q+q ′
1 (̂S(0,0)) ⊕

N−1
2
⊕

m=0

N−1
2
⊕

n=1

I1(̂S[n,m]) ,

I
q
1(
̂S(0,0)) ⊗ I

q ′
1 (̂S(0,0)) = I

q+q ′
1 (̂S(0,0)) ,

I
q
1(
̂V(0)) ⊗ I

q ′
1 (̂S(0,0)) = I

q+q ′
1 (̂V(0)) ,

I1(̂S[e,m]) ⊗ I
q
1(
̂S(0,0)) = I1(̂S[e,m]) ,

I1(̂S[e,m]) ⊗ I
q
1(
̂V(0)) =

3
⊕

q ′=0

I
q ′
1 (̂V(0)) ,

I1(̂S[e,m]) ⊗ I1(̂S[e,m]) = I1(̂S[2e,2m]) ⊕ 2I1(̂S[e−m,e+m]) ⊕
3
⊕

q=0

I
q
1(
̂S(0,0)) ,

I1(̂S[e,m]) ⊗ I1(̂S[e′,m′]) = I1(̂S[e+e,m+m′]) ⊕ I1(̂S[e+m′,m−e′])
⊕I1(̂S[e−e′,m−m′]) ⊕ I1(̂S[e−m′,m+e′]) .

(e ± e′, e ± m′,m ± e′,m ± m′ = 0) (7.17)

The general form of these fusion rules follows from the fusion between two surfaces
given in (7.14). The only new feature for the line operators is that one is able to assign
charges q by stackingwith the quantum line Kq . To ensure that the q indices are assigned
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consistently on the two sides of the fusion rule, a useful trick is to stack a K line on both
sides and see whether it changes the fusion rule to another consistent one. For instance,

consider the fifth fusion rule I1(̂S[e,m])⊗I
q
1(
̂V(0)) =⊕3

q ′=0 I
q ′
1 (̂V(0)). Stacking a K line

does not change the left-hand side because I1(̂S[e,m]) absorbs the K line, as discussed
above. Hence for consistency, the right-hand side should also be able to absorb K .
The only way to achieve this is to sum over all q ′ = 0, 1, 2, 3. The same discussion
also applies to the fusion between I1(̂S[e,m]) and itself (see the sixth fusion rule). Note
that the outcome of the fusion I1(̂S[e,m]) ⊗ I1(̂S[e′,m′]) depends on whether any of the
following e ± e′, e ± m′,m ± e′,m ± m′ are 0 mod N . For simplicity, we only listed
two representative choices above, which are the last two fusion rules. Other cases can
be similarly worked out.

Global fusion from local fusion Given the local fusion rules, one can now construct the
global fusion rules by combining local patches together. For instance, consider the global
fusion rule between ̂V(0)(M3) and its orientation reversal on M3 = S1 × S2. Recall that
the relevant local fusion rules are

̂V(0) ⊗ ̂V(0) = I3, I2(̂V(0)) ⊗ I2(̂V(0)) = A ≡ ̂S(0,0) ⊕
N−1
2
⊕

m=0

N−1
2
⊕

n=1

̂S[n,m] ,

I
q
1(
̂V(0)) ⊗ I

q ′
1 (̂V(0)) = I

q+q ′
1 (̂S(0,0)) ⊕

N−1
2
⊕

m=0

N−1
2
⊕

n=1

I1(̂S[n,m]) , (7.18)

which implies that the global fusion between ̂V(0)(M3)× ̂V(0)(M3) is the sum of a mesh
of the algebra objectA along every two-cycle of M3. In particular, when M3 = S1 × S2,
the only nontrivial two-cycle is S2, and the only nontrivial one-cycle is S1.We can define
̂V q

(0)(S
2 × S1) to be

̂Vq
(0)(S

2 × S1) = Kq(S1) × ̂V 0
(0)(S

2 × S1) (7.19)

similar to (6.36). Then the global fusion rule is simply

̂V q
(0)(S

2 × S1) × ̂V q ′
(0)(S

2 × S1) = 1

N 2 K
q+q ′

(S1) × A(S2) , (7.20)

where the normalization 1
N is the standard normalization from gauging a zero form

symmetry (i.e. condensing a surface) on a three manifold, 1/|H0(S2 × S1, ZN )|2 =
1/N 2.

From this single example of global fusion, we already encounter the general feature
that operators of different dimensions enter the same fusion rule. In contrast, in local
fusion rules all the operators entering a given fusion rule are of the same dimension—
objects fuse with objects, 1-morphisms fuse with 1-morphisms, etc. This distinction was
not present in the (2 + 1)d case discussed in Sect. 4, since there all operators were lines.

7.1.3. Fusion rules for N even We now move on to the case of N even (in the case
of N = 2, one simply drops the fusion rules involving ̂S[e,m] and restricts q to be
Z2-valued). We will again be brief, leaving details to future work.
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Local fusion of threemanifoldsBeginningwith local fusions of three-manifold operators,
we have

̂V(0) ⊗ ̂V (0) = I3 . (7.21)

Local fusion of surface operators The local fusion rules between surface operators take
the following form,

I2(̂V(e)) ⊗ I2(̂V(e)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

̂S(0,0) ⊕̂S(N/2,N/2) ⊕⊕N/2
m=0

⊕N/2−1
n=1

m+n∈2Z
̂S[m,n] N = 2 mod 4

̂S(0,0) ⊕̂S(N/2,N/2) ⊕̂S{N/2,0} ⊕⊕N/2
m=0

⊕N/2−1
n=1

m+n∈2Z
̂S[m,n] N = 0 mod 4

I2(̂V(1)) ⊗ I2(̂V(0)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

̂S{N/2,0} ⊕⊕N/2
m=0

⊕N/2−1
n=1

m+n∈2Z+1
̂S[m,n] N = 2 mod 4

⊕N/2
m=0

⊕N/2−1
n=1

m+n∈2Z+1
̂S[m,n] N = 0 mod 4

I2(̂V(e)) ⊗̂S(N/2,N/2) = I2(̂V(e)) ,

I2(̂V(e)) ⊗̂S{N/2,0} = 2I2(̂V(e+N/2)) ,

I2(̂V(e)) ⊗̂S[e′,m′] = 4 I2(̂V(e+e′+m′)) ,

̂S(N/2,N/2) ⊗̂S(N/2,N/2) = ̂S(0,0) ,

̂S(N/2,N/2) ⊗̂S{N/2,0} = ̂S{N/2,0} ,

̂S{N/2,0} ⊗̂S{N/2,0} = 2̂S(0,0) ⊕ 2̂S(N/2,N/2) ,

̂S(N/2,N/2) ⊗̂S[e,m] = ̂S[e+N/2,m+N/2] ,

̂S{N/2,0} ⊗̂S[e,m] = ̂S[e+N/2,m] ⊕̂S[e,m+N/2] ,

̂S[e,m] ⊗̂S[e′,m′] = ̂S[e+e′,m+m′] ⊕̂S[e+m′,m−e′] ⊕̂S[e−e′,m−m′] ⊕̂S[e−m′,m+e′] .

(e ± e′, e ± m′,m ± e′,m ± m′ = 0, N/2) (7.22)

The derivation of these fusion rules is mostly the same as for the odd N case. Let us
comment only on some of the new features,

1. There are two non-genuine surface operators coming from the twist defects, I2(̂V(0))

and I2(̂V(1)). Before gauging Z
EM
4 , we know from (6.51) that the global fusion rule

between V(0) and its orientation reversal is

V(0)(M3, M4) × V (0)(M3, M4) = I3(M3)

(Z
(0)
N × Z

(0)
N )/Z

(0)
2

. (7.23)

This implies that the right-hand side is a condensation of the algebra object of (Z(0)
N ×

Z
(0)
N )/Z

(0)
2 , which is given by the surface

A =
N−1
⊕

m,n=0
(m,n)�(m+ N

2 ,n+ N
2 )

˜S(m+n,n−m) =
N−1
⊕

m,n=0
m+n∈2Z

˜S(m,n) . (7.24)

After gauging, one should express the right-hand side of the above in terms of the
operators invariant under Z

EM
4 . It turns out that the result depends on whether N/2

is even or odd, and yields the expression in the first fusion rule of (7.22). For the
second fusion rule, the algebra object before gauging Z

EM
4 should instead be A′ =
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⊕N−1
m,n=0

m+n∈2Z+1
˜S(m,n). Rewriting in terms of Z

EM
4 invariant surfaces, one finds the right-

hand side of the second fusion rule of (7.22), which again depends on the parity of
N/2.

2. For even N , there are additional genuine surface operators S(N/2,N/2) and S{N/2,0}.
When fusing S{N/2,0} with I2(̂V(e)) one gets two copies of I2(̂V(e)) for even N/2,
and two copies of I2(̂V(e+1)) for odd N/2. This follows from the definition of V(1)
before gauging.

Local fusion of line operators The local fusion rules between lines are as follows,

I
q
1 (
̂V(e)) ⊗ I

q ′
1 (̂V(e)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

I
q+q ′
1 (̂S(0,0)) ⊕ I

q+q ′+2e
1 (̂S(N/2,N/2)) ⊕⊕N/2

m=0
⊕N/2−1

n=1
m+n∈2Z I1(̂S[m,n]) N = 2 mod 4

I
q+q ′
1 (̂S(0,0)) ⊕ I

q+q ′+2e
1 (̂S(N/2,N/2)) ⊕ I

[q+q ′ ]2
1 (̂S{N/2,0}) ⊕⊕N/2

m=0
⊕N/2−1

n=1
m+n∈2Z I1(̂S[m,n]) N = 0 mod 4

I
q
1 (
̂V(1)) ⊗ I

q ′
1 (̂V(0)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

I
[q+q ′ ]2
1 (̂S{N/2,0}) ⊕⊕N/2

m=0
⊕N/2−1

n=1
m+n∈2Z+1 I1(̂S[m,n]) N = 2 mod 4

⊕N/2
m=0

⊕N/2−1
n=1

m+n∈2Z+1 I1(̂S[m,n]) N = 0 mod 4

I
q
1 (
̂V(e)) ⊗ I

q ′
1 (̂S(0,0)) = I

q+q ′
1 (̂V(e)) ,

I
q
1 (
̂V(e)) ⊗ I

q ′
1 (̂S(N/2,N/2)) = I

q+q ′+2e
1 (̂V(e)) ,

I
q
1 (
̂V(e)) ⊗ I

[q ′ ]2
1 (̂S{N/2,0}) = I

q+q ′
1 (̂V(e+N/2)) ⊕ I

q+q ′+2
1 (̂V(e+N/2)) ,

I
q
1 (
̂V(e)) ⊗ I1(̂S[e′,m′ ]) =

3
⊕

q ′=0

I
q ′
1 (̂Ve+e′+m′ ) , ,

I
q
1 (
̂S(0,0)) ⊗ I

q ′
1 (̂S(0,0)) = I

q+q ′
1 (̂S(0,0)) ,

I
q
1 (
̂S(N/2,N/2)) ⊗ I

q ′
1 (̂S(N/2,N/2)) = I

q+q ′
1 (̂S(0,0)) ,

I
q
1 (
̂S(0,0)) ⊗ I

q ′
1 (̂S(N/2,N/2)) = I

q+q ′
1 (̂S(N/2,N/2)) ,

I
q
1 (
̂S(N/2,N/2)) ⊗ I

[q ′ ]2
1 (̂S{N/2,0}) = I

[q+q ′ ]2
1 (̂S{N/2,0}) ,

I
[q]2
1 (̂S{N/2,0}) ⊗ I

[q ′ ]2
1 (̂S{N/2,0}) = 2Iq+q ′

1 (̂S(0,0)) + 2Iq+q ′+2
1 (̂S(0,0)) ,

I
[q]2
1 (̂S{N/2,0}) ⊗ I

q ′
1 (̂S(0,0)) = I

[q+q ′ ]2
1 (̂S{N/2,0}) ,

I
q
1 (
̂S(0,0)) ⊗ I1(̂S[e,m]) = I1(̂S[e,m]) ,

I
q
1 (
̂S(N/2,N/2)) ⊗ I1(̂S[e,m]) = I1(̂S[e+N/2,m+N/2] ,

I
[q]2
1 (̂S{N/2,0}) ⊗ I1(̂S[e,m]) = I1(̂S[e+N/2,m]) ⊕ I1(̂S[e,m+N/2]) ,

I1(̂S[e,m]) ⊗ I1(̂S[e,m]) = I1(̂S[2e,2m]) ⊕ 2I1(̂S[e−m,e+m]) ⊕
3
⊕

q=0

I
q
1 (
̂S(0,0)),

(2e, 2m, e ± m = 0, N/2) (7.25)

