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Abstract: We consider stability of rotating gaseous stars modeled by the Euler–Poisson
system with general equation of states. When the angular velocity of the star is Rayleigh
stable, we proved a sharp stability criterion for axi-symmetric perturbations. We also
obtained estimates for the number of unstable modes and exponential trichotomy for the
linearized Euler–Poisson system. By using this stability criterion, we proved that for a
family of slowly rotating stars parameterized by the center density with fixed angular
velocity, the turning point principle is not true. That is, unlike the case of non-rotating
stars, the change of stability of the rotating stars does not occur at extrema points of the
total mass. By contrast, we proved that the turning point principle is true for the family
of slowly rotating stars with fixed angular momentum distribution. When the angular
velocity is Rayleigh unstable, we proved linear instability of rotating stars.Moreover, we
gave a complete description of the spectra and sharp growth estimates for the linearized
Euler–Poisson system.

1. Introduction

Consider a self-gravitating gaseous star modeled by the Euler–Poisson system of com-
pressible fluids

⎧
⎪⎨

⎪⎩

ρt + ∇ · (ρv) = 0,
ρ (vt + v · ∇v) + ∇ p = −ρ∇V,

�V = 4πρ, lim|x |→∞ V (t, x) = 0,
(1.1)

where x ∈ R
3, t > 0, ρ (x, t) ≥ 0 is the density, v (x, t) ∈ R

3 is the velocity,
p = P(ρ) is the pressure and V is the self-consistent gravitational potential. Assume
P(ρ) satisfies:

P(s) = C1(0,∞), P ′ > 0, (1.2)
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and there exists γ0 ∈ ( 65 , 2) such that

lim
s→0+

s1−γ0 P ′(s) = K > 0. (1.3)

The assumption (1.3) implies that the pressure P(ρ) ≈ Kργ0 for ρ near 0. For physical
equations of states of Newtonian stars such as white dwarf stars and in the limiting case
of extreme nonrelativistic, γ0 = 5

3 (see [6,37]).
The Euler–Poisson system (1.1) has many steady solutions. The simplest one is the

spherically symmetric non-rotating star with (ρ0, v0) = (ρ0 (|x |) , 0). We refer to [29]
and references therein for the existence and stability of non-rotating stars. A turning point
principle (TPP) was shown in [29] that the stability of the non-rotating stars is entirely
determined by the mass-radius curve parameterized by the center density. In particular,
the stability of a non-rotating star can only change at extrema (i.e. local maximum or
minimum points) of the total mass.

We consider axi-symmetric rotating stars of the form

(ρ0, 	v0) = (ρ0 (r, z) , rω0 (r) eθ ) ,

where (r, θ, z) are the cylindrical coordinates,ω0 (r) is the angular velocity and (er , eθ , ez)
denote unit vectors along r, θ, z directions. We note that for barotropic equation of states
P = P (ρ), it was known as Poincaré-Wavre theorem [45, Section 4.3] that the angular
velocity must be independent of z. The existence and stability of rotating stars is a clas-
sical problem in astrophysics. For homogeneous (i.e. constant density) rotating stars, it
had been extensively investigated since the work of Maclaurin in 1740s, by many people
including Dirichlet, Jacobi, Riemann, Poincaré and Chandrasekhar etc. We refer to the
books [7,20] for history and results on this topic. The compressible rotating stars are
much less understood. From 1920s, Lichtenstein initiated a mathematical study of com-
pressible rotating stars, which was summarized in his monograph [26]. In particular, he
showed the existence of slowly rotating stars near non-rotating stars by implicit function
theorem. See also [14,17,18,41] for related results. The existence of rotating stars can
also be established by variational methods ( [2,5,9–11,25,30,32]), or global bifurcation
theory [1,42,43]. Compared with the existence theory, there has been relatively few
rigorous works on the stability of rotating stars. In this paper, we consider the stability
of rotating stars under axi-symmetric perturbations. There are two natural questions to
address: 1) Does TPP still hold for a family of rotating stars? 2) How does the rotation
affect the stability (instability) of rotating stars?

The answers to these two questions have been disputed in astrophysical literature.
Bisnovaty-Kogan and Blinnikov [4] suggested that for a family of rotating stars with
fixed angular momentum distribution per unit mass and parameterized by the center
density μ, TPP is true (i.e. stability changes at the extrema of the total mass). They used
heuristic arguments (so called static method) as in the non-rotating case. Such arguments
suppose that at the transition point of stability, there must exist a zero frequency mode
which can only be obtained by infinitesimally transforming equilibrium configurations
near the given one, without changing the total mass M (μ). Hence, the transition point
is a critical point of the total mass (i.e. M ′ (μ) = 0). It is reasonable to study the family
of rotating stars with fixed angular momentum distribution, which is invariant under
the Euler–Poisson dynamics. In [4], they also considered a family of rigidly rotating
stars (i.e. ω0 is constant) for a special equation of state similar to white dwarf stars. By
embedding each rigidly rotating star into a family with the same angular momentum
distribution and with some numerical help, it was found that the transition of stability
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is not at the extrema of mass. In [40], for a family of rotating stars with fixed rotational
parameter (i.e. the ratio of rotational energy to gravitational energy), similar arguments
as in [4] were used to indicate that TPP is true for this family and their numerical results
suggested that instability occurs beyond the first mass extrema. However, up to date
there is no rigorous proof or disproof of TPP for different families of rotating stars.

The issue that whether rotation can have a stabilizing effect on rotating stars has long
been in debate. For a long time, it was believed that rotation is stabilizing for any angu-
lar velocity profile. This conviction was based on conclusions drawn from perturbation
analysis near neutral modes of non-rotating stars, which was done by Ledoux [24] for
rigidly rotating stars and by Lebovitz [23] for general angular velocities. However, the
later works of Sidorov [38,39] and Kähler [21] showed that rotation could be destabi-
lizing. Hazlehurst [13] argued that the advocates of destabilization of rotation had used
an argument that is open to criticism and disagreed that rotation could be destabilizing.

In this paper, we answer the above two questions in a rigorous way. To state our
results more precisely, we introduce some notations. Let (ρ0 (r, z) ,−→v0 = rω0 (r) eθ )

be an axi-symmetric rotating star solution of (1.1). The support of ρ0 is denoted by �,
which is an axi-symmetric bounded domain. The rotating star solutions satisfy

−→v0 · ∇−→v0 + ∇	′(ρ0) + ∇V = 0 in �, (1.4)

V = −|x |−1 ∗ ρ0 in R
3, (1.5)

equivalently,

	′(ρ0) − |x |−1 ∗ ρ0 −
∫ r

0
ω2
0(s)s ds + c0 = 0 in �, (1.6)

where c0 > 0 is a constant and the enthalpy 	(ρ) > 0 is defined by

	(0) = 	′(0) = 0, 	′(ρ) =
∫ ρ

0

P ′(s)
s

ds.

Let R0 be the maximum of r such that (r, z) ∈ �. We assume ω0 ∈ C1[0, R0], ∂�

is C2 with positive curvature near (R0, 0), and for any (r, z) near ∂�

ρ0(r, z) ≈ dist((r, z), ∂�)
1

γ0−1 , (1.7)

which are satisfied for slowly rotating stars near non-rotating stars as constructed in
[14,17,18,41]. Let X = L2

	′′(ρ0) × L2
ρ0

and Y = (
L2

ρ0

)2
, where L2

	′′(ρ0) and L2
ρ0

are axi-

symmetric weighted L2 spaces in � with weights 	′′(ρ0) and ρ0. Denote X := X × Y .

Define the Rayleigh discriminant ϒ(r) = ∂r (ω
2
0r

4)

r3
.

For Rayleigh stable angular velocity ω0 satisfying ϒ(r) > 0 for r ∈ [0, R0], the
linearization of the axi-symmetric Euler–Poisson system at (ρ0, 	v0) can be written in a
Hamiltonian form

d

dt

(
u1
u2

)

= JL
(
u1
u2

)

, (1.8)

where u1 = (ρ, vθ ) and u2 = (vr , vz), and ρ, (vr , vθ , vz) are perturbations of den-
sity and (r, θ, z)-components of velocity respectively. In the linearized Euler–Poisson
system, the steady density ρ0 and the perturbations δρ have the same support. This is
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reasonable because of the underlyingLagrangian formulation of the problem (see theAp-
pendix in [29] for the derivation of the linearized Euler–Poisson system for non-rotating
stars). The operators

J :=
(

0, B
−B ′, 0

)

: X∗ → X, L :=
(

L, 0
0, A

)

: X → X∗, (1.9)

are off-diagonal anti-self-dual and diagonal self-dual operators respectively, where

L =
(
L 0
0 A1

)

: X → X∗, (1.10)

with

L = 	′′(ρ0) − 4π(−�)−1, (1.11)

B = (B1, B2)
T , B1 = −∇·, B2 = −∂r (ω0r2)

rρ0
er , (1.12)

A = ρ0, and A1 = 4ω2
0r

3ρ0

∂r (ω
2
0r

4)
= 4ω2

0ρ0
ϒ(r) . More precise definition and properties of these

operators can be found in Sect. 2.2.
Our main result for the Rayleigh stable case is the following.

Theorem 1.1. Assume ω0 ∈ C1[0, R0], ϒ(r) > 0, (1.7), ∂� is C2 and has positive
curvature near (R0, 0). Then the operator JL defined by (1.9) generates a C0 group
etJL of bounded linear operators on X = X × Y and there exists a decomposition

X = Eu ⊕ Ec ⊕ Es,

of closed subspaces Eu,s,c satisfying the following properties:
i) Ec, Eu, Es are invariant under etJL.
ii) Eu (Es) only consists of eigenvectors corresponding to positive (negative) eigen-

values of JL and

dim Eu = dim Es = n− (
L|R(B)

)
= n− (K|R(B1)

)
,

where 〈K·, ·〉 is a bounded bilinear quadratic form on L2
	′′(ρ0) defined by

〈Kδρ, δρ〉 = 〈Lδρ, δρ〉 + 2π
∫ R0

0
ϒ(r)

(∫ r
0 s

∫ +∞
−∞ δρ(s, z)dzds

)2

r
∫ +∞
−∞ ρ0(r, z)dz

dr, (1.13)

for any δρ ∈ L2
	′′(ρ0) and n

− (K|R(B1)
)
denotes the number of negative modes of 〈K·, ·〉

restricted to the subspace

R (B1) =
{

δρ ∈ L2
	′′(ρ0)

∣
∣

∫

�

δρdx = 0

}

. (1.14)

iii) The exponential trichotomy is true in the space X in the sense of (2.2) and (2.3).
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Remark 1.1. The perturbations δρ(r, z) ∈ L2
	

′′
(ρ0)

and δvθ (r, z) ∈ L2
ρ0

imply that

supp(δρ, δvθ ) ⊂ �. But for convenience of notations, we use
∫ +∞
−∞ •dz for ∫ +Z(r)

−Z(r) •dz
where (r,±Z(r)) ∈ ∂�, “•” represents an integrand supported in �. Here, it should be
understood that the integrand function is extended by 0 outside the support �.

Corollary 1.1. Under the assumptions of Theorem 1.1, the rotating star solution (ρ0, 	v0)
is spectrally stable to axi-symmetric perturbations if and only if

〈Kδρ, δρ〉 ≥ 0,

for all δρ ∈ L2
	′′(ρ0) with

∫

�
δρdx = 0.

Theorem 1.1 gives not only a sharp stability criteria for rotating stars with Rayleigh
stable angular velocity, but alsomore detailed information on the spectra of the linearized
Euler–Poisson operator and exponential trichotomy estimates for the linearized Euler–
Poisson system. These will be useful for the future study of nonlinear dynamics near
unstable rotating stars, particularly, the construction of invariant (stable, unstable and
center) manifolds for the nonlinear Euler–Poisson system.

The sharp stability criterion in Corollary 1.1 is used to study the stability of two
families of slowly rotating stars. For the first family of slowly rotating stars with fixed
Rayleigh stable angular velocity and parameterized by the center density, we show that
TPP is not true and the transition of stability does not occur at the first mass extrema.
More precisely, for fixed ω0 (r) ∈ C1,β (β ∈ (0, 1)), satisfying ϒ(r) > 0 and κ

small enough, by implicit function theorem as in [14,18,41], there exists a family of
slowly rotating stars

(
ρμ,κ , κrω0 (r) eθ

)
parameterized by the center density μ. We

show that the transition of stability for this family is not at the first extrema of the
total mass Mμ,κ . In particular, when γ0 > 4

3 , the slowly rotating stars are stable for
small center density and remain stable slightly beyond the first mass maximum. This
is consistent with the numerical evidence in [4] (Figure 10, p. 400) for the example
of rigidly rotating stars and an equation of state with γ0 = 5

3 . It shows that Rayleigh
stable rotation is indeed stabilizing for rotating stars. By contrast, for the second family
of slowly rotating stars with fixed monotone increasing angular momentum distribution
(equivalently Rayleigh stable angular velocity), we show that TPP is indeed true. More
precisely, for fixed j (p, q) ∈ C1,β

(
R
+ × R

+
)
satisfying ∂p( j2 (p, q)) > 0, j (0, q) =

∂p j (0, q) = 0 and ε sufficiently small, there exists a family of slowly rotating stars(
ρμ,ε,

ε
r j

(
mρμ,ε , Mμ,ε

)
eθ

)
parameterized by the center density μ, where

mρμ,ε (r) =
∫ r

0
s

∫ ∞

−∞
ρμ,ε(s, z)dsdz

is the mass distribution in the cylinder and Mμ,ε is the total mass. We show that the
transition of stability for this family of rotating stars exactly occurs at the first extrema
of the total mass Mμ,ε. This not only confirms the claim in [4] based on heuristic
arguments when j (m, M) = 1

M j ( m
M ), but also can apply to other examples studied in

the literature, including j (m, M) = j (m) (see [2,18,30,31]) and j (m, M) = j ( m
M )

(see [34]).
The issue of TPP is also not so clear for relativistic rotating stars. For relativistic

stars, TPP was shown for the secular stability (with dissipation) of a family of rigidly
rotating stars ( [12]), while numerical results in [44] indicated that the transition of
dynamic instability (without dissipation) does not occur at the mass maximum (i.e. TPP
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is not true) for such a family. Our approach for the Newtonian case might be useful for
studying the relativistic case.

