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Abstract: The functional renormalisation group equation is derived in amathematically
rigorous fashion in a framework suitable for the Osterwalder–Schrader formulation of
quantum field theory. To this end, we devise a very general regularisation scheme which
retains reflection positivity as well as the infinite degrees of freedom including smooth-
ness. Furthermore, it is shown how the classical limit is altered by the regularisation
process leading to an inevitable breaking of translation invariance. We also give precise
conditions for the convergence of the obtained theories upon removal of the regularisa-
tion.

1. Introduction

It is still unknown whether interacting and non-perturbative quantum field theories en-
coding relevant physical phenomena can be given precise mathematical meaning. Most
prominently, it is unclear how to proceed from perturbative calculations to exact ones
except in some special cases such as conformal field theories. A much celebrated result
that is frequently used is the functional renormalisation group equation [11,23] (FRGE)
in the form presented by Wetterich [31]. It is generally accepted as an exact equation
encoding the flow from a classical action functional to its quantum counterpart andmany
results have been derived or conjectured from its exact properties or practical approxi-
mations. Some notable reviews include [9,10,13]. However, the derivation of the FRGE
has not yet been put into a mathematically satisfactory form but has remained restricted
to formal respectively perturbative proofs [19].

In this work, we investigate the case of a real scalar field on Euclidean spacetime. In
the framework of the Osterwalder–Schrader theorem [25,26] as presented byGlimm and
Jaffe [15] it is modelled by a probability measure on the space of tempered distributions.
However, starting from a classical action it is not generally known how to define a
corresponding measure. Instead, it is customary to produce well-defined regularised
theories and investigate the convergence of the correspondingmeasures upon the removal
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of the regularisation. In this work we shall investiate how this procedure can be made to
work in tandem with Wetterich’s equation.

We begin by listing some basic tools in Sect. 2 that are necessary for the overall anal-
ysis. In particular, we cover basic features of RadonGaußianmeasures on locally convex
spaces along with some standard results in convex analysis. In Sect. 3 we generalise the
concept of lower semicontinuous envelopes and introduce the property of supercoerciv-
ity. The latter enables a direct computation of a lower semicontinuous envelope.

Section 4 then studies the convergence of measures on the space of tempered dis-
tributions in terms of convergence of dual objects that are fundamental to Wetterich’s
equation. The connection is found to be given in terms of Mosco convergence and
Attouch-Wets convergence, concepts which both enable a continuity theorem of the
Legendre–Fenchel transform.

In Sect. 5 we present a regularisation scheme tailored to the derivation of Wetterich’s
equation. Its interplay with reflection positivity is studied in Sect. 6 and finally, the proof
of Wetterich’s equation is given in Sect. 7.

The derivation may be summarised as follows: We define a family Zk of moment-
generating functions (generating functionals) as well as their logarithms Wk of a regu-
larised theory on a Hilbert completion of the space of tempered distributions. Then, we
proceed by showing that the corresponding Fréchet derivatives DWk are linear bijections
of Hilbert spaces such that the Legendre–Fenchel transforms (convex conjugates) Γk of
Wk can be given in terms of Wk and (DWk)

−1. It is then easily shown that Γk—also
referred to as the ‘effective average action’—satisfies a differential equation. Further-
more, we compute the ‘classical limit’ of Γk which turns out to be the classical action
modulo some contributions related to regularisation.

Finally, the full quantum field theory may be obtained by studying the convergence
of the regularised effective average actions in terms of the result obtained in Sect. 4.
However, it it not clear whether—or in which cases—Wetterich’s equation itself survives
the passage to the corresponding limit.

2. Preliminaries and Conventions

Every vector space in this work is taken to be real unless explicitly stated otherwise and
the complexification of a real vector space V will be denoted by VC.

Definition 2.1. Wedefine the Fourier transform f̂ of ameasurable function f : Rd → R

as

f̂ (p) = (2π)−
d
2

∫
Rd

exp [−i px] f (x) dx , (2.1)

whenever the integral converges. The corresponding unitary operator on L2(Rd)C is
denoted by F and the function x → exp[−i px]/(2π)d/2 interpreted as a tempered
distribution is denoted by Fp.

We shall work with the topological vector space S(Rd) of real Schwartz functions
over Rd for d ∈ N which for brevity we shall refer to as S. The corresponding space of
tempered distributions with its strong dual topology will be referred to as S ′

β . We shall
generally let X ′ denote the dual space of a locally convex space X and reserve the notion
X ′

β to encode the dual space with its strong dual topology. In the case of normed spaces
the dual will be denoted by X∗ and always assumed to carry the induced Banach space
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topology. For locally convex spaces X,Y and continuous linear operators T : X → Y ,
we shall denote the transpose by tT : Y ′ → X ′. The inner product on L2(Rd) will be
denoted with (·, ·) and the associated continuous inclusion of S into S ′

β by ι : S → S ′
β .

Definition 2.2. Let (X, p) be a seminormed space and consider the set C(X) of all
Cauchy sequences in X and let (xn) ∼ (yn) whenever limn→∞ p(xn − yn) = 0. Then
C(X)/ ∼ is a vector space with the obvious operations, p̄([(xn)]∼) = limn→∞ p(xn)
is a well-defined norm on C(X)/ ∼ and we shall denote the resulting normed space by
X p. X p is complete and is called the completion of (X, p). There is also a natural map
π p : X → X p, x �→ [(x, x, . . . )∼] which is linear, continuous and has dense range.

Remark 2.3. Let (X, p) be a seminormed space and Y a complete locally convex space.
Then, by the Hahn-Banach theorem, every continuous linear operator L : X → Y
extends uniquely to the completion X p in the sense that there is a unique continuous
linear operator L̄ : X p → Y such that L = L̄ ◦ π p. Consequently, for every seminorm
q ≥ p on X there is a unique continuous, linear natural map π

p
q : Xq → X p with

π p = π
p
q ◦ πq .

2.1. Measure theory. To a great part the results of this paper depend on properties of
Gaußianmeasures on locally convex vector spaces.As suchwewill give some definitions
of the relevant concepts taken mostly from [4].

Definition 2.4. Given a topological space X , we let B(X) denote its Borel σ -algebra,
i.e. the smallest σ -algebra containing all open subsets of X . A member of B(X) is called
a Borel set. A measure μ on B(X) is called a Borel measure on X .

Given a locally convex space X , we define the cylindrical σ -algebra E(X) ⊆ B(X)

to be the smallest σ -algebra with respect to which every function in X ′ is measurable.

Definition 2.5. For any finite measure μ on E(X) where X is a locally convex space,
we define its characteristic function as

μ̂ (φ) =
∫
X
exp [iφ (x)] dμ (x) (2.2)

for all φ ∈ X ′.
Definition 2.6. For anymeasureμ on E(X)where X is a locally convex space, we define
its moment-generating function Z : X ′ → R̄ as

Z (φ) =
∫
X
exp [φ (x)] dμ (x) (2.3)

for all φ ∈ X ′.
The following lemma is immediate from Hölder’s inequality and Fatou’s lemma.

Lemma 2.7. Themoment-generating function of a finite measure is logarithmically con-
vex, proper convex and lower semicontinuous whenever X ′ is equipped with a topology
at least as fine as the weak-∗ topology.

Definition 2.8. Letμ be ameasure on aσ -algebraA of subsets of a set X and f : X → Y
a function into another set Y equipped with a σ -algebra A′. If f −1(A′) ∈ A whenever
A′ ∈ A′, then f∗μ := μ ◦ f −1 is a measure on A′ called the pushforward measure of
μ under f .
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Definition 2.9. A measure μ on E(X) where X is a locally convex space is a centred
Gaußian measure if the pushforward measures φ∗μ are centred Gaußian Borel measures
on R for every φ ∈ X ′. A Borel measure μ on X is a centred Gaußian measure if its
restriction to E(X) is.

Definition 2.10. Let X be a topological space. A finite Borel measure μ is a Radon
measure if, for every Borel set B ⊆ X and every ε > 0, there exists a compact set
K ⊆ B such that μ(B \ K ) < ε.

Lemma 2.11 ([4, Appendix 3]) A finite Radon measure on a locally convex space is
uniquely determined by its characteristic function.

Remark 2.12. It is well known that Radon measures on Fréchet spaces are supported on
compactly embedded separable reflexive Banach spaces. We shall however not make
use of this fact and always integrate over the whole space in question i.e. including any
null sets outside such supports of the relevant measures.

Definition 2.13. Let μ be a centred Radon Gaußian measure on a locally convex space
X . Note that X ′ ⊂ L2(μ) by definition and denote by X ′

μ the closure of X ′ in L2(μ).
Given f ∈ X ′

μ, there exists a unique Rμ f ∈ X such that [4, Theorem 3.2.3]

φ
(
Rμ f

) =
∫
X

φ f dμ for all φ ∈ X ′ . (2.4)

We now define the Cameron–Martin space of μ as the range H(μ) = Rμ(X ′
μ), which is

turned into a separable Hilbert space by the inner product induced by L2(μ) [4, Theorem
3.2.7]. Then, Rμ : X ′

μ → H(μ) is a Hilbert space isomorphism and and the canonical
inclusion H(μ) → X is continuous.

Theorem 2.14 ([4, Theorem 2.2.4]). Let μ be a centred Radon Gaußian measure on a
locally convex space X. Then, its characteristic function takes the form

μ̂ (φ) = exp

[
−1

2
φ

(
Rμφ

)]
= exp

[
−1

2
‖φ‖2L2(μ)

]
(2.5)

for every φ ∈ X ′.

Theorem 2.15 (Cameron–Martin [4, Corollary 2.4.3, Remark 3.1.8]). Letμ be a centred
Radon Gaußian measure on a locally convex space X and h ∈ H(μ) an element of its
Cameron–Martin space. Then the pushforward measure μh = μ ◦ τ−1

h with τh : X →
X, x �→ x − h is equivalent to μ with the corresponding Radon-Nikodym derivative
given by

dμh

dμ
(x) = exp

[(
R−1

μ h
)

(x) − ‖h‖2H(μ)

]
(2.6)

for all x ∈ X.

Lemma 2.16. Let μ be a centred Radon Gaußian probability measure on a locally
convex space X and p a continuous seminorm on X. Furthermore, let B p

r (x) denote the
open p-ball of radius r around x ∈ X. Then, for every ε > 0

μ
(
B p

ε (0)
)

> 0 . (2.7)
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Proof. Suppose there is some ε > 0 such that p−1([0, ε)) has zero μ-measure. By [4,
theorem 3.6.1], the closure H(μ) in X has full μ-measure. Since H(μ) is separable, it
has some countable dense set S and since the inclusion H(μ) → X is continuous we
arrive at the contradiction

1 = μ
(
H(μ)

)
≤ μ

(⋃
h∈S

B p
ε (h)

)
≤

∑
h∈S

μ
(
B p

ε (h)
) = 0 , (2.8)

where the last equality follows from Theorem 2.15. ��
Definition 2.17. A sequence (ωn)n∈N of Radon measures on a locally convex space X
converges weakly to another Radon measure ω if

lim
n→∞

∫
X
f dωn =

∫
X
f dω (2.9)

for all bounded continuous functions f : X → R.

