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Abstract: Given any symmetry acting on a d-dimensional quantum field theory, there
is an associated (d + 1)-dimensional topological field theory known as the Symmetry
TFT (SymTFT). The SymTFT is useful for decoupling the universal quantities of quan-
tum field theories, such as their generalized global symmetries and 't Hooft anomalies,
from their dynamics. In this work, we explore the SymTFT for theories with Kramers-
Wannier-like duality symmetry in both (1 + 1)d and (3 + 1)d quantum field theories.
After constructing the SymTFT, we use it to reproduce the non-invertible fusion rules of
duality defects, and along the way we generalize the concept of duality defects to higher
duality defects. We also apply the SymTFT to the problem of distinguishing intrinsically
versus non-intrinsically non-invertible duality defects in (1 + 1)d.
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1. Introduction and Summary

Kramers-Wannier duality, originally identified in the (1+1)d Ising model, is the simplest
example of a so-called “non-invertible symmetry.” Non-invertible symmetries have been
the subject of an extensive literature in (1 + 1)d (see e.g. [1-20]), but have only recently
been generalized to spacetime dimensions greater than two [21-47]. The constructions
of non-invertible symmetries in higher dimensions that have appeared in the literature
so far involve the following techniques,

Gauging a discrete symmetry in a theory with particular ‘t Hooft anomaly [21];

Gauging a non-anomalous symmetry in half of the spacetime [22,24];

Gauging a non-normal finite subgroup of the global symmetry [26,26,28,32,48];

Gauging a higher form symmetry along a higher co-dimension submanifold [27];

Gauging a diagonal symmetry between the quantum field theory and a lower di-
mensional topological theory on a defect [38].
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Applications of non-invertible symmetries have ranged from constraints on the IR phases
of supersymmetric and non-supersymmetric gauge theories [22,24,36] to the generation
of new strongly-coupled theories via twisted compactification [29], and also include the
obtaining of selection rules in real-world models such as QED and QCD [30,31].

Despite their newfound utility, sometimes statements made using non-invertible sym-
metries in a theory X" can be recast as statements involving only invertible symmetries in
a theory ¢ (X), where ¢ is some appropriate topological manipulation. The set of topo-
logical manipulations ¢ includes gauging of finite (non-anomalous) symmetries, as well
as stacking with invertible phases. Non-invertible symmetries which cannot be recast as
(potentially anomalous) invertible symmetries upon appropriate application of ¢ were
dubbed “intrinsically” non-invertible in [29], whereas non-invertible symmetries which
can be recast as invertible symmetries were dubbed “non-intrinsically”” non-invertible.
The upshot is that the non-invertibility of a given symmetry, and indeed the full fusion
(higher-)category, is not an invariant under topological manipulations.

With this in mind, it is interesting to search for an object which is invariant un-
der topological operations ¢. Indeed, such an object is known to exist: given a d-
dimensional theory with symmetry captured by a fusion (d — 1)-category C, we may
define a (d + 1)-dimensional topological field theory SymTFT(C) with the property that
SymTFT(C) =SymTFT(¢ (C)) for any topological manipulation ¢. The topological the-
ory SymTFT(C) is known as the symmetry topological field theory [49-55] (see also
related developments in condensed matter physics [56—61]), and will be the main focus
of this paper.

1.1. Symmetry TFT and boundary conditions. The SymTFT of atheory X in d-dimensions
with global symmetry C is a topological theory SymTFT(C) in (d+ 1)-dimensions which,
when compactified on an interval with appropriate boundary conditions, gives back the
theory X of interest. One of the many nice properties of the SymTFT is that it decouples
the dynamics of X from the symmetries. This makes the action of the various topo-
logical manipulations ¢ more transparent: indeed, by choosing appropriate topological
boundary conditions for the SymTFT before compactification to d-dimensions, we can
obtain not only the original X', but any theory of the form ¢ (X).

The basic idea is illustrated in Fig. 1. The (d+1)-dimensional SymTFT is placed on an
interval, where the right boundary is endowed with non-topological “enriched Neumann”
boundary conditions capturing the dynamics of X, whereas the left boundary condition
is topological. Both boundaries can be labeled by appropriate elements of the state space
of SymTFT(C). The dynamical boundary of SymTFT(C) is taken to be

1X) = Zxlalla) . (1.1)

When C is a finite group G, the a above represents the collective set of flat connections
of G, and Z y[a] denotes the partition function of X coupled to gauge fields a (on some
fiducial d-manifold). When C is a fusion (higher-)category rather than a group, the label
a is an appropriate collective label for the topological defects in the theory.

The topological boundary of SymTFT(C) can take a number of forms, with common
options being Dirichlet or Neumann boundary conditions. Dirichlet boundary conditions
fix the fields a to certain values A, whereas Neumann boundary conditions allow a to
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ANNNNNANY SymTFT(C)

Zx[A] (D(A)| )

ANNNNNANY SymTFT(C)

Zx/clA] (N(A)] )

Fig. 1. Schematic picture of the SymTFT. By imposing Dirichlet (resp. Neumann) boundary conditions on
the left and the non-topological boundary condition (1.1) on the right, we may compactify to obtain X (resp.
X'/ G). In general, there exist other topological boundary conditions as well

fluctuate freely. In the state notation, these can be written as

Dirichlet : ID(A) =Y 6(a— A)la) .

Neumann : IN(A)) = exp (—i f au A) la) .

The normalization factor in ['a U A depends on the symmetry and is suppressed here.
We will restore it in the main text.

Because the SymTFT is topological, the length of the interval is unimportant and can
be shrank to zero size, upon which one obtains a d-dimensional theory whose partition
function can be computed by taking the inner product between the states on the left and
right boundaries. In the case of Dirichlet boundary conditions, one obtains

(1.2)

(DAMNX) =" Zy(@)(a — A)a'la) = Y Zx(a)d(d' — A)d(a —d') = Zx(A)

a,a’ a,a’
(1.3)
and hence one reproduces the original d-dimensional theory X, coupled to background

fields A. On the other hand, by putting Neumann boundary conditions on the right, we
obtain

(N(A)|X) = ZZ;((a) exp <i/a/UA> (d'|a)

=Y Zx(a) exp (i/a UA) =Zx,6(A) . (1.4)
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Fig. 2. A theory with anomaly « can be realized on the boundary of an invertible phase Inv¥ (A). This is
possible if and only if the Symmetry TFT is a (generalized) DW theory

In other words, in this case we obtain a d-dimensional theory ¢ (X'), where ¢ in this case
represents gauging the discrete symmetry G (which is indeed a topological operation).
Choosing mixed Dirichlet-Neumann boundary conditions will allow us to obtain X with
a subgroup of G gauged.

More generally, one can dress either boundary condition in (1.2) by a d-cocycle
v4. The corresponding theories obtained by shrinking the slab are X stacked with a
counterterm, and X'/ G with the gauging done with discrete torsion associated with the
d-cocycle,

ID(A),) = Y 8@ — A)exp (—i / m(a)) la) < (D(A),, 1)

= Zx(A)exp <i / vd(A))

IN(A)y) = Y exp (—ifaUA—i/vd(m) ja) < (N(A)y,|X)

= Zxxvy),6(A) (1.5)

One therefore expects that any two theories X and X" that are related by a topological
manipulation ¢, i.e. X’ = ¢ (X), can be obtained by the slab construction with the same
SymTFT but with different topological boundary conditions. In particular, this implies
that the SymTFT in the bulk is invariant under topological manipulations.

1.2. Invertible symmetry and Dijkgraaf-Witten theories. The SymTFT takes a particu-
larly simple form when the symmetry in question is group-like. To see this, begin by
considering a theory X with background gauge fields A and anomaly «. The anomaly
inflow paradigm [62], in modern language, says that such a theory may be realized on
the boundary of an appropriate invertible phase Inv* (A); see Fig.2a.

Given Fig.2a, one can promote the background gauge field A to a dynamical gauge
field a both on the right boundary and in a slab in the bulk. The bulk theory within this
slab is then a nontrivial TQFT, namely a (generalized) Dijkgraaf-Witten (DW) theory!

DW(a) = ) exp (i / bU 8a> Inv® (a) , (1.6)
a,b

! The qualifier “generalized” here refers to the fact that the relevant invertible phases are not restricted to
group cohomology elements.



1026 J. Kaidi, K. Ohmori, Y. Zheng

where both a and b are invariant G-valued cochains, and as commented above we sup-
press the normalization in the BF coupling for now. On the right of the slab, one further
imposes Dirichlet boundary conditions to pin the dynamical field a to the background A.
The theory X is recovered by taking the thin slab limit where the non-topological bound-
ary condition |X’) and the Dirichlet boundary condition |D(A)) collide. We conclude
that the SymTFT for an invertible symmetry with an anomaly is given by a (generalized)
DW theory (1.6), i.e. a discrete gauge theory, potentially with a non-trivial twist.

1.3. Symmetry TFT for duality defects. Having understood the SymTFT for theories
with only group-like (i.e. invertible) symmetries, we may next proceed to consider the-
ories with non-invertible symmetries. In (1 + 1)d, the simplest categories with non-
invertible symmetries are the so-called Tambara-Yamagami categories TY (G) with G
an Abelian group. The objects of this category consist of invertible lines Ly for each
g € G, together with a single non-invertible line A/ with fusion rules?

Lo X Lgy=Lggy. LexN=NxLy=N, NxN=Y L, (17

geG

A higher-categorical analog of 7Y (G) fusion rules exists in higher dimensions, as will

be discussed for G = ZE\}) in (3 + 1)d in the main text. The goal of this paper is to
construct the SymTFTs for (1 + 1)d theories with TY(Zy) symmetry, as well as the
analogs in (3 + 1)d.

Before beginning this analysis, we should note that the SymTFT is, at least implic-
itly, already known for any fusion (higher-)category. Indeed, given a theory with fusion
(higher-)category C, the SymTFT is always given by Turaev-Viro theory on C, or equiv-
alently as Reshetikhin-Turaev theory on the Drinfeld center Z(C) (subject to important
caveats®). The latter definition makes it clear that the SymTFT of C is the quantum dou-
ble Z(C) of C. This matches with the results obtained above for group-like symmetry
C = Vec*(G) discussed above, since Turaev-Viro theory on Vec*(G) is known to be
equivalent to DW theory with DW action «.

For the case of C = TY(Zy) in (1 + 1)d, various properties of the Drinfeld center
Z(TY (Zy)) are known in detail in the mathematics literature [64,65], as well as in
the physics literature [66,67]. As such, the results we present in (1 + 1)d are not new.
However, the way in which we obtain these results will be new, and will carry the virtue
of being more easily generalizable to the case of higher dimensions.

As will be described in the rest of this work, the SymTFTs for theories with duality
symmetries can be obtained by starting with appropriate DW theories and gauging an
electro-magnetic (EM) exchange symmetry. As part of our analysis, we will identify an
explicit Lagrangian description of the EM-gauged theory, and will use it to obtain data
about the spectrum of objects and (higher-)morphisms in the relevant categories Z(C).

270 fully specify the category 7Y (G), one must specify more than just the fusion rules; the additional data
required is the Frobenius-Schur indicator ¢ € Z, together with a bicharacter x € H 2(G, U(1)). In this paper
we will mostly work with the case of trivial € and x.

3 Itis known that in (2 + 1)d, given a spherical fusion category C, one can define the Turaev-Viro theory of
C as an extended TQFT, which is equivalent to Reshetikhin-Turaev theory on the Drinfeld center Z(C) [63].
For fusion higher-categories, the authors expect that a similar statement holds—namely that the defects of the
SymTFT are captured by the Drinfeld center of the corresponding fusion higher-category—though they are
unaware of a definition of Reshetikhin-Turaev theory in higher dimensions.
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1.4. Organization and conventions. This paper is organized as follows. In the first half of
the paper, we focus on the (2+1)d SymTFT for (1+1)d theories with T'Y (Zy ) symmetry.
To prepare for this, we begin in Sect.2 by reviewing the construction of duality defects
in (1 + 1)d via half-space gauging, as well as the derivation of their fusion rules. We
pay special attention to the normalizations appearing in the fusion rules, which we feel
have not been carefully treated in the literature yet. After reviewing the fusion rules of
TY (Zn), wethen construct the SymTFT in two steps. We begin in Sect. 3 by constructing

the SymTFT for a theory with non-anomalous ZE\(,)) symmetry. As discussed above, for
theories with only group-like symmetries the SymTFT should be a DW theory, and in the
current case we expect it to be Zy gauge theory with trivial DW action. The spectrum of
topological operators of this Zy gauge theory, including the so-called “twist defects,” are
studied in detail. Interestingly, the twist defects admit an interpretation as higher duality
interfaces, generalizing the constructions of non-invertible defects/interfaces listed in the
beginning of this introduction. To obtain the SymTFT for 7Y (Zy), we next gauge the
ZEM symmetry of the bulk Zy gauge theory. This is done in Sect. 4 in two different ways.
In Sect. 4.1, the gauging is done at the level of the category by tracing the behavior of all
of the simple objects of Zy gauge theory under gauging of EM and carefully adding in
the twisted sector objects. In Sect. 4.2, the gauging is done at the level of the Lagrangian
by promoting cocycles to twisted cocycles.

The second half of the paper gives the analogous construction of the (4+1)d SymTFT
for (3 + 1)d theories with duality defects. As before, we begin in Sect.5 by reviewing
the construction of duality defects in (3 + 1)d via half-space gauging, as well as the
derivation of their fusion rules. Once again, we pay special attention to the normalization
appearing in these fusion rules. Having done so, we then construct the SymTFT for the

duality defects in two steps. First in Sect.6 we construct the SymTFT for ZE\}) one-

form symmetry in (3 + 1)d, which is again simply a ZS) gauge theory, and analyze its
spectrum of topological operators as well as their fusions. Then in Sect. 7 we gauge the
ZEM EM duality of the Zg\}) gauge theory. This gauging is again done in two ways: in
Sect.7.1 it is done by tracing the behavior of the various objects and morphisms of the
ungauged theory under gauging, while in Sect. 7.2 it is done by writing down an explicit
Lagrangian in terms of twisted cocycles.

Finally, we close in Sect. 8 by describing one application of the SymTFT, namely
to the question of intrinsic vs non-intrinsic non-invertibility discussed in the beginning
of this introduction. For example, we will see that when N is not a perfect square, all
duality defects in bosonic (1 + 1)d theories are intrinsically non-invertible.

Various computations needed in the main text are relegated to appendices. In Ap-
pendix A we derive the commutation relations between k-dimensional operators in

2k + 1)d Zg\llc_l) gauge theory, which are crucial for understanding the fusion rules
of objects in the SymTFT. In Appendix B, we explain how to measure the EM-charge
of junctions in Zy gauge theory, which is crucial for obtaining the fusion rules of the
EM-gauged theory. In Appendix C we provide details for the proof of gauge invariance
of the (2 + 1)d Lagrangian describing the EM-gauged theory, which is written in terms
of twisted cocycles. In Appendix D, we review results from the math literature regarding
the modular S and 7 matrices for the Drinfeld center of 7Y (Zy). These results provide
auseful check of the results obtained in the first half of this paper. In Appendix E we give
details on the form of the EM duality defects in the (4 + 1)d SymTFT before gauging,
which depend crucially on whether N is odd, N = 2, or N is even with N > 2. Finally,
in Appendix F we provide a physical argument for the assignment of quantum defect
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lines after gauging ZEM to operators whose constituents are invariant under the ZEM
normal subgroup of Z4EM.

We close this introduction by listing some conventions that will be used throughout
the paper:

1. I-form gauge fields are denoted as a or A (potentially with a hat or subscript) de-
pending on whether they are dynamical or background fields. Likewise 2-form gauge
fields are denoted by b or B depending on whether they are dynamical or background.

2. Cup products are mostly suppressed, e.g. aA = a U A. We will explicitly write
down the cup product only when it is necessary to distinguish it from the twisted cup
product.

3. We use X, to denote the d-dimensional spacetime, and M,, to denote worldvolumes
of n-dimensional topological defects/interfaces in spacetime.

4. We denote the global fusion by x and the global direct sum as +. On the other hand,
we denote the local fusion by ® and the local direct sum as @&. We will also use the
notation O, C O, ® Oy to indicate that there exists a junction between incoming
topological defects O, and O, and an outgoing topological defect O,.

2. Duality Interfaces in (1 + 1)d

Before analyzing the SymTFT for theories with duality defects, we begin with a detailed
discussion of the duality defects themselves, together with their fusion rules. Special
attention will be paid to normalizations, which are surprisingly subtle. We begin in
(1 + 1)d where things are somewhat simpler.

2.1. Duality interfaces from half-space gauging. Consider a non-spin QFT X in (1 +
1)d with an anomaly free ng) zero-form global symmetry, defined on a closed two-
dimensional spacetime X». We denote the ZE\?) background gauge field as A, and the
partition function as Z y[X»>, A]. Gauging ZE\(,)) gives a new theory X /Zy,

1 @f aA

Z X, Al= ———— Zxy[X2, NoIX T 2.1

xzy[X2, Al O (Xs. 2] Z x[X2,ale 2.1
acH' (X2, Zy)

where now A € H'(X;, ZN) is the background field of the quantum symmetry ZES)
after gauging. The defect that generates this quantum symmetry is the Wilson line of a,

n(y) = exp <E f a) (2.2)
v Pa) )

Let us comment on the normalization factor in (2.1), which is introduced to subtract
out gauge redundancies. It is straightforward to check that gauging Zs\(,)) twice maps the
theory A" back to itself, up to an additional Euler counterterm x [ X5, Z N]_l, with

|[HO (X2, ZW)IH?(X2, Zn)|

X>, ZnN] =
XXz, Zn] \H'(X. Zy)|

(2.3)

The normalization of the partition function may be modified by multiplying by an ar-
bitrary power of the Euler counterterm x [X5, Zy]“. The case of k = 5 is of particular
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X2<0 XZO

Fig. 3. Decomposition of X» along a neck. The interface is located at x = 0

interest, since in this case the normalization in (2.1) becomes 1//|H' (X5, Zy)|, and
then gauging twice maps X back to itself exactly, without any counterterm,* We however
will not include this factor, and will instead adopt the normalization in (2.1).

Instead of gauging Zg\(,)) over the entire X7, one can gauge in half of the spacetime with
Dirichlet boundary conditions. This defines a topological duality interface A/ between
X and X'/Zy [21,22].5 Let us decompose the spacetime manifold X into left and right
parts,

X, =Xx0Ux3, 2.4)

where BXZZO = M, is the interface. Locally around the interface, the topology of the
manifold is M x R, and we can use a local coordinate x to parameterize R. The interface
is located at x = 0, as shown in Fig.3. The theory X lives on X2<0, while the theory

X/Zy lives on X5°.
This is also shown in Fig. 4, where the theory on the right side X 220 is defined to be

1 Zi [ o aA
Zxjzy X5 Al = ———F 3 Zx1x3% ate ¥ 5
|[HY(X5", M1lo, Zn)| >0
acH' (X5°,M10.Zn)

2.5)

The Dirichlet boundary condition implies that the dynamical gauge field a is an element
in relative cohomology H 1 (Xzzo, Milo, Zy). Here, we use M1|o to emphasize that M
is located at x = 0. o

The orientation reversal of the duality defect NV is defined by exchanging the theories
on the two sides of Fig.4. Concretely, X'/Zy lives on the left and A" lives on the right.
By redefining the theory X=x /7y, the defect N can be rewritten as having X on the
leftand X = x - X'/Zy on the right. In other words,

N = xIX5°, Zy] - N . (2.6)

Hence the duality interfaces in (1 + 1)d are orientation-reversal invariant, up to an Euler
counterterm. This is also a consequence of the fact that gauging twice maps the theory
to itself (up to a counterterm).

4 In obtaining this result, one uses the fact that |H" (X2, Zy)| = |H> (X, Zx)| for closed X». For the
case of open manifolds X220 with boundary Mg, to be discussed below, absolute cohomology should be
switched to relative cohomology, i.e. |H"(X22()ZN)| = |H2_" (Xzzo, Milo, ZN)|.

5 The duality interface defined here by half-gauging should not be confused with the topological interface
(also termed “duality wall”’) between two dual theories (e.g. mirror symmetry pairs) discussed in e.g. [68-70].
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ZX[X2<07A] ZX/ZN[X2207A]

2.5)

I =ofmmmmmmmmmnaae 2

o

5]

Fig. 4. The duality defect from gauging Z y over half of the spacetime X 220 with Dirichlet boundary conditions

In the special case that the theory X is self-dual under gauging, i.e. X = X /Zy,
the duality interface discussed above which connects two different theories becomes a
duality defect within a single theory. In this section we will not assume the self-duality
condition; it will be the main focus of Sect. 4.

2.2. Fusion rules of duality interfaces. We now proceed to a discussion of the fusion
rules of the duality interface A/ defined in Sect.2.1. In particular, we will find that N/
is non-invertible. We warn the reader that the following analysis is somewhat technical,
and those interested only in the final answer may skip to (2.19).

We first discuss the fusion rule n x A/. Since a has Dirichlet boundary conditions on

My, alp,|, =0, the ZE\?) symmetry defect 7 is trivial on M1|g. This justifies the fusion
rule

nxN=N. 2.7)

It is more interesting to study the fusion rule between two duality interfaces A" x . Let

us place the two duality defects at x = 0 and x = ¢, and let ¢ — 0F. The two duality
defects divide the spacetime X into three regions, X, = X 2<0 UxX go,e) UXx 226. Since € is
small, we may always take X go,e) = M x Ijp,¢). The theories living on the three regions

are as shown in Fig.5. Instead of defining Zy 7, [X%O’E), Al and Zx 7, /2y [Xfe, Al
separately and discussing how to glue them together along M|, it suffices to discuss
the theory on X 220 all together. The theory living on X 220 is given by

1
0
|HO(X5", Milo, ZN)I|HO (X5, Mile, Zy))|
miy A+ZL [ s (a—A)d
[O.E)a >
> Zx[X5% ale " %2 v

aeH' (X5°, M110.Zn)
aeH (X5 . Mile,Zn)

(2.8)

and we will now evaluate (2.8) in detail.

Since Z y in the summand does not depend on d@, we would first like to sum over @,
which intuitively should enforce a = A on X 226. To perform this summation rigorously,
one must convert the sum over cohomologies into a sum over cochains (for reasons that
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N N

Zx[X5°, A Zx/zy [X2[0’6)7 A]

x=0 Tr =€

Fig. 5. Fusion of two duality interfaces. The partition function on X 2045 given by (2.8)

will be explained below). Note that H! = Z'/B!, |B'| = |€°|/|Z°|, and |B°| = 19;
these equations hold for both absolute and relative cohomologies. The sum Il Y en!

can thus be rewritten as m D owesl = ﬁ > scz1- Equation (2.8) then becomes

1
1ICO(X5°, Milo, ZW)IICO (X5, Mile, Zy)|

2mi 2wi ~
=/ 10,6) A+ [ =e(a—A)a
E ZX[X2>05 a]e N f % ° N fXZ

aez'(M5° . Myl0.Zy)
ez (X5, Mile.Zy)

2.9)

The cocycle condition in the sum can further be relaxed by introducing additional dy-
namical scalars ¢ € CO(XQZO, Zy) and 5 € CO(XZZG, Z ) with BF couplings acting as
Lagrange multiplier fields, The relative condition can likewise be eliminated by includ-
ing the couplings ¢a and ¢a on the subloci M|y and M |¢. Then all the variables in the
sum are cochains,

1 1
1COX5°, Mylo, ZWIICOX5E, Myle, Zy)| 1COX5°, Zy)IICO(X5, Zy))

27 i _A)d 2 g s 2 i T~ 27 o~
y Z Zx [XZ(] ale N fxg’“) aA+y fxziE (a A)ae% ./X;)U dda— - fM]\O (b“ez,\# fx;f poa— 2t fM,\g pa
2 :

aeC' (X5°.Zy).acC (X5 Zy)
$eCO(X5° Zy).$eCO (X5 Zy)

(2.10)

Indeed, summing over ¢ in the bulk X 230 enforces a to be a cocycle due to the coupling
f X30 ¢da, and summing over ¢ on the boundary X1 |g enforces a = 0, which makes the
cocycle relative to M |g. The same comments apply to a.

We are now ready to perform the sum over a. By rewriting the final factor of the
summand as

i Gsa_ 2xi pot —2if . spa
e N fx2>€ péa—=y fM1|€ pa —e N fxz—e ¢

, (2.11)

6 We remind the reader that C" is the set of n-cochains, Z" C C™ is the set of n-cocycles, and B" C Z"
is the set of exact n-cocycles.
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we see that summing over a produces a factor of |C 1(X225, Zy)| and enforces that
a—A—38¢=0onX5"

1 ICt(x5€. Zy)|
0 0
ICOX5", Milo. Zn)IICOUXTS, Myle, Zn)| |COUXS, Zp)IICOX5€, Zy)|

2mi

: i i
N Jylo.e aA [ gsa—3L [y da
2 e 2

x 3 Zx1X5", ale
aeC'(x3%,2y)
$eCOx3% Zy), FeCO(X5¢.Zy)

a(a—A—a$)|X§g. (2.12)

Next we integrate out ¢, which produces a factor of |C Ox 220, Zy)| and enforces a €
Z'(X5°, Mylo. Zy),

1 ICY (X5, ZN)|
1COXZ0, Milo, Zn)I|COXEE, Myle, Zay)| |CO(X5S, Zn)|

(2.13)

2 [
T ypod

>() A -
> Zx[X5", ale 8a—A—8¢)|yze .

aeZ (X3°, M110.Zx)
$eCO(X5¢.,Zy)

The summand is now manifestly independent of a, SO we may set 5 to zero in the
delta function and replace the sum with a factor of |C?(X 225, Zy)|. The remaining delta

function then fixes ¢ = A in XQZE, which makes a an element of ¢ € Z! (Xg)’e], Mo U
Mile, Zn),

ICY (X5, ZN)
1CO(X5°, Milo, Zn)IICO(X5€, Mile, Zy)|

& Jywerad

> ZX[X3° a+ Alyzele
aeZ' (X5 My loUM, |e,Zn)

(2.14)

where A| ¢ is equal to A if we’re on M5, and vanishes elsewhere. It is useful reorganize
the normalization by factorizing out the Euler counter term,

ICOX5, ZMIICHX5E, Zy) ICY (X5, ZN)|

1CO(X5°, Milo, Zn)IICO(X5€, Mile, Zy)|  ICOUXTS, ZN)IICA (X5, Zy)|
(2.15)

The second factor above is the inverse of the Euler counterterm x [Mzze, Zn] 'onX 226,
which can be seen by direct evaluation

|HO(XZC, ZnIIHA (X5, Zy)|  |COX5, Zw)|| Z2(X5S, Zy)|
|H' (X5, Z)| |CH(X5€, Zn)

XX, Zy] =

(2.16)

>€

and by further noting that Z2(X22€, 7ZyN) = C2(X2 ,Zy) since all top forms are
closed. Moreover, the first factor in (2.15) can be simplified by using |C2(X22€, Zn)| =
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|CO(X5€, Mile, Zy)| since the elements in CO(X5€, M|, Zy) and the elements in
C*(X 236, Zy) are Fourier partners. We finally use the fact that

’

(2.17)

e (x3° Mo, za )| = | (X2 My lo UMl 2 )| [ (X5, Z)

which is simply a decomposition of cochains on XZZO into the sum of cochains on

X go,e] with fixed boundary condition at M| and cochains on X 226 with free boundary
conditions. Note crucially that such decomposition can not be achieved at the level of
cocycles or cohomologies, because the flatness condition is violated at M1 |.. The ability
to use this decomposition is the main reason for our reformulation of the sum over
cohomologies in (2.8) as a sum over cochains.

Using (2.17), we may now simplify the first term in (2.15) to 1/|CO(X5<), Mo U
M|, Zn)|. Substituting the simplified normalization in (2.15) into (2.14), we get

1
>e —1
x[X5", ZN] E
0(yl0.€]
|C (X2 ,Ml|0 UM1|€, ZN)| anl(Xg)’d,Ml\oUMl\E,ZN)

% fxg(),d al

ZX[XZZO,a+A|X225]e (2.18)

This formula admits a simple physical interpretation. First, in the region M;e we have
two overlapping gaugings, which “annihilate” to produce a factor of X[MZZG, Zy17
This is a consequence of the fact, mentioned before, that gauging twice takes the theory
X back to itself up to an Euler counterterm.” As for the rest of (2.18), we notice that after
the two gaugings “annihilate” to give the Euler counterterm, we are left with a gauging
in the strip X go,g]’ with Dirichlet boundary conditions on both boundaries M |o U M]|..

This gives the remaining portions of the formula.
By taking the limit € — 0, it now follows that the N x N fusion rule is

_ 1
N XN = XX Iyl 2 n@D@))
‘C ( 2 Milo U Mile, N)‘anl(X%O'GJ,MHOUMH&ZN)
1

‘HO (Xgo’d, Milo UM1|E,ZN)‘

x[X5€.Zy17! > n(LD(a))

aeH! (Xg‘)"],Ml loUM | ,ZN)

XXzt YT ) (2.19)

y€H (M, Zy)

where LD stands for the Lefschetz dual, and we have used | H 0 (X go,e] , Mi|oUM\{|e, ZN)|
= 1. Using (2.6), we likewise find

NxN= > 1. (2.20)

yEeH | (M,Zy)

This fusion rule more straightforwardly corresponds to gauging in a slab, and indeed
this “gauging in a slab” is precisely how the fusion rule of duality defects was originally

7 As mentioned around (2.3), this piece could be removed by modifying the definition of gauging by an
appropriate Euler counterterm.
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Expand/ Shrink
YAVAVAVAVAV VNS Zmaba

Zx[A] (D(A)] |[X)

Fig. 6. A (1+1)d QFT X with Z, symmetry can be expanded into a (2+ 1)d slab. The bulk is the (2+1)d Zy
SymTFT, the right boundary encodes the dynamical information of the (1 + 1)d QFT, and the left boundary is
a topological Dirichlet boundary condition for the bulk field a

derived in [21,22]. The method used here was more roundabout, but gives important
insight into the correct way to keep track of normalization factors.
In summary, the fusion rules for duality interfaces in (1 + 1)d are as follows,

NxN= > 10, nxN =N,
yeH | (M,Zy)
N = x1X5°, ZNIN, N =1. (2.21)

These are, not coincidentally, the fusion rules of the Zy Tambara-Yamagami fusion
categories.