Many of these fusion rules, including the first two, follow from those for surfaces in
(7.22). Let us make some remarks about the features that were not present in the cases
already discussed:

1. Note that the non-genuine line I1(̂S{N/2,0}) can be assigned a Z2 charge [q]2. Here,
we take q ∈ Z4, and denote its mod 2 reduction as [q]2, i.e. [q]2 = q mod 2. This
is described in Appendix F.
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2. It is useful to check that both sides of the fusion rule Iq1(̂V(e)) ⊗ I
[q ′]2
1 (̂S{N/2,0}) =

I
q+q ′
1 (̂V(e+N/2)) ⊕ I

q+q ′+2
1 (̂V(e+N/2)) depend on q ′ only via its mod 2 reduction. In

other words, one can check that the result does not change under shifting q ′ → q ′+2.
3. We should make a cautionary remark that the +2e shift of the q charge assignment

on the right-hand side of the fusion rule Iq1(̂V(e)) ⊗ I
q ′
1 (̂S(N/2,N/2)) = I

q+q ′+2e
1 (̂V(e))

is at present conjectural, and is motivated by the lower-dimensional calculation in
Sect. 4.1. To actually prove the presence of this shift, one must measure the charge
of the junction between the three lines by wrapping a 4d condensation defect around
it. This is analogous to the computation performed in Appendix B for (2 + 1)d. We
will leave this calculation to future work.

7.2. Twisted cocycle description. We close our analysis of the (4 + 1)d SymTFT by
presenting an explicit twisted cocycle description of the theory. As in (2 + 1)d, our
starting point is the BF theory (6.1). We will find it more useful to write this in K-matrix
form,

S = 2π

2N

∫

bT ∪ K δb (7.26)

where b = (b,̂b) is a two component cochain valued in Z and K = iσ y .22 Note that K
is no longer symmetric as it was in (2 + 1)d, due to the anticommutativity properties of
form fields in (4 + 1)d.

As before, our goal is to gauge Z
EM
4 (or Z

EM
2 for N = 2). We begin by coupling to

a background gauge field C , which as in (2 + 1)d amounts to promoting b to a twisted
cocycle. This modifies the gauge transformation of b to

bi jk → bi jk + KCi jh jk − hik + hi j . (7.27)

The action then becomes

S[C] = 2π

2N

∫

bT ∪C K δCb , (7.28)

where the integrand in components reads
(

bT ∪C K δCb
)

i jklpq
= bTi jk K

Cik+1
(

KCklblpq − bkpq + bklq − bklp
)

. (7.29)

The action is invariant under the dynamical gauge transformation (7.27) as well as the
background gauge transformations

Ci j → Ci j + γ j − γi , bi jk → K−γibi jk , hi j → K−γihi j .

(7.30)

Gauging the Z
EM
4 symmetry amounts to promoting C to a dynamical field c, giving

SSymTFT = 2π

N

∫

bT ∪c K δcb +
π

2

∫

xδc , (7.31)

22 Once again, we hope that the reader will not confuse the K matrix here with the generator K of the
quantum symmetry.
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where x is a Z4-valued 3-cochain. See Appendix B of [76] for more details on twisted
cocycles.

As in (2 + 1)d, the complicated dependence on c in the kinetic term means that c
is now flat only on-shell, and hence the action is no longer invariant under the gauge
transformations in (7.27). Instead, we must restrict to gauge transformations satisfying
the analog of (4.31), namely

(K δci jk − 1)hk� = 0 . (7.32)

This constraint will allow surfaces to end on sources of flux for c, which will give rise
to junctions. Note however that unlike in the case of (2 + 1)d for which the constraint
on g in the presence of non-trivial c flux was (1,−1)g = 0, the above constraint on h
instead requires h = (0, 0)T for N odd, and h = (0, 0)T or (N/2, N/2)T for N even.
This will give rise to more potential junctions than in lower dimensions.

7.2.1. Operators in symmetry TFT We now give a description of the gauge-invariant
operators of the theory, beginning with surface operators. The full gauge transformations
for the theory are

bi jk → K−γi
(

bi jk + (δch)i jk
)

, ci j → ci j + (δγ )i j ,

x (3)
i jk� → x (3)

i jk� + (δη(2))i jk� , (7.33)

with h constrained to satisfy (7.32).

Surface operators We may first consider the invertible surface operators, given by

˜Sn(σ ) = ei
2π
N

∮

σ nT b , n ∈ ZN × ZN . (7.34)

This operator is identical to the one defined in (7.2). We recall that, due to the non-
commutativity of b and ̂b, the surface ˜Sn differs from the surface Sn defined in (6.7)

by a phase, i.e. ˜Sn(σ ) = Sn(σ )e
π i
N n1n2P([σ ]), where P([σ ]) is the Pontryagin square of

the Poincaré dual of σ and n1,2 are the two components of n. We prefer to use ˜Sn(σ )

because it transforms simply as ˜Sn → ˜SKn under Z
EM
4 , and hence it is Z

EM
4 invariant

if and only if nT K = nT . A straightforward analysis paralleling that in Sect. 7.1.1 then
reproduces the spectrum of gauge-invariant surfaces ̂S[e,m].

Line and 3-manifold operators In addition to the surface operators studied above, there
is also a topological line operator

K (γ ) := e
π i
2

∮

γ c (7.35)

generating thêZ4 symmetry quantum dual to Z
EM
4 . There is also a three-manifold oper-

ator

χ(M3) := e
π i
2

∮

M3
x

, (7.36)

but as in (2 + 1)d this is generically non-topological since x is not closed in general.
However, with appropriate restrictions on b and ̂b the field x can become closed. For
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odd N , we require b =̂b = 0 at the locus M3.23 We may then construct three-manifold
operators ̂V(0)(M3) via

̂V(0)(M3) := |H1(M3, ZN )|
|H0(M3, ZN )|χ(M3) δZN ( b )

∣

∣

M3
δZN (̂b )

∣

∣

M3
, (7.37)

which are the images of the twist defects upon gaugingZ
EM
4 . The normalization is chosen

to match the fusion rules derived in Sect. 7.1. The delta functions may alternatively be
rewritten as

δZN ( b )
∣

∣

M3
δZN (̂b )

∣

∣

M3
= 1

|H1(M3, ZN )|2
∑

[σ ]∈H1(M3,ZN )

e
2π i
N

∫ [σ ] ∪ b

×
∑

[σ ′]∈H1(M3,ZN )

e
2π i
N

∫ [σ ′] ∪̂b

= 1

|H1(M3, ZN )|2
∑

σ,σ ′∈H2(M3,ZN )

S(1,0)(σ )S(0,1)(σ
′) .

(7.38)

For even N , we instead require that (b,̂b) be trivial as an element in H2(M3, (ZN ×
ZN )/Z2)on thedefect locus.Wemay then construct the three-manifold operator ̂V(0)(M3)

via

̂V(0)(M3) := |H1(M3, (ZN × ZN )/Z2)| 12
|H0(M3, (ZN × ZN )/Z2)| 12

χ(M3) δ(ZN×ZN )/Z2( (b,̂b) )
∣

∣

M3
, (7.39)

where the delta function can be rewritten as

δ(ZN×ZN )/Z2( (b,̂b) )
∣

∣

M3
= 1

|H1(M3, (ZN × ZN )/Z2)|
∑

(σ,σ ′)∈H2(M3,(ZN×ZN )/Z2)

S(1,0)(σ + σ ′)S(0,1)(σ
′ − σ) . (7.40)

The remaining twist defects ̂V(1)(σ, M3) can then be obtained by stacking with S(1,0)
as before. We can also consider the 1-endomorphisms and 2-endomorphisms on the
three manifolds and surfaces, which give rise to non-genuine surfaces and lines. The
discussion is similar to that in Sect. 7.1.1, and hence we will not repeat it here.

7.2.2. Junctions and local fusion rules We now ask about gauge-invariant junctions
between the operators above. The analysis here is done following that in Sect. 4.2.3. We
begin by considering ˜S(e,m) on a 2-chain σ with boundary. Such a configuration is not
gauge-invariant, but instead transforms as

˜S(e,m)(σ ) → ˜S(e,m)(σ )e
2π i
N (e,m)h|∂σ . (7.41)

Since the gauge-invariant operators ̂S[e,m] are built out of these surfaces, in order for
them to be well-defined in the presence of a boundary, one of the following must be
satisfied:
23 This is chosen such that K acts as the identity on b = (b,̂b), and hence such that c drops out of the kinetic

term of (7.31) and can act as a proper Lagrange multiplier field for x .
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• The surface ends on a line together with other surfaces ̂S[e,m] such that the total
charge cancels.

• The surface ends on a locus with non-zero c flux.

The first of these allows for gauge-invariant junctions between three surface defects,

˜S(e+e′,m+m′) ⊂ ˜S(e,m) ⊗˜S(e′,m′) . (7.42)

This then gives rise to a number of junctions between gauge-invariant surface operators.
When all are accounted for, we obtain precisely the same fusion rules as in (7.14) and
(7.22).

On the other hand, we may also consider the surfaces ending on a locus with non-
zero c flux. In this case Eq. (7.32) enforces h = (0, 0)T or (N/2, N/2)T , with the latter
only possible when N is even. Assuming first that N is odd, we have h = (0, 0)T and
hence any surface is allowed to end on ̂V(0). However, we cannot really discuss trivalent
junctions of̂S[e,m] and ̂V(0) directly, since the former is supported on a surface while the
latter is supported on a three-manifold. Instead, we can summarize the above observation
by saying that the identity surface in ̂V(0), which we previously denoted by I2(̂V(0)),
admits a trivalent junction with ̂S[e,m] of the form

I2(̂V(0)) ⊂ ̂S[e,m] ⊗ I2(̂V(0)) , N ∈ 2Z + 1 . (7.43)

This is consistent with the last local fusion rule in (7.14).
For N even, we instead allow both h = (0, 0)T and (N/2, N/2)T at loci of non-zero

c flux. Under the latter, we have from (7.41) that ˜S(e,m)(σ ) transforms as

˜S(e,m)(σ ) → ˜S(e,m)(σ )eπ i(e+m) , (7.44)

which means that only operatorŝS(e,m) with e +m even can end on ̂V(0), giving trivalent
junctions of the form I2(̂V(0)) ⊂ ̂S[e,m] ⊗ I2(̂V(0)). Contrarily, when e +m is odd̂S[e,m]
cannot end alone, but can form a trivalent junction

I2(̂V(1)) ⊂ ̂S[e,m] ⊗ I2(̂V(0)) , N ∈ 2Z , e + m ∈ 2Z + 1 (7.45)

since the gauge non-invariance of I2(̂V(1)) at the boundary (coming from the gauge non-
invariance of S(1,0)) precisely cancels that in (7.44). These reproduce the local fusion
rule of the surfaces in (7.22), and we see that a trivalent junction is allowed (by gauge
invariance) whenever the three surface operators appear in the same fusion rule in (7.14)
and (7.22). Similar techniques could be used to study trivalent junctions between lines,
but we leave this to future work.

