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Abstract: We consider a system of N hard spheres sitting on the nodes of either the
FCC or HCP lattice and interacting via a sticky-disk potential. As N tends to infinity
(continuum limit), assuming the interaction energy does not exceed that of the ground-
state bymore than N 2/3 (surface scaling), we obtain the variational coarse grainedmodel
by �-convergence. More precisely, we prove that the continuum limit energies are of
perimeter type and we compute explicitly their Wulff shapes. Our analysis shows that
crystallization on FCC is preferred to that on HCP for N large enough. The method is
based on integral representation and concentration-compactness results that we prove
for general periodic lattices in any dimension.

1. Introduction

A fundamental problem in crystallography is to understandwhy ensembles of large num-
ber of atoms arrange themselves into crystals at low temperatures. From themathematical
point of view, proving that equilibrium configurations of certain phenomenological in-
teraction energies exhibit these structures is referred to as the crystallization problem
[8].

At zero temperature the internal energy of a configuration of atoms is expected to
be solely governed by its geometric arrangement. Within the framework of molecular
mechanics [1,26,34], one identifies each ensemble of atoms with its atomic positions
X = {x1, . . . , xN } ⊂ R

3 and associates to it a configurational energy of the form

E(X) := 1

2

∑

i �= j

V (|xi − x j |) ,

where V : R → R ∪ {+∞} is an empirical pair interaction potential (the factor 1
2 ac-

counts for double counting). Such potentials are typically repulsive at short distances
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Fig. 1. The sticky disc interaction potential V

and attractive at large distances. While clustering is favored by long range attraction, the
density of a cluster cannot get too large due to short-range repulsion.

Notably, even under simplifying assumptions on the interaction potentials, the math-
ematical literature on rigorous crystallization results is scarce. In fact, for finite N , only
results in one and two space dimensions are available. For example, if V is of Lennard–
Jones type, crystallization has been proved only in one space dimension [28]. In higher
space dimensions only partial results are available. Most notably, in [22,35,44] it has
been proven that crystalline structures have optimal bulk energy scaling. In two dimen-
sions, only results for (some variants of) the sticky disc potential (see Fig. 1)

V (r) :=

⎧
⎪⎨

⎪⎩

+∞ if r < 1 ,

−1 if r = 1 ,

0 otherwise
(1)

are available [18,31,33,40].
More recently, crystallization results have been proved for ionic compounds [23,24]

and carbon structures in [39]. The potential given in (1) models the atoms as hard spheres
that interact exactly when two of them are tangent. In R

n the kissing number k(n) is
the highest number of n-dimensional spheres of radius 1

2 which are tangent to a given
sphere of the same size. It is well known that k(2) = 6 and k(3) = 12, see [42]. For a
given configuration of non-overlapping equal balls centered at X = {x1, . . . , xN } ⊂ R

n ,
N ∈ N ∪ {+∞} the coordination number of x ∈ X is the number of spheres centered at
y ∈ X\{x} and tangent to the one centered at x . In two dimensions there is a unique (up
to a rigid motion) configuration made of infinitely many particles such that all atoms
have as coordination number the kissing number. Such a set X is the triangular lattice
with lattice spacing one. In three dimensions the problem is much more intricate. In
fact, there exist infinitely many configurations (even distinct up to rigid motion) with
constant coordination number equal to k(3). An infinite class of configurations can be
obtained by stacking in an appropriate way layers of triangular lattices. A remarkable
result by Hales [30] shows that all such structures solve Kepler’s conjecture, which
is to say that they have the maximal packing density in R

3. Two notable cases of the
aforementioned structures are the face-centered cubic lattice LFCC and the hexagonal
closed-packed lattice LHCP (see (6)–(8) for their precise definition) which are the most
prevalent among the crystalline arrangements in the periodic table of elements.
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In this paper we want to investigate already crystallized configurations, i.e. config-
urations X ⊂ L where L = LFCC or L = LHCP, see (5)–(8) for their definitions. For
such X = {x1, . . . , xN } ⊂ L, fixing the lattice spacing to be 1, we have

E(X) = 1

2

∑

i �= j

V (|xi − x j |) = −
N∑

i=1

#(N (xi ) ∩ X) ,

where N (x) = {y ∈ L : |x − y| = 1} .

As described above the minimal energy per atom is −k(3) = −12. Further information
on E as N grows can be obtained by referring it to the minimal energy per atom and
calculating the excess energy EN (X) defined below. More precisely, in Theorem 2.3, we
carry out a rigorous variational asymptotic expansion (see [12]) of E(X), by considering

EN (X) = N−2/3 (E(X) + 12N ) = N−2/3
N∑

i=1

(12− #(N (x) ∩ X)) (2)

and calculating its �-limit [9,15] as N tends to infinity. This analysis has been done in
two dimensions for configurations confined to the triangular lattice [7] as well as without
any confinement assumption [25]. Note that the scaling factor N−2/3 is used in order
to keep the energy bounded as the number of atoms grows. In fact, given a low energy
configuration of N atoms, the number of those contributing to the energy scales like
N 2/3 for N large. By associating to each configuration its rescaled emprical measure

μN (X) := 1

N

N∑

i=1

δN−1/3xi ,

we show in Theorem 2.3 (i) that the sequence of rescaled energies (2) is equi-coercive
with respect to theweak*-convergence of the associated empiricalmeasures. In Theorem
2.3 (ii), (iii) we exploit integral representation theorems [2,3,5] to show that the limit
energy is finite on the set of measures μ = √

2L3
V , where V ⊂ R
3 is a set of finite

perimeter, on which the energy takes the form

EL(μ) :=
∫

∂∗V
ϕL(ν) dH2 . (3)

Here, ∂∗V denotes the reduced boundary of the set V , ν(x) denotes its unit outer normal
at the point x ∈ ∂∗V and ϕL is an anisotropic surface energy density depending on
the underlying lattice L. In the case of multi-lattices, like the HCP-lattice, this integral
representation result has not yet been proven in the literature. We defer to Sect. 5 for
a proof of this result whose main ingredient is the integral representation theorem in
[3]. Furthermore, in the same section we prove general compactness and concentration
lemmata that ensure the convergence of the rescaled empirical measures of minimizers
of the discrete problem (2) to the Wulff shape (up to a constant density factor) of the
associated limiting anisotropic perimeter energy (21). Such kind of result was previously
known only in two dimensions [7]. Its extension to higher dimensions, see Lemma
5.16, requires more refined tools from geometric measure theory that, to the best of our
knowledge, are exploited in this setting here for the first time. We would like to point to
[10,11,20,29] for some recent work on the study on crystalline Wulff shapes stemming
from discrete systems on Bravais lattices as well as on quasicrystals. The main body
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of this work lies in the calculation of the surface energy density ϕL : R3 → [0,+∞)

both for the FCC and the HCP lattices. Here, we take advantage of a recently proved
finite cell formula [13]. Finally, for both lattices, we solve the associated isoperimetric
problem [21]

mL := min

{∫

∂∗V
ϕL(ν) dH2 : |V | = 1

}
(4)

by calculating the (up to translation unique) set realizing the minimum in (4), also
known as the Wulff shape [45]. We show that mFCC < mHCP which also implies (since
�-convergence and coercivity implies the convergence ofminimumvalues) that, for large
number of atoms, crystallization on the face-centered cubic lattice is preferred to that on
the hexagonal-closed packed lattice. This result supports the very recent experimental
findings on crystallization in colloidal matters [41]. We finally mention [6] for some
preliminary computations on the Wulff shape of the FCC and HCP.

In contrast to the uniqueness of theWulff crystal in the continuum setting, minimizers
to the discrete isoperimetric problem [32] are non-unique [19]. Over the last years there
has been a remarkable interest in establishing fluctuation estimates between different
minimizers, i.e., estimating (several notions of) distances between different minimizers.
Maximal fluctuation estimates between two minimizers have been first conjectured in
[7] in the case of the crystallization on the triangular lattice and have been later proved
in [17,43]. The same estimates have been proved in [16,23,24,37] for the square and the
honeycomb lattices, respectively. A general approach linking the quantitative anistropic
isoperimetric inequality to such fluctuation estimates has been set up in [14] by two
of the authors. In dimensions larger than two these fluctuation estimates have been
only established for the cubic lattice in [36] and for Zd in [38]. In order to establish
the aforementioned fluctuation estimates, however, an understanding of the limiting
macroscopic Wulff shape is essential. Since the present work yields these shapes for the
FCC and HCP lattices, it is our opinion that it may be considered an indispensable first
step to prove fluctuation estimates also for such lattices.

The article is structured as follows. InSect. 2we introduce the necessarymathematical
preliminaries, the model, and the main results. In Sect. 3 we prove Proposition 2.4 and
2.5, by calculating the surface energy density as well as the Wulff crystal associated to
both the FCC and theHCP lattices. In Sect. 4 we prove themain�-convergence Theorem
2.3. The latter is a consequence of a more general theory for discrete perimeter energies
on general periodic lattices developed in Sect. 5.

2. Setting and Notation

Given a set of vectors V ⊂ R
n we denote by spanZV the set of finite linear combinations

of elements of V with coefficients in Z. We denote byM the collection of all Lebesgue
measurable subsets of Rn . Given V ∈ M we denote by |V | its n-dimensional Lebesgue
measure, i.e., |V | = Ln(V ), and Hk its k-dimensional Hausdorff measure. Given a
countable set X , we denote by #X the cardinality of X . Given a, b ∈ R

n we denote
by 〈a, b〉 their scalar product. We denote by S

n−1 the set of unitary vectors in R
n . For

any ν ∈ S
n−1 let {ν1, . . . , νn = ν} be an orthonormal basis of Rn , and let Qν := {x ∈

R
n : |〈x, νi 〉| < 1/2, i = 1, . . . , n} be a unit cube centered at the origin with faces

parallel and orthogonal to ν. For T > 0 and x ∈ R
n we set Qν

T (x) = x + T Qν and
we write Qν

T = Qν
T (0). For r > 0 and x ∈ R

n we denote by Br (x) the n-dimensional
Euclidean ball of radius r centered at x (for x = 0 we write Br in place of Br (0)) and
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we set ωn = |B1(x)|. For r > 0 and A ⊂ R
n we set (A)r = A + Br . For 0 < r1 < r2

we define Ar1,r2 := Br2\Br1 and for x ∈ R
n we set Ar1,r2(x) = Ar1,r2 + x . Given

A ⊂ R
n open, we define the set of non-negative Radon measures by M+(A). We say

that {μk}k ⊂ M+(A) converges to μ ∈ M+(A) with respect to the weak star topology

and we write μk
∗
⇀ μ if

lim
k→∞

∫

A
ϕ dμk =

∫

A
ϕ dμ for all ϕ ∈ Cc(A) .

We denote by BV (A) the space of functions of bounded variation in A and we denote by
BVloc(A) = {u ∈ L1

loc(A) : u ∈ BV (K ) for all K ⊂⊂ A, K open}. Given a function
u ∈ BV (A) we use the notation of [4] for the jump set Ju and the measure theoretic
normal νu : Ju → S

n−1. For V ⊂ A, V ∈ M we denote the relative perimeter of V in
A by

Per(V, A) = sup

{∫

V
div v dx : v ∈ C∞

c (A;Rn), ‖v‖∞ ≤ 1

}
.

In Sects. 2–4 we set n = 3.

Definition ofHCP and FCC lattices. In the following we define the face-centered cubic
lattice (short FCC-lattice) and the hexagonal closed-packed lattice (short HCP-lattice).
To this end, we introduce the vectors

b1 := 1√
2

⎛

⎝
1
1
0

⎞

⎠ , b2 := 1√
2

⎛

⎝
1
0
1

⎞

⎠ , b3 := 1√
2

⎛

⎝
0
1
1

⎞

⎠ (5)

and

e1 :=
⎛

⎝
1
0
0

⎞

⎠ , e2 := 1

2

⎛

⎝
1√
3
0

⎞

⎠ , e3 := 2

3

√
6

⎛

⎝
0
0
1

⎞

⎠ , v1 := 1

3
(e1 + e2) +

1

2
e3 .

(6)

We define the FCC-lattice as

LFCC := spanZ {b1, b2, b3} (7)

and the HCP-lattice by

LHCP := spanZ {e1, e2, e3} ∪
(
spanZ {e1, e2, e3} + v1

)
. (8)

The two lattices are illustrated in Fig. 2. We shall write L to generically denote one of
the two lattices defined above. We define the neighborhood of a point x ∈ LFCC as the
set

NFCC(x) := {±b1,±b2,±b3,±(b1 − b2),±(b1 − b3),±(b2 − b3)} + x . (9)

Similarly, for a point x ∈ LHCP we define its neighborhood as follows: if x ∈
spanZ{e1, e2, e3} then

NHCP(x) := {±e1,±e2,±(e1 − e2), v1, v1 − e1, v1 − e2, v1 − e3,
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Fig. 2. On the left: The FCC-lattice. On the right: TheHCP-lattice. Pairs of points at distance one are connected
via the dashed lines

v1 − e1 − e3, v1 − e2 − e3} + x , (10)

while if x ∈ spanZ{e1, e2, e3} + v1 then

NHCP(x) := {±e1,±e2,±(e1 − e2),−v1, e1 − v1, e2 − v1, e3 − v1,

e1 + e3 − v1, e2 + e3 − v1} + x . (11)

Note that NFCC(x) = NFCC(0) + x for all x ∈ LFCC, while this is no more the case for
x ∈ LHCP. Also for N we omit the subscript if we do not need to distinguish between
FCC and HCP. It is straightforward to check that for all x, y ∈ L,

x ∈ N (y) ⇐⇒ |x − y| = 1 .

Given L we define the Voronoi cell of x ∈ L (with respect to L) by
VL(x) := {y ∈ R

3 : |y − x | ≤ |y − z| for all z ∈ L} . (12)

Accordingly, given ε > 0 we write VεL(x) for the Voronoi cell centered at x ∈ εL with
respect to the scaled lattice εL. Given X ⊂ εL we say that y ∈ Nε(x) if and only if
ε−1y ∈ N (ε−1x).

Definition of the energy. Given X ⊂ L and A ⊂ R
3 we define the configurational

energy of X localized to the set A as

EL(X, A) := 1

2

∑

x∈X∩A

#(N (x)\X) +
1

2

∑

x∈(L\X)∩A

#(N (x) ∩ X) . (13)

Note that, if A = R
3 we have that

∑

x∈L\X
#(N (x) ∩ X) = #{(x, y) : x ∈ L\X, y ∈ N (x) ∩ X}

= #{(x, y) : y ∈ X, x ∈ N (y)\X} =
∑

y∈X
#(N (y)\X) ,
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and so (13), up to the scaling factor N−2/3, agrees with (2) if A = R
3. In the formula

above we can interpret the set X as the occupancy of the crystal L, i.e., the set of those
nodes of L occupied by atoms. The quantity #(NL(x)\X) is also known as the valence
of the point x with respect to X , i.e., the number of neighbours missing in X in order to
have a neighbourhood ofmaximal cardinality. Note that we can also rewrite the localized
energy as

EL(X, A) = 1

2

∑

x∈L∩A

∑

y∈L
c(x, y)|χX (y) − χX (x)| ,

where

c(x, y) =
{
1 if y ∈ N (x) ,

0 otherwise.
(14)

Periodicity of the interaction coefficients. By definition

LFCC = LFCC + b1 = LFCC + b2 = LFCC + b3.

As a consequence of that, for any x, y ∈ LFCC it holds that

c(x + b1, y + b1) = c(x + b2, y + b2) = c(x + b3, y + b3) = c(x, y) .

According to the last two equalities, we say that the latticeLFCC as well as the interaction
coefficients of its configurational energy are periodic with periodicity cell

TFCC = {λ1b1 + λ2b2 + λ3b3 : λi ∈ [0, 1)} , (15)

or simply that they are TFCC-periodic. Similarly, we observe thatLHCP and its interaction
coefficients are THCP-periodic, where the periodicity cell is defined as

THCP = {λ1e1 + λ2e2 + λ3e3 : λi ∈ [0, 1)} . (16)

Surface scaling of the configurational energy. For ε > 0 and X ⊂ εL we consider the
energy

GL,ε(X) := ε2
∑

x∈X
#(Nε(x)\X) .