Theorem 2.18 (Portmanteau theorem [4, Theorem 3.8.2]). A sequence of Radon prob-
ability measures (μn)n∈N on a locally convex space X converges weakly to a Radon
probability measure μ on X precisely when either (and then both) of the following
conditions is satisfied:

– lim infn→∞ μn(U ) ≥ μ(U ) for every open set U ⊆ X,
– lim infn→∞ μn(C) ≤ μ(C) for every closed set C ⊆ X.

Lemma 2.19. Let X be a locally convex space, (μn)n∈N a sequence of Borel probability
measures on X weakly converging to a Radon measure μ on X and f : X → R a lower
semicontinuous function that is bounded from below. Then∫

X
f dμ ≤ lim inf

n→∞

∫
X
f dμn . (2.10)

Proof. From [5, Corollary 8.2.5] this is true if f is bounded. For unbounded f , set
fm = max{ f,m} which is bounded and lower semicontinuous. Then,∫

X
f dμ = sup

m∈N

∫
X
fmdμ ≤ sup

m∈N
lim inf
n→∞

∫
X
fmdμn ≤ lim inf

n→∞

∫
X
f dμn . (2.11)

��
Definition 2.20. A sequence (μn)n∈N of finite Borel measures on a topological space
X is uniformly tight if for any ε > 0 there exists a compact set K ⊆ X such that
μn(X \ K ) < ε for all n ∈ N.

2.2. Convex functions. A convex function is proper if it does not attain the value −∞
and is not equal to the constant function ∞.

Definition 2.21. Let X be a Hausdorff, locally convex topological vector space and
f : X → R̄ a proper convex and lower semicontinuous function. Then, the convex
conjugate (Legendre–Fenchel transform) f c : X ′ → R̄ of f is defined as

φ �→ sup
T∈X

[φ (T ) − f (T )] (2.12)

for all φ ∈ X ′. If we equip X ′ with a topology τ at least as fine as the weak-∗ topology,
it is also proper convex and lower semicontinuous. We may then also define ( f c)c :
(X ′, τ )′ → R̄ and by the well-known Fenchel–Moreau theorem ( f c)c|X = f [34].
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Theorem 2.22 ([34, Theorem 2.2.9]). Let f : X → R be a convex function on a
Hausdorff, locally convex space X. If f is bounded from above on some open subset of
X, then f is continuous.

Theorem 2.23 ([34, Theorem 2.2.20]). Let f : X → R be a convex and lower semi-
continuous function on X where X is a Banach space or a reflexive space. Then f is
continuous.

Lemma 2.24. Let X be a Fréchet space. Furthermore, let fn : X → R̄ be a sequence
of convex and lower semicontinuous functions converging pointwise to a function f :
X → R. Then f is continuous.

Proof. By the pointwise convergence, f is clearly convex. Hence, by Theorem 2.22 it
suffices to show that Z is bounded from above on some open subset of X . Let

AK ,N =
⋂

n∈N≥N

f −1
n ((−∞, K ]) (2.13)

for K , N ∈ N. Then all AK ,N are closed by the lower semicontinuity of fn . Furthermore,⋃
K ,N∈N AK ,N = X because limn→∞ fn(x) = f (x) < ∞ for all x ∈ X . By the Baire

category theorem, some AK ,N contains an open set, i.e. there exists N , K ∈ N, x ∈ X
and an open neighbourhood U ⊆ X of zero such that

sup
y∈U

fn (x + y) ≤ K (2.14)

for all n ∈ N≥N . Thus f is bounded from above on x +U . ��

3. A Theorem on Lower Semicontinuous Envelopes

In the context of the Wetterich equation, a major role is played by the effective average
action. It is formally defined via the Legendre–Fenchel transform of the logarithm of the
moment-generating function which is convex and lower semicontinuous by Lemma 2.7.
Hence, it is clear that the study of the effective average action necessitates some features
of convex analysis.

In this sectionwe introduce the concepts of supercoercivity and lower semicontinuous
envelopes and prove some simple results that the author believes to be novel.

Definition 3.1. Let X be a locally convex space and f : X → R̄ a convex function with

sup
x∈X

[p (x) − f (x)] < ∞ (3.1)

for all continuous seminorms p on X . Then f is supercoercive.

Definition 3.2. Let X be a locally convex space, Y a normed space, ι : X → Y linear
and continuous with dense range and f : X → R̄ a convex and lower semicontinuous
function. Then the lower semicontinuous envelope LSC( f, ι) : Y → R̄ of f with
respect to ι is given by

LSC( f, ι) (x) = inf
{
lim inf
n→∞ f (xn)

∣∣ (xn)n∈N in X with lim
n→∞ ‖ι (xn) − x‖Y = 0

}

(3.2)
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Remark 3.3. This definition is a generalisation of the one that is commonly used in litera-
ture, see e.g. [34]. It is easy to see that LSC( f, ι) is lower semicontinuous. Furthermore,
if ι is injective, LSC( f, ι) is the largest lower semicontinuous function that is not greater
than f ◦ ι−1 on ι(X).

The following lemma shows that our definition of lower semicontinuous envelopes
plays well with Legendre–Fenchel conjugation.

Lemma 3.4. Let X be a Hausdorff reflexive space, p a continuous seminorm on X ′
β ,

ιp : X ′
β → (X ′

β)p = Y the natural map and f : X → R̄ a proper convex and
lower semicontinuous function. Let f p denote the restriction of f to the Banach space
Y ∗ considered as a subspace of X. Then LSC( f c, ιp)c = f p and if f p is proper,
LSC( f c, ιp) = ( f p)c|Y .
Remark 3.5. The transpose tιp : Y ∗ → X is injective by [28, Chapter 4, §4, Corollary
2.3].

Proof. By Fenchel–Moreau it suffices to show that LSC( f c, ιp)c = f p. Plugging in
the definition of LSC( f c, ιp)c, for every x ∈ Y ∗ there is a sequence (φn)n∈N in Y and
a sequence (ψn)n∈N in X ′

β with limn→∞ p(φn − ιpψn) = 0 such that

LSC( f c, ιp)
c (x) = lim

n→∞
[
x (φn) − f c (ψn)

]
. (3.3)

But since x ∈ Y ∗, we have

lim
n→∞

∣∣x (
φn − ιpψn

)∣∣ ≤ lim
n→∞Cp

(
φn − ιpψn

) = 0 (3.4)

for some C > 0. Consequently,

LSC( f c, ιp)
c (x) = lim

n→∞
[
x

(
ιpψn

) − f c (ψn)
] ≤ f cc

(tιpx) = f p (x) . (3.5)

For the converse inequality, note that

LSC
(
f c, ιp

)c
(x) ≥ sup

φ∈X ′
β

[
x

(
ιpφ

) − LSC( f c, ιp)
(
ιpφ

)]

≥ sup
φ∈X ′

β

[
x

(
ιpφ

) − f c (φ)
] = f cc

(tιpx) = f p (x) . (3.6)

��
While this lemma demonstrates a useful property, it may in general be difficult to

actually calculate the lower semicontinuous envelope of a given function. In the super-
coercive case, however, we obtain a particularly simple expression.

Lemma 3.6. Let X be a Hausdorff reflexive space and f : X → R̄ a convex, lower
semicontinuous and supercoercive function. For any continuous seminorm p, let ιp :
X → X p denote the natural map. Then the lower semicontinuous envelope g of f with
respect to ιp takes the form

g (x) =
{
inf

{
f (y) : y ∈ ι−1

p ({x})
}
x ∈ ιp (X) ,

∞ otherwise
(3.7)

and is supercoercive.
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Proof. It is immediately clear that LSC( f, ιp)(x) ≤ g(x) for all x ∈ X p. Suppose that
g(x) > LSC( f, ιp)(x) for some x ∈ X p. Then there is a sequence (xn)n∈N in X with
limn→∞ p(x − ιpxn) = 0 such that limn→∞ f (xn) < g(x). If xn is bounded in X there
is a subnet (yα) that is weakly converging to some y ∈ X with x = ιp(y). But f is
weakly lower semicontinuous by [34, Theorem 2.2.1] such that

f (y) ≤ lim
α

f (yα) = lim
n→∞ f (xn) < g (x) , (3.8)

which contradicts the definition of g.
If xn is unbounded in X there is some subsequence (yn)n∈N and a continuous semi-

norm q on X with limn→∞ q(yn) = ∞. By the supercoercivity of f , we must then have
limn→∞ f (xn) = limn→∞ f (yn) = ∞ which is again a contradiction.

For the supercoercivity, let (xn)n∈N be any sequence in ιp(X). Then for every xn
there is also some yn ∈ ι−1

p ({xn}) with

| f (yn) − g (xn)| <
1

n
. (3.9)

By the definition of ιp, p(xn) = p(yn) such that

lim sup
n→∞

[p (xn) − g (xn)] ≤ lim sup
n→∞

[
p (yn) − f (yn) +

1

n

]
< ∞ (3.10)

by the supercoercivity of f . Because the sequence (xn)was arbitrary, g is supercoercive.
��

4. A Renormalisation Theorem

In 1973 Osterwalder and Schrader gave a rigorous interpretation of Quantum Field The-
ory as axiomatised by Gårding and Wightman [32] in terms of Wick-rotated correlation
functions [25,26].Amodern formulation in terms of ameasure on a space of distributions
may be found in the book by Glimm and Jaffe [15] and a comprehensive introduction
to the Gårding-Wightman axioms is given in the work by Jost [18].

The task of constructing measures reflecting physical aspects of reality typically
requires a parameter-dependent regularisation. The parameters can be thought of as a
directed set of ‘windows of applicability’ and the corresponding measures are thought
to reflect physics more or less accurately within such a window. Common choices are
the replacement of Rd with a finite lattice or the introduction of certain ‘cutoffs’ as
in perturbative Quantum Field Theory, leading to models that agree well with experi-
ments e.g within specific ranges of characteristic momenta [pmin, pmax]. The validity
of this methodology comes from experiments in remarkable agreement with concrete
calculations [16].

Collecting such regularised models in a box results in a net (ωα)α∈I of measures. The
big question that remains iswhether it is possible to remove the regularisation completely,
i.e to interpret the limit limα ωα as a bona fide measure satisfying the Osterwalder–
Schrader axioms. Perhaps the most notable example where this program has worked out
is the φ4

3 model [7].
In this work, the relevant measures will live on S ′

β and we apply the mode of conver-
gence given in Definition 2.17.
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Theorem 4.1 (Lévy continuity theorem [22]). Let (ωn)n∈N be a sequence of Borel mea-
sures on S ′

β such that their characteristic functions converge pointwise to a function that
is continuous at zero. Then there is a Radon measure ω on S ′

β such that ωn converges
weakly to μ.