Let us close bymentioning that onemight aim to use the Hopf linking of the operators
above, which are readily computed, to define some higher analog of the S-matrix, along
the lines of [77,78]. We do not comment on this further here.

8. Application: Intrinsic Versus Non-intrinsic Non-invertible Duality Defects

In this final section we briefly discuss one application of SymTFTs, namely to the
determination of whether a given duality defect is intrinsically non-invertible or not. We
will only discuss the case of (1 + 1)d bosonic theories, with the results for spin theories
or theories in (3 + 1)d left for future work.
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8.1. Topological manipulations. Given any (1+1)d QFTX with a non-anomalous Z
(0)
N

zero-form symmetry, one can define a non-trivial topological manipulation σr for any
r dividing N , defined by gauging the Zr normal subgroup of ZN . In terms of partition
functions, we have

ZσrX [X2, (A, A′)] = 1

|H0(X2, Zr )|
∑

a∈H1(X2,Zr )

ZX
[

X2,
N

r
a + Ã′

]

e
2π i
r

∫

X2
aA

(8.1)

where A is a Zr background field, A′ is a ZN/r background field, and Ã′ is its ZN lift.
The combination N

r a + Ã′ is a ZN gauge field. After gauging Zr , the non-anomalous ZN
symmetry becomes a product symmetry Zr × ZN/r with a nontrivial mixed anomaly

between them [9]. The anomaly is given by e
2π i
r

∫

X3
Aβ(A′) where β(A′) is defined by the

symmetry extension 1 → Zr → ZN → ZN/r → 1 specified by δa = β(A).
Starting from σrX , there are two topological manipulations that one can perform.

The first, which we denote by τ is stacking with a Zr × ZN/r SPT,

ZτσrX [X2, (A, A′)] = ZσrX [X2, (A, A′)]e 2π i
gcd(r,N/r)

∫

X2
AA′

. (8.2)

The second is gauging of a Zr ′ subgroup of Zr × ZN/r . The resulting theory has the

global symmetry Zr ′ × Zr×ZN/r
Z′
r

with an appropriate mixed anomaly. One can then
perform suitable σ or τ transformations on the resulting theory.

Suppose that the theoryX is invariant under gaugingZN (up to anEuler counterterm),
i.e.

X = X /ZN ≡ σNX . (8.3)

If this is the case, then as we have seen aboveX admits a Tambara-Yamagami extension
of its ZN symmetry. We now ask if, starting from X , we can perform a sequence of
topological manipulations φ such that the TY (ZN ) category ofX is replaced by a group-
like category φ(TY (ZN )) in a theory φ(X ). The non-invertible symmetry is referred to
as non-intrinsic or intrinsic depending on if such a φ exists or does not exist,

φ exists : TY (ZN ) is non-intrinsically non-invertible ,

φ doesn’t exist : TY (ZN ) is intrinsically non-invertible .
(8.4)

Because the possible set of topological manipulations is complicated when N is large,
it is difficult to enumerate all possible chains of σr and τ operations and demonstrate
that such a topological manipulation φ does or does not exist.

On the other hand, the SymTFT allows us to answer this question rather straightfor-
wardly. This is due to two basic facts, both of which have been used throughout this
paper:

1. The SymTFT is an invariant under topological manipulations,
2. The SymTFT for group-like symmetries is a Dijkgraaf-Witten theory.

What this means is that the duality defect in TY (G) is non-intrinsically non-invertible
if and only if the SymTFT is a bosonic Dijkgraaf-Witten theory. Using the explicit form
of the SymTFT obtained in Sect. 4, we may now propose a sufficient criteria for when
the duality defect of TY (ZN ) is non-intrinsically non-invertible.



Symmetry TFTs for Non-invertible Defects 1097

8.2. A sufficient condition for non-intrinsically non-invertible symmetry. Our goal is to
see whether the SymTFT of TY (ZN ) obtained in Sect. 4 is a DW theory. Recall that a
(2+1)dDW theory is a finite group gauge theory with gauge groupG (which can be non-
abelian), and which is specified by an element in the group cohomology H3(BG,U (1)).
A line in a DW theory is specified by the data [80–82]

([g], ρ[g]) , (8.5)

where [g] is an element of a conjugacy class of G, and ρg is an irreducible projective
representation of G satisfying

ρ(h)ρ(k) = βg(h, k)ρ(hk) , βg(h, k) = ω3(g, h, k)ω3(h, k, k−1h−1ghk)

ω3(h, h−1gh, k)
, (8.6)

with ω3(g, h, k) ∈ H3(BG,U (1)). The irreducible projective representation depends
only on the conjugacy class [g], and not on the choice of specific element g inside a
given conjugacy class. The quantum dimension of the line is given by the dimension of
the irreducible projective representation,

d([g],ρ[g]) = dim(ρ[g]) . (8.7)

As a consequence, the quantum dimension of any line in a DW theory is an integer. For
example, the DW theory with gauge group Z2 × Z2 × Z2 and group cohomology class
ω3(g, h, k) = eiπg1h2k3 has 8 lines of quantum dimension 1 and 7 lines of quantum
dimension 2 [82]. The field theory and its line operators are discussed in [83].

In contrast, the SymTFT for TY (ZN ) contains non-invertible lines with quantum
dimension

√
N , which is not an integer unless N = n2 is a perfect square. We therefore

conclude that when N is not a perfect square, a QFT with TY (ZN ) symmetry category
cannot be mapped to another QFT with only invertible symmetry via topological ma-
nipulations, which is consistent with the result in [65]. In other words, the duality defect
for TY (ZN ) with N not a perfect square is always intrinsically non-invertible.
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A. Correlation Functions of k-dimensional Operators in (2k + 1)d

In this appendix, we provide derivations for Eqs. (3.9), (3.10), and (6.8); namely we
derive the linking of k-dimensional operators in (2k + 1)-dimensional ZN gauge theory,
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as well as their commutation relations in 2k-dimensions. We begin with the action for
ZN gauge theory in (2k + 1) dimensions,

S = 2π

N

∫

X2k+1

b(k) ∪ δa(k) . (A.1)

This theory has N 2 k-dimensional operators given by

L(e,m)(Mk) = exp

(

2π i

N

∮

Mk

ea(k)
)

exp

(

2π i

N

∮

Mk

mb(k)
)

, (e,m) ∈ ZN × ZN (A.2)

with L(1,0) and L(0,1) together generating a Z
(k)
N × Z

(k)
N k-form symmetry. When k = 1,

we obtain a standard ZN gauge theory in (2 + 1)d, as discussed in Sect. 3. When k = 2,
we obtain a Z

(1)
N gauge theory in (4 + 1)d, as discussed in Sect. 6.24

We consider the mutual braiding between two operators labeled by (e,m) and (e′,m′).
To do so, we evaluate the correlation functions of these two operators on manifolds Mk
and M ′

k which form a Hopf link. In practice, this means that we have insertions in the
action of the form

S = 2π

N

∫

X2k+1

b(k)δa(k) +
2π

N

∫

Mk

(ea(k) + mb(k)) +
2π

N

∫

M ′
k

(e′a(k) + m′b(k))

= 2π

N

∫

X2k+1

b(k)δa(k) +
2π

N

∫

X2k+1

(eωMk + e′ωM ′
k
)a(k) +

2π

N

∫

X2k+1

(mωMk + m′ωM ′
k
)b(k),

(A.3)

where ωMk is the Poincaré dual of the k-cycle Mk with respect to X2k+1, and hence is a
cocycle of degree k + 1. Integrating out the field b(k) enforces

δa(k) = −(mωMk + m′ωM ′
k
) . (A.4)

Defining Vk+1 such that ∂Vk+1 = mMk + m′M ′
k , we have a

(k) = −PD(Vk+1). Plugging
this back into the action then gives contribution

− 2π

N

∫

X2k+1

(eωMk + e′ωM ′
k
) ∪ PD(Vk+1) = −2π

N

∫

X2k+1

PD((eMk + e′M ′
k) ∩ Vk+1) .

(A.5)

In general, the intersection pairing Mk ∩ Vd−k between Mk ∈ Hk(Xd , Z) and Vd−k ∈
Hd−k(Xd , Z) satisfies

Mk ∩ Vd−k = (−1)k(d−k)Vd−k ∩ Mk , (A.6)

and thus in the current case we may write

− 2π

N

∫

X2k+1

[

e PD(Mk ∩ Vk+1) + e′ PD(Vk+1 ∩ M ′
k)
]

. (A.7)

It is convenient to formally rewrite Vk+1 = m∂−1Mk+m′∂−1M ′
k bymoving the boundary

operator ∂ to the right hand side in the definition below (A.4). Then PD(Mk ∩ Vk+1) =
24 In Sect. 6, since the operators are surfaces, we use the notation S(e,m) instead of L(e,m).
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PD(Mk ∩ ∂−1M ′
k) ≡ link(Mk, M ′

k). Moreover, by using integration by parts, we have
PD(Vk+1 ∩M ′

k) = PD(∂−1Mk ∩M ′
k) = (−1)k+1PD(Mk ∩∂−1M ′

k) ≡ (−1)k+1link(Mk,

M ′
k). Substituting these into (A.7) gives

− 2π

N
(em′ + (−1)k+1me′) link(Mk, M

′
k) . (A.8)

We thus conclude that the braiding between two k-dimensional operators is

〈L(e,m)(Mk)L(e′,m′)(M
′
k)...〉 = exp

(

−2π i

N
(em′ + (−1)k+1me′)link(Mk, M

′
k)

)

〈...〉
(A.9)

We next derive the equal time correlation function between generic dyonic lines (e,m)

and (e′,m′), given for k = 1 and k = 2 in (3.10) and (6.10). We start with the commu-
tation relation

L(1,0)(Mk)L(0,1)(M
′
k) = exp

(

−2π i

N
〈Mk, M

′
k〉
)

L(0,1)(M
′
k)L(1,0)(Mk) (A.10)

which can be obtained, for example, by canonical quantization.25 The pairing 〈Mk, M ′
k〉

is the intersection pairing between two k-manifolds in 2k-dimensions. Moving the phase
to the left side and relabeling Mk ↔ M ′

k , we have

L(0,1)(Mk)L(1,0)(M
′
k) = exp

(

2π i

N
〈M ′

k, Mk〉
)

L(1,0)(M
′
k)L(0,1)(Mk)

= exp

(

2π i

N
(−1)k〈Mk, M

′
k〉
)

L(1,0)(M
′
k)L(0,1)(Mk)

(A.11)

where in the second line we used 〈Mk, M ′
k〉 = (−1)k〈M ′

k, Mk〉.26 Using (A.10) and
(A.11) and the definition of the dyonic line (3.7), we may then determine the equal time
commutation relation between dyonic lines,

L(e,m)(Mk)L(e′,m′)(M
′
k) = (L(1,0)(Mk)

)⊗e (
L(0,1)(Mk)

)⊗m

(

L(1,0)(M
′
k)
)⊗e′ (

L(0,1)(M
′
k)
)⊗m′

= e− 2π i
N (em′+(−1)k+1me′)〈Mk ,M ′

k 〉 (L(1,0)(M
′
k)
)⊗e′ (

L(0,1)(M
′
k)
)⊗m′

(

L(1,0)(Mk)
)⊗e (

L(0,1)(Mk)
)⊗m

= e− 2π i
N (em′+(−1)k+1me′)〈Mk ,M ′

k 〉L(e′,m′)(M
′
k)L(e,m)(Mk) (A.12)

which reproduces (3.10) and (6.10).Note that the phase from the equal time commutation
relation in (A.12) coincideswith the phase from the linking in (A.9), with the intersection
pairing number being replaced by the linking number.