Assuming that X ⊂ εL and #X ≈ ε−3 the volume occupied by the union of the spheres
centered at x ∈ X with diameter ε is of order one. Thus, the scaling factor ε2 in the
energy functional is denoted by surface scaling. We also define the rescaled empirical
measures associated to the configuration X as

με := ε3
∑

x∈X
δx . (17)

Upon identifying X ⊂ εL with its empirical measure με, we can regard these energies
to be defined onM+(R

3) by setting

EL,ε(μ) :=
{
GL,ε(X) if μ = με given in (17) for some X ⊂ εL ,

+∞ otherwise.
(18)
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The coarse grained continuum energy. ForLwe define the homogenized surface energy
density ϕL : R3 → [0,+∞] as the convex positively homogeneous function of degree
one such that for all ν ∈ S

2 we have

ϕL(ν) := lim
T→+∞

1

T 2 inf
{
EL(X, Qν

T ) : X ⊂ L, χX (i) = uν(i) for i ∈ L\Qν
T−3

}
,

(19)

where uν is given by

uν(x) :=
{
1 if 〈x, ν〉 ≥ 0 ;
0 otherwise.

In order to be able to apply [13, Proposition 2.6] and eventually obtain an alternative
representation of ϕL (up to a coordinate transformation and reparametrization of the
interaction coefficients), we define for u : L → R, A ⊂ R

3 the energy

FL(u, A) := 1

2

∑

x∈L∩A

∑

y∈L
c(x, y)|u(y) − u(x)| .

We are now in position to state [13, Proposition 2.6].

Proposition 2.1. Let c(x, y) be as in (14). Then

ϕL(ν) = 1

|TL| inf {FL(u, TL) : u : L → R, u(·) − 〈ν, ·〉 is TL-periodic} . (20)

With the definition of surface energy density at handwe can define the coarse-grained
continuum energy EL : M+(R

3) → [0,+∞] as

EL(μ) :=
{∫

∂∗V ϕL(ν) dH2 if μ = √
2L3
V , χV ∈ BVloc(R3) ,

+∞ otherwise.
(21)

with ϕL given by (19). Here, ∂∗V denotes the reduced boundary of the set V , ν its outer
normal and H2, as noted at the beginning of this section, stands for the 2-dimensional
Hausdorff measure in R3 (cf. [4], Chapters 2.8 and 3.5).

The Wulff crystal. In this section we calculate the Wulff crystals of the coarse grained
FCC and HCP lattices. To the best of our knowledge, this is the first time that such
a calculation has been carried out in a rigorous analytical way. In what follows we
introduce the notion of Wulff shape in the general case of Rn . While in the rest of this
section we limit ourselves to the case n = 3, in Sect. 5 we consider general n.

Given ϕ : Rn → [0,+∞) convex, non-degenerate, (i.e. there exist 0 < c < C such
that c ≤ ϕ(ν) ≤ C for all ν ∈ S

n−1) positively homogeneous of degree one, we define
the Wulff set of ϕ by

Wϕ := {ζ ∈ R
n : ϕ◦(ζ ) ≤ 1} , (22)

where ϕ◦ : Rn → [0,+∞) is defined as

ϕ◦(ζ ) = sup
ν∈Sn−1

〈ν, ζ 〉
ϕ(ν)

,
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Thanks to the anistropic isoperimetric inequality (cf. [21]), we have thatWϕ is the unique
(up to rigid motions) minimizer of

min

{∫

∂∗A
ϕ(ν) dHn−1 : |A| = |Wϕ |

}
.

Given λ > 0 we set Wλ =
(

λ
|Wϕ |

)1/n
Wϕ so that |Wλ| = λ and, by scaling, it solves the

minimum problem above among all sets A ⊂ R
n with |A| = λ.

Definition 2.2. Let (X, τ ) be a topological space and let Fk : X → [0,+∞]. For x ∈ X
we set

�- lim sup
k→+∞

Fk(x) = inf

{
lim sup
k→+∞

Fk(xk) : xk τ→ x

}

and

�- lim inf
k→+∞ Fk(x) = inf

{
lim inf
k→+∞ Fk(xk) : xk τ→ x

}
.

If there exists F : X → [0,+∞] such that

F(x) = �- lim sup
k→+∞

Fk(x) = �- lim inf
k→+∞ Fk(x) ,

we say that Fk �-converges with respect to τ to F and we write

F(x) = �- lim
k→+∞ Fk(x) .

If we have (Fε)ε>0 : X → [0,+∞] we say that Fε �-converges with respect to τ to F
if Fεk �-converges with respect to τ to F for all εk → 0.

The following variational coarse-graining result is proved in Sect. 4.

Theorem 2.3. Let ε → 0, and let EL,ε and EL be the energy functionals defined in (18)
and (21), respectively.

(i) (Compactness) Let {με}ε ⊂ M+(R
3) be such that

sup
ε>0

EL,ε(με) < +∞ .

Then there exists V ⊂ R
3 such that χV ∈ BVloc(R3), μ = √

2L3
V , and a subse-

quence (not relabeled) such that με
∗
⇀ μ. Furthermore, if με is such that

EL,ε(με) = inf
{
EL,ε(μ) : ν ∈ M+(R

3), |ν|(R3) = ε3nε

}
,

with ε3nε → √
2v, then, up to translation, μ = √

2L3
W v
ϕL

, where W v
ϕL = λWϕL

[defined in (22)] for λ > 0 such that |W v
ϕL | = v.

(ii) (Liminf inequality) Let με,μ ∈ M+(R
3) be such that με

∗
⇀ μ as ε → 0. Then

EL(μ) ≤ lim inf
ε→0

EL,ε(με) .

(iii) (Limsup inequality) Let μ ∈ M+(R
3). Then there exists {με}ε ⊂ M+(R

3) such that

με
∗
⇀ μ and

EL(μ) ≥ lim sup
ε→0

EL,ε(με) .
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Fig. 3. The Wulff Crystal of the FCC-lattice on the left and of the HCP-lattice on the right

Fig. 4. The sublevel set {ϕFCC ≤ 1} on the left and the sublevel set {ϕHCP ≤ 1} on the right

Explicit formula of the surface energy densities. Taking advantage of the representation
formula (20) stated in Proposition (2.1), we provide the explicit formulas of the surface
energy density ϕLFCC and ϕLHCP . Their sublevel sets are depicted in Fig. 4. With the
two explicit formulas at hand we can calculate the polar functions of both densities, the
associated Wulff shapes and the surface energy per unit volume of both the FCC and
HCP crystals. In order not to overburden the reader with notation, we write ϕFCC and
ϕHCP for ϕLFCC and ϕLHCP as well as WFCC and WHCP instead of WϕLFCC

and WϕLHCP
.

WFCC and WHCP are depicted in Fig. 3.

Proposition 2.4. The following formulas hold true.

ϕFCC(ν) = |ν1 + ν2| + |ν1 + ν3| + |ν2 + ν3| + |ν1 − ν2| + |ν1 − ν3| + |ν2 − ν3| , (23)

and

ϕ◦
FCC(ζ ) = max

{
1

4
‖ζ‖∞,

1

6
‖ζ‖1

}
. (24)

In particular, WFCC is a truncated octahedron and its surface energy per unit volume is

|WFCC|−2/3
∫

∂∗WFCC

ϕFCC(ν) dH2 = 3 · 22/3 · 641/3 . (25)
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Proposition 2.5. The following formulas hold true.

ϕHCP(ν) = √
2 (|〈e1, ν〉| + |〈e2, ν〉| + |〈e1 − e2, ν〉|) + 1√

2
|〈e3, ν〉|

+
√
2max {|〈e1, ν〉|, |〈e2, ν〉|, |〈e3, ν〉|, |〈e1 − e2, ν〉|} ,

(26)

and

ϕ◦
HCP(ζ ) = max

{ 2

7
√
2

(
|ζ1| + 1√

3
|ζ2| + 3

2
√
6
|ζ3|

)
,

1

2
√
3
|ζ3|,

2

3
√
6
|ζ2|, 4

7
√
6
|ζ2| + 3

14
√
3
|ζ3|, 1

3
√
2

(
|ζ1| + 1√

3
|ζ2|

)}
.

(27)

In particular, WHCP is a truncated elongated hexagonal bipyramid and its surface energy
per unit volume is

|WHCP|−2/3
∫

∂∗WHCP

ϕHCP(ν) dH2 = 3 · 22/3 · 651/3 . (28)

Remark 2.6. Our main results imply that there exists N ∈ N such that, for the Hard-
Sphere model and for configurations whose cardinality exceeds N , crystallization on
the FCC-lattice is energetically favorable to crystallization on the HCP-lattice. Indeed,
given ε → 0 and {nε}ε ⊂ N such that ε3nε → √

2v, Theorem 2.3, (21), together with
the anisotropic isoperimetric inequality implies

lim
ε→0

inf
ν∈M+(R3)

|ν|=ε3nε

EL,ε(ν) = min
μ∈M+(R3)

|μ|=√
2v

EL(μ) = EL(
√
2χW v

ϕL
) . (29)

Now, in particular for n → +∞ and εn = n−1/3, we have ε3nn = 1 and thus v = 2−1/2.
Therefore, given X ⊂ L such that #X = n, its empirical measure μn(X) (defined in
(17)) minimizes EL,n−1/3 subject to the constraint |μ|(R3) = 1, and we obtain

min
Y⊂L
#Y=n

EL,n−1/3(μn(Y )) = EL,n−1/3(μn(X)) = EL(
√
2χW v

ϕL
) + o(1) .

Thus, using (2), (25), and (28), for minimizing configurations Xn
FCC ⊂ LFCC and

Xn
HCP ⊂ LHCP such that #Xn

FCC = #Xn
HCP = n we obtain

min
X⊂LFCC
#X=n

E(X) = E(Xn
FCC) = −

∑

x∈Xn
FCC

#
(N (x) ∩ Xn

FCC

)

= −12n + n2/3
(
6 · 641/3 + o(1)

)

and

min
X⊂LHCP
#X=n

E(X) = E(Xn
HCP) = −

∑

x∈Xn
HCP

#
(N (x) ∩ Xn

HCP

)

= −12n + n2/3
(
6 · 651/3 + o(1)

)
.
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Thus for n big enough

min
X⊂LHCP
#X=n

E(X) = −12n + n2/3
(
6 · 651/3 + o(1)

)
> −12n + n2/3

(
6 · 641/3 + o(1)

)

= min
X⊂LFCC
#X=n

E(X) .

This shows that crystallization on the FCC-lattice is preferable to crystallization on the
HCP-lattice.

3. Proof of Propositions 2.4 and 2.5

In this section we prove Propositions 2.4 and 2.5. To this end, we use Proposition 2.1 to
note that ϕL is given by (20).

Proof of Proposition 2.4. We divide the proof into several steps. First, we calculate
ϕFCC. Then, we calculate ϕ◦

FCC. Lastly, we calculate (25). Recall (5).
Step 1 (Calculation of ϕFCC) We make use of Proposition 2.1 in order to calculate ϕFCC.
First of all, owing to (15), we note that

|TFCC| = 1

3

√
6 · 1

2

√
3 = 1

2

√
2 . (30)

Given u : LFCC → R such that u(·) − 〈ν, ·〉 is TFCC-periodic we have that u(x + bi ) =
u(x) + 〈bi , ν〉 for all i = 1, 2, 3. Therefore, u is an affine function of the form u(x) =
〈x, ν〉 + c , x ∈ LFCC for some c ∈ R. Lastly, note that LFCC ∩ TFCC = {0}. Using (20)
and (30), we obtain

ϕFCC(ν) = 1

2

√
2

∑

ξ∈NFCC

|u(ξ) − u(0)| = 1

2

√
2

∑

ξ∈NFCC

|〈ξ, ν〉| .

Employing now (9), we obtain (23).
Step 2 (Calculation of ϕ◦

FCC) Let G be the isometry group on R3 whose elements g ∈ G
are the linear isometries g : R3 → R

3 defined by g(ν1, ν2, ν3) = (β1νπ1 , β2νπ2 , β3νπ3)

where π is a permutation on {1, 2, 3} and βi ∈ {−1, 1}. Since ϕFCC(g(ν)) = ϕFCC(ν)

for all g ∈ G, ν ∈ R
3, we infer that

ϕ◦
FCC(ζ ) := max

ν∈R3

ϕFCC(ν)≤1

〈ζ, ν〉 = max
ν∈R3

ϕFCC(g−1(ν))≤1

〈ζ, g−1(ν)〉

= max
ν∈R3

ϕFCC(ν)≤1

〈g(ζ ), ν〉 = ϕ◦
FCC(g(ζ )) ,

also relying on the property gT = g−1. Therefore, we can assume that 0 ≤ ζ1 ≤ ζ2 ≤ ζ3.
Thus, if we want to maximize 〈ζ, ν〉 under the condition ϕFCC(ν) ≤ 1, we can as well
assume that 0 ≤ ν1 ≤ ν2 ≤ ν3, so that condition ϕFCC(ν) ≤ 1 becomes equivalent to

4ν3 + 2ν2 ≤ 1 .
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ν3
1
4

ν21
2

Fig. 5. The set {0 ≤ ν2 ≤ ν3} ∩ {4ν3 + 2ν1 ≤ 1} depicted in gray

Therefore, noting that any linear function attains its maximum at the extreme points of
a convex set and referring to Fig. 5, we obtain

max
0≤ν1≤ν2≤ν3
4ν3+2ν2≤1

ζ1ν1 + ζ2ν2 + ζ3ν3 = max
0≤ν2≤ν3
4ν3+2ν2≤1

(ζ1 + ζ2)ν2 + ζ3ν3

= max

{
1

4
ζ3,

1

6
(ζ1 + ζ2 + ζ3)

}

= max

{
1

4
‖ζ‖∞,

1

6
‖ζ‖1

}
.

This is the desired formula (24) and concludes Step 2.
Step 3 [Calculation of (25)] Note that the set WϕFCC is the intersection of a cube
‖ζ‖∞ ≤ 4 with an octahedron ‖ζ‖1 ≤ 6, see Fig. 3. Its boundary has 6 square faces,
where ν = ±(1, 0, 0) (resp. ±(0, 1, 0) or ±(0, 0, 1)) and 8 hexagonal faces, where
ν = 1√

3
(±1,±1,±1). First, we consider the set where ν = (1, 0, 0), the other cases

where ϕ◦
FCC(ζ ) = 1

4‖ζ‖∞ = 1 contributing with the same value. The square is given by

S+1 = {(4, ζ2, ζ3) : |ζ2| + |ζ3| ≤ 2} =
{
1

4
‖ζ‖∞ = 1

4
ζ1 = 1

}
∩

{
1

6
‖ζ‖1 ≤ 1

}
.

Therefore,H2(S+1 ) = 8 and ϕFCC((1, 0, 0)) = 4. Similarly, we obtain the same measure
and value of ϕFCC for the other squares S−1 , S

±
2 ,S

±
3 , where ν is (up to sign) one of the

coordinate unit vectors. Hence,

3∑

i=1

∫

S+i

ϕFCC(ν) dH2 +
3∑

i=1

∫

S−i
ϕFCC(ν) dH2 = 6 · 8 · 4 = 3 · 26 . (31)

Next, we consider the contribution of a hexagon. We consider the hexagon contained
in the set ζi ≥ 0 for all i . Here, we have ν = 1√

3
(1, 1, 1) and ϕFCC(ν) = 2

√
3. The

6 sides of the hexagon have all side-length 2
√
2. To see this, there are sides of the

form (4, 2 − t, t), t ∈ [0, 2] or (4 − t, 0, 2 + t), t ∈ [0, 2] and their permutations (up
to identifying t with 2 − t in the first case and 4 − t and 2 + t in the second case).
An equilateral hexagon H of side-length 2

√
2 satisfies H2(H) = 12

√
3. Labeling the

hexagons by Hi , i = 0, . . . , 7, we obtain

7∑

i=0

∫

Hi

ϕFCC(ν) dH2 = 8 ·H2(Hi ) · ϕFCC

(
1√
3
(±1,±1,±1)

)
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= 8 · 12√3 · 2√3 = 32 · 26 . (32)

Using (31) and (32), we obtain
∫

∂WFCC

ϕFCC(ν) dH2 = 3 · 26 + 32 · 26 = 3 · 28 . (33)

Let C := {ζ ∈ R
3 : ζi ≥ 0 for all i = 1, 2, 3 and 1

4‖ζ‖∞ ≥ 1
6‖ζ‖1} and Cc := {ζ ∈

R
3 : ζi ≥ 0 for all i = 1, 2, 3 and 1

4‖ζ‖∞ < 1
6‖ζ‖1}. We split the calculation of the

volume W ∩ {ζ ∈ R
3 : ζi ≥ 0 for all i} into the set C ∩ WFCC and Cc ∩ WFCC. Noting

that on this set |∇ϕ◦
FCC(ζ )| = 1

4 L3-a.e. on C , due to the coarea-formula, we have

|{C ∩ WFCC}| = 4
∫

C∩WFCC

|∇ϕ◦
FCC(ζ )| dζ = 4

∫ 1

0
H2(C ∩ {ϕ◦

FCC(ζ ) = s}) ds

=
∫ 1

0
4 · s2 · 6 ds = 8 .