3. (2 + 1)d Symmetry TFT for Z(No) Symmetry

In Sect. 2, we defined the duality interface A/ and studied its fusion rules. In this section,
we study the properties of the duality interface from the SymTFT point of view. In
particular, we find that the duality interface in a (1 + 1)d QFT can be realized as a twist
defectin a (2 + 1)d Zy TQFT, from which the fusion rules (2.21) can be reproduced.
We also study the F-symbols of the duality interfaces using the SymTFT. Throughout

this section, we will only assume that the (1 + 1)d QFT has a ZE\?) zero-form global
symmetry; in particular, we do not assume invariance under gauging ZE\(,)).

Suppose X is a (1 + 1)d QFT with an anomaly-free Zg\?) global symmetry, whose
partition function is Zy[X»2, A]. As discussed in the introduction, we can expand the
theory into a (2 + 1)d slab, as shown in Fig. 6. The SymTFT living in the bulk of the slab
isa (2+ 1)d Zy gauge theory, whose action is

2
s=" [ Gsa. (3.1)
N Jx,

Both a and @ are dynamical Zg\?)-valued 1-cochains. We will take the bulk to be a product
X3 = X2 x Ijo,¢], and will use the coordinate x to parameterize the interval /jo ¢). The
two boundaries are X3 |, and X»|g.
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The boundary conditions on the left (x = 0) and right (x = ¢) boundaries of the slab
are specified by appropriate boundary states. On the right boundary, the state is

|X) = Z Zx[X2le, alla) . (3.2)
acH'(X2le,Zy)

It corresponds to a non-topological enriched Neumann boundary condition that encodes
all of the dynamical information of the (1 + 1)d QFT X’. On the left boundary, the state
is

(D(A)| = Z (ald(a — A), (3.3)

acH'(X20.ZN)

which corresponds to a topological Dirichlet boundary condition. Note that the back-
ground field dependence only enters in the left, topological boundary. By shrinking the
slab, i.e. taking ¢ — 0, the partition function of the (1 + 1)d theory is reproduced by the
inner product of the two boundary states,

(D(A)|X) = Z Zx[X2lo, ald(a’ — A){d'|a) = Zx[X2lo, A], (3.4)
a,a’eH (X300.ZN)

where we have used (a’|a) = §(a’ — a).

Gauging the Zg\?) symmetry of X in (1 + 1)d corresponds to changing the topological
boundary condition on the left from Dirichlet to Neumann. To see this, we define the
Neumann boundary condition as

i A
(NA = = S (ale ¥ P (3.5)
|H®(X2lo, ZN)I et oo Zn)
and check explicitly that
(N(A)IX) = :
~ HOY (X200, Zw)

2mi ’

i A
> ZalXalo,ale ¥ ey
a,a’eH (X2)0,Zy)

d'la)y = Zxzy[X2, Al.  (3.6)

More generally, when the ZE\(,)) symmetry has a nontrivial 't Hooft anomaly, the SymTFT
will be a Zy gauge theory with a non-trivial twist, i.e. a Dijkgraaf Witten theory. In this

case, one cannot gauge Zg\(,)) in (1 + 1)d because of the anomaly. Correspondingly, there
is no Neumann topological boundary condition.

3.2. Lines and surfaces in Zy gauge theory. We now consider the line and surface
operators in Zy gauge theory, focusing for the moment on the ones without topological
boundaries. The operators with boundaries will be discussed in subsequent subsections.
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3.2.1. Line operators The Zy gauge theory (3.1) has N2 genuine topological line op-
erators,

2mi 2mi R
Lem(y)=exp|\— Qea)exp|—Pma)], (e,m)ecZyxZy, (3.7
N Jy N Jy

where L(1,0y and Lg,1) together generate a ZE\}) X Zg\}) 1-form symmetry, or in other
words Z(Vecz,, ). They satisfy the following fusion and braiding rules:

1. Fusion rule: The lines L, ,,)(y) are invertible, and have straightforward fusion rules

L(e,m)(y) X L(e’,m’)(y) = L(e+e’,m+m’)(y) . (38)

2. Commutation relation: As derived in Appendix A, the correlation function between
L(e,m) on a closed, contractible loop y and L, on another closed, contractible
loop Y’ is

.
(Lewny () L (¥) ... ) = exp (—%(em/ +me)link(y, y/)) (..). (3.9)

where link(y, y’) is the Hopf linking number between y and y’. The phase on the
right-hand side gives the braiding phase between the two anyons whose worldlines
are L ) and L, ,n. Here, y and y’ are contractible loops that do not intersect
each other and we also assume that the operators represented by “...” in (3.9) do
not link with y and y’. Equation (3.9) can be equivalently rewritten as an equal time
commutation relation by pushing y and y’ to a 2d plane [71],

’ 2ri / / ’ /
Le.m)(Y) L' .my(y') = exp <_T(€m +me)(y,y )) L' my(Y)Lem)(¥),
(3.10)

where (y, ') represents the intersection number between y and y’. Equation (3.10)
makes sense even when y and y’ are line intervals. Note that the order of lines in the
correlation function matters: the operators are “time-ordered.” The correlation func-
tion L (¢, m)(Y) L (¢’ my(y") on the left hand side of (3.10) means that the line segment
y’ is at time 7, while the line segment y is at time ¢ + € with € an infinitesimal posi-
tive real number. Hence L, ) crosses L. 7y from above. Likewise, the correlation
function L ;) (y')L(e,m)(y) on the right-hand side of (3.10) means that the line
L (¢,m) crosses L, vy from below. See Fig.7 for a pictorial explanation.

3. Quantum torus algebra: The correlation function (3.10) implies a quantum torus al-
gebra on the plane. To see this, consider two lines of the same type but supported on
two seperate segments, L, ) (y) and L ) (y’). From the definition in (3.7), it is
obvious that L(l,o)(y + )//) = L(l’()) (V)L(I,O) ()//) and similarly for L((),l). However,
this is not true for general L, ;) due to the non-commutativity (3.10). By using the
definition (3.7) to expand L (¢ ) = (L(lgo))e (L(oyl))m, and applying the commuta-
tion relations mentioned above, the quantum torus algebra is

2mi
L(e,m) (V)L(e,m)(y/) = exp <—T€m(% V/)) L(e,m)(y + V/) . (3.11)

This will be useful below when discussing the symmetry defect of the ZEM electro-
magnetic exchange symmetry.
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’7/\ \\\ ’ < N
\ / ﬁ< \' = e*27ri((3m’+me’)/N r/ /‘ \v
L(e m) (e!,m’) 'Y/) L(e,m) ('7)‘ 7i(e’,m’) (7/) L(C,m) (’Y) L(C',m’) (’7/)

Fig. 7. Braiding between lines in the 3d bulk gives crossing between lines on a 2d plane

Lem) - L,e)

DEM

Fig. 8. The piercing action of the ZEM symmetry defect Dgy on the line L, )

=1 O

DEM DEM

Fig. 9. One can punch a hole in the Z}ZEM symmetry defect

3.2.2. ZgM symmetry and condensation defects The Zy gauge theory (3.1) has an elec-
tromagnetic exchange symmetry ZEM which interchanges the two gauge fields

a—ada, a—a. (3.12)

Indeed, this manifestly leaves the action (3.1) (on a closed manifold) invariant. This
symmetry is a zero-form symmetry, and there is a corresponding codimension-one sur-
face defect Dy in the bulk implementing the symmetry transformation. It was proven
in [72] and rediscovered in [27] that the symmetry defect of any zero-form symmetry in
(2+1)d TQFT with a single vacuum can be realized as a condensation defect, including
the defect generating ZEJM. In particular, it was pointed out in [27] that the defect for
ZEM in a Zy gauge theory can be realized by condensing L; y—1) on a surface. Below,
we provide further motivation for why Dgy should be a condensation defect, and then
provide a rigorous definition. We then perform some consistency checks.

We first motivate the condensation construction of the Z}ZEM symmetry defect Dgm.
Note thatina (2+1)d TQFT with a single vacuum, there are no non-trivial local operators.
This means that Dy acts only on line operators via the piercing action depicted in Fig. 8,
resulting from (3.12). Furthermore, it means that Dgy admits topological boundary
conditions that can be used to punch a hole in the defect (see Fig.9), since there are
no local operators which could detect such a hole in the first place (see [72, Theorem
6.7] for the case of 2 + 1 dimensions, and [73, Theorem 4] for TQFTs in more general
dimensions). When aline L, ., enters Dgy perpendicularly from the left, the line L, )
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. Liem) ®(e—m)
L(e,m) ) L(m,e) = L(m,e = L(l,—l)

N
U

DEM DEM DEM

Fig. 10. The ZIZ:‘M symmetry defect Dgy can absorb the line L1, )

should leave Dy perpendicularly from the right. We may then consider a configuration
in which the line L, ) is folded back through a hole to the left side of Dgm, as shown in
Fig. 10. By reversing the orientation of the folded line, which flips the sign of both electric
and magnetic charges, we arrive at a configuration where a line Ly n—e) = Lfg]’fe:]'f)
enters from the left and is absorbed into the surface defect. In other words, Dy can
absorb L1, —1). This implies that Dgy should be a condensate of Ly, —1).

With the above motivation, we now give a precise definition of the ZEM condensation
defect supported on a surface M», following [27],

Dem(Mp) = ————— L . 3.13
eM(Ma) = s > La-n®) (3.13)
yeH|(M2,Zn)

Note that condensing L(j —1) on M, amounts to gauging the ZS) one-form symmetry

only on the surface M>, which amounts to gauging a Zg\?) zero-form symmetry from
the point of view of the surface. The normalization in (3.13) comes precisely from the

gauge redundancy of gauging the ZE\(,» zero-form symmetry on M,. However, as noted
in Sect. 2.1, such a gauging is always subjected to an Euler counterterm ambiguity. For
example, the convention adopted in [27] is to further multiply (3.13) by x[M>, Z N1V/2
such that D]%:M = 1. It turns out that the standard convention as in (3.13) is more
convenient when discussing operators with boundaries, so we work with that convention.

With this definition, we may verify that the fusion of L, ,,) with Dgy from the left
is equivalent to fusion of L, ) with Dgy from the right, as desired. To see this, we
consider L, ;) (M1) and Dgm(M>), where M is located to the left of M> and parallel
to it. We begin by noting that

1
Liea(M1) X Dpn(M2) = iz 3 LiemM)La-n@)
’ y€H (M2, Zy)
.14
- 3 eRmmMIY) ()L >((1?\)/11))
|HO (M2, Zy)| ’ o
y€H(M2,Z2)

where we have used (3.10). We may then use the fusion rules (3.8) to split L (¢ ) (M1) =
Le—mm—e)(M1) X Ln,ey(M1) = Lt N—1y(MD ™™ X L e (M1).
Using the quantum torus algebra (3.11), we obtain

1
Le,my(M1) x Dem(M2) = —5——— E La,—n(y +(e—m)Mi) X Lin,e)(M1)
|HY (M2, Zn)|
yEH (M2, ZN)

= Dpm(M2) X Lgn,e)(M1) , (3.15)
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giving the desired result.
We may also verify the invertibility of Dgy by computing Dy (M2) x Dem(Ma),

1
Dem(M2) x Dem(M2) = THO(Ma. Zy) 12 Z Lan-nyWLan-n»")

PN e My Zy)
1 2mi /

= oL zar | 2 < T Law-nt+v)
2N, e H (M, Zy)

|H (M2, Zy)| _1
= VHO M. Zn) 12 = x[M3, Zy] (3.16)

where we used the quantum torus algebra (3.11) in the second equality. The result is an
Euler counterterm, which confirms that Dgys is an invertible condensation defect.

As discussed in [27], there are actually more condensation defects in Zy gauge
theory than just Dgy. These are obtained by condensing different line operators with
or without discrete torsion. Most of these condensation defects are non-invertible. In
the present work, we will only study the particular invertible condensation defect Dgm
implementing the ZEM symmetry.

3.3. Twist defects as higher duality interfaces. So far we have only discussed topo-
logical defects without boundaries. We now consider those with boundaries. By gauge
invariance, the simple line operator L, ;) cannot be given a boundary (unless it ends
at a non-trivial junction involving other lines, as discussed below). On the other hand,
there is a topological boundary condition for the condensation operator Dgy, which can
be used construct a new topological defect while maintaining gauge invariance. This
is known as a twist defect [66,67]. As we will see below, such twist defects can be
interpreted as higher duality interfaces.

3.3.1. Twist defects A twist defect can be defined by condensing Li,—1) on a surface
M> with a nontrivial boundary M| = d M5 and imposing Dirichlet boundary conditions
on M;. We denote this “minimal” twist defect by X (). Concretely,

1
Zo) (M1, M) = La-nW), (3.17)
@ [HO(M>, My, Zy)| VEWZMZ oy Y

where M has a boundary. Equation (3.17) is almost identical to the definition of the
condensation defect (3.13), with the only difference being that absolute cohomology
H"(M», Zy) is replaced by relative cohomology H" (M>, M, Zy) due to the Dirichlet
boundary conditions.® Moreover, thanks to the Dirichlet boundary conditions, the twist
defect is topological. The twist defect X g) (M, M>) can be understood as a non-genuine
topological line operator on M; with a condensation surface on M attached it.
Whereas fusing L 1,1y with Dgy gives a new quantum operator (i.e. a line supported
on a surface), because of the Dirichlet boundary conditions the non-genuine line operator
> O can absorb L(1,-1), and more generally any line of the form L, _,). On the other
hand, it cannot absorb lines L ;) for e + m # 0 mod N. We may thus obtain new

8 Note that via Lefschetz duality H" (M, M1, Zy) >~ Hy_, (M3, Zy), so the homology in the summand
is still absolute.
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E(O) 2(0) Z’yeHl (M1,ZN) L(lv—l)(fy)

Fig. 11. Fusion of two twist defects X )

twist operators by beginning with g and fusing with such L ;). Due to the Dirichlet
boundary conditions, the resulting operator does not depend on e and m individually,
but only on the combination e+m mod N, and hence we have N distinct twist defects,
labeled by e + m = 0, 1, ..., N — 1, each being writable in N equivalent ways. Picking
one representative, we can define

E(E)(M17 M2) = L(n+e,—n)(M]) X E(O)(Ml7 M2)9 Vn= O’ 17 e N — 1 .
(3.18)

It is useful to note that X(g) is ZEM invariant. As a consequence, X is also ZHM
invariant, since

ZEM . S (M1, M) = L(—pnre)(M1) x (o) (M1, M2)
= L(nte,—n)(M1) X L(—2n—e,2n+e)(M1) X Z(0)(M1, M>)
= L(pte,—n)(M1) x Z0)(M1, M2) = Xo)(M1, M3) .
(3.19)

3.3.2. Higher duality interfaces Before discussing the fusion of twist defects, let us
compare their construction with that of duality interfaces [21,22], which was reviewed
in Sect.2. Duality interfaces are constructed by gauging a global symmetry in half of
the entire spacetime and imposing Dirichlet boundary conditions for the gauge fields.
Likewise, the twist defect is defined by gauging a global symmetry (a one-form symmetry
in the present context) along half of a codimension-g spacetime submanifold (¢ = 1
in the present context), with Dirichlet boundary conditions on the codimension-(g +
1) boundary. Hence the twist defects can naturally be interpreted as higher duality
interfaces—duality interfaces associated with higher gauging.

In Sect. 4, we will gauge the ZEM symmetry of the (2+ 1)d gauge theory. After gaug-
ing, the condensation defect (3.13) becomes transparent, and the twist defects become
genuine line operators on M. Accordingly, the higher duality interface becomes a higher
duality defect since both sides of M7 in M> support trivial operators after gauging.

3.3.3. Fusion rules of the twist defects We now proceed to study the fusion rules of the
twist defects. Interestingly, although the condensation defect Dgy on a closed surface
is invertible, the twist defect obeys non-invertible fusion rules.

The fusion between X and the invertible defects L. ;) follows directly from the
definition (3.18),

2(6)(M1, M3) x L(e’,m’)(Ml) = z:(e+e’+m’)(]wlv M) . (320)



Symmetry TFTs for Non-invertible Defects 1041

More nontrivial are the fusion rules between the twist defects themselves ) x Z.).
It is simplest to first understand the fusion rule for Xy x Xg), and then to fuse the
outcome with an appropriate invertible line L (¢4, 0). The fusion rule Xy x X o) can be
obtained by similar calculations as in Sect. 2. Near the boundary of M>, the manifold is
locally M x R;. As before, we parameterize Ry by x and label the manifolds as M2ZO
and M| in the bulk and on the boundary, respectively. We take the two twist defects to
be Xy (Mo, M220) and Xy (M1]e, MZZG). They overlap on the same two-dimensional
manifold MZZG. Fusing two operators amounts to taking € — 0, as seen in the left panel
of Fig. 11.
To proceed, we directly compute the fusion rule

0
o) (Milo, M7") x S0y (Mile, M5)
1

= 0 >0 0 >e€ Z
HOMS®, Milo, ZiONIHOMZS, Mile, Za) | 4o,

y' eH{(M5.Zy)

La-nyWLa-n»).

(3.21)

Evaluating this sum is analogous to evaluating (2.8). The idea is to first rewrite the
sum over lines y, y’ in absolute homology as a sum over the Lefschetz duals a,,, a, in
relative cohomology. Then we further convert the sums over relative cohomology into
sums over cochains by introducing additional fields ¢, ¢’ and appropriate BF terms.
Integrating out a, on Mzze, the right-hand side of (3.21) becomes

1
>e -1
x[M5°, ZN] E La,-1ny)
0(ns10.€] ,
|HO(My ", Milo U Myle, Zy)| ay e M1 My UM, e Zy)

(3.22)

which is of precisely the same form as (2.19). The first factor is the Euler counterterm
and can be removed by appropriate field redefinition. The remaining factors have the

physical interpretation of condensing Lj,—1) only on Méo’é], with Dirichlet boundary
conditions on both M1|g U M||c. Interpreting this in terms of higher gauging, it is the

1-gauging of the one-form symmetry generated by L —1y on the slab Mgo,e]. Taking
the limit ¢ — 0, we find the fusion rule

Sy (M1, M) x Zoy(M1, My) = x[Ma, Zy1™" > La-n(y). (3.23)
yEH| (M. ZyN)

where we have used |H0(M£0’€], MiloU Mi|c, Zy)| = 1. One can likewise define the
orientation reversal of X () by switching the two sides of Mj|o. As in (2.6), we have

Ty (M1, Ma) = x[Ma, Zn] - Z—e) (M1, Mp) . (3.24)

Thus (3.23) becomes

S (M1, My) x Ty (M, Mp) = > La-n(). (3.25)
yeHI (M1, ZN)
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The right hand side can be interpreted as 2-gauging of the one-form symmetry generated
by L(1,—1) on a codimension two manifold M;. When M| = S!, the right-hand side is
simply the sum over L, ) forall e € Zy.

Given (3.23), we obtain the X,y x X,y fusion rule by further fusing with L, o)(M)
and L. 0y(My),

(o) (M1, Mp) X E(ony(My, Ma) = x[M, Zy]™" Z Leser,0) (M) L1, —1y(y)
yEeH (M1, ZN)
1 N (3.26)
M5 M2 ZNT Y Lisrerer—n (S -
n=0

In the special case of N = 2, these fusion rules were discussed in [67] from a lattice
Hamiltonian perspective. It immediately follows from (3.26) that the twist defect X,

is non-invertible, and has quantum dimension +/N.

3.4. Symmetry defects/interfaces in (1+1)d from topological defects in (2+1)d. Having
discussed the closed and open topological defects in Zy gauge theory, we now insert
these operators into the (2+ 1)d slab in Fig. 6 and examine their behavior upon shrinking
the slab. Schematically, we find the following correspondences

Twist defects £(,) «—> Duality interface A
Magnetic line Lg,1) <— ZE\(,)) symmetry defect n (3.27)

Electric line L 1,0y <— ZE\(,)) order parameter O

These correspondences have also been discussed in e.g. [51,54,55,61].

3.4.1. Zy symmetry defects and order parameters from the bulk line operators We first
insert a line operator into the (2 + 1)d slab. One can either place the line operator parallel
to the topological boundary X3 |, or orthogonal to the boundary. Because of the Dirichlet
boundary condition of a, i.e. a|x,|, = 0, the electric line L(j ) can either end on the
boundary perpendicularly, or be completely absorbed into the boundary (in the sense that
it becomes a trivial operator) if it is parallel to it. Thus the only way that it can survive
upon shrinking the slab is to place it orthogonal to the boundary, with one end anchored
on the Dirichlet boundary on the left, and the other end anchored on the non-topological
boundary on the right. As a consequence of ending on the non-topological boundary,
one generically obtains a non-topological point-like operator O upon shrinking the slab.
This point operator will be charged under the ZE\(,D symmetry of the (1 + 1)d theory, and

hence serves as the non-topological ZE\(,)) order parameter.

On the other hand, the magnetic line L g,y can neither be absorbed into the Dirichlet
boundary nor terminate on it. Hence it survives as a line defect upon shrinking the slab.
This is the topological line 1 generating the ZE\?) symmetry of the (I + 1)d QFT X.
Indeed, because L (g, 1) and L(j,) have a nontrivial correlation function when linked, it
follows that the correlation function between n and O is also nontrivial when 7 links
with the O. This link measures the ZE\?) charge of the order parameter O.
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Fig. 12. Colliding Dgy with Dirichlet boundary condition produces Neumann boundary condition

Zx[A] z=0 T=¢€
. 2_7r’\6
Expand / Shrink y o
N YAV AV VaVaV VNS
Zxjzy[A] (D(A)| |X)

Fig. 13. A (1+1)d QFT X with Z symmetry and another (1+ 1)d QFT X'/Zy with quantum ZN symmetry
are separated by a topological interface A This setup can be expanded into a (2 + 1)d slab, where the (2+ 1)d
Zx SymTFT has an insertion of a twist defect parallel to the Dirichlet boundary

3.4.2. Duality interfaces from the twist defects We next insert the condensation de-
fect Dgpv(M>) into the slab. When the condensation defect Dy (M3) collides with
the Dirichlet boundary condition (D(A)| on X», it produces the Neumann boundary
condition (N (A)[; see Fig. 12. One can see this explicitly as follows,

D o~ o~
(DA = > (alfa—4) —> > (@s@-A
HY(X,,Z acH (X,,7Z
aeH( i N) Z 2mafeA( 2,ZN) (3.28)
= — (ale™ J4A = (N(A)],
0
HOX, Zy) | o

where we have used the fact that the EM dual bases are related by a discrete Fourier
transform, i.e.

1 B
@=—5——"— Y  lald¥ /T (3.29)
|H(X2, ZN)| el o)

‘We may now consider inserting a twist defect X (M1, M>) into the slab. We place
it parallel to the Dirichlet boundary, as shown in Fig. 13.° For convenience, we use y
to parameterize the horizontal direction in the slab, and x to parameterize the vertical
direction near the boundary of the twist defect, with the boundary M located atx = 0. By
colliding the twist defect with the left boundary of the slab, the lower half of the Dirichlet

9 In [54], a similar configuration is considered. Their configuration can be obtained from our Fig. 13 by
bringing the endpoint of D to the left boundary and letting Dy stretch across the bulk towards the right
boundary.
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Fig. 14. F-symbols and half-braidings for genuine lines L, )

boundary conditions (i.e. in X 220) is transformed to Neumann boundary conditions. Thus

upon shrinking the slab, from Sect. 3.1 the (1 + 1)d QFT on X2ZO becomes X' /Zy, as
shown in the left panel of Fig. 13. This implies that the twist defect X(,), when collided
with the Dirichlet boundary, becomes a duality interface A.

Because there are N twist defects in (2 + 1)d, one may initially expect N different
duality interfaces in (1 + 1)d. However, all N types of twist defects actually reduce to
a single type of duality interface upon colliding with the Dirichlet boundary condition.
To see this, note that the generic twist defect X(,) is related to the minimal twist defect
X0y by fusing an electric line L, 0 on its boundary. Such electric line can be absorbed
by the Dirichlet boundary condition of the SymTFT. As a consequence, when X is
brought to the Dirichlet boundary, it reduces to X ). We thus have

N (M) = Xy (M1, M2)|x -0, VecZy. (3.30)

Furthermore, the fusion rules of the twist defects given in (3.20) and (3.26) descend
to the fusion rules of the duality interfaces. Upon colliding with the Dirichlet boundary,

Y(ey and L,/ vy reduce to N and nm/ respectively, and (3.20) thus simplifies to

Nxy" =N, (3.31)
which reproduces (2.7). Moreover, (3.26) simplifies to
NxN=xIMy.Zy17" Y n) . (3.32)
yEeHI (M1, ZN)

which reproduces (2.19).

3.5. F-symbols of twist defects and duality interfaces. We close this section by dis-
cussing the F-symbols for lines, both genuine and non-genuine, of the Zx gauge theory,
as well as the F-symbols of the duality interfaces. Additional details on the techniques
used here are given in Appendix B.

3.5.1. F-symbols of twist defects Inthe current context, it is possible to work in a basis of
the junction vector space such that the F-symbols for the genuine lines L, ) are trivial,
and the half-braiding is as shown in Fig. 14. Note in particular that this half-braiding
correctly reproduces the full braiding given in Fig.7. Our goal is to now incorporate
twist defects.
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Fig. 15. The triangle junction with & = 7, together with the square junction with = 0%. The ZI;M duality

surface Dy, which is a mesh of algebra objects A = @:IV;OI L, —p) that can end on Xy, is drawn in red.

‘When there is no ambiguity, we will suppress the Dgpp surface in our figures, taking it to go out to the left

1275 AL
A - A -
0 )
Z(e) L(e+e’+n,7n) E((:) L(e+e’+n4fn) L(e+e’+n,fn) Z(e,) L(e+e’+n,fn) E(e)

Fig. 16. Consistency conditions for the triangle and square junctions

Fig. 17. Defining the square junction in terms of the triangle junction

Before considering the F-symbols involving twist defects, we must first discuss the
relevant trivalent junctions. From the fusion rules in (3.26), it is clear that each junc-
tion should involve two twist defects X, and X, together with one genuine line
L (¢4¢'4n,—n) for arbitrary n. A crucial fact is that these junctions actually depend on the
angle 6 between L (¢4/4n,—p) and the surface Dgy on which X,y and X,y are anchored,
the signature of framing dependence. We will consider two angles for our current anal-
ysis, namely # = 0% and 7. The junction with & = 7 will be labelled with a triangle,
while the junction with & = 0% will be denoted by a square. The notation = 0" is to
emphasize that the Dgy surface is behind the line anchored on the square junction. Both
of these configurations are illustrated in Fig. 15. They will be studied in more detail in
Appendix B.

Another important fact is that the junctions should not depend on where along X,
the line L (¢1¢'4n,—n) is anchored. To phrase this more concretely, we begin by defining

the algebra object A = @2’:_01 L, —n). The condensation defect Dgy can be resolved
into a mesh of such algebra objects [3,74,75], and in terms of this mesh the invariance
under change in the anchor point is equivalent to Fig. 16. The 117 and u) appearing in
Fig. 16 are certain junction vectors, defined in Appendix B, which will not be important
to us here. What is important for us is that, given a solution to the consistency condition
for the triangle junction, a solution for the square junction can be obtained by defining
the junction as in Fig. 17. This is discussed in more detail in Appendix B. We will take
this as the definition of the square junction from now on.
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Fig. 18. Computation of the F-symbol for two genuine lines and one twist defect. The surface Dgyp is
suppressed at intermediate steps

L(e,m)

— N-1 _2z7iemy
= Zfﬂ:(}e N

By Vi) B(ew) Yie)  Blea)  B(es)

Fig.19. F-symbol for three incoming twist defects. The diagrams are non-vanishing only when the intermediate
legs L(e,m) and Lz 7y satisfy e| +ep = e+m, ez +e3 = €+ii. The Dgy surface attached to the twist defects
are assumed to be to the left of X, ) as well as between Z(,,) and X(,;)

We now return to the F-symbols. We begin with the case of two external genuine
lines and two external twist defect. From the form of the fusion rules in (3.26), it is clear
that the internal line is necessarily non-genuine, i.e. it is a twist defect. We may now
calculate the F-symbols using the tools developed above. The computation is shown
in Fig. 18. Summarizing it in words, one begins by using the definition of the square
junction in terms of the triangle junction, and then decomposes the boundary of >,

into A® L0y = @,1,\,:_01 L (¢+n,—n)- The factor of A is included here so that the mesh
of A making up DgMm can end on X from the left. One then uses the half-braiding and
fusion rules of the genuine lines, given in Fig. 14, to obtain the right-hand side of the
second line of Fig. 18. One finally does a half-braiding and reassembles X, to get the
end result.

We next consider the F-symbols involving four external twist defects. Note that
because of the fusion rules (3.26), the internal line is guaranteed to be genuine. Let us
take the three incoming twist defects to be X(,,), X(e,), and X(,;), and place the mesh
of A as shown in Fig. 19. The coefficient relating the configuration with internal line
L (¢, m) to that with internal line Lz 5) is then given in Fig. 19, and derived in Fig. 20. The
various charges appearing here satisfy e; +e; = e+m, e +e3 = ¢+m. For simplicity we
neglect real number normalization factors, and focus only on the phases. In the special
case of N = 2, the F-symbols in Figs. 18 and 19 are consistent with those found in [67].
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Fig. 20. Computation of the F-symbol for three incoming twist defects. For the diagrams in the second and

third line to be non-vanishing, we require ey +ey = m+e,m = —n| —ny, ep+e3 = e+mandm = —ny —nj.
The surface Dgy is suppressed at intermediate steps

3.5.2. F-symbols of duality interfaces We finally obtain the F-symbols of duality inter-
faces in (1 + 1)d. As explained in Sect. 3.4, upon shrinking the slab the twist defects of
Zy gauge theory become the duality interface of a (1 + 1)d QFT. As a consequence, the
F-symbols of the duality interface naturally follow from those of the twist defects.