For the Rayleigh stable case, the stability of rotating stars is studied by using the
separable Hamiltonian framework as in the non-rotating stars [29]. However, there are
fundamental differences between these two cases. For the non-rotating stars, the stability
condition is reduced to find n− (

L|R(B1)
)
, that is, the number of negative modes of 〈L·, ·〉

restricted to R (B1), where L and R (B1) are defined in (1.11) and (1.14) respectively.
We note that the dynamically accessible space R (B1) (for density perturbation) is one
co-dimensional with only the mass constraint. For the rotating stars, by using the sepa-

rable Hamiltonian formulation (1.8), the stability is reduced to find n−
(
L|R(B)

)
, where

L, B are defined in (1.10) and (1.12) respectively. Here, the dynamically accessible space
R (B) (for density and θ -component of velocity) is infinite co-dimensional, which corre-
sponds to perturbations preserving infinitely many generalized total angular momentum
(2.11) in the first order. It is hard to compute the negative modes of 〈L·, ·〉 with such
infinitely many constraints. A key point in our proof is to find a reduced functional K
defined in (1.13) for density perturbation such that n−

(
L|R(B)

)
= n− (K|R(B1)

)
, where

R (B1) denotes the density perturbations preserving the mass as in the non-rotating case.
Therefore, the study of negative modes of L|R(B) with infinitely many constraints is re-
duced to study K|R(B1) with only one mass constraint. This reduced stability criterion
in terms of K|R(B1) is crucial to prove or disprove TPP for different families of rotating
stars.

Next we consider rotating stars with Rayleigh unstable angular velocity ω0 (r). That

is, there exists a point r0 ∈ (0, R0) such that ϒ(r0) = ∂r (ω
2
0r

4)

r3

∣
∣
r=r0

< 0. In this case,
we cannot write the linearized Euler–Poisson system as a separable linear Hamiltonian

PDEs since A1 = 4ω2
0r

3ρ0

∂r (ω
2
0r

4)
is not defined at r0. Instead, we use the following second

order system for u2 = (vr , vz)

∂t t u2 = −(L1 + L2)u2 := −L̃u2, (1.15)

where L̃ = L1 + L2,

L1u2 = ∇[	′′(ρ0)(∇ · (ρ0u2)) − 4π(−�)−1(∇ · (ρ0u2)],
L2u2 =

(
ϒ(r)vr

0

)

,

are self-adjoint operators on Y . The following properties of the spectra of L̃ are obtained
in Proposition 4.1: i) σess(L̃) = range(ϒ(r)) = [−a, b], where a > 0, b ≥ 0; ii)
There are finitely many negative eigenvalues and infinitely many positive eigenvalues
outside the interval [−a, b]. In particular, the infimum of σ(L̃) is negative, which might
correspond to either discrete or continuous spectrum.

Define the space

Z =
{
u2 ∈ Y | ∇ · (ρ0u2) ∈ L2

	′′(ρ0)

}
,

with the norm

‖u2‖Z = ‖u2‖Y + ‖∇ · (ρ0u2)‖L2
	′′(ρ0)

. (1.16)
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Theorem 1.2. Assume ω0 ∈ C1[0, R0], (1.7) and inf
r∈[0,R0]

ϒ(r) < 0. Let η0 ≤ −a be

the minimum of λ ∈ σ(L̃). Then we have:
i) Equation (1.15) defines a C0 group T (t), t ∈ R, on Z × Y . There exists C > 0

such that for any (u2 (0) , u2t (0)) ∈ Z × Y ,

‖u2 (t)‖Z + ‖u2t (t)‖Y ≤ Ce
√−η0t (‖u2 (0)‖Z + ‖u2t (0)‖Y ) , ∀t > 0. (1.17)

The flow T (t) conserves the total energy

E(u2, u2t ) = ‖u2t‖2Y + 〈L̃u2, u2〉. (1.18)

ii) For any ε ∈ (0,−η0), there exists initial data uε
2 (0) ∈ Z , uε

2t (0) = 0 such that
∥
∥uε

2 (t)
∥
∥
Y � e

√−η0−εt
∥
∥uε

2 (0)
∥
∥
Z , ∀t > 0. (1.19)

The above theorem shows that rotating stars with Rayleigh unstable angular velocity
are always linearly unstable. The maximal growth rate is obtained either by a discrete
eigenvalue beyond the range ofϒ(r) or by unstable continuous spectrumdue toRayleigh
instability (i.e. negativeϒ(r)). In [23], it was shown that for slowly rotating starswith any
angular velocity profile, discrete unstablemodes cannot be perturbed fromneutralmodes
of non-rotating stars. However, the unstable continuous spectrum was not considered
there.

We briefly mention some recent mathematical works on the stability of rotating
gaseous stars. The conditional Lyapunov stability of some rotating star constructed by
variational methods had been obtained by Luo and Smoller [30–33] under Rayleigh
stability assumption, also called Sölberg stability criterion in their works.

The paper is organized as follows. In Sect. 2, we study rotating stars with Rayleigh
stable angular velocity and prove the sharp stability criterion. In Sect. 3, we use the sta-
bility criterion to prove/disprove TPP for two families of slowly rotating stars. In Sect. 4,
we prove linear instability of rotating stars with Rayleigh unstable angular velocity.

Throughout this paper, for a, b > 0 we use a � b to denote the estimate a ≤ Cb
for some constant C independent of a, b, a ≈ b to denote the estimate C1a ≤ b ≤ C2b
for some constants C1,C2 > 0 and a ∼ b to denote |a − b| < ε for some ε > 0 small
enough.

2. Stability Criterion for Rayleigh Stable Case

In this section, we consider rotating stars with Rayleigh stable angular velocity pro-
files. The linearized Euler–Poisson system is studied by using a framework of separable
Hamiltonian systems in [29]. First, we give a summary of the abstract theory in [29].

2.1. Separable linear Hamiltonian PDEs. Consider a linear Hamiltonian PDEs of the
separable form

∂t

(
u
v

)

=
(

0 B
−B ′ 0

) (
L 0
0 A

) (
u
v

)

= JL
(
u
v

)

, (2.1)

where u ∈ X, v ∈ Y and X,Y are real Hilbert spaces. We briefly describe the results in
[29] about general separable Hamiltonian PDEs (2.1). The triple (L , A, B) is assumed
to satisfy assumptions:
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(G1) The operator B : Y ∗ ⊃ D(B) → X and its dual operator B ′ : X∗ ⊃ D(B ′) →
Y are densely defined and closed (and thus B ′′ = B).

(G2) The operator A : Y → Y ∗ is bounded and self-dual (i.e. A′ = A and thus 〈Au, v〉
is a bounded symmetric bilinear form on Y ). Moreover, there exist δ > 0 such
that

〈Au, u〉 ≥ δ ‖u‖2Y , ∀u ∈ Y.

(G3) The operator L : X → X∗ is bounded and self-dual (i.e. L ′ = L etc.) and there
exists a decomposition of X into the direct sum of three closed subspaces

X = X− ⊕ ker L ⊕ X+, dim ker L < ∞, n−(L) � dim X− < ∞,

satisfying
(G3.a) 〈Lu, u〉 < 0 for all u ∈ X−\{0};
(G3.b) there exists δ > 0 such that

〈Lu, u〉 ≥ δ ‖u‖2 , for any u ∈ X+.

We note that the assumptions dim ker L < ∞ and A > 0 can be relaxed (see [29]).
But these simplified assumptions are enough for the applications to the Euler–Poisson
system studied in this section under the Rayleigh stability assumption (i.e.ϒ(r) > 0 for
all r ∈ [0, R0]).
Theorem 2.1. [29] Assume (G1–3) for (2.1). The operator JL generates a C0 group
etJL of bounded linear operators on X = X × Y and there exists a decomposition

X = Eu ⊕ Ec ⊕ Es,

of closed subspaces Eu,s,c with the following properties:
i) Ec, Eu, Es are invariant under etJL.
ii) Eu (Es) only consists of eigenvectors corresponding to positive(negative) eigen-

values of JL and

dim Eu = dim Es = n− (
L|R(B)

)
,

wheren−
(
L|R(B)

)
denotes thenumberof negativemodes of 〈L·, ·〉 |R(B). If n

−
(
L|R(B)

)
>

0, then there exists M > 0 such that
∣
∣
∣etJL|Es

∣
∣
∣ ≤ Me−λu t , t ≥ 0;

∣
∣
∣etJL|Eu

∣
∣
∣ ≤ Meλu t , t ≤ 0, (2.2)

where λu = min{λ | λ ∈ σ(JL|Eu )} > 0.
iii) The quadratic form 〈L·, ·〉 vanishes on Eu,s , i.e. 〈Lu,u〉 = 0 for all u ∈ Eu,s ,

but is non-degenerate on Eu ⊕ Es, and

Ec = {
u ∈ X | 〈Lu, v〉 = 0, ∀ v ∈ Es ⊕ Eu}

.

There exists M > 0 such that

|etJL|Ec | ≤ M(1 + |t |)3, for all t ∈ R. (2.3)

iv) Suppose 〈L·, ·〉 is non-degenerate on R (B), then |etJL|Ec | ≤ M for some M > 0.
Namely, there is Lyapunov stability on the center space Ec.
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Remark 2.1. Above theorem shows that the solutions of (2.9) are spectrally stable if and

only if L|R(B) ≥ 0. Moreover, n−
(
L|R(B)

)
equals to the number of unstable modes.

The exponential trichotomy estimates (2.2)–(2.3) are important in the study of nonlinear
dynamics near an unstable steady state, such as the proof of nonlinear instability or
the construction of invariant (stable, unstable and center) manifolds. The exponential
trichotomy can be lifted to more regular spaces if the spaces Eu,s have higher regularity.
We refer to Theorem 2.2 in [28] for more precise statements.

2.2. Hamiltonian formulation of linearized EP system. Consider an axi-symmetric ro-
tating star solution (ρ0 (r, z) ,−→v0 = v0eθ = rω0 (r) eθ ). The support of density ρ0 is
denoted by �, which is an axi-symmetric simply connected bounded domain. Let R0
be support radius in r , that is, the maximum of r such that (r, z) ∈ �. We choose the
coordinate system such that (R0, 0) ∈ ∂�. We make the following assumptions:
i) ω0 ∈ C1[0, R0] satisfies the Rayleigh stability condition (i.e. ϒ(r) > 0 for r ∈
[0, R0]);
ii) ∂� is C2 near (R0, 0) and has positive curvature (equivalently � is locally convex)
at (R0, 0);
iii) ρ0 satisfies (1.7).
The following lemma will be used later.

Lemma 2.1. Under Assumptions ii) and iii) above, for ε > 0 small enough we have

∫ +∞

−∞
ρλ
0 (r, z)dz ≈ (R0 − r)

λ
γ0−1 +

1
2 ,

for any λ > 0 and r ∈ (R0 − ε, R0).

Proof. By (1.7), we have

∫ +∞

−∞
ρλ
0 (r, z)dz ≈

∫

(r,z)∈�

dist((r, z), ∂�)
λ

γ0−1 dz.

First, we consider the case when � is the ball
{
r2 + z2 < R2

0

}
. Then for r close to R0

∫

(r,z)∈�

dist((r, z), ∂�)
λ

γ0−1 dz = 2
∫

√

R2
0−r2

0

(
R0 −

√
r2 + z2

) λ
γ0−1

dz (2.4)

≈
∫

√

R2
0−r2

0

(
R2
0 − r2 − z2

) λ
γ0−1

dz

=
(
R2
0 − r2

) λ
γ0−1 +

1
2

∫ 1

0

(
1 − u2

) λ
γ0−1

du

≈ (R0 − r)
λ

γ0−1 +
1
2 .

For general �, let 1
r0

> 0 be the curvature of ∂� at (R0, 0) and

� =
{
(r, z) | (r − R0 + r0)

2 + z2 = r20

}
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be the osculating circle at (R0, 0). Then near (R0, 0), ∂� is approximated by � to the
2nd order. For any r ∈ (R0 − ε, R0), let (r,−z1 (r)) , (r, z2 (r)) be the intersection of
∂� with the vertical line r ′ = r , where z1 (r) , z2 (r) > 0. Then for ε small enough, we
have

z1 (r) , z2 (r) =
√

r20 − (r − R0 + r0)2 + o

(√

r20 − (r − R0 + r0)2
)

.

For (r, z) ∈ � with r ∈ (R0 − ε, R0),

dist((r, z), ∂�) = dist((r, z), �) + o (dist((r, z), �))

=
(

r0 −
√

(r − R0 + r0)2 + z2
)

+ o

((

r0 −
√

(r − R0 + r0)2 + z2
))

.

Then similar to (2.4), we have

∫ +∞

−∞
ρλ
0 (r, z)dz ≈

(
r20 − (r − R0 + r0)

2
) λ

γ0−1 +
1
2 ≈ (R0 − r)

λ
γ0−1 +

1
2 .

��
Let X1 := L2

	′′(ρ0), X2 := L2
ρ0
, X := X1 × X2, Y := (

L2
ρ0

)2
and X := X × Y .

The linearized Euler–Poisson system for axi-symmetric perturbations around the
rotating star solution (ρ0 (r, z) , ω0 (r) reθ ) is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tvr = 2ω0 (r) vθ − ∂r (	
′′(ρ0)ρ + V (ρ)),

∂tvz = −∂z(	
′′(ρ0)ρ + V (ρ)),

∂tvθ = − 1
r ∂r (ω0r2)vr ,

∂tρ = −∇ · (ρ0v) = −∇ · (ρ0(vr , 0, vz)),

(2.5)

with �V = 4πρ. Here, (ρ,−→v = (vr , vθ , vz)) ∈ X are perturbations of density and
velocity.

