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Abstract: Nonlinear differential equations exhibit rich phenomena in many fields but
are notoriously challenging to solve. Recently, Liu et al. (in: Proceedings of the National
Academy of Sciences 118(35), 2021) demonstrated the first efficient quantum algorithm
for dissipative quadratic differential equations under the condition R < 1, where R
measures the ratio of nonlinearity to dissipation using the �2 norm. Here we develop an
efficient quantum algorithm based on Liu et al. (2021) for reaction–diffusion equations,
a class of nonlinear partial differential equations (PDEs). To achieve this, we improve
upon the Carleman linearization approach introduced in Liu et al. (2021) to obtain a
faster convergence rate under the condition RD < 1, where RD measures the ratio of
nonlinearity to dissipation using the �∞ norm. Since RD is independent of the number of
spatial grid points n while R increaseswith n, the criterion RD < 1 is significantlymilder
than R < 1 for high-dimensional systems and can stay convergent under grid refinement
for approximating PDEs. As applications of our quantum algorithm we consider the
Fisher-KPP and Allen-Cahn equations, which have interpretations in classical physics.
In particular, we show how to estimate the mean square kinetic energy in the solution
by postprocessing the quantum state that encodes it to extract derivative information.

1. Introduction

Nonlinear partial differential equations (PDEs) of reaction–diffusion type arewidespread
and have many applications, ranging from biology and ecology to data science. Exhibit-
ing rich phenomena, reaction–diffusion equations have been applied to describe bio-
logical transport networks such as leaf venations and blood flow [1–10], predator–prey
dynamics in interacting populations [11–13], prediction of brain functions and tumor
growth [14,15], the formation of the Turing patterns in tissues and organs [16–19], den-
dritic colony growth [20,21], complex chemical processes such as combustion [22–25]
and calcium dynamics [26]. Reaction–diffusion equations have also been applied to
data classification [27–29], and image segmentation and inpainting [30–33]. In many
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cases, the underlying model can be viewed as an energy optimization procedure, with
the reaction–diffusion equations as the gradient flow. Such reaction–diffusion equations
inherit the property that energy decays with time. Moreover, the maximum principle is
satisfied, which states that if the initial and boundary conditions are bounded by a certain
constant, then the entire solution remains bounded (in the L∞ sense) for all time. When
designing numerical approximation schemes it is often of great interest to maintain these
properties exactly.

Attempts to solve such PDEs on classical computers are hampered by the so-called
curse of dimensionality, in which computational complexity grows exponentially with
spatial dimension [34]. For example, in d dimensions, if each coordinate is discretized
by n grid points, the grid will have �(nd) grid points.

Recent advances in quantum computing offer a fresh approach to the efficient solution
of such high-dimensional problems.Quantumalgorithmshave been developed to prepare
a quantum state encoding the solution to an nd -dimensional linear system, while in
some cases only requiring quantum circuits of complexity poly(d, log n) [35–43]. Such
quantum algorithms have been applied to address high-dimensional problems governed
by linear ODEs [44–47] and PDEs [48–54].

It has been a longstanding open problem to understand the capability of quantum
computers to solve nonlinear differential equations. An early work proposed a quantum
algorithm for ODEs that simulates polynomial nonlinearities by employing multiple
copies of the solution [55]. For n-dimensional systems of polynomial ordinary differ-
ential equations, this quantum algorithm scales as poly(log n, 1/εT ). Finding quantum
algorithms with polynomial scaling in T for solving nonlinear differential equations
remained an open problem. Furthermore, complexity-theoretic arguments indicate that
this should not be achievable in the most general case [56–58], but rather will require
exploiting specific properties of restricted classes of nonlinear differential equations.

Recently, in [59], a quantum algorithm based on Carlemann linearization [60–62]
was proposed for solving a class of nonlinear differential equations

dU

dt
= F1U + F2U⊗2 + F0(t). (1.1)

Here we assume F1 is dissipative, i.e. all the eigenvalues of F1 are negative. We are
given an initial condition U (0) = Uin, an error tolerance ε, and a time-duration T . The
efficiency of the algorithm depends on R, defined as

R = ‖F2‖
|λ1| ‖Uin‖, (1.2)

where λ1 is the largest eigenvalue of F1. The quantity R is used to quantify the relative
strength of the nonlinearity and forcing to the linear dissipation according to the �2
norm. A more general definition of R for polynomial differential equations is given in

(3.10). Under the condition R < 1, the algorithm has complexity O(
T 2q
gε

poly(log T,

log n, log 1/ε)), where q = ‖Uin‖/‖U (T )‖, and g = ‖U (T )‖. This quadratic scaling
with T was an exponential improvement over prior quantum algorithms for solving non-
linear differential equations. The error dependence of quantum Carleman linearization
was subsequently improved from poly(1/ε) to poly(log 1/ε) in [63], by assuming the
log-norm of the dissipation matrix is negative rather than exploiting a diagonalizability
condition.
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Various quantum algorithms for nonlinear differential equations have also been in-
vestigated recently based on Koopman-von Neumann linearization [64–68] and the re-
lated level set formalism [69]. Others have been proposed based on the non-Hermitian
Hamiltonian approach [64,66,70] and the homotopy perturbation approach [71]. Carle-
man linearization can be treated as a particular Koopman-von Neumann linearization,
while the non-Hermitian Hamiltonian approach is inspired by quantum simulation. The
quantum algorithm of [71] combines the homotopy perturbation method with the high-
precision quantum linear ODE solver of [45], achieving complexity that scales linearly
in T and polylogarithmically in 1/ε. This is shown under the condition K = 4R < 1,
which is stricter than the condition R < 1 used in [59]. The quantum algorithm of [69]
is based on the level set method, which maps a nonlinear differential equation into a lin-
ear differential equation describing the dynamics of the level sets of the solution to the
original nonlinear differential equation. Given a specific construction for the encoding
of initial data, the quantum algorithm of [69] encodes the level set function from which
physical observables can be estimated corresponding to multiple initial conditions.

Many of the quantum algorithms proposed for solving differential equations depend
on solving a high dimensional linear system, and their complexities are thus determined
by the condition number of this system. Deriving bounds on this condition number
based on the properties of the original differential equations is challenging and largely
unsolved. Quantum complexity lower bounds on simulating nonlinear quantum dynam-
ics [58] or classical dynamics [59] show that this condition number becomes exponential
in the worst case.

In this paper, we extend upon the quantum algorithm of [59] by adapting the Carle-
mann linearization approach to the context of reaction–diffusion PDEs. We also show
that reaction–diffusion equations are still tractable on quantum computers even for larger
R under the Maximum Principle, ruling out the worst-case exponential time complexity
in [59]. Finally, we conduct several numerical experiments for Fisher-KPP equations
and Allen-Cahn equations to verify the convergence rate and efficiency of the improved
Carleman linearization.

We compare our improved quantum Carleman linearization algorithm to the orig-
inal one [59] in Table 1. Both quantum Carleman linearization methods solve an nd -
dimensional system of ordinary differential equations with initial condition Uin, for a
given evolution time T and normalized �2 error tolerance ε. (In the present work, we
consider this set of ODEs as arising from the discretization of a PDE.) The quantum
algorithm in [59] solves nonlinear dissipative differential equations of the form in (1.1).
Our new quantum algorithm solves reaction–diffusion equations, where F1 is Laplacian
and F0 = 0, but the F2U⊗2 term is instead allowed to be a high-degree polynomial.
Thus, the class of problems we consider here is neither a strict generalization nor a strict
special case of that considered in [59].

Our new quantum algorithm produces a Feynman-Kitaev history state encoding the
full time-evolution of the solution U (t) : t ∈ [0, T ], whereas the algorithm of [59]
produces a quantum state encoding the final value U (T ). The history state we produce
corresponds to the gradient flow of the energy functional. We can post-process this state
to extract derivative information which can be interpreted as kinetic energy in classical
physical systems modeled by the nonlinear PDE.

The quantum algorithm of [59] has time-complexity proportional to q/g where q =
‖Uin‖/‖U (t)‖ and g = ‖U (T )‖ is the final norm of the solution. Our new algorithm
instead has complexity proportional to ‖Uin‖/G, where G = 1

T

∫ T
0 ‖U (t)‖ is the time-

averaged norm of the solution. In some cases, 1/G can be much smaller than 1/g. For
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Table 1. Comparison between original and improved results of quantum Carleman linearization (QCL)

Algorithm Model Output Condition Complexity Grid refinement

[59, Theorem 1] Dissipative
quadratic
ODEs

Final state R < 1 (3.10) T 2q/(gε) R = O(n1/2d )

Theorem 4.1 Polynomial
R-D systems
(2.16)

History state RD < 1 (3.14) T 2‖Uin‖2N /(Gε) RD = O(1)

We consider an nd -dimensional system of ODEs, given the initial condition Uin, the evolution time T and
normalized �2 error tolerance ε. We denote g, q, and G as �2 norm of the solution, �2 relation between initial
and final solutions, and time-average �2 norm of the solution. R-D refers to reaction–diffusion. The condition
R < 1 implies the weaker condition RD < 1. When RD < 1 � R, we usually choose a suitably small value
of the truncation number of Carleman linearization N to reduce the cost resulting from the prefactor ‖Uin‖2N .
Grid refinement refers to the case that the system of ODEs is discretized from a PDE using an increasing
number nd of grid points. Logarithmic factors in the complexities are omitted

example, the solution u(t) = e−t arises in many homogeneous dissipative differential
equations. In this case 1/g = eT and 1/G = �(T ).

Polynomial complexity is here shown under the assumption RD < 1, where RD is a
ratio of nonlinearity to dissipation in �∞ norm, whereas the algorithm of [59] requires
R < 1, where R is a ratio of nonlinearity to dissipation in �2 norm. The latter is a stronger
assumption, not well suited for the solution of high-dimensional PDEs because it grows
under grid refinement, whereas RD converges to a constant. Specifically, in the limit
where each spatial dimension is discretized into n → ∞ steps, the number of lattice
sites scales as nd and the �2 norm of the discretized solution vector scales as nd/2, which
leads to divergent R (see (1.12) and (1.13) for detailed discussion).

The solutions to general nonlinear differential equations can have exponentially grow-
ing norms, whichwould result in an exponential complexity for the algorithm introduced
here. However, we rule this out for reaction–diffusion equations by establishing an upper
bound on the �∞ norm of the solution independent of T as shown in Theorem 5.1.

We also study the extraction of classical information of practical interest from the
history state produced by our algorithm. First, from the quantum state, we can directly
estimate themean square amplitude over a specific sub-domain,which can be understood
as the portion of a physical observable on this sub-domain. Our approach is a direct
application of amplitude estimate technique [72] and can achieve a quadratic speedup
in precision over standard classical Monte Carlo sampling. Secondly, we show how to
estimate the portion of the kinetic energy on a specific sub-domain by developing a
quantum algorithm that can transfer a quantum state with function values to a quantum
state encoding its partial derivatives. This algorithm is based on the discrete Fourier
transform. It only requires O(1) uses of quantum Fourier transform (QFT) and input
oracle of a diagonal matrix, and can potentially be of independent interest in other
problems such as quantum optimization algorithms. Our main results are summarized in
Table 2. Second, we briefly discuss the potential advantages of the history state compared
to the final state. In particular, the history state structure allows us to estimate the time
when the system reaches equilibrium and run a pre-diagnosis procedure to avoid possible
exponential overhead brought by the fast decay of the solution.

The paper is organized as follows. Section2 introduces the background of reaction–
diffusion equations. Section3 develops the Carleman linearization with �2 and �∞ con-
vergence analysis. Section4presents the problemmodel andgives the quantumalgorithm
with a detailed complexity analysis. Section5 establishes lower bound results. Section6
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Table 2. Summary of potential applications of a quantum state encoding the information of a smooth function
in its amplitudes

Quantum algorithm Output Query complexity

Theorem 6.2 History state of derivatives Õ
(√

d‖ f ‖/‖∇ f ‖
)

Corollary 6.3 Kinetic energy ratio Õ
(√

d‖ f ‖/(‖∇ f ‖ε)
)

Query complexity is the number of queries to the circuit preparing the quantum state encoding the function f .
Here d is the spatial dimension of the function, ε is the tolerated level of error. We use f and ∇ f to denote
the unnormalized vectors of f and ∇ f evaluated at discrete grid points, respectively

describes how our approach could be applied to kinetic energy estimation problems.
Finally, we conclude with a discussion of the results and some possible future directions
in Sect. 7.

1.1. Preliminaries. Here we denote the domain, boundaries, functions, and norms as
follows.

We consider a d-dimensional hypercube as the spatial domain, denoting as D :=
[0, 1]d . We denote the spatial and time domain as DT := [0, 1]d × (0, T ]. We also
denote ∂D and ∂DT as boundary domains of D and DT , respectively.

We consider a uniform spatial discretization on D and introduce n discretization
nodes for each coordinate. To represent it, we denote [n]0 := {0, 1, . . . , n − 1} and a set
of multi-indices as

I := [n]d
0 =

{
l = (l1, . . . , ld)

∣
∣
∣ l j ∈ [n]0

}
. (1.3)

We then denote the set of uniform nodes as

χ :=
{
χl

∣
∣
∣ l ∈ I

}
, (1.4)

where χl maps index l to the discretization node. The exact expression for χl depends
on the boundary condition. For periodic boundary condition, χl is defined as

χl :=
(

l1
n

, . . . ,
ld
n

)

, (1.5)

while for Dirichlet boundary condition, it is given by

χl :=
(

l1 + 1

n + 1
, . . . ,

ld + 1

n + 1

)

. (1.6)

For convenience, we also introduce the set of boundary indices, which is defined as

B :=
{

l = (l1, . . . , ld)

∣
∣
∣ χl ∈ ∂D

}
. (1.7)

Let u : DT → R be the solution to a PDE. We can discretize u(x, t) on the set
of uniform nodes χ to obtain an nd -dimensional vector U (t), where nd = nd . The
vector’s entries U1(t), U2(t), . . . , Und (t) are the elements of {u(χl , t)|l ∈ I}, arranged
according to the lexicographic order on I.
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We now discuss our notations for norms. For a vector a = [a1, a2, . . . , an] ∈ R
n , we

denote the vector �p norm as

‖a‖p :=
(

n−1∑

k=0

|ak |p

)1/p

. (1.8)

For a matrix A ∈ R
n×n , we denote the operator norm ‖·‖p,q induced by the vector �p

and �q norms as

‖A‖p,q := sup
x 	=0

‖Ax‖q

‖x‖p
, ‖A‖p := ‖A‖p,p. (1.9)

For a continuous scalar function f : [0, T ] → R, we denote the L∞ norm as

‖ f ‖∞ := max
t∈[0,T ] | f (t)|. (1.10)

For a continuous scalar function u : DT → R, for a fixed t , the L p norm of u(·, t) is
given by

‖u(·, t)‖L p(D) :=
(∫

D
|u(x, t)|p dx

)1/p

. (1.11)

In particular, when no subscript is used, we mean ‖·‖ = ‖·‖2 for vector and matrix
norms by default, and ‖·‖ = ‖·‖L2 for function norm by default.

For a continuous scalar function u : [0, 1]×[0, T ] → R, which is discretized in space
using uniform interpolation nodes, obtain an estimate of its L p norm as in a Riemann
sum:

‖u(·, t)‖p
L p(D)

=
∫

D
|u(x, t)|p dx ≈

n−1∑

k=0

(∣
∣
∣
∣u

(
k

n
, t

)∣
∣
∣
∣

p 1

n

)

. (1.12)

If we denote U (t) = [u( 0n , t), u( 1n , t), . . . , u( n−1
n , t)], the RHS of (1.12) is 1

n ‖U (t)‖p
p.

This indicates that

‖u(·, t)‖L p(D) ≈ 1

n1/p
‖U (t)‖p. (1.13)

Thus, if u(·, t) is a given function in continuous one-dimensional space, then the �p
norm of its spatially discretized function vector U (t) increases under grid refinement as
n1/p. Similarly, for a u : DT → R with a general spatial dimension d, the �p norm of
the spatially discretized function vector U (t) increases as nd/p.

Note that when p = ∞,

‖u(·, t)‖L∞(D) ≈ ‖U (t)‖∞. (1.14)

That means the �∞ norm of the spatially discretized function vector U (t) stays conver-
gent in the continuum limit of n → ∞.

For real functions f, g : R → R, we write f = O(g) if there exists c > 0, such
that | f (τ )| � c|g(τ )| for all τ ∈ R. We write f = �(g) if g = O( f ), and f = 	(g)

if both f = O(g) and g = O( f ). We use Õ to suppress logarithmic factors in the

asymptotic expression, i.e., f = Õ(g) if f = O
(

g poly(log g)
)
. We write f = o(g) if

lim supτ→∞
| f (τ )|
|g(τ )| = 0, where g is nonzero.
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2. Problem Settings

In this section, we introduce the class of nonlinear PDEs that we focus on and discuss
its spatial discretization, as well as a priori bounds on its solutions. We then introduce
the problem statement with input and output settings.