We first consider the F-symbols of duality interfaces descending from Fig. 18. Upon
shrinking, X, reduces to /. Moreover, note that L, ,) collides with the Dirichlet
boundary condition upon shrinking, and hence only its magnetic components survive the
Zy symmetry generators, i.€. L e, m,) reduces to 2. On the other hand, L, ;) is on
top of DgMm, and hence upon shrinking it collides with the Neumann boundary condition
and its electric component survives, i.e. L., .m,) reduces to 7°!, where 7 is the generator
of the quantum Zy symmetry. Hence the F-symbol involving one duality interface and
two Zy symmetry generators distributed on its two sides is as shown in Fig.21. Note
that the duality interface is unoriented, i.e. N’ = N (up to an Euler counterterm, c.f.
(2.6)), and hence we do not place an arrow on it. In the next section we will gauge ZEM to
obtain the SymTFT for the 7Y (Zy) category, for which the phase appearing in Fig.21
implies a nontrivial bi-character.

We next consider the F-symbols involving three duality interfaces, which follows
from Fig. 19. The result is shown in Fig.22. Note that ¢ and 7 can be arbitrary integers.
The nontrivial phase on the right hand side of Fig.22 implies that, once we gauge ZEM
to make N into a duality defect, the defect N is “self-anomalous,” in the sense that it
is an obstruction to the existence of a trivially gapped phase. This is consistent with the
results in [22].
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Fig. 21. F-symbol involving two external duality interfaces and two external Zy symmetry generators

/<< e /g\

Fig. 22. F-symbol for four external duality interfaces

4. (2 + 1)d Symmetry TFT for Duality Defects

In Sect.3 we discussed the SymTFT for a theory with Zs\(,)) symmetry, and derived the

fusion rules and F-symbols for the duality interface implementing Zg\(,)) gauging. In the
current section, we will demand more symmetries of the (1 + 1)d theory X": namely,

we require that it not only be Zy symmetric, but also invariant under gauging 70 ie.

X =X /Z(O), or equivalently Dgy|X) = |X). This means that the duality interface
N defined in Sect.2 is not just a topological interface between two distinct theories,
but a topological defect within the theory X itself. In this case the full symmetry is the
Tambara-Yamagami fusion category 7Y (Zy) (for particular choice of the Frobenius-
Schur index and bicharacter). Our goal now is to find the SymTFT for TY (Zy).

4.1. Symmetry TFT for TY (Zy). From a mathematical point of view, the SymTFT for
TY(Zy) is the Turaev-Viro theory specified by the Tambara-Yamagami 7Y (Zy) cate-
gory, or alternatively the Reshetikhin-Turaev theory for the Drinfeld center Z(TY (Zy)).
As we have mentioned already in the introduction, the simple objects and fusion rules
of Z(TY (Zy)) have appeared already in the math and physics literature, so the results
to be obtained below are not, strictly speaking, new.

The presentation given here emphasizes the fact that the SymTFT of TY (Zy) can be
obtained from that of Vec(Zy) by gauging the ZEM electro-magnetic symmetry of the
latter.'” This fact is simple to see physically: indeed, recall that in the case of Vec(Zy),
the duality interface A/ descended from the twist defects ) of the SymTFT, which were
the boundaries of the Z];M duality surface Dgy. This was illustrated in Fig. 13. Upon
gauging the ZEM symmetry of the SymTFT this duality surface becomes transparent,
and hence the duality interface N becomes a duality defect, as shown in Fig.23.

Note that the procedure of gauging a zero-form symmetry in a (2+ 1)d TFT has been
fully studied in the condensed matter literature [66,67], where the power of modular

10 1 et us mention that in (2 + 1)d, one can twist the gauging by stacking with an SPT for the Zgg) zero-

form symmetry, which is classified by H 3Bz N, U(1)). This could give rise to different variants of the
Tambara-Yamagami category. In this work, we consider only the untwisted gauging.
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Fig.23. The SymTFT of TY (Z ) is obtained by gauging the ZEM symmetry of the Zy gauge theory in Fig. 13.
Mathematically, it is given by RT theory on the Drinfeld center of TY (Zy ). The twist defect represented by
the red dot attached to a red line (which eas actually a line living on the boundary of a 2d surface) in Fig. 13
now becomes a genuine line operator (represented by a red dot) in the current figure. After shrinking, this
gives a genuine line defect N within the theory X

tensor categories was utilized. Since the ultimate goal of this paper will be to generalize
to higher dimensions, and since a full-fledged theory of higher modular tensor categories
has not been fully developed, we will not adopt this approach here. Instead, we will
give a more physical rederivation of the known results from both the math [64,65] and
physics [66,67] literature, being content with the operator contents and their fusion rules
(without worrying about braiding properties). Our rederivation will have the virtue of
being generalizable to higher dimensions.!! We will also present a second derivation
of the SymTFT of TY (Zy) based on discrete twisted-cocycles. This will be (at least
partially) generalizable to higher dimensions as well.

4.1.1. Lines defects in the SymTFT of TY (Zy) As we have just claimed, the SymTFT
for TY (Zn) can be obtained from Zy gauge theory by gauging the ZEM zero-form
symmetry. This gauging may be split into two steps. First, we begin by keeping only
the lines invariant under ZEM. This leaves us with lines L () with equal electric and
magnetic charge. Next, we note that upon gauging the ZEM zero-form symmetry, we
obtain a quantum one-form symmetry /Z\g) generated by an operator K. Note that K is
labelled by a representation of ZEM. If in the pre-gauged theory a simple line is invariant
under ZEM then in the gauged theory it can be assigned a Z, representation distinguished
by whether or not it is stacked with a K -line. We therefore denote the invertible lines of
the gauged theory by L Where the ¢ = =+ labels whether K is stacked with it or not,

ie. L(e) = L,e) and L(e) := K L. There are a total of 2N invertible lines.

In additional to the invertible lines, we should also allow for the combinations
Le,m) @ Ln,e), which are invariant under ZEM when viewed as a single object. 12 Such
combinations L,y @ Ln,e) are not srrnple before gauging, but become simple after
gauging, and will be denoted by L le.m]- 13 Noting that when e = m the two factors in the
direct sum are individually ZEM invariant, and because by definition L[e m] = L [m.e]

I Our derivation is similar to the approach in [28], where only the fusion rules of topological lines with
integer quantum dimensions were discussed. Here we will extensively discuss the fusion rules involving
topological lines with non-integer quantum dimensions, i.e. those descending from twist defects.

12 We will be mainly discussing things at a local level, with each line operator L(e,m) is supported on a
small interval. The direct sum/product between operators in such a small patch will be denoted by &, ®. Note
however that since all the operators in the SymTFT of TY (Zy ) are lines, the local fusion coincides with the
global fusion, and thus it is equally fine to change @, ® to +, x. The distinction will only be important in
higher dimensions.

13 We use the word “simple” here in the sense of category theory, where an object a is simple if Hom(a, a)
is one-dimensional.
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Fig. 24. The line ’L\[e’ m] can absorb the line K since whenever the K loop (red) is non-trivial, the ’L\[ey m] loop
(black) vanishes

we may assume without loss of generality that 0 < e < m < N — 1. Unlike for Z(ie), in
the current case we cannot stack with a K defect since the constituent lines L ;) and
L, 9 in the pre-gauged theory are not invariant under ZEM. Another way to say this is
that L [e,m] can absorb K.

A phys1ca1 picture for why this absorption can occur is given in Fig. 24. We consider
a configuration of coincident loops of Lie, ) and K and ask if this configuration can be
distinguished from a loop of L[e, m] in isolation. To answer this, we fix an arbitrary EM
gauge configuration and compute the vev of the loops. In order for the K loop to give
a non-trivial result, it must link with an odd number of units of EM flux. However, in
the presence of an odd number of units of EM flux, the loop of L. ;) gives vanishing
contribution, since each consitutent of L [e,m] 1S not EM 1nvar1ant and hence cannot form
a closed loop around such flux. The conﬁguratlon of L le,m] Stacked with K is thus
indistinguishable from the configuration with only L[e,m We conclude that there are
only %N (N — 1) distinct non-invertible defects of quantum dimension 2, labeled by the
symmetric pair [e, m] = [m, e] with e # m.

Finally, there are lines descending from the twist defects in the pre-gauged theory.
As shown in Fig. 23, after gauging ZEM the surface attached to the twist defect becomes
transparent, and hence the twist defect become a genuine line defect. Since, as discussed
in Sect. 3.3, before gauging ZEM the twist defect X, is ZEM invariant, the genuine lines
after gauglng can be stacked W1th a K line. We will denote the resulting genuine lines
by E( o) where ¢ = =+ again indicates whether or not we have stacked with K. There
are 2N lines of this type. Below, we will find that the fusion rules of these genuine lines
are almost identical to the fusion rules of the twist defects in (3.20), (3.23), and (3.26),
from which we can tell that the quantum dimensions are v/N. The only new ingredient
in determining the fusion rules is determining how to assign factors of g.

To summarize the discussion so far, the theory with ZgM gauged has the following
simple objects:

e 2N invertible lines L= @ °
° %N(N — 1) lines L[e,m] of quantum dimension 2 ,

e 2N lines f(ie) of quantum dimension /N .

A first-order consistency check is that the total quantum dimension for these lines is
2N x (D2 + AN(N = 1) x (2) +2N x (+/N)? = (2N)?, which is the square of the
total quantum dlmensmn of TY(Zy). We now obtain the fusion rules for these objects.

4.1.2. Fusion rules involving only Zi) and Z[g,m] The fusion rule involving only the

lines Z?;) and Z[e‘m] largely follow from those in the pre-gauged theory. The only new
ingredient is to determine the distribution of K lines (i.e. the value of ¢’s). To determine
this, we need to determine the ZgM charge localized at junctions in the pre-gauged
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theory; if the junction is ZEM even, then there should be an even number of K lines
anchored on the junction after gauging, whereas if the junction is ZEM odd there should
be an odd number of K lines anchored on the junction. The junction charges of the pre-
gauged theory can be measured by wrapping Dgy surfaces around them, as discussed
in Appendix B. Using the tools developed there, one finds that e.g. the junction between
three operators L ¢y, Le,¢ry and L(ese ete’) 19 ZIZEM even, and hence the number of K
(©®Liy=Lidey

Another interesting case is the fusion between Lie ] ® Lier.ny) When e + € = m +

m',m + e = e+m'. Before gauging ZEM, the right hand side is a direct sum of two

lines L ete’ e+e’)> L(m+e’,m+e’)- Each of them are ZIZEM invariant separately, and hence we

must determine the assignment of g after gaugi.n;f(. One could again determine this via
computation of the junction charge, but a nice trick to circumvent this computation is to
observe that since L ] ® L[,/ ] can absorb a K line, the right-hand side of the fusion
rules must also be able to absorb a K line. The only possibility is then to sum over all
possible g values, 'i.e. 'L[e,m].® Lie' . = L-('.e+e’) ®L, ) ® Lz'mw/) €B L iery: 'See [28]
for more systematic discussions. In summary, we are able to determine the fusion rules
as follows,

lines is conserved under fusion, i.e. L

Aq Aq/ . Aqq,
L(e) ® L(e') - L(e+e’) ’
g - R
L(E) ® Lig/ ') = Liete! e+m’] »

~ ~_ =~ _~_ 7 _ ’ /o /
£(€+€,)$L ,)@L(HIH,)@L(WE,) e+e =m+m ,m+e =e+m

(e+e
+ T T /o / / /
Z[ ]®Z o L(e+e/)@L(e+e/l®l‘lm+e/,m+€/l e+e =m+m ,m+e Fe+m
e,.m [e/\m'] — Y+ T— / / / /
L[(,+(,/,m+m/]®L(+m+e,)®L(m+e,) et+e Fm+m' m+e =e+m
T T / / / /
Licve!,m+m'1 ® Lim+e’ m+e'] et+te EFm+m ,m+e #Fe+m

4.1)

Note that since all of the operators above are lines, the local fusion is identical to the
global fusion.

4.1.3. Fusion rules involving /E\?e) We now describe the fusion rules involving the /E\J?e)
lines of quantum dimension /N .

Fusion rule Z‘(Ie) ® f?;/): We start by considering the fusion between the invertible line
Z?e) and the non-invertible line f]f’e/,). The cases of N odd and even are qualitatively
different, and we begin by analyzing the former.

For odd N, it is useful to observe that before gauging, none of the twist defects map
to themselves under fusing with a non-trivial ZEM invariant invertible line,

Le,e) ® Z(e'y = Z(aewe!) » (4.2)

where ¢’ # ¢ +2e¢ for e # 0 mod N. This implies that after gauging Z};M one can
define the twist defect X, by fusing L{; with the minimal twist defect I,

3 =Lk @), . e=0,...N—1, q==+ (4.3)

where € = ¢/2 foreven e, and € = (e + N) /2 for odd e. Note that since the operators are
always subject to relabeling, such a definition is always allowed. The fusion rule then
follows from (4.3),

T4 o sd _ Tad S+ _ a4’

Ly ® Xy = Loy ® Ty = Ty - N odd. 4.4)

(e+e
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We now proceed to the case of N even The main conceptual difference is that we can
no longer obtain all defects E( ) from 0 ) by fusing with an appropriate choice of L @)
Before gauging ZEM, every twist defect maps to itself upon fusing with Ly /2, n/2). This
means that after gauging one can define the twist defects as

39 4 —
Sy =L, @5y . Bh,, =LL,®%H . e=0.1..N/2-1. 45)

Once this definition is fixed though, we are no longer free to choose the sign that appears
in the fusion of L(N 2) with 2(0) and 2(1) Indeed because before gauging the twist

defects are stabilized under this fusion, the ¢’, ¢” in the following fusion rules

g g S+ SS9 T S+
o) =Linm ®@Z) Xy =Ling ® X (4.6)

are unambiguously defined. In other words, it is not possible to relabel the twist defects
to change ¢’ and ¢” once g is given. To determine ¢’ and ¢”, one must measure the Z5EM
charge of the relevant junction in the theory before gauging EM. Relegating the details
to Appendix B, we find that the junction associated with the first fusion rule in (4.6) is
ZgM even, and hence the number of K lines is conserved. On the other hand, the junction

associated with the second fusion rule in (4.6) is ZEM odd, and hence the number of K
lines jumps by one. In terms of the relation between ¢, ¢’ and g”, we have

9 =q, q"=—q. (4.7)

As a consequence, fusing L and E(o 1 for the remaining choices of e, i.e.e = N/2 +
1, ..., N — 1, are given by

~ cy e B
Sh, =L, ®%h . oL, =LL,®%h . e=N/2+1,. ,N—1.
4.8)

The fusion between generic Z‘(’e) and f]?e,) then follows straightforwardly.
To summarize the results for even N, we have

Sy <N2-1)
(eh — —qq' 1
(2e+e!) * e2 ]NfN_l}

74 ®’2‘q’ _ i(qzqe+e’)’
(e) S

(4.9)

where [x]y is the mod N reduction of x.

Fusion rule Z[e,m] ® /22\?6): Since ’L\[e,m] before gauging ZEM consists of two lines

exchanged under Z];M, after gauging ZEM the fusion rules Z[g,m] ® f?e) contains two

fusion channels which differ by a ZEM representation. This leads to the fusion rule

o~ Aq/
Liem ® Z(e 3+

(e+m+e’) ©® z:(e+m+e’) ’

¢ ==. (4.10)

Another way to argue for the sum of pops on the right-hand side is to notice that

(e+m+e’)
since L[e,m] can absorb a factor of K, the right-hand side must also be able to absorb a
factor of K. This can only be achieved by summing over the defects with and without
K stacked.
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Fusion rule f:’e) ® f?el,): The fusion rule f?e) ® f?;,) can be obtained from the fusion
rules derived in (4.4), (4.9), and (4.10). When N is odd, the fusion rules are

T4
£, ® E(e» =L}, ® () L] ~/) ® T
(N-1)/2

_ ‘1 T+ T

(N-1)/2
= L[(16q+e/) 2] @ L[e+e +n,e+e'—nj >

n=1
where in the second line, we used the commutativity of lines (since they are objects with

codimension higher than one). The ¢ appearing here is defined below (4.3) and similarly
for ¢’. When N is even, one obtains the fusion rules

Sq o wd
2o ®Fy)

~qq' ~qq' N/2-1 =
Ll O LU o aryn @ BT Lierers2emereyj2-n1 (e, ¢") = (even, even)
N/2—1~
@ /o Li(e+e!—1)/24n+1,(e+e'—1)/2—n] » (e, ¢') = (even, odd)
- N/2—1 5
®n /0 L[(e+e/7])/2+n+l (e+e’—1)/2—n] » (e, ¢') = (odd, even)

744’ - - =
L((e+e’)/2) @ L((e+e’+N)/2) ® EBn:O L[(e+e/)/2+n+l.(e+e/)/27n71] » (e, ¢') = (0dd, odd)
4.12)

The lines in the SymTFT of 7Y (Zy) form objects in the Drinfeld center of the fusion
category TY(Zy), i.e. Z(TY(Zy)). This center Z(TY (Zy)) has been studied in the
mathematics literature, see e.g. [64,65]. In particular, the explicit expressions of the
modular S matrices have been derived. In Appendix D, we collect the modular S matrices,
and use the Verlinde formula to verify the fusion rules above.

4.1.4. Example: SymTFT for TY (Z;) To illustrate the results we have obtained, let us
apply them to the special case of N = 2. We first discuss the SymTFT for a theory with
only Z, symmetry, which as described in Sect.3 is simply Z; gauge theory. There are
four invertible lines

L,0) < 1, Lo < e, Lo, < m, Lay < V. 4.13)

There is also a ZEM zero-form global symmetry, generated by the 2d surface defect Dgy;.
In the current case Dgy is obtained by condensing the i line on a 2d surface. There
are also twist defects obtained by condensing i on half of a 2d surface with Dirichlet
boundary conditions, and fusing with an appropriate invertible line in (4.13),

X) <> 0y, Yy <o . 4.14)

The notation given on the right-hand side of < is that used in [66,67]. By the results in
Sect. 3, the fusion rules among the lines and the twist defects are
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eQe=mm=yQQy =1,

em=1,
eRQY =m,
mey=e,
Y Qo4 =04,
YQ®o_=o_,

eRor=mOSoy =0_,
eRo_=mRo_ =2, ,
0+ Q0 =0_-Qo_=1D VY,
0, ®0_=0_Qor=edm. 4.15)
We now obtain the SymTFT for TY (Z,) by gauging ZEM. Upon gauging, we obtain
a quantum Zgl) symmetry generated by K. There are four line operators of quantum
dimension 1,

o~

Ly o+, Lo -)=K, L@+, Lo -, (416)

one line operator of quantum dimension 2,
Lio.1) <> [em] , 4.17)

and four line operators of quantum dimension /2,

h e (0nt) . To e on-), THe o, i e0.-). (418)
By the formulas given in this section, the fusion rules are found to be,

(1,9) ® (X,q) = (X.qq"), X=1.,y,0p0_

(I, q) ® [em] = [em] ,

W) ®W.q)=(U.qq") ,

W, q) ® (0+,4¢") = (01, £qq") ,

¥, q) ® [em] = [em] ,

(0+.9) ® (0+.4") = (I.q9") ® (¥, £qq")

(0+.9) ® (05.4) = [em],

(04, 9) @ [em] = (05, +) ® (0, —) .

[em]@[em]l=U,+) DU, —) D W, +) & (¥, —) . (4.19)

These fusion rules coincide with the ones given in [66,67], where it was further noted

that the fusion rules exactly match those of Ising x Ising, if we identify

Ly <1, U-)oam. @Hon, @G.-)oq. [em]lo NN,
@t N, (o) <N, (oD eN, (.-) <N,
(4.20)
This identification also matches with the expectation that the SymTFT should have
symmetry given by the Drinfeld center of 7Y (Zy ). Indeed, for a modular tensor category

(of which T'Y (Z;) = Ising is an example) the Drinfeld center is known to be the tensor
product of the original category with its orientation reversal.
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4.2. Twisted cocycle description. In Sect.4.1 we obtained the simple objects and fusion
rules for the SymTFT of TY (Zy). We now reobtain these results in a different way,
using an explicit Lagrangian description of the SymTFT. This in particular allows us to
give a concrete twisted cocycle description of all simple objects.

4.2.1. The action and restricted gauge transformations The starting point is once again
the Zy gauge theory in (3.1). We will find it convenient to symmetrize the two gauge
fields, and rewrite the BF theory (3.1) in the K-matrix form:

s=2 [aTUks 421)

=— | a a, .
2N

where a = (a, @) is a two-component cochain valued in Z, and K = o* 14 1n terms of
a, the ZEM symmetry acts as a — Ka. Beginning in the pre-gauged theory, the action is
as given in (4.21), and the line operators are as given in (3.7). We now attempt to gauge
ZEM. To do so, we must first understand how to couple the action (4.21) to a background
field C for ZEM.

The coupling to C can be achieved by promoting the cochain a to a ZEM—twisted
cochain. Let us begin by recalling this notion. A 1-cochain is most easily understood as
a link between sites on a lattice. Such a 1-cochain can be labelled by two indices o;;,
which label the lattice sites between which the link is stretched. In this index notation,
the usual cup product and coboundary operator are defined as

(@ U B)ijk = aijBjk » Ba)ijk = ajk — ik +oj . (4.22)

It is straightforward to check that 8> = 0. The gauge transformation @ — o + 8g in
index notation becomes

aij = i+ 8j i - (4.23)

For a Zy-twisted cocycle e;; with background C and matrix K, the twisted cup
product and twisted coboundary operations are defined as

(e Uc Biji = “inCijﬂjk , Bca)iji = K aj; — i +aj , (4.24)
and the twisted gauge transformation is given by
Olij—>0l,'j+KCijgj—gi; (425)

see Appendix B of [76] for more details. One can again check that 8% =0aslongas C
is flat. Intuitively, in the current context promoting « to a Z-twisted cocycle « means
that we take & to be a 2-vector, and allow the transition functions between patches to
include a matrix swapping the entries of «.

We may now write the action of (4.21) coupled to a background for ZIZEM as

SIC] / a’ Uc Kéca (4.26)
2N ’ '
where the integrand, in components, is

(a” Uc Ksca)  =al Ko (Kran —aji+az) . 4.27)

ij

14 we hope that the reader will not confuse the K-matrix here with the quantum line K defined above.
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ajr—K" aj

Cir—Cjr+

Fig. 25. The schematic form of ZIZEM gauge transformations. The background gauge field is C. The red and
green lines are Wilson lines of a, while the blue dotted lines represent the surface defects implementing the
ZgM transformation

It is a good exercise to verify that (4.26) is invariant under dynamical gauge trans-
formations (4.25). Details of this exercise are provided in Appendix C. The action is
furthermore invariant under background gauge transformations of C, which are given
by

Cij— Cij+wj —w;, a; > K “a;, g — K “g. (4.28)

The form of these transformations can be understood pictorially as in Fig. 25.

Since the action (4.26) is completely invariant under background gauge transforma-
tions, we may now gauge ZEM. To do so, we promote the background gauge field C to
a dynamical gauge field ¢, upon which the action (4.26) becomes

2
SSymTFT = % f a’ U.Ké.a+m / xUdc. (4.29)

The last term is a BF term, such that integrating out x enforces that ¢ is a Z; cocycle.
Because of the complicated dependence on c in the kinetic term, we see that ¢ is now
flat only on-shell. This means that the action is no longer invariant under (4.25), since
without ¢ being flat the first term in (4.29) transforms by

(SS — ;’_ﬂ (ng (KC,‘j+Cjk+Ck] _ Kcik+ckl _ Kcij+Cjk + Kc,'k) Kakl)
<%n (4.30)
+ 20 (@] K0 —ghKeu (ke — keing)

as follows from the computation in Appendix C. For generic g, this is non-vanishing,
and our action would seemingly not be gauge invariant. However, for g satisfying

(K%t —1)g, =0, 4.31)

the problematic term (4.30) vanishes. Thus as long as we restrict to gauge transformations
satisfying this constraint, the action is indeed gauge invariant. Note that this is a non-
trivial constraint on g only at points where ¢ is not flat. We will see below that this
constraint has a simple physical interpretation.
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4.2.2. Cocycle description of line operators We now give a cocycle description for all
of the lines identified in Sect.4.1.1. The combined gauge transformations (4.25) and
(4.28) take the form

a;; — K~ (aij +Kcijgj —g,-) , Cij > Cijtwj—wi, Xij —> Xjjt+n;—ni, (4.32)

with g constrained as in (4.31), and our goal is to construct the full spectrum of gauge-
invariant line operators.

Invertible Operators We first study the invertible operators. Begin by rewriting the line
operators (3.7) of the pre-gauged theory as!?

21
Lu(y) =& ¥ 2 neZyxZy. (4.33)
Under the gauge transformations given in (4.32), these lines transform as
La(y) — eizW” Yiey n? K =% (a; 1 +KLitl g —g;) ) (4.34)

For L, to be gauge-invariant, we must first remove the w; dependence from the right-
hand side, which means enforcing

n’K =n’ = n=(ee), ecZy. (4.35)

This immediately removes the g; dependence as well, since subject to this condition we
have

D o n KUK g —g) =n' ) (g —g) =0. (4.36)
i i
We thus conclude that the following line operators

o ~
Lie.oy(y) = & ¥ fye@ e=0,....N—1 (4.37)

are the only gauge invariant operators of this form.
There exist two other obvious invertible gauge-invariant line operators, namely

x() =™ hx K(y)=e" e, (4.38)

The line x () is naively not topological, since §x is not generically zero—this is because
c cannot act as a Lagrange multiplier due to its appearance in the kinetic term. The line
x (y) will reappear below in our analysis of non-invertible lines, but for the moment we
will ignore it. On the other hand, the line K (y) is topological, and is the generator of the
dual ZS) symmetry which we have already met before. Hence we conclude that there
are 2N invertible topological line operators ’L\?e) = L, and Z(—e) ‘=K Lc,e)-

Non-invertible Operators We now proceed to the non-invertible operators. The non-
invertible operators with quantum dimension 2 are the simplest to construct, and are

15 This definition of Ly is the same as the definition (3.7), as can be seen by using (3.10) together with the
fact that (y, y) is vanishing in (2 + 1)d.
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N *

Cijodit {]L}

Z[e,m] = Z exp 2mi Z (6(1 + ma)joyjl (r‘na + Fa) (ea + 7na)jn+1,jn+2

Fig. 26. The schematic form of /L\[e, m]- This definition effectively corresponds to insertion of L, ;1) @ L (1, ¢)
on each link

obtained by noting that alternating chains of ea + ma and ma + ea on links can be made
gauge-invariant by inserting appropriate factors of K. Concretely, the line

L =] Y eFlemkiiagm, (4.39)

J € j1€{0,1}

is gauge invariant. As shown in Fig.26, this intuitively corresponds to the insertion
of Le,m) ® Ln,e) on each link. There are %N (N — 1) distinct such operators. These
operators can absorb the line K, as follows from precisely the same argument as was
given in Sect.4.1.1.

We next consider the non-invertible lines with quantum dimension J/N. In fact,
searching for gauge invariant operators involving only a and ¢ does not turn up anything
new besides the operators identified above. We are thus led back to consideration of
the non-topological operator x (y) defined in (4.38). To understand this better, we may
begin by using the equations of motion of ¢ to obtain

1 e
88,763 ke = [8:8,7@" Ue (K = Ddea)ijue +8 38,52, K9 4 (K — Dage |

iivjj iivjj Ji“kj<ij
(4.40)
Note that the repeated indices are not summed over. In obtaining this, we used
.. ciitl o i
— K :=6:8. (KU — K)=6:6.7K(K —1) (4.41)

— 123 jj 123 //
Bcij

where the derivative with respect to the Z, valued cochain c¢;; is defined to be the finite
difference. Thanks to the factor of (K — 1), we see that 6x actually can be made to
vanish as long as a = @ at the location of the line. This condition is also physically
sensible, since x acts as a source of ¢ flux, meaning that traversing any cycle linking it
causes (a,a) — (a, a). Subject to this condition, the line x (y) becomes topological
and can be used to define the non-invertible lines of quantum dimension ~/N. We may
also stack with K (y) or L, o) to obtain

S0 = IH G Z)I X DLy DK @) T 8@ —-a), . (4.42)

Note that stacking with L, o) still gives something gauge invariant since a and a are

identified on the locus y. The factor of «/HO(y, Zy)| included here is such that we
reproduce the correctly normalized fusion rules obtained in Sect.4.1.1.
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To reproduce the results for parallel fusion identified before, we may first note that
the delta function above can be rewritten as'®

~ 1 2”’ f rMa—a) _ 1
S(a — = — —_— L, _ .
@ =D, = 556,z > ¢ T HYY Z)] Z =) ()

AeHO(y,Zy)
(4.43)
For e.g. N odd, we then note that
N 1 N 1
Y Lowy) = Z L —m(y) = L(O)(y)+ZL[nN aly) . (444)
nezy n:_Tl n=1

which allows us to reproduce the results for parallel fusion given in (4.11). The other
results for parallel fusion follow straightforwardly.

4.2.3. Trivalent junctions In addition to studying parallel fusion, we may also study
gauge-invariant trivalent junctions. Once one has all of the trivalent junctions, the parallel
fusion may be reproduced. This analysis is conceptually straightforward but somewhat
technical, and can be skipped on a first read.