Define the operators

L := 	′′(ρ0) − 4π(−�)−1 : X1 → (X1)
∗, A = ρ0 : Y → Y ∗,

A1 := 4ω2
0r

3ρ0

∂r (ω
2
0r

4)
= 4ω2

0ρ0

ϒ(r)
: X2 → (X2)

∗,

and

B =
(
B1
B2

)

: D(B) ⊂ Y ∗ → X, B ′ = (
B ′
1, B

′
2

) : X∗ ⊃ D(B ′) → Y, (2.6)

where

B1

(
vr
vz

)

= −∇ · (vr , 0, vz), B ′
1ρ =

(
∂rρ

∂zρ

)

, (2.7)
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and

B2

(
vr
vz

)

= −∂r (ω0r2)

rρ0
vr , (B2)

′vθ =
(

− ∂r (ω0r2)
rρ0

vθ

0

)

. (2.8)

Then the linearizedEuler–Poisson system (2.5) can bewritten in a separableHamiltonian
form

d

dt

(
u1
u2

)

= JL
(
u1
u2

)

, (2.9)

where u1 = (ρ, vθ ) and u2 = (vr , vz). The operators

J :=
(

0, B
−B ′, 0

)

: X∗ → X, L :=
(

L, 0
0, A

)

: X → X∗,

are off-diagonal anti-self-dual and diagonal self-dual respectively, where

L =
(
L , 0
0, A1

)

: X → X∗.

First, we check that (L, A, B) in (2.9) satisfy the assumptions (G1)–(G3) for the
abstract theory in Sect. 2.1. The assumptions (G1) and (G2) can be shown by the same
arguments as in the proof of Lemma 3.5 in [29] and the fact that B2 is bounded. The
Rayleigh stability condition ϒ(r) > 0 implies that the operator A1 is bounded, positive
and self-dual. By the same proof of Lemma 3.6 in [29], we have the following lemma.

Lemma 2.2. There exists a direct sum decomposition X1 = X− ⊕ ker L ⊕ X+ and
δ0 > 0 such that:

i) dim (X−) , dim ker L < ∞;
ii) L|X− < 0, L|X+ ≥ δ0 and X− ⊥ X+ in the inner product of X1.

The assumption (G3) readily follows from above lemma. Therefore, we can apply
Theorem 2.1 to the linearized Euler–Poisson system (2.9). This proves the conclusions in

Theorem 1.1 except for the formula n−
(
L|R(B)

)
= n− (K|R(B1)

)
, which will be shown

later. Here, R (B) is the closure of R(B) in X , and the operators B, B1 are defined in
(2.6)–(2.8).

Remark 2.2. In some literature [30–33], the Rayleigh stability condition isϒ(r) ≥ 0 for
all r ∈ [0, R0]. Here, we used the stability condition ϒ(r) > 0 for all r ∈ [0, R0] as in
the astrophysical literature such as [4,46]. If ϒ(r) ≥ 0 for all r ∈ [0, R0] and ϒ(r) = 0

only at some isolated points, let �(r, z) = 4ω2
0ρ0

ϒ(r) and the operator A1 : L2
� → (L2

�)∗
is bounded and positive. The linearized Euler–Poisson system can still be studied in the
framework of separable Hamiltonian systems and similar results as in Theorem 1.1 can
be obtained.
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2.3. Dynamically accessible perturbations. By Theorem 1.1, the solutions of (2.9) are
spectrally stable (i.e. nonexistence of exponentially growing solution) if and only if
L|R(B) ≥ 0. More precisely, we have

Corollary 2.1. Assume ω0 ∈ C1[0, R0], (1.7), and inf
r∈[0,R0]

ϒ(r) > 0. The rotating star

solution
(
ρ0 (r, z) ,−→v0 = rω0 (r) eθ

)
of Euler–Poisson system is spectrally stable if and

only if

〈Lδρ, δρ〉 + 〈A1δvθ , δvθ 〉 ≥ 0 for all (δρ, δvθ ) ∈ R(B). (2.10)

In this section, we discuss the physical meaning of above stability criterion by using
the variational structure of the rotating stars.

For any solution (ρ, v) of the axi-symmetric Euler–Poisson system (1.1), define the
angular momentum j = vθr and the generalized total angular momentum

Ag(ρ, vθ ) =
∫

R3
ρg(vθr)dx, (2.11)

for any function g ∈ C1 (R).

Lemma 2.3. For any g ∈ C1(R), the functional Ag(ρ, vθ ) is conserved for the Euler–
Poisson system (1.1).

Proof. First, we note that the angular momentum j is an invariant of the particle trajec-
tory under the axi-symmetric force field −∇V − ∇	′(ρ). Let ϕ (x, t) be the flow map
of the velocity field v with initial position x , and J (x, t) be the Jacobian of ϕ. Then
ρ (ϕ (x, t) , t) J (x, t) = ρ (x, 0) and

Ag(ρ, vθ ) (0) =
∫

R3
ρ (x, 0) g( j (x))dx

=
∫

R3
ρ (ϕ (x, t) , t) J (x, t) g( j (ϕ (x, t)))dx

=
∫

R3
ρ (y, t) g( j (y))dy = Ag(ρ, vθ ) (t) .

��
The steady state (ρ0, ω0reθ ) has the following variational structure. By the steady

state equation (1.6), we have

1

2
ω2
0r

2 + 	′(ρ0) − |x |−1 ∗ ρ0 + g0
(
ω0r

2
)
+ c0 = 0 in �, (2.12)

where c0 > 0 is the constant in (1.6) and g0 ∈ C1 (R) satisfies the equation

g′
0

(
ω0 (r) r2

)
= −ω0 (r) , ∀ r ∈ [0, R0] . (2.13)

The existence of g0 satisfying (2.13) is ensured by the Rayleigh stability condition
ϒ(r) > 0 which implies that ω0 (r) r2 is monotone to r . The equations (1.6) and (2.12)
are equivalent since

g0
(
ω0 (r) r2

)
= −1

2
ω2
0r

2 −
∫ r

0
ω2
0(s)s ds,
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due to (2.13) and integration by parts. Denote the the total energy by

H(ρ, v) =
∫

R3

1

2
ρv2 + 	(ρ) − 1

8π
|∇V |2dx, �V = 4πρ,

which is conserved for the Euler–Poisson system (1.1). Define the energy-Casimir func-
tional

Hc(ρ, v) = H(ρ, v) + c0

∫

R3
ρ dx +

∫

R3
ρg0(vθr) dx,

where c0 and g0 are as in (2.12). Then (ρ0, ω0reθ ) is a critical point of Hc(ρ, v), since

〈DHc(ρ0, ω0reθ ), (δρ, δv)〉 =
∫

R3

[
1

2
ω2
0r

2 + 	′(ρ0) + V (ρ0) + c0 + g0(ω0r
2)

]

δρ dx

+
∫

R3
[ρ0ω0r + ρ0g

′
0(ω0r

2)r ]δvθ dx = 0

by equations (2.12) and (2.13). By direct computations,

〈D2Hc(ρ, v)[ρ0, ω0reθ ](δρ, δv), (δρ, δv)〉
=

∫

R3
(	′′(ρ0) (δρ)2 − 4π(−�−1δρ)δρ + ρ0 (δvr )

2 + ρ0 (δvz)
2 dx

+
∫

R3
ρ0(1 + g′′

0 (ω0r
2)r2) (δvθ )

2 dx

= 〈Lδρ, δρ〉 + 〈A1δvθ , δvθ 〉 + 〈A (δvr , δvz) , (δvr , δvz)〉 , (2.14)

where we used the identity

1 + g′′
0 (ω0r

2)r2 = 1 − ω′
0r

2

d
dr

(
ω0r2

) = 4ω2
0r

3

d
dr

(
ω2
0r

4
) = 4ω2

0

ϒ(r)
.

The functional (2.14) is a conserved quantity of the linearized Euler–Poisson system
due to the Hamiltonian structure (2.9). We note that the number of negative directions
of (2.14) is given by n− (L).

Lemma 2.4. It holds that

R (B1) = R (B1) =
{

δρ ∈ L2
	′′(ρ0)

∣
∣
∣
∣

∫

�

δρdx = 0

}

.

Proof. Since ker B ′
1 = ker∇ is spanned by constant functions, we have

R (B1) = (
ker B ′

1

)⊥ =
{

δρ ∈ L2
	′′(ρ0)

∣
∣
∣
∣

∫

�

δρdx = 0

}

.

It remains to show R (B1) = R (B1) which is equivalent to show R (B1A) = R (B1A).
By Lemma 3.15 in [29], we have the orthogonal decomposition

L2
ρ0

= ker (B1A) ⊕ W,
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where W = {
w = ∇ p ∈ L2

ρ0

}
. For any δρ ∈ R (B1A), by the proof of Lemma 3.15 in

[29], there exists a unique gradient field ∇ p ∈ L2
ρ0

such that

B1A∇ p = ∇ · (ρ0∇ p) = δρ.

By Proposition 12 in [19], we have

‖∇ p‖L2
ρ0

� ‖∇ · (ρ0∇ p)‖L2
	′′(ρ0)

= ‖δρ‖L2
	′′(ρ0)

. (2.15)

For any u ∈ D (B1A), let v ∈ W be the projection of u to W . Then above estimate
(2.15) implies that

dist (u, ker (B1A)) = inf
z∈ker(B1A)

‖u − z‖L2
ρ0

= ‖v‖L2
ρ0

� ‖B1Au‖L2
	′′(ρ0)

.

By Theorem 5.2 in [22, P. 231], this implies that R (B1) = R (B1). ��
Definition 2.1. The perturbation (δρ, δvθ ) ∈ X is called dynamically accessible if
(δρ, δvθ ) ∈ R(B).

In the next lemma, we give two equivalent characterizations of the dynamically
accessible perturbations.

Lemma 2.5. For (δρ, δvθ ) ∈ X, the following statements are equivalent.
(i) (δρ, δvθ ) ∈ R(B);
(ii)

∫

�

g(ω0r
2)δρ dx +

∫

�

ρ0rg
′(ω0r

2)δvθ dx = 0, ∀g ∈ C1 (R) ; (2.16)

(iii)
∫

�
δρ dx = 0 and for any r ∈ [0, R0],

∫ +∞

−∞
δvθρ0 (r, z) dz = ∂r

(
ω0r2

)

r2

∫ r

0
s

∫ +∞

−∞
δρ(s, z)dzds. (2.17)

Proof. First, we show (i) and (ii) are equivalent. We have R(B) = (
ker B ′)⊥, where the

dual operator B ′ : X∗ → Y is defined in (2.7)–(2.8). Let (ρ, vθ ) be a C1 function in
ker B ′, then

B ′
(

ρ

vθ

)

=
(

∂rρ − ∂r (ω0r2)
rρ0

vθ

∂zρ

)

=
(
0
0

)

.

Since ∂zρ = 0 and ω0r2 is monotone to r by the Rayleigh stability condition, we can

write ρ = g
(
ω0r2

)
for some function g ∈ C1. Then ∂rρ − ∂r (ω0r2)

rρ0
vθ = 0 implies that

vθ = ρ0rg′(ω0r2). Thus ker B ′ is the closure of the set
{(

g
(
ω0r

2
)

, ρ0rg
′(ω0r

2)
)

, g ∈ C1 (R)
}

,

in X∗. Therefore, (δρ, δvθ ) ∈ R(B) = (
ker B ′)⊥ if and only if (2.16) is satisfied.
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Next, we show (ii) and (iii) are equivalent. If (ii) is satisfied, by choosing g = 1 we
get

∫
δρ dx = 0. Then by (2.16) and integration by parts, we have

∫ R0

0

[

r2
∫ +∞

−∞
δvθρ0(r, z)dz − ∂r (ω0r

2)

(∫ r

0
s

∫ +∞

−∞
δρ(s, z)dzds

)]

g′(ω0r
2)dr = 0.

which implies (2.17) since g ∈ C1 (R) is arbitrary. On the other hand, by reversing the
above computation, (ii) follows from (iii). ��

The statement (ii) above implies that for any (δρ, δvθ ) ∈ R(B), we have

〈DAg(ρ0, ω0r), (δρ, δvθ )〉 = 0,

where the generalized angular momentum Ag is defined in (2.11). That is, a dynami-
cally accessible perturbation (δρ, δvθ ) must lie on the tangent space of the hypersurface
Ag(ρ, vθ ) = Ag(ρ0, ω0(r)re). Since g is arbitrary, this implies infinite many constraints
for dynamically accessible perturbations. The stability criterion (2.10) implies that rotat-
ing stars are stable if and only if they are local minimizers of energy functional H(ρ, v)

under the constraints of fixed generalized angular momentum Ag for all g. This contrasts
significantly with the case of non-rotating stars. It was shown in [29] that non-rotating
stars are stable if and only if they are local minimizers of the energy functional under
the only constraint of fixed total mass. The stability criterion (2.10) for rotating stars
involves infinitely many constraints and is much more difficult to check. In the next
section, we give an equivalent stability criterion in terms of a reduced functional (1.13)
under only the mass constraint.

Remark 2.3. For non-rotating stars, the dynamically accessible perturbations are given
by R (B1) = R (B1)which consists of the perturbations preserving themass (see Lemma
2.4). For rotating stars, the dynamically accessible space R(B) is different from R (B).

2.4. Reduced functional and the equivalent stability criterion. In this section, we prove

the formula n−
(
L|R(B)

)
= n− (K|R(B1)

)
and complete the proof of Theorem 1.1.

Lemma 2.6. For any δρ ∈ R (B1), define

uδρ
θ = ∂r (ω0r2)

r2

∫ r
0 s

∫ +∞
−∞ δρ(s, z)dzds

∫ +∞
−∞ ρ0(r, z)dz

. (2.18)

Then
(
δρ, uδρ

θ

)
∈ R (B) and

∥
∥
∥u

δρ
θ

∥
∥
∥
L2

ρ0

� ‖δρ‖L2
	′′(ρ0)

.