Here we used that, C ∩ {ϕ◦
FCC(ζ ) = s} = s(S+1 ∪ S+2 ∪ S+3 ) ∩ {ζi ≥ 0} and the scal-

ing properties of the 2-dimensional Hausdorff-measure. On the other hand, using that

|∇ϕ◦
FCC(ζ )| =

√
3
6 L3-a.e. on Cc, we have

|{Cc ∩ WFCC}| = 2
√
3

∫

Cc∩WFCC

|∇ϕ◦
FCC(ζ )| dζ = 2

√
3

∫ 1

0
H2(Cc ∩ {ϕ◦

FCC(ζ ) = s}) ds

= 2
√
3

∫ 1

0
s2 · 12√3 ds = 3 · 23 .

Taking into account also the sets {±ζi ≥ 0}, we obtain
|WFCC| = 8(8 + 3 · 23) = 28 .

Now, this together with (33) yields (25). ��
Proof of Proposition 2.5. We divide the proof into several steps. First, we calculate
ϕHCP. Then, we calculate ϕ◦

HCP. Lastly, we calculate (28).
Step 1 (Calculation of ϕHCP) We make use of Proposition 2.1 in order to calculate ϕHCP.
First of all, due to (16), note that

|THCP| = 2

3

√
6 · 1

2

√
3 = √

2 . (34)

Given u : LHCP → R such that u(·) − 〈ν, ·〉 is THCP-periodic we have that u(x + ei ) =
u(x)+〈ei , ν〉 for all i = 1, 2, 3 andLHCP∩THCP = {0, v1}. Hence, there exist c1, c2 ∈ R

such that

u(x) =
{
〈x, ν〉 + c1 x ∈ spanZ {e1, e2, e3} ;
〈x0, ν〉 + c2 x = x0 + v1, with x0 ∈ spanZ {e1, e2, e3} .

Setting c2 − c1 = t , recalling (10) and (11), we therefore obtain

FLHCP (u, THCP) = 2 (|〈e1, ν〉| + |〈e2, ν〉| + |〈e1 − e2, ν〉|) + |t | + |t − 〈e1, ν〉| + |t − 〈e2, ν〉|
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+ |t − 〈e3, ν〉| + |t − 〈e3 + e1, ν〉| + |t − 〈e3 + e2, ν〉| .
Employing Proposition 2.1 and (34), we have

ϕHCP(ν) = √
2 (|〈e1, ν〉| + |〈e2, ν〉| + |〈e1 − e2, ν〉|) + 1√

2
min
t∈R gν(t) , (35)

where

gν(t) :=|t | + |t − 〈e1, ν〉| + |t − 〈e2, ν〉| + |t − 〈e3, ν〉|
+ |t − 〈e3 + e1, ν〉| + |t − 〈e3 + e2, ν〉| .

Next, we show that

min
t∈R gν(t) = |〈e3, ν〉| + 2max{|〈e1, ν〉|, |〈e2, ν〉|, |〈e1 − e2, ν〉|, |〈e3, ν〉|} . (36)

Note that if (36) is shown, (26) is proven and Step 1 is concluded. In order to prove
(36), we first note that gν(t) is a piecewise affine function such that gν(t) → +∞ as
|t | → +∞. Hence, it attains its minimum at a point of non-differentiability. The function
gν is not differentiable for t ∈ {0, 〈e1, ν〉, 〈e2, ν〉, 〈e3, ν〉, 〈e3 + e1, ν〉, 〈e3 + e2, ν〉} and
therefore

min
t∈R gν(t) = |〈e3, ν〉| + min{ fk(ν) : k ∈ {0, . . . , 5}} ,

where

f0(ν) = |〈e1, ν〉| + |〈e2, ν〉| + |〈e3 + e1, ν〉| + |〈e3 + e2, ν〉| ,
f1(ν) = |〈e1, ν〉| + |〈e1 − e2, ν〉| + |〈e3 − e1, ν〉| + |〈e3 + e2 − e1, ν〉| ,
f2(ν) = |〈e2, ν〉| + |〈e1 − e2, ν〉| + |〈e3 − e2, ν〉| + |〈e3 + e1 − e2, ν〉| ,
f3(ν) = |〈e1, ν〉| + |〈e2, ν〉| + |〈e3 − e1, ν〉| + |〈e3 − e2, ν〉| ,
f4(ν) = |〈e1, ν〉| + |〈e1 − e2, ν〉| + |〈e3 + e1, ν〉| + |〈e3 + e1 − e2, ν〉| ,
f5(ν) = |〈e2, ν〉| + |〈e1 − e2, ν〉| + |〈e3 + e2, ν〉| + |〈e3 + e2 − e1, ν〉| .

It is easy to see that

min
t∈R gν(t) = |〈e3, ν〉| + min

{|〈e1, Rkν〉| + |〈e2, Rkν〉| + |〈e3 + e1, Rkν〉|
+ |〈e3 + e2, Rkν〉| : k ∈ {0, . . . , 5}} ,

where Rk is the rotation of angle kπ/3 around the x3-axis. This identity can be easily
verified by noting that e3 is an eigenvector of Rk for all k ∈ {0, . . . , 5}, by using complex
coordinates in the complex plane, and setting ω = eiπ/3. Then Rkx = ωk x for all x ∈ C

and it suffices to observe that for each fi there is a unique ki ∈ {0, . . . , 5} such that

fi (ν) = |〈ωki , ν〉| + |〈ωki+1, ν〉| + |〈e3 + ωki , ν〉| + |〈e3 + ωki+1, ν〉| ,
where we identified each vectorωk with the corresponding vector unit vector inR3 given
by

ω0 = e1, ω1 = e2, ω2 = e2 − e1, ω3 = −e1, ω4 = −e2, ω5 = e1 − e2 .
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Noting also that mint∈R gν(t) = mint∈R g−ν(t), it is not restrictive to assume that
〈e1, ν〉 ≥ 0, 〈e2, ν〉 ≥ 0, 〈e3, ν〉 ≥ 0. We only consider the case, where 〈e1, ν〉 ≥
〈e2, ν〉 ≥ 〈e3, ν〉 ≥ 0, the other being dealt with in a similar fashion. In this case we
have f0(ν) ≥ f3(ν), f4(ν) ≥ f5(ν), and

f1(ν) = 〈e1, ν〉 + 〈e1 − e2, ν〉 + 〈e1 − e3, ν〉 + |〈e3 + e2 − e1, ν〉|
= 2〈e1, ν〉 + 〈e1 − e2 − e3, ν〉 + |〈e3 + e2 − e1, ν〉| ≥ 2〈e1, ν〉 ;

f2(ν) = 〈e2, ν〉 + 〈e1 − e2, ν〉 + 〈e2 − e3, ν〉 + 〈e3 + e1 − e2, ν〉 = 2〈e1, ν〉 ;
f3(ν) = 〈e1, ν〉 + 〈e2, ν〉 + 〈e1 − e3, ν〉 + 〈e2 − e3, ν〉

= 2〈e1, ν〉 + 2〈e2, ν〉 − 2〈e3, ν〉 ≥ 2〈e1, ν〉 ;
f5(ν) = 〈e2, ν〉 + 〈e1 − e2, ν〉 + 〈e3 + e2, ν〉 + |〈e3 + e2 − e1, ν〉|

= 2〈e1, ν〉 + 〈e3 + e2 − e1, ν〉 + |〈e3 + e2 − e1, ν〉| ≥ 2〈e1, ν〉 .

Hence, we see that (36) holds true. This together with (35) establishes (26) and concludes
Step 1.
Step 2 (Calculation of ϕ◦

HCP) In order to calculate ϕ◦
HCP, we exploit the symmetries of

ϕ◦
HCP. Let Ti : R3 → R

3 be the isometry reflecting the i-th coordinate defined by

(Tiν) j =
{
−νi if i = j ,

ν j otherwise.

It is easy to verify that

ϕHCP (ν) = ϕHCP (Tiν) for all i = 1, 2, 3 . (37)

Given ζ ∈ R
3 we can find R = T α1

1 ◦ T α2
2 ◦ T α3

3 , αi ∈ {0, 1} such that (Rζ )i ≥ 0 for all
i . Thus,

ϕ◦
HCP(ζ ) = max

ϕHCP(ν)≤1
〈ν, ζ 〉 = max

ϕHCP(ν)≤1
〈Rν, Rζ 〉

= max
ϕHCP(R−1ν)≤1

〈ν, Rζ 〉 = max
ϕHCP(ν)≤1

〈ν, Rζ 〉 = ϕ◦
HCP(Rζ ) .

(38)

It therefore suffices to calculate ϕ◦
HCP for ζ ∈ R

3 such that ζi ≥ 0. This together with
(37) implies that if ν = (ν1, ν2, ν3) is such that ϕHCP(ν) ≤ 1 and

〈ν, ζ 〉 = max
ϕHCP(ν)≤1

〈ν, ζ 〉 ,

then νi ≥ 0 for all i . As the objective function 〈ν, ζ 〉 is linear and the set {ϕHCP(ν) ≤ 1}
is convex it attains its maximum at one of the extreme points. These are contained in the
set of points where ϕHCP is not differentiable. Therefore, referring to (26) and recalling
that νi ≥ 0 for all i = 1, 2, 3, there are the following (exhaustive) cases to consider:

(a) 〈e1 − e2, ν〉 = 0;
(b) 〈e1 − e3, ν〉 = 0, 〈e1 − e2, ν〉 ≥ 0;
(c) 〈e2 − e3, ν〉 = 0, 〈e3 − e1, ν〉 ≥ 0;
(d) 〈e3, ν〉 = 0;
(e) 〈e1, ν〉 = 0.
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In the subsequent cases wewill rewrite the scalar product between ν and ζ as an affine
function over some parameter contained in some compact interval each time chosen to
take care of the constraints (a)–(e). Note that with such a choice of parameters such an
affine function attains its maximum at one of the extreme points of the interval. Recall
that in all case distinctions we have that νi ≥ 0 for all i = 1, 2, 3.
Maximumof case (a). Since 〈e1−e2, ν〉 = 0,we have ν1 = √

3ν2.Hence, ν = (t, 1√
3
t, s)

for some t, s ≥ 0. Now, using (26), we have

ϕHCP(ν) = √
2

(
2ν1 +

1

3

√
6ν3 + max

{
ν1,

2

3

√
6ν3

})
.

Case (a.1) t ≥ 2
3

√
6s: Since the maximum is attained for ϕHCP(ν) = 1, we have

t = 1
3
√
2
− 1

9

√
6s. Now, t ≥ 0 together with t ≥ 2

3

√
6s implies 0 ≤ s ≤ 3

14
√
3
. Thus

〈ν, ζ 〉 = t

(
ζ1 +

1√
3
ζ2

)
+ sζ3 =

(
1

3
√
2
− 1

9

√
6s

) (
ζ1 +

1√
3
ζ2

)
+ sζ3 .

As this is an affine function of s, we have

max
ν sat. (a.1)

〈ν, ζ 〉 = max

{
2

7
√
2

(
ζ1 +

1√
3
ζ2 +

3

2
√
6
ζ3

)
,

1

3
√
2

(
ζ1 +

1√
3
ζ2

)}
. (39)

Case (a.2) t ≤ 2
3

√
6s: Using ϕHCP(ν) = 1, we obtain t = 1

2
√
2
−

√
6
2 s. Now, t ≥ 0

together with t ≤ 2
3

√
6s implies 3

14
√
3
≤ s ≤ 1

2
√
3
. Noting that

〈ν, ζ 〉 = t

(
ζ1 +

1√
3
ζ2

)
+ sζ3 =

(
1

3
√
2
− 1

9

√
6s

) (
ζ1 +

1√
3
ζ2

)
+ sζ3 ,

we obtain

max
ν sat. (a.2)

〈ν, ζ 〉 = max

{
2

7
√
2

(
ζ1 +

1√
3
ζ2 +

3

2
√
6
ζ3

)
,

1

2
√
3
ζ3

}
. (40)

Maximum of case (b). Since 〈e1 − e3, ν〉 = 0, we have ν1 = 2
3

√
6ν3. Hence, ν =

(t, s, 3
2
√
6
t) for some t, s ≥ 0. Now using (26) and 〈e1 − e2, ν〉 ≥ 0, we have

ϕHCP(ν) = 7

2

√
2ν1 .

Hence, since themaximum is attained forϕHCP(ν) = 1,we have ν1 = 2
7
√
2
.Additionally,

since 〈e1− e2, ν〉 ≥ 0, we have ν2 ≤ 2
7
√
6
, and due to the form of ν, we have ν3 = 3

14
√
3
.

This implies

max
ν sat. (b)

〈ν, ζ 〉 = 2

7
√
2

(
ζ1 +

1√
3
ζ2 +

3

2
√
6
ζ3

)
. (41)

Maximum of case (c). Since 〈e2 − e3, ν〉 = 0, we have 1
2ν1 +

1
2

√
3ν2 = 2

3

√
6ν3. Now

using (26) and 〈e3 − e1, ν〉 ≥ 0, we have

ϕHCP(ν) = 7

2

√
2〈e3, ν〉 = 14

3

√
3ν3 .
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Hence, since the maximum is attained for ϕHCP(ν) = 1, we have ν3 = 3
14

√
3
. Addition-

ally, since 〈e3 − e1, ν〉 ≥ 0, we have ν1 ≤ 2
7
√
2
. Due to the form of 〈e2 − e3, ν〉 = 0, we

have ν2 = 4
7
√
6
− 1√

3
ν1. Note that ν2 ≥ 0 for all 0 ≤ ν1 ≤ 2

7
√
2
. Therefore

〈ν, ζ 〉 = ν1ζ1 +

(
4

7
√
6
− 1√

3
ν1

)
ζ2 +

3

14
√
3
ζ3 .

This implies

max
ν sat. (c)

〈ν, ζ 〉 = max

{
4

7
√
6
ζ2 +

3

14
√
3
ζ3,

2

7
√
2

(
ζ1 +

1√
3
ζ2 +

3

2
√
6
ζ3

)}
. (42)

Maximum of case (d). We have ν3 = 0 and therefore

ϕHCP(ν) = √
2 (〈e1, ν〉 + 〈e2, ν〉 + |〈e1 − e2, ν〉| + max{〈e1, ν〉, 〈e2, ν〉})

We distinguish two cases

(d.1) 〈e1 − e2, ν〉 ≥ 0;
(d.2) 〈e1 − e2, ν〉 ≤ 0.

Maximum of case (d.1). In the case 〈e1 − e2, ν〉 ≥ 0 we have ϕHCP(ν) = 3
√
2ν1 and

therefore, since ϕHCP(ν) = 1, ν1 = 1
3
√
2
. The inequality 〈e1 − e2, ν〉 ≥ 0 implies that

0 ≤ ν2 ≤ 1√
3
ν1 = 1

3
√
6
. Hence,

max
ν sat. (d.1)

〈ν, ζ 〉 = 1

3
√
2

(
ζ1 +

1√
3
ζ2

)
. (43)

Maximum of case (d.2). In the case 〈e1 − e2, ν〉 ≤ 0 we have

ϕHCP(ν) = 3
√
2〈e2, ν〉 =

√
2

(
3

2
ν1 +

3

2

√
3ν2

)
.

This, together with ϕHCP(ν) = 1, implies, ν1 = 2
3
√
2
− √

3ν2 and therefore ν2 ≤ 2
3
√
6
.

Additionally, since 〈e1 − e2, ν〉 ≤ 0, we have 1
3
√
6
≤ ν2. Therefore,

〈ν, ζ 〉 = ν1ζ1 + ν2ζ2 =
(

2

3
√
2
−√

3ν2

)
ζ1 + ν2ζ2 .

This implies

max
ν sat. (d.2)

〈ν, ζ 〉 = max

{
2

3
√
6
ζ2,

1

3
√
2

(
ζ1 +

1√
3
ζ2

)}
. (44)

Maximum of case (e). In the case ν1 = 0 we have

ϕHCP(ν) = √
2

(√
3ν2 +

1

3

√
6ν3 + max

{√
3

2
ν2,

2

3

√
6ν3

})
.

We distinguish between two cases:
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(e.1) 〈e2, ν〉 ≥ 〈e3, ν〉;
(e.2) 〈e2, ν〉 ≤ 〈e3, ν〉.
Maximum of case (e.1). In this case, we have

ϕHCP(ν) = √
2

(
3

2

√
3ν2 +

1

3

√
6ν3

)
.