However, in the context of Wetterich’s equation the objects under consideration are
not the characteristic functions but rather the convex conjugates of the logarithms of
corresponding moment-generating functions Zα : S → R̄ with

φ �→
∫
S ′

β

exp [T (φ)] dωα (T ) . (4.1)

Consequently, we shall work out a convergence theorem that deals with (the loga-
rithms of) moment-generating functions and their convex conjugates.

The convergence of convex conjugate functions in infinite dimensions was originally
studied on reflexive Banach spaces by Mosco who introduced the now-called Mosco
convergence [24]. It was later generalised to locally convex spaces by Beer and Borwein
[3], de Acosta [8] and Zabell [33]. Following the latter, we give the following definition1

Definition 4.2. Let X be aBanach spaceor a reflexive, locally convex space and ( fn)∞n=0 :
X → R̄ be a sequence of extended real-valued functions on X . Then

– fn (M1)-converges to f0 if for every x ∈ X there is some sequence (xn)n∈N that
converges to x such that

lim sup
n→∞

fn (xn) ≤ f0 (x) .

– fn (K2)-converges to f0 if for every x ∈ X and every sequence (xn)n∈N that con-
verges to x

lim inf
n→∞ fn (xn) ≥ f0 (x) .

– fn (M2)-converges to f0 if for every x ∈ X and every sequence (xn)n∈N that
converges weakly to x

lim inf
n→∞ fn (xn) ≥ f0 (x) .

If fn (M1)- and (K2)-converges to f0, we shall say that fn epi-converges to f0 or
converges to f0 in the Painlevé-Kuratowski sense [2, Theorem 5.3.5]. If fn (M1)- and
(M2)-converges to f0, we shall say that fn Mosco converges to f0.

Remark 4.3. Clearly, Mosco convergence implies epi-convergence.

Using Mosco convergence it is possible to express a continuity theorem of the
Legendre–Fenchel conjugation.AsZabell proved in [33], however, theLegendre–Fenchel
conjugation is not a homeomorphism with respect to Mosco convergence. A stronger
notion offering this feature is given by the so-called Attouch-Wets convergence which
we shall exploit in our final theorem. Its precise formulation is somewhat complicated

1 In [33] Zabell gives the definition of Mosco convergence in terms of Mackey convergence. On Banach
spaces and reflexive locally convex spaces, the notions of norm convergence andMackey convergence coincide
[28, Chapter 4, Theorem 3.4]: and since we shall not work onmore general spaces, the given definitions suffice.
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such that we refer to [6] for a definition. In fact, we will not need to prove Attouch-Wets
convergence from first principles, but only indirectly through the theorems presented in
[6] such that a lack of definition appears tolerable to the author. Another great achieve-
ment of the Attouch-Wets convergence, is its compatibility with pointwise convergence
which was also worked out in [6].

Let us beginwith the following simple lemmawhich trivially follows from themetris-
ability of S.
Lemma 4.4. Let (φn)n∈N be a null sequence in S. Then, there exists a monotonically
increasing sequence (tn)n∈N in R>0 such that

lim
n→∞ tn = ∞ and lim

n→∞ tnφn = 0 . (4.2)

For the remainder of the section, we will use the following abbreviation.

Definition 4.5. For a continuous seminorm p on S ′
β , let ιp : S ′

β → S ′
p denote the

natural map to the corresponding completion. Furthermore, for any function f on S let
f p denote its restriction to (S ′

p)
∗.

Remark 4.6. f p is well-defined because ιp has dense range, whence its transpose tιp :
(S ′

p)
∗ → S is injective [28, Chapter 4, Corollary 2.3].

Wemay now formulate a sufficient condition for the weak convergence of a sequence
of measures.

Theorem 4.7. Let (ωn)n∈N be a sequence of Borel probability measures on S ′
β and

(Zn)n∈N the corresponding moment-generating functions. Suppose that

lim sup
n→∞

Zn (φ) < ∞ (4.3)

for all φ ∈ S. Then, ωn converges weakly to another Borel probability measure ω if and
only if

– Zn Mosco converges to a convex, lower semicontinuous function Z : S → R and
– for all continuous seminorms p on S ′

β the restrictions Z p
n Mosco converge to the

corresponding restriction Z p.

Moreover, in the affirmative case Z is continuous and the moment-generating function
of ω.

Proof. Suppose ωn → ω weakly and fix some φ ∈ S. Then, we clearly have pointwise
convergence of the characteristic functions φ̂∗ωn of the one-dimensional pushforward
measures to φ̂∗ω. Because Zn(φ) and Zn(−φ) are eventually finite it is known that φ̂∗ωn
has an analytic continuation φ∗ωn to {z ∈ C : |z| ≤ 1} satisfying [21]

max {Zn (φ) , Zn (−φ)} = sup
|z|≤1

φ∗ωn (zφ) (4.4)

where z is now a complex variable. Hence the family {φ∗ωn : n ∈ N} is eventually
uniformly boundedwithin the unit ball ofC. By theVitali-Porter theorem [29], pointwise
convergence on the real axis implies pointwise convergence on the imaginary axis. Since
this is true for all φ ∈ S, we obtain pointwise convergence of Zn to some real-valued
function Z which is convex and continuous by Lemma 2.24. This clearly implies that
Zn (M1)-converges to Z . Moreover, by Lemma 2.19, the moment-generating function
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M of ω is bounded by Z and is, in particular, finite everywhere. But then the analytic
continuations of t → M(tφ) and t → Z(tφ) to the imaginary axis must both equal the
characteristic function φ̂∗ω. Consequently, M = Z . Regarding the (M2)-convergence,
it is straightforward to see that the methods used for proving [12, Theorem 1.1] apply
also in our case such that for every weakly convergent sequence φn → φ in S, we have

Z(φ) =
∫
S ′

β

exp [φ (T )] dω (T ) =
∫
S ′

β

lim inf
n→∞,T ′→T

exp
[
φn

(
T ′)]

dω (T )

≤ lim inf
n→∞

∫
S ′

β

exp [φn (T )] dωn (T ) = lim inf
n→∞ Zn (φn) ,

(4.5)

where T ′ → T is considered in the topology ofS ′
β . The second equality follows from the

boundedness of (φn)n∈N by the definition of the strong dual topology. Hence, Zn (M2)-
converges to Z . Now, let p be a continuous seminorm onS ′

β . Clearly Z
p
n (M2)-converges

to Z p since every weakly convergent sequence in (S ′
p)

∗ is also weakly convergent in
S(Rd). Finally, the pointwise convergence ensures (M1)-convergence of Z p

n to Z p.
Conversely, assume that Zn Mosco converges to Z and that the same holds for the

corresponding restrictions as above. For any φ ∈ S fix a continuous seminorm p on S ′
β

such that φ ∈ (S ′
p)

∗. Then, by assumption, Z p
n Mosco converges to Z p and, in particular,

also converges in the Painlevé-Kuratowski sense. Furthermore, because all Zn are lower
semicontinuous (see Lemma 2.7), so are all Z p

n . Since lim supn→∞ Z p
n (ψ) < ∞ for

all ψ ∈ (S ′
p)

∗, we have that Z p
n converges pointwise to Z p by [6, Corollary 2.3.].

Since, φ ∈ S was arbitrary, we obtain Zn → Z pointwise and the continuity of Z by
Lemma 2.24.

In analogy to the first part of the proof, we may now use the pointwise convergence
of φ∗ωn along the imaginary axis, the bound given in Eq. 4.4 and the Vitali-Porter
theorem to conclude that ω̂n converges pointwise to some function c : S(Rd) → C. By
Theorem 4.1, it just remains to show that c is continuous at zero. By the continuity of
Z , there is some balanced neighbourhood U ⊆ S of the origin such that

sup
φ∈U

|Z (φ) − Z (0)| ≤ 1 and hence 0 ≤ sup
φ∈U

Z (φ) ≤ 2 . (4.6)

But then, for all t ∈ (0, 1),

sup
φ∈tU

|c (φ) − c (0)| = sup
φ∈U

lim
n→∞

∣∣ω̂n (tφ) − ω̂n (0)
∣∣

≤ sup
φ∈U

lim sup
n→∞

∫
S ′

β

t |T (φ)| dωn (T )

≤ t

2
sup
φ∈U

lim sup
n→∞

[Zn (φ) + Zn (−φ)] ≤ 2t .

(4.7)

Since every null net (φα)α∈I in S is eventually in tU for all t ∈ (0, 1), the continuity of
c at the origin follows. ��

A simple corollary to this theorem, is that we may in fact get rid of the Mosco
convergence in S.
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Corollary 4.8. Let (ωn)n∈N be a sequence of Borel probability measures on S ′
β and

(Zn)n∈N the corresponding moment-generating functions. Suppose that

lim sup
n→∞

Zn (φ) < ∞ (4.8)

for all φ ∈ S. Then, ωn converges weakly to another Borel probability measure ω if and
only if there exists a lower semicontinuous, convex function Z : S(Rd) → R such that
for all continuous norms p on S ′

β , the restrictions Z
p
n Mosco converge to Z p.

Moreover, in the affirmative case Z is continuous and themoment-generating function
of ω.

Proof. ByTheorem 4.7, we just need to prove that theMosco convergence of Z p
n implies

that of Zn . Since for everyφ there is a continuous seminorm p onS ′
β such thatφ ∈ (S ′

p)
∗,

we clearly have that Zn (M1)-converges to Z .
For the (M2)-convergence, note that for any weakly convergent sequence φn → φ in

S, the set
B = {φn : n ∈ N} ∪ {φ} ⊂ S (4.9)

is bounded and induces a continuous seminorm q on S ′
β . Since, S ′

β is nuclear, q is
majorised by some continuous Hilbert norm p. Hence, B is a bounded subset of the
reflexive Banach space (S ′

p)
∗ which is separable because S ′

p is. Consequently, every
subsequence of (φn)n∈N has a weakly convergent subsequence in (S ′

p)
∗. By assumption,

it follows that φn converges weakly to φ in (S ′
p)

∗ and the result follows from the (M2)-
convergence of Z p

n . ��
The above corollary may appear rather inelegant and in fact we can do a lot better by

using the following lemma.

Lemma 4.9. Let (Zn)n∈N be a sequence of proper convex and lower semicontinuous
functions from S to R̄. Given another function Z : S → R̄, the following are equivalent:

(i) For all continuous seminorms p on S ′
β , the restrictions Z p

n converge uniformly on
compact sets to Z p.

(ii) For all continuous seminorms p on S ′
β , the restrictions Z p

n converge uniformly on
bounded sets to Z p.

Proof. Let p be a continuous seminorm on S ′
β . By nuclearity, there is a continuous

seminorm q > p such that the natural map S ′
q → S ′

p has dense range and is nuclear,
thus in particular is compact. But then its transpose is compact and injective such that
every bounded subset of (S ′

p)
∗ is mapped injectively to a compact subset of (S ′

q)
∗ on

which we have uniform convergence.
The converse is clear, since every compact set is bounded. ��
The uniform convergence on bounded sets enables the following corollary.