25 To carry out the canonical quantization, we switch back to differential form notation. Let us assume
k = 1 for simplicity; higher k can be similarly derived, but with more indices. Canonical quantiza-
tion in the usual way yields [bx (p), ay(p′)] = i N/2πδ(p − p′), and then using the Baker-Campbell-

Hausdorff formula, we obtain e2π i/N
∮

x ax e
2π i/N

∮

y by = e(2π i/N )2i(N/2π)e2π i/N
∮

x by e2π i/N
∮

x ax =
e−2π i/N e

2π i/N
∮

y by e2π i/N
∮

x ax .
26 Note that the symmetry properties of the linking number and the intersection pairing are opposite. We

have 〈Mk , M
′
k 〉 = (−1)k 〈M ′

k , Mk 〉, but link(Mk , M
′
k ) = (−1)k+1link(M ′

k , Mk ). Hence when the intersection
pairing is even (odd), the linking number is odd (even).
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L(N/2,N/2)

Σ(e)

DEM

=
L(N/2,N/2)

Σ(e)

A =
L(N/2,N/2)

Σ(e)

A

Fig. 33. The Z
EM
2 charge of the trivalent junction denoted by a triangle can be measured by enclosing the

junction with the surface DEM. This surface is a condensate of the algebra anyonA, and may be decomposed
as in the middle image. The remaining discs of DEM can be shrunk to give orange and purple junctions, which
will be studied in the text

L(e,m) L(m,e)

DEM

= L(e,m) L(m,e)

DEM

Fig. 34. The intersection of L(m,e) and DEM, with the latter resolved into a mesh of A

B. Measuring EM Charges of Defect Junctions

The goal of this appendix is to compute the Z
EM
2 charge of the junctions involving

L(N/2,N/2) and �(e). Recall that there are various such junctions depending on the angle
between the line and the surface anchored on�(e), c.f. Fig. 15, and we will focus here on
the charge of the triangle junction. The Z

EM
2 charge of this junction can be measured by

enclosing the junction with the surface DEM, as shown in the left of Fig. 33. This surface
is a condensate of the algebra anyon A, and we may simplify the configuration to the
one in the middle of Fig. 33. This leaves us with discs of DEM surrounding each of the
outgoing lines, which may in general involve complicated intersections of A with the
external lines. Instead of studying the details of these discs, we may instead shrink them
to point-like junctions as shown in the right of Fig. 33. Our goal will now be to understand
the junctions appearing here, whichwill allow us to evaluate the configuration and obtain
the charge. Throughout we will neglect real number normalization factors, since these
will in any case cancel out to give the final Z2-valued charge.
To begin, we consider the 4-valent junction between L(e,m) and the algebra objectA. In
this appendix, we will always draw invertible L(e,m) lines in blue, A lines in red, and
the junction between the two as a purple dot. The junction between L(e,m) and A is the
one encountered when e.g. L(e,m) pierces the Z

EM
2 surface as in Fig. 34. We note that,

in Fig. 34, the configuration should not depend on precisely where along the surface
L(e,m) intersects. As such, we obtain the consistency condition on the junction shown
in Fig. 35. Note that we have introduced an associative (co)multiplication junction μ,
defined in Fig. 36, which every algebra object A is automatically equipped with.
On general grounds, the junction between L(e,m) and A must be of the form shown
in Fig. 37, with αe,m(p) a series of undetermined constants. In fact, imposing the con-
sistency condition in Fig. 35 is sufficient to fix these constants. This may be shown by
expanding both sides of Fig. 35 and making use of Figs. 36 and 37. Once expanded, the
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μ

L(e,m) A

A

A

L(m,e) = μL(e,m)

L(m,e)

A

A

A

Fig. 35. Consistency condition involving the purple junction between L(e,m) andA, and the trivalent junction
μ between three A lines

μ

A

A

A

= N−1
p,q=0

L(p,−p)

L(p+q,−p−q)

L(q,−q)

Fig. 36. Definition of the trivalent junction μ between three A lines

A

A

L(e,m)

L(m,e)

= N−1
p=0 αe,m(p)

L(e,m)
L(p,−p)

L(m,e)
L(p+e−m,−p−e+m)

L(e+p,m−p)

Fig. 37. The general form of the junction between L(e,m) and A, with αe,m (p) a series of to-be-determined
constants

right-hand side is given as in Fig. 38, whereas the left-hand side is given in the first line
of Fig. 39. One may rearrange the configuration in Fig. 39 via a series of F-moves to get
the second line in Fig. 39, and upon using the half-braid and more F-moves one may put
it in the form shown in the last line of Fig. 39. This configuration may now be compared
to the one in Fig. 38. Equating the two gives

αe,m(p + q) = e
2π i
N mqαe,m(p) , (B.1)

and choosing αe,m(0) = 1 (which is simply a choice of convention) we derive that

αe,m(p) = e
2π i
N mp . (B.2)

This completely specifies the junction in Fig. 34.
Having understood the junction between L(e,m) and A, we next study the junctions
between L(e,m) and �(e′). As mentioned in the main text, this junction depends on the
angle between L(e,m) and the EM duality defect DEM which is anchored on �(e′). This
is illustrated in Fig. 15. There we have highlighted two particular cases: first, the case
in which θ = 0+, which we denote by a square; and second, the case in which θ = π ,
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μL(e,m)

L(m,e)

A

A

A

= N−1
p,q=0 αe,m(p + q) L(e,m)

L(m,e)

L(p,−p)

L(p+q+e−m,m−e−p−q)

L(q,−q)

Fig. 38. The right-hand side of Fig. 35, expanded out using Fig. 37

μ

L(e,m) A

A

A

L(m,e) = N−1
p,q=0 αe,m(p)

L(e,m)
L(p,−p)

L(p+q+e−m,m−e−p−q)

L(q,−q)

L(m,e)

= N−1
p,q=0 αe,m(p) L(e,m)

L(p,−p)

L(p+q+e−m,m−e−p−q)

L(q,−q)

L(m,e)

= N−1
p,q=0 αe,m(p) e

2πi
N

mq
L(e,m)

L(m,e)

L(p,−p)

L(p+q+e−m,m−e−p−q)

L(q,−q)

Fig. 39. The left-hand side of Fig. 35, expanded out using Fig. 37. A series of F-moves and a half-braid give
the configuration in the last line. Equating this with Fig. 39 fixes the constants αe,m (p)

which we denote by a triangle. These junctions are subject to consistency conditions
illustrated in Fig. 16, which physically correspond to the statement that the junction
should not depend on where along �(e′) the line L(e,m) is anchored. We will now solve
these consistency conditions, beginning with the triangle junction.
The general form of the triangle junction is given in Fig. 40, which depends on a series of
undetermined coefficients βe,m,e′(p). We may solve for these coefficients by imposing
the constraint in Fig. 16. The right-hand side of the equation for the triangle junction is
precisely the configuration in Fig. 40, whereas the left-hand side is as shown in the first
line of Fig. 41 (we use the fact that the junctions μL and μ∨

L do not involve any phases
in their expansions). A series of F-moves and shrinking of a loop gives the second line
in Fig. 41. From this we obtain the constraint

βe,m,e′(p + q) = βe,m,e′(p) , (B.3)
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Σ(e )

Σ(e +e+m)

L(e,m)

= N−1
p=0 βe,m,e (p)

L(e +p,−p)

L(e+e +p,m−p)

L(e,m)

Fig. 40. The definition of the triangle junction, given in terms of a series of undetermined coefficients
βe,m,e′ (p). These coefficients may be fixed by imposing the consistency condition in Fig. 16

A

Σ(e ) L(e,m)

μL

μ∨
L

= N−1
p,q=0 βe,m,e (p + q)

L(e +p,−p)

L(e+e +p,m−p)

L(e,m)

L(q.−q)

= N−1
p=0 βe,m,e (p + q)

L(e +p,−p)

L(e+e +p,m−p)

L(e,m)

Fig. 41. The left-hand side of the consistency condition in Fig. 16. Comparing this to Fig. 40 fixes the unde-
termined coefficients βe,m,e′ (p)

Σ(e )L(e,m)

= N−1
p=0 γe,m,e (p)

L(e +p,−p)

L(e+e +p,m−p)

L(e,m)

Fig. 42. The definition of the square junction, given in terms of a series of undetermined coefficients γe,m,e′ (p)

and choosing the convention βe,m,e′(0) = 1, we see that all phases can be taken to be
trivial,

βe,m,e′(p) = 1 . (B.4)

This completely fixes the triangle junction.
Having fixed the triangle junction, we may now fix the square junction in an analogous
way.Themost general formof the expansion is given inFig. 42,with the factorsγe,m,e′ (p)
to be determined. On the other hand, the left-hand side of the consistency condition in
Fig. 16 is as shown in Fig. 43. A series of F-moves and braids gives the final line of
Fig. 43, from which we read off a constraint on γe,m,e′(p). Choosing conventions such
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A

Σ(e )L(e,m)

μL

μ∨
L

= N−1
p,q=0 γe,m,e (p + q)

L(e +p,−p)

L(e+e +p,m−p)

L(e,m)

L(q,−q)

= N−1
p,q=0 γe,m,e (p + q)

L(e +p,−p)

L(e+e +p,m−p)

L(e,m)

L(q,−q)
= N−1

p,q=0 γe,m,e (p + q) e− 2πi
N

eq

L(e +p,−p)

L(e+e +p,m−p)

L(e,m)

Fig. 43. The left-hand side of the consistency condition in Fig. 16. Comparing this to Fig. 40 fixes the unde-
termined coefficients βe,m,e′ (p)

Σ(e)

A
= N−1

p,q=0 Ge(p, q)

Σ(e)

L(p,−p)

L(q,−q)

Fig. 44. Definition of the orange junctions betweenA and �(e) in terms of the square and triangle junctions.
For simplicity we only define the orange junctions in pairs, as shown. The coefficients Ge(p, q) may be
determined by imposing the consistency condition in Fig. 45

that γe,m,e′(0) = 1, the solution is

γe,m,e′(p) = e
2π i
N ep . (B.5)

This completely fixes the square junction. We note that, by the braiding properties of
the lines L(e,m) and L(e′+n,−n), the square junction obtained here is equivalent to a half-
braided triangle junction, as shown in Fig. 17. This was used in Sect. 3.5 of the main
text, but will not be needed here.
We have now successfully understood the purple circle and triangle junctions appearing
in Fig. 33. We have also understood the purple square junction, which does not appear
in Fig. 33 explicitly but which will be important for its computation. All that remains is
to evaluate the orange circle junctions, i.e. the four-fold intersection of A and �(e).
In fact, instead of computing the four-fold junction itself, for our purposes it suffices
to compute a pair of orange junction, as shown in the left-hand side of Fig. 44. This in
general admits an expansion in terms of square and triangle junctions as in the right-hand
side of Fig. 44. Here Ge(p, q) are a series of undertermined constants, which are subject
to the consistency condition shown in Fig. 45. Physically, what this condition says is that
any point on �(e) is Z

EM
2 invariant.