2.1. Reaction–diffusion equation. Wefocus on a class of nonlinear PDEs—the reaction–
diffusion equations

∂u

∂t
(x, t) = D
u(x, t) + f (u(x, t)), (2.1)

where u is a real-valued scalar function at position x ∈ D = [0, 1]d and time t ∈ R
+,

f (u) is the nonlinear term and D is a positive number. Without loss of generality,
denoting D = D1 × D2, we are given homogeneous Dirichlet boundary conditions
imposed on d1 dimensions (x ∈ D1) and periodic boundary conditions imposed on d2
dimensions (x ∈ D2, d1 + d2 = d)

u(x, t) = 0, x ∈ ∂D1, (2.2)

u(x, t) = u(x + v, t), v ∈ 0d1 × Z
d2 , x ∈ ∂D2. (2.3)

The solution u(x, t) in (2.1) is the L2 gradient flow of the free energy functional

E(u) = D

2

∫
|∇u|2dx +

∫
F(u)dx (2.4)

with a potential satisfying

∂ F

∂u
(u) = − f (u). (2.5)

In other words, f is a field driven by the potential F .
In this paper, we focus on the following specific reaction–diffusion equations

∂u

∂t
(x, t) = D
u(x, t) + au(x, t) + buM (x, t), (2.6)

with the integer M � 2. Without loss of generality, we assume |a|, |b| = o(d). The
motivation to consider this type of PDEs is two-fold: first, in physical and biological
applications, a nonlinearity of this form is frequently encountered. For example, in the
phase transition model (the so-called Allen-Cahn equation), M = 3 [73], while M = 2
corresponds to the Fisher-KPP equation [16,74]. Furthermore, on quantum computers,
it is a reasonable task to construct tensor powers of a quantum state, such as u⊗M , which
exactly corresponds to the polynomial nonlinearity in (2.6). Although we do not do so in
this paper, one might also consider an input model in which a more general nonlinearity
f is specified by an oracle U f .
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2.2. Spatial discretization. Our approach to solving reaction–diffusion PDEs (2.6) on
quantum computers starts by performing spatial discretization to reduce to a problem
of solving a system of nonlinear ODEs. Specifically, we apply the central difference
discretization on (2.1) to obtain the nd -dimensional polynomial ODE

dU j

dt
= D

∑

k

(
h) jkUk + f (U j ), j ∈ I, (2.7)

where
h stands for the central difference of the Laplacian with homogeneous Dirichlet
boundary condition or periodic boundary condition, defined as


h = Dh ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
d−1 terms

+I ⊗ Dh ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
d−2 terms

+ · · · + I ⊗ · · · ⊗ I︸ ︷︷ ︸
d−1 terms

⊗Dh . (2.8)

Here Dh is the one-dimensional discrete Laplacian operator. For homogeneous Dirichlet
boundary conditions, Dh is

Dh = DDir
h := (n + 1)2

⎛

⎜
⎜
⎜
⎜
⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎞

⎟
⎟
⎟
⎟
⎠

n×n

. (2.9)

We denote the eigenvalues of Dh as μ1 ≥ μ2 ≥ · · · ≥ μn . Specifically, μ1 =
−4(n + 1)2 sin2

(
π

2n+2

)
. For periodic boundary conditions, the one-dimensional discrete

Laplacian operator is

Dh = Dper
h := n2

⎛

⎜
⎜
⎜
⎜
⎝

−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2

⎞

⎟
⎟
⎟
⎟
⎠

n×n

.

In this case, the largest eigenvalue of Dper
h is μ

per
1 = 0.

It is worth pointing out that besides serving as a numerical discretization of the
corresponding PDE, the discrete reaction–diffusion equation is of interest unto itself. For
example, the discrete Allen-Cahn equation has been applied to unsupervised and semi-
supervised graph classification, graph cut minimization, social network segmentation,
and image inpainting [27–29,75–77].

We also introduce bounds on the solution to the discrete reaction–diffusion equations
(2.7), which are used in the proof of later theorems.

Lemma 2.1 (�∞ Apriori Bounds on the Solution). Assume f ∈ C∞(R) and has at least
two distinct real-valued roots. Denote any two distinct roots of f as γ1, γ2 with γ1 < γ2.
Consider the solution U (t) = (U j ) j∈I to (2.7) with initial condition U j (0) = u0(x j )

for all j ∈ I.
(i) Comparison Principle. If the initial condition satisfies

γ1 � U j (0) � γ2, for all j ∈ I, (2.10)
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and so does the solution on the boundary indices B, then the solution U j (t) remains
bounded, that is,

γ1 � U j (t) � γ2, for all t ≥ 0 and all j ∈ I. (2.11)

(ii) Maximum Principle. In particular, we denote γ as the largest absolute value of
roots of f . If the initial condition satisfies

‖U (0)‖∞ � γ, (2.12)

then

‖U (t)‖∞ � γ, for all t ≥ 0. (2.13)

We present the proof of Lemma 2.1 in Sect.A. It is worth remarking that this result
asserts that the solution U (t) stays in the invariant set [γ1, γ2], which is different from
the type of estimate where ‖U (t)‖∞ � ‖U (0)‖∞. In fact, the solution ‖U (t)‖∞ can
increase in time as depicted in Fig. 1.We also point out that the formation of this invariant
region is precisely due to the nonlinear terms in f , and hence the nonlinear parts of the
differential equation cannot be neglected, even if the solution remains small.

For the case of the specific reaction–diffusion equation (2.6), the roots of f (u) =
au + buM = 0 gives the explicit expression γ = (

|a|
|b| )

1
M−1 .

2.3. Problem statement. Weare interested in solvinghigh-dimensional reaction–diffusion
equations with quantum computers. Given the initial condition described by a quantum
state, we aim to provide a quantum state description of the solution given the evolution
time T .

The main computational problem we consider is as follows.

Problem 1. We consider an initial value problem of an nd-dimensional polynomial ODE
on [0, T ] as in (2.14)

dU

dt
= F1U + FMU⊗M , U (0) = Uin, (2.14)

HereU = [U1, . . . , Und ]T ∈ R
nd ,U⊗M = [U M

1 , U M−1
1 U2, . . . , U M−1

nd
Und−1, U M

nd
]T ∈

R
nM

d . We assume F1, FM are s-sparse,1 F1 is symmetric diagonalizable and eigenvalues
of F1 are negative, and ‖FM‖ � |λ1| by rescaling.2 We also know an a priori bound on
the solution maxt ‖U (t))‖∞ � γ as in (2.13). We have oracles OF1 , OFM that provide
the locations and values of the nonzero entries of F1, FM . We also know ‖Uin‖ = ‖U (0)‖
and have an oracle Ox that maps |00 . . . 0〉 ∈ C

n to a quantum state proportional to Uin.
Our goal is to produce a quantum state as a superposition of the solution at different
timesteps

|Ŷevo〉 = 1

‖Ŷevo‖
Ŷevo = 1

‖Ŷevo‖
m∑

k=0

ŷ1(kh)|k〉 (2.15)

with a sufficiently large m, where ŷ1(t) ∈ R
nd is a vector function that approximates

U (t), Ŷevo = ∑m
k=0 ŷ1(kh)|k〉 is a superposition of ŷ1(t) at different timesteps, and

‖Ŷevo‖ =
√∑m

k=0 ‖ŷ1(kh)‖2 is the normalization factor.

1 Have at most s nonzero entries in each column and row.
2 Given any nonlinear ODE, we can rescale u → αu with a proper α to ensure ‖FM‖ � |λ1|.



972 J.-P. Liu, D. An, D. Fang, J. Wang, G. H. Low, S. Jordan

Fig. 1. SolutionsU = (U j (t)) to (2.7) with homogeneousDirichlet boundary condition for different nonlinear
terms f (u) and initial conditions U j (0) = u0(x j ), where D = 0.005

For the reaction–diffusion equation, we have the specific form of (2.14) as

dU

dt
= (D
h + aI )U + bU .M , U (0) = Uin. (2.16)

The corresponding F1 and FM in (2.14) satisfy F1 = D
h + aI ∈ R
nd×nd , and FM ∈

R
nd×nM

d maps u⊗M to buM , with U .M = [U M
1 , U M

2 , . . . , U M
nd

]T ∈ R
nM

, and henceforth
F1 and FM are s-sparse with s = O(1). The representation of the Laplacian matrix 
h
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with mixed boundary conditions refers to (2.3), with d1-dimensional Dirichlet boundary
conditions and d2-dimensional periodic boundary conditions (d1 + d2 = d). We require
the eigenvalues λ j of F1 are negative, i.e., 4Dd1(n + 1)2 sin2

(
π

2n+2

)
> a.

The quantum state (2.15) corresponding with [U (0), U (h), . . . , U (mh)], also known
as the history state in [78], describes a quantum-state evolution for the gradient flow of
the free energy (2.4).

3. Carleman Linearization

Weaim to performCarleman linearization on discretized nonlinear PDEs (2.14) and then
use quantum linear system solvers to obtain quantum states proportion to the solutions.
In this section, we revisit the Carleman linearization procedure and then introduce the
improved convergence result.

Defining ỹ j := U⊗ j for j = 1, 2 · · · , one has
d

dt
ỹ j = A j

j ỹ j + A j
j+M−1 ỹ j+M−1, (3.1)

where

A j
j =

j∑

ν=1

j factors
︷ ︸︸ ︷
Ind×nd ⊗ · · · ⊗ F1↑

ν−th position

⊗ · · · ⊗ Ind×nd , (3.2)

A j
j+M−1 =

j∑

ν=1

j factors
︷ ︸︸ ︷
Ind×nd ⊗ · · · ⊗ FM↑

ν−th position

⊗ · · · ⊗ Ind×nd . (3.3)

Therefore, the Carleman linearization procedure gives rise to the following infinite-
dimensional system ỹ′(t) = Ã ỹ(t), where Ã is an infinite-dimensional block upper-
triangular matrix

Ã :=

⎛

⎜
⎜
⎜
⎝

A1
1 0 · · · 0 A1

M 0 . . . 0 0 0 . . .

0 A2
2 0 · · · 0 A2

M+1 . . . 0 0 0 . . .

0 0 A3
3 0 · · · 0 A3

M+2 . . . 0 0 . . .
...

...
...

...
...

...
...

...
...

...

⎞

⎟
⎟
⎟
⎠

.

It follows from the definition of A j
k that the following inequalities are satisfied.

Lemma 3.1. For all j ≥ 1,

∥
∥
∥A j

j+M−1

∥
∥
∥
2
,

∥
∥
∥A j

j+M−1

∥
∥
∥∞ � j |b|, (3.4)

∥
∥
∥
∥et A j

j

∥
∥
∥
∥
2

� e jλ1t , (3.5)

where λ1 := Dd1μ1 + a, μ1 = −4(n + 1)2 sin2
(

π
2n+2

)
.
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We then truncate the above infinite-dimensional system of linear ODEs at order N ,
thereby obtaining a finite system

d ŷ

dt
= Aŷ, ŷ(0) = ŷin (3.6)

with the upper triangular block structure

d

dt

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ŷ1
ŷ2
...
...
...

ŷN−1
ŷN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A1
1 0 · · · 0 A1

M

A2
2

. . .
. . .

. . .

. . .
. . .

. . . AN−M+1
N

. . .
. . . 0
. . .

. . .
...

AN−1
N−1 0

AN
N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ŷ1
ŷ2
...
...
...

ŷN−1
ŷN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.7)

Here, ŷ j = U⊗ j ∈ R
n j

d , ŷin = [Uin; U⊗2
in ; . . . ; U⊗N

in ], and A j
j ∈ R

n j
d×n j

d , A j
j+1 ∈

R
n j

d×n j+1
d for j ∈ [N ] are defined as (3.2). Note that A is an (Ns)-sparse matrix, where

s is the largest nonzero number of each column and row in F1 and FM . The dimension
of (3.6) is denoted as

Nd,N := nd + n2
d + · · · + nN

d = nN+1
d − nd

nd − 1
= O(nNd). (3.8)

Denote the solution to the truncated system as ŷ j ( j = 0, 1, · · · ) and define the error
resulting from the truncation as

η j (t) := ỹ j (t) − ŷ j (t) = U⊗ j (t) − ŷ j (t). (3.9)

In particular, η1(t) = ỹ1(t) − ŷ1(t) = U (t) − ŷ1(t) is the error due to the Carleman
linearization procedure.

Theorem 3.2 (�2 Convergenceof theCarlemanLinearization). For the discrete reaction–
diffusion equation (2.16)with mixed boundary conditions in (2.3), as originally proposed
in [59], we define

R = ‖FM‖
|λ1| ‖Uin‖M−1,

R = ‖FM‖
|λ1| max

t
‖U (t)‖M−1.

(3.10)

Suppose that the largest eigenvalue of D
h + aI , denoted by λ1, is negative. Then the
approximation error of the Carleman linearization satisfies

∥
∥η j (t)

∥
∥ � max

t
‖U (t)‖ j R

� N− j+1
M−1 � (

1 − e jλ1t
)

(3.11)
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for t ≥ 0. In particular, if N is some integer multiple of M − 1, then the error of the
solution η1(t) = y1(t) − ŷ1(t) = U (t) − Û (t) satisfies

‖η1(t)‖ � max
t

‖U (t)‖R
N

M−1
(
1 − eλ1t) (3.12)

for t ≥ 0. Furthermore, if R ≤ 1, then R = R.

The detailed proof is presented in Sect.D. This theorem for polynomial differential
equations is a straightforward extension of the quadratic case in [59, Corollary 1] and
implies exponential convergence in the order of truncation N in terms of �2 norm as
long as R ≤ 1, that is

‖FM‖
|λ1| ‖Uin‖M−1 = |b|

|λ1| ‖Uin‖M−1 < 1, (3.13)

as shown in (3.10). However, if R > 1, we only have R � R, and R is the exact
convergence radius.

Theorem 3.3 (�∞ Convergenceof theCarlemanLinearization) .For the discrete reaction–
diffusion equation (2.16)with mixed boundary conditions as proposed in (2.3),we define

RD := |b|
|λ1|γ

M−1C(λ). (3.14)

Here γ = (
|a|
|b| )

1
M−1 , and γ upper bounds ‖U (t)‖∞ for all t � 0, as stated in Lemma 2.1;

the constant C(λ) has the form

C(λ) :=
⎧
⎨

⎩

|λ1|
a (e

ln(3)d1
2(λ−λ1)

a − 1) + |λ1||λ| , a 	= 0,
ln(3)d1
2(λ−λ1)

|λ1| + |λ1||λ| , a = 0,
(3.15)

where μ1 = −4(n + 1)2 sin2
(

π
2n+2

)
, λ1 = Dd1μ1 + a < 0, and λ is an arbitrary value

satisfying λ1 < λ < 0. Then the approximation error of the Carleman linearization
satisfies

∥
∥η j (t)

∥
∥∞ � γ j R

� N− j+1
M−1 �

D (3.16)

for t ≥ 0, with RD defined as (3.14). In particular, if N is some integer multiple of
M − 1, then the error of the solution η1(t) = y1(t) − ŷ1(t) = U (t) − Û (t) satisfies

‖η1(t)‖∞ � γ R
N

M−1
D (3.17)

for t ≥ 0.

This theorem implies an alternative exponential convergence in the order of truncation
N in terms of �∞ norm as long as RD < 1, that is,

|b|
|λ1|γ

M−1C(λ) < 1, (3.18)

as shown in (3.14).
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Proof. The truncation error η j satisfies the equation

η′
j (t) = A j

jη j (t) + A j
j+M−1

(
y j+M−1(t) − ŷ j+M−1(t)δ j+M−1�N

)
, 1 � j � N .

(3.19)

Applying the variation of constants formula [79] to (3.19), one has

η j (t) =
∫ t

0
eA j

j (t−s) A j
j+M−1y j+M−1(s) ds, N − M + 2 � j � N . (3.20)

Note that it follows from Lemma 2.1 that
∥
∥y j+M−1(s)

∥
∥∞ =

∥
∥
∥U⊗( j+M−1)(s)

∥
∥
∥∞ � ‖U (s)‖ j+M−1∞ � γ j+M−1.

Therefore, we have for N − M + 2 � j � N ,

∥
∥η j (t)

∥
∥∞ �

∫ t

0

∥
∥
∥
∥e

A j
j (t−s)

∥
∥
∥
∥∞

∥
∥
∥A j

j+M−1

∥
∥
∥∞
∥
∥y j+M−1(s)

∥
∥∞ ds

� j |b|γ j+M−1
∫ t

0

∥
∥
∥
∥e

A j
j (t−s)

∥
∥
∥
∥∞

ds

� j |b|γ j+M−1
∫ t

0
‖e j (t−s)(D
h+a)‖∞ ds.

(3.21)

For simplicity, we denote

C j (t) := j |λ1|
∫ t

0
‖e j (t−s)(D
h+a)‖∞ ds (3.22)

such that for N − M + 2 � j � N ,

∥
∥η j (t)

∥
∥∞ � |b|

|λ1|γ
j+M−1C j (t). (3.23)

Next, for N − 2M + 3 � j � N − M + 1,

∥
∥η j (t)

∥
∥∞ �

∫ t

0

∥
∥
∥
∥e

A j
j (t−s)

∥
∥
∥
∥∞

∥
∥
∥A j

j+M−1

∥
∥
∥∞
∥
∥η j+M−1(s)

∥
∥∞ ds

� |b|
|λ1|γ

j+2M−2C j+M−1(t)
∫ t

0

∥
∥
∥
∥e

A j
j (t−s)

∥
∥
∥
∥∞

∥
∥
∥A j

j+M−1

∥
∥
∥∞ ds

�
( |b|

|λ1|
)2

γ j+2M−2C j+M−1(t)C j (t).

(3.24)

One can continue by mathematical induction for every group of M −1 terms and obtain

∥
∥η j (t)

∥
∥∞ �

∫ t

0

∥
∥
∥
∥e

A j
j (t−s)

∥
∥
∥
∥∞

∥
∥
∥A j

j+M−1

∥
∥
∥∞
∥
∥η j+M−1(s)

∥
∥∞ ds

�
( |b|

|λ1|
)� N− j+1

M−1 �
γ j+(M−1)� N− j+1

M−1 �
� N− j+1

M−1 �∏

k=1

C j+(M−1)(k−1)(t).

(3.25)
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We now consider an upper bound on C j (t). By computing the integration of
‖e j (t−s)(D
h+a)‖∞ in Lemma B.6, we have

∫ t

0
‖e j (t−s)(D
h+a)‖∞ ds �

⎧
⎨

⎩

1
ja

(

e
ln(3)d1
2(λ−λ1)

a − 1

)

+ 1
j |λ| , a 	= 0,

ln(3)d1
2 j (λ−λ1)

+ 1
j |λ| , a = 0.

(3.26)

Therefore,

C j (t) = j |λ1|
∫ t

0
‖e j (t−s)(D
h+a)‖∞ ds �

⎧
⎨

⎩

|λ1|
a

(

e
ln(3)d1
2(λ−λ1)

a − 1

)

+ |λ1||λ| , a 	= 0,

ln(3)d1
2(λ−λ1)

|λ1| + |λ1||λ| , a = 0,

(3.27)

where the right-hand side is exactly C(λ) in (3.15) and is independent of both j and t .
Finally, substituting C j (t) with its upper bound C(λ) in (3.25) gives

∥
∥η j (t)

∥
∥∞ �

( |b|
|λ1|

)� N− j+1
M−1 �

γ j+(M−1)� N− j+1
M−1 �C(λ)�

N− j+1
M−1 � � γ j R

� N− j+1
M−1 �

D , (3.28)

wherewe use RD = |b|
|λ1|γ

M−1C(λ) as defined in (3.14). Therefore, a sufficient condition

for the convergence of
∥
∥η j (t)

∥
∥∞ in N is RD < 1.

