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Abstract: In this paper, we show the existence and uniqueness of local regular solutions
to the initial-Neumann boundary value problem of the Schrödinger flow from a smooth
boundeddomain� ⊂ R

3 intoS2(namelyLandau–Lifshitz equationwithout dissipation).
The proof is built on a parabolic perturbation method, an intrinsic geometric energy
argument, the symmetric (algebraic) properties of S2 and some observations on the
behaviors of some geometric quantities on the boundary of the domain manifold.It
is based on methods from Ding and Wang (one of the authors of this paper) for the
Schrödinger flows ofmaps from a closedRiemannianmanifold into aKählermanifold as
well as on methods by Carbou and Jizzini for solutions of the Landau–Lifshitz equation.

1. Introduction

In this paper, we are concerned with the existence and uniqueness of strong solutions to
the initial-Neumann boundary value problem of the following Schrödinger flow from a
smooth bounded domain � ⊂ R

3 into S2

∂t u = u × �u,

where “×” denotes the cross product in R
3. It is well-known that this equation is also

called the Landau–Lifshitz equation with a long history (see [28]). The solvability of
such a Landau–Lifshitz equation with natural boundary condition is an important and
challenging problem, and by the knowledge of authors there were few results on its
well-posedness in the previous literature if the dimension of the domain � denoted by
dim(�) is greater than one.
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1.1. Definitions and background. In physics, the Landau–Lifshitz (LL) equation is a
fundamental evolution equation for the ferromagnetic spin chain and was proposed on
the phenomenological ground in studying the dispersive theory of magnetization of
ferromagnets. It was first deduced by Landau and Lifshitz in [28], and then proposed by
Gilbert in [22] with dissipation. It is well-known that the Landau and Lifshitz system
is of fundamental importance in theory of magnetization and ferromagnets, and has
extensive applications in physics.

In fact, this equation describes the Hamiltonian dynamics corresponding to the
Landau–Lifshitz energy, which is defined as follows. Consider a ferromagnetic body
occupying a bounded, possibly multi-connected domain � of the Euclidean space R3.
We neglect mechanical effects due to magnetization (magnetostriction) and assume the
temperature to be constant and lower than Curie’s temperatures. Let u, denoting magne-
tization vector, be a mapping from � into a unit sphere S2 ⊂ R

3. The Landau–Lifshitz
energy functional of a map u : � → S

2 is defined by

E(u) :=
∫

�

�(u) dx +
1

2

∫
�

|∇u|2 dx − 1

2

∫
�

hd · u dx .

Here ∇ denote the gradient operator and dx is the volume element of R3.
For the aboveLandau–Lifshitz functional, thefirst and second terms are the anisotropy

and exchange energies, respectively, and �(u) is a smooth function on S2. The last term
is the self-induced energy, and hd(u) is the demagnetizing field, which has the following
form

hd(u)(x) = ∇
∫

�

∇y N (x − y)u(y)dy,

where N (x) = − 1
4π |x | is the Newtonian potential in R3.

The Landau–Lifshitz (for short LL) equation without dissipation can be written as

∂t u = −u × h (1.1)

where the local field h of E(u) can be derived as

h := −δE(u)

δu
= �u + hd − ∇u�.

In this paper we want to consider the existence of regular solution to equation (1.1).
Since the anisotropy term �, non-local field hd(u) and the negative sign“−” in equation
(1.1) do not affect on our analysis and main conclusions, for the sake of convenience and
simplicity, we only consider the classical Schrödinger flow into S2 (Landau–Lifshitz)

∂t u = u × �u.