Corollary 4.10. Let (ωn)n∈N be a sequence of Borel probability measures on S ′
β and

(Zn)n∈N the corresponding moment-generating functions. Then the following are equiv-
alent:

(i) lim supn→∞ Zn(φ) < ∞ for all φ ∈ S and ωn converges weakly to another Borel
probability measure ω.
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(ii) There exists a convex and continuous function Z : S → R such that for all contin-
uous seminorms p on S ′

β , the restrictions Z
p
n Attouch-Wets converge to Z p.

(iii) Zn converges to some function Z : S(Rd) → R uniformly on bounded sets.

Moreover, in this case Z is the moment-generating function of ω.

Proof. (i) �⇒ (ii): By Corollary 4.8, for all continuous seminorms p onS ′, Z p
n Mosco-

converge to Z p for some convex and continuous function Z : S → R. In particular,
Z p
n also converge to Z p in the Painlevé-Kuratowski sense which by [6, Corollary 2.3]

implies the uniform convergence on compact subsets of (S ′
p)

∗. Applying Lemma 4.9
we also obtain uniform convergence on bounded subsets of (S ′

p)
∗. Furthermore, every

bounded subset of S is precompact, such that Z p is bounded on bounded subsets of
(S ′

p)
∗ which implies the Attouch-Wets convergence by [6, Lemma 1.4].

(ii) �⇒ (iii): Every bounded subset B ⊂ S induces a continuous seminorm p on
S ′

β such that B is a bounded subset of (S ′
p)

∗. Furthermore, Z is bounded on B by the
precompactness of B in S. Hence, [6, Corollary 2.2.] implies the uniform convergence
on B.

(iii) �⇒ (i): Let p be a continuous seminorm on S ′
β . By the pointwise convergence,

we clearly have that Z p
n (M1)-converges to Z p while the continuity of Z p follows

from Lemma 2.24. For the (M2)-convergence, note that any sequence (φn)n∈N in (S ′
p)

∗
converging weakly to some φ ∈ (S ′

p)
∗ is bounded and consequently also bounded in S.

Also, by assumption, Z p
n converges to Z p uniformly on bounded sets. Now, keeping in

mind that Z p is also convex and continuous and thus weakly lower semicontinuous by
[34, Theorem 2.2.1], we obtain

lim inf
n→∞ Z p

n (φn) ≥ lim inf
n→∞

[
Z p
n (φn) − Z p (φn)

]
+ lim inf

n→∞ Z p (φn) ≥ Z p (φ) .

(4.10)

Thus Z p
n Mosco-converges to Z p and Corollary 4.8 applies. ��

It would now be most tempting to conclude that there is some sort of Attouch-Wets
topology on S with respect to which Zn converges to Z . However, to the knowledge
of the author, there have not been many studies of generalisations of Attouch-Wets
convergence to non-normed spaces. Consequently, no such result is available at the
time of this writing. Before coming to the final theorem stating the weak convergence of
measures in terms of Attouch-Wets convergence of conjugate functions, we need another
short lemma.

Lemma 4.11. Let f : S → R̄ be proper convex and lower semicontinuous. Then f is
a continuous function S → R if and only if its convex conjugate (Legendre–Fenchel
transform) f c is supercoercive.

Proof. Let B ⊆ S(Rd)bebalanced, bounded andhenceprecompact.Hence, byFenchel–
Moreau,

sup
φ∈B

f (φ) = sup
φ∈B,T∈S ′

β

[
T (φ) − f c (T )

] = sup
T∈S ′

β

[
pB (T ) − f c (T )

]
, (4.11)

where pB is the continuous seminorm induced by B.
⇒: Since all continuous seminorms p are bounded by some pB the implication is

clear.
⇐: Equation4.11 shows that f is bounded on bounded subsets of S. Hence, it is

finite everywhere and Theorem 2.23 applies. ��
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With this lemma at hand, we arrive at the final theorem of this section with immediate
relevance for the Wetterich equation.

Theorem 4.12. Let (ωn)n∈N be a sequence of Borel probabilitymeasures onS ′
β , (Zn)n∈N

the corresponding moment-generating functions and set Wn = ln ◦Zn. Then the follow-
ing are equivalent:

(i) lim supn→∞ Wn(φ) < ∞ for all φ ∈ S and ωn converges weakly to another Borel
probability measure ω.

(ii) There exists a proper convex, lower semicontinuous and supercoercive function Γ :
S ′

β → R̄ such that for all continuous seminorms p on S ′
β the lower semicontinuous

envelopes LSC(Wc
n , ιp)Attouch-Wets converge to LSC(Γ, ιp), where ιp : S ′

β → S ′
p

denotes the natural map.

Proof. Let us first note that allWn are convex because all Zn are logarithmically convex.
Furthermore, all ωn are probability measures such that Zn does not attain the value 0
and Wn does not attain the value −∞. Moreover, all Wn are lower semicontinuous by
the monotony of the logarithm and, by definition, Wn(0) = 0. Thus, letting p denote
some continuous seminorm on S ′

β , the restrictionsW
p
n are also proper convex and lower

semicontinuous functions. Recalling that the Legendre–Fenchel transform is a bijection
between proper convex and lower semicontinuous functions on S ′

p and (S ′
p)

∗, there
exist proper convex and lower semicontinuous functions Γn,p : S ′

p → R such that
Γ c
n,p = W p

n for all n ∈ N. By Fenchel–Moreau Γn,p is equal to the restriction of (W p
n )c

to S ′
p. Furthermore, lim supn→∞ Wn(φ) < ∞ implies lim supn→∞ Zn(φ) < ∞.
(i) �⇒ (ii) By Corollary 4.10, Zn converges uniformly on bounded sets to the

moment-generating function Z of ω which is also continuous and never zero because
ω is a probability measure. On bounded sets Z is always bounded away from zero by
the precompactness of such sets. Consequently, W is continuous, Wn also converges
uniformly to W on bounded sets and the same is true for the restrictions, i.e. W p

n con-
verges uniformly to W p on bounded sets. Applying [6, Lemma 1.4], we have that W p

n
Attouch-Wets converges to W p.

Recalling that the Legendre–Fenchel transform is a homeomorphism with respect
to Attouch-Wets convergence [1], it is clear that Γn,p Attouch-Wets converges to the
restriction of Wc

p to S ′
p. Now, Lemma 3.4 shows that Wc

p and LSC(Wc, ιp) agree on
S ′
p. That W

c is supercoercive is clear from Lemma 4.11.
(ii) �⇒ (i) By the homeomorphismproperty of theLegendre–Fenchel transformand

Lemma 3.4, W p
n Attouch-Wets converges to (Γ c)p. Furthermore, Γ c is continuous by

Lemma 4.11 such that (Γ c)p is bounded on bounded sets by the precompactness of
bounded sets in S. Hence, W p

n actually converges to Γ c uniformly on bounded sets [6,
Corollary 2.2]. Because every bounded set B in S induces a continuous seminorm q on
S ′

β such that B is also bounded in (S ′
q)

∗, it follows that Wn converges to Γ c uniformly

on bounded sets. Finally, since bounded sets in S(Rd) are precompact, Γ c is bounded
on bounded sets such that Zn converges to exp[Γ c] uniformly on bounded sets. Hence,
Corollary 4.10 applies. ��
Remark 4.13. While the convergence criterion for the dual functions Wc

n is somewhat
complicated, the concrete form of LSC(Γ, ιp) is rather simple and may be extracted
from Lemma 3.6 due to the supercoercivity of Γ . In the case where p is a continuous
norm on S ′

β , LSC(Γ, ιp) is in fact simply given by Γ on S ′
β considered as a subspace

of S ′
p and ∞ everywhere else. Likewise, if the regularisation happens to be such that all
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Wn are continuous, the resulting supercoercivity also gives simple expressions for Wc
n .

As seen in Sect. 7, this is indeed the case for the presented regularisation scheme. Even
in these cases, it appears to the author that there is no straightforward simplification
of the dual convergence criterion. The reason is that Attouch-Wets convergence in the
spaces S ′

p does not provide enough uniformity for a sequential statement such as (M1)-
convergence in S ′

β because the latter is not a Fréchet-Urysohn space.

The objectsWc
n in the above theorem correspond to a set of quantum effective actions

of regularised theories and are precisely those objects which may be computed from the
Wetterich equation. If they are ordered such that any regularisation vanishes in the n →
∞ limit, Theorem 4.12 states necessary and sufficient conditions for their convergence
to a full theory in a physically meaningful manner according to the discussion in the
beginning of this section.

5. A Functional Regularisation Scheme

The goal of Quantum Field Theory à la Osterwalder–Schrader can be phrased in making
sense of Euclideanised Feynman integrals. A typical example is the moment-generating
function

Z (J ) =
∫

exp

[
−S (ψ) +

∫
Jψ

]
dψ , (5.1)

where

– the integral is taken over some path space,
– the measure is taken to be translation invariant,
– J lies in a dual space of the configuration space and
– S is the Euclideanised classical action typically containing terms like

∫
ψ4.

In view of the Osterwalder–Schrader theorem one would like the integral to run over
S ′

β , which

– is infinite-dimensional,
– admits no non-trivial translation invariant measure and
– makes expressions like ψ4 generally ill-defined.

Hence, one typically regularises the path space in some fashion e.g by restricting to a
finite volume and enforcing a momentum cutoff, rendering the regularised path space
finite-dimensional [27, Chapter 8]. As outlined in the last section the resulting generating
functions Z respectively the corresponding measures are then interpreted as to reflect
real physics to a degree where the regularisation is assumed to introduce only negligible
effects, e.g

– physics in a volume much smaller than the finite volume introduced by the regular-
isation,

– physical phenomena with characteristic momentum scales much smaller than the
enforced cutoff.2

2 These conditions are debatable in view of the Euclideanised theory not living on physical Minkowski
space.
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These particular regularisations define a directed subset of R × R where

(V, pmax) ≤ (
V ′, p′

max

) ⇔ V ≤ V ′ and pmax ≤ p′
max . (5.2)

Hence, all correspondingly regularised measures can be collected into a net ωV,pmax

and we may interpret the requirement that they should describe the same physics within
their respective window of applicability as a kind of gluing instruction. But this implies
that for ever larger volumes and momentum cutoffs one expects to approach a limit that
encompasses all physical phenomena. If this limit is indeed a Quantum Field Theory, we
may phrase this requirement as the existence of a measure ω satisfying the Osterwalder–
Schrader axioms and

lim
V,pmax→∞ ωV,pmax = ω (5.3)

in some appropriate sense. As is well-known, the existence of such a limit generally
requires renormalising S, e.g in the case of having a term λ

∫
ψ4, promoting λ ∈ R to

a function depending on V and pmax.
It is quite clear that the choice of regularisation scheme immensely affects concrete

calculations. For instance, the finite volume setting is typically implemented as a com-
pactification ofRd to a torus leading to discrete eigenvalues of the Laplacian, i.e discrete
admissible momenta. The personal belief of the author, however, is that a regularisation
scheme maintaining as much smoothness as possible is desirable for computational and
analytic methods alike. One such scheme is the following, where the limit n → ∞
corresponds to the removal of the regularistion:

1. For each n ∈ N split Sn into a free part Sfreen and an interacting part Sintn such that
Sfreen : S → R,

φ �→ (φ, Bnφ) (5.4)

for some continuous, bijective, linear operator Bn on S which is bounded from
below in the sense that there is an ηn > 0 such that for all φ ∈ S

(φ, Bnφ) ≥ ηn (φ, φ) . (5.5)

The prototypical example is of course Bn = m2 − Δ for a free, scalar, massive
field theory on Rd . Define the corresponding centred Radon Gaußian probability
measure μn on S ′

β given by its characteristic function

μ̂n (φ) = exp

[
−1

2

(
φ, B−1

n φ
)]

. (5.6)

for all φ ∈ S. Then, μn encodes the free theory determined by Bn .
2. Fix a sequence (Rn)n∈N of linear and continuous operators S ′

β → S with

lim
n→∞ (ιRnι) (φ) (ψ) = lim

n→∞ (Rnιφ, ψ) = (φ,ψ) = ι (φ) (ψ) (5.7)

for all φ,ψ ∈ S. A simple example is given by choosing

χn (x) = exp

[
−1

2

‖x‖2
n2K 2

]

ξn (x) =
(
n2Λ2

2π

)d/2

exp

[
−n2Λ2

2
‖x‖2

] (5.8)
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for some K ,Λ > 0, all x ∈ R
d and settingRnT = χn · (ξn ∗ T ) where ∗ denotes

convolution of functions. Then, nΛ can be viewed as a momentum cutoff and nK
as the radius of the ball to which we restrict the theory. The contributions from
outside these physical windows are heavily suppressed by the exponential decays
of χn and ξn respectively.

Furthermore, these particularRn commutewithO(Rd) such that the rotational invari-
ance is kept intact. They also satisfy the stronger condition that limn→∞ ι ◦Rn = id
uniformly on bounded sets whichmay be beneficial in specific applications. However,
it can be shown that they break reflection positivity as is explained in Sect. 6.

3. For all n ∈ N define the Radon probability measures νn = (Rn)∗μn and

ωn = ι∗

(
exp

[−Sintn

]
∫
exp

[−Sintn

]
dνn

· νn

)
(5.9)

on S and S ′
β respectively.

In analogy to Eq. 5.3, we now have a sequence (ωn)n∈N of measures corresponding to
regularised theories and the ultimate goal is to find a limit ω satisfying the Osterwalder–
Schrader axioms.

Remark 5.1. The use of the L2(Rd) inner product in Eqs. 5.5 and 5.9 could be generalised
to any other continuous inner product on S. However, in most applications the L2(Rd)

one suffices and is the simplest to workwith such that there is hardly any practical benefit
in admitting more general structures.

Remark 5.2. To demand that exp[−Sintn ] ∈ L1(νn) is strictly necessary for this regu-
larisation scheme to work. As a matter of fact, this requirement is not trivial e.g. with
regard to mass counterterms in the φ4

4 model. It has, however, recently been proven in
[17, Corollary 4.6] that it is indeed satisfied.

6. A Note on Reflection Positivity

Definition 6.1. Let S+ ⊆ S denote the set of Schwartz functions with support in R≥0 ×
R
d−1. For any φ ∈ S, let θφ ∈ S with

(θφ) (x1, x2, . . . , xd) = φ (−x1, x2, . . . , xd) (6.1)

for all x ∈ R
d . Following [15], we call a finite Borel measureμ on S ′

β reflection positive
if

N∑
m,n=1

c∗
mcnμ̂ (φn − θφm) ≥ 0 (6.2)

for all N ∈ N as well as all sequences (cn)n∈N in C and (φn)n∈N in S+.

One can show that the simple example ofRn given in the last section does not preserve
reflection positivity in the sense that the resulting non-interacting measures ι∗νn are not
reflection positive in general. It is, however, possible to retain reflection possitivity if
one is willing to break O(d) covariance:
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Example 6.2. First, define

Φ (x) = exp

[
−1

2
‖x‖2

]
and Ψ (x) =

{
exp

[
− 1

x1

]
x1 > 0

0 else
. (6.3)

Then, fix some K ,Λ, M > 0 and set

κn (x) = Ψ (nMx) , ξn(x) = (nΛM)d
Φ (nΛx) Ψ (nMx)

‖ΦΨ ‖L1(Rd )

, χn (x) = Φ
( x

nK

)

(6.4)

for all x ∈ R
d and all n ∈ N. Now, let

RnT = κn · χn · (θξn ∗ T ) + θκn · χn · (ξn ∗ T ) (6.5)

for all T ∈ S ′
β . Then, for any sequence (μn)n∈N of reflection positive finite Radon

measures on S ′
β , the measures ωn = ι∗(Rn)∗μn are reflection positive,

lim
n→∞ (ι ◦ Rn ◦ ι) (φ) = ι(φ) (6.6)

for all φ ∈ S and Rn commutes with spatial O(d − 1) rotations.

Proof. That Rn commutes with spatial O(d − 1) rotations follows directly from the
corresponding invariance of Φ and Ψ . Furthermore, it is straightforward to verify that

tRnιφ = ξn ∗ (χn · κn · φ) + θξn ∗ (χn · θκn · φ) (6.7)

for all φ ∈ S from which it directly follows that tRn ◦ ι commutes with θ by the O(d)

invariance of χn . Consequently, for any φ,ψ ∈ S,
ω̂n (φ − θψ) = μ̂n

(tRnιφ − θ tRnιψ
)

. (6.8)

Now, reflection positivity follows if tRn ◦ ι preserves the property of being supported in
R≥0 × R

d−1. This is easily seen since

supp tRnιφ = supp ξn ∗ (χn · κn · φ)

⊆ R≥0 × R
d−1 + R≥0 × R

d−1 = R≥0 × R
d−1

(6.9)

for any φ ∈ S supported in R≥0 × R
d−1.

To see the convergence, note that for any φ,ψ ∈ S

(ι ◦ Rn ◦ ι) (φ) (ψ) =
∫
Rd

[κn · χn · (θξn ∗ φ) · ψ + θκn · χn · (ξn ∗ φ) · ψ] .

(6.10)

Finally, it is clear that

– ξn ∗ φ → φ and θξn ∗ φ → φ in L2(Rd),
– κn · χn · ψ → ψ · I (R>0 × R

d−1) in L2(Rd),
– θκn · χn · ψ → ψ · I (R<0 × R

d−1) in L2(Rd),
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where I (A) denotes the indicator function of a set A ⊆ R
d . Consequently,

lim
n→∞ (ι ◦ Rn ◦ ι) (φ) (ψ) =

∫
Rd

φψ = ι (φ) (ψ) . (6.11)

��
Remark 6.3. Note that we do not have that ι ◦ Rn → id. Indeed, letting δ0 be the Dirac
distribution at zero, we have Rnδ0 = 0 for all n ∈ N.

It is thus possible to define the operators Rn in a way that the resulting Gaußian
measures are reflection positive.When combining a reflection positive Gaußian measure
with a density, some care must be taken to ensure that reflection positivity is maintained.
For some models on a lattice this is e.g. discussed in [15].

7. The Functional Renormalisation Group Equation

In this section we are going to use the introduced regularisation scheme to define a
regularised Quantum Field Theory with a slightly modified classical action given by
adding a bilinear operator Fn

k to Sintn .
In particular, every object in this section is taken to carry a regularisation index n ∈ N

but for legibility it will not be written explicitly.
Letting ν and Sint be as in Sect. 5, we first demand the following regularity properties:

– Sint : S → R is continuous,
– there is a q > 1 such that exp[−Sint] ∈ Lq(ν),
– there is a continuous seminorm p onS andC > 0 such that exp[−Sint] ≤ C exp[p2].

Remark 7.1. The continuity is important for the boundary condition at k → ∞ and it also
ensures the strict positivity of exp[−Sint] as well as its boundedness on compacta. The
second condition is only slightly stronger than exp[−Sint] ∈ L1(ν), which is necessary
for the regularisation scheme towork and enables the use ofHölder’s inequality. The third
condition is used inTheorem7.11 enabling aweak continuity of a suitable approximation
of a Dirac measure. It is possible that it can be relaxed significantly.

Let us denote the Cameron–Martin space of ν by H(ν) ⊂ S and the reproducing
kernel Hilbert space of ν by S ′

ν with its inner product 〈·, ·〉. The spaces H(ν) and S ′
ν will

be of central importance in the derivation of the FRGE. In fact, much of the proof could
be given in a more abstract setting and essentially follows from properties of Gaußian
measures on locally convex spaces.

Now, let (Fk)k∈R be a family of symmetric bilinear operators on S with the following
properties:

– For easy differentiation, allow negative values of k:
• ∀φ ∈ S, k < 0 : Fk (φ, φ) = 0,

– For Dirac delta measure approximation (see Theorem 7.11):

• ∀φ ∈ S, k ≥ 0 : 0 ≤ Fk (φ, φ) ≤ k2 (φ, φ) , (7.1)

• ∀φ ∈ S ∃C, K > 0 ∀ k ≥ K : Fk (φ, φ) ≥ Ck2 (φ, φ) , (7.2)

– For differentiability in Lemmas 7.3 and 7.4:
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• F is pointwise continuously k-differentiable, i.e for all k ∈ R and φ ∈ S

F ′
k (φ, φ) := lim

t→0

Fk+t (φ, φ) − Fk (φ, φ)

t
(7.3)

exists and is jointly continuous in k and φ,
• The above convergence is uniform in φ in the sense that there is a continuous

seminorm p on S such that for all k ∈ R and all ε > 0 there exists some δ > 0
as well as a function o : (−δ, δ) → R such that limt→0 o(t)/t = 0 and

∣∣Fk+t (φ, φ) − Fk (φ, φ) − t F ′
k (φ, φ)

∣∣ < εo (t) p (φ)2 (7.4)

for all t ∈ (−δ, δ) and φ ∈ S,
– For positivity and interchange of integrations in Theorem 7.10:
• For all k ∈ R there is a σ -finite measure space (Xk,Ak,mk) and a mapping

Uk : Xk → (S ′
ν)C such that Xk → R, x �→ Uk

x (φ) is mk-measurable for all
φ ∈ S and

F ′
k (φ, φ) =

∫
Xk

∣∣∣Uk
x (φ)

∣∣∣2 dmk (x) . (7.5)

While especially the last condition looks very technical, common choices (note the
absence of prefactors for separate wave-function renormalisation) like

– Fk (φ, φ) = ∫
Rd

∣∣∣φ̃ (p)
∣∣∣2 (

k2 − ‖p‖2)
θ

(
k2 − ‖p‖2)

dp a.k.a the Litim regulator,

– Fk (φ, φ) = ∫
Rd

∣∣∣φ̃ (p)
∣∣∣2 ‖p‖2

exp
[ ‖p‖2

k2

]
−1

dp a.k.a the exponential regulator,

for k > 0 are included which in particular do not carry any extra dependence on n ∈ N.