In practice, we can set N as some integer multiple of M − 1, and thus

‖η1‖∞ � γ R
N

M−1
D . (3.29)

This completes the proof of the desired result. ��
Remark According to Theorems 3.2 and 3.3, the Carleman linearized solution ŷ1(t)

approximates the exact solution U (kh) of the original reaction–diffusion equations with
exponential convergence rate in terms of the convergence radius R or RD .

The quantities R and RD are used to characterize the ratios of reaction and diffusion
strengths in terms of �∞ and �2 norms. Here we briefly discuss the relationship between
these. In particular, we are interested in the case where the convergence radius RD has

an advantage over R. Note that RD ≤ R is equivalent to C(λ) ≤
( ‖Uin‖

γ

)M−1
and that

λ can be an arbitrary number between λ1 and 0. Hence the regime of our interest turns
out to be

min
λ1<λ<0

C(λ) ≤
(‖Uin‖

γ

)M−1

, (3.30)

which holds true for a large regime of parameters in the high-dimensional or finely
discretized scenarios because the right-hand side is likely to grow rapidly in n and d
while the left-hand side only has a weak dependence.

Specifically, according to Sect.E, solving the optimization problem on the left-hand
side of (3.30) helps to obtain a sharper estimate of RD . When a = 0, the minimum
of C(λ) has an explicit expression. As for a 	= 0, we advise tuning λ for a sharper
estimate of RD in real applications, since the optimization problem is hard to solve
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Fig. 2. Applying Carleman linearization to (2.1) on a classical computer, where D = 0.2, f (u) = 0.2u − u2,
the initial condition is u(x, 0) = 0.1 (1 − cos(2πx)) and homogeneous Dirichlet boundary conditions are
imposed. Left: l∞ norm of the absolute error between the Carleman solutions at various truncation levels N .
Right: the convergence of the corresponding time-maximum error

explicitly. Nevertheless, in both cases, we can show that there exists an upper bound of
minλ1<λ<0 C(λ) which is also independent of n. For sufficiently large n, the quantity
minλ1<λ<0 C(λ) is O(d), where d is the spatial dimension.

For nd -dimensional vectors, ‖Uin‖ can be significantly larger than γ due to the
inequality ‖Uin‖∞ � ‖Uin‖ �

√
nd‖Uin‖∞. First, when d is fixed, ‖Uin‖ has a poly-

nomial growth with n in the worst case and then RD < R for large n. Second, when n
is large enough and fixed, ‖Uin‖ increases exponentially with d in the worst case while
minλ1<λ<0 C(λ) grows at most linearly with d. Therefore, RD is smaller than R for large
d as well.

For the case of grid refinement, the above results also show that RD stays bounded
in the continuum limit nd → ∞, while R diverges.

3.1. Numerical results. In this subsection,we present somenumerical results to examine
the effectiveness of Carleman linearization.

In order to demonstrate the convergence of Carleman linearization (Theorem 3.3), we
apply our algorithm to (2.1)with different types of nonlinearity f (u). In the first example,
the nonlinear term is f (u) = 0.2u − u2, the Fisher-KPP type. We assume D = 0.2,
choose u(x, 0) = 0.1 (1 − cos(2πx)) as the initial condition, and impose homogeneous
Dirichlet boundary conditions. In our second example, f (u) = 0.16u − u3, D = 0.1,
u(x, 0) = 0.2 sin(2πx), and homogeneous Dirichlet boundary conditions are again
used. The numerical results for these two examples are depicted in Fig. 2 and Fig. 3,
respectively. We see from the error convergence plots that the absolute error, maximized
over t ∈ [0, 1], decreases exponentially as the truncation level N is increased. As a
function of the time t , the absolute error first increases and then decreases exponentially
due to the decay of the exact solution. In particular, in Fig. 3, the absolute error curve
depicting the absolute error for N = 1 agrees with that for N = 2. That is because,
according to (3.7), only ŷ1 takes part in the time evolution of ŷ1, no matter whether
N = 1 or 2. A similar argument holds for the agreement of two curves for N = 3 and
N = 4.
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Fig. 3. Applying Carleman linearization to (2.1) on a classical computer, where D = 0.1, f (u) = 0.16u −u3,
the initial condition is u(x, 0) = 0.2 sin(2πx) and homogeneous Dirichlet boundary conditions are imposed.
Left: l∞ norm of the absolute error between the Carleman solutions at various truncation levels N . Right: the
convergence of the corresponding time-maximum error

Fig. 4. Examples of the application of Carleman linearization to (2.1) with homogeneous Dirichlet boundary
conditions for different parameters and initial conditions. Left: The eigenvalues of F1 are no longer all positive.
Right: R > 1 while RD < 1

Based on our numerical tests, we also find that Carleman linearization works for
more general cases. In Fig. 4a, we relax the requirement that the eigenvalues of F1 are
all negative. We test (2.1) with homogeneous boundary conditions and choose D =
0.01, f (u) = 0.25u − u3, and u(x, 0) = 0.08 sin(2πx) as initial condition. Carleman
linearization still has good numerical performance, as implied by the absolute error plot.
Figure4b illustrates the advantage of RD over R. In that example, we consider (2.1) with
homogeneous boundary conditions and assume D = 0.012, f (u) = 0.0196u − u3 and
u(x, 0) = 0.14 sin(2πx). We discretize the spatial domain into 15 sub-intervals, i.e.,
the value of n is 16. By computation, R = 1.4924 and RD = 0.9299 where we choose
λ = λ1/2.3. This illustrates that error remains well-controlled under RD < 1, which is
a milder condition than R < 1.
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4. Quantum Algorithm

We now describe an efficient quantum algorithm for computing the numerical solution
of the linearized ODEs (3.6). Our main algorithmic result is stated as follows.

Theorem 4.1 (Quantum Carleman linearization). Consider an instance of the quantum
ODE problem as defined in Problem 1, with its N-th Carleman linearization as defined
in (3.6). We denote a parameter

G := 1√
m + 1

‖Ŷevo‖ =
√∑m

k=0 ‖ŷ1(kh)‖2
m + 1

, (4.1)

which parameterized the average �2 norm of the evolution of the N-th Carleman lin-
earized solution Ŷevo. Assume RD < 1. Then there exists a quantum algorithm that
produces a state that approximates Ŷevo in terms of the �2 normalized error ε � 1/2
succeeding with probability �(1), with a flag indicating success. The query complexity
(to the oracles OF1, OFM , and Ox ) is

1

G2ε
sT 2D2d2n4N 3‖Uin‖2N · poly

(

log
aDd MnNsT

Gε

)

. (4.2)

The gate complexity is larger than its query complexity by logarithmic factors.

We next describe the quantum algorithm in detail, including ingredients such as state
preparation, quantum linear system algorithm, andmeasurement.We conclude the proof
of Theorem 4.1 at the end of this section.

Remark We notice that a prefactor ‖Uin‖2N in the complexity of the N -th Carleman
linearization. This cost is similar to prefactor 52k in the complexity of the k-th product
formula [80]. In practice, we usually choose a suitably small value of N , such as 1, 2, 3,
to reduce the cost.

4.1. State preparation. We first recall a lemma used in [59] for preparing a quantum
state corresponding to the initial vector ŷin = [Uin; U⊗2

in ; . . . ; U⊗N
in ], given the value

‖Uin‖ and the ability to prepare a quantum state proportional to Uin.

Lemma 4.2 (Lemma 5 of [59]). Assume we are given the value ‖Uin‖, and let Ox be
an oracle that maps |00 . . . 0〉 ∈ C

n to a normalized quantum state |Uin〉 proportional
to Uin. Then the quantum state |ŷin〉 proportional to ŷin can be prepared using O(N )

queries to Ox , and the gate complexity is larger by an O(poly(log N , log n)) factor.

We remark that, in fact, we embed ŷin into a slightly larger space with a more con-
venient tensor product structure. Further details refer to Section 4.3 of [59].

4.2. Quantum linear system algorithm. After the state preparation of the initial condi-
tion, we perform the forward Euler method to discretize the time interval [0, T ] into
m = T/h sub-intervals, and construct a system of linear equations as

yk+1 − yk

h
= Ayk (4.3)
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where yk ∈ R
Nd,N approximates ŷ(kh) for each k ∈ [m + 1]0 := {0, 1, . . . , m}, with

y0 = yin := ŷ(0) = ŷin. This gives an (m + 1)Nd,N × (m + 1)Nd,N linear system

L|Y 〉 = |B〉, (4.4)

where

L =
m+1∑

k=0

|k〉〈k| ⊗ I −
m+1∑

k=1

|k〉〈k − 1| ⊗ (I + Ah). (4.5)

(4.4) encodes (4.3) and uses it to produce a numerical solution at time T . Observe that
the system (4.4) has the lower triangular structure

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I

−(I +Ah) I
. . .

. . .

−(I +Ah) I

−(I +Ah) I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y0

y1

...

ym−1

ym

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

yin

0
...

0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.6)

For each Nd,N -dim vector yk with k ∈ [m + 1]0, its first n components (i.e., yk
1 )

approximate the exact solutionU (kh), up to normalization. We apply the high-precision
quantum linear system algorithm (QLSA) [37] to (4.4) and postselect to produce∑

k |yk
1 〉|k〉 for representing the gradient flow evolution. We would like to note that a

more advanced QLSAwith block-encoding input models was recently proposed in [81].
However, for technical simplicity, in this work we still employ the algorithm described
in [37]. This is because the improvements introduced in [81] over [37] are relatively mi-
nor, only affecting logarithmic factors. Additionally, the input model used in this work,
which involves sparse input oracles, is more consistent with that employed in [37].

In Theorem 4.1, the solution error has two contributions: the error in the time dis-
cretization of (3.6) by the forward Euler method, and the error from the QLSA. Since
the QLSA produces a solution with error at most ε with complexity poly(log(1/ε)) [37],
we focus on bounding the first contribution.

We provide an upper bound for the error incurred by approximating (3.6) with the
forward Euler method. The following proof basically follows [59, Lemma 3].

Lemma 4.3. Consider an instance of the quantum ODE problem as defined in Problem 1,
with RD < 1 as defined in (3.14). Choose a time step

h � 1

N 2[4Dd(n + 1)2 + a] . (4.7)

Then the global error from the forward Euler method (4.3) on the interval [0, T ] for
(3.6) satisfies

‖ŷ1(T ) − ym
1 ‖ � N 2T h

2
[4Dd(n + 1)2 + a + b]2 max

t∈[0,T ] ‖ŷ(t)‖. (4.8)
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Proof. First of all, we establish the following bound

‖I + Ah‖ � 1. (4.9)

We decompose I + Ah as

I + Ah =
N∑

j=1

K j (4.10)

where

K j = 1

N
I + | j〉〈 j | ⊗ A j

j h + | j〉〈 j + M − 1| ⊗ A j
j+M−1h, j ∈ [N − M + 1],

(4.11)

K j = 1

N
I + | j〉〈 j | ⊗ A j

j h, j ∈ [N − 1]\[N − M + 1]. (4.12)

All eigenvalues of 1
N I + | j〉〈 j |⊗ A j

j h range from 1
N + jλnh to 1

N + jλ1h. Here we require

that these eigenvalues lie in [0, 1], given by N 2h‖F1‖ = N 2h[4Dd(n + 1)2 + a] � 1 in
(4.7). The norm of A j

j+M−1 is bounded by j‖FM‖. So we have the bound

‖K j‖ � 1

N
− j |λ1|h + j‖FM‖h, j ∈ [N − M + 1], (4.13)

Then ‖FM‖ � |λ1| in Problem 1 gives

‖K j‖ � 1

N
, j ∈ [N − M + 1]. (4.14)

It also holds for the case j ∈ [N − 1]\[N − M + 1]. Henceforth,

‖I + Ah‖ �
N∑

j=1

‖K j‖ � 1. (4.15)

We then define the global error by

gk := ‖ŷ(kh) − yk‖, (4.16)

where ŷ(kh) is the exact solution of (3.6), and yk is the numerical solution of (4.3). Note
that gm = ‖ŷ(T ) − ym‖.

The stable condition (4.15) implies the local truncation error from the forward Euler
method is non-increasing, and the global error increase at most linear in time. Following
the standard procedure of the global error estimate (we refer it to the proof of [59, Lemma
3]), the global error is bounded by

gk � kh2

2
max

t∈[0,T ] ‖ŷ′′(t)‖, k ∈ [m + 1]0, (4.17)

where we have the following estimate

max
t∈[0,T ] ‖ŷ′′(t)‖ = max

t∈[0,T ] ‖A2 ŷ(t)‖ � ‖A‖2 max
t∈[0,T ] ‖ŷ(t)‖, (4.18)
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‖A‖ =
∥
∥
∥
∥

N∑

j=1

| j〉〈 j | ⊗ A j
j +

N−M+1∑

j=1

| j〉〈 j + M − 1| ⊗ A j
j+M−1

∥
∥
∥
∥

� N (‖F1‖ + ‖FM‖). (4.19)

Sequentially, we conclude that

‖ŷ1(T ) − ym
1 ‖ � gm � N 2T h

2
(‖F1‖ + ‖FM‖)2 max

t∈[0,T ] ‖ŷ(t)‖

� N 2T h

2
[4Dd(n + 1)2 + a + b]2 max

t∈[0,T ] ‖ŷ(t)‖.
(4.20)

��
Given the above linear system, we can upper bound the condition number that affects

the complexity of the quantum linear system algorithm. Under the same construction of
the matrix L , we can follow the same estimate proposed by [59, Lemma 4] to claim the
following result.

Lemma 4.4. Consider an instance of the quantum ODE problem as defined in Prob-
lem 1. Apply the forward Euler method (4.3) with time step size (4.7) to the Carleman
linearization (3.6). Then the condition number of the matrix L defined in (4.5) satisfies

κ � 2(m + 1). (4.21)

Proof. We begin by upper bounding ‖L‖. We write

L = L1 + L2, (4.22)

where

L1 =
m∑

k=0

|k〉〈k| ⊗ I, (4.23)

L2 = −
m∑

k=1

|k〉〈k − 1| ⊗ (I + Ah). (4.24)

Clearly ‖L1‖ = 1. Furthermore, ‖L2‖ � ‖I + Ah‖ � 1 by (4.15). Therefore,

‖L‖ � ‖L1‖ + ‖L2‖ � 2. (4.25)

Next we upper bound ‖L−1‖. We notice that L−1 can be directly written as

L−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I

(I +Ah) I

(I +Ah)2 (I +Ah) I

. . .
. . .

. . .
. . .

(I +Ah)m · · · (I +Ah)2 (I +Ah) I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.26)

So that

‖L−1‖ � ‖I‖ + ‖I + Ah‖ + . . . + ‖(I + Ah)m‖. (4.27)
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Since ‖I + Ah‖ � 1 by (4.15), we have

‖L−1‖ � ‖I‖ + ‖I + Ah‖ + . . . + ‖(I + Ah)‖m = m + 1. (4.28)

Finally, combining (4.25) with (4.28), we conclude

κ = ‖L‖‖L−1‖ � 2(m + 1) (4.29)

as claimed. ��

4.3. Measurement probability. After applying the QLSA to (4.4), we perform a mea-
surement to extract a final state of the desired form. We now consider the probability
of this measurement succeeding. Differing from [59, Lemma 6], we are interested in
providing a history state

∑
k |yk

1 〉|k〉 instead of a final state |ym
1 〉. Thus the measurement

probability does not include the �2 norm of the final state as well as the �2 scaling of the
initial and final states (i.e., the parameters g and q as in [59, Lemma 6]).

Lemma 4.5. Consider an instance of the quantum ODE problem defined in Problem 1,
with the QLSA applied to the linear system (4.4) using the forward Euler method (4.3)
with time step (4.7). Suppose the global error from the forward Euler method as defined
in Lemma 4.3 is bounded by

‖ŷ(kh) − yk‖ � 1

2
G. (4.30)

Then the probability of measuring a quantum state |yk
1 〉 for k ∈ [m + 1]0 satisfies

Pmeasure � 2G2

16maxt∈[0,T ] ‖ŷ(t)‖2 + G2 . (4.31)

Proof. The quantum state produced by the QLSA applied to (4.4) has the form

|Y 〉 = 1

‖|Y 〉‖
m∑

k=0

yk |k〉 = 1

‖Y‖
m∑

k=0

N∑

j=1

yk
j | j〉|k〉 (4.32)

where the normalization factor satisfies ‖|Y 〉‖2 =∑m
k=0 ‖yk‖2 =∑m

k=0
∑N

j=1 ‖yk
j ‖2.

We aim to obtain the target quantum state as the form

|Yevo〉 = 1

‖Yevo‖
m∑

k=0

yk
1 |k〉. (4.33)

which corresponds to the gradient flow evolution state (2.15) We measure the register
| j〉, j ∈ [N ] and extract |Ytarget〉 from |Y 〉 when k = 1. The success probability is lower
bounded as below.

According to the Cauchy-Schwarz inequality,

‖ŷ1(kh)‖2 = ‖ŷ1(kh) − yk
1 + yk

1‖2 � 2‖ŷ1(kh) − yk
1‖2 + 2‖yk

1‖2, (4.34)

so that

‖|yk
1 〉‖2 � 1

2
‖ŷ1(kh)‖2 − ‖ŷ1(kh) − yk

1‖2 � 1

2
‖ŷ1(kh)‖2 − 1

4
G2. (4.35)
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Summing k from 0 to m, and using the definition of G in (4.1), we have

‖|Yevo〉‖2 =
m∑

k=0

‖yk
1‖2 � 1

2

m∑

k=0

‖ŷ1(kh)‖2 − m + 1

4
G2

� m + 1

2
G2 − m + 1

4
G2 = m + 1

4
G2.

(4.36)

Second, we use (4.30) and the parallel inequality again to upper bound ‖yk‖2 by

‖yk‖2 � 2‖ŷ(kh)‖2 + 2‖ŷ(kh) − yk‖2 � 2‖ŷ(kh)‖2 + 1

2
G2. (4.37)

Therefore

‖|Y 〉‖2 =
m∑

k=0

‖yk‖2 � 2
m∑

k=0

‖ŷ(kh)‖2 + m + 1

2
G2

� 2(m + 1) max
t∈[0,T ] ‖ŷ(t)‖2 + m + 1

2
G2. (4.38)

Finally, using (4.36) and (4.38), we have

Pmeasure = ‖|Yevo〉‖2
‖|Y 〉‖2 � G2

8maxt∈[0,T ] ‖ŷ(t)‖2 + 2G2 (4.39)

as claimed. ��
Using amplitude amplification, O(

√
1/Pmeasure) iterations suffice to succeed with

constant probability.