By using the definitions of the square and triangle junctions obtained above, it is straight-
forward to derive an expression for Ge(p, q) from the consistency condition in Fig. 45.
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Σ(e)

A
=

Σ(e)

Fig. 45. A consistency condition on the orange junctions. This follows from the fact that the Z
EM
2 charge of

the trivial junction between �(e), �(e), and L(0,0) is trivial

We will only give the result,

Ge(p, q) = e− 2π i
N (pq−p2) δp+q+e mod 2 , (B.6)

where the delta function is included to enforce that the line in the interior of the bubble
is the EM dual of the incoming line (since it passes DEM in between). This is the final
piece of data needed to compute the charge of the junction in Fig. 33.
We finally return to the original calculation of interest, namely the computation of the
charge of the junction between L(N/2,N/2) and �(e). The computation is illustrated in
Fig. 46. In words, we begin by using the definition of a pair of orange circle junctions
given in Fig. 44, together with the definition of the purple circle junction given in Fig. 37.
This gives a factor of

Ge(p, q) α N
2 , N2

(−q) = e− 2π i
N (pq−p2)e−π iqδp+q+e mod 2 . (B.7)

We may then use the definition of the square and triangle junctions given in Figs. 40
and 42, which gives a factor of

γp,−p,e(r + q) × γ−p,p,e

(

r + p +
N

2

)

= e
2π i
N p(r+q)e− 2π i

N p(r+p+N/2) . (B.8)

Noting further that the line L(e+r+q+p,−r−q−p) in the interior of the bubble must be the
EM dual of the incoming line L(e+r,−r) (since it passes DEM in between) forces us to
restrict to triplets r, p, q satisfying

e + r + q + p = −r mod N , (B.9)

or in other words p + q = −e − 2r mod N . Thus in total we produce a phase of

e− 2π i
N (pq−p2)e−π iq × e

2π i
N p(r+q)e− 2π i

N p(r+p+N/2) = e−π i(p+q) = (−1)e , (B.10)

which is the final result for the charge of the junction. In summary, for even e the junction
in Fig. 33 is Z

EM
2 even. On the other hand, for odd e the junction is Z

EM
2 odd, and hence

there are an odd number of K lines terminating on the junction.
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L(N/2,N/2)

Σ(e)

A
= N−1

p,q=0
p+q+e=0 mod 2

e− 2πi
N

(pq−p2)e−πiq

Σ(e)

L(p,−p)
L(q,−q)

L(N/2,N/2)

= N−1
p,q,r=0

q+p+e+2r=0 mod N

e− 2πi
N

(pq−p2)e−πi(q+p)e
2πi
N

p(q−p)

L(e+r,−r)

L(p,−p)
L(q,−q)

L(N/2,N/2)

= (−1)e N−1
r=0

L(N/2,N/2)

L(e+r,−r)

= (−1)e

L(N/2,N/2)

Σ(e)

Fig. 46. The final computation of the junction charge. Details are given in the text

C. Gauge Invariance of Twisted ZN Gauge Theory

In this appendix we provide a bit more detail on the proof of gauge invariance of the
action (4.26). We first note that δCa is gauge invariant under (4.25). This means that the
gauge variation of (4.27) is

(δCgT )i j K
Ci j+1(δCa) jkl =

(

gTj K
Ci j − gTi

)

KCi j+1(δCa) jkl

=
(

gTj − gTi K
Ci j
)

K (δCa) jkl .
(C.1)

We further use

(δCδCa)i jkl = KCi j (δCa) jkl − (δCa)ikl + (δCa)i jl − (δCa)i jk = 0 (C.2)

to replace KCi j (δCa) jkl by (δCa)ikl − (δCa)i jl + (δCa)i jk in (C.1). The second line in
(C.1) becomes

gTj K (δCa) jkl − gTi K (δCa)ikl + gTi K (δCa)i jl − gTi K (δCa)i jk ≡
(

δ(gT K δCa)
)

i jkl

(C.3)

which is a total derivative. This shows that (4.26) is gauge invariant.
The invariance of (4.26) under background gauge transformation (4.28) is also straight-
forward. Under (4.28), the term (4.27) becomes

(ai j )T K γi KCi j+γ j−γi+1
(

KC jk+γk−γ j K−γkakl − K−γ j a jl + K−γ j a jk

)

(C.4)

and all of the γi manifestly cancel.
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D. Fusion Rules of the (2 + 1)d SymTFT of TY(ZN ) from Modular S Matrices

In this appendix, we collect the data of the Drinfeld center Z(TY (ZN )) of TY (ZN )

obtained in the mathematics literature [64,65]. In particular, we record the explicit form
of the modular S matrices, which can be used to rederive the fusion rules of Sect. 4.1 via
the Verlinde formula.

D.1. Objects andModular S Matrices. In the notation of [64], the objects in the category
Z(TY (ZN )) include

1. 2N invertible lines: Xg,i , g ∈ ZN , i ∈ Z2.
2. N (N − 1)/2 non-invertible lines of quantum dimension 2: Y[g,h], g, h ∈ ZN , g < h.
3. 2N non-invertible lines of quantum dimension

√
N : Zg,i , g ∈ ZN , i ∈ Z2.

They are in one-to-one correspondence with Lq
(e), L [e,m], �q

(e) in the main text. In this

notation, the modular S matrices are given by27

SXg,i ,Xh, j = 1

2N
e− 4π i

N gh ,

SXg,i ,Zh, j = SZh, j ,Xg,i = (−1)i

2
√
N
e− 2π i

N gh ,

SXg,i ,Y[h,k] = SY[h,k],Xg,i = 1

N
e− 2π i

N g(h+k) ,

SZg,i ,Y[h,k] = SY[h,k],Zg,i = 0 ,

SZg,i ,Zh, j = (−1)i+ j

2N
ωgωh

N−1
∑

k=0

e
2π i
N (k−g−h)k ,

SY[g,h],Y[g′,h′] = 1

N

(

e− 2π i
N (gh′+hg′) + e− 2π i

N (gg′+hh′)
)

,

(D.1)

where

ωg =
(

1√
N

N−1
∑

h=0

e− 2π i
N ghγ (h)

)1/2

, γ (h) =
{

(−1)he− π i
N h2 , N ∈ 2Z + 1

e− π i
N h2 , N ∈ 2Z

(D.2)

For completeness, we also record the spins of the lines here,

θXg,i = e− 2π i
N g2 , θY[g,h] = e− 2π i

N gh , θZg,i = (−1)i ω∗
g . (D.3)

The Verlinde formula [84] enables us to derive the fusion rules between W1,W2,W3 ∈
{Xg,i ,Y[g,h], Zg,i } from the modular S matrices,

NW3
W1,W2

=
∑

W

SW1,W SW2,W S∗
W3,W

SX0,0,W
. (D.4)

As a consistency check, we will now apply these formulae to small values of N in order
to reproduce the fusion rules found in the main text.

27 For simplicity, we work only with the case in which the Frobenius-Schur indicator is trivial.
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D.2. FusionRules for Small N . N = 2:The fusion rule between invertible lines is Xg,i⊗
Xh, j = Xg+h,i+ j , and we therefore reproduce the results in the text upon identifying

Xg,i ↔ ̂L(−1)i

(g) . The fusion rules involving non-invertible lines are more interesting. The
S-matrix elements and Verlinde formula give rise to,

X1,i ⊗ Z0, j = Z0,i+ j+1 , X1,i ⊗ Z1, j = Z1,i+ j ,

Zg,i ⊗ Zg, j = X0,i+ j ⊕ X1,i+ j+g+1 .
(D.5)

Comparing with the fusion rule (4.9), we find the identification Z1, j ↔ ̂�
(−1) j

(0) , Z0, j ↔
̂�

(−1) j

(1) . As there is only one line with quantum dimension 2, we also have the identifi-

cation Y[0,1] ↔ ̂L [0,1]. Indeed, the following fusion rules

Xg,i ⊗ Y[0,1] = Y[0,1] , Z0,i ⊗ Z1, j = Y[0,1] , (D.6)

match with those observed in Sect. 4.1.4.
N = 3: The fusion rules between invertible lines are again Xg,i ⊗ Xh, j = Xg+h,i+ j ,

and we therefore match the results in the text upon identify Xg,i ↔ ̂L(−1)i

(g) . The fusion
rules involving non-invertible lines are more interesting. The ones involving quantum
dimension

√
3 lines are

X0,i ⊗ Z0, j = Z0,i+ j , X1,i ⊗ Z0, j = Z2,i+ j+1 , X2,i ⊗ Z0, j = Z1,i+ j+1 . (D.7)

Comparing with the fusion rule (4.4), we find the identification Z0, j ↔ ̂�
(−1) j

0 , Z1, j ↔
̂�

−(−1) j

(1) , and Z2, j ↔ ̂�
−(−1) j

(2) . Other fusion rules between X and Z can be derived by
starting with (D.7) and fusing additional invertible lines on both sides. The fusion rule
between X and Y is

Xg,i ⊗ Y[g′,h′] = Y[g+g′,g+h′] (D.8)

which leads to the idenfication Y[g,h] ↔ ̂L [g,h]. Other fusion rules can be similarly
worked out, and we find that they match with those from Sect. 4.1 upon using the above
identifications.
N = 4: The fusion rules between invertible lines are again Xg,i ⊗ Xh, j = Xg+h,i+ j , and

we therefore identify Xg,i ↔ ̂L(−1)i

(g) once again. The fusion between X and Z lines are

X1,i ⊗ Z0, j = Z2,i+ j , X1,i ⊗ Z1, j = Z3,i+ j+1 , X2,i ⊗ Zg, j = Zg,i+ j+g . (D.9)

Note that upon fusing Xh, j , the Zg,i ’s for even g form a closed orbit, while those for

odd g form another closed orbit. We therefore identify Z0, j ↔ ̂�
(−1) j

(0) , Z1, j ↔ ̂�
(−1) j

(1) ,

Z2, j ↔ ̂�
(−1) j

(2) , and Z3, j ↔ ̂�
−(−1) j

(3) . The fusion rule between X and Y is

Xg,i ⊗ Y[g′,h′] = Y[g+g′,g+h′] (D.10)

which leads to the idenfication Y[g,h] ↔ ̂L [g,h]. Other fusion rules can be similarly
worked out, and we find that they match with those from Sect. 4.1 upon using the above
identifications.
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E. Condensation Defects for the EM Exchange Symmetry in (4 + 1)d

In this appendix, we discuss the four-dimensional defect DEM generating the Z
EM
4 (or

Z
EM
2 for N = 2) symmetry in (4 + 1)d Z

(1)
N gauge theory. Since the defect is different

depending on the value of N , we must discuss three separate cases.

E.1. Odd N. For N odd the operator DEM is given by (6.16), which we reproduce here
for convenience,

DEM(M4) = |H0(M4, ZN )|2
|H1(M4, ZN )|2

∑

σ,σ ′∈H2(M4,ZN )

exp

(

2π i

N
(〈σ ′, σ ′〉 + 〈σ, σ ′〉)

)

S(1,−1)(σ )S(1,1)(σ
′) . (E.1)

From (6.13), the expected fusion rule would be S(e,m)(τ )DEM(M4) = DEM(M4)S(−m,e)

(τ ) exp(− 2π iem
N 〈τ, τ 〉). We will check this now, together with the invertibility of the

defect.

E.1.1. Fusion rule S(e,m)DEM = DEMS(−m,e)e−2π iem/N 〈τ,τ 〉 We begin by verifying the
fusion rule above. We have

S(e,m)(τ )DEM(M4)

= |H0(M4, ZN )|2
|H1(M4, ZN )|2

∑

σ,σ ′∈H2(M4,ZN )

exp

(

2π i

N
(〈σ ′, σ ′〉 + 〈σ, σ ′〉)

)

S(e,m)(τ )S(1,−1)(σ )S(1,1)(σ
′)

= |H0(M4, ZN )|2
|H1(M4, ZN )|2

∑

σ,σ ′∈H2(M4,ZN )

exp

(

2π i

N
(〈σ ′, σ ′〉 + 〈σ, σ ′〉 + (e + m)〈τ, σ 〉 + (m − e)〈τ, σ ′〉)

)

× S(1,−1)(σ )S(1,1)(σ
′)S(e,m)(τ ) .