Remark 7.2. Just as one could generalise to other continuous inner products in Eq. 5.5,
one can generalise the upper and lower Fk bounds in Eqs. 7.1 and 7.2 to other continuous
seminorms. But since the established choices of Fk all work with the L2(Rd) inner
product there is little practical reason to do so.

For brevity, define

Nk =
∫
S
exp

[
−Sint (ψ) − 1

2
Fk (ψ,ψ)

]
dν (ψ) , (7.6)

fk (φ) = exp

[
−Sint (φ) − 1

2
Fk (φ, φ)

]
(7.7)

for all k ∈ R and φ ∈ S. Then, we may consider the family { fk/Nk · ν : k ∈ R}
of probability measures on S and in view of the last section the object of interest is
f0/N0 · ν. By the properties of Sint we clearly have that fk : S → R is strictly positive
and there exists a q ∈ (1,∞] such that fk ∈ Lq(ν) for all k ∈ R. Let us now define a
family Z : R × S ′

ν → R of moment-generating functions as

Zk (T ) = 1

Nk

∫
S
exp [T (ψ)] fk (ψ) dν (ψ) . (7.8)
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By employing the Cameron–Martin theorem, we have

Zk (T ) = 1

Nk
exp

[
1

2
〈T, T 〉

] ∫
S

fk (ψ + RνT ) dν (ψ) (7.9)

for all k ∈ R and T ∈ S ′
ν such that Z is indeed well-defined (everywhere finite). Also,

by virtue of [4, Theorem 2.4.8] each Zk : S ′
ν → R is continuous. A straightforward

calculation—thatwe shall omit here—shows that onemaydifferentiate under the integral
sign:

Lemma 7.3. Z is continuously Fréchet differentiable and its derivative at (k, J ) is given
by

Dk,T Z =
(

− 1
2Nk

∫
S F ′

k (ψ,ψ) exp [T (ψ)] fk (ψ) dν (ψ) − Zk (T ) ∂k ln Nk
1
Nk

∫
S ψ exp [T (ψ)] fk (ψ) dν (ψ)

)

(7.10)

where the term in the second row (DT Zk) may be understood as a (generalised) Bochner
integral in S [30, theorem 3] and in fact DT Zk ∈ H(ν).

Let us also define Y : R × S ′
ν → H(ν) with (k, T ) �→ DT Zk .

Lemma 7.4. Y is continuously Fréchet differentiable and its derivative at (k, J ) is given
by

(
Dk,J Y

)
(l, T ) =

(
− l

2Nk

∫
S ψF ′

k (ψ,ψ) exp [J (ψ)] fk (ψ) dν (ψ) − lDJ Zk · ∂k ln Nk
1
Nk

∫
S ψT (ψ) exp [J (ψ)] fk (ψ) dν (ψ)

)

(7.11)

for all l ∈ R, T ∈ S ′
ν . Both integrals may again understood to be generalised Bochner

integrals in S with values in H(ν).

These properties are inherited by W : R × S ′
ν → R, (k, T ) �→ ln Zk(T ), i.e W is

continuously differentiable, Wk is twice continuously differentiable and DWk : S ′
ν →

H(ν). As a matter of fact, DWk even turns out to be a bijection between S ′
ν and H(ν).

The injectivity follows directly from the following positivity property of D2Wk .

Theorem 7.5. For all k ∈ R and J ∈ S ′
ν there exists a C > 0 such that for all K ∈ S ′

ν

K
[(

D2
JWk

)
(K )

]
≥ C 〈K , K 〉 . (7.12)

Proof. By Hölder’s inequality,

K
[(

D2
JWk

)
(K )

]
= 1

N 2
k Zk (J )2

∫
S×S

[
K (ψ)2 − K (ψ) K (φ)

]

× exp [J (ψ) + J (φ)] fk (ψ) fk (φ) d (ν × ν) (ψ, φ)

≥ 1

N 2
k Zk (J )2

∫
S×S

[|K (ψ) K (φ)| − K (ψ) K (φ)]

× exp [J (ψ) + J (φ)] fk (ψ) fk (φ) d (ν × ν) (ψ, φ)
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= 1

N 2
k Zk (J )2

∫
S
[|K (ψ)| − K (ψ)] exp [J (ψ)] fk (ψ) dν (ψ)

×
∫
S
[|K (ψ)| + K (ψ)] exp [J (ψ)] fk (ψ) dν (ψ) (7.13)

which clearly is nonnegative. Let us now suppose that there is a sequence (Kn)n∈N in
S ′

ν with 〈Kn, Kn〉 = 1 such that the first integral tends to zero, i.e

lim
n→∞

∫
S
[|Kn (ψ)| − Kn (ψ)] exp [J (ψ)] fk (ψ) dν (ψ) = 0 . (7.14)

Then, there exists a subsequence (Ln)n∈N such that limn→∞ |Ln(ψ)| − Ln(ψ) = 0 for
ν-almost every ψ . But since each Ln can in turn be written as the ν-almost everywhere
pointwise limit of linear functions, the above implies limn→∞ Ln(ψ) = 0 for ν-almost
everyψ . One arrives at the same conclusion if one takes the second integral to go to zero
instead. By the finiteness of ν we thus have that Ln → 0 in ν-measure as n → ∞. Now,
let ε > 0 and pick any ν-measurable A ⊂ S with ν(A) < ε2/3. Then, for all n ∈ N

∫
A
Ln (ψ)2 dν (ψ) ≤

√∫
S
Ln (ψ)4 dν (ψ)

√
ν (A) < 〈Ln, Ln〉 ε = ε . (7.15)

Thus, Vitali’s convergence theorem tells us that Ln goes to zero in L2(ν) i.e in S ′
ν for

n → ∞ which is a contradiction. ��
Corollary 7.6. DWk : S ′

ν → H(ν) is injective for all k ∈ R.

Proof. Suppose that DJWk = DKWk for some J, K ∈ S ′
ν . Then, by Rolle’s theorem,

there is a t ∈ [0, 1] such that

(J − K )
[(

D2
t J+(1−t)KWk

)
(J − K )

]
= 0 . (7.16)

By Theorem 7.5 this can only happen if J = K . ��
Let us also record the following corollary which will be of paramount importance.

Corollary 7.7. For all k ∈ R and J ∈ S ′
ν the linear map D2

JWk : S ′
ν → H(ν) is

continuously invertible.

Proof. The bilinear form S ′
ν × S ′

ν → R given by

(K , L) �→ K
[(

D2
JWk

)
(L)

]
(7.17)

is symmetric which can be seen from writing it out explicitly. By Theorem 7.5 it is
bounded from below. By continuity R−1

ν ◦ D2
JWk is thus self-adjoint, continuous and

injective and as such has dense range in S ′
ν . Since it is also bounded from below it is

continuously invertible. ��
The surjectivity of DWk is substantially more involved.

Theorem 7.8. DWk : S ′
ν → H(ν) is surjective for all k ∈ R.
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Proof. Let φ ∈ H(ν). Then J ∈ S ′
ν solves the equation DJWk = φ if and only if for

all K ∈ S ′
ν ∫

S
K (ψ − φ) exp [J (ψ)] fk (ψ) dν (ψ) = 0 . (7.18)

Since φ ∈ H(ν) we may apply the Cameron–Martin theorem to obtain the equivalent
condition ∫

S
K (ψ) exp

[
J (ψ) −

(
R−1

ν φ
)

(ψ)
]
fk (ψ + φ) dν (ψ) = 0 (7.19)

for all K ∈ S ′
ν . Let us make the ansatz J = R−1

ν φ + H for some H ∈ S ′
ν . Then the

above is true precisely when H minimises the convex function

Mφ : S ′
ν → R T �→

∫
S
exp [T (ψ)] fk (ψ + φ) dν (ψ) . (7.20)

Mφ is clearly well-defined and continuous because it admits the representation

Mφ (T ) = exp

[
1

2
〈T, T 〉

] ∫
S

fk (ψ + φ + RνT ) dν (ψ) (7.21)

in analogy to Zk in Eq. 7.9.We shall now assume that (Hn)n∈N is a minimising sequence
of Mφ and the goal is to show that there is some bounded subsequence.

Since fk is continuous and S admits continuous norms, there is a continuous norm
p on S and some δ > 0 such that

∀ψ ∈ S : p (ψ) ≤ δ �⇒ fk (φ + ψ) ≥ 1

2
fk (φ) . (7.22)

Now, consider the three mutually exclusive cases

1 : lim supn→∞ p (RνHn) = 0,
2 : there is a subsequence (Kn)n∈N such that limn→∞ p (RνKn) ∈ (0,∞),
3 : lim infn→∞ p (RνHn) = ∞.

1: Suppose there exists a continuous seminorm q on S such that

lim sup
n→∞

(p + q) (RνHn) �= 0 . (7.23)

We may then replace the previously used norm p by p + q such that we land in either
case 2 or 3. If we have lim supn→∞(p + q)(RνHn) = 0 for all continuous seminorms q
on S, we clearly have that

B := {RνHn : n ∈ N} + {φ} ⊂ S (7.24)

is compact. Also since ν is Radon there is a compact set C ⊆ S such that ν(C) > 0.
Clearly,

Mφ (Hn) ≥ exp

[
1

2
〈Hn, Hn〉

] ∫
C

fk (ψ + φ + RνHn) dν (ψ) . (7.25)
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Now, fk is continuous so that it attains its infimum on B + C which cannot be zero.
Hence,

inf
ψ∈C fk(ψ + φ + RνHn) ≥ inf

ψ∈B+C fk (ψ) := α > 0 (7.26)

and

Mφ (Hn) ≥ α exp

[
1

2
〈Hn, Hn〉

]
ν (C) . (7.27)

But then, Hn cannot be unbounded in S ′
ν since it is a minimising sequence of Mφ .

For the remaining two cases we shall restrict the integral to a ball of radius 0 < r ≤ δ

in the norm p. Furthermore, νp, the pushforward measure of ν to Sp via the natural map
ιp : S → Sp is a Gaußian measure on a Banach space and we obtain

Mφ (Hn) ≥ 1

2
fk (φ) exp

[
1

2
〈Hn, Hn〉

]
νp

(
Br

(−ιp RνHn
))

(7.28)

for all n ∈ N. Here, Br (−ιp RνHn) denotes the closed ball of radius r around −ιp RνHn
in Sp. Note that the transpose tιp : (Sp)

∗ → S ′
β has dense range because ιp is injective

since p is a norm and not just a seminorm (see [28, Chapter 4, §4, Corollary 2.3]) and S
is reflexive. Hence, by the continuity of Mφ we may assume that Hn ∈t ιp(Sp)

∗ for all
n ∈ N. Furthermore, letting Rνp denote the Hilbert isomorphism between the closure
of (Sp)

∗ in L2(νp) and H(νp), it is straightforward to verify that ιp Rt
νιp is equal to the

restriction of Rνp to (Sp)
∗.