4.4. Proof of Theorem 4.1.

Proof. We first present the quantum Carleman linearization (QCL) algorithm and then
analyze its complexity.
The QCL algorithm. We introduce the choice of parameters as follows. Given an error
bound ε � 1 and G, we define

δ := Gε

1 + ε
, (4.40)

which satisfies δ � G/2 for any t ∈ [0, T ].
Now we discuss the choice of h. On the one hand, h must follow (4.7) to satisfy the

conditions of Lemma 4.3 and Lemma 4.4. On the other hand, we choose

h � min

{
1

N 2[4Dd(n + 1)2 + a] ,
Gε

N 2T [4Dd(n + 1)2 + a + b]2 maxt∈[0,T ] ‖ŷ(t)‖
}

(4.41)

Then according to the requirement (4.7) in Lemma 4.3, and for k ∈ [m + 1]0,

‖ŷ1(kh) − yk
1‖ � ‖ŷ(kh) − yk‖ � N 2T h

2
[4Dd(n + 1)2 + a + b]2 max

t∈[0,T ] ‖ŷ(t)‖ � δ.
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(4.42)

It also leads to ‖ŷ(kh) − yk‖ � G/2 used as a condition in Lemma 4.5.
We now consider the error between the exact and numerical gradient flow evolutions

|Ŷevo〉 = 1

‖Ŷevo‖
Ŷevo = 1

‖Ŷevo‖
m∑

k=0

ŷ1(kh)|k〉 (4.43)

and (as denoted in (4.33))

|Yevo〉 = 1

‖Yevo‖Yevo = 1

‖Yevo‖
m∑

k=0

yk
1 |k〉, (4.44)

where ‖Ŷevo‖ and ‖Yevo‖ are normalization factors. Recall the definition of G in (4.1)

G = 1√
m + 1

‖Ŷevo‖ =
√∑m

k=0 ‖ŷ1(kh)‖2
m + 1

, (4.45)

The �2 normalized error can be controlled by

∥
∥
∥
∥|Ŷevo〉 − |Yevo〉

∥
∥
∥
∥ � ‖Ŷevo − Yevo‖

min{‖Ŷevo‖, ‖Yevo‖}
� ‖Ŷevo − Yevo‖

‖Ŷevo‖ − ‖Ŷevo − Yevo‖
. (4.46)

Then using (4.42), since

‖Ŷevo − Yevo‖2 �
m∑

k=0

‖ŷ1(kh) − yk
1‖2 � (m + 1)δ2, (4.47)

we have

‖Ŷevo − Yevo‖ �
√

m + 1δ, (4.48)

which gives

∥
∥
∥
∥|Ŷevo〉 − |Yevo〉

∥
∥
∥
∥ �

√
m + 1δ

‖Ŷevo‖ − √
m + 1δ

= δ

G − δ
= ε, (4.49)

i.e., ε upper bounds the �2 normalized error between |Ŷevo〉 and |Yevo〉.
We follow the procedure in Lemma 4.2 to prepare the initial state |ŷin〉. We apply

the QLSA [37] to the linear system (4.4) with m = �T/h�, giving a solution |Y 〉. By
Lemma 4.5, the probability of obtaining a state is

∑m
k=0 |yk

1 〉|k〉

Pmeasure � 2G2

16maxt∈[0,T ] ‖ŷ(t)‖2 + G2 . (4.50)

By amplitude amplification, we can achieve success probability�(1)withO(maxt∈[0,T ]
‖ŷ(t)‖/G) repetitions of the above procedure.
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Analysis of the complexity. By Lemma 4.2, the initial state |ŷin〉 can be prepared with
O(N ) queries to Ox , with gate complexity larger by aO(poly(log N , log n)) factor. The
matrix L is an (m + 1)Nd,N × (m + 1)Nd,N matrix with O(Ns) nonzero entries in any
row or column. By Lemma 4.4 and our choice of parameters, the condition number of
L is at most

2(m + 1)

= O

(
1

Gε
N 2T 2[4Dd(n + 1)2 + a + b]2 max

t∈[0,T ] ‖ŷ(t)‖ + N 2T [4Dd(n + 1)2 + a]
)

= O
( 1

Gε
N 2T 2D2d2n4 max

t∈[0,T ] ‖ŷ(t)‖
)
. (4.51)

Herewe use (‖F1‖+‖FM‖)2 = [4Dd(n+1)2+a+b]2, and |a|, |b| = o(d). Consequently,
by Theorem 5 of [37], the QLSA produces the state |Y 〉 with

1

Gε
sT 2D2d2n4N 3 max

t∈[0,T ] ‖ŷ(t)‖ · poly
(

log
aDdnNsT

Gε

)

(4.52)

queries to the oracles OF1 and OF2 . Using O(maxt∈[0,T ] ‖ŷ(t)‖/G) steps of amplitude
amplification to achieve success probability �(1), the overall query complexity of our
algorithm is

1

G2ε
sT 2D2d2n4N 3 max

t∈[0,T ] ‖ŷ(t)‖2 · poly
(

log
aDdnNsT

Gε

)

(4.53)

and its gate complexity is larger than its query complexity only by logarithmic factors,
based on the gate-efficient algorithm in Theorem 5 of [37].

We now estimate the quantity maxt∈[0,T ] ‖ŷ(t)‖. By the definition of η j (t), Theo-
rem 3.3, and RD < 1, we have

‖ŷ j (t)‖ = ‖U⊗ j (t) − η j (t)‖ � ‖U⊗ j (t)‖ + ‖η j (t)‖ � max
t∈[0,T ] ‖U (t)‖ j

+γ j � 2 max
t∈[0,T ] ‖U (t)‖ j , (4.54)

so that

max
t∈[0,T ] ‖ŷ(t)‖ � 2

N∑

j=1

(
max

t∈[0,T ] ‖U (t)‖) j
. (4.55)

Based on the �2 estimate of the solution in Lemma C.4, when RD < 1, we have

max
t∈[0,T ] ‖U (t)‖ � ‖Uin‖. (4.56)

Therefore, the overall query complexity of our algorithm is

1

G2ε
sT 2D2d2n4N 3‖Uin‖2N · poly

(

log
aDd MnNsT

Gε

)

(4.57)

and the gate complexity is larger than its query complexity by logarithmic factors as
claimed. ��
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5. Efficiency and Lower Bound Results

The reference [59] established a limitation on the ability of quantum computers to solve
the quadratic ODE problem when the nonlinearity is sufficiently strong. In other words,
general nonlinear differential equations are intractable on quantum computers when
R �

√
2. However, we can rule out such a worst-case by assuming that the initial

condition of reaction–diffusion equations fulfills the maximum principle, and thus show
the problem is still tractable on quantum computers.

In the following, we state and prove our hardness and efficiency results. Part (i) fo-
cuses on the hardness result when R ≥ √

2, which has been studies [59, Theorem 2]
by leveraging the hardness result of quantum state discrimination. However, there is a
technical flaw in the original proof in [59]. The hardness result for quantum state dis-
crimination used in [59] only assumesmultiple copies of the input states at the beginning
and does not allow access to the state during the algorithm. But, in most quantum ODE
algorithms, including the Carleman linearization method, we indeed have a stronger
assumption that we assume the state preparation oracle for the input state and its inverse,
and we frequently apply those during the implementation of the algorithm. Therefore
the existing lower bound in [59] has not yet fully ruled out the possibility of efficient
algorithms with strong oracle assumptions. We fix this gap in part (i) by applying a
recent lower bound for amplifiers [82, Theorem 13], where the state preparation oracles
are assumed. Part (ii) shows that the worst-case scenario can be precluded by assum-
ing the maximum principle, implying that our maximum principle analysis captures the
underlying reason for the efficiency of Carleman linearization method.

Theorem 5.1. We consider the same assumptions in Problem 1.

(i) Assume R �
√
2, and the initial condition satisfies ‖Uin‖∞ > γ . Then there is an

instance of the quantum quadratic ODE problem defined in Problem 1 such that any
quantum algorithm for producing a quantum state approximating u(T )/‖u(T )‖ with
bounded error must have worst-case query complexity exponential in T to the input
state preparation oracle.

(ii) If the initial condition satisfies the maximum principle ‖Uin‖∞ � γ as (2.12), then
such a worst-case example can be precluded even R �

√
2.

Proof. We consider the lower bound result when R �
√
2 and ‖Uin‖∞ > γ . The same

as Theorem 2 of [59], we consider a 2-dimensional system of the form

du1

dt
= −u1 + Ru2

1,

du2

dt
= −u2 + Ru2

2,

(5.1)

with two single-qubit states as initial conditions

|φ(0)〉 = 1√
2
(|0〉 + |1〉) (5.2)

and

|ψ(0)〉 = v0|0〉 + w0|1〉 := cos
(
θ +

π

4

)
|0〉 + sin

(
θ +

π

4

)
|1〉, (5.3)
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where θ ∈ (0, π/4), 2 sin2 θ
2 = ε, with an arbitrary small ε > 0. Then the overlap

between the two initial states is

〈φ(0)|ψ(0)〉 := cos θ = 1 − ε. (5.4)

We let U (t) = [v(t);w(t)] denote the solution evolved from U (0) = [v0;w0]. Accord-
ing to Lemma 8 of [59], |φ(t)〉 = |φ(0)〉 is the fixed state; but if 1/R � 1/

√
2, w(t)

increases with t and goes to infinity after

t > t∗ := log

(
R

R − 1/w0

)

. (5.5)

The overlap of |φ(T )〉 and |ψ(T )〉 is no larger than a constant (e.g., 3√
10

used in [59])
after a short evolution time

T < t∗ = log

(
R

R − 1
w0

)

< log

(√
2ε − ε2 + 1 − ε√
2ε − ε2 − ε

)

= O(log(1/ε)). (5.6)

It was shown in [82, Theorem 13] that, if a quantum algorithm with oracle input model
can amplify the infidelity of two quantum states from ε to a constant level, then it
must use �(1/

√
ε) queries in the worst case. By applying this result and noticing that

1/
√

ε = e�(T ), we directly obtain that when R �
√
2, there is an instance of the

quantum quadratic ODE problem that any quantum algorithm must have worst-case
time complexity exponential in T .

In our paper, the ODE system (5.1) is a reduced example of reaction–diffusion
equations (2.6) with D = 0, a = −1, b = R, M = 2, and RD = 1. Besides,

‖Uin‖∞ = sin
(
θ + π

4

)
satisfies

1/
√
2 < sin

(
θ +

π

4

)
= (
√
2ε − ε2 + 1 − ε)/

√
2 < (1 +

√
2ε)/

√
2, (5.7)

where sin
(
θ+ π

4

)
is close to 1/

√
2when ε is close to 0. Notice that this example disobeys

(2.12), the condition of the Maximum Principle Lemma 2.1, because

‖Uin‖∞ > γ = 1/
√
2. (5.8)

Secondly, we consider an upper bound on ‖Uin‖ given the maximum principle
‖Uin‖∞ � γ . Then we have

‖Uin‖ � √
ndγ. (5.9)

Substituting this estimate into the complexity in Theorem 4.1, we can upper bound the
query complexity by

1

G2ε
sT 2D2d2n4N 3nN

d γ 2N · poly
(

log
aDd MnNsT

Gε

)

. (5.10)

Notice that the upper boundof the complexity still depends exponentially on N .However,
according to Theorem 3.3, the Carleman error converges exponentially in N and can be
bounded independently of T . So N can be chosen independently of T as well, therefore
our algorithm does not have the exponential overhead in T stated in part (i). ��
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The upper bounds on the query and gate complexity demonstrate that the quantum
algorithm we develop has a roughly quadratic dependence on T when RD < 1 and
‖Uin‖∞ � γ , regardless of the value of R. Such a loose upper bound includes a polyno-
mial dependence on n, revealing that the quantum algorithm does not have a potential
exponential speedup in the dimension.

But if we are given an additional assumption

‖Uin‖ = o(nd), (5.11)

then we can upper bound the query complexity by

1

G2ε
sT 2D2d2n4N 3 · poly

(

log
aDd MnNsT

Gε

)

, (5.12)

and the gate complexity has an upper bound that is larger by logarithmic factors as
claimed. In this case, our algorithm still maintains the potential exponential speedup in
the dimension over classical algorithms.

6. Applications

In this section, we show how the quantum state obtained by solving Problem 1 can
be used to compute quantities of practical interest. For generality, in this section, we
consider the applications of a quantum state in the form specified in Problem 1, but not
limited to the output by particular algorithms.More specifically, let l = (l1, . . . , ld)with
l j ∈ [n], and let f (t, x) be a function defined on [0, T ] ⊗ [0, 1]d . We assume that there
exists a quantum algorithm A(ε) which can prepare the quantum state

| f̂ 〉 ∼
m−1∑

k=0

n−1∑

l1=0

· · ·
n−1∑

ld=0

f̂k,l |k〉|l1〉 . . . |ld〉 (6.1)

proportional to the vector ( f (kT/m, l1/n, . . . , ld/n)) within some prescribed error tol-
erance ε > 0 in �2 norm. Here f̂k,l represents an approximation of the function f
evaluated at (kT/m, l1/n, . . . , ld/n). In the context of this paper, the algorithmA is the
quantum Carleman linearization method, but the discussion in this section works for any
quantum algorithm which can encode a function evaluated at discrete grid points.

6.1. Mean square amplitude. One quantity of potential practical interest is the fraction
of the squared amplitude contained in a sub-domain Dt × Dx defined by Dt ⊂ [0, T ]
and Dx ⊂ [0, 1]d . This can be described as the ratio

∫
Dt

∫
Dx

| f (t, x)|2dxdt
∫ T
0

∫
[0,1]d | f (t, x)|2dxdt

. (6.2)

In the context of quantum mechanics such quantities are motivated by Born’s rule,
whereas in the context of classical wave mechanics such quantities are motivated by
notions of energy.
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In the spatial discretization context, we can approximate the integrals via numerical
quadrature with equidistant nodes, and thus we are interested in computing the ratio

∑
kT/m∈Dt

∑
(l1/n,...,ld/n)∈Dx

| f (kT/m, l1/n, . . . , ld/n)|2
∑m−1

k=0
∑n−1

l1=0 · · ·∑n−1
ld=0 | f (kT/m, l1/n, . . . , ld/n)|2 . (6.3)

Note that the difference between (6.2) and (6.3) scales as O(T (T/m + d/n)) [83], so it
can be reduced to the level of O(ε) with arbitrarily small ε by refining time and spatial
discretization as m = O(T 2/ε), n = O(dT/ε). For simplicity, here we fix the grids
for discretization and focus on computing the discretized ratio as shown in (6.3). This
quantity can be easily estimated given the quantum state in the form of (6.1). Let P be
the projector onto the space spanned by the computational basis corresponding the �,
i.e., P =∑kT/m∈Dt

∑
(l1/n,...,ld/n)∈Dx

(|k〉〈k|) ⊗ (|l1〉〈l1|) ⊗ · · · ⊗ (|ld〉〈ld |). Then
∑

kT/m∈Dt

∑
(l1/n,...,ld/n)∈Dx

| f (kT/m, l1/n, . . . , ld/n)|2
∑m−1

k=0
∑n−1

l1=0 · · ·∑n−1
ld=0 | f (kT/m, l1/n, . . . , ld/n)|2

≈
∑

kT/m∈Dt

∑
(l1/n,...,ld/n)∈Dx

| f̂k,l |2
∑m−1

k=0
∑n−1

l1=0 · · ·∑n−1
ld=0 | f̂k,l |2

= 〈 f̂ |P| f̂ 〉

(6.4)

and thus can be estimated by the amplitude estimate technique [72].
The complexity of such an algorithm is given in the following theorem, and the proof

can be found in the appendix Sect.G.

Theorem 6.1. Assume that we are given an algorithm A(ε′) preparing (6.1) and a
unitary transform (I − 2P) for the projector P associated with the domain D . Then,
for any 0 < ε < 1, 0 < δ < 1, there exists a quantum algorithm which can output an
approximation of (6.3) within tolerated error ε and probability at least (1 − δ), using
A(ε/4) and (I − 2P) for O((1/ε) log(1/δ)) times.

Theorem 6.1 proves an almost linear sampling scaling in terms of the precision for the
quantum approach to estimate the ratio. Compared with the most widely used classical
approach for estimating highdimensional integral, standardMonteCarlomethods,which
typically scale quadratically in the precision, we can obtain a quadratic speedup for the
sampling step.

6.2. Derivatives and kinetic energy. As a particular example of practical interest, we
would like to study the dynamical kinetic energy ratio of the system on the domain
Dt × Dx ⊂ [0, T ] × [0, 1]d , which is defined to be

∫
Dt

∫
Dx

|∇x f (t, x)|2dxdt
∫ T
0

∫
[0,1]d |∇x f (t, x)|2dxdt

≈
∑

kT/m∈Dt

∑
(l1/n,...,ld/n)∈Dx

|∇x f (kT/m, l1/n, . . . , ld/n)|2
∑m−1

k=0
∑n−1

l1=0 · · ·∑n−1
ld=0 |∇x f (kT/m, l1/n, . . . , ld/n)|2 . (6.5)
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To apply our result in Theorem 6.1, we first study how to prepare a quantum state which
is proportional to the partial derivative of the function f . That is, our goal is to prepare
a quantum state which is a good approximation of

|∇x f 〉 ∼
d∑

j=1

m−1∑

k=0

n−1∑

l1=0

· · ·
n−1∑

ld=0

∇x j f (kT/m, l1/n, . . . , ld/n)| j〉|k〉|l1〉 · · · |ld〉. (6.6)

Compared to (6.1), here we introduce one more register to simultaneously encode all
the partial derivatives in a single quantum state. In this subsection, we further assume
that the function f (t, x) satisfies periodic boundary conditions for spatial variable x .
Notice that the periodic boundary condition here is only for technical simplicity and not
essential because a general function can be smoothly extended to a larger space domain
with periodic boundary conditions. Our algorithm will also work by requiring access to
another projector connecting the original and the extended space domains.