To begin, consider Li) on a chain y with boundary. Such a configuration is not gauge
invariant under (4.25), but rather transforms as

~ =~ 27 (o oVl
L () = L, (y) el ¥ @o8lor (4.45)

However, this configuration can be made consistent if

e It ends on a point with other lines Lt /)(y) such that the total charge cancels.
e It ends on a locus with non-zero ¢ ﬂux
e A mix of the above.

The first of these allows for gauge-invariant junctions between three invertible defects
(e)(y) L(e,)(y) and L(e+e,)(y) we will write this in the notation

qu

(e+e’)

cli,® L(e,) , (4.46)

where we take the convention that L( ) and L7 )/) are incoming and L9 s outgoing.

(e+e))
The factors of ¢, ¢’ shown follow from the fact that, under ¢ gauge transformations the
lines K (y) transform as

K(y) — K(y) ™l (4.47)

and hence cannot end unless the junction point itself transforms under gauge transfor-
mations of c. When the junction point is invariant, as is the case here, there must be an
even number of K -lines. N Ny

Note that this is the only gauge-invariant junction between L?e) and L‘(Ie,). Indeed,

no Z[e, m] Or /276) can appear on the right-hand side: for Z[e,m] this follows from charge
conservation, while for f? o) this is because there does not exist a gauge-invariant endpoint

16 We assume y to be connected so that Ho(y, ZN) =
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for x (y), and hence any trivalent junction involving f;’e) must contain both an incoming

and outgoing 3. Because (4.46) is the only allowed gauge-invariant junction, we may
conclude that the local fusion rules are

Taq’'

) ® L(e,) Ligrery - (4.48)

The overall normalization is fixed by the fact that Z?e) is invertible, and hence has
quantum dimension 1. This reproduces the result in (4.1).

The second option above relies on the fact that, on a locus with non-zero ¢ flux,

we have (e, —e)g = 0 by the constraint (4.31). This gives rise to a gauge-invariant

configuration of L( ) ending on Ei aslongase = —e mod N.This happens whenever

N isevenand e = 2 , giving rise to the junction

&4
S0, C Ly, @S0, (4.49)

where ¢ = +qq’ depends on ¢’ being even/odd. This junction contains both an incoming
and outgoing factor of x (y), consistent w1th the fact that x (I) cannot end.
For more general e # N /2, the lines L ) cannot end on E alone but by the third

and E

-~

s+
option there can be a trivalent junction between L(e), @)

(2e+€’)?

Eq

(2e+e

,CLi® E(e) (4.50)

The sign ¢” must be fixed by checking if the junction point transforms under ¢ gauge
transformations. If not, then by (4.47) the K line cannot end and thus ¢” = gq’. On
the other hand, if the junction point does transform non-trivially, then the K line must
end, and we have ¢” = —¢qq’. Unfortunately, it is not clear to us how to understand this
aspect of the junction point in the cocycle description, so here we simply quote the result
from the analysis in Sect. 4.1,

y_ lad' {¢ €2Z)Ule' €2Z+1, 0 <[e+ T Iy < N/2—1)

451
-qq", -1 3D

These turn out to be the only junctions between Zq @ and f? ., and hence we may now

reproduce the fusion rules in (4.9). As we will see momentarlly though, these are not the
only gauge- 1nvar1ant junction involving two ok} (¢)» SO We cannot yet read of the fusion

rules for Z(e) ® Z
as

(- For future purposes though, let us note that (4.50) can be rewritten

L((e+e n2 © E(e) ® E(e’) ; (4.52)

for e+e’ even, being careful about the conventions for orientation of lines at the junction.

We next consider junctions involving L[e m]- To do so, let us first notice that the given
three curves y1, y2, 3 with the same boundary point dy;, we have the following shift
under gauge transformations,

Le.ny DL my(72) Ler mmy (v3)
— L(e m)()/l)L(c m’)(V2)L(e” m”)(y3)e N (ere! = mam—m’ )glay’ . (4.53)



Symmetry TFTs for Non-invertible Defects 1061

If the boundary is not located on a locus of non-trivial ¢ flux, then we conclude that
gauge invariant junctions must have

e+e —e¢’ =0 mod N , m+m' —m” =0 mod N, (4.54)

which leads to junctions of the form

o~

L[e+e/,m+m (e) ® L [e/,m'] - (4.55)

These are the only junctions involving L?e) and Zlegmr], and hence we determine the
fusion rules

L?e) ® L[E',m’] = L[e+e’,m+m’] , (4.56)
where the coefficient is again fixed by knowing that the quantum dimension of Z?e) is

1. One may similarly determine the fusion rules between Z [e,m] and Z [e/,m']-
On the other hand, assume that the boundary is located on a locus of non-trivial ¢ flux,
i.e. on an (ingoing) E @) Since there is no gauge-invariant endpoint for x (y), the third

(outgoing) leg in the trivalent junction must also be a E(e,,). In this case m’ = m” =0
and (1, —1)g = 0, so the condition for gauge-invariance is that

e+m+e —e¢’ =0 mod N . 4.57)

We thus obtain junctions of the form

534" 5 C Liem ® T,y - (4.58)

(e+m+e

Note that in this case the sign ¢’ is uncorrelated with g”, since as discussed in Sect.4.2.2
the line L [e.m] can absorb a K line. Hence for every pair of L[L m] and E @) there are
two possible gauge invariant junctions, with the outgoing leg being either bohs

(e+m+e’) or

’E\(_e ') The local fusion rules involve a sum over these possibilities, with the result

given by
o~ Aq/
L[e,m] ® E(e/) E(+e+m+e’) @ E(e+m+e/) (459)

We have now finally obtained the full set of gauge-invariant junctions, and can use

this to read off the fusion rules of fqe and f?e). First, being careful about orientation
of lines in the junction, we may rewrite (4.58) as

o~ q/
L[e ml] - E(e) ® E(e/) (4.60)
where (e, m/)) are the solutions, parameterized by n € Zy, to the equation
e, +m, =e+e mod N . (4.61)

This equation descends from (4.57) by appropriate relabeling and changing of orienta-
tion. The solutions are given by

+n,%e/—n) e+¢ even

(e my) = (A5 0, G —p) et ¢ odd, N odd (4.62)

(€+€2—1 +n, €+€2+1 —n)

e+e’

e+¢ odd, N even
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1 1
Txx = — E—
Ty %x Sy D X@

Fig. 27. Pictorial representation of entries of the S and 7' matrices. Note that Ty y is also denoted 6 (X) and
referred to as the spin

We may restrictton =1, ..., LNT*IJ to obtain the full set of non-redundant pairs.
The junctions (4.52) and (4.60) give the full set of gauge-invariant junctions involving

/

f?e) and i?e)‘ We may thus obtain the fusion rules by summing over these possibilities,
successfully reproducing the results in (4.11) and (4.12).

4.2.4. S-matrix elements We have now reproduced the fusion rules of Sect. 4.1 via both
parallel fusion and analysis of gauge-invariant junctions. Before moving on to higher
dimensions, let us briefly mention a third strategy towards obtaining the fusion rules,
which is to first compute the S-matrix elements and then utilize the Verlinde formula.
This is relatively straightforward in (2 + 1)d since the S-matrix element Sxy between
two line operators X and Y is given by the amplitude of the Hopf link shown in Fig.27,
up to an overall factor of the total quantum dimension

D:= |Y dy=2N. (4.63)
X

The Hopf link amplitude can in turn be obtained directly from the path integral. Unfortu-
nately, for the (4 + 1)d case this third strategy will no longer be viable, since there is not
yet an established analog of the S-matrix (though see [77,78] for work in this direction)
or of the Verlinde formula. Because of this, we will not give an exhaustive treatment of
this strategy, but only a flavor of it.

Begin by considering the S-matrix element between Z((f ) and Z‘ge,).
inserted on y and Z‘{e,) to be inserted on y’, such that link(y, ') = 1 as in Fig.27. The
action in the presence of these insertions becomes

T4
Take L © to be

R Ty, Ks.a+ [ Use+ 25 )7§ i1 ?g
= — a a+7 X C —e, e a—110 C
N Jy, e N g 84T
2
+—n(e/,e’)f a—ilogq/f c
N V' V'
2 T 2 ,
=" | alu.Kéa+m | xUSc+=— [(e. O, + (¢, €N, ] Ua
2N Ju, N Ju,

—iloggq % c—ilogq’ ‘(ﬁ c (4.64)
Y v’

where ), is the Poincaré€ dual to the one-cycle y and we takelogg = 0, iw forg = 1, —1.

We would now like to carry out manipulations similar to those used in Appendix A to
compute the braidings. Because of the complicated appearance of ¢ in the kinetic term
for a, this would at first sight seem impossible, but under certain circumstances it turns
out to not be a problem. Indeed, the S-matrix element Syy involves only the linking of
the lines X and Y, and hence as long as we are considering lines X and ¥ which do not
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act as sources for ¢, we are allowed to consider the link in a small patch of M3 in which
c is turned off. This means that the computation proceeds exactly as in Appendix A;
namely, we can focus on a patch Uz C M3 in which we have

~ 2 , 2 , .
§S=— alUda+ — (ewy +ewy)Ua+ — (ewy +e'w,) Ua,
U3 N U3 N U3

and integrating out a then gives

da = —(ew, +€'wy) . (4.65)

Defining M» such that dM, = ey + €'y’ and plugging back into the action then gives a
factor of

4 4
- Wnee’ link(y, y') = —Wnee/ ) (4.66)
We thus conclude that
1 i
ey = e R (4.67)
L(f)’L<e) 2N

We next consider the S-matrix element between Zt) and ’L\[e/,m/]. Since neither of
these is a source of ¢ flux, we may again focus on a region in which c is trivial. Using
Lig.m = L' 'y ® L 1), we see that the relevant S-matrix element is given by the
sum of amplitudes for the Hopf link between /L\é) and L 1y Or L,y ). Using the
general formula in (A.8), we conclude that

S+ ! 2j”e(c +m’) Le 27”6(‘ ') le‘_Zﬂe(e +m') . (4.68)
7 N

@ L = 2N 2N

Finally, the S-matrix element between /L\[e’m] and Z[e,,m/] can be easily computed, giving
rise to
= . 1 — 2T (o +me’) 2’“ (ee’+mm’)
MWWMzﬁ&N tem » (4.69)
All of the results so far match precisely with those identified in the math literature for
Z(TY(Zn)); see Appendix D and in particular (D.1) for a summary of those results.
Plugging them into the Verlinde formula (D.4), they also match with the fusion rules
obtained before.
We now turn towards the more difficult case involving =4 ©- These defects involve

x = e’ % and hence act as a source for ¢ flux. This means that our previous strategy
of evaluating the link in a patch with zero c is invalid. We will not try to give a complete
treatment here, but instead just note that a surprising amount of information about the
S-matrices can be obtained even without a deep understandmg of this complication.
Begm by considering the S-matrix element between L and the basic twist line

=V

poy) 0 ~ X X Klogd'/in 8(a —a)|, . The action in the presence of these insertions is given
by

27‘[ T . !/
S=— a U.Kéa+m xUdc+m @ x —ilogg c
2N Jms M; v’ v’
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25 )7§ i1 7{ +2”y§x( ) (4.70)
—(e,e)Ppa—ilogg ® c+ — a—da .
N Y Y N Y

where as before logg = 0,imw for ¢ = 1, —1 and X is a Lagrange multiplier field
implementing the delta function. To evaluate this, we first path integrate over x, which
restricts

S = —w,r . @71

As before, we may define M, such that dM, = y’, in which case ¢ = —PD(M»).
Plugging this back into the action gives a term log ¢ link(y, y’); note that there is no
term proportional to log ¢ since the unknot does not have self-linking. The amplitude

thus has an overall factor of €!°24!ink(».¥) — 4 When we consider the more general

twist lines f?e), we must also consider the linking between Z?e) and L0y, which by

. _mi,y .
(A.8) gives a factor of e v ¢¢' To summarize then, thus far we find

2 4 ke
S e e (4.72)
LSy~ 2N

This is almost the correct result, c.f. (D.1), up to an overall factor of \/ﬁ , which comes

from the quantum dimension of f" ©- Obtaining this factor would require a more careful
treatment of the path integral over a in the presence of ¢ flux.
Next, we consider the S-matrix between Z( ) and L[e/m/] In fact, in this case the

result is rather easy to understand. Because L[e m'l = Le,m) ® Ln,e), computing this
S-matrix element would involve summation over the Hopf link of E(j;) with L m),

together with the Hopf link of fi with L, ). However, both of these configurations
are not gauge invariant, and hence both correlators must individually VaIllSh Indeed,
because % () (V) acts as a source for ¢ flux on y, then traversing a cycle y’ with linking

link(y, y’) = 1 leads to exchange (a,a) — (a,a). Thus only the lines Le,m) with
e = m can consistenly wrap y’, and we conclude that SEi Ly, = 0, matching with
the known results given in (D.1).

Finally, let us briefly mention the S-matrix between fqg and f)qe/, . In this case the
naive considerations above are not enough to obtain the full form of the matrix elements,

but we can at least correctly predict that we should have S, &, qq'. This follows
(e)’ ()

since the x = ¢/™ ¢ ¥ of each line can link with the K'084/i7 = ¢logd f ¢ of the other. It
would be interesting to carry out this analysis more thoroughly.

5. Duality Interfaces in (3 + 1)d

Having introduced the relevant tools for studying duality defects in (1 + 1)d, we may
now proceed to the analogous discussion in (3 + 1)d. As before, we will first review
the construction of the duality interfaces/defects themselves, and then move on to the
construction of the corresponding SymTFT. Note that the fusion rules of duality defects
in (3 + 1)d have already been discussed in [21,22,24], though the discussion here will
be more explicit about the precise normalization and counterterms involved.
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ZX[X4<07B} ZX/ZN[XA%O?B]

(5.5)

[REET EEEEEEE PP

o

S

Fig. 28. The duality defect from gauging Zg\}) over half of the spacetime Xfo with Dirichlet boundary
condition

5.1. Duality interfaces from half-space gauging. We begin by considering a non-spin
QFT X in (3 + 1)d with an anomaly free Zg\}) one-form global symmetry, defined on a
closed four-dimensional spacetime X4. We denote the ZEJ) background gauge field as

B, and the partition function as Z y[X4, B]. Gauging Z%) gives a new theory X' /Zy,

_ |H (X4, Zy)| 3

T H (X4, 7
|H" (X4, N)|b€H2(X4’ZN)

[y, bB
Zx 7y X4, B] Zx[X4,ble NV X7, (5.1)

where B € H2(X4, Zy) is the background field of the quantum symmetry ZE\P after
gauging. The defect that generates this quantum symmetry is the Wilson surface of b,

n(o) = exp <% ?g b) . (5.2)

The denominator of the normalization in (5.1) comes from the volume of the gauge
redundancy, while the numerator comes from the volume of the gauge redundancies for

the previous gauge redundancies. It is straightforward to check that gauging ZE\}) twice
does not quite map the theory A" back to itself, but rather to the charge conjugate of X,
up to an Euler counterterm x [X4, Zy], where

|HO (X4, ZN)||H? (X4, Zy) || H* (X4, Zy)|
x[X4, Zn] = ; 3 .
|HY (X4, ZN) || H3 (X4, Z)|

(5.3)

This means that gauging Zg\l,) is, up to the Euler counterterm, an order four operation.
As in (1 + 1)d, we are allowed to redefine our gauging such that it is exactly order

four, which involves multiplying (5.1) by x[X4, Z N]_%. In this case the normalization

becomes 1/+/|H%(X4, Zy)|, and gauging twice maps the theory X exactly to the charge
conjugate of X'. We will however continue to work with the normalization (5.1).

Instead of gauging ZS) over the entire X4, one can gauge in half of the spacetime with
Dirichlet boundary conditions. This defines a topological duality interface A/ between
X and X' /Zy. We decompose the spacetime into two parts,

Xy =x;2ux7° (5.4)

where 8X420 = X3 is the interface. Depending on the situation, we sometimes also
include X3 in Xfo. Around the interface, the geometry is X3 x R, and we use the
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ZX/ZN[XanB} ZX[X4>O7B}

T R R EEEER—

2|

Zx[ X5, B] X[X70, Zy] 7t - Zx )7y [X7°,—B]

r=0

Fig. 29. Orientation reversal of the duality interface

coordinate x to parameterize R. The interface sits at x = 0, and we denote this locus by
M3]p. The duality interface is defined by specifying the theories on its two sides. The

theory X lives on X =0, while the theory X'/Zy lives on Xfo. A definition of the duality
defect is given in Fig. 28, where the theory on the right side X420 is

2mi
N Jxz0bB
X

CHYXTC, Mo, Zy)| 3

- Zx[XZ° ble
|HU(XZ°, Mo, Zy)| N

0
Zxzy1X5", Bl
beH2(X3, M310,Zn)

(5.5)

The Dirichlet boundary condition implies that the dynamical gauge field b is an element
in relative cohomology H2(X420, M3lo, ZN).

The orientation reversal of the duality defect is defined by exchanging the theories on
the two sides of Fig.28. This is illustrated in the upper panel of Fig. 29. By reorganizing
X to the left of the defect, we obtain an equivalent expression of A/ as shown in the
lower panel of Fig.29. Therefore we have

N =x[x:". zZy1"'C- NV, (5.6)
where C is the charge conjugation operator mapping B — —B.

5.2. Fusion rule of duality interfaces. We proceed to discuss the fusion rules of the
duality interface N defined in Sect. 5.1. In particular, we will find that \V is non-invertible.
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N
Zx X5, B]

Zx/zy [X4[O’€]7 BJ XIXTSZN)Y - Zajayjan | X5 —B)

I =~ 1-=~~17naanses |

T 0 T €

Fig. 30. Fusion of two duality interfaces. The partition function on X 204 given by (2.8)

The discussion here is somewhat technical, and the reader interested in only the answer
may skip to (5.14).

We first discuss the fusion rule  x A/. Since b has Dirichlet boundary conditions on
M3lo, i.e. b|p), = 0, the ZS) symmetry defect 7 is trivial on M3|g. This justifies

nxN=N. (5.7)

It is more interesting to study the fusion rules between two duality interfaces. We will
first consider N x AV, from which A/ x A/ can be derived using (5.6). The derivation is
similar to the computation in Sect. 2.2. We begin by placing V and A atx = Oandx = ¢
respectively, and let € — 0*. The two duality defects divide the spacetime X into three
regions, X4 = XIOUXA[‘O’E) UXfe. Since € is small, we always take Xgo,e) = M3 x1j,e).
The theories living on the three regions are as shown in Fig. 30. Instead of defining the
theories in the two regions to the right of A/ separately and discussing how to glue them

together along M3|, we will instead discuss the theory on Xfo all together. The theory
living on Xfo is given by

|HO(X3, M3lo, ZWIHO(XFE, M3, Zy)|
|HU(X3, M3lo, ZWIHY(XFS, M3le, Zy)|

2mi 2mi
B bB+t [ >c (b—B)b
N f}(}f)‘f) N fxf ‘

x[X7¢, ZN17!

x > Zx[X;°, ble
beHA(X3", M310,Zn)
beH* (X7 .M3le,Zy)

(5.8)

The techniques used to evaluate (5.8) are similar to those used to evaluate (2.8), and
hence we will only mention the main steps, highlighting new features.

To evaluate (5.8), the first step is to convert the sum over relative cohomologies to
absolute cochains by introducing additional 1-form cochains and BF couplings. This
gives
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(K€ Tl 1COXF°, Mslo. Zn)| |COXFE, M, Zy)| 1
4 » &N
ICLXF0, Malo, Zw)| ICH(XES, Msle, Zw)| |CH(XF0, Zw)I|CH(XFE. Zy)|
221 0o bB+EEL [~ (b—B)b
x > Z[X30, ple © I PR g

beC (X", Zy).beC2 (X7 Zn)
ueC (x3°,Zy),ieC! (X7, Zn)

2i 2i i ~oT i ~
udb+ ub It Sh+2ZL b
e N fx4>0 N fM3\0 t e N ijf uob+=y fM3\€ u ) (5.9)

We then integrate out b, u, and i subsequently. The final result is

LCUXTO, Malo, Za)IICOUX TS, M3le, Zi)IIC2(XFE, Zy))

X[X7.Zn1
ICHXT0, M3lo, ZWIICH (XS, M3le, Zn)|

2zi « bB
> Zx1X7 b+ Blyzcle " Ipe

0.
beZ? (XY MaloUM; |, Zy)

(5.10)

where b = B on X42€. Using the identity for cochains |C" (X4, M3, ZN)| = |C4 " (X4,
Zy)| as well as the analogue of (2.17),

IC"(XZ°, M3lo, Zy)| = |C"(XE), M3l U Male, Zw)|IC"(XZ, Zy)] . (5.11)

the normalization factors in the first line of (5.10) can be simplified to

S xl01 6B

1O Mslo U M3, Zy))| 3 .

0 >e
Zx[ X7, b+ M7 ]e
1/ v[0.€l 4 4
[CH (X4, M3)o U Msle, Zy)| beZ2 (X% MaloUMs e Zy)

(5.12)
Converting the sum back to cohomologies, we find the fusion rule
0,
N 7 2 HOE, Mslo U Ms e, Zy) 5 .
- 0
HIXG ) Mlo UM e Z) ooy
4 M3loUMsle, Zy) (5.13)

1
= > (),
[HOM, Zo)l |5

where LD stands for Lefschetz dual. The right-hand side is the condensation defect

[24] associated with 1-gauging of the Zg\}) one-form symmetry on a codimension-one
submanifold M3.
In summary, the fusion rules are

—_ 1
NxN= o N,
[HOM3, Zy)] 06H2<Zm,zm (5.14)

nxN=N, =1, N:)([XEO,ZN]_ICJ\/'.
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=0 =0 T=¢

Expand/ Shrink %
AANANANNAN 2hob

Zx[Xy, B (D(B)] %)

Fig. 31. A 3+ 1)d QFT & with Z;}) one-form symmetry can be expanded into a (4 + 1)d slab. The bulk is a

4+Dhd ZE\}) gauge theory, with the right boundary encoding the dynamical information of the (3 + 1)d QFT
and the left boundary being a topological Dirichlet boundary condition for the bulk field »

Note that the right-hand side of the first equation is the condensation defect of the
algebra made of n [24,27,79]. This is reminiscent of the fusion rules for the Tambara-
Yamagami category 7Y (Zy) given in (2.21), which in particular contained an object
whose fusion with its conjugate was an algebra made of invertible symmetry defects.
For this reason, we consider the fusion rules in (5.14) to be the higher-dimensional
analogues of the fusion rules for the Tambara-Yamagami category. The reason that we
have a condensation defect on the right-hand side of the first equation, as opposed to
the algebra object itself, is to match the dimensionality of the defects on both sides. To
better understand this higher-category, we now turn to the SymTFT.

6. (4 + 1)d Symmetry TFT for Zg\l,) Symmetry

In Sect. 5, we defined the duality interface A/ in (3 + 1)d and studied its (global) fusion
rules. In this section we study properties of the duality interface from the SymTFT point
of view. As in the lower-dimensional case, we will aim to classify the twist defects,
exhibit their relation with the duality interface upon shrinking, and derive their fusion
rules.

6.1. Zﬁj) gauge theory as the symmetry TFT. Suppose X is a (3 + 1)d QFT with an
anomaly-free Zg\}) global symmetry, whose partition function is Z y[X4, B]. In the cur-
rent section we will not assume that X" is self-dual under gauging ZS). It is always
possible to expand this theory into a (4 + 1)d slab, as shown in Fig. 31. The theory in the
bulk of the slabis a (4 + 1)d Z%) gauge theory with action

2

S=="1 bsb. (6.1)
N Jx

Both b and b are dynamical Zy valued 2-cochains. We will take the bulk to be the
product X5 = X4 X Ijo,) and will use the coordinate x to parameterize the interval
I10,¢1- The two boundaries are X4|, and X4 respectively.

The boundary conditions on the left (x = 0) and right (x = ¢) boundaries of the slab
are specified by appropriate boundary states. On the right boundary, the state is

X)= Y Zx[Xale, blIb). 6.2)
beH"(X4le.ZN)
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This state encodes all the dynamical information of the (3 + 1)d QFT &'. On the left
boundary, the state is

DBI= Y BG-B). (6.3)

beH>(X4l0,ZN)

Note that the background field dependence only enters at the topological boundary. By
shrinking the slab ¢ — 0, the partition function of the (3 + 1)d theory is reproduced by
the inner product of the two boundary states,

(D(B)|X) = Z Zx[X4lo, b18(" — B)(V'|b) = Zx[Xalo, Bl (6.4)
b.b'e H*(X4l0.ZN)
where we have used (b'|b) = §(b' — b).
Gauging ZS) of X in (3+1)d amounts to changing the topological boundary condition

on the left boundary from Dirichlet to Neumann. To see this, we define the Neumann
boundary condition as

0 .
|H"(X4lo, ZN)| ) (b|e2%fx4|0b3

(N(B)| = ; (6.5)

|H' (X4lo, ZN) beH X0 Z)

and check explicitly that
|H%(X4l0. Zn)|
W) = T HT Xl Z) 2
’ b.b'€H(X4l0.Zn)
%[x b'B 1

Zx[X4lo, ble 4o ™ (b b)Y = Zx 7,y [X4, B] . (6.6)

6.2. Extended defects in ZE\}) gauge theory. In this section, we consider the extended

defects in Zg\}) gauge theory that do not have topological boundaries. The operators with
boundaries will be discussed in Sects. 6.3, 6.5 and 6.7.

6.2.1. Fusion, braiding and higher quantum torus algebra of surfaces The Zg\l,) gauge
theory has N2 genuine topological surfaces, defined by

2mi 2mi
S = — @ — ‘% b(z) =9 S ,
(e,m)(0) exp( N iea )exp( N Um (e,0)(0)S(0,m)(0) 67)

(e,m)GZNXZN.

Above, o is a two-dimensional surface. The surfaces S(1 0y and So,1) together generate

a Zg\? X Zg\%) two-form symmetry in the bulk. From canonical quantization, we have the
commutation relations

S1.0)(@)S.1 (") = e 2T IN@ 5611 (67)S(1.0)(0) (6.8)

where (o, o’) is the intersection pairing between the two surfaces o, o’ within the four
manifold; see Appendix A for a derivation. Since o is two-dimensional, the pairing is
symmetric—this is to be contrasted with the case in (2 + 1)d, in which case the relevant
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pairing was anti-symmetric. The fact that the pairing is symmetric implies that we are
allowed to consider the self-pairing (o, o), which will be important below. Based on the
definition (6.7) and the basic commutation relation (6.8), one can derive the fusion rule

2mi
Ste.m)(0)S(e' m(0) = exp (Tme/(a, a)) Ste+e’ ,mam) (0) . (6.9)

We should view the phase exp (%me’(o, 0)) as a counterterm living on o. This is

related to the ambiguity in the definition of S ;) in (6.7). Indeed, one can instead
define S, ) (o) in the opposite order as S, ) (0)S(,0) (o), which differs from (6.7) by
a phase exp (—2mwiem /N (o, o).

Combining (6.7) and (6.8), we also have the commutation relation between arbitrary
two surfaces S ) (0) and (e ) (07),

/ 2mi ’ / / /
S(e,m)(G)S(e’,m’)(a ) = exp <_T(6m —me )(G, o )) S(e’,m’)(a )S(e,m) (U)
(6.10)

and the higher quantum torus algebra
, 2mi , ,
Ste,m)(0)S@e,m)(0") = exp Tem(a, o)) See,my(o+0'). (6.11)

The o and o’ in these equations can be either local patches of surfaces or entire surfaces
without boundary.

6.2.2. Z4EM symmetry and co-dimension one condensation defect in (4 + 1)d Just as the

Zy gauge theory in (2 + 1)d had a ZEM symmetry, so too does the Zg\l,) gauge theory
(6.1) have an electro-magnetic exchange symmetry. The symmetry is defined by acting
on the gauge fields as

b — Db, b— —b, 6.12)

and thus acts on the invertible surface operators as

2i
Se.my (@) = S0,6)(0)S(—m,0)(0) = exp <_Tem<a’ 0>> S—m,ey(@) . (6.13)

This operation leaves the action (6.1) invariant on a closed 5d manifold. The group which
the operation (6.12) generates depends on the value of N. When N > 2, it generates Z4EM.
Moreover, the square of (6.12) generates the charge conjugation symmetry, transforming
both b and b by a minus sign. When N = 2, since the charge conjugation transformation
is trivial, (6.12) generates ZIZEM.