Therefore, since ϕHCP(ν) = 1, we have ν2 = 2
3
√
6
− 2

9

√
2ν3. Hence, ν3 ≤ 3

2
√
3
. Addi-

tionally, since 〈e2 − e3, ν〉 ≥ 0, we have ν3 ≤ 3
14

√
3
. Therefore,

〈ν, ζ 〉 = ν2ζ2 + ν3ζ3 =
(

2

3
√
6
− 2

9

√
2ν3

)
ζ2 + ν3ζ3 .

Hence,

max
ν sat. (e.1)

〈ν, ζ 〉 = max

{
2

3
√
6
ζ2,

4

7
√
6
ζ2 +

3

14
√
3
ζ3

}
. (45)

Maximum of case (e.2). In this case, we have

ϕHCP(ν) = √
2

(√
3ν2 +

√
6ν3

)
.

Therefore, since ϕHCP(ν) = 1, we have ν2 = 1√
6
−√

2ν3. Hence, ν3 ≤ 1
2
√
3
. Addition-

ally, since 〈e2 − e3, ν〉 ≤ 0, we have ν3 ≥ 3
14

√
3
. Therefore,

〈ν, ζ 〉 = ν2ζ2 + ν3ζ3 =
(

1√
6
− √

2ν3

)
ζ2 + ν3ζ3 .

Hence,

max
ν sat. (e.1)

〈ν, ζ 〉 = max

{
1

2
√
3
ζ3,

4

7
√
6
ζ2 +

3

14
√
3
ζ3

}
. (46)

Exploiting (39)–(46), and (38), we obtain (27). This concludes Step 2.
Step 3 (Calculation of (28)) In order to calculate (28), we split the calculation of
∂∗WHCP = {ϕ◦

HCP(ζ ) = 1} into different sets, where the maximum of ϕ◦
HCP is attained.

We consider the following cases

(a) Aa := {ζ ∈ R
3 : ϕ◦

HCP(ζ ) = 1
2
√
3
|ζ3| = 1};

(b) Ab := {ζ ∈ R
3 : ϕ◦

HCP(ζ ) = 2
3
√
6
|ζ2| = 1};

(c) Ac := {ζ ∈ R
3 : ϕ◦

HCP(ζ ) = 4
7
√
6
|ζ2| + 3

14
√
3
|ζ3| = 1};

(d) Ad := {ζ ∈ R
3 : ϕ◦

HCP(ζ ) = 1
3
√
2
(|ζ1| + 1√

3
|ζ2|) = 1};

(e) Ae := {ζ ∈ R
3 : ϕ◦

HCP(ζ ) = 2
7
√
2
(|ζ1| + 1√

3
|ζ2| + 3

2
√
6
|ζ3|) = 1}.
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In each of the cases, one can determine the area, shape and normal of the set, by invoking
the condition that the maximum for ϕ◦

HCP is attained for the respective function and
therefore all the other functions f in the definition of ϕ◦

HCP satisfy f ≤ 1. In the
following, we only collect the results, since the calculations are elementary (but very
long).
Calculations for case (a). In this case, we see that ν = (0, 0,±1) H2-a.e., since this set
is contained in the level set of the function |ζ3| = c for some c > 0. Additionally, we
see that the set is a union of two hexagons of side length 2

√
2. Therefore, for each of

the two hexagons Hi we have H2(Hi ) = 12
√
3. Furthermore, ϕHCP(ν) = 2

√
3. Hence

∫

Aa

ϕHCP(ν) dH2 = 2 · 12√3 · 2√3 = 24 · 32 . (47)

Calculations for case (b). In this case, we see that ν = (0,±1, 0) H2-a.e., since this set
is contained in the level set of the function |ζ2| = c for some c > 0. Additionally, we see
that the set is a union of two rectangles with side lengths 3

√
2 and 4

3

√
3. Therefore, for

each of the two rectangles Si we have H2(Si ) = 4
√
6. Furthermore, ϕHCP(ν) = 3

2

√
6.

Hence
∫

Ab

ϕHCP(ν) dH2 = 2 · 4√6 · 3
2

√
6 = 23 · 32 . (48)

Calculations for case (c). In this case, we see that ν = (3/41)1/2(0,±8/
√
6,±√

3)
H2-a.e., since this set is contained in the level set of the function 4

7
√
6
|ζ2|+ 3

14
√
3
|ζ3| = c

for some c > 0. Additionally, we see that the set is a union of four trapezoids with height
(41/6)1/2 and two parallel sides o lengths 3

√
2 and 2

√
2. Therefore, for each of the four

trapezoids Ti we have H2(Ti ) = 5
2 (

41
3 )1/2. Furthermore, ϕHCP(ν) = 14( 3

41 )
1/2. Hence

∫

Ac

ϕHCP(ν) dH2 = 4 · 5
2

(
41

3

)1/2

· 14
(

3

41

)1/2

= 22 · 5 · 7 . (49)

Calculations for case (d). In this case, we see that ν = 1
2 (±

√
3,±1, 0) H2-a.e., since

this set is contained in the level set of the function |ζ1| + 1√
3
|ζ2| = c for some c > 0.

Additionally, we see that the set is a union of four rectangles with side length 3
√
2 and

4
3

√
3.Therefore, for eachof the four rectangles Ri wehaveH2(Ri ) = 4

√
6. Furthermore,

ϕHCP(ν) = 3
2

√
6. Hence

∫

Ad

ϕHCP(ν) dH2 = 4 · 4√6 · 3
2

√
6 = 24 · 32 . (50)

Calculations for case (e). In this case, we see that ν = 2(6/41)1/2(±1,± 1√
3
, 3
2
√
6
) H2-

a.e., since this set is contained in the level set of the function |ζ1|+ 1√
3
|ζ2|+ 3

2
√
6
|ζ3| = c

for some c > 0. Additionally, we see that the set is a union of eight trapezoids with height
(41/6)1/2 and two parallel sides of lengths 3

√
2 and 2

√
2. Therefore, for each of the

eight trapezoids Zi we have H2(Zi ) = 5
2 (

41
3 )1/2. Furthermore, ϕHCP(ν) = 14( 3

41 )
1/2.

Hence
∫

Ae

ϕHCP(ν) dH2 = 8 · 5
2

(
41

3

)1/2

· 14
(

3

41

)1/2

= 23 · 5 · 7 . (51)
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Taking into account (47)–(51), we obtain
∫

∂∗WHCP

ϕHCP(ν) dH2 = 25 · 32 + 23 · 32 + 22 · 5 · 7 + 24 · 32 + 23 · 5 · 7 = 780 . (52)

Next, we need to calculate |WHCP|, sinceWHCP = {ϕ◦
HCP ≤ 1}∩(Ca∪Cb∪Cc∪Cd∪Ce),

where

Ca = {ζ ∈ R
3 : ϕ◦

HCP(ζ ) = 1

2
√
3
|ζ3|} ,

Cb := {ζ ∈ R
3 : ϕ◦

HCP(ζ ) = 2

3
√
6
|ζ2|} ,

Cc := {ζ ∈ R
3 : ϕ◦

HCP(ζ ) = 4

7
√
6
|ζ2| + 3

14
√
3
|ζ3|} ,

Cd := {ζ ∈ R
3 : ϕ◦

HCP(ζ ) = 1

3
√
2
(|ζ1| + 1√

3
|ζ2|)} ,

Ce := {ζ ∈ R
3 : ϕ◦

HCP(ζ ) = 2

7
√
2
(|ζ1| + 1√

3
|ζ2| + 3

2
√
6
|ζ3|)} .

Note that H2(Cα ∩ {ϕ◦
HCP(ζ ) = s}) = s2H2(Aα) for all α ∈ {a, b, c, d, e}. In the set

Ca we have that |∇ϕ◦
HCP(ζ )| = 1

2
√
3
L3-a.e.. Due to the coarea formula, we have

|Ca ∩ WHCP| = 2
√
3
∫

Ca∩WHCP

|∇ϕ◦
HCP(ζ )| dζ

= 2
√
3
∫ 1

0
H2(Ca ∩ {ϕ◦

HCP(ζ ) = s}) ds = 2

3

√
3H2(Aa) = 24 · 3 .

(53)

In the set Cb, we have that |∇ϕ◦
HCP(ζ )| = 2

3
√
6
L3-a.e.. Due to the coarea formula, we

have

|Cb ∩ WHCP| = 3

2

√
6

∫

Cb∩WHCP

|∇ϕ◦
HCP(ζ )| dζ

= 3

2

√
6

∫ 1

0
H2(Cb ∩ {ϕ◦

HCP(ζ ) = s}) ds = 1

2

√
6H2(Ab) = 23 · 3 .

(54)

In the setCc, we have that |∇ϕ◦
HCP(ζ )| = 1

14 (41/3)
1/2L3-a.e..Due to the coarea formula,

we have

|Cc ∩ WHCP| = 14

(
3

41

)1/2 ∫

Cc∩WHCP

|∇ϕ◦
HCP(ζ )| dζ

= 14

(
3

41

)1/2 ∫ 1

0
H2(Cc ∩ {ϕ◦

HCP(ζ ) = s}) ds

= 1

3
14

(
3

41

)1/2

H2(Ac) = 22 · 5 · 7
3

.

(55)
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Fig. 6. Left: the Voronoi cell VFCC of the FCC lattice. Right: the Voronoi cell VHCP of the HCP lattice

In the set Cd , we have that |∇ϕ◦
HCP(ζ )| = 2

3
√
6
L3-a.e.. Due to the coarea formula, we

have

|Cd ∩ WHCP| = 3

2

√
6
∫

Cd∩WHCP

|∇ϕ◦
HCP(ζ )| dζ

= 3

2

√
6
∫ 1

0
H2(Cd ∩ {ϕ◦

HCP(ζ ) = s}) ds

= 1

2

√
6H2(Ad) = 24 · 3 .

(56)

In the setCe, we have that |∇ϕ◦
HCP(ζ )| = 1

14 (41/3)
1/2L3-a.e..Due to the coarea formula,

we have

|Ce ∩ WHCP| = 14

(
3

41

)1/2 ∫

Ce∩WHCP

|∇ϕ◦
HCP(ζ )| dζ

= 14

(
3

41

)1/2 ∫ 1

0
H2(Ce ∩ {ϕ◦

HCP(ζ ) = s}) ds

= 1

3
14

(
3

41

)1/2

H2(Ae) = 23 · 5 · 7
3

.

(57)

Using (53)–(57), we obtain |WHCP| = 260. This together with (52) yields (28). ��

4. �-Convergence Analysis on the FCC and HCP Lattices

In this section we prove Theorem 2.3. Its proof relies on the theory that will be developed
in Sect. 5 as well as some elementary geometric facts, that will be derived in this section.
In order to prove the compactness statement, we provide some preliminary lemmata
about the shape of the Voronoi cells of the FCC-lattice as well as the HCP-lattice (see
Fig. 6). In what follows we use the notationNFCC = NLFCC(0) andNHCP = NLHCP(0).

Lemma 4.1. (Voronoi cell in the FCC-lattice) Let us take x ∈ LFCC. Then

VLFCC(x) = x + VFCC , where VFCC :=
{
y ∈ R

3 : max
b∈NFCC

〈b, y〉 ≤ 1

2

}
. (58)
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Given b0 ∈ NFCC the face

Sb0 :=
{
y ∈ R

3 : max
b∈NFCC

〈b, y〉 = 〈b0, y〉 = 1

2

}
(59)

is a rhombus with H2(Sb0) = 1
4

√
2. Moreover, for each b0 ∈ NFCC the face Sb0 of

VFCC(0) is shared with the Voronoi cell VFCC(b0). Lastly, we have |VFCC(x)| = 1
2

√
2

for all x ∈ LFCC.

Lemma 4.2. (Voronoi cell in the HCP-lattice) Let us take x ∈ LHCP. Then

VLHCP(x) =
{
x + VHCP if x ∈ spanZ{e1, e2, e3} ,

x − VHCP if x ∈ (v1 + spanZ{e1, e2, e3}) ,
(60)

where

VHCP :=
{
y ∈ R

3 : max
b∈NHCP

〈b, y〉 ≤ 1

2

}
.

For b0 ∈ NHCP we set

Sb0 :=
{
y ∈ R

3 : max
b∈NHCP

〈b, y〉 = 〈b0, y〉 = 1

2

}
. (61)

If b0 ∈ {±e1,±e2,±(e1−e2)} the face Sb0 is a trapezoid of area 1
4

√
2. If b0 ∈ {v1, v1−

e1, v1 − e2, v1 − e3, v1 − e1 − e3, v1 − e2 − e3} the face Sb0 is a rhombus of area 1
8

√
6.

Moreover, for each b0 ∈ NHCP the face Sb0 is shared with the Voronoi cell VLHCP(b0).
Lastly, we have |VLHCP(x)| = 1

2

√
2 for all x ∈ LHCP.

Proof of Lemma 4.1. We split the proof of the lemma into four steps. First, we prove
(58). In the second step, we show that each face is a rhombus and calculate its area.
Lastly, we show that each neighboring Voronoi cell VFCC(b), b ∈ NFCC shares one face
with the Voronoi cell VFCC(0).
Step 1 [Proof of (58)] To check (58), since LFCC is a Bravais-lattice [see (7)], it suffices
to consider the case x = 0. Let VLFCC(0) denote the Voronoi cell of LFCC at x = 0
defined according to (12).
Step 1.1 (VLFCC(0) ⊂ VFCC) Let y ∈ VLFCC(0). By the very definition of Voronoi cell
we have that for all b ∈ NFCC it holds |y| ≤ |y − b|. Noting that |b| = 1 for all
b ∈ NFCC ⊂ LFCC, we have

|y| ≤ |y − b| ⇐⇒ |y|2 ≤ |y − b|2 = |y|2 − 2〈b, y〉 + |b|2 ⇐⇒ 〈b, y〉 ≤ 1

2
,

that is the inclusion VLFCC(0) ⊂ VFCC.
Step 1.2 (VFCC ⊂ VLFCC(0)) We show that for y ∈ VFCC we have |y| ≤ |y − z| for all
z ∈ LFCC. This is equivalent to

y ∈ VFCC �⇒ 〈y, z〉 ≤ 1
2 |z|2 for all z ∈ LFCC . (62)

We first observe that if z ∈ NFCC, (62) is trivial since |z| = 1. Next, we prove (62) for
all z ∈ LFCC\NFCC. We distinguish two cases:

(a) z = λ1b j + λ2bk , for λ1, λ2 ∈ Z, j, k ∈ {1, 2, 3}, j �= k ;
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(b) z = λ1b1 + λ2b2 + λ3b3, for λ1, λ2, λ3 ∈ Z .

Proof in case (a). We only show the statement for z = λ1b1 + λ2b2 for λ1, λ2 ∈ Z, the
cases with any other combination of two vectors being analogous. If λ1λ2 ≥ 0, since
〈b1, b2〉 ≥ 0, we have

〈y, z〉 = 〈y, λ1b1 + λ2b2〉 ≤ 1

2
|λ1b1|2 + 1

2
|λ2b2|2

= 1

2
|λ1b1 + λ2b2|2 − λ1λ2〈b1, b2〉 ≤ 1

2
|λ1b1 + λ2b2|2 = 1

2
|z|2 .

On the other hand, if λ1λ2 ≤ 0 and without loss of generality |λ1| ≤ |λ2|, noting that
b1 − b2 ∈ NFCC, we have

〈y, z〉 = 〈y, λ1b1 + λ2b2〉 = 〈y, (λ2 + λ1)b2 + λ1(b1 − b2)〉
≤ 1

2
|(λ2 + λ1)b2|2 + 1

2
|λ1(b1 − b2)|2

= 1

2
|λ1b1 + λ2b2|2 − λ1(λ2 + λ1)〈(b1 − b2), b2〉 ≤ 1

2
|λ1b1 + λ2b2|2 .

Here, the last inequality follows, since |b1| = |b2| and therefore λ1(λ2 + λ1)〈(b1 −
b2), b2〉 ≥ 0. This concludes case (a).
Proof in case (b). We now show that (58) holds true in the case of b = λ1b1 +λ2b2 +λ3b3
with λi ∈ Z. We restrict to the case λ1 ≥ 0, λ2 ≥ 0 and λ3 ≤ 0, since if all λi are of the
same sign, (58) can be deduced from the fact that it holds true for b ∈ NFCC and the fact
that 〈b j , bk〉 ≥ 0. Without loss of generality, we assume |λ2| ≤ |λ3|. Hence, observing
that b2 − b3 ∈ NFCC, noting that (62) holds true for z ∈ NFCC, and using case (a), we
have

〈y, z〉 = 〈y, λ1b1 + λ2b2 + λ3b3〉 = 〈y, λ1b1 + (λ3 + λ2)b3 + λ2(b2 − b3)〉
≤ 1

2
|λ1b1 + (λ3 + λ2)b3|2 + 1

2
|λ2(b2 − b3)|2

= 1

2
|λ1b1 + λ2b2 + λ3b3|2 − 〈(λ1b1 + (λ3 + λ2)b3), λ2(b2 − b3)〉

= 1

2
|λ1b1 + λ2b2 + λ3b3|2 − (λ3 + λ2)λ2〈b2 − b3, b3〉 ≤ 1

2
|λ1b1 + λ2b2 + λ3b3|2 .