We first study how to prepare a quantum state encoding the derivative information
within amplitudes. The idea is using the discrete Fourier transform to transform the state
to the frequency domain, multiplying the frequency in this domain and then transforming
back to the space domain by inverse discrete Fourier transform. More specifically, let
F denote the one-dimensional quantum Fourier transform3 with n nodes. Furthermore,
for any positive integer θ ≤ n/2, let l = (l1, . . . , ld) and D j,θ be a diagonal matrix

D j,θ = 2π iθ
n−1∑

l1,...,ld=0

D j,θ (l)|l〉〈l| (6.7)

where

D j,θ (l) =

⎧
⎪⎨

⎪⎩

l j/θ, if 1 ≤ l j ≤ θ,

(l j − n)/θ, if n − θ ≤ l j ≤ n − 1,
0, else.

(6.8)

Notice that we define D j,θ (l) such that |D j,θ | ≤ 1. Then, for any smooth function g(x)

defined on [0, 1]d , we have

(⊗ j−1 I ⊗ F ⊗d− j I )D j,θ (⊗ j−1 I ⊗ F−1 ⊗d− j I )
n−1∑

l1=0

· · ·
n−1∑

ld=0

g(l1/n1, . . . , ld/nd)|l1〉 · · · |ld〉

≈
n−1∑

l1=0

· · ·
n−1∑

ld=0

∂x j g(l1/n1, . . . , ld/nd)|l1〉 · · · |ld〉.

(6.9)

Such an approach has been widely used and is regarded as the standard way to compute
derivatives in classical scientific computing, and we briefly illustrate the reasoning in
the appendix Sect. F.

3 Note that, following the standard convention of choosing signs in [84], the quantum Fourier transform
exactly corresponds to the inverse discrete Fourier transform in the classical setting.
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Nowwe discuss how to implement this approach on a quantum device. In the general
high-dimensional case, we introduce another ancilla register withO(log d) qubits, which
we will refer to as the dimension register later, and start with the state

|0〉| f 〉 = 1

‖ f ‖
m−1∑

k=0

n−1∑

l1,...,ld=0

f (kT/m, l1/n, . . . , kd/n)|0〉|k〉|l1〉 · · · |ld〉. (6.10)

Applying the Hadamard gates to the dimension register, we obtain

1√
d‖ f ‖

m−1∑

k=0

n−1∑

l1,...,ld=0

d−1∑

j=0

f (k1/n, . . . , kd/n)| j〉|k〉|l1〉 · · · |ld〉. (6.11)

The discrete Fourier transform can be efficiently implemented via quantum Fourier
transform. Specifically, we apply the operation (

∑d−1
j=0 | j〉〈 j | ⊗ Ins ⊗F−1

j ) and denote
the resulting state as

1√
d‖ f ‖

m−1∑

k=0

n−1∑

l1,...,ld=0

d−1∑

j=0

f̃ ( j, k, l)| j〉|k〉|l1〉 · · · |ld〉. (6.12)

For the multiplication of the matrix D j,θ (we will show later that θ can be chosen as
an O(1) parameter for smooth functions), we assume that we are given an oracle of the
mapping

OD : |0〉| j〉|l〉 → |D j,θ (l)〉| j〉|l〉. (6.13)

Then the multiplication of the matrix D j,θ can be implemented as follows. We first add
two ancilla registers, one as the rotation register on which we will perform conditional
rotation later and the other as the D-register for encoding D j,θ . Applying OD to encode
D j,θ (l) in the D-register gives

1√
d‖ f ‖

m−1∑

k=0

n−1∑

l1,...,ld=0

d−1∑

j=0

f̃ ( j, k, l)|0〉|D j,θ (l)〉| j〉|k〉|l1〉 · · · |ld〉. (6.14)

Performing a rotation on the rotation register conditioned on |D j,θ (l)〉 yields

1√
d‖ f ‖

m−1∑

k=0

n−1∑

l1,...,ld=0

d−1∑

j=0

f̃ ( j, k, l)

(

D j,θ (l)|0〉 +
√
1 − D j,θ (l)2|1〉

)

|D j,θ (l)〉| j〉|k〉|l1〉 · · · |ld〉. (6.15)

Uncomputing the D-register gives the state

1√
d‖ f ‖

m−1∑

k=0

n−1∑

l1,...,ld=0

d−1∑

j=0

D j,θ (l) f̃ ( j, k, l)|0〉|0〉| j〉|k〉|l1〉 · · · |ld〉 + |⊥〉, (6.16)

where the first part is the desired outcome after the diagonal transformation, and |⊥〉 rep-
resents a quantumstatewith the rotation register being |1〉. Finally, applying (

∑d−1
j=0 | j〉〈 j |
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Fig. 5. Quantum circuit for preparing a quantum state encoding partial derivatives of a known function in
amplitudes. Here A is the algorithm for the state encoding the function, H represents the Hadamard gate,
F j represents the one-dimensional quantum Fourier transform acting on the j-th direction, OD is the oracle
specified in (6.13), and R is the rotation operation

⊗ F j ) on the registers (| j〉 ⊗ |l〉) completes the operation for computing the partial
derivatives as discussed before, which yields an approximation of

1

2π iθ

1√
d‖ f ‖

m−1∑

k=0

n−1∑

l1,...,ld =0

d−1∑

j=0

∂x j f (kT/m, l1/n, . . . , ld/n)|0〉|0〉| j〉|k〉|l1〉 · · · |ld 〉 + |⊥〉.

(6.17)

By measuring the ancilla rotation register to get 0 and discarding the D-register, we get
a quantum state approximately proportional to

m−1∑

k=0

n−1∑

l1,...,ld=0

d−1∑

j=0

∂x j f (k1/n, . . . , kd/n)| j〉|k〉|l1〉 · · · |ld〉, (6.18)

which encodes the partial derivatives in the amplitude controlled by a dimension register.
The entire quantum circuit is summarized in Fig. 5, and the overall complexity estimate
is given in the following theorem, of which the proof can be found in the appendix
Sect.G.

Theorem 6.2. Let f (t, x) be a smooth function and f be a possibly unnormalized vector

f =
m−1∑

k=0

n−1∑

l1=0

· · ·
n−1∑

ld=0

f (kT/m, l1/n1, . . . , ld/nd)|k〉|l1〉 · · · |ld〉. (6.19)

Assume that f satisfies periodic boundary condition for x and sup j,p(‖∂ p
x j f ‖∞)1/p <

πn. Then for any 0 < ε < 1, 0 < δ < 1, there exists a quantum algorithm which, with
probability at least (1 − δ), outputs an ε-approximation of the state proportional to

∇ f =
d−1∑

j=0

m−1∑

k=0

n−1∑

l1,...,ld=0

∂x j f (kT/m, l1/n, . . . , ld/n)| j〉|k〉|l1〉 · · · |ld〉, (6.20)

using queries to A(ε/Q) and OD for O(Q log(1/δ)) times and additional O(d(log n)2)

gates, where

Q = 4
√

d‖ f ‖(sup j,p(‖∂ p
x j f ‖∞)1/p + 1)

‖∇ f ‖ .
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We briefly compare our result with the standard classical approach of computing
gradient in terms of the dimension parameters, including n and d. On the one hand, the
cost for computing gradient evaluated at all discrete grid points typically scaleO(dnd),
since the sizes of both the vector storing the information of the gradients and thematrices
related to finite difference and discrete Fourier transform scale O(dnd). On the other
hand, the corresponding scaling for our quantum approach is subtler since it depends on
the scaling of the quantity Q. Notice that this quantity can be very large if the function
f is close to a constant function. However, it can also be of O(1) if at least one of
the non-trivial Fourier components in f is on the order of �(1), since in this case
‖ f ‖ ∼ O(

√
mnd) and ‖∇ f ‖ ∼ �(

√
dmnd). In this scenario, the overall complexity

scales only polynomially in terms of d and poly-logarithmically in n, which achieves
exponential speedup in terms of the dimension parameters.

The cost of computing the ratio of the kinetic energy can be directly estimated by
combining Theorems 6.1 and 6.2. As discussed before, we can get a quadratic speedup
in terms of precision compared to the classical Monte Carlo method. The result is sum-
marized in the following Corollary.

Corollary 6.3. Let f (t, x) be a smooth function such that f satisfies periodic boundary
condition for x, and sup j,p(‖∂ p

x j f ‖∞)1/p < πn. Assume that we are given a unitary
transform (I −2P) for the projector P associated with the domain D . Then for any 0 <

ε < 1, 0 < δ < 1, there exists a quantum algorithm which can output an approximation
of (6.5)within tolerated error ε and probability at least (1−δ), using queries to (I −2P)

for O((1/ε) log(1/δ)) times, queries to A(ε/(4Q)) and OD for O(Q(log(1/δ))2/ε)
times and additional O(d(log n)2 log(1/δ)/ε) gates, where

Q = 4
√

d‖ f ‖(sup j,p(‖∂ p
x j f ‖∞)1/p + 1)

‖∇ f ‖ .

6.3. History state and decay of kinetic energy. Unlike the existing work on quantum
differential equation solvers that typically output a final state encoding the solution at
the final time, our Carleman linearization algorithm and the input model assumed in this
section take a more general history state encoding the solutions at all time steps. In this
subsection, we briefly discuss how the general history state structure may broaden the
application of our algorithm.

One potential application is to study the kinetic energy curve. As discussed in [10,85],
applied mathematicians are interested in the curve that describes the decay of the kinetic
energy of the gradient flow (2.4), and particularly the time of reaching the equilibrium,
i.e., the time when the kinetic energy almost stops changing. We define this time to be
the equilibrium time t∗, and it can be easily estimated by combining the history state and
our algorithm for computing gradients in Fig. 5. Specifically, we first run the algorithm
in Fig. 5 to get an approximation of the history state of gradients of the solution as in
(6.6), and then measure the time register |k〉 to obtain an integer k. Notice that after the
equilibrium time t∗ when the kinetic energy almost stops changing, the corresponding
partial derivatives are very close to 0. This implies that we have almost no measurement
outcomes after t∗. By repeating such a procedure and taking themaximumof themeasure
outcomes kmax, we can use kmaxh to estimate t∗ with high probability.

The history state structure can also allow us to overcome potential exponential cost
in the differential equation solvers caused by the decay of the solution. To the extent of
our knowledge, most of the existing quantum differential equation solvers which output
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a final state [44–46,59] scale at least linearly in terms of the parameter ‖uin‖/‖uout‖,
where uin and uout denote the unnormalized solutions of the differential equation at the
initial and final time, respectively. Such a linear dependence is typically caused by post-
processing a quantum state obtained from solving specific linear systems of equations
to get the desired final state and may introduce extra exponential time dependence if the
solution of the differential equations experiences rapid decay. A simple example is the
imaginary time evolution

du

ds
= −Hu (6.21)

where H is a positive definite matrix. Here ‖u(T )‖ = ‖ exp(−H T )u(0)‖ ≤ exp(−λT )

‖u(0)‖with λ being the smallest eigenvalue of H , and thus ‖u(0)‖/‖u(T )‖ ≥ exp(λT ),
leading to an extra exponentially large term in T . Another example is the nonlinear
ordinary differential equation with no constant term, which can be explicitly written
down as

du

ds
= F1u + F2u⊗2. (6.22)

It is proved in [59] that, if F1 only has negative eigenvalues and the nonlinearity is rela-
tively weak in certain sense (namely the parameter R defined in this work is smaller than
1), then ‖u(t)‖ decays exponentially in terms of t , which also leads to an exponentially
large ‖uin‖/‖uout‖ in T .

With a history state, we can run a “pre-diagnosis” to first identify whether the final
state is close to 0. The key observation is that if the state has sufficiently decayed such that
the solution is very close to 0, then the success probability of getting the corresponding
time step bymeasuring the time register is exponentially small. In particular, assume that
we are interested in obtaining an approximation of the final solution u(T ) when ‖u(T )‖
is very small or the corresponding state u(T )/‖u(T )‖ when ‖u(T )‖ is reasonably away
from 0. We can repeatedly prepare a history state, measure the time register, and obtain
the output k. If for all k’s, we have kh < T , then the final solution is expected to be
exponentially small with high probability, so we can stop here and directly use 0 to
be the approximation of the solution. On the other hand, if there exists a k such that
kh = T , then this is a reasonable indication that the quantity ‖uin‖/‖uout‖ is not quite
large, and we can follow the standard post-processing procedure to obtain the final state
u(T )/‖u(T )‖. The history state here helps us determine which scenario the differential
equation is in without exponential cost in the evolution time T .

7. Discussion

We have presented an efficient quantum algorithm for the gradient flow evolution of
reaction–diffusion equations. We improve the Carleman linearization under a condition
RD < 1. It relaxes the previous condition R < 1 in [59] for high-dimensional systems
of nonlinear differential equations. Besides, we discussed estimating the mean square
amplitude and ratios of the kinetic energy of the gradient flow as potential applications.

This work raises several natural open problems. The first aspect is regarding further
improvement of our algorithm. Though our work focuses on improving the convergence
condition for the Carleman linearization, it is also interesting to seek further improve-
ment of the dependence on other parameters in the complexity, such as the evolution time
and the error tolerance. Another related topic is to obtain meaningful classical outputs
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with super-polynomial quantum speedups over the best-known classical algorithms. It
is also an interesting question to generalize our algorithms or design new quantum algo-
rithms dealing with other types of nonlinear differential equations. Our analysis relies
heavily on the Maximum Principle and some good regularity of the solutions, which
are essential properties of reaction–diffusion equations. On a high level, the maximum
principle controls the norm of the solution that shares the same spirit of spectral norm
preserving properties of Hamiltonian simulation. It is thus an interesting direction to
consider other norm-controlled problems, such as the gradient flow structured on cer-
tain norm preserving manifold, and see whether such confinement helps conquer the
nonlinearity at hand.

However, relaxing the regularity assumptions of the solutions seems to be a funda-
mentally difficult problem. All linearization-based techniques require the solutions to
be well-posed and regular, which is not the case for applications such as the conser-
vation laws, fluid dynamics, and Hamilton–Jacobi equation, where the solutions blow
up in finite time. Therefore, other approaches beyond the linearization framework are
desired for such nonlinear problems, requiring some new insights. We also point out
that the quantum Carleman linearization based approaches may suffer from an overhead
sensitive to the spatial grid refinement for partial differential equations. Though our im-
proved �∞ framed convergence criterion can concur the sensitivity to grid refinements,
this sensitivity can be reintroduced through the �2 norm dependence when implementing
the quantum algorithm since the �2 norm of the solution discretized by finite difference
still grows as more grid points are used. In particular, it appears when getting the so-
lution from the huge Carleman state vector. It is our future work to make the quantum
algorithm fully insensitive to the spatial grid refinements, probably by trying other spa-
tial discretization which can preserve the �2 norm in grid refinements such as Fourier
discretization.

In the application section, we use the amplitude estimate technique to obtain classical
information beyond the quantum state output and study the kinetic energy distribution by
preparing a state with derivative information. The techniques we propose in this section
do not rely on specific models or differential equations. Thus it is interesting to find
applications of our technique to output classical information for other problems, such
as phase separation and transition, chemical reactions, and self-organized biological
patterns. We want to remark that all the classical outputs we study in this work are
in terms of ratios. While obtaining the absolute value rather than the ratio seems to
require accurate computation of the observable on the entire domain, which might incur
exponential overhead, it is still very interesting to further studywhether the absolute value
of observables can be approximated with only a relatively small overhead. Our algorithm
for preparing quantum states of derivatives requires the regularity of the function, and
we want to understand its performance for non-smooth functions as well. It may also be
of interest in some quantum optimization problems which require gradient information
to optimize the objective function and will be our future work.
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A. Proof of Lemma 2.1

Wenowdiscuss the proof of the a priori estimate of the solution.Before that,we introduce
the comparison principle lemma for the discrete reaction–diffusion equation (2.7), which
implies the a priori estimate as a direct consequence.

Lemma A.1 (Comparison principle). Assume f (u) ∈ C∞(R) and U (t) = [U1, . . . ,

Un]T , V (t) = [V1, . . . , Vn]T are continuous functions that satisfy

dU j

dt
− D (
hU ) j − f (U j ) � dVj

dt
− D (
h V ) j − f (Vj ),

for t ∈ (0, T ] and all the multi-indices j ∈ I. Furthermore, U j (0) � Vj (0) for all
j ∈ I and U j (t) � Vj (t) for j ∈ B and t ∈ [0, T ]. Then it holds that

U j (t) � Vj (t)

for all j and all time t ∈ (0, T ].
We remark that Lemma A.1 immediately implies Lemma 2.1, because both U j (t) =

γ1 and U j (t) = γ2 all j and t are solutions to (2.7) and hence comparison principle can
be applied to the solution of interests and these constant-valued equilibrium solutions,
which yields the desired result.

Proof. Our proof can be split into the following three steps: in the first two steps, we
consider a linear operator of U given by

dU j
dt − D (
hU ) j + C̃ jU j for some vector

C̃ =
(

C̃ j

)
, and show that a maximum principle result for this linear operator; and in the

last step, we prove the comparison principle for the nonlinear problem as considered in
(A.1). It is worth pointing out that although a linear problem is considered at first, there
is no linearization procedure introducing any extra error here.

First, we claim that if

dVj

dt
− D (
h V ) j + C̃ j Vj < 0, (A.1)

for some C̃ with all entries positive, then it holds that

max
t∈[0,T ], j∈I

Vj (t) = max
( j,t)∈(B×(0,T ])∪(I×{0})

V +
j (t)

where B denotes the boundary indices and V +
j := max(Vj , 0).
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Suppose the claim does not hold, then there exists some time t0 ∈ (0, T ] and j0 	∈ B
such that Vj (t) attains the positive maximum value at (t0, j). Note that the definition
(2.8) of 
h can be written in the following equivalent form


hv j1,..., jn := v j1+1,..., jn − 2v j1,..., jn + v j1−1,..., jn

h2

+
v j1, j2+1,..., jn − 2v j1, j2,..., jn + v j1, j2−1··· , jn

h2

+ · · · + v j1,..., jn+1 − 2v j1,..., jn + v j1,..., jn−1

h2 , (A.2)

and hence one has − (
h V ) j0 ≥ 0. Meanwhile, if t0 ∈ (0, T ), then

dVj0

dt
(t0) = 0;

otherwise, t0 = T , and one has

dVj0

dt
(t0) ≥ 0.