Proof. We have

∥
∥
∥u

δρ
θ

∥
∥
∥
2

L2
ρ0

�
∫

�
ρ0

( ∫ r
0 s

∫ +∞
−∞ δρ(s, z)dzds

r
∫ +∞
−∞ ρ0(r, z)dz

)2

dx = 2π
∫ R0

0

(∫ r
0 s

∫ +∞
−∞ δρ(s, z)dzds

)2

r
∫ +∞
−∞ ρ0(r, z)dz

dr

= 2π
∫ R0−ε

0

(∫ r
0 s

∫ +∞
−∞ δρ(s, z)dzds

)2

r
∫ +∞
−∞ ρ0(r, z)dz

dr + 2π
∫ R0

R0−ε

(∫ r
0 s

∫ +∞
−∞ δρ(s, z)dzds

)2

r
∫ +∞
−∞ ρ0(r, z)dz

dr

= I + I I,
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where ε > 0 is chosen such that Lemma 2.1 holds. Since the function h1 (r) =∫ +∞
−∞ ρ0(r, z)dz has a positive lower bound in [0, R0 − ε] and h2 (r) = ∫ +∞

−∞
1

	′′(ρ0(r,z))dz
is bounded, by Hardy’s inequality (see Lemma 3.21 in [29] or [3]) we have

I �
∫ R0−ε

0
r−2

(∫ r

0
s

∫ +∞

−∞
δρ(s, z)dzds

)2

dr

�
∫ R0−ε

0
r2

(∫ +∞

−∞
δρ(r, z)dz

)2

dr

�
∫ R0−ε

0
r2

(∫ +∞

−∞
	′′(ρ0) (δρ)2 (r, z)dz

) (∫ +∞

−∞
1

	′′(ρ0(r, z))
dz

)

dr

�
∫ R0−ε

0
r

∫ +∞

−∞
	′′(ρ0) (δρ)2 (r, z)dzdr � ‖δρ‖2

L2
	′′(ρ0)

.

By Hardy’s inequality and Lemma 2.1, we have

I I = 2π
∫ R0

R0−ε

(∫ r
0 s

∫ +∞
−∞ δρ(s, z)dzds

)2

r
∫ +∞
−∞ ρ0(r, z)dz

dr

�
∫ R0

R0−ε

(∫ r
0 s

∫ +∞
−∞ δρ(s, z)dzds

)2

(R0 − r)
1

γ0−1 +
1
2

dr

�
∫ R0

R0−ε

(∫ +∞

−∞
δρ(r, z)dz

)2

(R0 − r)
− 1

γ0−1 +
3
2 dr

�
∫ R0

R0−ε

(∫ +∞

−∞
	′′(ρ0)(δρ)2dz

) (∫ +∞

−∞
1

	′′(ρ0)
dz

)

(R0 − r)
− 1

γ0−1 +
3
2 dr

�
∫ R0

R0−ε

(∫ +∞

−∞
	′′(ρ0)(δρ)2dz

)

(R0 − r)dr

� ‖δρ‖2
L2

	′′(ρ0)

,

where we used the estimate
∫ +∞

−∞
1

	′′(ρ0)
dz ≈

∫ +∞

−∞
ρ
2−γ0
0 dz ≈ (R0 − r)

2−γ0
γ0−1 +

1
2 ,

since 	′′ (s) ≈ sγ0−2 for s small. This proves ‖uδρ
θ ‖L2

ρ0
� ‖δρ‖L2

	′′(ρ0)
.

The statement
(
δρ, uδρ

θ

)
∈ R (B) follows from Lemma 2.5 since

∫

�
δρ dx = 0 for

δρ ∈ R (B1) and uδρ
θ obviously satisfies (2.17). ��

With the help of Lemma 2.6, we can finish the proof of Theorem 1.1.

Proof of Theorem 1.1. We only need to show n−
(
L|R(B)

)
= n− (K|R(B1)

)
. First, we

have
〈

L

(
δρ

δvθ

)

,

(
δρ

δvθ

)〉

≥ 〈Kδρ, δρ〉, ∀ (δρ, δvθ ) ∈ R(B), (2.19)
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since

〈A1δvθ , δvθ 〉 =
∫

�

4ω2
0

ϒ(r)
ρ0 (δvθ )

2 dx = 2π
∫ R0

0

4ω2
0r

ϒ(r)

∫ +∞

−∞
ρ0 (δvθ )

2 dz dr

= 2π
∫ R0

0

4ω2
0r

ϒ(r)

∫ +∞

−∞
ρ0

(
uδρ

θ

)2
dz dr

+ 2π
∫ R0

0

4ω2
0r

ϒ(r)

∫ +∞

−∞
ρ0

(
δvθ − uδρ

θ

)2
dz dr

≥ 2π
∫ R0

0

4ω2
0r

ϒ(r)

∫ +∞

−∞
ρ0

(
uδρ

θ

)2
dz dr

= 2π
∫ R0

0
ϒ(r)

(∫ r
0 s

∫ +∞
−∞ δρ(s, z)dzds

)2

r
∫ +∞
−∞ ρ0(r, z)dz

dr.

In the above, we used the observation that
∫ +∞

−∞
ρ0

(
δvθ − uδρ

θ

)
dz =

∫ +∞

−∞
ρ0δvθdz − uδρ

θ (r)
∫ +∞

−∞
ρ0dz = 0,

since
∫ +∞

−∞
ρ0δvθdz = uδρ

θ (r)
∫ +∞

−∞
ρ0dz = ∂r

(
ω0r2

)

r2

∫ r

0
s

∫ +∞

−∞
δρ(s, z)dzds

due to (2.17) and (2.18). Since δρ ∈ R (B1), it follows from (2.19 ) that n− (K|R(B1)
) ≥

n−
(
L|R(B)

)
. On the other hand, we also have n− (K|R(B1)

) ≤ n−
(
L|R(B)

)
, since

〈Kδρ, δρ〉 =
〈

L

(
δρ

uδρ
θ

)

,

(
δρ

uδρ
θ

)〉

.

Thus n− (K|R(B1)
) = n−

(
L|R(B)

)
. This finishes the proof of Theorem 1.1. ��

3. TPP for Slowly Rotating Stars

In this section, we use the stability criterion in Theorem 1.1 to study two families of
slowly rotating stars parameterized by the center density.

3.1. The case of fixed angular velocity. In this subsection,we consider a family of slowly
rotating stars with fixed angular velocity.

Under the assumptions (1.2)–(1.3), for some μmax > 0, there exists a family of
nonrotating stars with radially symmetric density ρμ(|x |) parametrized by the center
density μ ∈ (0, μmax). We refer to [29] and references therein for such results. Let Rμ

be the support radius of ρμ and Bμ = B(0, Rμ) be the support of ρμ. The radial density
ρμ satisfies

�(	′(ρμ)) + 4πρμ = 0, in Bμ,
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with ρμ(0) = μ. For the general equations of state satisfying (1.2)–(1.3) with γ0 ≥ 4/3,
it was shown in [15] that μmax = +∞.

Letω(r) ∈ C1,β [0,∞) be fixed for some β ∈ (0, 1).We consider a family of rotating
stars for the Euler–Poisson system with the following form

{
ρ0 = ρμ,κ(r, z) = ρμ(g−1

ζμ,κ
((r, z))),

−→v0 = κrω (r) eθ ,

where the dilating function is

gζμ,κ = x

(

1 +
ζμ,κ

|x |2
)

,

and ζμ,κ(x) : Bμ → R is axi-symmetric and even in z.
The governing equation of rotating stars

(
ρμ,κ , κrω (r) eθ

)
turns out to be:

−κ2
∫ r

0
ω2(s)sds + 	′(ρμ,κ) + Vμ,κ + cμ,κ = 0 in �μ,κ,

Vμ,κ = −|x |−1 ∗ ρμ,κ in R
3, (3.1)

where cμ,κ is a constant and �μ,κ = gζμ,κ (Bμ) is the support of the density ρμ,κ of the
rotating star solution.

Remark 3.1. We consider rotating stars near a family of non-rotating stars parameterized
by center density. In the literature, the constructions are mostly near a non-rotating star
with a fixed center density [14,18] or a fixed total mass [41].

By similar arguments as in [14,18,41], we can get the following existence theorem.

Theorem 3.1. Let μ ∈ [μ0, μ1] ⊂ (0, μmax), P(ρ) satisfy (1.2)–(1.3), and ω(r) ∈
C1,β [0,∞). Then there exist κ̃ > 0 and solutions ρμ,κ of (3.1) for all |κ| < κ̃ , satisfying
the following properties:

1) ρμ,κ ∈ C1,α
c (R3), where α = min( 2−γ0

γ0−1 , 1).
2) ρμ,κ is axi-symmetric and even in z.
3) ρμ,κ(0) = μ.
4) ρμ,κ ≥ 0 has compact support gζμ,κ (Bμ).
5) For allμ ∈ [μ0, μ1], themapping κ → ρμ,κ is continuous from (−κ̃, κ̃) intoC1

c (R
3).

When κ = 0, ρμ,0 = ρμ(|x |) is the nonrotating star solution with ρμ(0) = μ.

Now we use Theorem 1.1 to study the stability of above rotating star solutions
(ρμ,κ , κω(r)reθ ), forμ ∈ [μ0, μ1], κ small enough, and ω ∈ C1,β [0,∞) satisfying the

Rayleigh condition ϒ(r) := ∂r (ω
2r4)

r3
> 0. First, we check the assumptions in Theorem

1.1. Let Rμ,κ be the support radius in r for �μ,κ = gζμ,κ (Bμ). Since gζμ,κ ∈ C2(Bμ)

dependents continuously on κ , it is easy to check the assumptions on �μ,κ for κ small
enough. That is, ∂�μ,κ is C2 and has positive curvature near (Rμ,κ , 0). Next, we check
the assumption (1.7). For nonrotating stars, it is known ( [6,16,27,29]) that

ρμ(r, z) ≈ ((Rμ −
√
r2 + z2)

1
γ0−1 ) for

√
r2 + z2 ∼ Rμ.
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For κ small enough, by the definition of the dilating function gζμ,κ , we have

ρμ,κ(r, z) = ρμ(g−1
ζμ,κ

(r, z))

≈ ((Rμ − |g−1
ζμ,κ

(r, z)|) 1
γ0−1 )

≈ dist((r, z), ∂gζμ,κ (Bμ))
1

γ0−1 ,

for (r, z) near (Rμ,κ , 0) = gζμ,κ (Rμ, 0).
Below, for rotating stars

(
ρμ,κ , κrω (r) eθ

)
we use Xμ,κ , X

μ,κ
1 , Yμ,κ , Lμ,κ , A

μ,κ
1 ,

Bμ,κ
1 , Bμ,κ

2 , Kμ,κ , etc., to denote the corresponding spaces X , X1, Y , and operators L ,
A1, B1, B2, K etc. defined in Sect. 2.

By Theorem 1.1, the rotating star (ρμ,κ , κω(r)reθ ) is spectrally stable if and only if

〈Kμ,κδρ, δρ〉 = 〈Lμ,κδρ, δρ〉 + 2κ2π

∫ Rμ,κ

0
ϒ(r)

(∫ r
0 s

∫ +∞
−∞ δρ(s, z)dzds

)2

r
∫ +∞
−∞ ρμ,κ(r, z)dz

dr ≥ 0,(3.2)

for all

δρ ∈ R(Bμ,κ
1 ) =

{

δρ ∈ Xμ,κ
1

∣
∣
∫

�μ,κ

δρdx = 0

}

.

Moreover, the number of unstable modes equals n−
(
Kμ,κ |R(Bμ,κ

1 )

)
. From the stability

criterion, we can obtain the following instability result.

Theorem 3.2. (Sufficient condition for instability)
Let I ⊂ [μ0, μ1] be an interval such that the non-rotating star (ρμ, 0) is unstable for
any μ ∈ I . Then for any ω ∈ C1,β [0,∞) satisfies ϒ(r) > 0, there exists κ0 > 0 such
that the rotating star (ρμ,κ , κω(r)reθ ) is unstable for any 0 < κ < κ0 and μ ∈ I .

Proof. The instability of (ρμ, 0) implies that n−(Lμ,0|R(Bμ,0
1 )

) > 0 for μ ∈ I . Thus

there exists some ε > 0 (independent of μ) and δρμ,0 = δρμ,0(|x |) ∈ R(Bμ,0
1 ) such

that 〈Lμ,0δρμ,0, δρμ,0〉 = −2ε < 0 for μ ∈ I . Let

δρμ,κ(r, z) = δρμ,0(gζμ,κ (r, z)) −
∫

Bμ
δρμ,0(|x |) det Dgζμ,κ (x)dx

Mμ,κ

ρμ,κ(r, z),

then δρμ,κ(r, z) ∈ R(Bμ,κ
1 ). Noticing that

lim
κ→0

∫

Bμ

δρμ,0(|x |) det Dgζμ,κ (x)dx =
∫

Bμ

δρμ,0(|x |)dx = 0,

we have

lim
κ→0

〈Lμ,κδρμ,κ , δρμ,κ 〉 = 〈Lμ,0δρμ,0, δρμ,0〉 = −2ε < 0.

Thus, there exists κ0 > 0 such that when 0 < κ < κ0
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〈Kμ,κδρμ,κ , δρμ,κ 〉

= 〈Lμ,κδρμ,κ , δρμ,κ 〉 + 2κ2π
∫ Rμ,κ

0
ϒ(r)

(∫ r
0 s

∫ +∞
−∞ δρμ,κ (s, z)dzds

)2

r
∫ +∞
−∞ ρμ,κ (r, z)dz

dr < −ε < 0.

The linear instability of (ρμ,κ , κω(r)reθ ) follows. ��
Let μ̃ be the first critical point of the mass-radius ratio Mμ

Rμ
for the nonrotating stars

and set μ̃ = +∞ if Mμ

Rμ
has no critical point. Consider the rotating stars (ρμ,κ , κω(r)reθ )

for μ ∈ [μ0, μ1] ⊂ (0, μ̃) and κ small. We have the following sufficient condition for
stability.