2: Restrict to a subsequence (tιpKn)n∈N of (Hn)n∈N with

– limn→∞ p
(
Rt

νιpKn
) =: P ∈ (0,∞),

– infn∈N p
(
Rt

νιpKn
)

> 1
2 P ,

– supn∈N p
(
Rt

νιpKn
)

< 2P .

Set γ = min{δ, P/2} and in accordance with [20, Corollary 7] (considering t = 1 only)

r = γ

4
and ε = 1 − 3

4

γ

P
∈ (0, 1) . (7.29)

Then, r < (1 − ε)p(Rt
νιpKn) for all n ∈ N. Now, define

gn = −
(
1 − εγ

8P

)
Rνp Kn

implying p
(−Rνp Kn − gn

) = 1

8
εγ

p
(
Rt

νιpKn
)

P
≤ 1

4
εγ = εr .

(7.30)

and note that gn ∈ Rνp (Sp)
∗ for all n ∈ N. Hence, by [20, Corollary 7],

νp

(
Br

(−ιp RνKn
))

≥ exp

[
−1

2

(
1 − εγ

8P

)2 〈tιpKn,
tιpKn

〉]
νp

(
B(1−ε)r (0)

)

(7.31)

which combines with Eq. 7.28 to
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Mφ

(tιpKn
) ≥ 1

2
fk (φ) exp

(
1

2

[
1 −

(
1 − εγ

8P

)2
] 〈tιpKn,

tιpKn
〉)

νp
(
B(1−ε)r (0)

)

(7.32)

for all n ∈ N. By Lemma 2.16 the above is nonzero. Furthermore, εγ < 8P such that
(tιpKn)n∈N must be bounded since it is a minimising sequence of Mφ .

3: Restrict to a subsequence (tιpKn)n∈N of (Hn)n∈N with p(Rt
νιpKn) > 2δ for all

n ∈ N and with the same notation as before, set

ε = 1

2
, r = δ and gn = −

(
1 − δ

2p
(
Rνp Kn

)
)
Rνp Kn (7.33)

for all n ∈ N. Then, clearly

r < (1 − ε) p
(
Rνp Kn

)
and p

(−Rνp Kn − gn
) ≤ εr (7.34)

such that

νp

(
Br

(−Rt
νιpKn

))

≥ exp

⎡
⎣−1

2

(
1 − δ

2p
(
Rνp Kn

)
)2 〈tιpKn,

tιpKn
〉
⎤
⎦ νp

(
B(1−ε)r (0)

)

(7.35)

for all n ∈ N. Now, note that by [4, Theorem 3.2.10(i)], there is a C > 0 such that
p(RνK ) ≤ C

√〈K , K 〉 for all K ∈ S(Rd)′ν . Then, since p(Rνp Kn) > δ/2 we arrive at

νp

(
Br

(−Rt
νιpKn

))

≥ exp

⎡
⎢⎣−1

2

⎛
⎝1 − δ

2C
√〈

tιpKn,tιpKn
〉
⎞
⎠

2 〈tιpKn,
tιpKn

〉
⎤
⎥⎦ νp

(
B(1−ε)r (0)

)

(7.36)

which combines with Eq. 7.28 to

Mφ

(tιpKn
) ≥ 1

2
fk (φ) exp

⎡
⎣δ

√〈
tιpKn,tιpKn

〉
4C

− δ2

8C2

⎤
⎦ νp

(
B(1−ε)r (0)

)
(7.37)

for all n ∈ N. As before, since (tιpKn)n∈N is a minimising sequence of Mφ it must be
bounded.

SinceMφ is continuous and convex, it is alsoweakly lower semicontinuous and hence
attains its minimum by the weak compactness of bounded balls in S ′

ν . ��
So, DWk : S ′

ν → H(ν) is a Fréchet differentiable bijection and by Corollary 7.7
D2

JWk is continuously invertible for all J ∈ S ′
ν and k ∈ R.

Corollary 7.9. The map (k, φ) �→ (DWk)
−1(φ) is continuously Fréchet differentiable.
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Proof. Define g : R × H(ν) × S ′
ν → H(ν) with

(k, φ, T ) �→ DTWk − φ = DT Zk

Zk (T )
− φ . (7.38)

It is continuously Fréchet differentiable by Lemma 7.4 and for all k ∈ R, φ ∈ H(ν) and
K , T ∈ S ′

ν

(
Dk,φ,T g

)
(0, 0, K ) =

(
D2
T Wk

)
(K ) . (7.39)

Since D2
T Wk is continuously invertible, g satisfies the conditions of the implicit function

theorem. ��
Finally, we may define the effective average action Γk : H(ν) → R as

φ �→ sup
J∈S ′

ν

[J (φ) − Wk (J )] − 1

2
Fk (φ, φ) . (7.40)

for all k ∈ R. It is well-defined since the supremum is attained precisely for J =
(DWk)

−1(φ). Hence,

Γk (φ) = (DWk)
−1 (φ) (φ) − Wk

(
(DWk)

−1 (φ)
)

− 1

2
Fk (φ, φ) (7.41)

for allφ ∈ H(ν). By the chain rule the above is also Fréchet differentiablewith derivative
DΓk : H(ν) → S ′

ν given by

φ �→ (DWk)
−1 (φ) − Fk (φ, ·) (7.42)

where we have used the continuous injection S ′
β ↪→ S ′

ν . This is precisely the quantum
equation of motion (see e.g. [14, Equation 22]). But then, we immediately see that we
can take another derivative, leading to

D2Γk : H(ν) → L (
H(ν),S ′

ν

)
φ �→

(
D2

(DWk )
−1(φ)

Wk

)−1 − Fk . (7.43)

Thus, the operators D2
φΓk + Fk ∈ L(H(ν),S ′

ν) are clearly continuously invertible with

the inverses given by D2
(DWk )

−1(φ)
Wk .

A simple calculation entirely analogous to the standard one (see e.g. [14]) now reveals:

Theorem 7.10 (The Wetterich equation).

∂kΓk (φ) = 1

2

∫
Xk

Uk
x

[(
D2

φΓk + Fk
)−1 (

Uk
x

)]
dmk (x) + ∂k ln Nk (7.44)

for all φ ∈ H(ν). Here, Uk
x ∈ (S ′

ν)C denotes the complex conjugate of Uk
x , i.e with

Uk
x (φ) = Uk

x (φ) for all φ ∈ H(ν). Note that Uk
x is still complex linear since H(ν) is a

real vector space. Recall that Xk, mk and Uk
x were defined in Eq. 7.5.
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While this differential equation is in itself already remarkable, its real strength lies
in its boundary conditions. By Lemma 7.9, we clearly have

lim
k→0

Γk (φ) = Γ0 (φ) = Wc
0 (φ) , (7.45)

corresponding to the essential ingredient in Theorem 4.12. Before we can derive the
boundary condition for k → ∞ we need the following theorem.

Theorem 7.11. Let g : S → R be ν-integrable, continuous at zero and |g| ≤ C exp[p2]
for some C > 0 and some continuous seminorm p on S. Then

lim
k→∞

∫
S g (ψ) exp

[− 1
2 Fk (ψ,ψ)

]
dν (ψ)∫

S exp
[− 1

2 Fk (ψ,ψ)
]
dν (ψ)

= g (0) . (7.46)

Proof. Let us first prove that the measures

θk = exp
[− 1

2 Fk (·, ·)]∫
S(Rd )

exp
[− 1

2 Fk (·, ·)] dν (ψ)
· ν (7.47)

converge weakly to the Dirac measure δ0 at the origin as k goes to infinity. To that end,
let Ak : S ′

ν → R denote the moment-generating function of θk . By the Cameron–Martin
theorem we have that

Ak (T ) = exp

[
T (ω) − 1

2

〈
R−1

ν ω, R−1
ν ω

〉
− 1

2
Fk (ω, ω)

]

Ak

(
T −

[
R−1

ν + Fk
]
ω

) (7.48)

for any T ∈ S ′
ν and ω ∈ H(ν). Here, Fk ω denotes the tempered distribution given by

φ → Fk(ω, φ). Now, note that R−1
ν + Fk : H(ν) → S ′

ν is continuously invertible, by
the positivity property of Fk given in Eq. 7.1. Hence, taking ω = (R−1

ν + Fk)−1T , we
arrive at

Ak (T ) = exp

[
1

2
T

((
R−1

ν + Fk
)−1

T

)]
Ak (0) = exp

[
1

2

〈
T, (id + Fk Rν)

−1 T
〉]

.

(7.49)

By analytic continuation T �→ iT , we obtain the characteristic functions

θ̂k (T ) = exp

[
−1

2

〈
T, (id + Fk Rν)

−1 T
〉]

(7.50)

for all T ∈ S ′
β . A necessary condition for the sought convergence is that the functions

θ̂k converge pointwise to 1 as k goes to infinity. Since Fk(φ, φ) is increasing with k for
all φ ∈ S by Eq. 7.5, (id + Fk Rν)

−1 is a decreasing family of positive operators on
S ′

ν . Fixing, any T ∈ S ′
ν we thus have that (id + Fk Rν)

−1T converges in norm to some
K ∈ S ′

ν as k tends to infinity. If K �= 0 we obtain

lim inf
k→∞

〈
K ,

id + Fk Rν

k2
K

〉
= lim inf

k→∞
1

k2
Fk (RνK , RνK ) > 0 (7.51)
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by Eq. 7.2. At the same time

lim inf
k→∞

〈
K ,

id + Fk Rν

k2
K

〉
= lim inf

k→∞

〈
K ,

id + Fk Rν

k2

[
K − (id + Fk Rν)

−1 T
]
+

T

k2

〉

= lim inf
k→∞

〈
id + Fk Rν

k2
K , K − (id + Fk Rν)

−1 T

〉
= 0 ,

(7.52)

where the last equality follows, since Fk Rν/k2 is bounded by Eq. 7.1. Hence, we have
a contradiction and may conclude that limk→∞(id + Fk Rν)

−1T = 0 for all T ∈ S ′
ν . In

particular, we then obtain limk→∞ θ̂k(T ) = 1 for all T ∈ S ′
β . Now, by [4, Corollary

3.8.5], a sufficient criterion for the weak convergence is the uniform tightness of {θk :
k ∈ R}. To prove it, observe that∫

S
T (φ)2 dν (φ) = 〈T, T 〉 ≥

〈
T, (id + Fk Rν)

−1 T
〉
=

∫
S
T (φ)2 dθk (φ)

(7.53)

for all T ∈ S ′
β and hence, θk(B) ≥ ν(B) for every absolutely convex Borel set B ⊆ S

by [4, Theorem 3.3.6]. Because ν is Radon, for any ε > 0 there is a compact set K ⊂ S
with ν(K ) > 1 − ε which, by the completeness of S, may be taken to be absolutely
convex. Hence, θk(K ) > 1− ε as well and we have proven the weak convergence of θk
to δ0.