Therefore, one has

dVj

dt
− D (
h V ) j + C̃ j Vj ≥ 0,

which is a contradiction. This completes the proof of the claim.
In the second step, we relax the condition of the claim from the following two

angles: the condition on C is changed from positive to bounded from below; and the
equality is allowed. To be precise, we shall show that for C satisfying that C j ≥ cmin
for all j ∈ I, if

dVj

dt
− D (
h V ) j + C̃ j Vj � 0, (A.3)

then

max
t∈[0,T ], j∈I

Vj (t) = max
( j,t)∈(B×(0,T ])∪(I×{0})

V +
j (t). (A.4)

To prove this, we define Ṽ (t) by the change of variable Ṽ (t) = ecmint V (t) − δt . A
straightforward calculation yields

dṼ j

dt
= cminṼ j + ecmint dVj

dt
− δ � D

(

h Ṽ

)

j
−
(

C̃ j − cmin

)
Ṽ j − δ.

Thus Ṽ j satisfies (A.1). Letting δ → 0+ yields the desired result.
The last part of the proof is to show the comparison principle. Let W := U − V .

One has W j (0) � 0 for j ∈ I and W j (t) � 0 for all t ∈ (0, T ] and j ∈ B so that the
right-hand-side of (A.4) is non-positive. Moreover, W satisfies

dW j

dt
− D (
h W ) j − f (U j ) + f (Vj ) � 0,
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and by mean value theorem f (U j ) − f (Vj ) = f ′(ξ j ) with ξ j in between U j and Vj ,
we arrive at

dW j

dt
− D (
h W ) j − f ′(ξ j )W j � 0.

Applying the result of the second step yields

W j (t) � 0,

for all j ∈ I and t ∈ [0, T ], which completes the proof of this lemma. ��

B. Matrix Inequality

Lemma B.1 (Discrete maximal principle). Let Dh be the discrete 1-dimensional Lapla-
cian operator with homogeneous Dirichlet boundary conditions, then

∥
∥
∥et Dh

∥
∥
∥∞ ≤ 1, ∀ t > 0. (B.1)

Proof. In this proof, we will apply the results,

et Dh = lim
k→∞

(

1 +
t
h

k

)k

. (B.2)

First, we restrict t ≤ t0 := 1
(n+1)2

. Then when k is larger enough, i.e. k ≥ 2t0(n + 1)2,
one has

∥
∥
∥
∥1 +

t Dh

k

∥
∥
∥
∥∞

≤
(

1 − 2
t

k
(n + 1)2

)

+
t

k
(n + 1)2 +

t

k
(n + 1)2 ≤ 1. (B.3)

Hence,
∥
∥
∥
∥
∥

(

1 +
t Dh

k

)k
∥
∥
∥
∥
∥∞

≤
∥
∥
∥
∥1 +

t Dh

k

∥
∥
∥
∥

k

∞
≤ 1.

By continuity, one can get that
∥
∥et Dh

∥
∥∞ ≤ 1. As for t > t0, we choose positive integer

l such that t/ l ≤ t0 and get

∥
∥
∥et Dh

∥
∥
∥∞ =

∥
∥
∥
∥

(
et Dh/ l

)l
∥
∥
∥
∥∞

≤
∥
∥
∥et Dh/ l

∥
∥
∥

l

∞ ≤ 1.

In this way, we obtain the desired results. ��
Lemma B.2. Let Dper

h be the discrete 1-dimensional Laplacian operator with periodic
boundary conditions, then

∥
∥
∥et Dper

h

∥
∥
∥∞ = 1, ∀ t > 0. (B.4)
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Proof. Using the same argument in Lemma B.1, we can prove that
∥
∥
∥et Dper

h

∥
∥
∥∞ ≤ 1, ∀ t > 0.

Now we only need to prove the inequality in the opposite direction. Denote v to be the
eigenvector of Dper

h associated with eigenvalue 0. Then we know that et Dper
h v = v, which

implies
∥
∥
∥et Dper

h

∥
∥
∥∞ ≥ 1. In this way, we obtain that

∥
∥
∥et Dper

h

∥
∥
∥∞ = 1. ��

Lemma B.3. Let DDir
h be the discrete 1-dimensional Laplacian operator with homo-

geneous Dirichlet boundary conditions, and denote μ1 ≥ μ2 ≥ · · · ≥ μn to be the
eigenvalues of DDir

h . Then

∥
∥
∥et DDir

h

∥
∥
∥∞ ≤

(
4

π
+

2eμ2t

e−2μ1t/π − 1

)

eμ1t , ∀ t > 0. (B.5)

Proof. We use the decomposition of DDir
h :

DDir
h = Udiag(μ1, ..., μn)U� with Ukl =

√
2

n + 1
sin

(
klπ

n + 1

)

.

Here μk = −4(n + 1)2
(
sin
( kπ
2n+2

))2
. Besides, we know that for any 3 ≤ k ≤ n,

μk − μ2 = −4(n + 1)2
(

sin

(
kπ

2n + 2

))2

+ 4(n + 1)2
(
sin
( π

n + 1

))2

= 2(n + 1)2
(

cos

(
kπ

n + 1

)

− cos

(
2π

n + 1

))

= −4(n + 1)2 sin

(
(k − 2)π

2n + 2

)

sin

(
(k + 2)π

2n + 2

)

≤ −4(n + 1)2 sin
( π

2n + 2

)
sin

(
(k + 1)π

2n + 2

)

≤ μ1

sin
(

(k+1)π
2n+2

)

sin
(

π
2n+2

) ≤ μ1

k+1
n+1
π

2n+2

= 2μ1

π
(k + 1).

(B.6)

In the last step, we use the inequality 2
x ≤ sin(x) ≤ x for x ∈ [0, π

2 ]. Note that
∥
∥
∥et DDir

h

∥
∥
∥∞ = max

1≤k≤n

n∑

l=1

∣
∣
∣
∣
∣
∣

n∑

j=1

Ukje
μ j tUl j

∣
∣
∣
∣
∣
∣
. (B.7)

For any 1 ≤ k ≤ n, we have

n∑

l=1

∣
∣
∣
∣
∣
∣

n∑

j=1

Ukje
μ j tUl j

∣
∣
∣
∣
∣
∣

= 2

n + 1

n∑

l=1

∣
∣
∣
∣
∣
∣

n∑

j=1

eμ j t sin

(
k jπ

n + 1

)

sin

(
l jπ

n + 1

)
∣
∣
∣
∣
∣
∣
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≤ 2

n + 1

n∑

l=1

n∑

j=1

eμ j t
∣
∣
∣
∣sin

(
k jπ

n + 1

)

sin

(
l jπ

n + 1

)∣
∣
∣
∣

≤ 2n

n + 1

n∑

j=2

eμ j t +
2

n + 1
eμ1t sin

(
kπ

n + 1

) n∑

l=1

sin

(
lπ

n + 1

)

. (B.8)

We notice that for any k,

2

n + 1
eμ1t sin

(
kπ

n + 1

) n∑

l=1

sin

(
lπ

n + 1

)

≤ 2

n + 1
eμ1t sin

(
kπ

n + 1

)
1

tan
(

π
2n+2

)

≤ 4

π
eμ1t sin

(
kπ

n + 1

)

≤ 4

π
eμ1t ,

(B.9)

where we use the equality
∑n

l=1 sin
( lπ

n+1

) = 1
tan( π

2n+2 )
and tan(x) ≥ x for x ∈ [0, π

2 ).

We also notice that

2n

n + 1

n∑

j=2

eμ j t = 2n

n + 1
eμ2t

n∑

j=2

e(μ j −μ2)t ≤ 2n

n + 1
eμ1t

n∑

j=2

e2(k+1)μ1t/π

≤ 2eμ2t e
6μ1t/π

(
1 − e2(n−1)μ1t/π

)

1 − e2μ1t/π
≤ 2

e−2μ1t/π − 1
e(μ1+μ2)t .

(B.10)

In this way, we obtain

∥
∥
∥et DDir

h

∥
∥
∥∞ ≤

(
4

π
+

2eμ2t

e−2μ1t/π − 1

)

eμ1t . (B.11)

��
Combining Lemmas B.1 and B.3, we obtain the following results.

Lemma B.4. Let μ1 be the largest eigenvalue of 1-dimensional DDir
h with homogeneous

Dirichlet boundary conditions. Given t ∈ R
+, for arbitrary μ > μ1, we have the decay

estimate

∥
∥
∥et DDir

h

∥
∥
∥∞ ≤

{
1, 0 < t <

ln(3)
2(μ−μ1)

,

etμ, t ≥ ln(3)
2(μ−μ1)

.
(B.12)

Proof. The case when t <
ln(3)

2(μ−μ1)
directly follows from Lemma B.1. When t ≥

ln(3)
2(μ−μ1)

, recall that

μ2 = −4(n + 1)2
(

sin

(
2π

2n + 2

))2

= 4μ1

(
cos
( π

2n + 2

))2 ≤ 3μ1. (B.13)

Then we have

4

π
+

2eμ2t

e−2μ1t/π − 1
≤ 4

π
+

2e3μ1t

e−2μ1t/π − 1
≤ √

3. (B.14)
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Notice that
√
3etμ1 � et (μ−μ1)etμ1 = etμ, t ≥ ln(3)

2(μ − μ1)
(B.15)

for an μ > μ1, we get
∥
∥
∥et DDir

h

∥
∥
∥∞ ≤ etμ. Together with Lemma B.5, we obtain the

desired bound. ��
We introduce a lemma about the decay estimate of the discrete heat semigroup.

Lemma B.5 (Decay of Discrete Heat Semigroup). Let 
h be the discrete d-dimensional
Laplacian operator defined in (2.8) with homogeneous Dirichlet boundary conditions
imposed on d1 dimensions and periodic boundary conditions imposed on d2 dimensions
(d1 + d2 = d). Given t ∈ R

+, for arbitrary μ > μ1, we have the decay estimate

‖et D
h ‖∞ ≤
{
1, 0 < t <

ln(3)
2D(μ−μ1)

,

et Dd1μ, t ≥ ln(3)
2D(μ−μ1)

,
(B.16)

where μ1 = −4(n + 1)2 sin2
(

π
2n+2

)
.

Proof. Thanks to (2.8), one has
∥
∥
∥et D
h

∥
∥
∥∞ =

∥
∥
∥et DDh ⊗ et DDh ⊗ · · · ⊗ et DDh

∥
∥
∥∞ �

∥
∥
∥et DDDir

h

∥
∥
∥

d1

∞

∥
∥
∥et DDper

h

∥
∥
∥

d2

∞ .

(B.17)

It suffices to consider the heat kernel for each dimension. For the dimensions with
homogeneous Dirichlet boundary conditions, we have

∥
∥
∥et DDh

∥
∥
∥∞ ≤

{
1, 0 < t <

ln(3)
2D(μ−μ1)

,

et Dμ, t ≥ ln(3)
2D(μ−μ1)

.
(B.18)

Similarly, for the dimensions with periodic boundary conditions, we have
∥
∥
∥et DDper

h

∥
∥
∥∞ � 1, ∀ t > 0. (B.19)

Combining these, we obtain

∥
∥
∥et D
h

∥
∥
∥∞ ≤

∥
∥
∥et DDh

∥
∥
∥

d1

∞ ≤
{
1, 0 < t <

ln(3)
2D(μ−μ1)

,

et Dd1μ, t ≥ ln(3)
2D(μ−μ1)

.
(B.20)

��
Lemma B.6. Let 
h be the discrete d-dimensional Laplacian operator defined in (2.8)
with homogeneous Dirichlet boundary conditions imposed on d1 dimensions and pe-
riodic boundary conditions imposed on d2 dimensions (d1 + d2 = d). Given j ∈ Z

+,
t ∈ R

+, and a ∈ R such that λ1 = Dd1μ1 +a < 0, for arbitrary λ such that λ1 < λ < 0,
we have the decay estimate

∫ t

0
‖e j (t−s)(D
h+a)‖∞ ds �

⎧
⎨

⎩

1
ja (e

ln(3)d1
2(λ−λ1)

a − 1) + 1
j |λ| , a 	= 0,

ln(3)d1
2 j (λ−λ1)

+ 1
j |λ| , a = 0,

(B.21)

where μ1 = −4(n + 1)2 sin2
(

π
2n+2

)
.
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Proof. Given any λ, define μ := λ−a
Dd1

. Then λ > λ1 implies that μ > μ1. According to
Lemma B.5, we have

‖e j t (D
h+a)‖∞ ≤
⎧
⎨

⎩

e j ta, 0 < t <
ln(3)

2 j D(μ−μ1)
,

e j tλ = e j t (Dd1μ+a), t ≥ ln(3)
2 j D(μ−μ1)

.
(B.22)

We now integrate the upper bound of ‖e j t (D
h+a)‖∞. When a > 0 or a < 0, we have
such an estimate

∫ t

0
‖e j (t−s)(D
h+a)‖∞ ds ≤

⎧
⎨

⎩

1
ja (e j ta − 1), 0 < t <

ln(3)
2 j D(μ−μ1)

,

1
ja (e

ln(3)
2D(μ−μ1)

a − 1) + 1
j |λ| e

ln(3)
2D(μ−μ1)

λ
, t ≥ ln(3)

2 j D(μ−μ1)
.

(B.23)

When a = 0, the integration is reduced to

∫ t

0
‖e j (t−s)(D
h+a)‖∞ ds ≤

⎧
⎨

⎩

t, 0 < t <
ln(3)

2 j D(μ−μ1)
,

ln(3)
2 j D(μ−μ1)

+ 1
j |λ|e

ln(3)
2D(μ−μ1)

λ
, t ≥ ln(3)

2 j D(μ−μ1)
.

(B.24)

Since
∫ t
0 ‖e j (t−s)(D
h+a)‖∞ is non-decreasing, we consider the upper bound as t ≥

ln(3)
2 j D(μ−μ1)

to have

∫ t

0
‖e j (t−s)(D
h+a)‖∞ ds �

⎧
⎪⎨

⎪⎩

1
ja (e

ln(3)
2D(μ−μ1)

a − 1) + 1
j |λ|e

ln(3)
2D(μ−μ1)

λ
, a 	= 0,

ln(3)
2 j D(μ−μ1)

+ 1
j |λ|e

ln(3)
2D(μ−μ1)

λ
, a = 0.

(B.25)

Then, noticing e
ln(3)

2D(μ−μ1)
λ

< 1,

∫ t

0
‖e j (t−s)(D
h+a)‖∞ ds �

⎧
⎨

⎩

1
ja (e

ln(3)
2D(μ−μ1)

a − 1) + 1
j |λ| , a 	= 0,

ln(3)
2 j D(μ−μ1)

+ 1
j |λ| , a = 0.

(B.26)

Exploiting the definition of μ, we get

∫ t

0
‖e j (t−s)(D
h+a)‖∞ ds �

⎧
⎨

⎩

1
ja (e

ln(3)d1
2(λ−λ1)

a − 1) + 1
j |λ| , a 	= 0,

ln(3)d1
2 j (λ−λ1)

+ 1
j |λ| , a = 0.

(B.27)

��
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C. A Naive Estimate of ‖U(t)‖
In this section, we present two estimates of ‖U (t)‖. Note that this estimate is by no
means sharp, a tighter bound would depend on the specific forms of the nonlinearity and
initial data.

Lemma C.1. Let U (t) be a solution to (2.14) that satisfies the assumptions of Lemma 2.1,
i.e., the initial condition ‖U (0)‖∞ ≤ γ . Then one has

‖U (t)‖ ≤ e
(
λ1+|b|γ M−1

)
t ‖U (0)‖ , (C.1)

where λ1 is the largest eigenvalue of D
h + aI .

Proof. Consider the derivative of ‖U (t)‖,
d ‖U (t)‖2

dt
= 2U †(D
h + aI )U + bU †U .M + b

(
U .M

)†
U

≤ 2λ1 ‖U‖2 + 2 |b|
∑

j∈[nd ]
U j (t)

M+1

≤ 2λ1 ‖U‖2 + 2 |b| ‖U (t)‖M−1∞ ‖U (t)‖22
≤ 2λ1 ‖U‖2 + 2 |b| γ M−1 ‖U (t)‖2 .

(C.2)

In the last inequality, we use the maximum principle described in Lemma 2.1, that is,
‖U (t)‖∞ ≤ γ for any t > 0. Hence, we obtain

‖U (t)‖2 ≤ e2
(
λ1+|b|γ M−1

)
t ‖U (0)‖2 .

��
Remark C.2. Given U (t) satisfying the assumption of C.1, we have the following esti-
mate

‖U (t)‖ ≤
√

nd ‖U (t)‖∞ ≤
√

ndγ, (C.3)

which follows the maximal principle.

Remark C.3. When RD < 1, we notice that C(λ) ≥ 1. So |b|
|λ1|γ

M−1 ≤ RD < 1, which

implies that λ1 + |b|γ M−1 < 0. Therefore, we know that the 2-norm of the solution
decays.

Lemma C.4. Let U (t) be a solution to (2.14). Suppose that the largest eigenvalue of
D
h + aI , λ1 is negative. If |b| ‖U (0)‖M−1

2 + λ1 ≥ 0, then one has

‖U (t)‖ ≤ ‖U (0)‖ , ∀ t ≥ 0. (C.4)

Proof. Similarly, we consider the derivative of ‖U (t)‖,

2 ‖U (t)‖ d ‖U (t)‖
dt

= d ‖U (t)‖2
dt

= 2U †(D
h + aI )U + bU †U .M + b
(

U .M
)†

U

≤ 2λ1 ‖U‖2 + 2 |b| ‖U (t)‖M+1
M+1

≤ 2λ1 ‖U‖2 + 2 |b| ‖U (t)‖M+1 .

(C.5)
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In the last inequality, we use the inequality ‖u‖M+1 ≤ ‖u‖2 for any M ≥ 1. For
simplicity, we denote ‖U (t)‖2 as y and now we study the following equation instead,

dy

dt
≤ λ1y + |b| yM . (C.6)

This is a Bernoulli differential equation andwe only consider its positive solution. Define
z := 1

(M−1)yM−1 and it fulfils

dz

dt
= d

dt

(
1

(M − 1)yM−1

)

= − 1

yM

dy

dt

≥ − λ1

yM−1 − |b| = −λ1(M − 1)z − |b| .
(C.7)

By using the integrating factor, one gets

eλ1(M−1)t z ≥ z(0) +
|b|

λ1(M − 1)
− |b|

λ1(M − 1)
eλ1(M−1)t . (C.8)

If |b| ‖U (0)‖M−1 + λ1 > 0, then

1

(M − 1)yM−1 = z ≥
(

z(0) +
|b|

λ1(M − 1)

)

eλ1(M−1)t − |b|
λ1(M − 1)

. (C.9)

In terms of ‖U (t)‖, one has

‖U (t)‖ = y ≤
[(

1

‖U (0)‖M−1
2

+
|b|
λ1

)

eλ1(M−1)t − |b|
λ1

]− 1
M−1

. (C.10)

The coefficient 1
‖U (0)‖M−1 +

|b|
λ1

is negative and by the monotonic decreasing of eλ1(M−1)t ,

one obtains the desired results.