Intrinsicly, “u×” can be considered as a complex structure J on S
2, which rotates

anticlockwise the tangent space at u by an angle of π
2 degrees. Therefore, we can write

the above equation as

∂t u = J (u)P(u)(�u),

where P(u) : R3 → TuS2 is a standard projection operator.
From the viewpoint of infinite dimensional symplectic geometry, Ding-Wang [18]

proposed to consider the so-called Schrödinger flows for maps from a Riemannian
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manifold into a symplectic manifold, which can be regarded as an extension of LL
equation (1.1) and was also independently introduced from the viewpoint of integrable
systems by Terng and Uhlenbeck in [47]. Namely, suppose (M, g) is a Riemannian
manifold, (N , J, ω) is a symplectic manifold, the Schrödinger flow is a time-dependent
map u : M × R

+ → N ↪→ R
n+k satisfying

∂t u = J (u)τ (u)

where

τ(u) = �gu + A(u)(∇u,∇u)

is the tension field of u, where A(u)(·, ·) is the second fundamental form of N in Rn+k .
Here we always embed isometrically (N , J, ω) in an Euclidean space Rn+k where n =
dim(N ).

A great deal of effort has been devoted to the study of Landau–Lifshitz equation
defined on an Euclidean spaces or a flat torus (closed manifold) in the last five decades.
One has made great progress in the PDE aspects of the Schrödinger flows containing
the existence, uniqueness and regularities of various kinds of solutions. Now, we recall
some known results which are closely related to our work in the present paper.

In 1986, P.L. Sulem, C. Sulem and C. Bardos in [45] employed difference method to
prove that the Schrödinger flow for maps fromR

n into S2 admits a global weak solution
or a smooth local solution under suitable initial value conditions. Moreover, they also
addressed the existence of global smooth solution if the initial value map is small. In
1998, Y.D. Wang (the second named author) [49] obtained the global existence of weak
solution to the Schrödinger flow for maps from a closed Riemannian manifold or a
bounded domain in R

n into S
2 by adopting a more geometric approximation equation

than the Ginzburg-Landau penalized equation used for the LLG equation in [1,7,46].
Later, Z.L. Jia and Y.D. Wang [25,26] employed a method originated from [20,49] to
achieve the global weak solutions to a large class of generalized Schrödinger flows in
more general setting, where the base manifold is a bounded domain � ⊂ R

n(n ≥ 2)
or a compact Riemannian manifold Mn and the target space is S2 or the unit sphere
S
n
g in a compact Lie algebra g. However, the existence of global weak solution for the

Schrödinger flows between manifolds are still open.
The local existence of the Schrödinger flow from a general closed Riemannian man-

ifold into a Kähler manifold was first obtained by Ding and the second named author of
this paper in [18]. By using a parabolic approximation and the intrinsic geometric energy
method, they proved that, if M is an m dimensional compact Riemannian manifold or
the Euclidean space Rm and the initial map u0 ∈ Wk,2(M, N ) with k ≥ [m/2] + 2, then
there exists a local solution u ∈ L∞([0, T ),Wk,2(M, N )). The local regular(smooth)
solution to the Schrödinger flow from R

n into a Kähler manifold was also addressed by
Ding and Wang in [19] (Later, Kenig, Lamm, Pollack, Staffilani and Toro in [27] also
provided another different approach). Furthermore, they also obtained the persistence of
regularity results, in that the solution always stays as regular as the initial data (as mea-
sured in Sobolev norms), provided that one is within the time of existence guaranteed
by the local existence theorem. In proving its well-posedness, the heart of the matter is
resolved by estimating multi-linear forms of some intrinsic geometric quantities.

For low-regularity initial data, the initial value problem for Schrödinger flow from an
Euclidean space intoS2 has been studied indirectly using the “modified Schrödingermap
equations" and certain enhanced energy methods, for instance, A.R. Nahmod, A. Ste-
fanov andK. K. Uhlenbeck [35] have ever used the standard technique of Picard iteration
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in some suitable function spaces of the Schrödinger equation to obtain a near-optimal
(but conditional) local well-posedness result for the Schrödingermap flow equation from
two dimensions into a Riemann surface X , in the model cases of the standard sphere
X = S

2 or hyperbolic space X = H
2. In proving its well-posedness, the heart of the

matter is resolved by considering truly quatrilinear forms of weighted L2-functions.
For one dimensional global existence for Schrödinger flow from S