Theorem 3.3. (Sufficient condition for stability)
Suppose P(ρ) satisfies (1.2)–(1.3), and ω ∈ C1,β [0,∞) satisfies ϒ(r) > 0. For any
μ ∈ [μ0, μ1] ⊂ (0, μ̃) and κ small enough, if dMμ,κ

dμ
≥ 0, then the rotating star

(ρμ,κ , κωreθ ) is spectrally stable.

For the proof of above Theorem, first we compute n− (
Lμ,κ |Xμ,κ

)
. Let Ḣ1

ax and
Ḣ−1
ax be the axi-symmetric subspaces of Ḣ1(R3) and Ḣ−1(R3) respectively. Define the

reduced operator Dμ,κ : Ḣ1
ax → Ḣ−1

ax by

Dμ,κ := −� − 4π

	′′(ρμ,κ )
.

Then

〈Dμ,κψ,ψ〉 =
∫

R3
|∇ψ |2dx − 4π

∫

R3

|ψ |2
	′′(ρμ,κ )

dx, ψ ∈ Ḣ1
ax ,

defines a bounded bilinear symmetric form on Ḣ1
ax . By the same proof of Lemma 3.7 in

[29], we have

Lemma 3.1. It holds that n−
(
Lμ,κ |Xμ,κ

1

)
= n− (

Dμ,κ

)
anddim ker Lμ,κ = dim ker Dμ,κ .

Since the rotating star solution (ρμ,κ , κω(r)reθ ) is even in z, we can compute

n−
(
Lμ,κ |Xμ,κ

1

)
and n− (

Dμ,κ

)
on the even and odd (in z) subspaces respectively. Define

Xμ,κ
od := {ρ ∈ Xμ,κ

1 | ρ(r, z) = −ρ(r,−z)}, Xμ,κ
ev := {ρ ∈ Xμ,κ

1 | ρ(r, z) = ρ(r,−z)},
Hod := {ϕ ∈ Ḣ1

ax |ϕ(r, z) = −ϕ(r,−z)}, Hev := {ϕ ∈ Ḣ1
ax | ϕ(r, z) = ϕ(r,−z)}.

(3.3)

Lemma 3.2. Assume P(ρ) satisfies (1.2)–(1.3), ω ∈ C1,β [0,∞) satisfies ϒ(r) > 0.
Then for any μ ∈ [μ0, μ1] ⊂ (0, μ̃) and κ small enough, we have n−(Lμ,κ) =
n−(Lμ,0) = 1 and ker Lμ,κ = span{∂zρμ,κ }. Moreover, we have the following direct
sum decompositions for Xμ,κ

ev and Xμ,κ
od :

Xμ,κ
ev = Xμ,κ

−,ev ⊕ Xμ,κ
+,ev, dim Xμ,κ

−,ev = 1,
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and

Xμ,κ
od = span{∂zρμ,κ } ⊕ Xμ,κ

+,od ,

satisfying: i) Lμ,κ |Xμ,κ
−,ev

< 0;
ii) there exists δ > 0 such that

〈
Lμ,κu, u

〉 ≥ δ ‖u‖2
L2

	′′(ρμ,κ )

for any u ∈ Xμ,κ
+,ev ⊕ Xμ,κ

+,od ,

where δ is independent of μ and κ .
The same decompositions are also true for Kμ,κ on Xμ,κ

ev and Xμ,κ
od . In addition, for

any μ ∈ [μ0, μ1], it holds that dVμ,κ (0,Zμ,κ )

dμ
< 0 for κ small enough.

Proof. It was showed in [29] that: for any μ ∈ (0, μ̃), we have n−(Dμ,0) = 1 and
ker Dμ,0 = span{∂zVμ} in the axi-symmetric function space. Here, Vμ = −|x |−1 ∗ρμ is
the gravitational potential of the non-rotating star. Since ∂zVμ is odd in z, it follows
that for any μ ∈ (0, μ̃): i) on Hev , n−(Dμ,0) = 1, ker Dμ,0 = {0}; ii) on Hod ,
ker Dμ,0 = span{∂zVμ} and n−(Dμ,0) = 0. Moreover, for μ ∈ [μ0, μ1] ⊂ (0, μ̃),
there exists δ0 > 0 (independent of μ) and decompositions Hev = Hev− ⊕ Hev

+ and
Hod = span{∂zVμ} ⊕ Hod

+ satisfying that: i) dim Hev− = 1, Dμ,0|Hev− < −δ0; ii)

Dμ,0|Hev
+ ⊕Hod

+
≥ δ0. Since ∂zVμ,κ ∈ Hod ∩ ker Dμ,κ and

〈(Dμ,κ − Dμ,0)ψ,ψ〉 =
∫ (

4π

	′′(ρμ,κ)
− 4π

	′′(ρμ)

)

ψ2dx

�
(∫ (

4π

	′′(ρμ,κ)
− 4π

	′′(ρμ)

) 3
2

dx

) 2
3

‖ψ‖2L6

� O(κ)‖∇ψ‖2L2 → 0, as κ → 0,

by the perturbation arguments (e.g. Corollary 2.19 in [29]) it follows that for μ ∈
[μ0, μ1] and κ sufficiently small, the decompositions Hev = Hev− ⊕ Hev

+ and Hod =
span{∂zVμ,κ } ⊕ Hev

+ satisfy: i) dim Hev− = 1, Dμ,κ |Hev− < − 1
2δ0; ii) Dμ,κ |Hev

+ ⊕Hod
+

≥
1
2δ0.

By the proof of Lemma 3.4 in [29], for any ρ ∈ Xμ,κ
1 we have

〈
Lμ,κρ, ρ

〉 = ‖ρ‖2
Xμ,κ
1

− 1

4π
‖∇ψ‖2L2 ≥ 1

4π

〈
Dμ,κψ,ψ

〉
, (3.4)

whereψ = 1
4π �−1ρ.We note that ∂zρμ,κ ∈ ker Lμ,κ ∩Xμ,κ

od and ∂zVμ,κ = 1
4π �−1ρμ,κ .

The existenceof decompositions for Xμ,κ
ev and Xμ,κ

od as stated in the lemma follows readily
from (3.4) and above decompositions for Hod and Hev .

Since
∣
∣
〈(
Lμ,κ − Kμ,κ

)
ρ, ρ

〉∣
∣ � O(κ2) ‖ρ‖2

Xμ,κ
1

, ∀ρ ∈ Xμ,κ
1 ,

and ∂zρμ,κ ∈ ker Kμ,κ ∩ Xμ,κ
od , we have the same decompositions for Kμ,κ on Xμ,κ

ev and
Xμ,κ
od .
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Since γ0 ∈ (6/5, 2), it is known that (see [29])

dVμ(0, Rμ)

dμ
= − d

dμ

(
Mμ

Rμ

)

< 0,

forμ small. Recall that μ̃ is the first critical point of Mμ

Rμ
. Therefore,whenμ ∈ [μ0, μ1] ⊂

(0, μ̃), we have dVμ(0,Rμ)

dμ
< −ε0 for some constant ε0 > 0 independent of μ. Since

∣
∣
∣
dVμ,κ (0,Zμ,κ )

dμ
− dVμ(0,Rμ)

dμ

∣
∣
∣ = O(κ), we have dVμ,κ (0,Zμ,κ )

dμ
< 0 for any μ ∈ [μ0, μ1]

and κ small enough. This finishes the proof of the lemma. ��
Proof of Theorem 3.3. The spectral stability of (ρμ,κ , κωreθ ) is equivalent to show

n−
(
Kμ,κ |R(Bμ,κ

1 )

)
= 0. By Lemma 3.2 and the fact that Kμ,κ = Lμ,κ on Xμ,κ

od , we

have

n−(Kμ,κ |Xμ,κ
od ∩R(Bμ,κ

1 )) = n−(Lμ,κ |Xμ,κ
od ∩R(Bμ,κ

1 )) ≤ n−(Lμ,κ |Xμ,κ
od

) = 0.

Since Kμ,κ ≥ Lμ,κ on Xμ,κ
ev due to ϒ(r) > 0, for spectral stability it suffices to show

n−
(
Lμ,κ |Xμ,κ

ev ∩R(Bμ,κ
1 )

)
= 0.

Applying d
dμ

to (3.1), we obtain that

Lμ,κ

dρμ,κ

dμ
= −dcμ,κ

dμ
.

From (3.1) we know that cμ,κ = −Vμ,κ(Rμ,κ , 0). By Lemma 3.2, dcμ,κ

dμ
> 0 for μ ∈

[μ0, μ1] and κ small enough. Therefore,

Xμ,κ
ev ∩ R(Bμ,κ

1 ) =
{

δρ ∈ Xμ,κ
ev

∣
∣

〈

Lμ,κ

dρμ,κ

dμ
, δρ

〉

= 0

}

,

i.e. δρ is orthogonal to dρμ,κ

dμ
in

〈
Lμ,κ ·, ·〉.

When dMμ,κ

dμ
> 0, we have

〈

Lμ,κ

dρμ,κ

dμ
,
dρμ,κ

dμ

〉

= −dcμ,κ

dμ

∫

gζμ,κ (Bμ)

dρμ,κ

dμ
dx = dVμ,κ(0, Zμ,κ)

dμ

dMμ,κ

dμ
< 0.

Combining above with Lemma 3.2, we get n−(Lμ,κ |Xμ,κ
ev ∩R(Bμ,κ

1 )) = 0. Hence we get
the spectrally stability.

When dMμ,κ

dμ
= 0, since

dMμ,κ

dμ
=

∫

R3

dρμ,κ

dμ
dx = 0,

wehave dρμ,κ

dμ
∈ Xμ,κ

ev ∩R(Bμ,κ
1 ).Meanwhile, since ker Lμ,κ = {0} on Xμ,κ

ev , by the same

argument as in the proof of Theorem 1.1 in [29], we have n−(Lμ,κ |Xμ,κ
ev ∩R(Bμ,κ

1 )) = 0.
The spectral stability is again true. ��
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It is natural to ask if extrema points of the total mass Mμ,κ of the rotating stars
(ρμ,κ , κωreθ ) are the transition points for stability as in the case of nonrotating stars.
Below, we show that this is not true.

First, we give conditions to ensure that the first extrema point of total mass Mμ,κ is
obtained at a center density μκ∗ before μ̃ (the first critical point of Mμ/Rμ). Assume
P(ρ) satisfies the following asymptotically polytropic conditions:

H1)

P(ρ) = c−ργ0(1 + O(ρa0)) when ρ → 0, (3.5)

for some γ0 ∈ ( 43 , 2) and c−, a0 > 0;

H2)

P(ρ) = c+ρ
γ∞(1 + O(ρ−a∞)) when ρ → +∞, (3.6)

for some γ∞ ∈ (1, 6/5) ∪ (6/5, 4/3) and c+, a∞ > 0.
Under assumptions H1)-H2), it was shown in [15] that the total mass Mμ of the

non-rotating stars ρμ := ρμ,0 has extrema points. Moreover, the first extrema point of
Mμ, which is a maximum point denoted by μ∗, must be less than μ̃ (see Lemma 3.14 in
[29]). For any μ0 < μ∗ < μ1 < μ̃, we have Mμ,κ → Mμ in C1 [μ0, μ1] when κ → 0.
Thus when κ is small enough, the function Mμ,κ has the first maximum μκ∗ ∈ (μ0, μ1)

and lim
κ→0

μκ∗ = μ∗. By Theorem 3.3, the rotating stars (ρμ,κ , κω(r)reθ ) are stable for

μ ∈ [
μ0, μ

κ∗
]
. It is shown below that the transition of stability occurs beyond μκ∗ .

Theorem 3.4. Suppose P(ρ) satisfies (3.5)–(3.6), ω ∈ C1,β [0,∞) satisfies ϒ(r) >

0. Fixed κ small, let μ̂κ be the first transition point of stability of the rotating stars
(ρμ,κ , κω(r)reθ ). Then for any κ �= 0 small enough, we have μ̂κ > μκ∗ .

Proof. As in the proof of Theorem 3.3, the spectral stability is equivalent to show
Kμ,κ ≥ 0 on Xμ,κ

ev ∩ R(Bμ,κ
1 ). Suppose the maxima point μκ∗ of Mμ,κ is the first

transition point for stability, then we have

inf
ρ∈Xμκ∗ ,κ

ev ∩R(B
μκ∗ ,κ

1 )

〈Kμκ∗ ,κρ, ρ〉
‖ρ‖L2

	′′(ρ
μκ∗ ,κ

)

= 0. (3.7)

By Lemma 3.2, when κ is small enough, we have the decomposition

X
μκ∗ ,κ
ev = X

μκ∗ ,κ
−,ev ⊕ X

μκ∗ ,κ
+,ev , dim X

μκ∗ ,κ
−,ev = 1,

satisfying: i) Kμκ∗ ,κ |
X

μκ∗ ,κ
−,ev

< 0; ii) there exists δ > 0 such that

〈
Kμκ∗ ,κρ, ρ

〉 ≥ δ ‖ρ‖2
L2

	′′(ρ
μκ∗ ,κ

)

for any ρ ∈ X
μκ∗ ,κ
+,ev .

By using above decomposition, it is easy to show that the infimum in (3.7) is obtained

by some ρ∗ ∈ X
μκ∗ ,κ
ev ∩ R(B

μκ∗ ,κ

1 ). Then

〈Lμκ∗ ,κρ∗, ρ∗〉 ≤ 〈Kμκ∗ ,κρ∗, ρ∗〉 = 0.
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On the other hand, we have
〈

Lμκ∗ ,κ

dρμ,κ

dμ

∣
∣
μ=μκ∗ ,

dρμ,κ

dμ

∣
∣
μ=μκ∗

〉

= dVμ,κ(0, Zμ,κ )

dμ

∣
∣
μ=μκ∗

dMμ,κ

dμ

∣
∣
μ=μκ∗ = 0,

and
〈

Lμκ∗ ,κ

dρμ,κ

dμ

∣
∣
μ=μκ∗ , ρ

∗
〉

= dVμ,κ(0, Zμ,κ)

dμ

∣
∣
μ=μκ∗

∫

�μκ∗ ,κ

ρ∗dx = 0.