If |b| ‖U (0)‖M−1+λ1 = 0, (C.8) implies z ≥ − |b|
λ1(M−1) .Hence‖U (t)‖ ≤

(−λ1|b|
) 1

M−1 =
‖U (0)‖, which completes the proof. ��

D. Proof of Theorem 3.2

Proof. The truncation error η j satisfies the equation

η′
j (t) = A j

jη j (t) + A j
j+M−1

(
y j+M−1(t) − ŷ j+M−1(t)δ j+M−1�N

)
, 1 � j � N .

(D.1)

Applying the variation of constant formula to (D.1), one has

η j (t) =
∫ t

0
eA j

j (t−s) A j
j+M−1y j+M−1(s) ds, N − M + 2 � j � N . (D.2)

Note that it follows from Lemma 2.1 that
∥
∥y j+M−1(s)

∥
∥ = ‖U⊗( j+M−1)(s)‖ � ‖U (s)‖ j+M−1 � max

t
‖U (t)‖ j+M−1.
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Therefore, according to Lemma 3.1, we have for N − M + 2 � j � N ,

∥
∥η j (t)

∥
∥ �

∫ t

0

∥
∥
∥
∥e

A j
j (t−s)

∥
∥
∥
∥ ‖A j

j+M−1‖‖y j+M−1(s)‖ ds

�
∫ t

0
e jλ1(t−s) j |b| ∥∥y j+M−1(s)

∥
∥ ds

� max
t

‖U (t)‖ j+M−1
∫ t

0
e jλ1(t−s) j |b| ds

= max
t

‖U (t)‖ j+M−1 |b|
|λ1|

(
1 − e− j |λ1|t

)

� max
t

‖U (t)‖ j+M−1 |b|
|λ1| .

(D.3)

For N − 2M + 3 � j � N − M + 1,

∥
∥η j (t)

∥
∥ �

∫ t

0
e jλ1(t−s) j |b| ∥∥η j+M−1(s)

∥
∥ ds

� max
t

‖U (t)‖ j+2M−2 |b|
|λ1|

∫ t

0
e jλ1(t−s) j |b| ds

� max
t

‖U (t)‖ j+2M−2
( |b|

|λ1|
)2 (

1 − e− j |λ1|t
)

� max
t

‖U (t)‖ j+2M−2
( |b|

|λ1|
)2

.

(D.4)

One can continue by mathematical induction for every group of M − 1 terms and arrive
at

∥
∥η j (t)

∥
∥ �

∫ t

0
e jλ1(t−s) j |b| ∥∥η j+M−1(s)

∥
∥ ds

� max
t

‖U (t)‖ j+(M−1)� N− j+1
M−1 �

( |b|
|λ1|

)� N− j+1
M−1 � (

1 − e jλ1t
)

� max
t

‖U (t)‖ j R
� N− j+1

M−1 � (
1 − e jλ1t

)

� max
t

‖U (t)‖ j R
� N− j+1

M−1 �
,

(D.5)

where we use R = ‖FM ‖
|λ1| maxt ‖U (t)‖ j+M−1 as in (3.10).

In practice, we set N − 1 as some integer multiples of M − 1, such that

‖η1‖∞ � max
t

‖U (t)‖R
N

M−1
(
1 − eλ1t) . (D.6)

Finally, if R ≤ 1, according to Lemma C.4, we have ‖Uin‖ < ‖U (t)‖ for t > 0, and
then R = R. This completes the proof of the desired result. ��
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E. Estimate of the Preconstant

According to the definition of RD , the value of RD depends on the choice of λ. In order
to obtain a sharper estimate of the approximation error, we hope to find the optimal value
of λ such that it minimizes C(λ). When a = 0, this optimization problem is easy to
solve. For any λ1 < λ < 0, one has

ln(3)d1
2(λ − λ1)

|λ1| + |λ1|
|λ| =

(
ln(3)d1

2(λ − λ1)
+

1

−λ

)

(λ − λ1 − λ) ≥
(√

ln(3)

2
d1 + 1

)2

,

(E.1)

and the equality holds when λ = λ1√
ln(3)
2 d1+1

. The minimum of C(λ) is

(√
ln(3)
2 d1 + 1

)2

,

which is O(d), and the corresponding value of RD is

|b|
|λ1|γ

M−1

(√
ln(3)

2
d1 + 1

)2

. (E.2)

When a 	= 0, the optimal value ofλ can be obtained by solving the following equation

√
ln(3)

2
d1e

ln(3)d1
4(λ−λ1)

a 1

λ − λ1
+
1

λ
= 0. (E.3)

In real applications,we suggest tuning theparameter λ
λ1

to obtain a valueof RD around the
optimum, instead of directly solving the above equation. Besides, we have the following
theoretical results regarding minλ1<λ<0 C(λ).

Lemma E.1. Suppose that λ∗ := −π2Dd1 + a < 0 and a 	= 0, there exists an upper
bound of minλ1<λ<0 C(λ), where λ1 = Dd1μ1 + a and μ1 = −4(n + 1)2 sin2

(
π

2n+2

)
.

The upper bound is independent of n.

Proof. The inequality sin(x) < x implies that−π2 < μ1 for anyn. Besides, limn→∞ μ1 =
−π2. Then there exists an positive integer n∗ such that for any n ≥ n∗, μ1 ≤ −0.9π2 −

a
Dd1

, which leads to λ∗ ≤ λ1 ≤ 0.9λ∗.
When n ≥ n∗, one has

min
λ1<λ<0

C(λ) ≤ C

(
λ1

2

)

= |λ1|
a

(

e
− ln(3)d1

λ1
a − 1

)

+ 2

≤ max
λ∗≤λ1≤0.9λ∗

|λ1|
a

(

e
− ln(3)d1

λ1
a − 1

)

+ 2

≤ |λ∗|
a

(

e
ln(3)d1
0.9|λ∗| a − 1

)

+ 2 =: C1.

(E.4)

Note that C
(

λ1
2

)
is continuous over [λ∗, 0.9λ∗], one gets that C1 is finite. Let C2

be the maximum of C
(

λ1
2

)
for 1 ≤ n ≤ n∗. Then max(C1, C2) is the upper bound

we desired. ��
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Remark E.2. From the proof of Lemma E.1, we know that when a 	= 0 and n > n∗, C1
is an upper bound of minλ1<λ<0 C(λ), where

C1 = |λ∗|
a

(

e
ln(3)d1
0.9|λ∗| a − 1

)

+ 2 = π2Dd1 − a

a

(

e
ln(3)d1

0.9(π2Dd1−a)
a − 1

)

+ 2 = O(d).

(E.5)

Here, we notice that ln(3)d1
0.9(π2Dd1−a)

a turns out to be o(1) for large d. Combining the
discussion when a = 0, we know that for n large enough, minλ1<λ<0 C(λ) is O(d)

regardless of a.

F. An Illustration on Approximating Derivatives Using Discrete Fourier
Transform

Here we briefly explain the reason why discrete Fourier transform can be applied to
compute derivatives of a function in classical computing. For simplicity, we use a 1-
dimensional example. Let f (x) denote a smooth function defined on the interval [0, 1],
and our goal is to transform the vector

f =
n−1∑

k=0

f (k/n)|k〉

to the vector

f ′ =
n−1∑

k=0

f ′(k/n)|k〉.

Let F denote the one-dimensional quantum Fourier transform operator, then the
discrete Fourier transform F−1 acts on a vector v = (v0, . . . , vn−1) and maps it to
another vector according to the formula

(F−1v)l = 1√
n

n−1∑

k=0

vkω
−kl
n (F.1)

where ωn = e2π i/n . F−1v can be interpreted as the set of discrete Fourier coefficients
of the vector v. To see this, let the function f allow the following complex Fourier series
expansion

f (x) ≈
θ∑

m=−θ

cme
2π imx (F.2)

for a positive integer θ . The error of this approximation is exponentially small in terms of
θ for any smooth function f . Then the Fourier transform of the vector f = ( f (k/n))n−1

0
becomes

(F−1 f )l = 1√
n

n−1∑

k=0

f (k/n)ω−kl
n
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≈ 1√
n

n−1∑

k=0

θ∑

m=−θ

cme
2π imk/nω−kl

n

= 1√
n

θ∑

m=−θ

cm

(
n−1∑

k=0

ω(m−l)k
n

)

. (F.3)

Noticing that

(
n−1∑

k=0

ω(m−l)k
n

)

=
{

n, if m − l = jn for some integer j,
0, else,

(F.4)

we have

(F−1 f )l ≈

⎧
⎪⎨

⎪⎩

√
ncl , if 0 ≤ l ≤ θ,√
ncl−n, if n − θ ≤ l ≤ n − 1,

0, else.
(F.5)

This implies that, up to a normalization factor, each non-zero entry of the transformed
vector matches one of the Fourier coefficients.

Fourier transform of the derivative can be computed similarly. Starting from the
Fourier series again, we have

f ′(x) ≈
θ∑

m=−θ

2π imcme
2π imx . (F.6)

Replacing the coefficient cm by 2π imcm in (F.5), we have

(F−1 f ′)l ≈

⎧
⎪⎨

⎪⎩

2π i
√

nlcl , if 0 ≤ l ≤ θ,

2π i
√

n(l − n)cl−n, if n − θ ≤ l ≤ n − 1,
0, else.

(F.7)

This is just a multiplication of the diagonal matrix D̂ on the vector F−1 f , where

D̂ = 2π i diag(0, 1, . . . , θ, 0, . . . , 0,−θ,−θ + 1, . . . ,−1). (F.8)

Therefore,

f ′ ≈ F D̂F−1 f , (F.9)

which implies that the derivative operator f ′ can be numerically computed by first
performing an inverse quantum Fourier transform, then multiplying from the left by a
diagonal matrix D̂, and finally performing a quantum Fourier transform.

G. Proofs of the Results in Sect. 6

In this section we present technical details on proving the results presented in Sect. 6.
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G.1. Proof of Theorem 6.1.

Proof. The error in estimating the ratio can be decomposed into two parts, the error due
to the approximate quantum state, and the error within the amplitude estimate. The first
part of the error can be directly bounded such that

∣
∣
∣
∣
∣

∑
kT/m∈Dt

∑
(l1/n,...,ld/n)∈Dx

| f (kT/m, l1/n, . . . , ld/n)|2
∑m−1

k=0
∑n−1

l1=0 · · ·∑n−1
ld=0 | f (kT/m, l1/n, . . . , ld/n)|2 − 〈 f̂ |P| f̂ 〉

∣
∣
∣
∣
∣

=
∣
∣
∣〈 f |P| f 〉 − 〈 f̂ |P| f̂ 〉

∣
∣
∣

≤ 2‖| f 〉 − | f̂ 〉‖
≤ 2ε′

(G.1)

given that | f̂ 〉 is produced by A(ε′) with tolerated error ε′, which will be determined
later. Let E be the quantity obtained by amplitude estimate algorithm. Then, according to
[72], by queryingO(q) times toA and (I −2P), we can bound the error with probability
at least 8/π2 as

|〈 f̂ |P| f̂ 〉 − E | ≤ 2π

√
〈 f̂ |P| f̂ 〉(1 − 〈 f̂ |P| f̂ 〉)

q
+

π2

q2 ≤ 2π

q
. (G.2)

By the powering lemma [86], we can boost the success probability to at least (1 − δ)

by repeating the procedure O(log(1/δ)) times and taking the median, leading to total
O(q log(1/δ)) queries to A and (I − 2P). Combining (G.1) and (G.2), we have, with
probability at least (1 − δ),
∣
∣
∣
∣
∣

∑
kT/m∈Dt

∑
(l1/n,...,ld/n)∈Dx

| f (kT/m, l1/n, . . . , ld/n)|2
∑m−1

k=0
∑n−1

l1=0 · · ·∑n−1
ld=0 | f (kT/m, l1/n, . . . , ld/n)|2 − E

∣
∣
∣
∣
∣
≤ 2ε′ + 2π

q
.

(G.3)

The proof then can be completed by choosing ε′ = ε/4 and q = 4π/ε. ��

G.2. Proof of Theorem 6.2. The proof of Theorem 6.2 can be decomposed into twomain
steps. The first step is to bound the classical error of using discrete Fourier transform to
compute the derivatives, which is given in Lemma G.1. Then, we can apply this error
bound to estimate the overall complexity of constructing the desired quantum statewithin
the error ε. Here we present and prove a more general result in Theorem G.2, which can
be viewed as a generalization of Theorem 6.2 with a weaker regularity assumption.

Lemma G.1. Let f (x) be a C p function with p ≥ 3 defined on [0, 1]d ,

f =
n−1∑

l1=0

· · ·
n−1∑

ld=0

f (l1/n1, . . . , ld/nd)|l1〉 · · · |ld〉

be the possibly unnormalized vector encoding f (x) evaluated at discrete grids, and F
denote the one-dimensional quantum Fourier transform with n nodes. Furthermore, for
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any positive integer θ ≤ n/2, let D j,θ be a diagonal matrix

D j,θ = 2π i
n−1∑

l1,...,l j−1,l j+1,···ld=0

|l1〉〈l1| ⊗ · · · ⊗

|l j−1〉〈l j−1| ⊗ D̃θ ⊗ |l j+1〉〈l j+1| ⊗ · · · ⊗ |ld〉〈ld |, (G.4)

D̃θ = |1〉〈1| + 2|2〉〈2| + · · · + θ |θ〉〈θ | − θ |n − θ〉〈n − θ |
−(θ − 1)|n − θ + 1〉〈n − θ + 1| − · · · − |n − 1〉〈n − 1|. (G.5)

Then

(⊗ j−1 I ⊗ F ⊗d− j I )D j,θ (⊗ j−1 I ⊗ F−1 ⊗d− j I ) f =
n−1∑

l1=0

· · ·
n−1∑

ld=0

gl |l1〉 · · · |ld〉

(G.6)

where

∥
∥g − ∇x j f

∥
∥ ≤ 8‖∂ p

x j f ‖∞
π p−1

1

n p−2 +
2
√
2‖∂ p

x j f ‖∞
(2π)p−1

n

θ p−1 .

Proof. We start with the definition of discrete Fourier transform acting on a vector
v =∑l vl |l1〉 · · · |ld〉 that

(⊗ j−1 I ⊗ F−1 ⊗d− j I )v = 1√
n

∑

k

n−1∑

l j =0

v(k1,...,k j−1,l j ,k j+1,...,kd )ω
−k j l j
n |k1〉 · · · |kd〉

(G.7)

where ωn = e2π i/n . F−1v can be interpreted as the set of discrete Fourier coefficients
of the vector v. To see this, let the function f allow the following complex Fourier series
expansion along j-th direction

f (l1/n, . . . , l j−1/n, x, l j+1/n, . . . , ld/n) =
∞∑

m j =−∞
c{l}\l j ,m j e

2π im j x . (G.8)

Then the Fourier transform of the vector f becomes

(⊗ j−1 I ⊗ F−1 ⊗d− j I ) f = 1√
n

∑

k

n−1∑

l j =0

∞∑

m j =−∞
c{k}\k j ,m j e

2π im j l j /nω
−k j l j
n |k1〉 · · · |kd 〉

= 1√
n

∑

k

∞∑

m j =−∞
c{k}\k j ,m j

⎛

⎝
n−1∑

l j =0

ω
(m j −k j )l j
n

⎞

⎠ |k1〉 · · · |kd 〉.
(G.9)

Noticing that
⎛

⎝
n−1∑

l j =0

ω
(m j −k j )l j
n

⎞

⎠ =
{

n, if m j − k j = qn for some integer q,

0, else,
(G.10)
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we have

(⊗ j−1 I ⊗ F−1 ⊗d− j I ) f = √
n
∑

k

∞∑

q=−∞
c{k}\k j ,k j+qn|k1〉 · · · |kd〉. (G.11)

Fourier transform of the derivative can be computed similarly. Starting from the Fourier
series again, we have

∂x j f (l1/n, . . . , l j−1/n, x, l j+1/n, . . . , ld/n) =
∞∑

m j =−∞
c{l}\l j ,m j 2π im je

2π im j x .

(G.12)

Replacing the coefficient c by 2π im j c in (G.11), we have

(⊗ j−1 I ⊗ F−1 ⊗d− j I )∂x j f = 2π i
√

n
∑

k

∞∑

q=−∞
(k j + qn)c{k}\k j ,k j+qn|k1〉 · · · |kd〉.

(G.13)

(G.11) and (G.13) only differ by multiplication of corresponding frequency factors,
and multiplying (G.11) by the matrix D j,θ will remove such a difference for bounded
frequencies. Based on this observation, for each k = (k1, . . . , kd), we can compute the
difference between the entries as

(
(⊗ j−1 I ⊗ F−1 ⊗d− j I )∂x j f − D j,θ (⊗ j−1 I ⊗ F−1 ⊗d− j I ) f

)

k

=

⎧
⎪⎨

⎪⎩

2π i
√

n
∑

q 	=0 qnc{k}\k j ,k j+qn, if 0 ≤ k j ≤ θ,

2π i
√

n
∑

q 	=−1(q + 1)nc{k}\k j ,k j+qn, if n − θ ≤ k j ≤ n − 1,
2π i

√
n
∑

q(k j + qn)c{k}\k j ,k j+qn, else.

(G.14)

Now we study how to bound the difference here by first estimating the decay rate of
the Fourier coefficients. According to the definition of the Fourier coefficients, for any
m 	= 0,

c{k}\k j ,m =
∫ 1

0
f (k1/n, . . . , k j−1/n, x, k j+1/n, . . . , kd/n)e2π imxdx, (G.15)

and by using integration by parts formula for p times, we obtain

|c{k}\k j ,m |

=
∣
∣
∣
∣

(

− 1

2π im

)p ∫ 1

0
∂

p
x j f (k1/n, . . . , k j−1/n, x, k j+1/n, . . . , kd/n)e2π imxdx

∣
∣
∣
∣

≤ ‖∂ p
x j f ‖∞

|2πm|p
.