(E.2)

Now we use the fusion rule (6.9) to rewrite S(e,m)(τ ) as e2π im
2/N 〈τ,τ 〉S(e,−e)(τ )

S(m,m)(τ )S(−m,e)(τ ). The above expression then becomes

S(e,m)(τ )DEM(M4) = |H0(M4, ZN )|2
|H1(M4, ZN )|2

∑

σ,σ ′∈H2(M4,ZN )

exp

(

2π i

N
(〈σ ′, σ ′〉 + 〈σ, σ ′〉 + (e + m)〈τ, σ 〉 + (m − e)〈τ, σ ′〉

+ m2〈τ, τ 〉)
)

S(1,−1)(σ )S(1,1)(σ
′)S(e,−e)(τ )S(m,m)(τ )S(−m,e)(τ ) .

(E.3)
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Note that (e,−e) = e(1,−1), (m,m) = m(1, 1), and hence one can switch the order
of the surface operators and combine the terms using the quantum torus algebra (6.11).
The result is

S(e,m)(τ )DEM(M4)

= |H0(M4, ZN )|2
|H1(M4, ZN )|2

∑

σ,σ ′∈H2(M4,ZN )

exp

(

2π i

N
(〈σ ′, σ ′〉 + 〈σ, σ ′〉 + m〈τ, σ 〉 + (e + 2m)〈τ, σ ′〉

+ m2〈τ, τ 〉)
)

S(1,−1)(σ + eτ)S(1,1)(σ
′ + mτ)S(−m,e)(τ ) .

(E.4)

We finally make a change of variables σ → σ − eτ , σ ′ → σ ′ − mτ , upon which the
above expression then becomes

S(e,m)(τ )DEM(M4)

= |H0(M4, ZN )|2
|H1(M4, ZN )|2

∑

σ,σ ′∈H2(M4,ZN )

exp

(

2π i

N
(〈σ ′, σ ′〉 + 〈σ, σ ′〉 − em〈τ, τ 〉)

)

× S(1,−1)(σ )S(1,1)(σ
′)S(−m,e)(τ )

= DEM(M4)S(−m,e)(τ ) exp

(

−2π iem

N
〈τ, τ 〉

)

.

(E.5)

Using the commutation relation (6.10), the surface operator in the last step can finally
be re-expressed as

S(−m,e)(τ ) exp

(

−2π iem

N
〈τ, τ 〉

)

= S(−m,0)(τ )S(0,e)(τ ) exp

(

−2π iem

N
〈τ, τ 〉

)

= S(0,e)(τ )S(−m,0)(τ ) . (E.6)

Thus DEM maps S(e,0) to S(0,e) and S(0,m) to S(−m,0), exactly as expected in (6.13).

E.1.2. Charge conjugation operator C = D2
EM Before checking D4

EM = 1, we first
compute C = D2

EM, which should be the charge conjugation operator.28 To this effect,
we have

DEM(M4)
2 = |H0(M4, ZN )|4

|H1(M4, ZN )|4
∑

σ,σ ′,τ,τ ′∈H2(M4,ZN )

exp

(

2π i

N
(〈σ ′, σ ′〉 + 〈σ, σ ′〉 + 〈τ ′, τ ′〉 + 〈τ, τ ′〉)

)

× S(1,−1)(σ )S(1,1)(σ
′)S(1,−1)(τ )S(1,1)(τ

′) .

(E.7)

28 Note that C is the 4d charge conjugation defect, which should not be confused with the 3d condensation
defect C defined in (6.33).
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To simplify the above expression, we switch the order of surface operators, combine
the terms with the same charge using the quantum torus algebra, and make a change of
variables. The final expression is

C(M4) = DEM(M4)
2 = |H0(M4, ZN )|4

|H1(M4, ZN )|4
∑

σ,σ ′,τ,τ ′∈H2(M4,ZN )

exp

(

2π i

N
(〈σ ′, σ ′〉 + 〈σ, σ ′〉 + 〈τ ′, τ ′〉

+ 〈τ, τ 〉 − 〈σ ′, τ ′〉 − 〈σ, τ ′〉 + 〈σ ′, τ 〉 − 〈σ, τ 〉)
)

S(1,−1)(σ )S(1,1)(σ
′) .

(E.8)

Since τ, τ ′ only appear in the exponent and not in the surface operators, we can perform
the sum over them to simplify the expression. We first sum over τ . The relevant part is

∑

τ∈H2(M4,ZN )

exp

(

2π i

N
(〈τ, τ 〉 + 〈σ ′ − σ, τ 〉)

)

. (E.9)

To complete the square, it is useful to introduce ρ satisfying 2ρ = σ ′ − σ . Note that ρ
exists since the equality is defined modulo Nλ where λ is the generator of H2(M4, ZN )

and N is odd. Hence (E.9) can be simplified to

√|H2(M4, ZN )|ZY [M4, ZN ] exp
(

−2π i

N
〈ρ, ρ〉

)

, (E.10)

where

ZY [M4, ZN ] := 1√|H2(M4, ZN )|
∑

τ∈H2(M4,ZN )

exp

(

2π i

N
〈τ, τ 〉

)

(E.11)

defines an invertible TQFT, which trivializes on a spin manifold. Similarly, we can sum
over τ ′ by introducing 2ω = σ + σ ′, which gives

√|H2(M4, ZN )|ZY [M4, ZN ] exp
(

−2π i

N
〈ω,ω〉

)

. (E.12)

The charge conjugation defect thus becomes

C(M4) = |H0(M4, ZN )|4|H2(M4, ZN )|
|H1(M4, ZN )|4 ZY [M4, ZN ]2

∑

σ,σ ′∈H2(M4,ZN )

exp

(

2π i

N
(〈σ ′, σ ′〉

+ 〈σ, σ ′〉 − 〈ρ, ρ〉 − 〈ω, ω〉)
)

S(1,−1)(σ )S(1,1)(σ
′) .

(E.13)

To further simplify the expression, it is useful to replace σ, σ ′ in terms of ρ, ω via

σ = ω − ρ, σ ′ = ω + ρ . (E.14)
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Summing over σ, σ ′ is equivalent to summing over ρ, ω. Hence the expression for the
charge conjugation defect simplifies to

C(M4) = |H0(M4, ZN )|4|H2(M4, ZN )|
|H1(M4, ZN )|4 ZY [M4, ZN ]2

∑

ρ,ω∈H2(M4,ZN )

exp

(

2π i

N
(−〈ρ, ρ〉 + 〈ω,ω〉 + 2〈ρ, ω〉)

)

×S(1,−1)(ω − ρ)S(1,1)(ω + ρ)

= |H0(M4, ZN )|4|H2(M4, ZN )|
|H1(M4, ZN )|4 ZY [M4, ZN ]2

∑

ρ,ω∈H2(M4,ZN )

exp

(

− 4π i

N
〈ρ, ω〉

)

S(0,2)(ρ)S(2,0)(ω) . (E.15)

E.1.3. Invertibility of DEM We finally check the invertibility of DEM by computing
D4
EM, and conforming it is the identity, up to a local counterterm. Since we have already

computed C = D2
EM, we only need to compute C2 as follows.

C(M4)
2 = |H0(M4, ZN )|8|H2(M4, ZN )|2

|H1(M4, ZN )|8 ZY [M4, ZN ]4
∑

σ,σ ′,τ,τ ′∈H2(M4,ZN )

exp

(

− 4π i

N
(〈σ, σ ′〉 + 〈τ, τ ′)〉

)

×S(0,2)(σ )S(2,0)(σ
′)S(0,2)(τ )S(2,0)(τ

′)

= |H0(M4, ZN )|8|H2(M4, ZN )|2
|H1(M4, ZN )|8 ZY [M4, ZN ]4

∑

σ,σ ′,τ,τ ′∈H2(M4,ZN )

exp

(

2π i

N
(−2〈σ, σ ′〉 − 2〈τ, τ ′)〉

−4〈σ ′, τ 〉
)

S(0,2)(σ + τ)S(2,0)(σ
′ + τ ′)

= |H0(M4, ZN )|8|H2(M4, ZN )|2
|H1(M4, ZN )|8 ZY [M4, ZN ]4

∑

σ,σ ′,τ,τ ′∈H2(M4,ZN )

exp

(

2π i

N
(−2〈σ, σ ′〉 + 2〈σ, τ ′)〉

−2〈σ ′, τ 〉
)

S(0,2)(σ )S(2,0)(σ
′)

= |H0(M4, ZN )|8|H2(M4, ZN )|4
|H1(M4, ZN )|8 ZY [M4, ZN ]4 = χ[M4, ZN ]4ZY [M4, ZN ]4.

(E.16)

From the second to the last line, we have combined the surface operators with the
same charge, made a change of variables σ → σ − τ, σ ′ → σ ′ − τ ′, integrated out
τ and τ ′ which enforced σ, σ ′ to be trivial 2-cycles in H2(M4, ZN ), and finally used
the definition of the 4d Euler counterterm in (5.3). Note that χ [M4, ZN ] is a local
counterterm andZY [M4, ZN ] is a phase, which proves that C(M4)

2 = DEM(M4)
4 is an

invertible operator.
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E.1.4. Summary of algebra of co-dimension one We now summarize the algebra involv-
ing the DEM defect. We may define the orientation reversal of DEM as DEM via

DEM(M4) = χ [M4, ZN ]−2 |H0(M4, ZN )|2
|H1(M4, ZN )|2

∑

σ,σ ′∈H2(M4,ZN )

exp

(

−2π i

N
(〈σ, σ 〉 + 〈σ, σ ′〉)

)

S(1,1)(σ
′)S(1,−1)(σ ) (E.17)

where motivated by (5.6) the Euler counterterm is included. This also renders DEM ×
DEM = 1. The fusion rules are then

C(M4) = DEM(M4)
2 ,

DEM(M4)
4 = χ [M4, ZN ]4ZY [M4, ZN ]4 ,

DEM(M4) × DEM(M4) = 1 ,

DEM(M4) = χ [M4, ZN ]−4ZY [M4, ZN ]−4C(M4)DEM(M4)
2 .

(E.18)

E.2. N = 2. When N = 2, there is only one type of condensate, and the EM symmetry
is Z

EM
2 . The topological defect for Z

EM
2 is

DEM(M4) = |H0(M4, Z2)|
|H1(M4, Z2)|

∑

σ∈H2(M4,Z2)

S(1,0)(σ )S(0,1)(σ + [wT M
2 ]) , (E.19)

where [wT M
2 ] is the Poincaré dual of the second Stiefel-Whitney class of the tangent

bundle of the spacetime manifold wT M
2 .29 To confirm that this is the correct result, we

check the commutation relations with the surface operators S(e,m)(τ ), as well as that
DEM(M4)

2 = 1 up to Euler counterterm.

E.2.1. Fusion with S(e,m) We begin by computing

S(e,m)(τ )DEM(M4)

= |H0(M4, Z2)|
|H1(M4, Z2)|

∑

σ∈H2(M4,Z2)

S(e,m)(τ )S(1,0)(σ )S(0,1)(σ + [wT M
2 ])

= |H0(M4, Z2)|
|H1(M4, Z2)|

∑

σ∈H2(M4,Z2)

exp
(

iπ(m〈τ, σ 〉 + e〈τ, σ + [wT M
2 ]〉)

)

S(1,0)(σ )S(0,1)(σ + [wT M
2 ])S(e,m)(τ ) .