This implies that ρ∗ = c dρμ,κ

dμ
|μ=μκ∗ for some constant c �= 0. Since otherwise,

n≤0
(
Lμκ∗ ,κ |

X
μκ∗ ,κ
ev

)
≥ n≤0

(

Lμκ∗ ,κ

∣
∣
span

{
dρμ,κ
dμ

|μ=μκ∗ ,ρ∗
}

)

= 2.

which is in contradiction to n≤0(Lμκ∗ ,κ |
X

μκ∗ ,κ
ev

) = 1. Thus, we have

0 =
〈

Kμκ∗ ,κ

dρμ,κ

dμ
|μ=μκ∗ ,

dρμ,κ

dμ
|μ=μκ∗

〉

= 2πκ2
∫ Rμκ∗ ,κ

0
ϒ(r)

(∫ r
0 s

∫ +∞
−∞

dρμ,κ

dμ
|μ=μκ∗ (s, z)dzds

)2

r
∫ +∞
−∞ ρμκ∗ ,κ (r, z)dz

dr.

and consequently
∫ +∞

−∞
dρμ,κ

dμ
|μ=μκ∗ (r, z)dz = 0, ∀r ∈ [0, Rμκ∗ ,κ ]. (3.8)

Nevertheless, it is not true as shown below.
For non-rotating stars (ρμ(r), 0), we have

�Vμ = 1

r2

(
r2

(
Vμ(r)

)′)′ = 4πρμ,

where r = √
r2 + z2 and Vμ(r) is the gravitational potential. Applying d

dμ
to above

equation, one has

1

r2

(

r2
(
dVμ(r)
dμ

)′)′
= 4π

dρμ

dμ
.

When r ≥ Rμ, since
dρμ

dμ
(r) = 0 we have

r2
(
dVμ

dμ

)′
(r) = R2

μ

(
dVμ

dμ

)′
(Rμ) = 4π

∫ Rμ

0
s2

dρμ

dμ
(s)ds = dMμ

dμ
,

and consequently

dVμ

dμ
(r) = −dMμ

dμ

1

r
, for r ≥ Rμ.
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Since lim
κ→0

μκ∗ = μ∗, we have lim
κ→0

dMμ

dμ

(
μκ∗

) = dMμ

dμ
(μ∗) = 0. Thus

dVμ

dμ
(Rμ)|μ=μκ∗ = −dMμ

dμ

(
μκ∗

) 1

Rμκ∗
→ 0, as κ → 0.

Define yμ(r) = Vμ(Rμ) − Vμ(r) = 	′(ρμ). Then by Lemma 3.13 in [29], we have

dyμ
dμ

(Rμ)|μ=μκ∗ = − d

dμ

(
Mμ

Rμ

)

|μ=μκ∗ − dVμ

dμ
(Rμ)|μ=μκ∗

→ − d

dμ

(
Mμ

Rμ

)

|μ=μ∗ �= 0, as κ → 0. (3.9)

Thus by (3.9), we obtain

dρμ

dμ
(r) = 1

	′′(ρμ)

dyμ
dμ

(r) ≈ ρ2−γ0
μ ≈ (Rμ − r)

2−γ0
γ0−1 ,

for r ∼ Rμ and μ = μκ∗ . By (3.36) and (4.78) in [41], we know

∣
∣
∣
∣
∣

dg−1
ζμ,κ

dμ
(y)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
lim

μ1→μ

g−1
ζμ1,κ

− g−1
ζμ,κ

μ1 − μ
(y)

∣
∣
∣
∣
∣
∣
≤ Cκ,

for some constant C independent of μ and κ . Therefore,

dρμ,κ

dμ
(r, z) =

dρμ(g−1
ζμ,κ

(r, z))

dμ
= dρμ

dμ
(g−1

ζμ,κ
(r, z)) +

dρμ(r)
dr

|r=g−1
ζμ,κ

(r,z)

dg−1
ζμ,κ

dμ

≈ ρμ(g−1
ζμ,κ

(r, z))2−γ0 = ρμ,κ(r, z)2−γ0 ,

for g−1
ζμ,κ

(r, z) ∼ Rμ and μ = μκ∗ . By Lemma 2.1, we have

∫ +∞

−∞
dρμ,κ

dμ
|μ=μκ∗ (r, z)dz ≈

∫ +∞

−∞
ρμ,κ(r, z)2−γ0dz ≈ (Rμκ∗ ,κ − r)

2−γ0
γ0−1 +

1
2 �= 0,

for r ∼ Rμκ∗ ,κ . This is in contradiction to (3.8) and finishes the proof of the theorem. ��

3.2. The case of fixed angular momentum distribution. Let j (p, q) : R
2 �→ R be a

given function satisfying

j (p, q) ∈ C1,β(R+ × R
+) and j (0, q) = ∂p j (0, q) = 0. (3.10)

Define J (p, q) = j2(p, q). We consider a family of rotating stars of the following form
{

ρμ,ε(r, z) = ρμ(g−1
ζμ,ε

((r, z))),

	vμ,ε = ε
j (mρμ,ε (r),Mμ,ε)

r eθ ,
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where

mρμ,ε (r) =
∫ r

0
s

∫ ∞

−∞
ρμ,ε(s, z)dsdz, gζμ,ε = x

(

1 +
ζμ,ε(x)

|x |2
)

,

and ζμ,ε(x) : Bμ → R is axi-symmetric and even in z. The Euler–Poisson system
satisfied by

(
ρμ,ε, 	vμ,ε

)
is reduced to the following equations:

	′(ρμ,ε) + Vμ,ε − ε2
∫ r

0
J (mρμ,ε (s), Mμ,ε)s

−3ds + cμ,ε = 0, in �μ,ε, (3.11)

Vμ,ε = −|x |−1 ∗ ρμ,ε in R
3, (3.12)

where �μ,ε = gζμ,ε (Bμ) and cμ,ε is a constant.
Although (3.11) is a little different from the steady state equations in [14], the key

linearized operator at the point ε = 0 is the same as [14]. By similar arguments as
[14,41], we can get the following existence theorem.

Theorem 3.5. Let μ ∈ [μ0, μ1] ⊂ (0, μmax), P(ρ) satisfy (1.2)–(1.3) and j (p, q)

satisfy (3.10). Then there exists ε̃ > 0 and solutions ρμ,ε of (3.11) for all |ε| < ε̃, with
the following properties:

1) ρμ,ε ∈ C1,α
c (R3), where α = min( 2−γ0

γ0−1 , 1).
2) ρμ,ε is axi-symmetric and even in z.
3) ρμ,ε(0) = μ.
4) ρμ,ε ≥ 0 has compact support gζμ,ε (Bμ).
5) For allμ ∈ [μ0, μ1], the mapping ε → ρμ,ε is continuous from (−ε̃, ε̃) into C1

c (R
3).

When ε = 0, ρμ,0(x) = ρμ(|x |) is the nonrotating star solution with ρμ(0) = μ.

Now we use Theorem 1.1 to study the stability of rotating star solutions
(ρμ,ε, ε j (mρμ,ε (r), Mμ,ε)/reθ ), where ε is small enough, j (p, q) satisfies (3.10) and
the Rayleigh stability condition ∂p J (p, q) > 0 (i.e. j∂p j > 0). As in Sect. 3.1, the as-
sumptions in Theorem 1.1 can be verified. That is, ∂�μ,ε isC2 and has positive curvature
near (Rμ,ε, 0) and (1.7) holds for any μ ∈ [μ0, μ1] and ε small enough.

Below, for rotating stars (ρμ,ε, ε j (mρμ,ε (r), Mμ,ε)/reθ ) we use Xμ,ε, X
μ,ε
1 , Yμ,ε,

Lμ,ε, A
μ,ε
1 , Bμ,ε

1 , Bμ,ε
2 , Kμ,ε, etc., to denote the corresponding spaces X , X1, Y , and

operators L , A1, B1, B2, K etc. defined in Sect. 2. Again, we denote μ̃ to be the first
critical point of Mμ/Rμ for non-rotating stars. Define the spaces Xμ,ε

ev and Xμ,ε
ev as in

(3.3). By the same proof of Lemma 3.2, we have the following.

Lemma 3.3. Assume P(ρ) satisfies (3.5)–(3.5) and j (p, q) satisfies (3.10) and
∂p( j2 (p, q)) > 0. Then for any μ ∈ [μ0, μ1] ⊂ (0, μ̃) and ε small enough, we
have n−(Kμ,ε) = 1 and ker Kμ,ε = span{∂zρμ,ε}. Moreover, we have the following
direct sum decompositions for Xμ,ε

ev and Xμ,ε
ev :

Xμ,ε
ev = Xμ,ε

−,ev ⊕ Xμ,ε
+,ev, dim Xμ,ε

−,ev = 1,

and

Xμ,ε
od = span{∂zρμ,ε} ⊕ Xμ,ε

+,od ,

satisfying: i) Kμ,ε|Xμ,ε
−,ev

< 0;
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ii) there exists δ > 0 such that
〈
Kμ,εu, u

〉 ≥ δ ‖u‖2
L2

	′′(ρμ,ε)

∀ u ∈ Xμ,ε
+,ev ⊕ Xμ,ε

+,od ,

where δ is independent of μ and ε.
In addition, for any μ ∈ [μ0, μ1], it holds that dVμ,ε(Rμ,ε,0)

dμ
< 0 for ε small.

By Theorem 1.1, we get the following necessary and sufficient condition for the
stability of rotating stars (ρμ,ε, ε j (mρμ,ε (r), Mμ,ε)/reθ ) :

〈Kμ,εδρ, δρ〉 = 〈Lμ,εδρ, δρ〉

+ 2ε2π
∫ Rμ,ε

0

∂p J (mρμ,ε (r), Mμ,ε)

r3

(∫ r

0
s

∫ +∞

−∞
δρ(s, z)dzds

)2

dr ≥ 0,

for all δρ ∈ R(Bμ,ε
1 ) =

{
δρ ∈ Xμ,ε

1 | ∫

�μ,ε
δρdx = 0

}
.

The following Theorem shows that the stability of this family of rotating stars can
only change at the mass extrema.

Theorem 3.6. Assume P(ρ) satisfies (3.5)–(3.6), and j (p, q) satisfy (3.10) and
∂p( j2 (p, q)) > 0. Let nu(μ) be the number of unstable modes, namely the total al-
gebraic multiplicities of unstable eigenvalues of the linearized Euler–Poisson system
at (ρμ,ε, ε j (mρμ,ε (r), Mμ,ε)/reθ ). Then for any μ ∈ [μ0, μ1] ⊂ (0, μ̃) and ε small
enough, we have

nu(μ) =
{
1, when dMμ,ε

dμ
< 0,

0, when dMμ,ε

dμ
≥ 0.

Proof. By the same arguments in the proof of Theorem 3.3, we have

nu(μ) = n− (
Kμ,ε|Xμ,ε

ev ∩R(Bμ,ε
1 )

)
.

Thus it is reduced to find the number of negative modes of the quadratic form
〈
Kμ,ε·, ·

〉

restricted to the even subspace of R(Bμ,ε
1 ).

Applying d
dμ

to (3.11), we obtain that

Lμ,ε

dρμ,ε

dμ
= ε2

∫ r

0
∂p J (mρμ,ε (s), Mμ,ε)

dmρμ,ε

dμ
s−3ds

+ ε2
∫ r

0
∂q J (mρμ,ε (s), Mμ,ε)

dMμ,ε

dμ
s−3ds − dcμ,ε

dμ
, (3.13)

where

dcμ,ε

dμ
= d

dμ

(

−Vμ,ε(Rμ,ε, 0) + ε2
∫ Rμ,ε

0
J (mρμ,ε (s), Mμ,ε)s

−3ds

)

= −dVμ,ε(Rμ,ε, 0)

dμ
+ ε2

∫ Rμ,ε

0
∂p J (mρμ,ε (s), Mμ,ε)

dmρμ,ε (s)

dμ
s−3ds

+ ε2
dMμ,ε

dμ
hμ,ε(Rμ,ε) + ε2 J (Mμ,ε, Mμ,ε)R

−3
μ,ε

dRμ,ε

dμ
.
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By integration by parts and (3.13), we obtain that

2π
∫ Rμ,ε

0
ε2

[
∂p J (mρμ,ε (r), Mμ,ε)r

−3
] (∫ r

0

∫ ∞
−∞

s
dρμ,ε

dμ
dzds

) (∫ r

0

∫ ∞
−∞

sϕdzds

)

dr

= ε2

[∫ Rμ,ε

0
∂p J (mρμ,ε (r), Mμ,ε)r

−3 dmρμ,ε

dμ
dr

] ∫

�μ,ε

ϕdx

− 2π
∫ Rμ,ε

0

∫ ∞
−∞

ε2
[∫ r

0
∂p J (mρμ,ε (s), Mμ,ε)

dmρμ,ε(s)

dμ
s−3ds

]

rϕdzdr

= ε2

[∫ Rμ,ε

0
∂p J (mρμ,ε (r), Mμ,ε)r

−3 dmρμ,ε

dμ
dr

] ∫

�μ,ε

ϕdx −
〈
dc0
dμ

, ϕ

〉

−
〈

Lμ,ε
dρμ,ε

dμ
, ϕ

〉

− ε2
dMμ,ε

dμ

〈∫ r

0
∂q J (mρμ,ε (s), Mμ,ε)s

−3ds, ϕ

〉

=
(
dVμ,ε(Rμ,ε, 0)

dμ
− ε2 J (Mμ,ε, Mμ,ε)R

−3
μ,ε

dRμ,ε

dμ
− ε2

dMμ,ε

dμ
hμ,ε(Rμ,ε)

) ∫

�μ,ε

ϕdx

−
〈

Lμ,ε
dρμ,ε

dμ
, ϕ

〉

− ε2
dMμ,ε

dμ

〈
Kμ,εgμ,ε, ϕ

〉
.