(G.16)

Then we have, for 0 ≤ ki ≤ θ ,
∣
∣
∣
∣
∣
∣

∑

q 	=0

qnc{k}\k j ,k j+qn

∣
∣
∣
∣
∣
∣
≤ ‖∂ p

x j f ‖∞

⎛

⎝
∞∑

q=1

nq

(2π(qn + k j ))p
+

∞∑

q=1

nq

(2π(qn − k j ))p

⎞

⎠
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≤ ‖∂ p
x j f ‖∞

(
n

(2π(n + k j ))p
+
∫ ∞

1

ny

(2π(ny + k j ))p
dy

)

+‖∂ p
x j f ‖∞

(
n

(2π(n − k j ))p
+
∫ ∞

1

ny

(2π(ny − k j ))p
dy

)

= ‖∂ p
x j f ‖∞
(2π)p

(
n

(n + k j )p
+

1

(p − 2)n(n + k j )p−2 − k j

(p − 1)n(n + k j )p−1

)

+
‖∂ p

x j f ‖∞
(2π)p

(
n

(n − k j )p
+

1

(p − 2)n(n − k j )p−2 +
k j

(p − 1)n(n − k j )p−1

)

≤ 2‖∂ p
x j f ‖∞

π pn p−1 , (G.17)

for n − θ ≤ k j ≤ n − 1,

∣
∣
∣
∣
∣
∣

∑

q 	=−1

(q + 1)nc{k}\k j ,k j+qn

∣
∣
∣
∣
∣
∣
≤ ‖∂ p

x j f ‖∞
(2π)p

⎛

⎝
∞∑

q=1

qn

(k j + (q − 1)n)p
+

∞∑

q=1

qn

((q + 1)n − k j )p

⎞

⎠

≤ ‖∂ p
x j f ‖∞
(2π)p

(
n

k p
j

+
∫ ∞

1

ny

(k j + (y − 1)n)p
dy

)

+
‖∂ p

x j f ‖∞
(2π)p

(
n

(2n − k j )p
+
∫ ∞

1

ny

((y + 1)n − k j )p
dy

)

= ‖∂ p
x j f ‖∞
(2π)p

(
n

k p
j

+
1

(p − 2)nk p−2
j

+
n − k j

(p − 1)nk p−1
j

)

+
‖∂ p

x j f ‖∞
(2π)p

(
n

(2n − k j )p
+

1

(p − 2)n(2n − k j )p−2 − n − k j

(p − 1)n(2n − k j )p−1

)

≤ 2‖∂ p
x j f ‖∞

π pn p−1 ,

(G.18)

and for θ + 1 ≤ k j ≤ n − θ − 1,

∣
∣
∣
∣
∣

∑

q

(k j + qn)c{k}\k j ,k j+qn

∣
∣
∣
∣
∣
≤ ‖∂ p

x j f ‖∞
(2π)p

⎛

⎝ 1

k p−1
j

+
∞∑

q=1

1

(k j + qn)p−1 +
∞∑

q=1

1

(qn − k j )p−1

⎞

⎠

≤ ‖∂ p
x j f ‖∞
(2π)p

(
1

k p−1
j

+
1

(k j + n)p−1 +
∫ ∞

1

dy

(k j + ny)p−1

)

+
‖∂ p

x j f ‖∞
(2π)p

(
1

(n − k j )p−1 +
∫ ∞

1

dy

(ny − k j )p−1

)

= ‖∂ p
x j f ‖∞
(2π)p

(
1

k p−1
j

+
1

(k j + n)p−1 +
1

(p − 2)n(n + k j )p−2

)

+
‖∂ p

x j f ‖∞
(2π)p

(
1

(n − k j )p−1 +
1

(p − 2)n(n − k j )p−2

)

≤ ‖∂ p
x j f ‖∞
(2π)p

(
2

θ p−1 +
3

n p−1

)

. (G.19)
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Combining these three estimates, we can bound
∥
∥
∥(⊗ j−1 I ⊗ F−1 ⊗d− j I )∂x j f − D j,θ (⊗ j−1 I ⊗ F−1 ⊗d− j I ) f

∥
∥
∥

≤ √
2θ + 1

4‖∂ p
x j f ‖∞

π p−1n p−3/2 +
√

n − 2θ − 1

√
2n‖∂ p

x j f ‖∞
(2π)p−1

(
2

θ p−1 +
3

n p−1

)

≤ 8‖∂ p
x j f ‖∞

π p−1

1

n p−2 +
2
√
2‖∂ p

x j f ‖∞
(2π)p−1

n

θ p−1 .

(G.20)

This completes the proof by further using the fact that the quantum Fourier transform
operator has unit 2-norm. ��
Theorem G.2. Let f (t, x) be a function such that f satisfies periodic boundary condi-
tions for x, and its spatial partial derivatives exist and are continuous up to order p ≥ 3.
Let the vector f be

f =
m−1∑

k=0

n−1∑

l1,...,ld=0

f (kT/m, l1/n, . . . , kd/n)|k〉|l1〉 · · · |ld〉, (G.21)

and the vector g be

g =
d−1∑

j=0

m−1∑

k=0

n−1∑

l1,...,ld=0

g j,k,l | j〉|k〉|l1〉 · · · |ld〉

=
d−1∑

j=0

m−1∑

k=0

F j D j,θF−1
j

n−1∑

l1,...,ld=0

f (kT/m, l1/n, . . . , ld/n)| j〉|k〉|l1〉 · · · |ld〉.
(G.22)

Then,

1. we have
∥
∥
∥
∥
∥
∥
g −

d−1∑

j=0

m−1∑

k=0

n−1∑

l1,...,ld=0

∂x j f (kT/m, l1/n, . . . , ld/n)| j〉|k〉|l1〉 · · · |ld〉
∥
∥
∥
∥
∥
∥

≤
(

8

π p−1

m

n p−2 +
2
√
2

(2π)p−1

mn

θ p−1

)
d−1∑

j=0

‖∂ p
x j f ‖∞,

(G.23)

2. for any 0 < ε < 1, 0 < δ < 1, there exists a quantum algorithm which outputs
an ε-approximation of g/‖g‖ with probability at least (1 − δ), using queries to
A(ε/Q) and OD for 2Q log(1/δ) times and additional O(d3(log n)2) gates, where

Q = 4πθ
√

d‖ f ‖
‖g‖ .

Proof. Let ε′ denote the tolerated error in the algorithm A. Then, since all the oper-
ations are unitary, the obtained final quantum state (before measurement) is also an
ε′-approximation of the exact state. We write the exact final state as

1

2πθ
√

d‖ f ‖
d−1∑

j=0

m−1∑

k=0

n−1∑

l1,...,ld=0

g j,k,l |0〉| j〉|k〉|l1〉 · · · |ld〉 + |⊥〉 (G.24)
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where

n−1∑

l1,...,ld=0

g j,k,l |l1〉 · · · |ld〉

F j D j,θF−1
j

n−1∑

l1,...,ld=0

f (kT/m, l1/n, . . . , ld/n)|l1〉 · · · |ld〉. (G.25)

According to Lemma G.1, we have
∥
∥
∥
∥
∥
∥

d−1∑

j=0

m−1∑

k=0

n−1∑

l1,...,ld=0

g j,k,l | j〉|k〉|l1〉 · · · |ld〉

−
d−1∑

j=0

m−1∑

k=0

n−1∑

l1,...,ld=0

∂x j f (kT/m, l1/n, . . . , ld/n)| j〉|k〉|l1〉 · · · |ld〉
∥
∥
∥
∥
∥
∥

≤
(

8

π p−1

m

n p−2 +
2
√
2

(2π)p−1

mn

θ p−1

)
d−1∑

j=0

‖∂ p
x j f ‖∞.

(G.26)

It remains to estimate errors in the quantum state after successful measurement and
the success probability. For this purpose, we need some linear algebra results and we
will state and prove here with slight off from the main proof.

Result Let
{
ei , f j

}
form an orthonormal basis of a Hilbert space, and let ψ =

a + b, ψ̃ = ã + b̃ with ‖ψ‖ = ‖ψ̃‖ = 1, a, ã ∈ span {ei }, and b, b̃ ∈ span
{

f j
}
.

If ‖ψ − ψ̃‖ < ε, then

1. ‖a/‖a‖ − ã/‖̃a‖‖ < 2ε/‖a‖,
2. ‖̃a‖ > ‖a‖ − ε.

This result can be straightforwardly proved by direct computations as

‖a/‖a‖ − ã/‖̃a‖‖ ≤ ‖a/‖a‖ − ã/‖a‖‖ + ‖̃a/‖a‖ − ã/‖̃a‖‖
= 1

‖a‖‖a − ã‖ + ‖̃a‖
∣
∣
∣
∣
1

‖a‖ − 1

‖̃a‖
∣
∣
∣
∣

= 1

‖a‖‖a − ã‖ +
1

‖a‖ |‖a‖ − ‖̃a‖|

≤ 2

‖a‖‖a − ã‖

≤ 2

‖a‖‖ψ − ψ̃‖

<
2ε

‖a‖ ,

(G.27)

and

‖̃a‖ ≥ ‖a‖ − ‖a − ã‖ > ‖a‖ − ε. (G.28)
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The errors in the quantum state after successful measurement and the success prob-
ability can be directly bounded using this result and amplitude amplification, viewing
ψ as the exact state and ψ̃ as the obtained state. Specifically, for a single run and mea-
surement, errors in the quantum state after successful measurement can be bounded
by

4πθ
√

d‖ f ‖ε′

‖g‖ , (G.29)

and can be further bounded by ε by choosing

ε′ = ‖g‖ε
4πθ

√
d‖ f ‖ . (G.30)

The success probability for a single run, after amplitude amplification, is bounded from
below by

‖g‖
2πθ

√
d‖ f ‖ − ε′ = ‖g‖

2πθ
√

d‖ f ‖ (1 − ε/2) ≥ ‖g‖
4πθ

√
d‖ f ‖ . (G.31)

The overall probability of getting success at least once can be boosted to (1 − δ) by
repeating the algorithm M times with

M = log(1/δ)/ log

(

1/

(

1 − ‖g‖
4πθ

√
d‖ f ‖

))

≤ 8πθ
√

d‖ f ‖
‖g‖ log

(
1

δ

)

. (G.32)

��
Finally, under the further regularity assumption specified in Theorem 6.2, we can

obtain a simpler complexity estimate which shows a poly-logarithmic dependence in
terms of the precision.

Proof of Theorem 6.2. According to Theorem G.2, the successful output of the algo-
rithm is an ε-approximation of g/‖g‖ where, for any p ≥ 3,

‖g − ∇ f ‖ ≤
(

8

π p−1

m

n p−2 +
2
√
2

(2π)p−1

mn

θ p−1

)
d−1∑

j=0

‖∂ p
x j f ‖∞. (G.33)

Let c = sup j,p(‖∂ p
x j f ‖∞)1/p, and by choosing θ = c/π + 1, we have

‖g − ∇ f ‖ ≤
(

8

π p−1

m

n p−2 +
2
√
2

(2π)p−1

mn

θ p−1

)

dcp

≤ 8πdmn2
( c

πn

)p
+ 4

√
2πdmnθ

(
1

2

)p

.

(G.34)

Since c/(πn) < 1, we obtain g = ∇ f by taking p → ∞. Therefore the claims in
Theorem 6.2 directly follow from Theorem G.2. ��



1018 J.-P. Liu, D. An, D. Fang, J. Wang, G. H. Low, S. Jordan

References

1. Yuankai, L., Dan, H.: Optimisation of biological transport networks. East Asian J. Appl. Math. 12(1),
72–95 (2022)

2. Dan, H., Cai, D.: Adaptation and optimization of biological transport networks. Phys. Rev. Lett. 111,
138701 (2013)

3. Haskovec, J.,Markowich, P., Perthame, B.:Mathematical analysis of a PDE system for biological network
formation. Commun. Partial Differ. Equ. 40(5), 918–956 (2015)

4. Haskovec, J.,Markowich, P., Perthame,B., Schlottbom,M.:Notes on a PDE system for biological network
formation. Nonlinear Anal. 138, 127–155 (2016)

5. Albi, G., Artina, M., Foransier, M., Markowich, P.A.: Biological transportation networks: modeling and
simulation. Anal. Appl. 14(1), 185–206 (2016)

6. Haskovec, J., Kreusser, L.M., Markowich, P.: ODE and PDE based modeling of biological transportation
networks. (2018). arXiv:1805.08526

7. Burger,M.,Haskovec, J.,Markowich, P., Ranetbauer,H.:Amesoscopicmodel of biological transportation
networks (2018). arXiv:1806.00120

8. Haskovec, J., Kreusser, L.M.,Markowich, P.: Rigorous continuum limit for the discrete network formation
problem (2018). arXiv:1808.01526

9. Albi, G., Burger, M., Haskovec, J., Markowich, P., Schlottbom, M.: Continuum modeling of biological
network formation. In: Modeling and Simulation in Applied Sciences, Engineering, and Technology, pp.
1–48. Birkhäuser/Springer, Cham (2017)

10. Fang, D., Jin, S., Markowich, P., Perthame, B.: Implicit and semi-implicit numerical schemes for the
gradient flow of the formation of biological transport networks. SMAI J. Comput. Math. 5, 229–249
(2019)

11. Garvie, M.R.: Finite-difference schemes for reaction–diffusion equations modeling predator–prey inter-
actions in m ATLAB. Bull. Math. Biol. 69(3), 931–956 (2007)

12. Malchow, H.: Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation.
Chapman and Hall/CRC, London (2007)

13. Petrovskii, S.V., Malchow, H.: A minimal model of pattern formation in a prey–predator system. Math.
Comput. Model. 29(8), 49–63 (1999)

14. Lefèvre, J., Mangin, J.-F.: A reaction–diffusion model of human brain development. PLoS Comput. Biol.
6(4), e1000749 (2010)

15. Habib, S., Molina-París, C., Deisboeck, T.S.: Complex dynamics of tumors: modeling an emerging brain
tumor system with coupled reaction–diffusion equations. Phys. A 327(3–4), 501–524 (2003)

16. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications, vol. 3. Springer,
New York (2001)

17. Murray, J.D.: Mathematical Biology I: An Introduction. Interdisciplinary Applied Mathematics. Mathe-
matical Biology. Springer, Berlin (2002)

18. Genieys, S., Volpert, V., Auger, P.: Pattern and waves for a model in population dynamics with nonlocal
consumption of resources. Math. Model. Nat. Phenom. 1(1), 63–80 (2006)

19. Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, New York (1982)
20. Golding, I., Kozlovsky, Y., Cohen, I., Ben-Jacob, E.: Studies of bacterial branching growth using reaction–

diffusion models for colonial development. Phys. A 260(3–4), 510–554 (1998)
21. Mimura, M., Sakaguchi, H., Matsushita, M.: Reaction–diffusion modelling of bacterial colony patterns.

Phys. A 282(1–2), 283–303 (2000)
22. Berestycki, H., Nicolaenko, B., Scheurer, B.: Traveling wave solutions to combustion models and their

singular limits. SIAM J. Math. Anal. 16(6), 1207–1242 (1985)
23. Zeldovich, I.A., Barenblatt, G.I., Librovich, V.B., Makhviladze, G.M.: Mathematical Theory of Combus-

tion and Explosions. Springer, New York (1985)
24. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. RT Edwards Inc., Philadelphia (2005)
25. Perthame, B.: Growth, Reaction, Movement and Diffusion fromBiology. Lecture Notes, University Paris,

6 (2012)
26. Means, S., Smith, A.J., Shepherd, J., Shadid, J., Fowler, J., Wojcikiewicz, R.J.H., Mazel, T., Smith, G.D.,

Wilson, B.S.: Reaction diffusion modeling of calcium dynamics with realistic ER geometry. Biophys. J.
91(2), 537–557 (2006)

27. Bertozzi, A.L., Flenner, A.: Diffuse interface models on graphs for classification of high dimensional
data. Multiscale Model. Simul. 10(3), 1090–1118 (2012)

28. Bertozzi, A.L., Flenner, A.: Diffuse interface models on graphs for classification of high dimensional
data. SIAM Rev. 58(2), 293–328 (2016)

29. Merkurjev, E., Kostic, T., Bertozzi, A.L.: An MBO scheme on graphs for classification and image pro-
cessing. SIAM J. Imaging Sci. 6(4), 1903–1930 (2013)

http://arxiv.org/abs/1805.08526
http://arxiv.org/abs/1806.00120
http://arxiv.org/abs/1808.01526


Efficient Quantum Algorithm for Nonlinear Reaction–Diffusion Equations 1019

30. Bertozzi, A.L., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn–Hilliard equation.
IEEE Trans. Image Process. 16(1), 285–291 (2006)

31. Dobrosotskaya, J.A., Bertozzi, A.L.: A wavelet-Laplace variational technique for image deconvolution
and inpainting. IEEE Trans. Image Process. 17(5), 657–663 (2008)

32. Esedoglu, S., March, R.: Segmentation with depth but without detecting junctions. J. Math. Imaging Vis.
18(1), 7–15 (2003)

33. Esedog, S., Tsai,Y.-H.R., et al.: Thresholddynamics for the piecewise constantMumford–Shah functional.
J. Comput. Phys. 211(1), 367–384 (2006)

34. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
35. Ambainis, A.: Variable time amplitude amplification and quantum algorithms for linear algebra problems.

In: 29th Symposium on Theoretical Aspects of Computer Science, vol. 14, pp. 636–647. LIPIcs (2012).
arXiv:1010.4458

36. An, D., Lin, L.: Quantum linear system solver based on time-optimal adiabatic quantum computing and
quantum approximate optimization algorithm. ACM Trans. Quantum Comput. 3(2), 1–28 (2022)

37. Childs,A.M.,Kothari,R., Somma,R.D.:Quantumalgorithm for systemsof linear equationswith exponen-
tially improved dependence on precision. SIAM J. Comput. 46(6), 1920–1950 (2017). arXiv:1511.02306

38. Gilyén, A., Su, Y., Low, G.H., Wiebe, N.: Quantum singular value transformation and beyond: exponen-
tial improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, pp. 193–204 (2019). arXiv:1806.01838

39. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev.
Lett. 103(15), 150502 (2009). arXiv:0811.3171

40. Lin, L., Tong,Y.: Optimal quantum eigenstate filteringwith application to solving quantum linear systems.
Quantum 4, 361 (2020). arXiv:1910.14596
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