Here, the last inequality follows from |b2| = |b3| and λ3 + λ2 ≤ 0 whereas the equality
in the last line is due to 〈b1, b2〉 = 〈b1, b3〉 = 〈b2, b3〉. This concludes case (b) and with
that Step 1.2.
Step 2 (The faces of the Voronoi cell) To show that each face of the Voronoi cell VFCC
is a rhombus with area 1

4

√
2 we first exploit its symmetries. Let i ∈ {1, 2, 3} and let

Ti : R3 → R
3 be the linear mapping that flips the i-th entry, i.e.

(Ti x) j =
{
−xi if i = j ,

x j otherwise.

We observe that

TiNFCC = {Tib : b ∈ NFCC} = NFCC , for all i ∈ {1, 2, 3}.
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Moreover, given a permutation π ∈ S3 we have that

πNFCC = {πb : b ∈ NFCC} = NFCC .

It therefore suffices to restrict only to the case in which the vector b0 agrees with the
vector b1 ∈ NFCC. We claim that this face has corners given by

c1 =
(
1

2

√
2, 0, 0

)
, c2 =

(
0,

1

2

√
2, 0

)
, c3 = 1

4

(√
2,

√
2,

√
2
)

,

c4 = 1

4

(√
2,

√
2,−√

2
)

. (63)

Note that, if this were true then it is easy to see that Sb0 is a rhombus and H2(Sb0) =
1
4

√
2. It remains to prove (63). Let us denote by y a corner of Sb0 . We can assume

that y1, y2 ≥ 0. Were this not the case, then there could be b′ ∈ NFCC such that
〈b′, y〉 > 〈b, y〉, thus contradicting the definition of Sb0 in (59). If y1 = 0 (or y2 = 0),
then y2 = 1

2

√
2 (resp. y1 = 1

2

√
2) and since 〈b′, y〉 ≤ 1

2 for all b′ ∈ NFCC we have
y3 = 0. Hence, we find the two corners with coordinates ( 12

√
2, 0, 0) and (0, 1

2

√
2, 0).

Now, if y1 > 0 and y2 > 0, then assuming that y3 ≥ 0 we have that the corner is equal
to 〈b1, y〉 = 〈b2, y〉 = 〈b3, y〉 = 1

2 . Thus, necessarily y1 = y2 = y3 = 1
4

√
2. If instead

y3 < 0, then the corner is equal to 〈b1, y〉 = 〈b2, y〉 = 〈b1 − b3, y〉 = 1
2 which implies

y1 = y2 = −y3 = 1
4

√
2. Hence (63) holds true and this concludes Step 2.

Step 3 (Neighbors share faces) We want to show that for each b0 ∈ NFCC we have that
the face Sb0 of VFCC(0) is shared with the Voronoi cell VFCC(b0). By the symmetries
shown in Step 2 it suffices to prove this statement only for b0 = b1. Using (63) we see
that the corners of the face Sb0 of the Voronoi cell VFCC(0) coincide with the corners of
the face S−b0 + b0 of the Voronoi cell VFCC(b0).
Step 4 (Volume of the Voronoi cell) In order to calculate the volume of the Voronoi
cell we note that LFCC is a Bravais-lattice with spanning vectors b1, b2, b3. Since the
Voronoi cells of all the points are the same, it suffices to calculate the fraction of points
per unit volume. This, then gives also the volume per point. Since the Voronoi cells are
space filling, the volume per point is equal to the volume of each Voronoi cell. Due to
(15) we have that

|TFCC| = 1

2

√
2 .

Furthermore, we have that
⋃

x∈LFCC

(x + TFCC) = R
3 , and LFCC ∩ TFCC = {0} .

Hence, each points of the lattice occupies a volume |TFCC| = 1
2

√
2 and the volume of the

Voronoi cell must be the same. This concludes Step 3 and thus the proof of the lemma. ��
Proof of Lemma 4.2. We split the proof of the lemma into four steps. First, we prove
(60). In the second step, we show that 6 of the faces are rhombi, the 6 other faces are
trapezoids, and we calculate the area of each face. Lastly, given x ∈ LHCP, we show that
each neighboring Voronoi cell VLHCP(y), y ∈ NHCP(x) shares a face with the Voronoi
cell VHCP(x).
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Step 1 (Shape of the Voronoi cell) The purpose of this step is to prove (60). Here, we
only show this equality in the case that x = 0, the case x �= 0 being treated in a similar
fashion.
Step 1.1 (VLHCP(0) ⊂ VHCP) Given y ∈ VLHCP(0) we have that |y| ≤ |y − b|. Now,
noting that |b| = 1 for all b ∈ NHCP ⊂ LHCP, we have

|y|2 ≤ |y − b|2 = |y|2 − 2〈y, b〉 + |b|2 ⇐⇒ 〈b, y〉 ≤ 1

2
.

This concludes Step 1.1.
Step 1.2 (VHCP ⊂ VLHCP(0)) We show that for y ∈ VHCP we have |y| ≤ |y − z|, for all
z ∈ LHCP. This is equivalent to

y ∈ VHCP �⇒ 〈y, z〉 ≤ 1
2 |z|2 for all z ∈ LHCP . (64)

Since, |b| = 1 for all b ∈ NHCP (64) is true for all b ∈ NHCP. Next, we prove (64) for
all z ∈ LHCP\NHCP. We distinguish several cases:

(a) z = λ1e1 + λ2e2, λ1, λ2 ∈ Z;
(b) z = λ1e1 + λ2e2 + λ3e3, λ1, λ2, λ3 ∈ Z;
(c) z = v1 + λ1e1 + λ2e2, λ1, λ2 ∈ Z;
(d) z = v1 + λ1e1 + λ2e2 + λ3e3, λ1, λ2, λ3 ∈ Z.

Proof in case (a). If λ1, λ2 ≥ 0, using that 〈e1, e2〉 ≥ 0, we have

〈y, z〉 = 〈y, λ1e1 + λ2e2〉 ≤ 1

2
|λ1e1|2 + 1

2
|λ2e2|2

= 1

2
|λ1e1 + λ2e2|2 − λ1λ2〈e1, e2〉 ≤ 1

2
|λ1e1 + λ2e2|2 = 1

2
|z|2 .

On the other hand, if λ1λ2 ≤ 0 and without loss of generality λ1 ≥ |λ2| ≥ 0, noting that
e2 − e1 ∈ NHCP, we have

〈y, z〉 = 〈y, λ1e1 + λ2e2〉 = 〈y, λ2(e2 − e1) + (λ1 + λ2)e1〉
≤ 1

2
|λ2(e2 − e1)|2 + 1

2
|(λ2 + λ1)e1|2

= 1

2
|λ1e1 + λ2e2|2 − λ2(λ1 + λ2)〈e2 − e1, e1〉 ≤ 1

2
|λ1e1 + λ2e2|2 = 1

2
|z|2 .

Here, the last inequality follows, since λ2 ≤ 0 ≤ λ1 + λ2 and 〈e2 − e1, e1〉 ≤ 0. This
concludes case (a).
Proof in case (b). We first show that 〈y, e3〉 ≤ 1

2 |e3|2. Using that v1, v1 − e1, v1 − e2 ∈
NHCP, that 3v1 − e1 − e2 = 3

2e3, (6), (64), and the fact that 〈e3, e1〉 = 〈e3, e2〉 = 0, we
have

〈y, e3〉 = 2

3
〈y, v1 + v1 − e1 + v1 − e2〉

≤ 1

3

(∣∣∣∣
1

3
(e1 + e2)

∣∣∣∣
2

+

∣∣∣∣
1

3
(e2 − 2e1)

∣∣∣∣
2

+

∣∣∣∣
1

3
(e1 − 2e2)

∣∣∣∣
2
)
+

∣∣∣∣
1

2
e3

∣∣∣∣
2

≤ 1

2
|e3|2 .

Here, the last inequality follows by calculating the norms of e1 + e2, e1 − 2e2, e2 − 2e1
and e3 by using (6). Note that now, the case of z = λ1e1 +λ2e2 +λ3e3 follows from case
(a) using that 〈e3, e1〉 = 〈e3, e2〉 = 0.
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Proof of case (c). Let z = v1 + λ1e1 + λ2e2. If λ1, λ2 ≥ 0 we have

〈y, z〉 = 〈y, v1 + λ1e1 + λ2e2, 〉 ≤ 1

2
|v1|2 + 1

2
|λ1e1|2 + 1

2
|λ2e2|2

≤ 1

2
|v1|2 + 1

2
|λ1e1 + λ2e2|2

= 1

2
|v1 + λ1e1 + λ2e2|2 − 〈v1, λ1e1 + λ2e2〉 ≤ 1

2
|v1 + λ1e1 + λ2e2|2 .

The second inequality uses that 〈e1, e2〉 ≥ 0 and the last inequality uses that 〈v1, e1〉, 〈v1,
e2〉 ≥ 0. Now assume that λ1 ≥ 0, λ2 < 0. Then, since 〈(v1 − e2), e1〉 = 0 and
〈v1 − e2, e2〉 ≤ 0, again exploiting that v1 − e2 ∈ NHCP, by (64) and case (a), it holds
that

〈y, z〉 = 〈y, (v1 − e2) + λ1e1 + (λ2 + 1)e2〉 ≤ 1

2
|v1 − e2|2 + 1

2
|λ1e1 + (λ2 + 1)e2|2

= 1

2
|v1 + λ1e1 + λ2e2|2 − 〈v1 − e2, λ1e1 + (λ2 + 1)e2〉

≤ 1

2
|v1 + λ1e1 + λ2e2|2 = 1

2
|z|2 .

The case where λ1 < 0, λ2 ≥ 0 (resp. λ1, λ2 < 0) is being treated in a similar fashion
by replacing v1 − e2 with v1 − e1 (resp. v1 − e1 − e2).
Proof of case (d). Here, we only treat the case of z = v1 + λ1e1 + λ2e2 + λ3e3, λ3 ≥ 0.
Since 〈v1 + λ1e1 + λ2e2, e3〉 ≥ 0, case (b), and case (c), we have

〈y, z〉 = 〈y, v1 + λ1e1 + λ2e2 + λ3e3〉 ≤ 1

2
|v1 + λ1e1 + λ2e2|2 + 1

2
|λ3e3|2

= 1

2
|v1 + λ1e1 + λ2e2 + λ3e3|2 − 〈v1 + λ1e1 + λ2e2, e3〉

≤ 1

2
|v1 + λ1e1 + λ2e2 + λ3e3|2 = 1

2
|z|2 .

The case of λ3 < 0 follows by replacing v1 with v1 − e3 in the last two cases (c) and
(d). This concludes Step 1.2 and, together with Step 1.1, shows (60).
Step 2 (The faces of the Voronoi cell) In order to calculate the faces of VHCP we use
(60) and exploit its symmetries. We note that if R ∈ SO(3) is any rotation of integer
multiples of 2π/3 around the x3-axis we have that

RNHCP = {Rb : b ∈ NHCP} = NHCP . (65)

Moreover, if T3 : R3 → R
3 is the reflection with respect to the (x1, x2)-plane, i.e.

(T3x) j :=
{
x j j = 1, 2 ,

−x3 j = 3 ,
(66)

we have that

T3NHCP = {T3b : b ∈ NHCP} = NHCP . (67)

Exploiting (65) and (67), it suffices to find the corners of Sb0 in (61) for

(a) b0 = e1 , (b) b0 = −e1 , (c) b0 = v1 .
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Corners in case (a). We claim that in the case of b0 = e1 that the corners of Sb0 are given
by the points

c1 =
(
1

2
,
1

6

√
3,

1

12

√
6

)
, c2 =

(
1

2
,
1

6

√
3,− 1

12

√
6

)
,

c3 =
(
1

2
,−1

6

√
3,

1

6

√
6

)
, c4 =

(
1

2
,−1

6

√
3,−1

6

√
6

)
.

(68)

In particular, the face Sb0 is a trapezoid with two bases of length
1
6

√
6, 1

3

√
6 and height

1
3

√
3. Hence, H2(Sb0) = 1

4

√
2. It remains to prove (68). Let y ∈ Sb0 be a corner. Due

to (67), we can assume that y3 ≥ 0, since the other corners are just found by applying
the mapping T3 (see (66)) to the corners with positive coordinates. By the definition
of Sb0 we have that 〈y, e1〉 ≥ 〈y, e1 − e2〉 which is equivalent to 〈y, e2〉 ≥ 0. Now, if
〈y, e2〉 > 0, then y is given by 〈y, e1〉 = 〈y, e2〉 = 〈y, v1〉 = 1

2 . This linear system has

a unique solution given by c1 =
(
1
2 ,

1
6

√
3, 1

12

√
6
)
. On the other hand, if 〈y, e2〉 = 0,

then y is given by 〈y, e2〉 = 0, 〈y, e1〉 = 〈y, v1〉 = 1
2 . The unique solution of this linear

system is given by c3 =
(
1
2 ,− 1

6

√
3, 1

6

√
6
)
. This shows (68) and concludes case (a).

Corners in case (b). We claim that in the case of b0 = −e1 that the corners of Sb0 are
given by the points

c1 =
(
−1

2
,
1

6

√
3,

1

12

√
6

)
, c2 =

(
−1

2
,
1

6

√
3,− 1

12

√
6

)
,

c3 =
(
−1

2
,−1

6

√
3,

1

6

√
6

)
, c4 =

(
−1

2
,−1

6

√
3,−1

6

√
6

)
.

(69)

In particular, the face Sb0 is a trapezoid with two bases of length
1
6

√
6, 1

3

√
6 and height

1
3

√
3. Hence, H2(Sb0) = 1

4

√
2. It remains to prove (69). Let y ∈ Sb0 be a corner. Due

to (67), as in case (a), we can assume that y3 ≥ 0. By the definition of Sb0 we have
that 〈y,−e1〉 ≥ 〈y, e2 − e1〉 which is equivalent to 〈y, e2〉 ≤ 0. Now, if 〈y, e2〉 = 0,
then y is given by 〈y, e2〉 = 0, 〈y, v1 − e1〉 = 〈y,−e1〉 = 1

2 . We see that the unique

solution of this linear system is given by c1 =
(
− 1

2 ,
1
6

√
3, 1

12

√
6
)
. On the other hand,

if 〈y, e2〉 < 0, then y is given by 〈y, v1〉 = 0, 〈y,−e1〉 = 〈y,−e2〉 = 1
2 . The unique

solution is now given by c3 =
(
− 1

2 ,− 1
6

√
3, 1

6

√
6
)
. This shows (69) and concludes case

(b).
Corners in case (c). We claim that in the case of b0 = v1 that the corners of Sb0 are
given by the points

c1 =
(
1

2
,
1

6

√
3,

1

12

√
6

)
, c2 =

(
0, 0,

1

4

√
6

)
,

c3 =
(
0,

1

3

√
3,

1

6

√
6

)
, c4 =

(
1

2
,−1

6

√
3,

1

6

√
6

)
.

(70)

In particular, the face Sb0 is a rhombus. Hence, H2(Sb0) = 1
8

√
6. It remains to prove

(68). Let y ∈ Sb0 be a corner. By the definition of Sb0 we have that 〈y, v1〉 ≥ 〈y, v1 −
e1〉, 〈y, v1− e2〉which is equivalent to 〈y, e1〉, 〈y, e2〉 ≥ 0. Now if, 〈y, e2〉 > 0 then the
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corner solves the linear system 〈y, e1〉 = 〈y, e2〉 = 〈y, v1〉 = 1
2 . Its unique solution is

c1 = ( 12 ,
1
6

√
3, 1

12

√
6). On the other hand if 〈y, e2〉 = 0, then the corners are given by

those y such that 〈y, e2〉 = 0, 〈y, e1〉 = 〈y, v1〉 = 1
2 or 〈y, e1〉 = 〈y, e2〉 = 0, 〈y, v1〉 =

1
2 . These points have coordinates c2 = ( 12 ,− 1

6

√
3, 1

6

√
6) and c3 = (0, 0, 1

4

√
6). Finally,

if 〈y, e1〉 = 0 and 〈y, e2〉 > 0, then y is obtained by solving 〈y, e1〉 = 0, 〈y, e2〉 =
〈y, v1〉 = 1

2 . Hence it has coordinates c4 = (0,
√
3
3 ,

√
6
6 ). This proves (70) and concludes

Step 2.
Step 3 (Neighbors share faces) We want to show that for each b0 ∈ NHCP we have
that the face Sb0 of VLHCP(0) is shared with the Voronoi cell VLHCP(b0). By Step 1 we
have that VLHCP(0) = VHCP and VLHCP(b0) = b0 − VHCP. Hence, they share the side
〈y, b0〉 = 1

2 = 〈b0 − y, b0〉.
Step 4 (Volume of the Voronoi cell) In order to calculate the volume of the Voronoi cell
we note that LHCP is periodic with respect to the vectors e1, e2, e3. Since the Voronoi
cells of all the points occupy the same volume, it suffices to calculate the fraction of
points per unit volume. The inverse of this number is the volume per point. Since the
Voronoi cells are space filling the volume per point is equal to the volume of eachVoronoi
cell. Due to (16) we have that

|THCP| =
√
2 .