(E.20)

29 We thank Ryohei Kobayashi for discussions and a note which lead us to this construction.
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Using S(e,m)(τ ) = S(1,0)((e − m)τ )S(0,1)((m − e)τ )S(m,e)(τ )eiπm(m−e)〈τ,τ 〉 and com-
bining the surface operators with the same charge, the above expression simplifies to

S(e,m)(τ )DEM(M4)

= |H0(M4, Z2)|
|H1(M4, Z2)|

∑

σ∈H2(M4,Z2)

exp
(

iπ(m〈τ, σ 〉 + e〈τ, σ + [wT M
2 ]〉 + m(m − e)〈τ, τ 〉

+ (e − m)〈τ, σ + [wT M
2 ]〉)

)

S(1,0)(σ + (e − m)τ )S(0,1)(σ + [wT M
2 ] + (e − m)τ )S(m,e)(τ ) .

(E.21)

We further make a change of variable σ → σ − (e − m)τ , and use 〈τ, τ 〉 = 〈τ,wT M
2 〉

mod 2, upon which the expression simplifies to

S(e,m)(τ )DEM(M4)

= |H0(M4, Z2)|
|H1(M4, Z2)|

∑

σ∈H2(M4,Z2)

exp (iπem〈τ, τ 〉) S(1,0)(σ )S(0,1)(σ + [wT M
2 ])S(m,e)(τ )

= DEM(M4)S(m,e)(τ ) exp (iπem〈τ, τ 〉) (E.22)

as expected.30

E.2.2. Invertibility of DEM(M4) We next compute

DEM(M4)
2 = |H0(M4, Z2)|2

|H1(M4, Z2)|2
∑

σ,τ

S(1,0)(σ )S(0,1)(σ + [wT M
2 ])S(1,0)(τ )S(0,1)(τ + [wT M

2 ])

= |H0(M4, Z2)|2
|H1(M4, Z2)|2

∑

σ,τ

S(1,0)(σ + τ)S(0,1)(σ + τ) exp
(

iπ〈σ + [wT M
2 ], τ 〉

)

= |H0(M4, Z2)|2
|H1(M4, Z2)|2

∑

σ,τ

S(1,1)(σ ) exp
(

iπ〈σ + [wT M
2 ] − τ, τ 〉

)

. (E.23)

Using 〈τ, τ 〉 = 〈[wT M
2 ], τ 〉 mod 2, this expression can be simplified to

DEM(M4)
2 = |H0(M4, Z2)|2

|H1(M4, Z2)|2
∑

σ,τ

S(1,1)(σ ) exp (iπ〈σ, τ 〉)

= |H0(M4, Z2)|2|H2(M4, Z2)|
|H1(M4, Z2)|2 = χ [M4, Z2] .

(E.24)

We can also define the orientation reversal as

DEM = χ [M4, Z2]−1DEM (E.25)

upon which (E.24) can be rewritten as

DEM(M4) × DEM(M4) = 1 (E.26)

Hence DEM(M4) is invertible, and generates a Z2 symmetry.

30 Note that this surface operator exchanges e ↔ m. It can be shown that this operator is a compo-
sition of Dmψ Deψ Dmψ , where Dmψ and Deψ are operators exchanging m ↔ ψ and e ↔ ψ , re-

spectively. One has Dmψ = |H0(M4,Z2)|
|H1(M4,Z2)|

∑

σ∈H2(M4,Z2)
exp
(

iπ
2

∫ P(PD(σ ))
)

S(1,0)(σ ), and Deψ =
|H0(M4,Z2)|
|H1(M4,Z2)|

∑

σ∈H2(M4,Z2)
exp
(

iπ
2

∫ P(PD(σ ))
)

S(0,1)(σ ), where PD(σ ) is the Poincaré dual of σ .
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E.3. Even N and N ≥ 4:. The symmetry defect in this case is almost identical to that
for odd N , but with some minor modifications. In particular, we now have

DEM(M4) = |H0(M4, (ZN × ZN )/Z2)|
|H1(M4, (ZN × ZN )/Z2))|

∑

(σ,σ ′)∈H2(M4,(ZN×ZN )/Z2)

exp

(

2π i

N
(〈σ ′, σ ′〉 + 〈σ, σ ′〉)

)

×S(1,−1)(σ )S(0,1)

(

N

2
[wT M

2 ]
)

S(1,1)(σ
′) . (E.27)

As in the case of N = 2, for generic even N , we are allowed to turn on the background
field wT M

2 .

E.3.1. Gauge invariance As explained in Sect. 6.2.2, summing over H2(M4, (ZN ×
ZN )/Z2) requires that the defect should be invariant under the gauge transformation
σ → σ + N

2 λ, σ ′ → σ ′ + N
2 λ, which follows from the identification S(N/2,N/2)(σ ) =

S(N/2,−N/2)(σ ). Indeed, it is straightforward to check that (E.27) is invariant under this
gauge transformation, due to the proper coupling to the background field [wT M

2 ]. This
means that summing over the elements (σ, σ ′) in H2(M4, (ZN × ZN )/Z2) amounts
to summing over σ and σ ′ in H2(M4, ZN ) separately, but only over half of the total
domain.31

TheZ
EM
4 defect (E.27) differs from that for the odd N case by coupling to the background

field [wT M
2 ]. If we do not couple to the background field in (E.27) and use (E.1) instead,

then under the gauge transformation σ → σ + N
2 λ, σ ′ → σ ′ + N

2 λ we would find

that DEM transforms as DEM → (−1)
N
2 〈λ,λ〉DEM = (−1)

N
2 〈λ,[wT M

2 ]〉DEM, which is not
invariant and renders the sum over H2(M4, (ZN × ZN )/Z2) ill-defined. The coupling
to [wT M

2 ] in (E.27) precisely compensates this non-invariance.

E.3.2. Fusing with S(e,m)(τ ) To justify that (E.27) is the correct condensation defect of
Z
EM
4 , we may check that the commutation relation with the surface operators is of the

desired form (6.13),

S(e,m)(τ )DEM(M4) = DEM(M4)S(−m,e)(τ ) exp

(

−2π iem

N
〈τ, τ 〉

)

. (E.28)

The proof is identical to the case for odd N , and will not be reproduced here.

E.3.3. Two useful summation formulas Before discussing the charge conjugation oper-
ator and verifying the invertibility of DEM, it is useful to discuss a summation formula
which will be used later on. We start with the discrete Fourier transformation,

1√
N

∑

x∈ZN

exp

(

2π i

2N
x2 +

2π i

N
xp

)

= exp

(

π i

4
− π i p2

N

)

(E.29)

31 As an analogy, summing over (a, b) ∈ (ZN × ZN )/Z2 amounts to choosing one element in the pair
(a, b) ∼ (a + N

2 , b + N
2 ) and summing over the N2/2 choices of pairs. The sum is independent of the choice

thanks to gauge invariance.
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and

1

N

∑

x,y∈ZN ,x+y∈2Z
exp

(

2π i

2N
(x2 + y2)

)

=
{

i, N ∈ 4Z

0, N ∈ 4Z + 2

1

N

∑

x,y∈ZN ,x+y∈2Z+1
exp

(

2π i

2N
(x2 + y2)

)

=
{

0, N ∈ 4Z

i, N ∈ 4Z + 2

(E.30)

First FormulaWe now prove the first of two summation formulas of interest. Tomotivate
the first, we begin by considering the function

f (a, b) = 1

N

∑

x∈ZN ,y∈ZN
x+y∈2Z

exp

(

2π i

N

(

x2 + y2

2
− ax − by

))

(E.31)

where N is an even number, and a, b ∈ ZN . Note that f (a, b) is invariant under shifting
a, b by N/2 simultaneously, i.e.

f (a, b) = f

(

a +
N

2
, b +

N

2

)

(E.32)

which is guaranteed by x + y ∈ 2Z in the range of sum. To perform the sum, we complete
the square and make a change of variable. Then f (a, b) simplifies to

f (a, b) = exp

(

−2π i

2N
(a2 + b2)

)

1

N

∑

x∈ZN ,y∈ZN
x+y+a+b∈2Z

exp

(

2π i

2N
(x2 + y2)

)

. (E.33)

The sum is invariant under the shift (a, b) → (a + N
2 , b + N

2 ), but the phase in front is
not. The phase transforms as

exp

(

−2π i

2N
(a2 + b2)

)

→ e−iπ(a+b)−iπN/2 exp

(

−2π i

2N
(a2 + b2)

)

. (E.34)

On the other hand, f (a, b) satisfies (E.32), and hence f (a, b) = 0 whenever the phase
e−iπ(a+b)−iπN/2 = 1. In particular, this implies that f (a, b) = 0 when (N , a + b) ∈
(4Z, 2Z) and (N , a + b) ∈ (4Z + 2, 2Z + 1). Further evaluating the summation (E.33)
via (E.30), we obtain

f (a, b) = exp

(

−2π i

2N
(a2 + b2) +

π i

2

)

δa+b+N/2 mod 2 . (E.35)

Comparing this to (E.29), this is the generalized discrete Fourier transformation on a
space with constraints.
Wewould like to generalize (E.35) so that the variables are the elements in H2(M4, ZN ),
and the product is replaced by the intersection pairing or the Poincaré dual of the Pontrya-
gin square. Concretely, we are interested in evaluating the generalized discrete Fourier
transformation



Symmetry TFTs for Non-invertible Defects 1117

1

|H2(M4, ZN )|
∑

τ,τ ′∈H2(M4,ZN ),
τ+τ ′=2η∈H2(M4,ZN )

exp

(

2π i

2N
(P([τ ]) + P([τ ′])) − 2π i

N
(〈a, σ 〉 + 〈b, τ 〉)

)

,

(E.36)

where a, b ∈ H2(M4, ZN ), and [τ ] is the Poincaré dual of τ . The condition τ + τ ′ =
2η ∈ H2(M4, ZN ) simply means that τ + τ ′ is an even element in H2(M4, ZN ), i.e.
τ + τ ′ is trivial when regarded as an element in H2(M4, Z2). The sum (E.36) is invariant
under the gauge transformation

a → a +
N

2
λ, b → b +

N

2
λ , (E.37)

and hence (a, b) can be regarded as an element in H2(M4, (ZN × ZN )/Z2). Following
the same discussion which lead to (E.35), we can complete the square in (E.36), and
find

exp

(

−2π i

2N
(P([a]) + P([b]))

)

1

|H2(M4, ZN )|
∑

τ,τ ′∈H2(M4,ZN ),
τ+τ ′+a+b=2η∈H2(M4,ZN )

exp

(

2π i

2N
(P([τ ]) + P([τ ′]))

)

.
(E.38)

The sum is gauge invariant, and defines an invertible TQFT ZY (M4) as follows,

1

|H2(M4, ZN )|
∑

τ,τ ′∈H2(M4,ZN ),
τ+τ ′=2η∈H2(M4,ZN )

exp

(

2π i

2N
(P([τ ]) + P([τ ′]))

)

=
{

ZY [M4,
ZN×ZN

Z2
] , N ∈ 4Z

0, N ∈ 4Z + 2

1

|H2(M4, ZN )|
∑

τ,τ ′∈H2(M4,ZN ),
τ+τ ′+ξ=2η∈H2(M4,ZN )

exp

(

2π i

2N
(P([τ ]) + P([τ ′]))

)

=
{

0, N ∈ 4Z

ZY [M4,
ZN×ZN

Z2
] , N ∈ 4Z + 2

(E.39)

where ξ is an generator of H2(M4, ZN ), and the sum is independent of the choice of ξ .
In particular, we can choose ξ = [wT M