Here, in the above we used

hμ,ε(r) =
∫ r

0
∂q J

(
mρμ,ε (s), Mμ,ε

)
s−3ds,

and gμ,ε = K−1
μ,εhμ,ε. The inverse operator

K−1
μ,ε : (

Xμ,ε
ev

)∗ ⊂ L2
1

	′′(ρμ,ε)

→ Xμ,ε
ev

exists and is bounded by Lemma 3.3. Since 1
	′′(ρμ,ε)

has compact support and 	′′ (s) ≈
sγ0−2 for s ∼ 0+, we have

∣
∣
∣
∣

∫

gμ,εdx

∣
∣
∣
∣ � ‖gμ,ε‖L2

	′′(ρμ,ε)

�
∥
∥
∥K−1

μ,ε

∥
∥
∥ ‖hμ,ε‖L2

1
	′′(ρμ,ε)

�
(∫ h2μ,ε

	′′(ρμ,ε)
dx

) 1
2

< +∞.

Therefore, we have
〈

Kμ,ε

[
dρμ,ε

dμ
+ ε2

dMμ,ε

dμ
gμ,ε

]

, ϕ

〉

=
(
dVμ,ε(Rμ,ε, 0)

dμ
+ O(ε2)

) ∫

�μ,ε

ϕdx,

(3.14)

for any ϕ ∈ Xμ,ε
ev .

By (3.14) and the fact that dVμ,ε(Rμ,ε,0)
dμ

+ O(ε2) < 0 when μ ∈ [μ0, μ1] and ε is
small, we have

Xμ,ε
ev ∩ R(Bμ,ε

1 ) =
{

δρ ∈ Xμ,ε
ev |

〈

Kμ,ε

(
dρμ,ε

dμ
+ ε2

dMμ,ε

dμ
gμ,ε

)

, δρ

〉

= 0

}

.
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On the other hand, we have
〈

Kμ,ε

(
dρμ,ε

dμ
+ ε2

dMμ,ε

dμ
gμ,ε

)

,

(
dρμ,ε

dμ
+ ε2

dMμ,ε

dμ
gμ,ε

)〉

=
(
dVμ,ε(Rμ,ε, 0)

dμ
+ O(ε2)

) ∫

R3

(
dρμ,ε

dμ
+ ε2

dMμ,ε

dμ
gμ,ε

)

dx

=
(
dVμ,ε(Rμ,ε, 0)

dμ
+ O(ε2)

)
dMμ,ε

dμ
.

By Lemma 3.3, n−(Kμ,ε|Xμ,ε
ev

) = 1 and ker Kμ,ε|Xμ,ε
ev

= {0}. We consider two cases:

1) dMμ,ε

dμ
�= 0. A combination of above properties immediately yields

nu(μ) = n− (
Kμ,ε|Xμ,ε

ev ∩R(Bμ,ε
1 )

)
=

{
1 when dMμ,ε

dμ
< 0,

0 when dMμ,ε

dμ
> 0.

2) When dMμ,ε

dμ
= 0, as in the proof of Theorem 3.3, we have

nu(μ) = n− (
Kμ,ε|Xμ,ε

ev ∩R(Bμ,ε
1 )

)
= 0.

This finishes the proof of the theorem. ��
Remark 3.2. The above theorem implies that for a family of rotating stars with fixed
angular momentum distribution j (m, M), the transition of stability occurs at the first
extrema of the total mass. That is, the turning point principle (TPP) is true for this
family of rotating stars. This contrasts greatly to rotating stars of fixed angular velocity,
for which case TPP is shown to be not true (see Theorem 3.4).

In the literature, there are three common choices of j (m, M) in the study of rotating
stars.

i) (Fixed angular momentum distribution) The most common one is j (m, M) = j (m).
See for example [2,18,30–33];

ii) (Fixed angular momentum distribution per unit mass) j (m, M) = j (m/M). See for
example [34];

iii) (Fixed angularmomentumdistributionwith given total angularmomentum) j (m, M) =
1
M j (m/M). See for example [4]. We note that for this case, the total angular mo-
mentum given by

∫
1

M
j

( m

M

)
dm =

∫ 1

0
j

(
m′) dm′ (

m′ = m

M

)
,

is a constant depending only on j .

In the rest of this subsection, we use Theorem 3.6 to study two examples of rotating
stars with mass extrema points.

Example 1. Asymptotically polytropic rotating stars
Assume P(ρ) satisfies assumptions (3.5)–(3.6). By the same arguments as in the case

of fixed angular velocity, when ε is small enough and μ ∈ [μ0, μ1] ⊂ (0, μ̃), the mass
Mμ,ε of the rotating stars (ρμ,ε, ε j (mρμ,ε (r), Mμ,ε)/reθ ) has the the first maximum
με∗ ∈ (μ0, μ1). Then by Theorem 3.6, the rotating stars are stable when μ ∈ [μ0, μ

ε∗]
and unstable when μ goes between με∗ and the next extrema point of Mμ,ε in

(
με∗, μ1

)
.



1754 Z. Lin, Y. Wang

Fig. 1. The dependence of the mass M (μ) on the center density μ for γ = 4.03
3.03 and the angular momentum

distribution j (m, M) = 1
M [1 − (1 − m

M )2/3]. From Bisnovatyi-Kogan and Blinnikov [4]

Example 2. Polytropic rotating stars
Consider the polytropic equation of state P(ρ) = ργ

(
γ ∈ ( 6

5 , 2
))
. The non-rotating

stars (i.e. Lane-Emden stars) with any center density μ are stable when γ ∈ (4/3, 2)

and are unstable when γ ∈ (6/5, 4/3). In particular, Mμ = Cγ μ
1
2 (3γ−4) is a monotone

function when γ �= 4
3 and there is no transition point of stability.

However, polytropic rotating stars with fixed angular momentum distribution
j (m, M) can have mass extrema points, which are also the transition points of stability.
One such examplewas given in [4] for γ = 4.03

3.03 < 4
3 and j (m, M) = 1

M [1−(1− m
M )2/3].

With numerical help, it was found (see Figure 1 below taken from [4]) that there is a
mass minimum point μ∗ for the total mass M (μ). This is the first transition point of
stability. In particular, rotating stars with center density μ beyond μ∗ become stable
(Fig. 1).

Remark 3.3. It can also be seen from above Example 2 that the critical index γ ∗ for the
onset of instability of rotating polytropic stars is not 4

3 . Ledoux [24], Chandrasekhar and

Lebovitz [8] indicated that the critical index γ ∗ is reduced from 4
3 to γ ∗ = 4

3 − 2ω2 I
9|W | for

small uniform rotating stars, where I > 0 is the moment of inertia about the center of
mass and W is the gravitational potential energy. For more discussion about the critical
index γ ∗ of rotating stars, see [13,21,38,39].

4. Instability for Rayleigh Unstable Case

Consider an axi-symmetric rotating star (ρ0,
−→v0 ) = (ρ0 (r, z) , ω0(r)reθ ), where the

angular velocity ω0(r) satisfies the Rayleigh instability condition [35,45,46]. That is,
there exists a point r0 ∈ (0, R0) such that

ϒ(r0) = ∂r (ω
2
0r

4)

r3

∣
∣
∣
∣
r=r0

< 0. (4.1)

For incompressible Euler equation, it is a classical result by Rayleigh in 1880 [36] that
condition (4.1) implies linear instability of the rotating flow −→v0 = ω0(r)reθ under axi-
symmetric perturbations. In this section, we will show the axi-symmetric instability of
rotating stars with Rayleigh unstable angular velocity.
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From the linearized Euler–Poisson system (2.5), we get the following second order

equation for u2 =
(

vr
vz

)

,

∂t t u2 = −L̃u2 = −(L1 + L2)u2, (4.2)

where L1, L2 are operators on Y = (
L2

ρ0

)2
defined by

L1u2 = B ′
1LB1A = ∇[	′′(ρ0)(∇ · (ρ0u2)) − 4π(−�)−1(∇ · (ρ0u2)],

and

L2u2 =
(

ϒ(r)vr
0

)

.

Lemma 4.1. L̃ is a self-adjoint operator on (Y, [·, ·]) with the equivalent inner product
[·, ·] = 〈A·, ·〉.
Proof. By Lemma 2.9 in [29], L1 is self-adjoint on (Y, [·, ·]) with the equivalent inner
product [·, ·] := 〈A·, ·〉. Since L2 is a symmetric bounded operator on (Y, [·, ·]), L̃ =
L1 + L2 is self-adjoint by Kato-Rellich Theorem. ��

The next lemma on the quadratic form of L̃ will be used later.

Lemma 4.2. There exists constants m > 0 such that for any u2 ∈ Y , we have

[
L̃u2, u2

]
+ m ‖u2‖2Y ≥ ‖∇ · (ρ0u2)‖2L2

	′′(ρ0)

.

Proof. Since

[
L̃u2, u2

]
= [L1u2, u2] + [L2u2, u2] ,

and obviously |[L2u2, u2]| � ‖u2‖2L2
ρ0
, it suffices to estimate

[L1u2, u2] = 〈LB1Au2, B1Au2〉 = ‖∇ · (ρ0u2)‖2L2
	′′(ρ0)

− 4π
∫

R3
|∇V |2 dx,

where −�V = ∇ · (ρ0u2). By integration by parts,

∫

R3
|∇V |2 dx = −

∫

R3
ρ0u2 · ∇Vdx �

(
‖u2‖2Y

) 1
2

(∫

R3
|∇V |2 dx

) 1
2

,

which implies that
∫

R3 |∇V |2 dx � ‖u2‖2Y . This finishes the proof of the lemma. ��
The study of equation (4.2) is reduced to understand the spectra of the self-adjoint

operator L̃. First, we give a Helmholtz type decomposition of vector fields in Y .
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Lemma 4.3. There is a direct sum decomposition Y = Y1 ⊕ Y2, where Y1 is the closure
of

{
u ∈ Y | u = ∇ p, for some p ∈ C1 (�)

}
,

in Y and Y2 is the closure of

{

u ∈
(
C1 (�)

)2 ∩ Y | ∇ · (ρ0u) = 0

}

,

in Y .

The proof of above lemma is similar to that of Lemma3.15 in [29] andwe skip.Denote
P1 : Y �→ Y1 and P2 : Y �→ Y2 to be the projection operators. Then ‖P1‖ , ‖P2‖ ≤ 1.

For any u2 ∈ Y , let u2 = v1 + v2 where v1 = P1u2 ∈ Y1 and v2 = P2u2 ∈ Y2. Since

L̃u2 = L1v1 + P1L2v1 + P1L2v2 + P2L2v1 + P2L2v2,

the operator L̃ : Y → Y is equivalent to the following matrix operator on Y1 × Y2
(

L̃1, C

C
∗, L̃2

) (
v1
v2

)

=
[(

L̃1, C

0, L̃2

)

+

(
0, 0

C
∗, 0

)] (
v1
v2

)

= (T + A)v,

where

L̃1 = L1 + P1L2P1 : Y1 → Y1, L̃2 = P2L2P2 : Y2 → Y2,

C = P1L2P2 : Y2 → Y1, C
∗ = P2L2P1 : Y1 → Y2,

and

T =
(

L̃1, C

0, L̃2

)

, A =
(

0, 0
C

∗, 0

)

: Y1 × Y2 → Y1 × Y2.

Lemma 4.4. The operator A is T -compact.

Proof. For any v = (v1, v2) ∈ D (T ), the graph norm ‖v‖T is defined by

‖v‖T = ‖v‖Y + ‖T v‖Y
≈ ‖v‖Y + ‖L̃1v1‖Y ≈ ‖v‖Y + ‖L1v1‖Y .

It is obvious that D(A) ⊃ D(T ). To prove A is T -compact, we need to prove A :
(D(A), ‖·‖T ) �→ (Y, ‖ · ‖Y ) is compact. By the definition of A, we notice that Av =
(0, P2L2v1) : Y1 × Y2 �→ {0} × Y2. For v1 = ∇ξ ∈ Y1,

‖v1‖Z = ‖∇ · (ρ0v1)‖L2
	′′(ρ0)

+ ‖v1‖Y = ‖∇ · (ρ0∇ξ)‖L2
	′′(ρ0)

+ ‖∇ξ‖Y ,
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as defined in (1.16). By the proof of Lemma 4.2, we have

‖∇ · (ρ0v1)‖2L2
	′′(ρ0)

+ ‖v1‖2Y � 〈L1v1, v1〉 + 2m‖v1‖2Y
� ‖L1v1‖2Y + ‖v1‖2Y ≈ ‖v‖2T .

Thus ‖v1‖Z � ‖v‖T . Since the embedding (Y1, ‖·‖Z ) ↪→ (Y1, ‖ · ‖Y ) is compact
by Proposition 12 in [19] and P2, L2 are bounded operators, it follows that A :
(D(A), ‖·‖T ) �→ (Y, ‖ · ‖Y ) is compact. ��

The above lemma implies that the essential spectra of L̃ is the same as L̃2.

Lemma 4.5. σess(L̃) = σess(L̃2).

Proof. We have σess(L̃) = σess(T + A) by the definition of the operator T + A. By
Lemma 4.4 andWeyl’s Theorem, we have σess(T +A) = σess(T ).By Theorem 2.3 v) in
[29] and the compact embedding of (Y1, ‖·‖Z ) ↪→ (Y1, ‖ · ‖Y ), the spectra of L1 on Y1
are purely discrete and σess (L1) = ∅. By the same arguments as in the proof of Lemma

4.4, L̃1 is relative compact to L1 and as a result σess
(
L̃1

)
= σess (L1) = ∅. Since the

matrix operator T is upper triangular, it follows that

σess(T ) = σess(L̃1) ∪ σess(L̃2) = σess(L̃2).