Like the ZEM symmetry in (2 + 1)d for which the corresponding surface was a
condensation defect, the ZZ:M symmetry generator in (4 + 1)d can also be constructed as
a condensation defect. The intuition is analogous to that in Fig. 10. As shown in (6.13),
when a surface S ;) intersects the 4d defect Dgy from the left, an operator S(_;, ¢)
intersects the 4d defect Dgy from the right (up to a phase to be specified later). Using
the folding trick, we see that the surface S(esm m—e) = Sf?‘efl) ® S(@]’ﬁ) can be absorbed



1072 J. Kaidi, K. Ohmori, Y. Zheng

into the 4d defect for arbitrary e, m. This implies that the defect is now a condensation
of two species of surfaces, with charges

1, -1, 1,1). (6.14)

This should be contrasted with the defect (3.13), for which there was only one species
of defect condensed.
The two types of surfaces generate different higher form symmetries depending on the

value of N. When N is odd, the surfaces S(;, 1) and S(; 1) generate a Zﬁ) x ZE\%) two-form
symmetry in the bulk, or a ZE\}) X Zg\i) one-form symmetry on the worldvolume M4 of the
defect Dgy. When N is even, because of the identification S(y /2, —n/2) = Sv/2,n5/2), the
surfaces S(i,—1) and S(1,1) generate a (Zg&) X ZE\%)) /Z two-form symmetry in the bulk,
ora (ZE\P X Z%)) /Z» one-form symmetry on the worldvolume of the defect M4. When
N = 2, the two surfaces coincide, and generate a Zg) symmetry on My. In summary,
the symmetries generated by the surfaces in (6.14) within the worldvolume of the Z4EM

defect are

zy <z

oddN: 2 x 2z, N=2:2Z], evenN>4: - N 615

With the above intuition, we now give a precise definition of the Z4EM condensation
defect on a 4d manifold M4. When N is odd, the condensation defect is

|HO (M4, Zn)|? 3

Ol 7 N2
|H (M4, ZN)' 0,0’ €Hy(My,ZN)

Dgm(My) =

2o
exp (%((0’7 o—/> + (o, g’))) S(l,—l)(U)S(l,l)(G/) . (6.16)

When N = 2, the condensation defect is

|HO (M4, 7)| 3

1
|H' (M3, Z)| o0 Z)

Dem(My) = S.0)(@)So.1) (0 +[wiM]) . (6.17)

When N is even and N > 4, the condensation defect is

|HO (M4, (Zn x ZN)/Z2)| Z
|H (M4, (Zn x ZN)]Z2))

Dpm(My) =
(0,0")eHy(Ma,(ZN XZN)/Z2)

2mi ;. ,
exp <T((G ,0) + (0,0 >))
N ™ /
X 5(1,—1)(0)5(0,1)(5[11)2 DSa,na’) . (6.18)

We relegate the derivation of these condensation defects to Appendix E, but will comment
on a couple of interesting features which are new compared to the ZEM defectin (2+1)d
Zy gauge theory:

1. The defect depends on the parity of N. Summing over surfaces on M4 amounts to
1-gauging of Zg\?) X Zg\%) for odd N, and 1-gauging of (Zﬁ) X Zg\%))/Zz for even N.
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2. In contrast to the condensation defect in (2 + 1)d Zx gauge theory, for which there

was no discrete torsion due to H2(BZy, U (1)) being trivial, in the (4+1)d ZE\}) gauge
theory we are allowed to include discrete torsion when constructing the condensation
defect. In fact, it turns out that the discrete torsion as shown in (6.16) is required in
order to produce the correct fusion rules between S, ;) and Dgy. Furthermore, the
discrete torsion depends on the ordering of the surfaces. According to (6.10), moving
Sa,n (o) to the left of S(1,-1)(0) produces an additional phase exp (—% (o, a’)).

The fusion rules involving the defect Dgym (M4) can be worked out by using the definitions
(6.16), (6.17), and (6.18), as well as the properties of the surface operators (6.9), (6.8),
and (6.11). The fusion rules are found to be

2mi
S(e,m) (1) DEM(M4) = exp (—Temﬁ, T)) DeM(M4)S(—m,e)(T) ,

N=2: Dpum(My?*= x[My, 7], (6.19)

N=>3: Dpm(My)* = x[Ms, GI*Zy[Mas, GT*.

For the third line, the group G is given by (6.15). Here x [M4, G]is the Euler characteristic
of My defined in (5.3), while Zy[M4, G1] is the partition function of an invertible TQFT
defined in (E.39). Concretely, for odd N one has G = Zy x Zy and the invertible TQFT
Zy[Ma, Zy xZN] := Zy[My, Zn1? where Zy[ My, Zy]is givenby (E.11). For N = 2,
one has G = Z, and we don’t include any invertible TQFT. Finally, for even N and
N > 4,onehas G = (Zy X Zy)/Z», and the invertible TQFT Zy[Ma, (Zn X ZN)]Z»]
is defined as in (E.39).

The first fusion rule in (6.19) is exactly as expected from (6.13). The last two fu-
sion rules in (6.19) confirm that the condensation defect Dgy is an invertible defect,
generating a ZEM symmetry for N > 2 and a ZEM symmetry for N = 2.

6.3. Twist defects and their fusion rules for odd N. We next discuss the twist defects in

4+ 1)d ZS) gauge theory. Since the cases of odd N, N = 2, and even N for N > 4
differ significantly, we will treat them separately, beginning with the case of N odd.

6.3.1. Twist defects as higher duality interfaces Asin (2+ 1)d, twist defects are defined
by placing the Z4EM symmetry operator Dgy defined in (6.16) on a manifold M4 with
boundary M3 = 9dMy, with Dirichlet boundary conditions imposed on M3. We first
define the “minimal” twist defect as

|HO(My, M3, Zy)|? 3

1 2
|H' (M, M3, Zy)| 0.0 Hy (Vs Za)

i
exp <%((o/’ o'} + (o, g/))> S(l,—l)(G)S(L])(g/) . (6.20)

Voy(M3, My) =

Let us point out that, despite the fact that we have a boundary with Dirichlet boundary
conditions, the sum is still over elements of absolute homology, not relative homology,
as would be the case if we were working with cohomology.!”

17 27i/N [ b 2mi/N [,

Indeed, by rewriting the surface operator as S 1)(0) =
27i/N [y, boUb 27i/N [y, boUb . .
e 7i/N Juy bo e 7i/N Juy bo where by is the Lefschetz dual of o on My, summing over the surfaces o
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The Dirichlet boundary conditions mean that the surfaces S(,+1)(t) for t € Hy(M3,
Zy) can be absorbed by fusing with the twist defect V(o) along the boundary M3,

S1,-1) (W) Vo) (M3, My) = V(o) (M3, My) , Sa,n (T Vioy (M3, M) = Vioy (M3, M) .
(6.21)

For the two conditions above to be compatible, it must be the case that the phase
exp(4ri/N(t, v’)) coming from exchanging the order of S¢;,—1)(r) and S 1)(z/) is
trivial for any 7, ' € Hy(M3, Zy). This means that the intersection pairing must be
trivial mod N. To justify this, we note that M3 is the boundary of My, and that one
can regularize the intersection between t and t’ within M3 to be an intersection be-
tween 7 in M3 and t’ in M}, where M} is obtained by parallel transporting M3 along
the direction orthogonal to M3 into M4. This ensures that M3 and Mé do not share a
common submanifold, and thus implies that (z, /) = 0. Since the intersection pairing is
between elements in homology, and since the regularization prescribed above amounts
to choosing different representatives within the same homology class, we conclude that
the pairing always vanishes. This justifies the simultaneous validity of the two equations
in (6.21).

Using (6.21), we further find that there is only one type of twist defect. To see this, we
fuse an arbitrary surface S ) (7) with V() (M3, My4). Noting that we may decompose

SKI)(T)Sa)(T) , e+me2Z
Ste,my(T) = o o 6.22)

Saly (OSy i (O, etme2Z+1

where we have used (r,7) = 0 mod N for t € Hy(M3, Zy), we find that V(o) can
absorb arbitrary S ) (7) under fusion.
We define the orientation reversal of V(g to be

|HY(My, M3, Zy) y
|HY (M4, M3, Zy)|?

2mi , ,
> exp (—7«0, o)+ (0,0 >>) Sa.1y(=0")Sa. 1) (—0)

0,0'eHy(My,Zn)

V(o) (M3, My) =X[M4ZO, Zy x Zy17!

(6.23)

where the right-hand side is, apart from the Euler counterterm, the Hermitian conjugate
of V(o). The inclusion of the Euler counterterm is motivated by (5.6). As shown in
Appendix E, including the same Euler counterterm in the orientation reversal of Dgym
ensures the expected behavior DpmDeym = 1.

Since the twist defect is defined to be the higher gauging of a two-form symmetry
along half of the codimension-one submanifold M, of the spacetime with Dirichlet
boundary conditions on M3, it can be interpreted as a higher duality interface.

amounts to summing over 2-cohomologies b . The Dirichlet boundary condition means that b, takes value in
relative cohomology H 2 (M4, M3, Zy). By Lefschetz duality, o takes value in standard, absolute homology
Hy(My, Z ). Similar statements hold for o”.
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6.3.2. Fusion rules of the twist defects We now discuss the fusion rules involving twist
defects for N odd.

Fusion rule S ;) x V(0): As discussed in the previous subsection, any simple surface
operator S, ;) can be absorbed into the twist defect V), and hence we have the fusion
rule

Ste,m) (T) x Vioy(M3, My) = Vio)(M3, My) . (6.24)

Fusion rule V) x V ): More interesting is the fusion rule between two twist defects.
For simplicity, we first consider V(g) x V(o). It is useful to again specify the geometry
near the boundary of M4 as M3 x R, and to use the coordinate x to parameterize the
direction orthogonal to the boundary. We take V/q) to be on M 420 and V (o) to be on M <.
From the definition of the twist defect (6.20) and its Hermitian conjugate (6.23), we find
that

LIHY MY, M3lo, Zy)

Vio)(M3, Mg) x V(o) (M3, My) = x[M;€, Zy]
|H' (MO, M3)o, Zy) 2

|HO(MF€, M|, Zy)?
|HY (M€, M3le, Zy)|?

2mi
x > exp <T((o/, oY+ (o,0V+(c+0', 7))+ (0 — 0o, r)))
0,0’ ,eHy(M;" Zy)
1,7, e Hy(M7€,Z)

Sa.—1(e)Sa.1(c’) . (6.25)

To evaluate this expression, we apply steps similar to those in Sect. 5.2, upon which the
above expression simplifies to

0,
|HO(M ), M3l U M3, Zy))? 3
1 [0,€] 2
| MP Malo UMl 2P oo

S
exp (%(a’, 0’)) Sa.0 (@ +0)S0.1y (0" —0) (6.26)

which is exactly the result one would obtain by placing the Dgy defect on an interval

M 4&0’6] >~ M3 x Io,¢], with Dirichlet boundary conditions on both sides. Note that on
the interval, the intersection pairing (-, -) is trivial, which also holds when shrinking the
slab to M3. After making a change of variables o + 0’ — p’, 0’ — 0 — p (which is
possible for odd N), the fusion rule then simplifies to

— 1
Vioy (M3, M) x V) (M3, M) = —5————— Z 51,0 (0)Sw0.1)(p) -
|HO (M3, Zn)1=
p.p'€Hy(M3,ZN)
(6.27)

Fusion rule V(o) x V(q): We next consider the fusion between V(g and itself, with both
defined on M 420. Taking the square of (6.20), we find

2
>0 4
|HO (M, M3lo, Zy)| i
Vioy(M3lo, M%) x Vio)(Mslo, M7°) = 1 420 4 > e
|H (M4 , M3lo, Zn)| teHy(My,ZN)
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o
X Z exp (%(—(a,a)+(a/,a/)+2(a,a’))> Sa,—n(e" —0)Sa, (0’ +0)
o,0'€eHy(My,ZN)

LI HOME Mso. Zy) 2
|HY(MF°, M3lo. Zy)|?
2mi , ,
> exp (TZ(U,O >> S1.0)(26")S(0.1(20) (6.28)

o,0'€eHy(M4,ZN)

=XM%, ZN1ZyIM7°, 2]

where we define Zy [Mfo, Zn] for an open Mfo to be

HO MZO,M ,Z .
2y IM7°, 2] = (70, 2y e Malo: 2 e
|HY (M, M3lo, Zy)|

teHy(M7°,Zy)
(6.29)

Although Zy is an invertible TQFT on a closed manifold, Zy is no longer invertible on
an open manifold. Equation (6.28) is precisely the charge conjugation defect (E.15) on

M7 ie. (M),

6.4. Duality defect in (3 + 1)d from twist defects in (4 + 1)d for odd N. Still restricting
to N odd, we now insert the extended defects into the (4 + 1)d slab and examine their
fate upon shrinking the slab. We will find the following correspondence,

Twist defect V(g) «<—> Duality interface N
Magnetic surface S, 1) <~— Z%) symmetry defect n (6.30)

Electric line S¢1,0) <— Z%) Order parameter L

6.4.1. ZS) symmetry defects and order parameters from bulk surface operators When
inserting a surface operator S, ) into the (4 + 1)d slab, one can either place the surface
parallel to the boundary X4|g, or with one of its directions orthogonal to the boundary.
Because of the Dirichlet boundary conditions of b, i.e. b|x,|, = 0, the electric surface
S(1,0) can either end on the boundary perpendicularly, or be absorbed into the boundary
when parallel to it. Thus upon shrinking, the only way for it to survive as a non-trivial
operator is to place it orthogonal to the boundary, with one of its boundaries terminating
on the Dirichlet boundary and the other terminating on the non-topological boundary.
As a consequence, S(1,9) becomes a non-topological line operator, which can act as the

ZY order L
N parameter L.
On the other hand, the magnetic surface S, 1) survives upon shrinking, and becomes

the ZEJ) symmetry defect 1 in the (3 + 1)d QFT X. The n surface can link with L on X4
and produces a nontrivial phase measuring the charge of L.

6.4.2. Duality interface from the twist defect We can also insert a twist defect V(g into
the (4 + 1)d slab. Like in (2 + 1)d, colliding the Dgy defect with the Dirichlet boundary
yields Neumann boundary conditions. Hence colliding a twist defect with the Dirichlet
boundary yields an interface between X and X' /Zy; see Fig.32.
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Zx|B] =0 T =€
Expand/ Shrink %ﬂb&b
N ANNNNNNS
Zxyzy|B] (D(B)] |X)

Fig. 32. A (3+ 1)d QFT X with Zﬁ\}) one-form symmetry and another (3 + 1)d QFT X'/Zy with a quantum
ZS) one-form symmetry are separated by a topological interface V. This setup can be expanded into a (4+1)d

slab. The (4 + 1)d Zg\}) SymTFT has an insertion of a twist defect parallel to the Dirichlet boundary

To reproduce the fusion rules of duality defects (5.14) from the twist defects, let
us first consider the collision of the twist defect with the Dirichlet boundary condi-
tion.'® The Dirichlet boundary condition of the dynamical field b of the SymTFT means
that b in S¢1,0(7) = e2m/N J:b is valued in relative cohomology H2%(Xs, X4, ZN).
To integrate such b on a two-cycle 7, the two-cycle t should be in relative homology
H> (X5, X4, ZN). Moreover, when 1 lives on the boundary M3 of a twist defect, we re-
quire T € H>(M3, Zy). Hence upon moving the twist defect onto the Dirichlet boundary,
7 is restricted to lie in

Hy(M3, Zy) N Hy (X5, X4, Zy) . (6.31)

Since after colliding the twist defect with the Dirichlet boundary condition we have M3 =
oMy C X4 = 0Xs5, it follows that 7 is relative to itself, i.e. T € Hy(M3, M3, Zy) = @.
This fact will be important below.

Returning to the fusion, the fusion rule n x ' = A clearly follows from (6.24).
Concretely, bringing the operators to the Dirichlet boundary we have S,y — 1 and
Vo) = N, and hence (6.24) immediately leads to the desired fusion rule.

More interesting is the fusion rule of two duality interfaces N x N, which should
descend from (6.27), which we reproduce here for convenience,

— 1
Vioy (M3, My) x V) (M3, My) = —o———— > 51,000 S0.1)(p) -
|HO (M3, Zn) 1>
p.p'€Hy(M3.ZN)

(6.32)

Upon colliding the twist defect with the Dirichlet boundary, o’ should be valued in
the relative homology of M3 with respect to itself as discussed above, meaning that
it is trivial. We should also change one of the normalization factors to be in relative
cohomology. The above fusion rule then simplifies to

_ 1
N x N = Sa1.0)(0)S0.1)(p)
|HO(Ms, Zy)||HO (M3, M3, Zy))| 2 (L0200
peHy(M3,ZN)

o' €Hy(M3,M3,Zy)
18 we emphasize that there are two Dirichlet boundary conditions appearing in the current discussion. One

is the Dirichlet boundary condition for [¢'] and [o'] on the boundary M3 of the twist defect, while the other
is the Dirichlet boundary condition for the gauge field b in the ambient SymTFT.
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1
=— So,1(p)
HOM 7, Z (0,
|H® (M3, N)|peH2(M3,ZN)

1
=———— > . (6.33)

HO(M5,Z
|H° (M3, N)|peH2(M3,ZN)

This reproduces the results given in (5.14).

6.5. Twist defects and their fusion rules for N = 2. We now proceed to a discussion

of twist defects in (4 + 1)d Zx) gauge theory for N = 2. Because the discussion is
parallel to that in the previous subsection we will be brief, mainly just emphasizing the
differences. The busy reader may wish to skip directly to Sect. 7.

6.5.1. Twist defects We begin by defining the minimal twist defect by placing the Z5M
symmetry defect Dgy defined in (6.17) on an open 4d manifold M4, with Dirichlet
boundary conditions on M3 = M4,

|HO (M4, M3, Zy)| Z

Vioy(M3, My) =
© |H (Mg, M3, Zy)|

Sa.1) (@) S ([wi M. (6.34)
oeHy(My,Zy)

Above, [sz Mle H 2(M4, Z») is the Lefschetz dual of the second Stiefel-whitney class
sz McH 2(M4, M3, Zy). Note that w2T M is trivialized on M3 by a spin structure, and
hence V(o) depends on the presence of a spin structure. Since the defect has Dirichlet
boundary conditions on M3, the surface S, 1)(t) for T € Hy(M3, Z) can be absorbed
by V(9), giving

Sa,n (@) Vioy(M3, My) = Vo) (M3, My) . (6.35)

On the other hand, since S(1,0)(7) and S(o,1)(7) do not belong to the condensate, fusing
them with V(o) on the boundary produces a new twist defect,

Vay(t, M3, My) := S1,0)(7) Vioy(M3, My) = S0,1)(7) Vioy(M3, My) . (6.36)

Note that fusing V(o) with S 0y(t) and S,1)(7) yields the same defect, because they
differ by a phase (— 1)(”> which vanishes for t € Hy(M3, 7Z); c.f. the discussion below
(6.21). The presence of multiple twist defects here should be contrasted with the case of
N odd. Moreover, we note that V(1) depends explicitly on 7, and hence it is best thought
of as a surface operator living inside M3, which is in turn the boundary of M.

The orientation reversal of V(g is given by

0
| [H (My, M3, Zy)| 3

Vo) (M3, Ms) = x[Ms, Zr]~
© |H (M4, M3, Zn)|

Sa.1(@)S.1) (ws ™) (6.37)

o€ty (My,Z2)

which is precisely the same as placing the orientation reversal of the ZEM defect (E.25)
on half of the space.
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6.5.2. Fusion rules of the twist defects We now discuss fusion rules involving the twist
defects for N = 2.

Fusion rule: S ;) x V(.): The fusion rule between a surface operator and a twist defect
follows almost by definition,

S(e,m)(T) X Viery (T, M3, My) = Vie—pmsen (T, M3, My) . (6.38)

When e — m + ¢’ = 0 mod N, the right hand side is independent of the surface t.
Fusion rule: V(o) x V ): We further consider the fusion between two twist defects.
Since all variants of twist defects can be obtained from the minimal one by fusing a
surface operator, it suffices to only discuss the fusion rule for the minimal twist defect
V(). From (6.34) and (6.37), we compute the fusion to be

Vioy(M3lo, Mfo) x V(o) (M3le, M7€)
LHOWMEY, M3, Zo)| [HO(MTS, M3, Zo)]
|HY (MY, M3lo, Zo)| |H (MFS, M3le, Zo)|

Yoo s ). (6.39)

oeHy(M7" 7))
o' eHy(M5€ . Z)

= x[M7€, 7]

here we have used the fact that w2T M on Mé[‘o’e] = M3 x Ijp,) is always trivial.1?
Simplifying the above expression in the way done in previous subsections, we obtain
exactly the ZIZEM topological operator on an interval M, 4[10’6] with two Dirichlet boundary
conditions, which can be further simplified to

— 1
V() XV() = 51,1(0).

Using the relation V(o) = x[Ma, Z»] - V (o), the fusion rule for Vg, x V(o) can also be
obtained.

6.6. Duality defect in (3 + 1)d from twist defects in (4 + 1)d for N = 2. Still restricting
to N = 2, we proceed to insert the extended defects into the (4 + 1)d slab and examine
their fate upon shrinking the slab. We will find the following correspondence,

Twist defect V(,) <— Duality interface N
Magnetic surface S, 1) <~— Zg) symmetry defect n (6.41)

Electric line S(,0) <— Zg) Order parameter L

19 This is because sz M is always trivial on any 3d oriented manifold, i.e. they are all spin manifolds. It

1

follows that the product space MAEO’E is also spin.



1080 J. Kaidi, K. Ohmori, Y. Zheng

6.6.1. Zgl) symmetry defects and order parameters from bulk surface operators We first
consider inserting a surface operator S, into the (4+1)d slab. As before, by placing the
surface operator along different directions, we obtain different operators upon shrinking.
Summarizing the results,

1. The surface operator S(; ) can terminate on the boundary orthogonally or be absorbed
into the boundary parallelly. Hence upon shrinking, it survives as a line operator L,

which is the order parameter of the Zg) one-form symmetry of the (3 + 1)d QFT X.
2. The surface operator S(o,1), when placed parallel to the boundary, survives upon
shrinking. It becomes the symmetry defect n for the Zg” one-form symmetry. The

surface 1 can link with L with a nontrivial phase, which measures the Zg) charge of
L.

6.6.2. Duality interface from twist defects We can also insert a twist defect into the
(4 + 1)d slab, giving the configuration shown in Fig.32. We again find that the twist
defect in the (4 + 1)d bulk becomes a duality interface upon shrinking. Moreover, thanks
to the Dirichlet boundary conditions of the SymTFT, the resulting duality defect is
independent of the type of the twist defect,

N (M3, My) = Vi (t, M3, M4)|x—0 , e=0,1. (6.42)

In other words, there is only a single type of duality interface.

It is interesting to see how the fusion rules of the duality interfaces are reproduced
from those of the twist defects. We start from (6.40) and collide the defects in the fusion
rule with the Dirichlet boundary condition, which amounts to replacing Vo) — N,

V(O) — N, and Sa,no) — 1(0).2° The fusion rule (6.40) then simplifies to

— 1

oeHy(M3,Z)

The right-hand side is exactly the condensation defect associated with higher gauging of

Z(Zz) one-form symmetry on a codimension one defect M3. This agrees with the results
of (5.14).

6.7. Twist defects and fusion rules for even N and N > 4. We finally discuss the

remaining case, namely twist defects in (4 + 1)d Zg\l,) gauge theory with even N and
N > 4. This proceeds as before, and the busy reader may wish to skip directly to Sect. 7.

20 One may wonder about the subtlety of absolute versus relative homology discussed around (6.31). Note
that S¢j,1y(0) = ¢ Jo U*b Because b obeys Dirichlet boundary conditions while iz\obeys Neumann boundary

conditions, the sum b +bis still Neumann, and hence o is still in absolute homology. The same comment also
applies to the fusion rule of duality defects in (1 + 1)d in Sect.3.4.
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6.7.1. Twist defects We start by defining the minimal twist defect by placing the ZEM
defect (6.18) on an open 4d manifold with Dirichlet boundary conditions

|HO(My, M3, (Zn x ZN)/Z2)]
|H(My, M3, Ly x Zy)/Z2)|

o
y ) exp (%((o/, o'y + (o, o“))) (6.44)

(0,0")eHy(M4,(ZN XZN)/Z2)

N
Sa,-1(0) Sw,1) (3[w2TM]) Sa.n(o’) .

Vioy(M3, My) =

The Dirichlet boundary conditions for o, o’ imply that fusing Sa,+1) () with (z, ') €
Hy (M3, (Zn X ZN)/Z3) does not change the twist defect,

Sa.—n (@) Voy (M3, Mg) = Vioy(M3, Ms) . Sa,1)(T")Vioy(M3, My) = Vi) (M3, My) .
(6.45)

The two conditions can be simutaneously satisfied for the same reasons as given below
(6.21). Moreover, by sequentially fusing with either S(; 1y or S(1,—1), a surface operator
with arbitrary charge can be decomposed as

S (DS, (D) S
S(e,m)(f) = (1’ b ef()l);fl% e+m—1 (646)
Sa,0 @S 2y 5 (1) e+me2Z+1

Hence as in the N = 2 case, there are two types of the twist defects, V() and V(y),
defined as

Vay(t, M3, My) = S1,0)(t) Vo) (M3, My) . (6.47)

When e+m is even, fusing S(, ) (t) with the minimal twist defect V() (M3, M4) does not
give rise to a new operator, while when e +m is odd fusing S, ) (t) with V() (M3, M4)
yields V(1) (T, M3, My).

We define the orientation reversal of V(o) as

L IHO My, M3, (Zy x Zy) 7))
|H'(My, M3, (Zy x Z.5)/ )]

i
X Z exp (—%((0, o)+ (o, O'/))> (6.48)

(o,0")e
Hy (M4, (Zn XZN)[Z2)

N
x S, 1(=o") Swo,-1) (E[szM]) Sa,—n(=o),

V) (M3, Ms) = x[Ma, (Zn x Zn)/Z]

which is precisely the orientation reversal of the ZEM defect (E.50) on an open 4d
manifold.
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6.7.2. Fusion rules of twist defects We now discuss fusion rules involving the twist
defects for N even and N > 4.

Fusionrule S ;) x V(./y: The fusion rules between a surface operator and a twist defect
are a straightforward generalization of those for N = 2. When both of them depend on
the same 7, we have

S(e,m)(T) X V(1) (T, M3, My) = V(je—mre']y) (T, M3, My) (6.49)

where [e], = ¢ mod 2.

Fusion rule V() x V (g): We next consider the fusion between two twist defects. Without
loss of generality, we only discuss the fusion between minimal twist defects. From (6.44)
and (6.48), the fusion V(o) ® V () is exactly the ZEM topological defect on an interval
with Dirichlet boundary conditions on both sides,

Vo) (M3lo. M7%) x V) (M3le. M)
_HO MY M3lo U M|, (Zy % Zy)/Zo)]
|H' (ML), M3l U M|, (Zy x Zy)/Z0)|
i
x 3 exp (%((a/, o'y + (o, a/)))Su,fl)(a)su,l)(a’), (6.50)

(0,0")e
Hy(MP ) (Zy xZy)/Z2)

where we have used S(o,l)(%[wZTM]) = 1 on M3 x I. The sum can further be reduced

to one over M3 by using Hz(Mz[LO’e], G) = Hy(M3, G), which also allows us to drop the
phase in the sum. This gives
1
|HO(M3, (Zn x ZN) /7o)
Z S(l,o)(0+o’/)S(0y1)(U/—U).

(o,0")e
Hy(M3,(ZNXZN)]Z2)

Vioy(M3, My) x V(o) (M3, Ms) =

(6.51)

6.8. Duality defect in (3 + 1)d from twist defects in (4 + 1)d for even N and N > 4.
We finally insert the extended defects into the (4 + 1)d slab and examine their fate upon
shrinking the slab. Like in the previous cases, we find the correspondence

Twist defects V(,) «<—> Duality interface N/
Magnetic surface S(g,1) <— ZS\}) symmetry defect 7 (6.52)

Electric line S(1,0) <— Zg\l,) order parameter L

6.8.1. Zﬁ\l,) symmetry defects and order parameters from bulk surface operators For
insertions of invertible surfaces, the discussion is identical to the previous cases. In
short,

1. The surface operator S(; ) can terminate on the boundary orthogonally or be absorbed

into the boundary parallelly. Upon shrinking, it survives as a line operator L, which

is the order parameter of the Z%) one-form symmetry of the (3 + 1)d QFT X.
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2. The surface operator S 1y, when placed parallel to the boundary, survives upon

shrinking. Hence it becomes the symmetry defect » for the Z%) one-form symmetry
on the boundary. The surface n can have non-trivial linking with L, which measures

the Zg\l,) charge of L.

6.8.2. Duality interface from twist defects We next insert a twist defect into the (4 + 1)d
slab, giving the configuration shown in Fig. 32. From this we see that the twist defect in the
(4+1)d bulk induces a duality interface upon shrinking. Moreover, thanks to the Dirichlet
boundary condition of the SymTFT, the resulting duality interface is independent of the
type of the twist defect,

N (M3, My) = Vi (t, M3, M4)|x—0 , e=0,1. (6.53)

In other words, there is only one type of duality interface.

Itis interesting to see how the fusion rules of the duality interface are reproduced from
those of the twist defects. We start from (6.51). It is useful to introduce the new variables,
t =0 +0’ and Tt = ¢’ — . Then t and 7’ both belong to H(M3, Zy) subject to one
constraint, namely that there exists a primitive A € Hy(M3, Zy) such that T/ — 7 = 2A.
Then summing over (o, 6') € Hy(M3, (Zy X Zy)/Z2) is equivalent to summing over
7,1t € Hy(M3, Zy) with the constraint that T/ — T = 2 for certain A € Hy(M3, Zy).
Because A and A + N /27 do not give rise to different (z, t’) for arbitrary », the sum over
Hy(M3, (Zn x ZN)]Zy) is further equivalent to summing over T € Hy(M3, Zy) and
A € Hy(M3, Zp 2). In other words, we have

1
|HO(M3, Zn)||HY (M3, Zn 2)|

Z Sa1,0020) S, (7). (6.54)

TeHy(M3,ZN)
reHy(M3,ZN 2)

Vio) (M3, My) x V 0y (M3, My) =

We further apply the discussion around (6.31), demanding that A € Hy (M3, M3, Zy)
when colliding with the Dirichlet boundary condition, and correspondingly also chang-
ing the normalization |HO(M3, Znp)l — |H0(M3, M3, Zys2)| = 1. Furthermore,
Sa,n(r) = Sw,1)(r) = n(r). Hence

. 1 2 :
N X N: S(O 1)(1’)
0 0 ’
|H™(M3, ZN)I|H (M3, M3, Zn )| | o )

(6.55)

1
=iz 2 10
|HY (M3, ZN)| S

which is the condensation defect. This matches the fusion rule found in (5.14).

7. (4 + 1)d Symmetry TFT for Duality Defects

In Sect. 6 we studied the SymTFT for a (3 + 1)d theory with ZE\}) global symmetry, and
rederived the fusion rules for the duality interface implementing Zg\}) gauging. In the

current section we demand that the (3 + 1)d theory be self-dual under gauging Zg\}) ,
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which means that the duality interface identified before becomes a duality defect in a
single theory. The full symmetry (higher-)category is now some analog of the Tambara-
Yamagami category 7Y (Zy) in (1 + 1)d. In order to obtain the SymTFT corresponding
to this larger symmetry, we proceed as in (2 + 1)d by gauging the EM duality symmetry.
As before, we do this in two separate ways: first, by tracing the fate of the various
topological operators identified in Sect. 6 under gauging; and second, by writing down
an explicit expression for the action in terms of twisted cocycles.