Furthermore, we have that
⋃

x∈spanZ{e1,e2,e3}
(x + THCP) = R

3 , and LHCP ∩ THCP = {0, v1} .

Hence, the volume per point is 1
2 |THCP| = 1

2

√
2 and it agrees with the volume of the

Voronoi cell. This concludes Step 4 and thus the proof of the lemma. ��
We are now in the position to prove Theorem 2.3.

Proof of Theorem 2.3. All the statements are consequences of Proposition 5.10, Lemma
5.11, Theorem 5.14 and Lemma 5.16 once we show that LFCC and LHCP are peri-
odic admissible sets (according to Definitions 5.1 and 5.8) and we observe that, due
to Lemmas 4.1 and 4.2, NFCC(x) = NN (x) (in the sense of Definition 5.2) as well
as NHCP(x) = NN (x) in the respective cases. We first show that both lattices are
admissible sets. Let us first observe that

(TFCC + x) ∩ LFCC �= ∅ and (THCP + x) ∩ LHCP �= ∅ for all x ∈ R
3 .

Therefore, (L1) is satisfied for both LFCC and LHCP with

R := max{diam(TFCC), diam(TFCC)} ≤ max

{
3∑

k=1

|ek |,
3∑

k=1

|bk |
}

< +∞ ,

where we recalled Definitions 15 and 16. On the other hand, (L2) is satisfied with r = 1,
see the discussion at the definition of the FCC and HCP lattice in Sect. 2. Concerning
periodicity: We observe that for all z = (z1, z2, z3) ∈ Z

3 we have

LFCC = LFCC +
3∑

k=1

zkbk , and LHCP = LHCP +
3∑

k=1

zkek

and thus both LFCC and LHCP are periodic according to Definition 5.8. The statement
follows by Theorem 5.14 with cnn(x) = 1. ��
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5. General Periodic Lattices

This section deals with integral representation and concentrated-compactness properties
of energies defined on general periodic lattices.

Definition 5.1. Let � ⊂ R
n be a countable set of points in Rn . We call � an admissible

set of points if the following two conditions hold:

(L1) There exists R > 0 such that infx∈Rn #(� ∩ BR(x)) ≥ 1;
(L2) There exists r > 0 such that dist(x, �\{x}) ≥ r for all x ∈ �.

Definition 5.2. We define the Voronoi cell of x ∈ � as

V(x) := {z ∈ R
n : |x − z| ≤ |y − z| for all y ∈ �} . (71)

The set of nearest neighbors of � is defined by

NN (�) := {(x, y) ∈ � × � : Hn−1(V(x) ∩ V(y)) > 0} ,

We set NN (x) = {y ∈ � : (x, y) ∈ NN (�)}. Given ε > 0 we denote by ε� :=
{εx : x ∈ �} and for x ∈ ε� we set Vε(x) = εV(ε−1x) the Voronoi cell of x ∈ ε�, and
NN ε(x) = {y ∈ ε� : ε−1(x, y) ∈ NN (�)} the set of nearest neighbors of x in ε�.

We now define for u : � → {0, 1} the two energy functionals given by

Fε(u, A) :=
∑

(x,y)∈NN (�)

εx∈A

εn−1cnn(x − y)|u(εx) − u(εy)| (72)

and

F̂ε(u, A) :=
∑

(x,y)∈NN (�)

εx,εy∈A

εn−1cnn(x − y)|u(εx) − u(εy)| , (73)

where cnn : Rn → [0,+∞] satisfies
C−1 ≤ cnn(x) ≤ C , for all x ∈ R

n . (74)

When A = R
n we omit the dependence on it and write Fε(u) = Fε(u,Rn) and F̂ε(u) =

F̂ε(u,Rn).

Remark 5.3. (Difference between Fε and F̂ε)Wewant to point out the difference between
Fε and F̂ε: In the formula defining Fε the sum is taken over all (x, y) ∈ NN (�) such
that εx ∈ A. Instead in the case of F̂ε the sum takes only those (x, y) ∈ NN (�) such
that both εx ∈ A and εy ∈ A. The functional Fε(u, ·) is an additive set function on
disjoint sets, i.e., given A, B ⊂ R

n such that A ∩ B = ∅, we have
Fε(u, A ∪ B) = Fε(u, A) + Fε(u, B) ,

whereas F̂ε(u, ·) is only super-additive on disjoint sets. Our �-convergence result will
be stated for the functional Fε. The reason for us to introduce F̂ε is that our proof will
use the integral representation result proven in [3], see Theorem 5.7. However, we will
show later on that the �-convergence of Fε is equivalent to that of F̂ε.
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Given X ⊂ ε� we write with a slight abuse of notation

Fε(X, A) = Fε(χε−1X , A) .

Hypothesis (74) corresponds to [3, Hypothesis 1] in the case that, according to the
notation in [3, Equation (5.23)], cε

nn(x, y) = cnn(x − y) and cε
lr (x, y) = 0. It is worth

observing that in [3] a more general class of functionals was investigated, namely those
for which also certain long-range interactions between points in � contribute to the
energy, i.e., clr (x, y) �= 0. For the sake of exposition and simplicity, here we consider
the case clr = 0, that is the energy accounts only for the nearest neighbor interactions.
However, with some more involved multi-scale constructions, all the statements below
extend to the more general case where also long-range interactions are considered.

Definition 5.4. Given X ⊂ εL we define the rescaled empirical measures associated to
X as

με = εn
∑

x∈X
δx . (75)

Furthermore, recalling (71), we define

Vε(X) :=
⋃

x∈X
Vε(x) . (76)

Henceforth, we drop the dependence on X and simplywrite Vε. Given A ⊂ R
n openwith

Lipschitz boundary, with slight abuse of notation we define Fε : M+(A) → [0,+∞]
(similarly F̂ε : M+(A) → [0,+∞]) by

Fε(μ, A) =
{
Fε(X, A) μ is given by (75) for some X ⊂ εL ;
+∞ otherwise.

Additionally, we define Fε : L1
loc(A) → [0,+∞] (similarly F̂ε : L1

loc(A) → [0,+∞])
by

Fε(u, A) =
{
Fε(X, A) u = χVε and Vε is given by (76) for some X ⊂ εL ;
+∞ otherwise.

It is necessary for us to introduce two different domains of definition for the extended
functional Fε, since we want to make use of [3, Theorem 5.5]. As it will turn out the
two types of extension are equivalent, cf. Lemma 5.11 and Corollary 5.12.

Let (�,P,F) be a probability space. Hereafter we recall some definitions from [3]
(Definition 5.1 and Definition 5.4):

Definition 5.5. We say that a family (τz)z∈Zn , τz : � → �, is an additive group action
on � if

τz1+z2 = τz2 ◦ τz1 for all z1, z2 ∈ Z
n .

Such an additive group action is called measure preserving if

P(τz B) = P(B) for all B ∈ F , z ∈ Z
n .

If in addition, for all B ∈ F we have

(τz(B) = B for all z ∈ Z
n) �⇒ P(B) ∈ {0, 1} ,

then (τz)z∈Zn is called ergodic.
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Definition 5.6. A random variable L : � → (Rn)Z
n
, ω �→ L(ω) = {L(ω)(i)}i∈Zn is

called a stochastic lattice. We say that L is admissible if L(ω) is admissible in the sense
of Definition 5.1 and the constants r, R can be chosen independent of ω P-almost surely.
The stochastic latticeL is said to be stationary if there exists a measure preserving group
action (τz)z∈Zn on � such that, for P-almost every ω ∈ �, L(τzω) = L(ω) + z. If in
addition (τz)z∈Zn is ergodic, then L is called ergodic, too.

We now state a simplified version of [3, Theorem 5.5] which is enough for our
purposes.

Theorem 5.7 (Stochastic homogenization of spin systems). Let L be a stationary and
ergodic stochastic lattice and let F̂ε be defined by (73). Let A ⊂ R

n be open and bounded
with Lipschitz boundary. For P-almost every ω the functionals Fε(ω) �-converge with
respect to the strong L1(A)-topology to the functional Fhom : L1(A) → [0,+∞] defined
by

Fhom(u, A) :=
{∫

Ju∩A ϕhom(νu) dHn−1 if u ∈ BV (A; {0, 1}),
+∞ otherwise.

The function ϕhom : Rn → [0,+∞] is given by

ϕhom(ν) = lim
T→+∞

1

T n−1

∫

�

inf
{
F(u, Qν

T ) : u : L(ω) → {0, 1},
u(i) = uν(i) for i ∈ L(ω)\Qν

T−lT

}
dP(ω) ,

where lT → +∞ and lT /T → 0 as T → +∞.

Definition 5.8. Let L ⊂ R
n be an admissible set of points. We say that L is periodic if

there exists a basis {e1, . . . , en} ⊂ R
n such that

L + ek = L for all k = 1, . . . , n .

We set (G,+) to be

G :=
{

n∑

k=1

λkek : λk ∈ Z for k = 1, . . . , n

}

with the usual addition in R
n . We denote its fundamental domain by Q := R

n/G and
we assume that

Q :=
{

n∑

k=1

λkek : 0 ≤ λk < 1 for k = 1, . . . , n

}

and call it the periodicity cell of L. For k ∈ R
n and s > 0 we denote by Qs(k) = sQ + k

the scaled periodicity cell centered at k. We set

ρ := #(L ∩ Q)

|Q| . (77)
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In the following we assume, up to a change of coordinates that {e1, . . . , en} is the
standard orthonormal basis of Rn .

In order not to overburden with notation, given X ⊂ εL, we write X ∩ A and A\X
for X ∩ A ∩ εL and (A ∩ εL) \X , respectively.

We collect the following general properties of periodic admissible set of points.

Lemma 5.9 (Properties of periodic admissible sets). Let L be a periodic admissible set
of points. The following holds true:

(i) Br/2(x) ⊂ V(x) ⊂ BR(x) for all x ∈ L;
(ii) NN (x) ⊂ B2R(x) for all x ∈ L;
(iii) There exists C = C(n, r, R) ∈ (0,+∞) such that sup

x∈L
#NN (x) ≤ C. In particular,

∂V(x) is made out of finitely many (n − 1)-dimensional polyhedral faces;
(iv) There exists C > 0 such that for all A ⊂ R

n and all X ⊂ εL there holds

C−1
∑

x∈X∩A

εn−1#(NN ε(x)\X) ≤ Fε(X, A) ≤ C
∑

x∈X∩(A)2Rε

εn−1#(NN ε(x)\X) .

(v) There exists C = CL > 0 such that for all X ⊂ εL and A ⊂ R
n there holds

Fε(X, A) ≤ C Per(Vε, (A)3Rε) and Per(Vε, A) ≤ CFε(X, (A)Rε) .

Proof. Apart from (iv) and (v) all of these facts are classical. We collect their proof here
for completeness.
Proof of (i), (ii): Let x ∈ L. The inclusion Br/2(x) ⊂ V(x) follows from (L2) since for
all y ∈ Br/2(x) and z ∈ L\{x}

|z − y| ≥ |x − z| − |x − y| ≥ r − r/2 = r/2 ≥ |x − y| .
As for the inclusion V(x) ⊂ BR(x) assume that there exists y ∈ V(x)\BR(x). We have
for all z ∈ L\{x}

|y − z| ≥ |y − x | ≥ R .

This implies that BR(y) ∩ L = ∅ contradicting (L1). Finally NN (x) ⊂ B2R(x) since
for y ∈ NN (x) we have that V(x) ∩ V(y) �= ∅ which implies BR(x) ∩ BR(y) �= ∅.
Proof of (iii): Due to (i) and (ii) we have that Br/2(y) ∩ Br/2(z) = ∅, y, z ∈ NN (x),
y �= z and Br/2(y) ⊂ B2R+r (x) for all y ∈ NN (x). Therefore

ωn

( r
2

)n
#NN (x) =

⋃

y∈NN (x)

|Br/2(y)| ≤ |B2R+r (x)| ≤ ωn(2R + r)n

and thus the claim follows with C = (2 + 4R/r)n .
Proof of (iv): First of all, observe that, by (74), we have

C−1

⎛

⎝
∑

x∈X∩A

εn−1#(NN ε(x)\X) +
∑

x∈A\X
εn−1#(NN ε(x) ∩ X)

⎞

⎠ ≤ Fε(X, A) (78)

and

C

⎛

⎝
∑

x∈X∩A

εn−1#(NN ε(x)\X) +
∑

x∈A\X
εn−1#(NN ε(x) ∩ X)

⎞

⎠ ≥ Fε(X, A) . (79)
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As both terms on the left hand side of (78) are positive, the first inequality of (iv) follows.
In order to prove the second inequality of (iv), we claim that

∑

x∈A\X
εn−1#(NN ε(x) ∩ X) ≤ C

∑

x∈x∩(A)2Rε

εn−1#(NN ε(x)\X) . (80)

To see this, note that if x ∈ A\X such that # (NN ε(x) ∩ X) > 0, there exists y ∈
NN ε(x) ∩ X ⊂ B2Rε(x) ∩ X and x ∈ NN ε(y)\X . Now summing over all x ∈ A\X
and noting that, by (iii), #{x ∈ A\X : y ∈ NN ε(x)} ≤ #NN ε(x) ≤ C we obtain (80).
Finally, (79) and (80) yield the second inequality of (iv).
Proof of (v): The desired inequalities follow from the following observation: Given
x ∈ X , we have that

Hn−1(Vε(x) ∩ ∂Vε) > 0 ⇐⇒ NN ε(x)\X �= ∅ . (81)

Additionally, we note that, for x ∈ X such that NN ε(x)\X �= ∅, there exists C > 0
such that

C−1εn−1 ≤ Hn−1(Vε(x) ∩ ∂Vε) ≤ Cεn−1 . (82)

Now, summing over all x ∈ X ∩ A and noting that each Voronoi cell intersects only a
finite number of other Voronoi cells, using (81), (82), (i), (iii), and (iv), we obtain

Fε(X, A) ≤ C
∑

x∈X∩(A)2Rε

εn−1#(NN ε(x)\X) ≤ C
∑

x∈X∩(A)2Rε

Hn−1(Vε(x) ∩ ∂Vε)

≤ CHn−1(∂Vε ∩ (A)3Rε) = C Per(Vε, (A)3Rε) .

This yields the first inequality in (v). On the other hand, owing to (i) we have ∂Vε ∩ A ⊂⋃
x∈X∩(A)Rε

(Vε(x) ∩ ∂Vε), and thus, by (81) and (82),

Per(Vε, A) = Hn−1(∂Vε ∩ A) ≤
∑

x∈X∩(A)Rε

Hn−1(Vε(x) ∩ ∂Vε)

≤ Cεn−1
∑

x∈X∩(A)Rε

#(NN ε(x)\X) ≤ CFε(X, (A)Rε) .

This shows the second inequality in (v) and concludes the proof. ��
Proposition 5.10 (Compactness of the piecewise-constant interpolants). Let L be an
admissible periodic set of points and Fε defined in (72) with L in place of �. Let
A ⊂ R

n be open and let {Xε}ε ⊂ εL be such that

sup
ε>0

Fε(Xε, A) < +∞ .

Then there exists a set of finite perimeter V ⊂ A and a subsequence (not relabeled) such
that χVε → χV with respect to the strong L1

loc(A)-topology.
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Proof. Let Xε be as above and let A′ ⊂⊂ A with Lipschitz boundary be such that
(A′)Rε ⊂ A. We observe, due to the second inequality of Lemma 5.9(v),

Per(Vε, A
′) ≤ CFε(Xε, (A

′)Rε) ≤ CFε(Xε, A) ≤ C .

Therefore

‖χVε‖L1(A′) + |DχVε |(A′) ≤ C(|A′| + Per(Vε, A
′)) ≤ C .