��
We study the essential spectra of L̃2 in the next two lemmas. By the Rayleigh

instability condition (4.1) and the fact that ϒ(0) = 4ω0(0)2 ≥ 0, we know that
range (ϒ(r)) = [−a, b] for some a > 0, b ≥ 0.

Lemma 4.6. σess(L̃2) ⊃ range(ϒ(r)) = [−a, b].
Proof. For any λ ∈ (−a, b), let r0 ∈ (0, R0) be such that λ = ϒ(r0). Choose (r0, z0) ∈
� and ε0 small enough, such that (r, z) ∈ � when |r − r0| ≤ ε0 and |z − z0| ≤ ε20.
Choose a sequence {εn}∞n=1 ⊂ (0, ε0) with lim

n→∞ εn = 0. Let ϕ(r), ψ(z) ∈ C∞
0 (−1, 1)

be two smooth cutoff functions such that ϕ(0) = ψ(0) = 1. Define δvεn = (δv
εn
r , δv

εn
z )

with

δvεn
z = − εn

Aεnρ0r
ϕ′

(
r − r0

εn

)

ψ

(
z − z0

ε2n

)

,

and

δvεn
r = 1

Aεnρ0r
ϕ

(
r − r0

εn

)

ψ ′
(
z − z0

ε2n

)

,

where

A2
εn

=
∫

R3
ρ0

(∣
∣
∣
∣

εn

ρ0r
ϕ′(r − r0

εn
)ψ(

z − z0
ε2n

)

∣
∣
∣
∣

2

+

∣
∣
∣
∣
1

ρ0r
ϕ(

r − r0
εn

)ψ ′( z − z0
ε2n

)

∣
∣
∣
∣

2
)

dx

= 2πε3n

∫ 1

−1

∫ 1

−1

(
ε2n

∣
∣ϕ′(t)ψ(s)

∣
∣2 +

∣
∣ϕ(t)ψ ′(s)

∣
∣2

)

ρ0r |(r,z)=(εt+r0,ε2ns+z0)
dtds = O

(
ε3n

)
.
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Then ‖δvεn‖Y = 1 and δvεn ∈ Y2 owing to

δρεn = B1Aδvεn = 1

r
∂r (rρ0δv

εn
r ) + ∂z(ρ0δv

εn
z ) = 0.

We will show that {δvεn } is a Weyl’s sequence for the operator L̃2 and therefore λ ∈
σess(L̃2).

First, we check that δvεn converge to 0 weakly in Y2. For any ξ ∈ Y2, since δvεn is
supported in �εn = {|r − r0| ≤ εn, |z − z0| ≤ ε2n

}
, we have

∣
∣〈δvεn , ξ 〉∣∣ ≤ ∥

∥δvεn
∥
∥
Y

(

2π
∫ r0+εn

r0−εn

∫ z0+ε2n

z0−ε2n

ρ0|ξ |2rdrdz
) 1

2

→ 0,

when εn → 0.
Next, we prove that (L̃2 − λ)δvεn converge to 0 strongly in Y2. We write

(L̃2 − λ)δvεn = P2

(
ϒ(r)δvεn

r
0

)

− λδvεn = P2

(
(ϒ(r) − ϒ(r0)) δv

εn
r

−ϒ(r0)δv
εn
z

)

.

Noticing that ‖P2‖ ≤ 1 and

∥
∥δvεn

z

∥
∥2
Y = O

(
ε5n

)

A2
εn

= O
(
ε2n

)
,

then we have

‖(L̃2 − λ)δvεn‖2Y ≤ max
(r,z)∈�εn

(ϒ(r) − ϒ(r0))
2

∥
∥δvεn

r

∥
∥2
Y + ϒ(r0)

2
∥
∥δvεn

z

∥
∥2
Y

≤ max
(r,z)∈�εn

(ϒ(r) − ϒ(r0))
2 + O

(
ε2n

)
→ 0,

as εn → 0. This shows that δvεn is a Weyl’s sequence for L̃2 and λ ∈ σess(L̃2). Thus
(−a, b) ⊂ σess(L̃2) which implies [−a, b] ⊂ σess(L̃2) since σess(L̃2) is closed.

��
Lemma 4.7. σ(L̃2) = σess(L̃2) = range (ϒ(r)) = [−a, b].

Proof. Fix λ /∈ [−a, b]. For any u = (ur , uz) ∈ Y2, we have

[(L̃2 − λ)u, u] = [(L2 − λ)u, u]
= [(ϒ(r) − λ)ur , ur ] − [λuz, uz]
=

∫

�

ρ0(ϒ(r) − λ)u2r dx +
∫

�

(−λ)ρ0u
2
z dx .

Since a > 0, b ≥ 0, we have

|[(L̃2 − λ)u, u]| ≥ c1 ‖u‖2Y ,

where c1 = min {|λ − b| , |a + λ|} > 0. Thus ‖(L̃2 − λ)u‖ ≥ c1 ‖u‖Y , which implies
that (L̃2 −λ)−1 is bounded and λ ∈ ρ(L̃2). Therefore, σ(L̃2) ⊂ [−a, b]. This prove the
lemma by combining with Lemma 4.6. ��
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The following proposition gives a complete characterization of the spectra of L̃.

Proposition 4.1. Under the Rayleigh instability condition (4.1), it holds:
i) σess(L̃) = range(ϒ(r)) = [−a, b].
ii) σ(L̃) ∩ (−∞,−a) consists of at most finitely many negative eigenvalues of finite
multiplicity.
iii) σ(L̃) ∩ (b,+∞) consists of a sequence of positive eigenvalues tending to infinity.

Proof. The conclusion in i) follows from Lemmas 4.5 and 4.7. This implies that any
λ ∈ σ(L̃) in (−∞,−a) or (b,+∞) must be a discrete eigenvalue of finite multiplicity.

Proof of ii): Suppose otherwise. Then there exists an infinite dimensional eigenspace
for negative eigenvalues in (−∞,−a). We notice that

L̃ + aI = L1 + L2 + aI ≥ L1,

since L2 + aI is nonnegative. It follows that n− (L1) = ∞ since n−
(
L̃ + aI

)
= ∞.

This is in contradiction to that n− (L1) ≤ n− (L) < ∞.

Proof of iii): Suppose otherwise. Then there exists an upper bound of σ(L̃), denoted
by λmax ≥ b. Thus L̃ ≤ λmax I which implies that

L1 ≤ −L2 + λmax I ≤ (a + λmax ) I.

Consequently the eigenvalues of L1 cannot exceed a + λmax . This is in contradiction to
the fact that L1 has a sequence of positive eigenvalues tending to infinity. ��

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. Denote πλ ∈ L (X) (λ ∈ R) to be the spectral family of the
self-adjoint operator L̃. Let {μi }∞i=1 be the eigenvalues of L̃ in (b,∞). If σ(L̃) ∩
(−∞,−a) �= ∅, we denote the eigenvalues in (−∞,−a) by ν1 < · · · < νK where
K = dim (R (π−a)). For 1 ≤ i < ∞, 1 ≤ j ≤ K , let P+

i = πμi+ − πμi− and P−
j

= πν j+ − πν j− be the projections to ker
(
L̃ − μi I

)
and ker

(
L̃ − ν j I

)
respectively,

and P0 = π0+ − π0− be the projection to ker L̃. By Proposition 4.1, we have

L̃ =
∫

λdπλ =
∞∑

i=1

μi P
+
i +

K∑

j=1

ν j P
−
j +

∫ b

−a
λdπλ.

For any initial data (u2 (0) , u2t (0)) ∈ Z × Y , the solution to the second order equation
(4.2) can be written as
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u2 (t) =
∞∑

i=1

[

cos(
√

μi t)P
+
i u2 (0) +

1√
μi

sin(
√

μi t)P
+
i u2t (0)

]

+
K∑

j=1

[

cosh
(√−ν j t

)
P−
j u2 (0) +

1√−ν j
sinh

(√−ν j t
)
P−
j u2t (0)

]

+
∫ b

0
cos(

√
λt)dπλu2(0) +

∫ b

0

1√
λ
sin(

√
λt)dπλu2t (0)

+
∫ 0

−a
cosh(

√−λt)dπλu2(0) +
∫ 0

−a

1√−λ
sinh(

√−λt)dπλu2t (0)

+ P0u2(0) + t P0u2t (0). (4.3)

If σ(L̃) ∩ (−∞,−a) = ∅, the solution u2 (t) is obtained by removing the second term
above.

Denote the minimum of λ ∈ σ(L̃) by η0, that is,

η0 = min‖ψ‖Y=1
[L̃ψ,ψ]

=
{

−a, if σ(L̃) ∩ (−∞,−a) = ∅,

ν1, if σ(L̃) ∩ (−∞,−a) = {ν1 < · · · < νK }.

By the formula (4.3), it is easy to see that ‖u2(t)‖Y � e
√−η0t for t > 0. To estimate

‖u2(t)‖Z , we note that by Lemma 4.2

‖u2‖2Z ≈
[
L̃u2, u2

]
+ 2m‖u2‖2Y . (4.4)

By using (4.3), we have

[
L̃u2 (t) , u2 (t)

]
�

∞∑

i=1

[
μ j

∥
∥P+

i u2 (0)
∥
∥2
Y +

∥
∥P+

i u2t (0)
∥
∥2
Y

]

+ e2
√−η0t

K∑

j=1

[∥
∥
∥P−

j u2 (0)
∥
∥
∥
2

Y
+

∥
∥
∥P−

j u2t (0)
∥
∥
∥
2

Y

]

+
∫ b

0
d (πλu2(0), u2(0)) +

∫ b

0
d (πλu2t (0), u2t (0))

+ e2
√−η0t

[∫ 0

−a
d (πλu2(0), u2(0)) +

∫ 0

−a
d (πλu2t (0), u2t (0))

]

� e2
√−η0t

([
L̃u2 (0) , u2 (0)

]
+ m‖u2 (0) ‖2Y + ‖u2t (0) ‖2Y

)

� e2
√−η0t

(
‖u2 (0) ‖2Z + ‖u2t (0) ‖2Y

)
.

This implies

‖u2 (t) ‖Z � e
√−η0t (‖u2 (0) ‖Z + ‖u2t (0) ‖Y ) ,
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by using (4.4) and the estimate for ‖u2(t)‖Y . Since

u2t (t) =
∞∑

i=1

[−√
μi sin(

√
μi t)P

+
i u2 (0) + cos(

√
μi t)P

+
i u2t (0)

]

+
K∑

j=1

[√−ν j sinh
(√−ν j t

)
P−
j u2 (0) + cosh

(√−ν j t
)
P−
j u2t (0)

]

+
∫ b

0
−√

λ sin(
√

λt)dπλu2(0) +
∫ b

0
cos(

√
λt)dπλu2t (0)

+
∫ 0

−a

√−λ sinh(
√−λt)dπλu2(0) +

∫ 0

−a
cosh(

√−λt)dπλu2t (0) + P0u2t (0),

by similar estimates as above for ‖u2 (t) ‖Z , we obtain

‖u2t (t)‖Y � e
√−η0t (‖u2 (0) ‖Z + ‖u2t (0) ‖Y ) .

This finishes the proof of the upper bound estimate (1.17). It is straightforward to show
that the energy E(u2, u2t ) defined in (1.18) is conserved for solutions of (4.2).

Next, we prove the lower bound estimate (1.19) in two cases.
Case 1: σ(L̃) ∩ (−∞,−a) �= ∅. We choose u2(0) = ψ1 and u2t (0) = √−ν1ψ1

where ψ1 ∈ Z is the eigenfunction of L̃ corresponding to the smallest eigenvalue ν1 in
(−∞,−a). Then

(u2(t), u2t (t)) =
(
e
√−ν1tψ1,

√−ν1e
√−ν1tψ1

)
,

which clearly implies ‖u2(t)‖Y � e
√−η0t ‖u2 (0)‖Z .

Case 2: σ(L̃)∩ (−∞,−a) = ∅. Since σess(L̃) = [−a, b], for any ε > 0 small there
exists a nonzero function φ ∈ R(π−a+ε − π−a) ⊂ Z . Choose the initial data u2(0) = φ

and u2t (0) = 0. Then the solution u2 (t) for the equation (4.2) is given by

u2(t) =
∫ −a+ε

−a
cosh(

√−λt)dπλφ.

Thus

‖u2(t)‖2Y =
∫ −a+ε

−a
cosh2(

√−λt)d (πλφ, φ) � e
√−η0−εt

∫ −a+ε

−a
d (πλφ, φ)

� e
√−η0−εt ‖φ‖Z .

This finishes the proof of the theorem. ��
Remark 4.1. By Theorem 1.2, the maximal growth rate of unstable rotating stars can be
due to either discrete or continuous spectrum. Consider a family of slowly rotating stars

(ρε, 	vε = εrω0 (r) eθ ) near a non-rotating star
(
ρ0 (|x |) , 	v0 = 	0

)
withω0 (r) satisfying

the Rayleigh instability condition (4.1). If the non-rotating star is linearly stable, then for
sufficiently small ε, the linear instability of (ρε, 	vε) is due to the continuous spectrum.
On the other hand, if the the non-rotating star is linearly unstable, then for sufficiently
small ε, (ρε, 	vε) remains unstable and the maximal growth rate is due to the discrete
eigenvalue perturbed from the unstable eigenvalue of the non-rotating star.
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Remark 4.2. In [23], Lebovitz indicated that for slowly rotating stars with any angular
velocity profile ω0(r), discrete unstable modes cannot be perturbed from neutral modes
of non-rotating stars. More precisely, Lebovitz showed the stabilizing influence of rota-
tion on the fundamental mode (corresponding to the first eigenvalue of the operator L̃ in
(4.2)) even when ω0(r) does not satisfy the Rayleigh stability condition. However, this
does not imply the stability of the rotating stars since the unstable continuous spectrum
was not considered in [23].
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