7.1. Symmetry TFT for duality defects. We begin by using the topological operators and
fusion rules obtained in Sect. 6 to identify the topological operators and fusion rules of
the SymTFT after gauging the EM duality symmetry. In Sect. 7.2 we give an independent
cocycle rederivation of many of these results.

7.1.1. Topological operators Recall thatin (2+1)d, after gauging the ZEM symmetry the
surface operator Dgp became transparent and the twist defects X(.) became genuine line
operators. As aresult, the SymTFT involved only line operators. In (4+1)d, the spectrum
of topological operators after gauging the Z4EM symmetry is richer: the SymTFT will
have line, surface, and three-manifold operators. Because of this diversity, it will be
important to distinguish between local and global fusions of the operators. We begin in
this subsection by listing the operators of various dimensions.

Three-manifold operators We begin with the three-manifold operators. These operators
descend from the twist defects V() (o, M3, My) in the Zy gauge theory, which were the
boundaries of the four-manifold operator implementing EM duality transformations.
Upon gauging EM duality this four-manifold becomes transparent, and V. (o, M3, M4)
becomes a genuine three-manifold operator \7(6) (o, M3) (note that throughout this sec-
tion, we denote the operators in the Z4EM-gauged theory with a hat). Recall that for N
odd we have e = 0, whereas for N even we have ¢ = 0, 1. When e = 0, the dependence
on the surface o drops out.

It is convenient to consider the operators defined on a local patch. Then there are two
types of three-manifold operators,

J3, Vo) » (7.1)

where J3 is the trivial three-manifold operator. Note that this holds for both even and odd
N; for N even Vg, and V(j) are indistinguishable on a local three-dimensional patch,
though they can be distinguished at the level of local surface operators, as described in
the next paragraph.

Surface operators We now turn to surface operators. Before gauging Z4EM there were

a total of N2 surface operators S ) defined in (6.7), which transformed under EM
duality as in (6.13). In the current context it is useful to define an equivalent basis of
surfaces Se,m) as

~ 27 N i
S(e,m) (O') = elW fo (eb+m b) — eﬁem’P([a]) S(e,m) , (72)

where P([o]) is the Pontryagin square of the Poincaré dual of o. Unlike for the lines
encountered in (2 + 1)d, for surfaces in (4 + 1)d the self-pairing (o, o) (and hence
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P([o])) is not in general trivial, and hence §(e,m)(o*) is not identical to S ). The
surfaces S m) (o) have the virtue of transforming more simply under EM duality,

Sem(@) = Scmelo). (1.3)

‘We may now search for EM invariant combinations of §(e,m) (o) which can survive the
gauging. A single surface §(e,m)(a) is EM invariant in isolation when (e, m) = (—m, e)
mod N. For N odd the only solution to this constraint is (e, m) = (0, 0), whereas for
N even there are two solutions (e, m) = (0, 0) and (N /2, N/2). We will denote these
surfaces as

:9\(0,0) = §(0,0) , §(N/2,N/2) = §(N/2,N/2) . (7.4)

This notation can refer either to the operators defined locally on a patch or globally
on a surface, though for the latter we will write the surface dependence explicitly, e.g.
S0,0)(0). _ ~

‘We may next consider a sum of two surfaces Se, ) @ S(¢,my. This is non-simple in
the original theory, but after gauging can become simple. We will assume that neither
(e, m) nor (¢/, m’) is itself gauge invariant, lest we obtain a direct sum of the simple
surfaces in (7.4). The condition for the sum to be EM invariant is then

(—m,e) = (e, m), (—m', ) = (e,m) . (7.5)

For N odd there is only a trivial solution (e, m) = (¢/, m’) = (0, 0) which reduces to
the first entry in (7.4). For N even, in addition to the trivial solution we may also choose
(e,m) = (N/2,0) and (¢/, m’") = (0, N/2). We will denote the resulting surface by

:9\{N/2,0} = §(N/2,0) ® §(O,N/2) . (7.6)

Likewise we may consider sums of four surfaces,

o~

S[e,m] = §(e,m) ® §(—m,e) @ E(—e,—m) @ §(m,—e) . (7.7)

For N odd there are a total of %(N 2 _ 1) such surfaces, while for N even there are a total

of ( %)2 — 1 of them (and in particular for N = 2 there are no surfaces of this type).

Finally we can also consider the non-genuine surface operators that are constrained
to live on three-manifolds. For odd N, there is a single type of non-trivial non-genuine
surface operator

T (Vo)) (7.8)

which is the identity surface living on \7(0). For even N, there are two types of non-
genuine surface operators,

1 Vy) B (Viry) - (7.9)

The surface Jz(f/\(l)) is obtained by fusing the identity surface living on the boundary
M3 of V(o) (M3, My) with S,0)(0) before gauging ZEM Note that despite our notation
here, Jz(V<1)) is not the identity surface on a three- mamfold V(l), and indeed there is no

three-manifold operator V(l) Instead, it is a non-identity surface on V(o)
In summary, the list of non-trivial surfaces is as follows,

N odd : 32(‘7(0)) , §(0,0) , §[e,m] ,
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N even : R2(Vo) . 2V So.0 - Sy Syop» Stem- (7.10)

The operators labelled with an J; are non-genuine surface operators, while those without
are genunine surface operators. When N = 2, we drop the Sj. ;] in the even N case.

Line operators We finally proceed to the line operators. The spectrum of lines is even
richer than for surfaces. Upon gauging the Z4EM (or ZIZEM for N = 2) duality symmetry,

one obtains a quantum Zf’) (or Zg)) three-form symmetry. This symmetry is generated
by a topological line in (4 + 1)d, which we denote by K in analogy to (2 + 1)d. This is
the only non-trivial genuine line operator in the SymTFT.

We should also consider the non-genuine line operators living on three-manifolds
and surfaces. We can first consider the identity operators living on each three-manifold
or surface,

N odd : N Vi) . RSw.0) .+ Tt Giean)) -
N even: N Vo) IV« IS0« H Sy v+ IS o)+ T1Sleam) -

(7.11)

The meaning of superscripts 0 will be explained below. Since 3’\(0,0) is a trivial surface
operator, the identity line 3(1)(§(0,0)) living on it is also a trivial, genuine line. The other
line operators are non-genuine.

One can now stack the non-trivial genuine line K on top of the line operators in
(7.11). First, since the trivial line JO(S(O 0)) can be rewritten as K 0. it is useful to rewrite
K7 as 3¢ (5(0,0))- Here g runs from O, ..., 3 for N > 2, and through O, 1 for N = 2. We
then consider stacking K with the non-genuine line operators in (7.11). To determine
whether such stacking will generate a new line operator, we apply a discussion similar
to the one around Flg 24. Since the pre-gauged counterparts of TJO(V(O)) 39 (V(l)) and
39 (S(N /2,N/2)) are . Z mvarlant attachmg a K line to them generates new lines, which
we denote by Jq (V(o)) Jq (V(l)) and 37 (S(N/z N/2))» With g >~ g +4. On the other hand,
since each of the pre-gauged counterparts of the constituents of 39 (S[L,m ) is not ZEM
invariant, the K line can be completely absorbed by TJ(I) (:S‘\[e, m1). In this case we simply
drop the O superscript.

Somewhat more subtle is the fact that, although each of the pregauged counterparts
of the constituents of J (S{ N/2,0}) is not Z invariant, they are invariant under the ZEM
normal subgroup of ZEM As discussed in Appendix F, this means that J9 (S{ NJ2, 0})
cannot absorb K, but can absorb K2. Hence one can still stack K and define J (S{ N/2,0})
with p >~ p + 2.

In summary, we have the following line operators,

N odd : Vo))« 31S0.0) + Tt Speam) -
N even : I Voy . I Vay . 34S00) . 3?(5(%%)) ) 3f(5{%0]) s J1(Ste,m1) »
¢=0,1,2,3, p=0,1 (7.12)

For N = 2, we drop J; (fS’\[e,m]), take g to be defined mod 2, i.e. ¢ = 0, 1, and drop the
label p on jf(S{%O}).
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The operators described in (7.1), (7.10), and (7.12) together form the (non-condensate)
objects, 1-morphisms, and 2-morphisms of the 3-category of the (4 + 1)d SymTFT,?!
We note that all line (resp. surface) operators are endomorphisms of surface (resp. vol-
ume) operators. For example, S|, ;) in (7.10) is an endomorphism of J3 in (7.1), and
31(§[e,m]) in (7.12) is an endomorphism of 3\[6,,,1] in (7.10).

7.1.2. Fusion rules for N odd We now discuss the fusion rules of the topological oper-
ators discussed above, starting with the case of N odd. We will be somewhat brief in our
presentation here, postponing details (and derivation of the F-symbols) to future work.
We will follow the method described in [28], where one first derives the local fusion
rules, from which the global fusion rules can then be obtained.

Local fusion of three-manifolds Beginning with local fusions of three-manifold opera-
tors, we have simply

Vo) ® Vioy =TJ3 . (7.13)
Local fusion of surface operators The local fusion rules for the surface operators are
S[e,m] & S[e’,m’] = S[e+e,m+m’] S?) S[e+m’,m—e’] S?) S[e—e’,m—m’] @ S[e—m’,m+e’] ’

(exe,etm' mEe,mEtm #0)
S[e,m] ® S[e,m] = S[Ze,Zm] S 2S[e+m,m7e] ® 45(0,0) ,

N—1 N-—1
2 T2
52(Vio)) ® 32(V0)) = S0.0) ® EP P Stm -
m=0 n=1
D2(V0)) ® Sie.m) = 4T2(V(y) - (7.14)

‘We make some remarks about these fusion rules:

1. The fusion rules amongst §[e, m) follow straightforwardly from the fusion rules (6.9)
amongst S, ) in the ungauged theory. Note that the result depends on the value of
(e, m) and (¢/, m'), and we list only two representative cases. In the first case, the
condition on (e, m) and (¢/, m’) is such that none of the terms on the right-hand side
reduce to S(o,0). When this condition is violated, such as in the fusion between two
3‘\[6, m) of the same charge (given in the second line), one must replace :S%QO] by 4:57(0,0).
Let us add a cautionary remark that the first fusion rule in (7.14) does not strictly
hold since, before gauging ZEM, the global fusion rule S )(0) X S(er,my(0) =
§(e+e/, m+m)(0) does not hold. One should instead include a phase factor

e me'=emYP(oD) o the right hand side of the fusion rule, and we expect a similar
phase in the local fusion. However, if we restrict these operators to a three dimen-
sional submanifold M3, the phase factor trivializes, and (7.14) holds. For simplicity,
we will assume this throughout this section.

21 1 general, a (4 + 1)d TFT can contain 0-, 1-, 2-, 3- and 4-dimensional operators forming a monoidal
4-category. The 3-category in the main text is the endo-category on the trivial 4-dimensional operator. By [73,
Theorem 4] when there is no nontrivial point operator in a (4 + 1)d TFT, all the 4-dimensional operators are
condensation operators.
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2. The fusion rule between 32((7(0)) and its orientation reversal follows from (6.27)
before gauging Z4EM. Indeed, one can rewrite the global fusion rule (6.27) as
J3(M3)

Vioy (M3, My) x V (0)(M3, Ms) = c

S (7.15)
ZY x 2

where the denominator on the right-hand side means gauging a ZE\(,)) X Zg\(,)) symmetry
on M3. Gauging the zero-form symmetry amounts to inserting a mesh of algebra

objects, given by A = G}n]\;;]:o g(m,()) ® §(0,n) = @m =0 S(m ). After gaugmg

ZEM, we need to recast the algebra object in terms of a linear combination of 5(0,0)
and Spe m],
Nol No1
A=S00 & D Sinm - (7.16)
m=0 n=1

We thus conclude that the local fusion rule is Jz(f/\(o)) ® 32((7(0)) = A, which is
precisely the third fusion rule in (7.14).

3. The fusion rules between JQ(V(())) and S le,m] follow from the fact that S, ;) can be
absorbed by the twist defect in the ungauged theory.

4. Apart from the fusions discussed above, one can also consider the fusion of two
surfaces within the same three manifold (i.e. “composition” of surface operators).
For simplicity, we will not consider those fusion rules in this work.

Local fusion of line operators The local fusion rules between line operators are as
follows,

N—-1 N-—1
- 2 T2

31 (Viop) ® 37 (Vo)) = 37 (S0.0) & ED P 31 Sl -
m=0 n=1

31 (S0,0) ® I3 (S0,0) = 37 (S0,0))
3 (Vioy) ® 31 (S0,0) = 3™ (Vo)
J1(Ste,m) ® 31 (S0,0) = T1Sem)

3
31 Ste.n) ® 31 (Vo)) = @ 31 Vo)) -
q'=0

3
j] (’S\[e,m]) ® j1 (rg\[e,m]) = :‘1 (3\[2e,2m]) @ 23] (/S\[efm,e+m @ j(11 §O 0))
q=0

1 (/g[e,m]) ® Ji (3‘\[6/,}1’1/]) =7 (§[e+e,m+m’]) @ Ji (3‘\[e+m’,m—e/])
ijl (S[e—e’,m—m’]) S?) jl(S[e—m’,nHe’]) .
(exe,etm' mEe, m+m #0) (7.17)
The general form of these fusion rules follows from the fusion between two surfaces

given in (7.14). The only new feature for the line operators is that one is able to assign
charges ¢ by stacking with the quantum line K9. To ensure that the g indices are assigned
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consistently on the two sides of the fusion rule, a useful trick is to stack a K line on both
sides and see whether it changes the fusion rule to another consistent one. For instance,
consider the fifth fusion rule J; (TS'\[e,m]) ® 3‘1’ (f/\(o)) = @2/20 3‘1]/ (\7(0)). Stacking a K line
does not change the left-hand side because J (TS'\[e,m]) absorbs the K line, as discussed
above. Hence for consistency, the right-hand side should also be able to absorb K.
The only way to achieve this is to sum over all ¢’ = 0, 1, 2, 3. The same discussion
also applies to the fusion between .Jl (S[e m]) and itself (see the sixth fusion rule). Note
that the outcome of the fuswn J ! (S[e m]) ® J1 (S [e’.m']) depends on whether any of the
following e £ ¢’,e £ m', m £ ¢, m = m’ are 0 mod N. For simplicity, we only listed
two representative choices above, which are the last two fusion rules. Other cases can
be similarly worked out.

Global fusion from local fusion Given the local fusion rules, one can now construct the
global fusion rules by combining local patches together. For instance, consider the global
fusion rule between V(o) (M3) and its orientation reversal on M3 = S' x §2. Recall that
the relevant local fusion rules are

N—1 N—1
L _ 5
Vo) ® Vo) = J3, T (Vo)) ® Io(V(0)) = A = S0,0) ® @ @ Stn,m] »
m=0 n=1
NoI N-L
~ — N 22 ~
3 (Vi) ® 31 (Vo)) = 37" S0.0) @ D D 31 Spmp) - (7.18)
m=0 n=1

which implies that the global fusion between \7(0) (M3) x \7(0) (M3) is the sum of a mesh
of the algebra object A along every two-cycle of M3. In particular, when M3 = S' x §2,
the only nontr1v1a1 two-cycle is $2, and the only nontrivial one-cycle is S'. We can deﬁne
V(‘(’)) (5% x 81 to be

Vb (87 x 1) = K9(8") x V(57 x S (7.19)

similar to (6.36). Then the global fusion rule is simply

Vi (82 x shyx V, V(2 x §Y) = le K9 (SY) x A(S?) (7.20)

(0)

where the normalization % is the standard normalization from gauging a zero form

symmetry (i.e. condensing a surface) on a three manifold, 1/|HO(S? x Y, Zy))* =
1/N2.

From this single example of global fusion, we already encounter the general feature
that operators of different dimensions enter the same fusion rule. In contrast, in local
fusion rules all the operators entering a given fusion rule are of the same dimension—
objects fuse with objects, 1-morphisms fuse with 1-morphisms, etc. This distinction was
not present in the (2 + 1)d case discussed in Sect. 4, since there all operators were lines.

7.1.3. Fusion rules for N even We now move on to the case of N even (in the case
of N = 2, one simply drops the fusion rules involving Si ] and restricts g to be
Zo-valued). We will again be brief, leaving details to future work.
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Local fusion of three manifolds Beginning with local fusions of three-manifold operators,
we have

Vioy® Vo) =73 . (7.21)

Local fusion of surface operators The local fusion rules between surface operators take
the following form,

S S BB, =
50,00 ® Sv/2.n/2) D=0 Duzt - Spn,) N =2 mod 4

22(Ve) ® D2(Vie) = T
S(0,0) ® Sv/2.n/2) © Sin 2,01 B 69"’,,7:?,,622"21 Simny N =0 mod 4

Sin2.0) ® & erﬁ"ﬁ[m.n] N =2 mod 4

m+ne2Z+1

D (Vay) ® 12(V) =

N/2 N/2—1~
@5 @l Stim.n] N =0 mod 4

m+ne2Z+1

32(V(e)) ® §(N/2,N/2) = jz(v(o) .

32(‘7(3)) ® §{N/2,0) = 232(‘7(e+1v/2)) ,

32(Viey) ® Sjer 't = 432 (Vierersm)) -

Sivjang ® Svjany = S0,0) -

Svan/2) ® Sivja0) = ’S\{N/Z,O} ,

§{N/2,0) ® §(N/2,0} = 2:9\(0,0) @ 2§(N/2,N/2) ;

§(N/2,N/2) ® Sjen) = §[e+N/2,m+N/2] ,

§[N/2.0) ® g[e,m] = §[e+1v/2,m1 52 §[e,m+1v/21 ,

§[e.m] ® §[e’,m’] = /S\[e+z”,in+m’] @ §[e+m',m—e'] @ :9\[2—(”./11—171’] @ §[g_m'.m+e’] .
(exte,etm' mEte, mEtm #0,N/2) (7.22)

The derivation of these fusion rules is mostly the same as for the odd N case. Let us
comment only on some of the new features,

1. There are two non-genuine surface operators coming from the twist defects, J ( \7(0))
and J»(V(1)). Before gauging Z4EM, we know from (6.51) that the global fusion rule

between V(o) and its orientation reversal is
J3(M3)

Vioy (M3, My) x V (o) (M3, Ms) = .
@ x Z)/ZY)

(7.23)

This implies that the right-hand side is a condensation of the algebra object of (Zgg) X
ng)) /Z(()), which is given by the surface

N-1 N-1
A= @ S(m+n,n7m) = @ S(m,n) . (7.24)
m,n=0 m,n=0
(m,n):(m+%,n+%) m+ne2Z

After gauging, one should express the right-hand side of the above in terms of the
operators invariant under ZEM. It turns out that the result depends on whether N /2
is even or odd, and yields the expression in the first fusion rule of (7.22). For the
second fusion rule, the algebra object before gauging ZEM should instead be A" =
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@N_l _ g(m, n)- Rewriting in terms of ZEM

=0 invariant surfaces, one finds the right-

+ne2Z+1
harrlnd gide of the second fusion rule of (7.22), which again depends on the parity of
N/2.
2. For even N, there are additional genulne surface operators S(y /2.N/2) and S{n/2,0}-
When fusing Sy /2,0y Wlth Jg(V(e)) one gets two copies of 32(V(e)) for even N /2,

and two copies of J2(V(e+ 1y) for odd N /2. This follows from the definition of V()
before gauging.

Local fusion of line operators The local fusion rules between lines are as follows,

3 Vi) @3] (Vi) =

3944 (5, 9t @0 ® " 3,5 N =2 mod 4
1 (S0.0) © 7T (Svj2.np2) @ =0 Dot 1(Spmn)) =2 mo
34+ q Goo) ® I q'+2e Govpn) ® 3[14 "]Z(S W /2.00) ® Do’ 32521 31(§[m,n]) N =0 mod 4
I G y20) @ Bnco @t '3 Sp) N =2 mod 4
31 (Vi) ® 31 (Vo)) =
@N/Z N/2-1
m=0

e Smn)) N =0 mod 4

m+ne2Z+
3 (Vi) ® 3‘,’,(?9\(0.0)) = 3(1”(/(‘7(9)) ,
3 Vi) ® 37 Givpnm) = 37 Vi)
3 (Viey) ® 392 Sinjop) = 39 Vieanws2) @ 37 Viewns) «
3 (Viey) ® 31 (Sper ) = EB 3 Veversm) ’
q'=0
34 B0.0) ® 3 Go0) = 37 Go0) -
3 v ® 3 Gwvpvyn) = 31 G -
3 G00) ® 3] v =31 Cwvanm) -
3 Suvany2) ® 3¢ Sivpon = 32 Gy
I Sivaon ® 32 Sivzo) = 2377 G0 +237 2S00 -
I S0 @37 B0.0) = 32 Sz »
3¢ 50.0) ® F1 Giean)) = I1Spem) -
3 Sinan/2) ® 31 Slem) = T1 Slesnj2men2] »

354]2(/5\(1\//2,0)) ® J1 (rg\[e,mj) = 31(/5\[e+N/2,m1) T (Ee,mw/zj) .
3
T (3\[6,)11]) ® 7T (’S\[e,m]) =7 (S}Ze,2m]) @27, (:ST[efm,e+m]) @ @ j‘11 (3\(0,0))a
q=0

(2e,2m,e+m #0,N/2) (7.25)

Many of these fusion rules, including the first two, follow from those for surfaces in
(7.22). Let us make some remarks about the features that were not present in the cases
already discussed:

1. Note that the non-genuine line J (:S‘\{ N/2,0y) can be assigned a Z; charge [q]>. Here,
we take g € Z4, and denote its mod 2 reduction as [¢]2, i.e. [¢]2 = ¢ mod 2. This
is described in Appendix F.
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2. It is useful to check that both sides of the fusion rule ff{(f/\(e)) ® 3[{1/]2 (:S:{ NJ2,0)) =

(V(e+N 2) 7T ”q+ (\7(6+N /2)) depend on ¢’ only via its mod 2 reduction. In
other words, one can check that the result does not change under shifting ¢’ — g’ +2.
3. We should make a cautionary remark that the +2e shift of the g charge assignment

on the right-hand side of the fusion rule Jq (V(e)) ® J (S(N/z N2)) = TJq 4 +2€(V y)
is at present conjectural, and is motlvated by the lower-dlmenswnal Calculatlon in
Sect.4.1. To actually prove the presence of this shift, one must measure the charge
of the junction between the three lines by wrapping a 4d condensation defect around
it. This is analogous to the computation performed in Appendix B for (2 + 1)d. We
will leave this calculation to future work.

7.2. Twisted cocycle description. We close our analysis of the (4 + 1)d SymTFT by
presenting an explicit twisted cocycle description of the theory. As in (2 + 1)d, our
starting point is the BF theory (6.1). We will find it more useful to write this in K-matrix
form,

2

S = b” UK sb 7.26
N (7.26)

where b = (b, 75) is a two component cochain valued in Z and K = io” .22 Note that K
is no longer symmetric as it was in (2 + 1)d, due to the anticommutativity properties of
form fields in (4 + 1)d.

As before, our goal is to gauge ZEM (or ZEM for N = 2). We begin by coupling to
a background gauge field C, which as in (2 + 1)d amounts to promoting b to a twisted
cocycle. This modifies the gauge transformation of b to

bijk — bijk+KCijhjk _hik+hij . (7.27)
The action then becomes
21
S[C1==— | bT Uc K5chb, 7.28
[C] N / c Kdc (7.28)
where the integrand in components reads

(b" ue Kacb)“kl = bl K (Kb = by +bitg = bip) - (7.29)
ijklpq
The action is invariant under the dynamical gauge transformation (7.27) as well as the
background gauge transformations
Cij— Cij+yj=vi, biji — K™ "bjjk , hjj > K™ "h;; .
(7.30)

Gauging the ZEM symmetry amounts to promoting C to a dynamical field ¢, giving

2w T b4
SSymTFT = W b’ U:. Ké:b + E xéc , (7.31)

22 Once again, we hope that the reader will not confuse the K matrix here with the generator K of the
quantum symmetry.
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where x is a Z4-valued 3-cochain. See Appendix B of [76] for more details on twisted
cocycles.

As in (2 + 1)d, the complicated dependence on c in the kinetic term means that ¢
is now flat only on-shell, and hence the action is no longer invariant under the gauge
transformations in (7.27). Instead, we must restrict to gauge transformations satisfying
the analog of (4.31), namely

(K%€ik — 1)hgy = 0. (7.32)

This constraint will allow surfaces to end on sources of flux for ¢, which will give rise
to junctions. Note however that unlike in the case of (2 + 1)d for which the constraint
on g in the presence of non-trivial ¢ flux was (1, —1)g = 0, the above constraint on h
instead requires h = (0, 0) for N odd, and h = (0, 0)” or (N/2, N/2)T for N even.
This will give rise to more potential junctions than in lower dimensions.

7.2.1. Operators in symmetry TFT We now give a description of the gauge-invariant
operators of the theory, beginning with surface operators. The full gauge transformations
for the theory are

bijk = K77 (bji + (8ch)iji) cij = cij+(¥)ij -
3 3
x:f/ize - xl(ﬂZz + 61 ijee (7.33)

with h constrained to satisfy (7.32).

Surface operators We may first consider the invertible surface operators, given by

Sa(o) = ¥ donD neZyxZy. (7.34)

This operator is identical to the one defined in (7.2). We recall that, due to the non-
commutativity of b and b the surface Sn differs from the surface S, defined in (6.7)
by a phase, i.e. Sn(0) = Sn(0)e ™ b ”‘”277([”]), where P([o]) is the Pontryagin square of
the Poincaré dual of o and n > are the ‘two components of n. We prefer to use Sy (o)
because it transforms simply as S, — Sgn under Z4EM, and hence it is ZEM invariant

if and only if n” K = n”. A straightforward analysis  paralleling that in Sect.7.1.1 then
reproduces the spectrum of gauge-invariant surfaces Sie ).

Line and 3-manifold operators In addition to the surface operators studied above, there
is also a topological line operator

K(y)=e?he (7.35)

generating the 24 symmetry quantum dual to Z4EM. There is also a three-manifold oper-
ator

X (Ms) = ¢ 2 Iy | (7.36)

but as in (2 + 1)d this is generically non-topological since x is not closed in general.
However, with appropriate restrictions on b and b the field x can become closed. For
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odd N, we require b = b = 0 at the locus M3.23 We may then construct three-manifold
operators V() (M3) via

—~ HY(M3,7Z ~
Vo) (M3) := Mx%)smbnm 82y (B)|y, - (7.37)

HY (M3, Zy)
which are the images of the twist defects upon gauging ZEM. The normalization is chosen
to match the fusion rules derived in Sect.7.1. The delta functions may alternatively be
rewritten as

o~ 1 2mi
- 2 flo1Ub
Son D 02x Oy = Ggrzme. = <"
’ [o]leH (M3,Zy)

% Z o [lo'1UD

[o'leH (M3,Zy)

1
- S, S, .
HT M. 212 Z 1,00 (@) S, 1)(0")
o,0'eHy(M3,ZN)

(7.38)

For even N, we instead require that (b, Z)\) be trivial as an element in H 2(M3,A(Z N X
7Z.N)/Z>) onthe defectlocus. We may then construct the three-manifold operator V(o) (M3)
via
1
|H' (M3, (Zy x L)/ T)|?

Vioy(M3) = X (M3) 8z <72, (b, D))+ (7.39)
|HO(M3, (Zn % ZN)]Z2)|?

where the delta function can be rewritten as
1
|H (M3, (Zy x Zn) ] 7))

> Sa.0) (0 +0")S0.1y(0" —0) . (7.40)
(0.0 eHy(M3,(ZN XZN)/Z2)

S(ZN XZN)/Zz( (bs /b\) ) |1[,[3 =

The remaining twist defects f/\(l)(a, M3) can then be obtained by stacking with S(; o)
as before. We can also consider the 1-endomorphisms and 2-endomorphisms on the
three manifolds and surfaces, which give rise to non-genuine surfaces and lines. The
discussion is similar to that in Sect.7.1.1, and hence we will not repeat it here.

7.2.2. Junctions and local fusion rules We now ask about gauge-invariant junctions
between the operators above. The analysis here is done following that in Sect.4.2.3. We
begin by considering S, ) on a 2-chain o with boundary. Such a configuration is not
gauge-invariant, but instead transforms as

Stem) (@) = Siem(0)e K mhlss (7.41)

Since the gauge-invariant operators ’AST[e,m] are built out of these surfaces, in order for
them to be well-defined in the presence of a boundary, one of the following must be
satisfied:

23 This is chosen such that K acts as the identity onb = (b, 77\), and hence such that ¢ drops out of the kinetic
term of (7.31) and can act as a proper Lagrange multiplier field for x.
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e The surface ends on a line together with other surfaces :S'\[e,m] such that the total
charge cancels.
e The surface ends on a locus with non-zero ¢ flux.

The first of these allows for gauge-invariant junctions between three surface defects,
S(e+e’,m+m/) C S(e,m) ® S(e/,m’) . (742)

This then gives rise to a number of junctions between gauge-invariant surface operators.
When all are accounted for, we obtain precisely the same fusion rules as in (7.14) and
(7.22).