2 ] mod 2. The above formula is a generalization
of (E.30) and is similar to ZY for the odd N case, c.f. (E.11). But the phase in (E.38) is
not gauge invariant. This enforces that (E.36) vanishes for certain (N , a, b). To find the
vanishing condition, we perform the gauge transformation

exp

(

−2π i

2N
(P([a]) + P([b]))

)

→ e−π i〈a+b,λ〉−π i N2 〈wT M
2 ,λ〉
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exp

(

−2π i

2N
(P([a]) + P([b]))

)

. (E.40)

Because λ is arbitrary, we require a + b + N
2 wT M

2 to be a trivial element in H2(M4, Z2)

for the sum (E.36) to be nontrivial. In summary, the sum (E.36) equals

exp

(

−2π i

2N
(P([a]) + P([b]))

)

ZY

[

M4,
ZN × ZN

Z2

]

δa+b+ N
2 wT M

2 mod 2 . (E.41)

Second Formula We further consider the summation

1

N 2/4

∑

(x,y)∈(ZN×ZN )/Z2,
x+y=0 mod 2

exp

(

2π i

N
(−xa + yb)

)

δa+b mod 2 = δaδb . (E.42)

Upgrading the summation variables to elements in homology, we find

|H2(M4, Z2)|2
|H2(M4, ZN )|2

∑

(τ,τ ′)∈H2(M4,(ZN×ZN )/Z2)

τ+τ ′=0 mod 2

exp

(

2π i

N
(−〈τ ′, σ 〉 + 〈τ, σ ′〉)

)

δσ+σ ′ mod 2 = δσ δσ ′ . (E.43)

E.3.4. Charge conjugation C = D2
EM We now return to the evaluation of powers of

DEM. Taking the square of (E.27), we obtain

C(M4) = DEM(M4)
2

= |H0(M4, (ZN × ZN )/Z2)|2
|H1(M4, (ZN × ZN )/Z2))|2

∑

(σ,σ ′)∈
H2(M4,(ZN×ZN )/Z2)

exp

(

2π i

N
(〈σ ′, σ ′〉 + 〈σ, σ ′〉 + N

2
〈[wT M

2 ], σ ′〉)
)

× S(1,−1)(σ )S(1,1)(σ
′)

∑

(τ,τ ′)∈
H2(M4,(ZN×ZN )/Z2)

exp

(

2π i

N
(〈τ ′, τ ′〉 + 〈τ, τ 〉 − 〈σ + σ ′ + N

2
[wT M

2 ], τ ′〉

− 〈σ − σ ′ + N

2
[wT M

2 ], τ 〉)
)

.

(E.44)

Summing over (τ, τ ′) ∈ H2(M4, (ZN ×ZN )/Z2)) can be reorganized as summing over
τ̃ := τ ′ + τ and τ̃ ′ := τ ′ − τ in H2(M4, ZN ) respectively, but with the constraint τ̃ ± τ̃ ′
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being an even element in H2(M4, ZN ), or equivalently a trivial element in H2(M4, Z2).
This gives

∑

(τ,τ ′)∈
H2(M4,(ZN×ZN )/Z2)

exp

(

2π i

N

(

〈τ ′, τ ′〉 + 〈τ, τ 〉

− 〈σ + σ ′ + N

2
[wT M

2 ], τ ′〉 − 〈σ − σ ′ + N

2
[wT M

2 ], τ 〉
))

=
∑

τ̃ ,̃τ ′∈H2(M4,ZN )
τ̃+τ̃ ′=2η∈H2(M4,ZN )

exp

(

2π i

2N
(P([̃τ ]) + P([̃τ ′])) − 2π i

N
(〈σ +

N

2
[wT M

2 ], τ̃ 〉 + 〈σ ′, τ̃ ′〉)
)

.

(E.45)

In particular, the gauge invariance under (σ, σ ′) → (σ + N
2 λ, σ ′ + N

2 λ) is manifest for
the first line, and can be seen in the second line from the constraint in the summation
domain τ̃ + τ̃ ′ = 2η ∈ H2(M4, ZN ). The last expression is of precisely the form (E.36),
where (a, b) = (σ + N

2 [wT M
2 ], σ ′), and hence we can apply the result (E.41) here. The

sum simplifies to

|H2(M4, ZN )|ZY [M4,
ZN × ZN

Z2
] exp

(

−2π i

2N
(P([σ ] + N

2
wT M
2 ) +P([σ ′]))

)

δσ+σ ′ mod 2 .

(E.46)

Substituting the above calculations into the expression of C(M4), we get

C(M4) = |H0(M4, (ZN × ZN )/Z2)|2|H2(M4, ZN )|
|H1(M4, (ZN × ZN )/Z2))|2 ZY [M4,

ZN × ZN

Z2
]

×
∑

(σ,σ ′)∈H2(M4,(ZN×ZN )/Z2),

σ+σ ′=0∈H2(M4,Z2)

exp

(

2π i

N
(〈σ ′, σ ′〉 + 〈σ, σ ′〉 + N

2
〈[wT M

2 ], σ ′〉

− 1

2
P([σ ] + N

2
wT M
2 ) − 1

2
P([σ ′]))

)

S(1,−1)(σ )S(1,1)(σ
′) .

(E.47)

E.3.5. Invertibility of DEM We finally show that D4
EM = C2 is the identity up to an

Euler counterterm and an invertible phase ZY . Taking the square of (E.47), we find

DEM(M4)
4 = C(M4)

2

= |H0(M4, (ZN × ZN )/Z2)|4|H2(M4, ZN )|2
|H1(M4, (ZN × ZN )/Z2))|4 ZY [M4,

ZN × ZN

Z2
]2

×
∑

(σ,σ ′),(τ,τ ′)∈
H2(M4,(ZN×ZN )/Z2),

σ+σ ′,τ+τ ′=0∈
H2(M4,Z2)

exp

(

2π i

N
(
1

2
P([σ ′]) − 1

2
P([σ ]) + 〈σ, σ ′〉 − N

2
〈σ − σ ′, [wT M

2 ]〉

− N 2

4
〈[wT M

2 ], [wT M
2 ]〉 − 〈τ ′, σ 〉 + 〈τ, σ ′〉)

)

S(1,−1)(σ )S(1,1)(σ
′) .

(E.48)
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We further sum over τ, τ ′ by applying the formula (E.43), which constrains σ, σ ′ to be
trivial provided σ + σ ′ = 0 mod 2. Hence the above expression simplifies to

DEM(M4)
4 = C(M4)

2

= |H0(M4, (ZN × ZN )/Z2)|4|H2(M4, ZN )|2
|H1(M4, (ZN × ZN )/Z2))|4 ZY [M4,

ZN × ZN

Z2
]2 |H2(M4, ZN )|2

|H2(M4, Z2)|2

= |H0(M4, (ZN × ZN )/Z2)|4|H2(M4, (ZN × ZN )/Z2)|2
|H0(M4, (ZN × ZN )/Z2)|4 ZY [M4,

ZN × ZN

Z2
]2

= χ

[

M4,
ZN × ZN

Z2

]2

ZY

[

M4,
ZN × ZN

Z2

]2

. (E.49)

E.3.6. Summary of algebra of co-dimension one We close by summarizing the algebra
involving the DEM defect. Noting that the orientation reversal of DEM is

DEM(M4) = χ [M4, (ZN × ZN )/Z2]−1 |H0(M4, (ZN × ZN )/Z2)|
|H1(M4, (ZN × ZN )/Z2))|

×
∑

(σ,σ ′)∈H2(M4,(ZN×ZN )/Z2)

exp

(

−2π i

N
〈σ, σ ′〉

)

S(1,1)(σ
′)S(0,−1)(σ +

N

2
[wT M

2 ])S(1,0)(σ ) , (E.50)

we have

C(M4) = DEM(M4)
2 ,

DEM(M4)
4 = χ[M4, (ZN × ZN )/Z2]2ZY [M4, (ZN × ZN )/Z2]2 ,

DEM(M4) × DEM(M4) = 1 ,

DEM(M4) = χ[M4, (ZN × ZN )/Z2]−2ZY [M4, (ZN × ZN )/Z2]−2C(M4)DEM(M4)
2. (E.51)

F. More on ̂S{N/2,0}

Given an operator O invariant under a symmetry G, upon gauging G we may get a
series of operators ̂O transforming in representations of the quantum dual ̂G. In this
final appendix, we discuss how to assign representations of subgroups of the quantum
symmetry ̂G to operators ̂O descending fromO that are invariant under only a subgroup
H ⊂ G. We will focus only on the case of interest to us in this paper, namely G = Z

EM
4 ,

H = Z
EM
2 , and the operator ̂O = ̂S{N/2,0}.

Recall from the discussion in Sect. 7.1.1 that, unlike the surface ̂S(N/2,N/2) which is
invariant under Z

EM
4 , or the surface ̂S[e,m] whose constituents are not invariant under

any subgroup of Z
EM
4 , the constituents of ̂S{N/2,0} are invariant under a Z

EM
2 subgroup

of Z
EM
4 . That is, under (e,m) → (−e,−m) we see that both S(N/2,0) and S(0,N/2) are

left unchanged. This means that ̂S[e,m] can be assigned a representation of the quantum
̂Z
EM
2 ⊂ ̂Z

EM
4 , and hence that the identity line in ̂S[e,m] carries a two-fold index, i.e.

I
p
1 (̂S[e,m]) for p = 0, 1.

Physically, the statement is that the bare identity line I01(̂S{N/2,0}) cannot absorb a single
copy of K , and hence when stacked with K gives a distinct line I11(̂S{N/2,0}). However,
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it can absorb K 2, and hence there are no other distinct lines generated in this way. To see
how these statements arise, let us focus on the global fusion.We first consider coincident
loops of I01(̂S{N/2,0}) and K , and ask whether this configuration can be distinguished
from a loop of I01(̂S{N/2,0}) in isolation (c.f. Fig. 24 and the discussion surrounding it).
A loop of K gives a non-trivial contribution to correlation functions if and only if it
links with n units of EM flux, with n non-zero modulo 4. If n = 1, 3, then K gives
a non-trivial result, but the loop of I01(̂S{N/2,0}) evaluates to zero since the constituent
lines I01(S(N/2,0)) and I01(S(0,N/2)) (which are not lines in the EM-gauged theory, but
which do exist in the pregauged theory) are not invariant under the primitive generator
of Z

EM
4 . Hence in the presence of n = 1, 3 units of EM flux, one cannot distinguish the

configurationswithI01(S{N/2,0}) stackedwith K from the configurationwithI01(S{N/2,0})
in isolation. However, if we consider the case of n = 2 units of EM flux, then the
loop of K is again non-trivial, but now I01(S(0,N/2)) does not evaluate to zero since the
constituent lines I01(S(N/2,0)) and I01(S(0,N/2)) are invariant underZ

EM
2 ⊂ Z

EM
4 . Thus by

considering the configuration with n = 2 units of EM flux, one can distinguish between
the configurations with I01(S{N/2,0}) stacked with K and with I01(S{N/2,0}) in isolation.
In other words, I01(S{N/2,0}) cannot absorb K .
Wemay now askwhether I01(S{N/2,0}) can absorb K 2. As before, we consider coincident
loops of I01(S{N/2,0}) and K 2, and ask whether this configuration can be distinguished
from a loop of I01(S{N/2,0}) in isolation. The main difference from before is that the loop
of K 2 gives a non-trivial result only in the presence of an odd number of units of EM
flux. However, as we have argued before, in the presence of an odd number of units of
EM flux, the loop of I01(S{N/2,0}) evaluates to zero. Hence I01(S{N/2,0}) can absorb K 2.
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