Let C and p be as stated in the theorem and set ck = θk(p−1([0, 1])). Then
lim inf
k→∞ ck ≥ lim inf

k→∞ θk

(
p−1 ([0, 1))

)
≥ 1 (7.54)

by the Portmanteau theorem. Hence,

lim inf
k→∞ αk := lim inf

k→∞
1

24
ln

ck
1 − ck

= ∞ (7.55)

and there exists l ∈ R such that cl ≥ 3/4 and αl ≥ 2. Consequently, by Fernique’s
theorem [4, Theorem 3.2.10 and Theorem 2.8.5],

∫
S exp[2p2]dθl < ∞ and using [4,

Corollary 3.3.7] as well as the monotonically increasing behaviour of (Fk)k∈R,

sup
k≥l

∫
S
exp[2p2]dθk < ∞ . (7.56)

Applying the continuity of g at zero, for every ε > 0 there is an open neighbourhood
U ⊆ S of the origin such that supφ∈U |g(φ) − g(0)| < ε. Furthermore,

lim
k→∞

∫
S\U

exp[p2]dθk ≤
√
sup
k≥l

∫
S
exp[2p2]dθk · lim sup

k→∞

√
θk (S \U ) = 0 (7.57)

by invoking Hölder’s inequality and the Portmanteau theorem again. Consequently,

lim sup
k→∞

∫
S

|g (φ) − g (0)| dθk (φ) ≤ lim sup
k→∞

∫
U

|g (φ) − g (0)| dθk (φ)

+ [C + g (0)] lim sup
k→∞

∫
S\U

exp
[
p (φ)2

]
dθk (φ) ≤ ε

(7.58)

and the claim follows. ��



A Rigorous Derivation of the Functional 1357

Furthermore, we have the following useful lemmas.

Lemma 7.12. Let k ∈ R, φ ∈ H(ν) and define Xk,φ : S ′
ν → R,

T �→ 1

Nk

∫
S
exp

[
T (ψ) − Sint (ψ + φ) − 1

2
Fk (ψ,ψ)

]
dν (ψ) . (7.59)

Then, DφΓk − R−1
ν (φ) minimises Xk,φ .

Proof. Xk,φ is a moment-generating function and hence convex. Furthermore, by
Eqs. 7.18 and 7.42, DφΓk − R−1

ν (φ) extremises Xk,φ . ��
Lemma 7.13. For all k ∈ R and φ ∈ H(ν)

exp [−Γk (φ)] = exp

[
−1

2
R−1

ν (φ) (φ)

]
Xk,φ

(
DφΓk − R−1

ν (φ)
)

. (7.60)

Proof. Let k ∈ R and φ ∈ H(ν). Then,

exp [−Γk (φ)] = exp

[
− (DWk)

−1 (φ) (φ) +Wk

(
(DWk)

−1 (φ)
)
+
1

2
Fk (φ, φ)

]

= 1

Nk

∫
S
exp

[
− Sint (ψ) + (DWk)

−1 (φ) (ψ − φ)

+
1

2
Fk (φ, φ) − 1

2
Fk (ψ,ψ)

]
dν (ψ)

= 1

Nk

∫
S
exp

[
− 1

2
R−1

ν (φ) (φ) − Sint (ψ + φ) + (DWk)
−1 (φ) (ψ)

− Fk (ψ, φ) − 1

2
Fk (ψ,ψ) − R−1

ν (φ) (ψ)

]
dν (ψ)

= exp

[
−1

2
R−1

ν (φ) (φ)

]
Xk,φ

(
DφΓk − R−1

ν (φ)
)

.

(7.61)

��
Collecting all of the above, we can finally calculate the limit for k → ∞.

Theorem 7.14. For all φ ∈ H(ν),

lim
k→∞ Γk (φ) = 1

2
R−1

ν (φ) (φ) + Sint (φ) − Sint (0) . (7.62)

Proof. Let k ∈ R and φ ∈ H(ν). Since DφΓk − R−1
ν (φ) minimises Xk,φ , we have

exp [−Γk (φ)] ≤ exp

[
−1

2
R−1

ν (φ) (φ)

]
Xk,φ (0)

= 1

Nk

∫
S
exp

[
−1

2
R−1

ν (φ) (φ) − Sint (ψ + φ) − 1

2
Fk (ψ,ψ)

]
dν (ψ) .

(7.63)
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By assumption, exp[−Sint(φ + ψ)] ≤ Cφ exp[p(ψ)2] for some Cφ > 0 and some
continuous seminorm p on S. Hence, we may now apply Theorem 7.11 leading to

lim sup
k→∞

exp [−Γk (φ)] ≤ exp

[
−1

2
R−1

ν (φ) (φ) − Sint (φ) + Sint (0)

]
. (7.64)

For the converse inequality let n ∈ N and pick a balanced neighbourhood Un of zero in
S such that

∀ψ ∈ Un : exp
[
−Sint (φ + ψ)

]
≥ n

n + 1
exp

[
−Sint (φ)

]
. (7.65)

Then,

inf
T∈S ′

ν

Xk,φ (T ) ≥ n

n + 1
exp

[
−Sint (φ)

]

× inf
T∈S ′

ν

1

Nk

∫
Un

exp

[
T (ψ) − 1

2
Fk (ψ,ψ)

]
dν (ψ) .

(7.66)

Now, note that the above integral is invariant under the change of T �→ −T since ν is
centred. Furthermore, it is clearly a convex function of T . Hence, the infimum is attained
at T = 0 and

inf
T∈S ′

ν

Xk,φ (T ) ≥ n

n + 1
exp

[
−Sint (φ)

] 1

Nk

∫
Un

exp

[
−1

2
Fk (ψ,ψ)

]
dν (ψ) . (7.67)

But then

lim inf
k→∞ exp [−Γk (φ)] ≥ n

n + 1
exp

[
−1

2
R−1

ν (φ) (φ) − Sint (φ) + Sint (0)

]
(7.68)

by Theorem 7.11 and since n ∈ N was arbitrary, the result follows. ��
Most commonly, Wetterich’s equation is used without regards to domains and often

without taking the effect of regularising operators such asR into account. Recall thatR
(with an extra regularisation index n that we do not write out explicitly in this section)
is given by the regularisation scheme introduced in Sect. 5. However, we now have the
tools to formulate the standard procedure in a rigorous fashion. The standard choice
for Fk is a multiplication operator in Fourier space. Hence, let us choose Fk such that
Xk = R

d for all k ∈ R, Ak is the corresponding Borel sigma algebra and

Uk
p = Fp :=

[
φ �→ φ̂ (p)

]
, R : R × R

d → R, (k, p) �→ Rk (p) ,

Fk (φ, φ) =
〈
φ̂, Rk · φ̂

〉
L2(Rd )C

, mk = ∂k Rk · Ld ,
(7.69)

where Ld is the Lebesgue measure on Rd , ∂k Rk is taken to exist Ld -almost everywhere
and R is regular enough for Eq. 7.5 to hold. Let us fix some orthonormal basis (en)n∈N of
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L2(Rd) in S(Rd). With the continuous injection of S(Rd) into S(Rd)∗β via the L2(Rd)

inner product, we then have

Tr
(
D2

φΓk + Fk
)−1 =

∞∑
n=1

(
D2

(DWk )
−1(φ)

Wk

)
(en, en)

≤ 2/Nk

Zk
(
(DWk)

−1 (φ)
)

∫
S(R)

‖ψ‖2L2(Rd )

× exp
[
(DWk)

−1 (φ) (ψ)
]
fk (ψ) dν (φ) < ∞

(7.70)

byHölder’s inequality andFernique’s theorem[4,Theorem3.2.10]. In particular, (D2
φΓk+

Fk)−1 induces a trace-class operator on L2(Rd). Moreover, by passing to L2(Rd)C,

Tr
(
D2

φΓk + Fk
)−1 =

∫
Rd

F−p

[(
D2

φΓk + Fk
)−1 Fp

]
dp < ∞ . (7.71)

Remark 7.15. The same reasoning also applies to Rν with

TrRν =
∫
Rd

δx [Rνδx ] dx < ∞ , (7.72)

where δx denotes the Dirac distribution at the point x ∈ R
d . Consequently, Rν �= 0

cannot be translation equivariant because in that case the above integrand would be
constant and the integral infinite.

Letting M( f ) denote the multiplication operator on L2
C
(Rd) by a function f , it is

now clear that

∂kΓk (φ) = 1

2
Tr

{
M (∂k Rk)

[
F ◦ D2

φΓk ◦ F−1 + M (Rk)
]−1

}
+ ∂k ln Nk . (7.73)

Apart from the ∂k ln Nk term this is exactly the FRGE in physicists’ notation. Making a
simple subtraction even removes ∂k ln Nk completely.

Theorem 7.16 (Wetterich’s equation (second formulation)).

∂k Γ̄k (φ) = 1

2
Tr

{
M (∂k Rk)

( [
F ◦ D2

φΓ̄k ◦ F−1 + M (Rk)
]−1

−
[
F ◦ D2

0 Γ̄k ◦ F−1 + M (Rk)
]−1

)} (7.74)

for all φ ∈ H(ν) where Γ̄k(φ) = Γk(φ) − Γk(0). Furthermore,

Γk (0) = − inf
φ∈H(ν)

Γ̄k (φ) (7.75)

and

lim
k→∞ Γ̄k (φ) = 1

2
R−1

ν (φ) (φ) + Sint (φ) − Sint (0) . (7.76)

Proof. The differential equation and the k → ∞ limit is clear. The expression for Γk(0)
follows from Wk(0) = 0 since fk/Nk · ν is a probability measure. ��
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The subtraction of the φ = 0 contribution of the full propagator is quite remarkable
because it is precisely what is done under the hood in concrete calculations involving the
‘non-regularised’ FRGE. Furthermore, it motivates the common practise of expanding
both sides in powers ofφ and solving the equation order by order. In fact, it is easy to show
that under rather mild conditions one may Gâteaux differentiate under the trace owing
to the fact that Zk is actually Fréchet-C∞. Hence, solving order by order is justified but
whether the resulting solution is analytic is not clear from these equations. Resulting
expressions including combinatorics may be extracted from [35].

The achievement of Theorem 7.16 is the rigorous derivation of the FRGE and the
exposure of correct domains and boundary conditions of Γ̄k . Notably, the k → ∞ limit
depends onR since R−1

ν can be seen as the continuous extension of tR−1 ◦ B ◦R−1 on
a suitable domain.

An unfortunate consequence is that it becomes impossible to choose a trace-classR
in such a way that Rν is translation equivariant. Hence, while the differential equation
for Γ̄k respects translation invariance the boundary condition at k → ∞ does not which
may pose a severe difficulty in concrete calculations. On the bright side, the fact that the
involved operators are trace class and self-adjoint on L2

C
(Rd) implies that they have a

complete basis of eigenvectors. It seems likely that this fact can be exploited in numerical
calculations. All in all, Wetterich’s equation is shown to have a rigorous foundation
and if one chooses to parametrise Rn by cutoffs instead of N, one may compute their
corresponding explicit contributions to Γ̄k and Γk respectively.

Finally, Theorem 4.12 gives a precise condition under which the n → ∞ limit
corresponds to ameasure onS ′

β withWc
n = Γ n

0 nowwith explicitlywritten regularisation
index.
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