On the other hand, we may also consider the surfaces ending on a locus with non-
zero ¢ flux. In this case Eq. (7.32) enforces h = (0, 0)7 or (N /2, N/2)T, with the latter
only possible when N is even. Assuming first that N is odd, we have h = (0, 0)” and
hence any surface is allowed to end on V. However, we cannot really discuss trivalent
junctions of 3’\[6 m] and f/\(o) directly, since the former is supported on a surface while the
latter is supported on a three-manifold. Instead, we can summarize the above observation
by saying that the identity surface in V(o), which we previously denoted by 32(V(0))
admits a trivalent junction with S[e, m] of the form

12(Vio)) C Sieum) ® 32(V(0y) » Ne2Z+1. (7.43)

This is consistent with the last local fusion rule in (7.14).
For N even, we instead allow both h = (0, 0)” and (N/2, N/2)" atloci of non-zero
¢ flux. Under the latter, we have from (7.41) that S ) (o) transforms as

Stemy(@) = Sie.my(@)e™ e (7.44)

which means that only operators S(e m) With e +m even can end on V(o) giving trivalent

junctions of the form Jz(V(o)) C S [e.m] ® Jz(V(o)) Contrarily, when e +m is odd S[e m]
cannot end alone, but can form a trivalent junction

(V1) C Spem1 ® T2(Vioy) Ne2Z, e+me2Z+1 (145

since the gauge non-invariance of 32((7(1)) at the boundary (coming from the gauge non-
invariance of S(j,0)) precisely cancels that in (7.44). These reproduce the local fusion
rule of the surfaces in (7.22), and we see that a trivalent junction is allowed (by gauge
invariance) whenever the three surface operators appear in the same fusion rule in (7.14)
and (7.22). Similar techniques could be used to study trivalent junctions between lines,
but we leave this to future work.

Let us close by mentioning that one might aim to use the Hopf linking of the operators
above, which are readily computed, to define some higher analog of the S-matrix, along
the lines of [77,78]. We do not comment on this further here.

8. Application: Intrinsic Versus Non-intrinsic Non-invertible Duality Defects

In this final section we briefly discuss one application of SymTFTs, namely to the
determination of whether a given duality defect is intrinsically non-invertible or not. We
will only discuss the case of (1 + 1)d bosonic theories, with the results for spin theories
or theories in (3 + 1)d left for future work.
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8.1. Topological manipulations. Given any (1+1)d QFT & with a non-anomalous Zg\?)
zero-form symmetry, one can define a non-trivial topological manipulation o, for any
r dividing N, defined by gauging the Z, normal subgroup of Zy. In terms of partition
functions, we have

1 N ~ @f aA
Zo ¥[Xa (A A = — Zy [xz, N, +A/} o I,
’ |HO(X2, Z,)] Z r
acHY (X2,Zy)

(8.1)

where A is a Z, background field, A’ is a Zy /r background field, and A’ is its Z.y lift.

The combination %a +A’isaZy gauge field. After gauging Z,, the non-anomalous Zy
symmetry becomes a product symmetry Z, x Zy,, with a nontrivial mixed anomaly

2mi

between them [9]. The anomaly is givenby e " i3 AP Where B(A’) is defined by the
symmetry extension 1 — Z, — Zy — Zy; — 1 specified by §a = B(A).

Starting from o, X, there are two topological manipulations that one can perform.
The first, which we denote by 7 is stacking with a Z, x Zy,, SPT,

2ri ’
Zeo 11X, (A, AN] = Zo ¥[ X2, (A, A)]eT0NTm Jio 447 (8.2)

The second is gauging of a Z,s subgroup of Z, x Zy/,. The resulting theory has the

Ze Xy . .
global symmetry Z,, x % with an appropriate mixed anomaly. One can then

perform suitable o or t transformations on the resulting theory.
Suppose that the theory X is invariant under gauging Zy (up to an Euler counterterm),
ie.

X=X/Zy =onX. (8.3)

If this is the case, then as we have seen above X admits a Tambara- Yamagami extension
of its Zy symmetry. We now ask if, starting from X, we can perform a sequence of
topological manipulations ¢ such that the 7Y (Z ) category of & is replaced by a group-
like category ¢ (T'Y (Zy)) in a theory ¢ (X). The non-invertible symmetry is referred to
as non-intrinsic or intrinsic depending on if such a ¢ exists or does not exist,

¢ exists :  TY(Zy) is non-intrinsically non-invertible , 8.4)
¢ doesn’texist :  TY(Zy) is intrinsically non-invertible . '

Because the possible set of topological manipulations is complicated when N is large,
it is difficult to enumerate all possible chains of o, and t operations and demonstrate
that such a topological manipulation ¢ does or does not exist.

On the other hand, the SymTFT allows us to answer this question rather straightfor-
wardly. This is due to two basic facts, both of which have been used throughout this
paper:

1. The SymTFT is an invariant under topological manipulations,
2. The SymTFT for group-like symmetries is a Dijkgraaf-Witten theory.

What this means is that the duality defect in 7Y (G) is non-intrinsically non-invertible
if and only if the SymTFT is a bosonic Dijkgraaf-Witten theory. Using the explicit form
of the SymTFT obtained in Sect.4, we may now propose a sufficient criteria for when
the duality defect of TY (Zy) is non-intrinsically non-invertible.
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8.2. A sufficient condition for non-intrinsically non-invertible symmetry. Our goal is to
see whether the SymTFT of 7Y (Zy) obtained in Sect.4 is a DW theory. Recall that a
(2+1)d DW theory is a finite group gauge theory with gauge group G (which can be non-
abelian), and which is specified by an element in the group cohomology H 3(BG, U(1)).
A line in a DW theory is specified by the data [80-82]

(g, pre1) (8.5)

where [g] is an element of a conjugacy class of G, and p, is an irreducible projective
representation of G satisfying

w3(g, h, k)aws(h, k, k='h='ghk)

p(Wpk) = Bg(h,k)p(hk) . Bg(h, k) = wr (T gh B

: (8.6)

with w3(g, h, k) € H3(BG, U(1)). The irreducible projective representation depends
only on the conjugacy class [g], and not on the choice of specific element g inside a
given conjugacy class. The quantum dimension of the line is given by the dimension of
the irreducible projective representation,

d((g1.ppen = dim(ppg)) - (8.7)

As a consequence, the quantum dimension of any line in a DW theory is an integer. For
example, the DW theory with gauge group Z, x Z, x Z> and group cohomology class
w3(g, h, k) = €782k has § lines of quantum dimension 1 and 7 lines of quantum
dimension 2 [82]. The field theory and its line operators are discussed in [83].

In contrast, the SymTFT for TY (Zy) contains non-invertible lines with quantum
dimension +/N, which is not an integer unless N = n? is a perfect square. We therefore
conclude that when N is not a perfect square, a QFT with 7Y (Zy) symmetry category
cannot be mapped to another QFT with only invertible symmetry via topological ma-
nipulations, which is consistent with the result in [65]. In other words, the duality defect
for TY (Zy) with N not a perfect square is always intrinsically non-invertible.
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A. Correlation Functions of k-dimensional Operators in (2k + 1)d

In this appendix, we provide derivations for Egs. (3.9), (3.10), and (6.8); namely we
derive the linking of k-dimensional operators in (2k + 1)-dimensional Zy gauge theory,
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as well as their commutation relations in 2k-dimensions. We begin with the action for
Zy gauge theory in (2k + 1) dimensions,

2
S = Wn b® U sa® | (A1)

Xok+1

This theory has N2 k-dimensional operators given by

2mi 2mi
Le.my(My) = exp (ﬂf ea(k)> exp (ﬂ% mb(k)) , (e,m)eZy xZy (A2)
N Ju, N Ju,

with L1,0) and L, 1) together generating a Z%‘) X Z%{) k-form symmetry. When k =1,
we obtain a standard Zy gauge theory in (2 + 1)d, as discussed in Sect.3. When k = 2,
we obtain a Zg\}) gauge theory in (4 + 1)d, as discussed in Sect. 6.4

We consider the mutual braiding between two operators labeled by (e, m) and (¢’, m').
To do so, we evaluate the correlation functions of these two operators on manifolds My
and M, which form a Hopf link. In practice, this means that we have insertions in the
action of the form

S = 2—7[ / b®§q0 4+ 2—7[ (ea® +mp®)y + 2—7[ / @a® +m'p®)
Xok+1 N N M;,

My
2 2 2
= — b®sa® + = / (ewp, + e’wM]:)a(k) + — (mowy, + m'wM];)b(k),
N Xok+1 Xok+1 Xok+1
(A.3)

where wyy, is the Poincaré dual of the k-cycle M with respect to X241, and hence is a
cocycle of degree k + 1. Integrating out the field b*) enforces

8a® = —(mawpy, +m'wy) . (A.4)

Defining Vi1 such that d Vi1 = mMy + m' M, we have a® = —PD(Vj1). Plugging
this back into the action then gives contribution
2

2
5 (eops + € @y ) UPD(Viw1) = _ PD((eMj +¢'M}) N Visr) -

Xok+1 Xok+1

(A.5)

In general, the intersection pairing My N V,_j between My € Hy(X4,7Z) and Vy_j €
Hy (X4, Z) satisfies

Mi N Vg = (=DM OV 0 My, (A.6)
and thus in the current case we may write

2

N [e PD(M N Vig1) +€ PD(Vig N MIL)] . (A7)

Xok+1

Itis convenient to formally rewrite Vip1 = md~ ! My+m'd~'M . by moving the boundary
operator 9 to the right hand side in the definition below (A.4). Then PD(My N Vi41) =

24 In Sect. 6, since the operators are surfaces, we use the notation S, ;) instead of L, ).
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PD(M; N a—lM,g) = link(My, M ,’c). Moreover, by using integration by parts, we have
PD(Vis1 N M}) = PD@~'MyNM}) = (=D*'PD(M N~ M) = (— 1D link (M,
M;). Substituting these into (A.7) gives

2
- Wn(em/ + (=DM ey link (My, M}) . (A.8)

We thus conclude that the braiding between two k-dimensional operators is

/ 2mi / k+1 NT: /
(Le,m)y(Mi)L (o' iy (My)...) = exp _T(em + (=1 me")link(My, M}) ) (...)
(A.9)

We next derive the equal time correlation function between generic dyonic lines (e, m)
and (¢/, m'), given for k = 1 and k = 2 in (3.10) and (6.10). We start with the commu-
tation relation

2mi , ,
_T<Mk7 M) | Lo,y(Mp)La,0(My) (A.10)

L1,0)(Mp)Lo,1(My) = exp (
which can be obtained, for example, by canonical quantization.?> The pairing (M, M)
is the intersection pairing between two k-manifolds in 2k-dimensions. Moving the phase
to the left side and relabeling My < M ,/{, we have

2mi
Lo,1)(Mg)L 1,0/ (M) = exp <T(M1£, Mk)) L1,0)(Mp)Lo,1)(Mg)

2mi X , ,
= exp (_N (=" (M, Mk)) L1,0)(M})L0,1)(My)
(A.11)

where in the second line we used (My, M) = (—1)k(M,i, M;).%0 Using (A.10) and
(A.11) and the definition of the dyonic line (3.7), we may then determine the equal time
commutation relation between dyonic lines,

L(e,m)(Mk)L(e’,m/)(Mli) = (L(lvo)(Mk))(X)e (L(O‘l)(Mk))(X’m
(L<1,0)(M//¢))®e/ (L(O,l)(MIQ))@n/

Z 27 (o (= DR e’y (M M ®e’ Qm’
— o N (em'+ (=) me") (Mg, My) (L(I.O)(Mli)) ¢ (L(O,l)(Mé)) m
® ®
(L1,0)(Mp)) e(L((),l)(Mk)) "
_ 2 I (_1yk+1 / /
=e N (em+(=1) me)(Mk’Mk>L(e’,m’)(M]i)L(e,m)(Mk) (A]2)

which reproduces (3.10) and (6.10). Note that the phase from the equal time commutation
relation in (A.12) coincides with the phase from the linking in (A.9), with the intersection
pairing number being replaced by the linking number.

B To carry out the canonical quantization, we switch back to differential form notation. Let us assume
k = 1 for simplicity; higher k can be similarly derived, but with more indices. Canonical quantiza-
tion in the usual way yields [by(p),ay(p")] = iN/27x8(p — p'), and then using the Baker-Campbell-
Hausdorff formula, we obtain ¢27!/N iy ax 2N Jyby @ni/N)2i(N/2m) 27 i[N i by 20 /N i ax
o= 2mi[N 2T/N fy by 2mi/N f ax

= e

26 Note that the symmetry properties of the linking number and the intersection pairing are opposite. We
have (M, M}) = (—=)¥(M], My), butlink(My., M]) = (—1)**!ink(M} , My). Hence when the intersection
pairing is even (odd), the linking number is odd (even).
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Lny2,ny2) Liny2,ny2) Lny2,ny2)

Denm A

E((’,) Z((ﬁ) E(f:)

Fig. 33. The ZEM charge of the trivalent junction denoted by a triangle can be measured by enclosing the
junction with the surface Dgpp. This surface is a condensate of the algebra anyon A, and may be decomposed
as in the middle image. The remaining discs of Dg)y can be shrunk to give orange and purple junctions, which
will be studied in the text

L(e,m) ‘H+ L(m,e) = L(e,m) ‘@+ L(m,e)
DEM DEM

Fig. 34. The intersection of L(,, .y and Dgy, with the latter resolved into a mesh of .A

B. Measuring EM Charges of Defect Junctions

The goal of this appendix is to compute the ZI;‘M charge of the junctions involving
L(n/2,n,2) and Z(,). Recall that there are various such junctions depending on the angle
between the line and the surface anchored on X¢,), c.f. Fig. 15, and we will focus here on
the charge of the triangle junction. The ZEM charge of this junction can be measured by
enclosing the junction with the surface Dgy, as shown in the left of Fig. 33. This surface
is a condensate of the algebra anyon A, and we may simplify the configuration to the
one in the middle of Fig.33. This leaves us with discs of Dgy surrounding each of the
outgoing lines, which may in general involve complicated intersections of .4 with the
external lines. Instead of studying the details of these discs, we may instead shrink them
to point-like junctions as shown in the right of Fig. 33. Our goal will now be to understand
the junctions appearing here, which will allow us to evaluate the configuration and obtain
the charge. Throughout we will neglect real number normalization factors, since these
will in any case cancel out to give the final Z,-valued charge.

To begin, we consider the 4-valent junction between L . ;) and the algebra object A. In
this appendix, we will always draw invertible L, lines in blue, A lines in red, and
the junction between the two as a purple dot. The junction between L, ) and A is the
one encountered when e.g. L, ) pierces the ZEM surface as in Fig.34. We note that,
in Fig.34, the configuration should not depend on precisely where along the surface
L (e,m) intersects. As such, we obtain the consistency condition on the junction shown
in Fig.35. Note that we have introduced an associative (co)multiplication junction g,
defined in Fig. 36, which every algebra object A is automatically equipped with.

On general grounds, the junction between L ) and A must be of the form shown
in Fig.37, with «, ;; (p) a series of undetermined constants. In fact, imposing the con-
sistency condition in Fig. 35 is sufficient to fix these constants. This may be shown by
expanding both sides of Fig. 35 and making use of Figs.36 and 37. Once expanded, the
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A A
L(m,e)

H L(m,e) - L(e,m) H

\

Lie,m)
A A A A

Fig. 35. Consistency condition involving the purple junction between L, ;) and .A, and the trivalent junction
1 between three A lines

A Lptg,-p—q)
N—1
H = Do

A A L(p,—p) L(qﬁ—q)

Fig. 36. Definition of the trivalent junction u between three A lines

A L(p+e—m,—p—e+m) L( )
L(m}e) e
o N-1
- Zp:O Oée,’m(p) L(e+p,mfp)
L(EJIL) L(e,m)
A Lp,—p)

Fig. 37. The general form of the junction between L, ;) and \A, with e n (p) a series of to-be-determined
constants

right-hand side is given as in Fig. 38, whereas the left-hand side is given in the first line
of Fig.39. One may rearrange the configuration in Fig. 39 via a series of F-moves to get
the second line in Fig. 39, and upon using the half-braid and more F-moves one may put
it in the form shown in the last line of Fig. 39. This configuration may now be compared
to the one in Fig. 38. Equating the two gives

211
ae,m(p +t]) =enN ae,m(p) , (B.1)

and choosing &, ,,,(0) = 1 (which is simply a choice of convention) we derive that

omi
ae,m(p) =enN"P, (B.2)

This completely specifies the junction in Fig. 34.

Having understood the junction between L ) and A, we next study the junctions
between L ;) and X(.y. As mentioned in the main text, this junction depends on the
angle between L, ;) and the EM duality defect Dgy which is anchored on X (.. This
is illustrated in Fig. 15. There we have highlighted two particular cases: first, the case
in which & = 0%, which we denote by a square; and second, the case in which § = 7,
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L(p+q+e—m,m—e—p—q)

L(m,e) L(m,e)

N—-1
Liem) =T 1 = 2pa=0 Xem(P+9) Ly

A A Lp—p) Lig-q)

Fig. 38. The right-hand side of Fig. 35, expanded out using Fig.37

A L(p+q+e—m,m—e—p—q)
N7
u Lime) = Ypgmo Qem(p) Lm.e)
Liem) \ I \Y
’ A A (e,m)
L(p,—p) L(q.,—q)

L(p+q+efm,'m,7efp7q)

N-1 L m,e
= Zp,qzo ae,m(p) L(e_’m) Q (m.e)
Lig—q)

Lp,—p)
Lp+gte—mm—e—p—q)

L(m@)

Fig. 39. The left-hand side of Fig.35, expanded out using Fig.37. A series of F-moves and a half-braid give
the configuration in the last line. Equating this with Fig. 39 fixes the constants ae,m (p)

which we denote by a triangle. These junctions are subject to consistency conditions
illustrated in Fig. 16, which physically correspond to the statement that the junction
should not depend on where along X, the line L ;) is anchored. We will now solve
these consistency conditions, beginning with the triangle junction.

The general form of the triangle junction is given in Fig. 40, which depends on a series of
undetermined coefficients B, ,, »(p). We may solve for these coefficients by imposing
the constraint in Fig. 16. The right-hand side of the equation for the triangle junction is
precisely the configuration in Fig. 40, whereas the left-hand side is as shown in the first
line of Fig.41 (we use the fact that the junctions 1z and 1] do not involve any phases
in their expansions). A series of F-moves and shrinking of a loop gives the second line
in Fig.41. From this we obtain the constraint

ﬂe,m,e/(p + CI) = ,Be,m,e’(p) s (B3)
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Z(e’+e+m) L(e+e’+p,mfp)

= Z;V:_ol ﬂe,m,e’ (p)

Yy Le,m) Lersp,—p) Liem)

Fig. 40. The definition of the triangle junction, given in terms of a series of undetermined coefficients
Be.m.e' (P)- These coefficients may be fixed by imposing the consistency condition in Fig. 16

L(e+e’+p,mfp)

N-1
A = Zp,q:() 6e,m,e’(p + Q) L(q_,q)

Sy Lem) Lertp—p) Liem)

L(e+e’+p,m—p)

N-1
- Zp:() ﬁe,m,e' (p + q)

Lierp,—p) Liem)

Fig. 41. The left-hand side of the consistency condition in Fig. 16. Comparing this to Fig.40 fixes the unde-
termined coefficients B, ,,, ,/(p)

L(€+€/+p;m7p)
N-1
= 2o Yeme(p)

L(t’am) E(f«") L(e,m) L(c’-%—]x,—p)

Fig.42. The definition of the square junction, given in terms of a series of undetermined coefficients y, ,,, 7 (p)

and choosing the convention B, ,, (0) = 1, we see that all phases can be taken to be
trivial,

ﬂe,m,e’(p) =1. (B4)

This completely fixes the triangle junction.

Having fixed the triangle junction, we may now fix the square junction in an analogous
way. The most general form of the expansion s given in Fig. 42, with the factors y, ,,, ./ (p)
to be determined. On the other hand, the left-hand side of the consistency condition in
Fig. 16 is as shown in Fig.43. A series of F-moves and braids gives the final line of
Fig.43, from which we read off a constraint on y, , . (p). Choosing conventions such
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L(€+€/+[1,7n7p)

prL

N-1
A - Z17,11:0 76,711,6’(1) +q) Lig—q)
03
L(e,m) Z(r;’) L(E,m) L(‘”-Hh—p)
L(e+e’+p,ln—p) L(e+5’+p77n7p)
N-1 L(q,fq) Nt e

- ZIWZO Teme! (p+a) = Zpyqzo Ye,m,e! (p+qe v
L(e,m) L(el+p’_p) L(E,m) L(e’+P~,—P)

Fig. 43. The left-hand side of the consistency condition in Fig. 16. Comparing this to Fig. 40 fixes the unde-
termined coefficients B, ,, ./ (p)

N—1 L(qqu)
= Zp,q:() Ge(p7Q) L(p7,p>

2(e) 2(e)

Fig. 44. Definition of the orange junctions between A and X,y in terms of the square and triangle junctions.
For simplicity we only define the orange junctions in pairs, as shown. The coefficients G.(p, ¢) may be
determined by imposing the consistency condition in Fig.45

that ¥, .. (0) = 1, the solution is

2mi
Ye,m,e' (P) =enNP, (BS)

This completely fixes the square junction. We note that, by the braiding properties of
the lines L, ;) and L (e/4,,—n), the square junction obtained here is equivalent to a half-
braided triangle junction, as shown in Fig. 17. This was used in Sect.3.5 of the main
text, but will not be needed here.

We have now successfully understood the purple circle and triangle junctions appearing
in Fig.33. We have also understood the purple square junction, which does not appear
in Fig. 33 explicitly but which will be important for its computation. All that remains is
to evaluate the orange circle junctions, i.e. the four-fold intersection of .4 and X().

In fact, instead of computing the four-fold junction itself, for our purposes it suffices
to compute a pair of orange junction, as shown in the left-hand side of Fig.44. This in
general admits an expansion in terms of square and triangle junctions as in the right-hand
side of Fig.44. Here G.(p, q) are a series of undertermined constants, which are subject
to the consistency condition shown in Fig. 45. Physically, what this condition says is that
any point on ) is ZEM invariant.

By using the definitions of the square and triangle junctions obtained above, it is straight-
forward to derive an expression for G.(p, ¢) from the consistency condition in Fig.45.
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P -

X(e) 2e)
Fig. 45. A consistency condition on the orange junctions. This follows from the fact that the ZEM charge of
the trivial junction between X (., X(¢), and L g ) is trivial
We will only give the result,
—ZL(pa—p?
Ge(p,q) =e N 8 ptgt+e mod 2 » (B.6)

where the delta function is included to enforce that the line in the interior of the bubble
is the EM dual of the incoming line (since it passes Dgp in between). This is the final
piece of data needed to compute the charge of the junction in Fig.33.

We finally return to the original calculation of interest, namely the computation of the
charge of the junction between Ly /2 n/2) and X(,). The computation is illustrated in
Fig.46. In words, we begin by using the definition of a pair of orange circle junctions
given in Fig. 44, together with the definition of the purple circle junction given in Fig. 37.
This gives a factor of

_ 2mi

i (ha—p?) —ri
Ge(p.q)ay x(—q)=e ¥ PIPeTM8, o mods - (B.7)

We may then use the definition of the square and triangle junctions given in Figs.40
and 42, which gives a factor of

2mi 2mi

N
Ypo—pe(r +4) X Y—p pe (" +tp+t 3) =N PUHD N PPN/ (B B)

Noting further that the line L (¢4r4¢+p,—r—g—p) in the interior of the bubble must be the
EM dual of the incoming line L .4, ) (since it passes Dgy in between) forces us to
restrict to triplets r, p, g satisfying

e+r+g+p=—r mod N , (B.9)

or in other words p + ¢ = —e — 2r mod N. Thus in total we produce a phase of

_2zi 2zi

e~ R Pa=P) g=iq P4 g PPN/ — = Ti(pra) — (1) | (B.10)

which is the final result for the charge of the junction. In summary, for even e the junction
in Fig.33 is ZEM even. On the other hand, for odd e the junction is Z]ZEM odd, and hence
there are an odd number of K lines terminating on the junction.
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Loy 2 Linja,ny
_ N-1 — 2% (pg—p?) p—ig
I iy Ood 2 7 ‘ Lo-» L
A (a,—q)
See) e
Ln/2,n/2)
N1 — 27 (pg—p?) —mi(g+p) » 25 p(q—p)
= ,q,7=0 e N € en Lip.—p)
g+p+e+2r=0 mod N L((Jﬁfl)
L(e+’r,7'r)
Lonjana) Lny2,ny2)
= (-1 X =
Lesr—r) @

Fig. 46. The final computation of the junction charge. Details are given in the text

C. Gauge Invariance of Twisted Zy Gauge Theory

In this appendix we provide a bit more detail on the proof of gauge invariance of the

action (4.26). We first note that §ca is gauge invariant under (4.25). This means that the
gauge variation of (4.27) is

(scg” )i K Gca) = (2] K — g ) KO 6ca)ju

(C.1)

= (&] — &/ K<) KGca)ju -

We further use
(Scdca)iju = K (8ca)ju — (Sca)iw + (3ca)iji — (3ca)ijr = 0 (C2)

to replace K Cij (8¢ca) jx by (8ca)iy — (Sca)iji + (8¢ca);jx in (C.1). The second line in
(C.1) becomes

g] K Geaju — gf K Gcayus +] K Gca) —gf KGcany = (5" Kocm)
(C.3)

which is a total derivative. This shows that (4.26) is gauge invariant.

The invariance of (4.26) under background gauge transformation (4.28) is also straight-

forward. Under (4.28), the term (4.27) becomes

(aij)TKViKCij+yj_Vi+l (KCjk‘H’k_VjK_ykakl _ K_}’jajl + K_)’jajk) (C.4)

and all of the y; manifestly cancel.
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D. Fusion Rules of the (2 + 1)d SymTFT of TY (Zy) from Modular S Matrices

In this appendix, we collect the data of the Drinfeld center Z(TY (Zy)) of TY (Zn)
obtained in the mathematics literature [64,65]. In particular, we record the explicit form
of the modular § matrices, which can be used to rederive the fusion rules of Sect. 4.1 via
the Verlinde formula.

D.1. Objects and Modular S Matrices. Inthe notation of [64], the objects in the category
Z(TY (Zy)) include

1. 2N invertible lines: X ;, g € Zn,1 € Zs.
2. N(N —1)/2 non-invertible lines of quantum dimension 2: Y[ 41, &, h € Zn, g < h.
3. 2N non-invertible lines of quantum dimension JVN:Z ¢.ir 8§ €ELN,I € Ls.

They are in one-to-one correspondence with L‘(’e), Lie,m), E(qe) in the main text. In this
notation, the modular S matrices are given by?’

1 dri o,

= —¢ N
SXgY,',Xh,j 2Ne s

S =S GLIPSE
Xg.irZhj = OZpj.Xgi — 2\/Ne P

1 2mi
_ — _— =5 g(h+k)
SXei Y = SYinu.Xei = Ne " ;

(D.1)
SZgi Vi = Vi Ze = 05
e N—1
(=D i (ko Ik
SZgni’Zh,i = ———wewj Z e N (k—g—h) ,
2N pard
L mi piangy |~ 2 g+
SY[g,h]sY[g/_h/] = N (e N 8HNg) 4 o™ N (88 ) >
where
12 ;
N—1 i 2
1 2i (=Dhe™ ¥, Ne2Z+1
wo = | — e_Tghy(h) , ]/(]’l) = i ’ (D.2)
4 <ﬁ hgo P N €27

For completeness, we also record the spins of the lines here,

_2mi 2 27i gh

Ox,, =€ N§, Oigy =€ N 0z,, = (=D w}. (D3)

The Verlinde formula [84] enables us to derive the fusion rules between Wi, W,, W3 €
{Xg.is Yig,n> Zg,i} from the modular S matrices,

%
N )3 Swi,wSway,w S, w .

= D.4
Wi, Wp SXO,O,W ( )

14

As a consistency check, we will now apply these formulae to small values of N in order
to reproduce the fusion rules found in the main text.

27 For simplicity, we work only with the case in which the Frobenius-Schur indicator is trivial.
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D.2. FusionRulesfor Small N. N = 2:The fusionrule betweeninvertible linesis X, ; ®
Xp,j = Xgun,i+j, and we therefore reproduce the results in the text upon identifying

~(— I . . . . . . . .
Xgi < LEg)l) . The fusion rules involving non-invertible lines are more interesting. The
S-matrix elements and Verlinde formula give rise to,
X1,i ® Zo,j = Zo,i+j+1 X1,i®Z1,j =Z1i+j»

(D.5)
Zg,i & Zg,j = XO,i+j Y Xl,i+j+g+1 .

Comparing with the fusion rule (4.9), we find the identification Z, ; <> ’E\((O_)W \Zo,j <
’2\((51)". As there is only one line with quantum dimension 2, we also have the identifi-

cation Yjo,1] < Z[0,1]~ Indeed, the following fusion rules

Xg.i ® Yjo,11 = Y[0.17 Zoi ®Z1,j="Ypo11, (D.6)
match with those observed in Sect.4.1.4.
N = 3: The fusion rules between invertible lines are again Xy ; ® X5 j = Xgin it

and we therefore match the results in the text upon identify X, ; < Z\E;)]) . The fusion
rules involving non-invertible lines are more interesting. The ones involving quantum
dimension /3 lines are

X0, ® Zo,j = Zo,i+j » X1,i®Z0,j = Zojivjs1, X2i®Zoj=Ziirje1- (D7)

Comparing with the fusion rule (4.4), we find the identification Zo ; < S5 V', Z; j <

f(_lﬁ_l)'/, and Z ; < f(_zg_w. Other fusion rules between X and Z can be derived by
starting with (D.7) and fusing additional invertible lines on both sides. The fusion rule
between X and Y is

Xg.i @ Yig w) = Yigrg' g+i) (D.8)

which leads to the idenfication Y[, 51 < Z[g, n]- Other fusion rules can be similarly
worked out, and we find that they match with those from Sect. 4.1 upon using the above
identifications.