We use [4, Theorem 3.39] to deduce that there exists a subsequence (depending on A′)
and a set of finite perimeter V such that χVε → χV in L1(A′). By a diagonal argument
on a sequence A′

k ↑ A as k → +∞, we obtain the claim. ��
Lemma 5.11 (Equivalence of convergences). Let L be an admissible periodic set of
points and Fε defined in (72) with L in place of �. Let A ⊂ R

n be open and let V ⊂ A
be a set of finite perimeter and let {Xε}ε ⊂ εL for each ε > 0 be such that

sup
ε>0

Fε(Xε, A) < +∞ . (83)

Then, setting με and Vε as in (75) and (76), the following are equivalent:

(i) με
∗
⇀ μ with respect to the weak star topology of measures and μ = ρLn
V .

(ii) χVε → χV with respect to the strong L1
loc(A)-topology.

Proof. We proceed in two steps. First, we construct a sequence of auxiliary measures
νε and show that its weak*-convergence is equivalent to the weak*-convergence of the
sequence of measures με. Then, for this sequence of measures we show that its weak*-
convergence is equivalent to (ii).
Step 1 (Construction of the auxiliary measure) Let {Xε}ε be as in the assumptions of
the lemma and let v ∈ Cc(A) such that supp v ⊂⊂ A. We assume that ε > 0 is small
enough such that for all k ∈ εZn there holds

Q(3+R)ε(k) ∩ supp v �= ∅ �⇒ Q(3+R)ε(k) ⊂⊂ A , (84)

recall Definition 5.8. Fix R0 > 0 such that supp v ⊂ BR0 . Since v is uniformly continu-
ous, it admits a modulus of continuity ω = ωv : [0,+∞) → [0,+∞), i.e., an increasing
function such that ω(0) = 0 and

|v(x) − v(y)| ≤ ω(|x − y|) for all x, y ∈ R
n . (85)

We set

Ifull
ε := {k ∈ εZn : Q(3+R)ε(k) ∩ Xε = Q(3+R)ε(k) ∩ εL} ,

Iempty
ε := {k ∈ εZn : Q(3+R)ε(k) ∩ Xε = ∅} ,

and Ibad
ε := {k ∈ εZn : Q(3+R)ε(k) ∩ supp v �= ∅}\(Ifull

ε ∪ Iempty
ε ). We now set

νε :=
∑

k∈Ifull
ε

εn#(L ∩ Q)δk .

Our goal is to show that

με
∗
⇀ μ in the sense of measures ⇐⇒ νε

∗
⇀ μ in the sense of measures.

(86)
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First of all we claim that

#Ibad
ε ≤ Cε1−n . (87)

In fact, due to its definition and (84), we have that for all k ∈ Ibad
ε there exists x ∈

X ∩ Q(3+R)ε(k) ⊂ A such that #(NN (x)\X) �= ∅. Therefore, since for k ∈ εZn fixed
Q(3+R)ε(k) ∩ Q(3+R)ε( j) �= ∅ for only finitely many j independent of ε, we have

εn−1#Ibad
ε ≤

∑

k∈Ibad
ε

∑

x∈Q(3+R)ε(k)∩X

εn−1#(NN (x)\X) ≤ CFε(Xε, A) .

Using (83) yields (87). Let now k ∈ Ifull
ε . Then

∫

Qε(k)
v(x) dνε(x) = v(k)εn#(L ∩ Q) =

∑

x∈Qε(k)∩εL
εnv(k)

=
∑

x∈Qε(k)∩X

εnv(x) +
∑

x∈Qε(k)∩εL
εn(v(k) − v(x))

=
∫

Qε(k)
v(x) dμε(x) +

∑

x∈Qε(k)∩εL
εn(v(k) − v(x)) .

Thus,
∣∣∣∣
∫

Qε(k)
v(x) d(νε − με)(x)

∣∣∣∣ ≤
∑

x∈Qε(k)∩εL
εn|v(k) − v(x)| ≤ ω(ε

√
n)|Qε(k)|

and, recalling that supp v ⊂ BR0 and (85), we have for ε > 0 small enough

∑

k∈Ifull
ε

∣∣∣∣
∫

Qε(k)
v(x) d(νε − με)(x)

∣∣∣∣ ≤ ω(ε
√
n)|B2R0 | . (88)

Noting that both |με|(Qε(k)) and |νε|(Qε(k)) are bounded above by εn#(L∩Q) ≤ Cεn

for all k ∈ εZn , using (87), we observe

∑

k∈Ibad
ε

∣∣∣∣
∫

Qε(k)
v(x) d(νε − με)(x)

∣∣∣∣ ≤ 2‖v‖∞#Ibad
ε εn#(L ∩ Q) ≤ Cε‖v‖∞ . (89)

Therefore, noting that με
Qε(k)= νε
Qε(k)= 0 for k ∈ Iempty
ε , using (88) and (89), we

obtain
∣∣∣∣
∫

Rn
v(x) d(νε − με)(x)

∣∣∣∣ ≤ ω(ε
√
n)|B2R| + Cε‖v‖∞ .

This shows (86).
Step 2 (Equivalence of convergence) We now prove that

χVε → χV in L1
loc(A) ⇐⇒ νε

∗
⇀ μ in the sense of measures.
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First of all, recalling ρ defined in (77), we note

∫

Rn
v dνε =

∑

k∈Ifull
ε

εn#(L ∩ Q)v(k) = #(L ∩ Q)

|Q|
∑

k∈Ifull
ε

|Qε(k)|v(k)

= ρ
∑

k∈Ifull
ε

∫

Qε(k)
v(y) dy + ρ

∑

k∈Ifull
ε

∫

Qε(k)
(v(k) − v(y)) dy .

(90)

Now, due to (85), we have for ε > 0 small enough

∣∣∣∣∣∣

∑

k∈Ifull
ε

∫

Qε(k)
(v(k) − v(y)) dy

∣∣∣∣∣∣
≤

∑

k∈Ifull
ε

∫

Qε(k)
|v(k) − v(y)| dy ≤ Cω(ε

√
n)|B2R0 | .

(91)

Note that, by Lemma 5.9(i), we have

ρ
∑

k∈Ifull
ε

∫

Qε(k)
v(y) dy = ρ

∑

k∈Ifull
ε

∫

Qε(k)∩Vε

v(y) dy (92)

and also Vε ∩ Qε(k) = ∅ for k ∈ Iempty
ε . Note that by (87) we have

∑

k∈Ibad
ε

∫

Qε(k)
|v(y)| dy ≤ εn#Ibad

ε ‖v‖∞ ≤ Cε‖v‖∞ . (93)

Due to (90)–(93), we obtain that

ρχVε

∗
⇀ μ in the sense of measures ⇐⇒ νε

∗
⇀ μ in the sense of measures.

Now clearly (ii) implies (i), since the L1
loc(A) convergence of the characteristic functions

implies theirweak* convergence asmeasures.As for the implication (i) to (ii) we proceed

as follows. Let V ⊂ A be a set of finite perimeter and assume that με
∗
⇀ μ and

μ = ρLn
V . By Step 1 this is equivalent to νε
∗
⇀ μ, hence to ρχVε

∗
⇀ ρχV in the sense

of measures (which is to say that χVε

∗
⇀ χV ). Take now an arbitrary subsequence (not

relabeled) of {Xε}ε.We show that there exists a further subsequence (again not relabeled)
such that χVε → χV with respect to the strong L1

loc(A)-topology. Since the L1
loc(A)-

topology satisfies the Urysohn property this implies the claim. By the compactness
statement in Proposition 5.10 we have that there exists a set of finite perimeter V ′ ⊂ R

n

and a further subsequence {Xεk }k ⊂ {Xε}ε such that χVε → χV ′ with respect to the
strong L1

loc(A)-topology. Since this implies their weak* convergence as measures and
we already know that the whole sequence converges to χV we deduce V = V ′ which
implies the claim and concludes the proof of the lemma. ��
Corollary 5.12. (Equivalence of �-convergence) Let L be an admissible periodic set of
points and let Fε be defined in (72) with L in place of �. Let A ⊂ R

n be a bounded
open set with Lipschitz boundary. Then the following statements are equivalent:
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(i) Fε : M+(A) → [0,+∞] �-converges with respect to the weak* convergence of
measures to the functional Fhom : M+(A) → [0,+∞] defined as

Fhom(μ, A) :=
{∫

∂∗V∩A ϕhom(ν) dHn−1 if μ = ρLn
V ;
+∞ otherwise.

(ii) Fε : L1
loc(A) → [0,+∞] �-converges with respect to strong L1

loc(A)-topology to the
functional Fhom : L1

loc(A) → [0,+∞] defined as

Fhom(u, A) :=
{∫

∂∗V∩A ϕhom(ν) dHn−1 if u = χV and χV ∈ BV (A) ;
+∞ otherwise.

Proof. The statement follows directly from Lemma 5.11. ��
Remark 5.13. The analogous statements are true for F̂ε as well.

Theorem 5.14 (�-convergence for periodic admissible lattices). Let L be an admissible
periodic set of points and let Fε be defined by (72) with L in place of �. Let A ⊂ R

n be
a bounded open set with Lipschitz boundary or A = R

n. The functionals Fε �-converge
with respect to weak* convergence of measures to the functional Fhom : M+(A) →
[0,+∞] defined by

Fhom(μ, A) :=
{∫

∂∗V∩A ϕhom(ν) dHn−1 if μ = ρLn
V ;
+∞ otherwise.

The function ϕhom : Rn → [0,+∞] is given by

ϕhom(ν) = lim
T→+∞

1

T n−1 inf
{
F(X, Qν

T ) : X ⊂ L, χX (i) = uν(i) for i ∈ L\Qν
T−lT

}
,

where lT → +∞ and lT /T → 0 as T → +∞.

Proof. Step 1 (Probabilistic setup)We exploit the integral representation result (Theorem
5.7) to obtain the specific formof the�-limit.Wefix (�,F ,P) = ({0}, {{0},∅}, δ0) to be
a probability space and a trivial additive and ergodic group action (see Definition 5.1 in
[3]) τz : {0} → {0}, z ∈ Z

3 given by τz(0) = 0.With respect to this group actionL(0) =
L is an admissible stationary and ergodic stochastic lattice according to Definition 5.6.
In fact, since L is periodic according to Definition 5.8, for all z = (z1, z2, z3) ∈ Z

3 we
have

L(0) = L , L(τz(0)) = L(0) = L(0) +
n∑

k=1

zkek .

Therefore, all conditions ofTheorem5.7 are satisfied.This shows that for F̂ε : L1
loc(A) →

[0,+∞] we have
�- lim

ε→0
F̂ε(χV , A) = Fhom(χV , A)

for all A ⊂ R
n with Lipschitz boundary we have that χV ∈ BV (A, {0, 1}). Note that,

by Corollary 5.12, this is equivalent to saying that for F̂ε : M+(A) → [0,+∞] we have
�- lim

ε→0
F̂ε(μ, A) = Fhom(μ, A) .
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This concludes Step 1.
Step 2 (�-convergence of Fε) We use the �-convergence of F̂ε obtained in Step 1 in
order to prove the �-convergence of Fε. Let us first prove the result for A ⊂ R

n open
and bounded with Lipschitz boundary. We note that

F̂ε(X, A) ≤ Fε(X, A)

and therefore for all με
∗
⇀ μ, we have

lim inf
ε→0

Fε(με, A) ≥ lim inf
ε→0

F̂ε(με, A) ≥ Fhom(μ, A) .

Therefore�- lim infε→0 Fε(μ, A) ≥ Fhom(μ, A) .Next,we show theLimsup-inequality.
Let V ⊂ A be such that

Fhom(ρχV , A) < +∞ (94)

sinceotherwise there is nothing toprove.UsingLemma5.9(v),weobtain that Per(V, A) <

+∞, i.e., V is a set of finite perimeter. In particular, by [27, Theorem 1.3] (noting that
the boundary of A is Lipschitz implies that A is an extension domain), there exists an
extension Ve ⊂ R

n such that

(i) Ve ∩ A = V ∩ A up to a set of zero Ln-measure;
(ii) Per(Ve,Rn) ≤ CPer(V, A) ;
(iii) Hd−1(∂∗Ve ∩ ∂A) = 0.

Now (ii) together with (94) implies, again by Lemma 5.9(v), that

Fhom(ρχVe ,R
n) =

∫

∂∗Ve
ϕhom(ν) dHn−1 < +∞ .

Fix δ > 0 and let μδ
ε

∗
⇀ ρχVe inM+((A)δ) be such that

lim sup
ε→0

F̂ε(μ
δ
ε, (A)δ) ≤ Fhom(ρχVe , (A)δ) .

Note that, due to Lemma 5.9(ii), for every ε < δ/(2R) we have that

Fε(X, A) ≤ F̂ε(X, (A)δ) .

Therefore, recalling Definition 2.2, we obtain,

�- lim sup
ε→0

Fε(ρχV , A) ≤ lim sup
ε→0

Fε(μ
δ
ε, A) ≤ lim sup

ε→0
F̂ε(μ

δ
ε, (A)δ)

≤ Fhom(ρχVe , (A)δ) .

Sending δ → 0 we obtain

�- lim sup
ε→0

Fε(ρχV , A) ≤ Fhom(ρχVe , A) = Fhom(ρχVe , A) = Fhom(ρχV , A) ,

where the last equality follows by properties (i) and (iii) of Ve. This shows the desired
integral representation for all A ⊂ R

n with Lipschitz boundary.
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Step 3 (Integral representation on unbounded sets) It remains to prove the integral rep-
resentation of the �-limit for Rn . The Liminf inequality follows by monotonicity since
for all R > 0 and X ⊂ εL we have

Fε(X, BR) ≤ Fε(X)

and therefore, given με
∗
⇀ ρχV , we have

lim inf
ε→0

Fε(με) ≥ lim inf
ε→0

Fε(με, BR) ≥ Fhom(ρχV , BR) .

The claim follows by taking the supremum over R > 0. We now turn our attention to
the Limsup inequality. We can assume without loss of generality that V ⊂ R

n is a set
of finite perimeter and

CPer(V,Rn) ≤
∫

∂∗V
ϕ(ν) dHn−1 = Fhom(ρχV ,Rn) < +∞ (95)

since otherwise there is nothing to prove. By the isoperimetric inequality there exists
C > 0 such that

min{|V |, |Rn\V |} n−1
n ≤ CPer(V,Rn) .

Without loss of generality we assume that |V | < +∞. By the Fleming-Rishel formula
we can find {Rk}k ⊂ (0,+∞) such that Rk → +∞ and

(i) Hn−1(V ∩ ∂BRk ) ≤ 1

k
and (ii) |V ∩ Bc

Rk
| ≤ 1

k
. (96)

We define Vk = V ∩ BRk . Then, thanks to (96)(ii), χVk → χV in L1(Rn) and thus also

ρχVk
∗
⇀ ρχV . Furthermore, (96)(i) implies that

lim
k→+∞ Fhom(ρχVk ) = Fhom(ρχV ) .

It therefore suffices to construct the recovery sequence for ρχVk . Let Sk = Rk + 2R
and let {με}ε be the recovery sequence constructed in Step 2 such that με → ρχVk in
L1(BSk ) and

lim sup
ε→0

Fε(με, BSk ) ≤ Fhom(ρχV , BSk ) . (97)

We modify με such that

Fε(με) ≤ Fε(με, BSk ) + o(1) , (98)

and this, by (97), proves the statement. By Lemma 5.11, there exists ηε → 0 such that
|Vε ∩ ARk ,Sk | ≤ ηε with Vε defined in (76). Now, let us take k ∈ {� Rk

ε
+ 3R�, . . . , 
 Sk

ε
−

5R } =: Kε. Noting that #Kε ≈ ε−1, Lemma 5.9(i) implies that there exists kε ∈ Kε

such that

ωn

( r
2

)n
εn−1#(Xε ∩ A(kε−2R)ε,(kε+5R)ε) ≤ ωn

( r
2

)n
εn

∑

k∈Kε

#(Xε ∩ A(k−2R)ε,(k+5R)ε)

≤ C |Vε ∩ ARk ,Sk | ≤ Cηε .
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Here, we have used that for k ∈ Kε fixed

A(k−2R)ε,(k+5R)ε ∩ A( j−2R)ε,( j+5R)ε �= ∅
for finitely many indices j independent of ε (clearly for j > k + 7R or j < k − 7R
the intersection is empty). We can therefore define X̂ε = Xε ∩ Bkε and employ Lemma
5.9(ii),(iv) to obtain

Fε(X̂ε) = Fε(X̂ε, Bkε ) ≤ Fε(Xε, Bkε ) + cmax
x∈L

#NN (x)εn−1#(Xε ∩ A(kε−2R)ε,(kε+5R)ε)

≤ Fε(Xε, BS) + Cηε ,

which proves (98) and with it the claim. ��
In the following we show that for minimizing sequences we can improve Proposition

5.10 to obtain strong L1(Rn) compactness. This implies that the rescaled empirical
measures of such sequences converge to a suitably normalized Wulff shape for the
limiting perimeter energy.