N = 4: The fusion rules between invertible lines are again X, ; ® X, j = Xg4p,i+j, and

we therefore identify X ; < /L\E;)l)l once again. The fusion between X and Z lines are

X1,i®Zoj=2Z0i+j, X1,i®Zij=2Z3irjs1, X2iQ®Zgj=Zgitjrg- (D.9)

Note that upon fusing X ;, the Zg ;’s for even g form a closed orbit, while those for
odd g form another closed orbit. We therefore identify Zy ; < fga)l)j, Zy,j < fésl)],

Zy; < f((;)l)’ ,and Z3 ; < f@g_ly . The fusion rule between X and Y is

Xeg.i ® Yig 1) = Yigrg' g+i'] (D.10)
which leads to the idenfication Yj, 1 < E[g, p]- Other fusion rules can be similarly

worked out, and we find that they match with those from Sect. 4.1 upon using the above
identifications.
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E. Condensation Defects for the EM Exchange Symmetry in (4 + 1)d

In this appendix, we discuss the four-dimensional defect Dgy; generating the ZEM (or

ZtM for N = 2) symmetry in (4 + 1)d ZE\}) gauge theory. Since the defect is different
depending on the value of N, we must discuss three separate cases.

E.1. Odd N. For N odd the operator Dgy is given by (6.16), which we reproduce here
for convenience,

HO(My, Zy)|?
DEM(M4)=| (My, Zn)) Z

N TIVTY IR AR
|H' (M4, Zy)| 0,0'€Hy(Ms,Zy)

27i ., ) /
exp (W“G ,0')+ (0,0 ))) Sa.-n(©@)San(@). (B

From (6.13), the expected fusion rule would be S ) (7) DEm(M4) = DEm(M4)S(—m.e)

(t) exp(— 2” el (¢ 1)). We will check this now, together with the invertibility of the
defect.

—2miem/N(t,T)

E.1.1. Fusionrule S myDEm = DEMS(—m.e)€
fusion rule above. We have

We begin by verifying the

S(e,m) (7) DEm(M4)
HO(My, Zy)|? i, , ,
= % > exp (%((U o)+ (oo ))) Sem) (DS, -1y (@) Sa.1y(07)
SN G ey My, Zy)
0 2
= % Y e (2%(«; o) + (0.0} + (e + m) (T, o) + (m — e)(t, 0/))>

o,0'€eHy (M4, ZN)
X Sc1,=1)(@)S1,1) (@) Se,m) (T) -
(E.2)

Now we use the fusion rule (6.9) to rewrite S( () as eZ”"mz/N(t’”S(e,_e)(t)
S@n,m)(T)S(—m,e)(t). The above expression then becomes

HO(My, Zn)|2
Stemy (D) D (M) = 1 M BVOF 5

1 2
|H (M4, ZN)' o,0'eHy(My,ZN)

exp <%((o’, oY+ (o, 0 Y+ (e+m)(t,0)+(m —e)(t,0’)

+m?(z, f))) S, (©@)S81,1) (6 S(e,—e) (T) Sty (D) S(—m,e) () -
(E.3)
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Note that (e, —e¢) = e(1, —1), (m, m) = m(1, 1), and hence one can switch the order
of the surface operators and combine the terms using the quantum torus algebra (6.11).
The result is

S(e.m) () DEM(M4)

_|H (M4, Zy)? 3

= m exp (%((a/,o')+(a, o'y +m(t, o) + (e +2m)(r,o’)

o,0'eHy(My,ZN)
+m2(r, ‘E)))S(l’,l)(c + e“L’)S(l’l)(O'/ + mT)S(fm’g)(T> .
(E.4)

We finally make a change of variables 0 — o — et, ¢’ — o’ — mT, upon which the
above expression then becomes

Ste,m) (T) DEM(My)

_|HO (M4, Zy)|? 3

\
T H My, Zy) P (%““” o)+ (0,0") —em(z, r>))

o,0'€eHy(My,ZN)
X S(1,—1y(0)S1,1y(6)S(—m,e)(T)

2mwiem
= DEM(M4)S(—m,e)(T) €Xp (- (7, T)) .

N
(E.5)

Using the commutation relation (6.10), the surface operator in the last step can finally
be re-expressed as

2miem

2miem
(T, ‘E)) = S—m,0)(1)S0,¢)(T) €Xp <— N (t, 1:))
= 500.e) (V) S(—m.0) (T) . (E.6)

S(—m,e)(T) €Xp (—

Thus Dgy maps S0y to S(0,¢) and S, m) to S(—m,0), exactly as expected in (6.13).

E.1.2. Charge conjugation operator C = D%M Before checking DgM = 1, we first

compute C = D}ZEM, which should be the charge conjugation operator.”® To this effect,
we have

_H My, Zy)I* 3

D M. 2 e N
MM = T . Z)

o,0',t,t'eHy(My,Zy)

2mi r ’ ;o ’ (E.7)
exp T((G,G)+(U,G)+(T,f>+(f,f>)
X S(1,—1y(0)Sa, (NS, -1 (DS, n (") .

28 Note that C is the 4d charge conjugation defect, which should not be confused with the 3d condensation
defect C defined in (6.33).
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To simplify the above expression, we switch the order of surface operators, combine
the terms with the same charge using the quantum torus algebra, and make a change of
variables. The final expression is

eyt = 080T
C(My) = Dpm(My)” = |HY (M4, Zy)|* Z

o,0',t,7'€Hy(My,ZN)

27[1 / ’ / / !
exp(T((a,a)+(a,a)+(r,t)

+(t. 1) = (o', 7)) = (0, 7)) + {0, T) — (o, f>)>s(1,,1)(a)s“,,)(g/) :
(E.8)

Since 7, T’ only appear in the exponent and not in the surface operators, we can perform
the sum over them to simplify the expression. We first sum over t. The relevant part is

2mi ,
> exp o+ —a ). (E.9)
teHy(My,ZN)
To complete the square, it is useful to introduce p satisfying 2p = o’ — o. Note that p

exists since the equality is defined modulo N A where X is the generator of Hy(Ma, Zy)
and N is odd. Hence (E.9) can be simplified to

o
VIHy(My, ZN)| Zy[Mas, Zn]exp (—EOO,,O)) , (E.10)

N

where

1 2mi
Zy[My, ZN] = ———————— exp (—(r, r)) (E.11)
VIHy (M4, Zy)| reHz(ZM:“)ZN) N

defines an invertible TQFT, which trivializes on a spin manifold. Similarly, we can sum
over T/ by introducing 2w = o + o', which gives

o
VIHy(My, ZN)| Zy[ My, Zn]exp (-%(&M) . (E.12)

The charge conjugation defect thus becomes

|HO(My, Zy)|* | Ha(Ma, Zy)|

C(Ma) = |H'(My, Zy)|*

o
ZMLZN P Y exp <%((0/, o)

o,0'€Hy(My,Zy)
+{o,0") = (p, p) — (CU,w)))S(l,—l)(U)S(l,l)(U/) .
(E.13)

To further simplify the expression, it is useful to replace o, o in terms of p, @ via

oc=w-—p, o =w+p. (E.14)
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Summing over o, ¢’ is equivalent to summing over p, w. Hence the expression for the
charge conjugation defect simplifies to

|HY (M4, Zn)|* | Hy (M, Zy)|

C(My) = |HY(My, Zy)[*

Zy[My, Zy1? Z
p,weHy(My,Z)

2mi
exp (T(—(P, p) + (o, ®) +2(p, “’))>

xS,-n(@ = p)Su,n(@+p)
_ |HO My, Zy) ' Hy(Ma, Zy)|
[H(Ma, Zy)I*

Zy[My, ZNT? >
p,weH(My,Z)

4mi
exp < - T“” w))S(o,z) (P)S2.0) (@) . (E.15)

E.1.3. Invertibility of Dgy We finally check the invertibility of Dgy by computing
DéM, and conforming it is the identity, up to a local counterterm. Since we have already

computed C = D%M, we only need to compute C? as follows.

_|HO(My, Zn) 1| Hy(My, Zy)

C(My)?
(M) |H(Ma, Zn)®

Zy[My, Zy1* >

o0,0',1,7'€eHy(My,ZN)
4mi , /
exp( — T((G, o) +(r, 7))

x80,2)(0)82,0)(0)S0,2)(T)S2,0) (")
_ |H (M4, Zy) 1P| Ha(My, Zy)
|H (M4, Zy)|3

Zy[My, Zy1* >

o,0',7,7'€Hy(M4,ZN)

exp (%(—2(0, o'y —2(r, "))

—4(0/, ‘L’))S(o’z)(o + ‘E)S(z’o)(o/ + ‘L’/)

|HO(My, Zy) B | Hy (Ma, Zy) |
- Zy[Ms, Zy1* )
[HY(My, Zy)|8
’ 0,0/ ,t,7'€Hy(My,ZN)

exp (%(—2(0, o'y +2(o, 1))

—2{0’, T))S(o,z)(U)S(z.O)(U/)

|HO (M. Zy) P | Hy (M., Zy)|* \ ) )
= Zy[M. ,Z = M. ’Z ZvIM. ,Z .
|H (M4, Zy)|8 y[My, Zy1* = x[Ma, ZN]1* Zy[My, Zy]
(E.16)

From the second to the last line, we have combined the surface operators with the
same charge, made a change of variables 0 — o — 7,0’ — o’ — 7/, integrated out
7 and t/ which enforced o, o’ to be trivial 2-cycles in Hy(My, Zy), and finally used
the definition of the 4d Euler counterterm in (5.3). Note that x[My, Zy] is a local
counterterm and Zy[My, Zy] is a phase, which proves that C (M4)2 = Dgm (M4)4 is an
invertible operator.
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E.1.4. Summary of algebra of co-dimension one 'We now summarize the algebra involv-
ing the Dgy defect. We may define the orientation reversal of Dgy as Dgvm via

5 [HO(My, Zy) ? 3

TSIV YY)
|H' (M4, ZN)| 0,0'€Hy(My,ZN)

-
eXP(-%((U,GH(U,U/))) Sa,n@)Sa,—n() (E.17)

Dem(My) = x[Ma, Zy1~

where motivated by (5.6) the Euler counterterm is included. This also renders Dem X
Dgym = 1. The fusion rules are then

C(M4) = Dem(Ma) ,
Dem(Ma)* = x[Ma, Zy1* Zy[Ma, Zn1*
Dem(Ms) x Dep(My) =1,
Dpm(My) = x[Ms, Zy1* Zy [ My, Zy1~*C(M4) Dpm(M4)? .
(E.18)

E.2. N =2. When N = 2, there is only one type of condensate, and the EM symmetry
is ZEM. The topological defect for ZEM is

|HO (M4, Z,)| 3

1
[H'(My, Z)| o cHa(Ma.Zo)

Dem(My) = Sa.0(@) S +[wi™) . (E.19)

where [wZT M1 is the Poincaré dual of the second Stiefel-Whitney class of the tangent

bundle of the spacetime manifold sz M 29 To confirm that this is the correct result, we
check the commutation relations with the surface operators S ,)(7), as well as that
Dgm (M4)2 = 1 up to Euler counterterm.

E.2.1. Fusion with S ,;y We begin by computing

S(e,m) () DEm(M4)

_|H ' (M4, Zy)| 3

= —_— S S S ™M
HT (M. 2| (e,m) (1) 8(1,0(0)S(0,1)(0 +[wy 1)

o€Hy(My,Zs)

exp (in(m(t, o)+e(t,o+ [wZTM])))

_|H ' (M4, Zy)| 3

=
|H' (Mg, Z)| o cHa (M. Zo)

S1.0)(@)S0.1) (0 + [w3 1) S(e.m) (T) -
(E.20)

29 We thank Ryohei Kobayashi for discussions and a note which lead us to this construction.
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Using Se.m)(7) = S(1.0)((e — m)T)S(0.1)((m — €)T)S(m.e) (7)™ M=TT) and com-
bining the surface operators with the same charge, the above expression simplifies to

S(e.m) () DM (M4)

_H (M4, Zy)] 3

= H M3, Zo)] exp (in(m(r, o) +e(t, o+ [wIM]) + m@m — e)(z, 1)

o €Hy(My,Z2)
+(e=m)(r.o +[w] 1)) S1.0/ + (e = m DS @ + W] ]+ (e =MD S o) (0)

(E21)

We further make a change of variable 0 — o — (e — m)t, and use (7, 7) = (T, szM)

mod 2, upon which the expression simplifies to

Ste,m) (1) DEm (M4)
HOY(My, Z
_ M 22l S exp Gimem(z, 7)) S0 0)S10.1 @ + [ M) S (0)
|H (Ma, Z2)| | 50 209
= DeM(M4)S(n.e)(T) exp (imem(t, T)) (E.22)
as expected.’?

E.2.2. Invertibility of Dem(M4) We next compute

H(] M ’Z 2
Dem(Ma)* = W D Sa,0/(@)S0.1(0 +[w) MDS.0) () S0.1 (T + [wi M)
HO(My, Z)? ,
= M Z Sa,00(0 +1)80,1)(0 + 1) exp <I7T(U + [ng], ‘E))
HO(My, Z)|? )
= WZS(.,,)(a)exp (zrr(a+[w2TM]—r,r)> . (E.23)

Using (7, 7) = ([wZTM], 7) mod 2, this expression can be simplified to

_|H(My, 7o)

D M. 2 e el
M) = BT . Zo)P

Y Sa.n(e)exp(in(o, )

(E.24)
_ |HO My, Zo) P | Hy(My, Zo)| _

= x[My, Z5] .
|H (M4, Z)|?
We can also define the orientation reversal as
Dem = x[Ma, 721" Dpm (E.25)

upon which (E.24) can be rewritten as
Dem(My4) x Dem(My) = 1 (E.26)
Hence Dgm(Ma) is invertible, and generates a Zp symmetry.

30 Note that this surface operator exchanges e <> m. It can be shown that this operator is a compo-
sition of Dy Doy Dpyyys Where Dy and D,y are operators exchanging m < Y and e <, re-

. HO(My,Z i
spectively. One has D,y = % Yo Hy(My,Zy) CXP (% fP(PD(J))) 8(1,00(0), and Dgy =

0 .
% Yoty (My.Z) EXP (% i P(PD(a))) 5(0.1) (@), where PD(c) is the Poincaré dual of o
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E.3. Even N and N > 4:. The symmetry defect in this case is almost identical to that
for odd N, but with some minor modifications. In particular, we now have

|HO (M4, (Zn x ZN)/Z2)] 3

Dem(My) =
EM(M4) |HY (Mg, (Zn x Zn)]Z2))|

(0,0")eHy(My,(ZNn xZN)]Z2)
i
exp (ﬁaa’, o') + (0, a’>>)
N
N ™ /
xS1,-1(@)S0,1 E[wz 1) Sa, (). (E.27)

As in the case of N = 2, for generic even N, we are allowed to turn on the background
field sz M

E.3.1. Gauge invariance As explained in Sect.6.2.2, summing over Hy (M4, (Zy %
Z,N)/Z3) requires that the defect should be invariant under the gauge transformation
o — o+ %)\, o — o'+ %A, which follows from the identification Sy /2, n/2)(0) =
S(n/2,—n/2)(0). Indeed, it is straightforward to check that (E.27) is invariant under this
gauge transformation, due to the proper coupling to the background field [sz M1, This
means that summing over the elements (o, 0’) in Hy(My, (Zy x Zy)/7Z3) amounts
to summing over o and o’ in Hy(Mu, Zy) separately, but only over half of the total
domain.’!

The ZEM defect (E.27) differs from that for the odd N case by coupling to the background
field [sz M. 1f we do not couple to the background field in (E.27) and use (E.1) instead,
then under the gauge transformation 0 — o + %k, o/ - o'+ %A we would find
that Dy transforms as Dy — (— 1)%()‘*)‘>DEM = (—1)%0"[“)2””]) Dgm, which is not
invariant and renders the sum over Hy (M4, (Zy X Zn)/Z>) ill-defined. The coupling
to [sz M1 in (E.27) precisely compensates this non-invariance.

E.3.2. Fusing with S m)(t) To justify that (E.27) is the correct condensation defect of

ZEM, we may check that the commutation relation with the surface operators is of the
desired form (6.13),

2miem

Ste.m) (1) Dent(Ma) = Dpnt(M4)S(—m.)(7) exp (— (t, r>) . (B28)

The proof is identical to the case for odd N, and will not be reproduced here.

E.3.3. Two useful summation formulas Before discussing the charge conjugation oper-
ator and verifying the invertibility of Dgy, it is useful to discuss a summation formula
which will be used later on. We start with the discrete Fourier transformation,

1 2i i i wip?
— E exp i —xp | =exp|— — Tp (E.29)
VN 2N N 4 N
XEZN
31 As an analogy, summing over (a,b) € (Zy x Zy)/Z; amounts to choosing one element in the pair

(a,b) ~ (a+ % b+ %) and summing over the N 2 /2 choices of pairs. The sum is independent of the choice
thanks to gauge invariance.
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and

1 i, i, Nedz

1 mi a2\

N2 eXp(zN(x y)> {0, N edz+2
X, YELN , x+y€2Z

1 i, 0, Ne4Z

1 mi 22y =

N 2 exP(zN(x y)) {i, N €4Z+2
X, VELN , x+y€2Z+1

(E.30)

First Formula We now prove the first of two summation formulas of interest. To motivate
the first, we begin by considering the function

1 2mi (x* +y?
fab =5 ¥ exp(%(x ;—y —ax—by>) (E31)

xEZN,yEZN
x+y€e2Z

where N is an even number, and a, b € Zy. Note that f (a, b) is invariant under shifting
a, b by N /2 simultaneously, i.e.

N N
fla,b) = f<a+3,b+3> (E.32)

which is guaranteed by x +y € 2Z in the range of sum. To perform the sum, we complete
the square and make a change of variable. Then f(a, b) simplifies to

2mi 4 2 1 2mi 5 2
f(a,b) = exp (—ﬁ(a +b ))N Z exp <W(x +y2) ) . (E33)
XEZN,yEZN
x+y+a+be2Z

The sum is invariant under the shift (a, b)) — (a + % b+ %), but the phase in front is
not. The phase transforms as

271i . . 2mi
exp <_%(a2 + b2)) N e—l?’[((l+b)—l7TN/2 exp <_%(02 + b2)> . (E34)

On the other hand, f(a, b) satisfies (E.32), and hence f(a, b) = 0 whenever the phase
e~ imla+b)=inN/2 £ 1 1In particular, this implies that f(a, b) = 0 when (N,a +b) €
(4Z.,27) and (N, a + D) € (4Z + 2,27 + 1). Further evaluating the summation (E.33)
via (E.30), we obtain

27l Tl
f(a,b) =exp (—W(az +b%) + 7) Satb+N/2 mod 2 - (E.35)

Comparing this to (E.29), this is the generalized discrete Fourier transformation on a
space with constraints.

We would like to generalize (E.35) so that the variables are the elements in Hy (M4, Zy ),
and the product is replaced by the intersection pairing or the Poincaré dual of the Pontrya-
gin square. Concretely, we are interested in evaluating the generalized discrete Fourier
transformation
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1 2mi , 2mi
ULy Z exp <W(P([T]) +PAT'D) — 7((61, o)+ (b, T») )
t,7'€Hy(Ma,ZN),
T+t'=2n€Hy(M4,ZN)

(E.36)

where a, b € Hr(My, Zy), and [7] is the Poincaré dual of T. The condition t + 7/ =
2n € Hy(My, Zy) simply means that T + 7’ is an even element in Hy(My, Zy), i.e.
7+ 7' is trivial when regarded as an element in Hy (My, Z>). The sum (E.36) is invariant
under the gauge transformation

N N
a—>a+5k, b—>b+3k, (E.37)

and hence (a, b) can be regarded as an element in Hy(My, (Zn X Zn)/Z3). Following
the same discussion which lead to (E.35), we can complete the square in (E.36), and
find

-
exp (—%(P([a]) + P([b])))

|Hy(My, Zy)|
2mi E.38
Z exp (W(P([T]) + P([T/]))> . ( :
7,7 €Hr(M4,Zn),
t+t'+a+b=2ne Hy(M4,ZN)
The sum is gauge invariant, and defines an invertible TQFT Zy (M) as follows,
! )
|H2(M41 ZN)' T,T,EHZ(M4’ZN)’
t+7'=2n€Hy (M4, ZN)
o Zy[My, BNXINy N € 47
P +P(7’ = .
exp ( S (P + Pl ]))) {0’ N €4z +2
! >
|H2(My, Z)| T, 7' €Hy(My.,Zy),
T+t +E=2neHy (My, Zy)
i , 0, N edz
exp (W(P([t]) +P([r ]))) = {Zy[M4, %] , NedZ+2
(E.39)

where & is an generator of Hy (M4, Zy), and the sum is independent of the choice of &.
In particular, we can choose & = [sz M1 mod 2. The above formula is a generalization
of (E.30) and is similar to Zy for the odd N case, c.f. (E.11). But the phase in (E.38) is
not gauge invariant. This enforces that (E.36) vanishes for certain (N, a, b). To find the
vanishing condition, we perform the gauge transformation

;N

2mi . ™
exp <—2i]\,’<7>([a]) +7><[b]>)) > gTmiath A TR )
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\
exp (—ziN’m([amP([b]))) . (E.40)

Because A is arbitrary, we require a + b + %w{ M to be a trivial element in Ho (M4, Z»)

for the sum (E.36) to be nontrivial. In summary, the sum (E.36) equals

N, TM (E41)

atb+5zwy™ mod 2 *

ZN X ZNi|

.
exp (—ziN’(P([a]) + P([b]))) Zy [M4, -

Second Formula We further consider the summation

1 2mi
Z eXp (T(_xa + yb)> Sa+b mod 2 =840y . (E.42)

N2/4
/ (x,V)E(ZN xXZN)]Z2,
x+y=0 mod 2

Upgrading the summation variables to elements in homology, we find

|8 L) >

Hy (M4, Zy)|?

(2 (Mas ZNDV ot Ml 22
7+7'=0 mod 2

2mi , ,
eXp W(_h' ,0)+(7,0")) ) S540’ mod 2 = 8585 - (E43)

E.3.4. Charge conjugation C = DéM We now return to the evaluation of powers of
Dgwm. Taking the square of (E.27), we obtain

C(My) = Dpm(My)?

_ |H(My. (Zy x Zy)/Zo)P? 3
|H(My, (Zy x Zx)/Z2))?

(0,0")e
Hy(My,(ZN XZN) ] Z2)

2mi N
exp (%«a', o'+ (o, 0y + (w1, a’>>)

X Sc1,-1)(@)S1,1)(0") Z
(r,7))e
Hy(My,(ZnxZN)]Z2)
2mi N
exp ﬂ((17/, H+(r,7)— (o +0' + —[wZTM], ')
N 2
N

— (o —0o'+ 3[szM], r))) )

(E.44)

Summing over (t, ') € Hy(My, (Zy % Zy)/Z3)) can be reorganized as summing over
T:=1+7and 7 := v/ — 7 in Hy(My, Zy) respectively, but with the constraint T 4+ 7’
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being an even element in Hy (M4, Zy), or equivalently a trivial element in Hy (M4, Z3).
This gives

Z exp (% ((‘L’/, ')+ (1, T)

(r,7')e
Hy (M, (Zn XZN) [ Z2)

—<a+a’+%[szM],T/)—(0—0/"'%[“)2”4]’”))
2mi - ~ 2ri N TMy ~ -~
= ) exp ( S PUTD +PATD) = == (o + S w3 V1.7 + (0, 7)) ) .

~ N 2
7,7 eHy(M4,ZN)
T+T' =2n€Hy (M4, ZN)

(E.45)

In particular, the gauge invariance under (o, 0’) — (o + %k, o'+ %A) is manifest for
the first line, and can be seen in the second line from the constraint in the summation
domain T+7' = 2n € Hy(My, Zy). The last expression is of precisely the form (E.36),
where (a, b) = (0 + %[wZTM], o), and hence we can apply the result (E.41) here. The
sum simplifies to

Z V) 2mi N
|H2(M4, ZN)|ZY[M4; %] exp (_%(Ip([o] + *szM) + P([U,]))) 80+rr’ mod 2 -
2 N 2
(E.46)
Substituting the above calculations into the expression of C(My), we get
|HO(My, (Zy x Zn)/Z2)|*| Ha(My, Zy)| LN X LN
C(My) = 1 / 3 Zy[My, ———1]
|H (Ma, (ZN X ZN)]Z2))| Ly
2mi N
x > exp <T<<a/, o') +(0.0") + (w3, o)
(0,0")eHr (Ma,(Zn XZn)/L2),
o+0'=0eHy(My,73)
1 N ™ 1 / 1
- 573([0] + W3 ) — 573([0 M )Sa,-1y(@)Sa, (e’ .
(E.47)

E.3.5. Invertibility of Dgy We finally show that DEM = C? is the identity up to an
Euler counterterm and an invertible phase Zy. Taking the square of (E.47), we find

Dem(My)* = C(My)?

_ [HOMs, @y x Zw)/ 2D HxMs ZW)E Ty X Ty
|HY (Ma, (Zn x Zn) [ L) I

x )
(0,0"),(r,7")e
Hay(My,(Zy xZN)/Z2), (E.48)
o+o’,1+1'=0€
Ha (M4, Z2)

]2

27 1 L n_ N M
exp<7(§7>([a]) FPUoD +{o.07) = 50 =o', [w 7))

N2
7<[w2”4], [wi™) — (7, 0) + (1, o’>)>S<1,4>(o>sa,1>(a/> .
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We further sum over t, T/ by applying the formula (E.43), which constrains o, ¢’ to be
trivial provided o + 0’ = 0 mod 2. Hence the above expression simplifies to

Dpm(My)* = C(My)?

_ |HO My, (Zy x Zy) [ Zo)| Ho (M, Zw)I° [y, TN X TN o | Ha(Ma, Zy)|?
- [H'(My, Zy x Zy)/Z2) T T TH My, Zy) P2
_ HOMa, (Zy x Zy)/To) 1 H? (Ma, (Zy X Zn)/Zo) e, BV X2
- |HO(Ma, (Zn % Zy)/Z)* T,
2 2
=x |:M4, M] Zy |:M4, M] . (E49)
Zz ZZ

E.3.6. Summary of algebra of co-dimension one We close by summarizing the algebra
involving the Dgy defect. Noting that the orientation reversal of Dgy is

|HO(My, (Zy x ZN)/Z2)]
|H (My, (Zy x Zn)]72))|

x Z exp (—%(a, 0/)>

(0,0")eHy (M4, (ZN X ZN)]Z2)

N
Sa.1y(@)S.—1y(o + 3[wg M1)S.0)(0) (E.50)

Dem(My) = x[My, (Zy x Zy)/Z2] ™"

we have

C(My) = Dpm(Ma)*

Dem(Ma)* = x[My, (Zy x Zy)/Za) 2y [Ms, (Zy x Zy) /721,

Dpm(My) x Dpm(My) =1,

Dem(Ma) = x[Ma, (Zy x Zn)/Z2] > Zy[Ms, (Zy x Zy)/Z2) "> C(Ma) Dem(Ma)*. (E.51)

F. More on §{N/2,0}

Given an operator O invariant under a symmetry G, upon gauging G we may get a
series of operators O transforming in representations of the quantum dual G. In this
final appendix, we discuss how to assign representations of subgroups of the quantum
symmetry G to operators O descending from O that are invariant under only a subgroup
H C G. We will focus only on the case of interest to us in this paper, namely G = ZEM g

ZEM and the operator 0= S{ N/2,0}-

Recall from the discussion in Sect.7.1.1 that, unlike the surface EN /2,N/2) Which is
invariant under ZEM or the surface S[e m] whose constituents are not invariant under
any subgroup of ZEM the constituents of S| (N/2,0y are invariant under a ZEM subgroup
of ZEM That is, under (e,m) — ( e, —m) we see that both Sy 2,0 and S(o,n/2) are
left unchanged This means that S le,m] can be assi gned a representation of the quantum
ZEM C ZEM and hence that the identity line in S[e m) carries a two-fold index, i.e.
3 (Sem])forp_O 1.

Phys1ca11y, the statement is that the bare identity line J9 (S{ N/2,0}) cannot absorb a single
copy of K, and hence when stacked with K gives a distinct line J (S{ N/2,0)- However,
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it can absorb K2, and hence there are no other distinct lines generated in this way. To see
how these statements arise, let us focus on the global fusion. We first consider coincident
loops of J (S N /2 0}) and K, and ask whether this configuration can be distinguished

from a loop of J .J1 (S{ N/2,0p) inisolation (c.f. Fig.24 and the discussion surrounding it).
A loop of K gives a non-trivial contribution to correlation functions if and only if it
links with n units of EM flux, with n non-zero modulo 4. If n = 1, 3, then K gives
a non-trivial result, but the loop of J (S{ N/2,0y) evaluates to zero since the constituent

lines 39 1S /2,0)) and 39 1(S@,n/2)) (which are not lines in the EM-gauged theory, but
which do exist in the pregauged theory) are not invariant under the primitive generator
of Z4EM. Hence in the presence of n = 1, 3 units of EM flux, one cannot distinguish the

configurations with 3(1)(5{ ~/2,0y) stacked with K from the configuration with 3?(5{ N/2,0))
in isolation. However, if we consider the case of n = 2 units of EM flux, then the
loop of K is agam non-trivial, but now J (S(o N/2)) does not evaluate to zero since the

constituent lines J9 1(S(v/2,0)) and 39 1(S(0,n/2)) are invariant under ZEM ZEM. Thus by
considering the configuration with n = 2 units of EM flux, one can distinguish between
the configurations with 3(1)(S{ N/2,0)) stacked with K and with ’J?(S{ N/2,0)) in isolation.
In other words, 3(1)(5{ N/2,0}) cannot absorb K.

‘We may now ask whether TJ?(S (N/2,0}) can absorb K 2. As before, we consider coincident
loops of 3(1)(5{ N/2,01) and K 2. and ask whether this configuration can be distinguished
from a loop of TJ?(S (N/2,0y) in isolation. The main difference from before is that the loop

of K? gives a non-trivial result only in the presence of an odd number of units of EM
flux. However, as we have argued before, in the presence of an odd number of units of
EM flux, the loop of TJ?(S{N/Z’O}) evaluates to zero. Hence 3?(S{N/2,0}) can absorb K 2.
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