Lemma 5.15 (Nucleation Lemma). For every (p0, v0) ∈ (0,+∞)2 there exists m =
m(p0, v0) > 0 such that if V ⊂ R

n, Per(V,Rn) ≤ p0, |V | ≥ v0, then there exists
x ∈ R

n such that

|V ∩ B1(x)| ≥ m .

Proof. Set

μ := sup
x∈Rn

|V ∩ B1(x)| ∈ [0, ωn] .

If μ ≥ ωn/2 there is nothing to prove. Assume thus that m < ωn/2, i.e. |V ∩ B1(x)| ≤
μ < ωn/2 for all x ∈ R

n . Then, noting that χB1(x)(y) = χB1(y)(x) for all x, y ∈ R
n ,

we obtain

ωn|V | =
∫

x∈Rn

∫

y∈Rn
χV (x)χB1(x)(y) dy dx =

∫

x∈Rn

∫

y∈Rn
χV∩B1(y)(x) dy dx .

(99)

Due to the assumption we have |V ∩ B1(x)| ≤ μ and therefore due to the relative
isoperimetric inequality and Fubini’s Theorem, we obtain

∫

x∈Rn

∫

y∈Rn
χV∩B1(y)(x) dy dx =

∫

y∈Rn
|V ∩ B1(y)| dy

≤ μ1/n
∫

y∈Rn
|V ∩ B1(x)|1− 1

n dy

≤ μ1/n

CB

∫

y∈Rn
Hn−1(∂∗V ∩ B1(y)) dy ,

(100)

where CB > 0 denotes the relative isoperimetric constant of B1. Now, again due to
Fubini’s Theorem, we obtain

∫

y∈Rn
Hn−1(∂∗V ∩ B1(y)) dy =

∫

y∈Rn

∫

x∈Rn
χB1(y)(x) dHn−1
∂∗V (x) dy
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=
∫

x∈Rn

∫

y∈Rn
χB1(x)(y) dy dHn−1
∂∗V (x)

= ωnHn−1(∂∗V )

This together with (99) and (100) leads to

|V | ≤ μ1/n

CB
Per(V,Rn) .

Then, we conclude that μ ≥ (CB |V |/Per(V,Rn))n ≥ (CBv0/p0)n and thus it suffices
to choose m(v0, p0) < min{ωn/2, (CBv0/p0)n}. ��
Lemma 5.16 (Concentration Lemma). Let {Xε}ε and {nε}ε ⊂ N be such that for all
ε > 0 Xε ⊂ εL, #Xε = nε, nεε

n → ρv as ε → 0, and

Fε(Xε) = min
#X=nε

Fε(X) .

Then, there exists {τε}ε ⊂ R
n such that τε ∈ ε spanZ{e1, . . . , en}, and με(· − τε)

∗
⇀

ρχW ,whereW is theWulff shape ofϕhom defined in Theorem 5.14 and such that |W | = v.

Proof. Let {Xε}ε be as in the assumptions of the Lemma.
Step 1 (Energy bound) We first show that

sup
ε>0

Fε(Xε) < +∞ . (101)

To this aim, for each ε > 0 we construct a competitor Yε such that Fε(Yε) ≤ C for some
constant C > 0 independent of ε. To this end let rε > 0 be the maximal s > 0 such that

#(Bs ∩ εL) ≤ nε .

Due to Lemma 5.9(i), we have that rε ≤ r0 < +∞ and

ωn

( r
2

)n
εn#

(
Arε,rε+2εR ∩ εL) ≤ |Arε−εr/2,rε+3εR | ≤ Cεrn−1

ε ≤ Cε . (102)

By the maximality in the choice of rε we have #(Brε+εr ∩ εL) > nε and thus

nε − Cε1−n ≤ #(Brε ∩ εL) ≤ nε .

We set Yε = (Brε ∩ εL) ∪ Y 0
ε , where Y

0
ε ⊂ εL\Brε such that #Yε = nε. Due to Lemma

5.9 (ii), (iii), the minimality of Xε, and (102), we have

Fε(Xε) ≤ Fε(Yε)

≤
∑

x∈εL∩Brε

εn−1#(NN ε(x)\X) + Cεn−1#Y 0
ε

≤ Cεn−1#
(
Arε,rε+2εR ∩ εL) ≤ C .

This shows (101) and concludes Step 1.
Step 2 (Nucleation) We show that if (101) holds, then there exist v1 > 0 and {τ 1ε }ε ⊂ R

n

such that τ 1ε ∈ ε spanZ{e1, . . . , en} and, up to subsequences,

με(· − τ 1ε )
∗
⇀ ρχV1 in the sense of measures, (103)
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where |V1| := v1 ∈ (m, v], with m = m(p0, v1) > 0 given by Lemma 5.15. In fact,
due to (101) and Lemma 5.9(v) there exists p0 > 0 such that Per(Vε,R

n) ≤ p0 for
all ε > 0. Additionally, due to Lemma 5.9(i) and the fact that nεε

n → ρv > 0, we
have that |Vε| ≥ v1 > 0 for all ε > 0 small enough. Thus, by Lemma 5.15 there exists
m = m(p0, v1) and {τ 1ε }ε ⊂ R

d such that

|Vε ∩ B1(τ
1
ε )| ≥ m . (104)

Actually, by lowering m a bit we can assume without loss of generality that τ 1ε ∈
ε spanZ{e1, . . . , en}. By (104), (101), Proposition 5.10, and Lemma 5.11, we get (103)
up to passing to a subsequence.
Step 3 (Splitting of the energy) We show that for any 0 < δ < |V1| there exists Sδ =
Sδ(V1) > 0 big enough and Sε ∈ (Sδ, Sδ + 1) such that, for ε > 0 small enough, there
holds

#(Xε ∩ BSδ ) ≥ ω−1
n R−n(|V1| − δ)ε−n and #(Xε ∩ ASε−2Rε,Sε+5εR) ≤ δε1−n .

(105)

First of all, we find Sδ such that for ε > 0 small enough

|V1 ∩ BSδ−Rε| ≥ |V1 ∩ BSδ−1| ≥ |V1| − δ/2 and |V1 ∩ ASδ ,Sδ+1| ≤ |V1\BSδ−Rε| ≤ δ/2 .

Note that, due to Step 1 and Step 2, χVε(·−τ 1ε ) → χV1 in L1(BSδ+1). Due to Lemma
5.9(i), we have for ε > 0 small enough

ωnε
n Rn#(Xε ∩ BSδ ) ≥ |Vε ∩ BSδ−Rε| ≥ |V1| − δ ; (106)

ωnε
n
( r
2

)n
#(Xε ∩ ASδ+Rε,Sδ+1−Rε) ≤ |Vε ∩ ASδ,Sδ+1| ≤ δ . (107)

Next, we find Sε by averaging: We choose kε ∈
{
� Sδ

ε
+ 3R�, . . . , 
 Sδ+1

ε
− 6R 

}
=: Kε

(note that Kε �= ∅ and actually #Kε ≈ S
ε
for ε > 0 small enough) such that for some

C > 1

εn−1#(Xε ∩ A(kε−2R)ε,(kε+5R)ε) ≤ C
∑

k∈Kε

εn#(Xε ∩ A(k−2R)ε,(k+5R)ε)

≤ Cεn#(Xε ∩ ASδ+Rε,Sδ+1−Rε) ≤ Cδ .

(108)

In the latter estimate, we have used (107) and that, for k ∈ Kε fixed, we have

A(k−2R)ε,(k+5R)ε ∩ A( j−2R)ε,( j+5R)ε �= ∅
for at most a finite number of indices j independent of ε (clearly for j > k + 7R or
j < k − 7R the intersection is empty). Up to replacing δ by C−1δ and choosing δ > 0
sufficiently small, (106) and (108) give (105) and this concludes Step 3.
In the next steps we use the following notation. For any λ > 0 recall Wλ defined right
after (22) and let Xλ

ε ⊂ (Wλ)1 be such that, setting V λ
ε = Vε(Xλ

ε ), we have χV λ
ε
→ χWλ

in L1(Rn), and

lim
ε→0

Fε(X
λ
ε ) = lim sup

ε→0
Fε(X

λ
ε ) = lim sup

ε→0
Fε(X

λ
ε , (Wλ)1) = Fhom(ρχWλ) . (109)
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Step 4 (Identification of V1) We claim that V1 = Wv1 up to null sets, where Wv1 is the
Wulff Shape of Fhom such that |Wv1 | = v1. Assume by contradiction that this were not
the case. By the anisotropic isoperimetric inequality we have that

0 <
1

2

(
Fhom(ρχV1) − Fhom(ρχWv1

)
)
=: η .

Up to translating, we may assume that τ 1ε = 0. Then, there exists S0 > 0 big enough
such that for all S ≥ S0 we have Wv1 ⊂⊂ BS and

Fhom(ρχV1 , BS) ≥ Fhom(ρχV1) − η .

By Theorem 5.14, we have that

lim inf
ε→0

Fε(Xε, BS) − Fhom(ρχWv1
, BS) ≥ Fhom(ρχV1 , BS) − Fhom(ρχWv1

, BS)

≥ Fhom(ρχV1) − η − Fhom(ρχWv1
) ≥ η > 0 .

(110)

We now construct a competitor X̂ε for ε > 0 small enough such that #Xε = nε and

Fε(X̂ε) < Fε(Xε) . (111)

This contradicts the assumptions of the Lemma on the minimality of Xε and therefore
V1 = Wv1 up to null sets. Let us take δ := δη = (2C maxx∈L #NN (x))−1η with C as
in (74) and let Sδ , Sε ∈ (Sδ, Sδ + 1) be as in Step 3 with Sδ ≥ diamWv1 + 2. We define

X̂ε := Xv1
ε ∪ (Xε\BSε ) ∪ Zε , (112)

where # X̂ε = #Xε. In what follows we assume for simplicity that Zε = ∅. Otherwise,
one chooses Zε such that its contributions to both energy and volume are negligible as
ε → 0. First of all note

Fε(X̂ε) = Fε(X̂ε, BSε ) + Fε(X̂ε, ASε,Sε+3Rε) + Fε(X̂ε, B
c
Sε+3Rε) . (113)

Then, by noting first that Xε = X̂ε on (Bc
Sε+3εR

)εR , we have

Fε(Xε, B
c
Sε+3Rε) = Fε(X̂ε, B

c
Sε+3Rε) . (114)

Furthermore,

Fε(X̂ε, BSε ) = Fε(X
v1
ε , BSε ) = Fε(X

v1
ε ) . (115)

Lastly, due to Lemma 5.9(iii),(iv) and the choice of δ, and (105), we have

Fε(X̂ε, ASε,Sε+3εR) ≤ C max
x∈L

#NN (x) εn−1#(Xε ∩ ASε−2Rε,Sε+5Rε)

≤ η/2 . (116)

Comparing this to the energy of Xε, also noting that Sδ ≥ diamWv1 + 2 and, using
(113)–(116), we obtain

Fε(Xε) = Fε(Xε, BSε ) + Fε(Xε, ASε,Sε+3Rε) + Fε(Xε, B
c
Sε+3Rε)

≥ Fε(Xε, BSδ ) + Fε(Xε, B
c
Sε+3Rε) ≥ Fε(X̂ε) − η/2 + Fε(Xε, BSδ ) − Fε(X

v1
ε )
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Therefore, using (109) and (110), we obtain

lim inf
ε→0

(Fε(Xε) − Fε(X̂ε)) ≥ η/2 > 0 .

This yields (111) for ε > 0 small enough.
Step 5 (v1 = v) Assume by contradiction that v1 < v. We repeat Step 2 and Step 3 for
Xε\(Wv1(τ

1
ε ))1 to find τ 2ε such that

με(· − τ 2ε )
∗
⇀ ρχV2 in the sense of measures, (117)

where |V2| = v2 > 0. Note that we can assume |τ 1ε − τ 2ε | → +∞ since this would

otherwise contradict με(· − τ 1ε )
∗
⇀ ρχV . By Step 4, we observe that V2 = Wv2 . Note

that v �→ Fhom(Wv) is strictly concave in v. In fact there holds

Fhom(Wv) = v
n−1
n Fhom(W1) . (118)

Therefore, given v1, v2 > 0, for v = λv1 + (1− λ)v2 for λ ∈ (0, 1), using (118) and the

strict concavity of the function v �→ v
n−1
n , we have

Fhom(Wv) = Fhom(Wλv1+(1−λ)v2) = (λv1 + (1− λ)v2)
n−1
n Fhom(W1)

>

(
λv

n−1
n

1 + (1− λ)v
n−1
n

2

)
Fhom(W1) = λFhom(Wv1) + (1− λ)Fhom(Wv2) .

Since Fhom(W0) = 0, this in particular implies that v �→ Fhom(Wv) is strictly subaddi-
tive, i.e.,

Fhom(Wv1+v2) < Fhom(Wv1) + Fhom(Wv2)

for all v1, v2 > 0. Set

η := Fhom(Wv1) + Fhom(Wv2) − Fhom(Wv1+v2) > 0 .

Due to Step 3 applied with δ = δη := (3C maxx∈L #NN (x))−1η and Step 4 we have
that

με(· − τ 1ε )
∗
⇀ ρχV1 and με(· − τ 2ε )

∗
⇀ ρχV2

and

#(Xε ∩ ASε,Sε+3εR(τ 1ε )) ≤ δηε
1−n and #(Xε ∩ AS̃ε,S̃ε+3εR

(τ 2ε )) ≤ δηε
1−n ,

where S̃ε is associated with τ 2ε by following the same procedure to Xε\BSε (τ
1
ε ) as in

Step 3. We can therefore define

X̃ε = (Xv1+v2
ε + τ 1ε ) ∪ (Xε\(BSε (τ

1
ε ) ∪ BS̃ε

(τ 2ε ))) ,

(here we assume that Sε is such that Xv1+v2
ε ⊂ BSε ) and without loss of generality (see

Step 4) we can directly assume # X̃ε = #Xε. Now the argument follows very much in
the spirit of Step 4. We first observe that

Fε(X̃ε) = Fε(X̃ε, BSε (τ
1
ε )) + Fε(X̃ε, BS̃ε

(τ 2ε )) + Fε(X̃ε, ASε,Sε+3εR(τ 1ε ))

+ Fε(X̃ε, ASε,Sε+3εR(τ 2ε )) + Fε(X̃ε, (BSε+3εR(τ 1ε ) ∪ BS̃ε+3εR
(τ 2ε ))c) .

(119)
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Then, by noting first that Xε = X̃ε on ((BSε+3εR(τ 1ε ) ∪ BS̃ε+3εR
(τ 2ε ))c)εR , we have

Fε(Xε, ((BSε+3εR(τ 1ε ) ∪ BS̃ε+3εR
(τ 2ε ))c)εR)

= Fε(X̃ε, ((BSε+3εR(τ 1ε ) ∪ BS̃ε+3εR
(τ 2ε ))c)εR) . (120)

Furthermore,

Fε(X̃ε, BSε (τ
1
ε )) = Fε(X

v1
ε ) and Fε(X̃ε, BS̃ε

(τ 2ε )) = Fε(X
v2
ε ) . (121)

Lastly, due to Lemma 5.9(iii)(iv) and the choice of δ, we have

Fε(X̃ε, ASε,Sε+3εR(τ 1ε )) ≤ C max
x∈L

#NN (x) εn−1#(Xε ∩ ASε−2Rε,Sε+5Rε(τ
1
ε )) ≤ η/3

(122)

and

Fε(X̃ε, AS̃ε,S̃ε+3εR
(τ 2ε )) ≤ C max

x∈L
#NN (x) εn−1#(Xε ∩ AS̃ε,S̃ε+3εR

(τ 2ε )) ≤ η/3 .

Comparing this to the energy of Xε we obtain, using (119)–(122), as in Step 5,

lim inf
ε→0

(Fε(Xε) − Fε(X̃ε)) ≥ η/3 > 0 .

This is a contradiction and therefore v1 = v. Setting τε := τ 1ε this concludes the
proof. ��
Remark 5.17. We want to observe that Lemma 5.16 can be extended to the setting of
[3] in which the functional Fε also accounts for long-range interactions. In order to
adapt the proof to the general case, the annulus Arε,rε+3Rε must be replaced by Arε,rε+sε
where sε = kεε (here kε is such that kε → +∞ and kεε → 0). This choice ensures that
X̂ε ∩ Brε and X̂ε\Brε+sε (resp. Xε ∩ Brε and Xε\Brε+sε ) are sufficiently distant such
that the energy contribution that accounts for the interactions crossing the annulus are
negligible as ε → 0.
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