1 or R1 into a
Kähler manifold, we refer to [13,36,39,52] and references therein. The global well-
posedness result for the Schrödinger flow from R

n (n ≥ 3) into S
2 in critical Besov

spaces was proved by Ionescu and Kenig in [24], and independently by Bejanaru in
[3], and then was improved to global regularity for small data in the critical Sobolev
spaces in dimensions n ≥ 4 in [4]. Finally, in [5] the global well-posedness result for the
Schrödinger flow for small data in the critical Sobolev spaces in dimensions n ≥ 2 was
addressed. Recently, Z. Li in [29,30] proved that the Schrödinger flow from R

n with
n ≥ 2 to compact Kähler manifold with small initial data in critical Sobolev spaces is
also global.

On the contrary, F. Merle, P. Raphaël and I. Rodnianski [33] also considered the
energy critical Schrödinger flow problem with the 2-sphere target for equivariant initial
data of homotopy index k = 1. They showed the existence of a codimension one set of
smooth well localized initial data arbitrarily close to the ground state harmonic map in
the energy critical norm, which generates finite time blowup solutions, and gave a sharp
description of the corresponding singularity formation which occurs by concentration of
a universal bubble of energy. One also found some self-similar solutions to Schrödinger
flow from C

n into CPn with local bounded energy which blow up at finite time, for
more details we refer to [17,21,34].

As for some travelling wave solutions with vortex structures, F. Lin and J. Wei
[31] employed perturbation method to consider such solutions for the Schrödinger map
flow equation with easy-axis and proved the existence of smooth travelling waves with
bounded energy if the velocity of travellingwave is small enough.Moreover, they showed
the travelling wave solution has exactly two vortices. Later, J. Wei and J. Yang [50]
considered the same Schrödinger map flow equation as in [31], i.e. the Landau–Lifshitz
equation describing the planar ferromagnets. They constructed a travellingwave solution
possessing vortex helix structures for this equation. Using the perturbation approach,
they give a complete characterization of the asymptotic behaviour of the solution.

On the other hand, since the seventies of the 20th centurymagnetic domains have been
the object of a considerable research from the applicative viewpoint (e.g., see [42,48]),
especially because of invention of “magnetic bubbles" devices and their use in computer
hardware. In the literature, physicists and mathematicians are always interested in the
Landau–Lifshitz-Gilbert system with Neumann boundary conditions(see [10,40]), for
instance, Carbou and Jizzini considered a model of ferromagnetic material subject to an
electric current, and proved the local in time existence of very regular solutions for this
model in the scale of Hk spaces. In particular, they described in detail the compatibility
conditions at the boundary for the initial data, for details we refer to [11]. Roughly
speaking, Carbou and Jizzini showed that⎧⎪⎨

⎪⎩
∂t u = −u × (u × �u) + αu × �u, (x,t) ∈ � × R

+,
∂u
∂ν

= 0, (x,t) ∈ ∂� × R
+,

u(x, 0) = u0 : � → S
2,

admits a very regular solution if u0 meets some compatibility conditions at the boundary,
where α is a real number.



Existence and Uniqueness of Local Regular Solution 395

A natural problem is if the following⎧⎪⎨
⎪⎩

∂t u = u × �u, (x,t) ∈ � × R
+,

∂u
∂ν

= 0, (x,t) ∈ ∂� × R
+,

u(x, 0) = u0 : � → S
2,

where ν is the outer normal vector on� and u0 is the initial value map, admits a strong or
regular solution? The results on the existence of global weak solutions proved by Wang
in [49] hints us that the initial-Neumann boundary value problem of the Schrödinger
flow should be posed as follows⎧⎪⎨

⎪⎩
∂t u = u × �u, (x,t) ∈ � × R

+,
∂u
∂ν

= 0, (x,t) ∈ ∂� × R
+,

u(x, 0) = u0 : � → S
2, ∂u0

∂ν
|∂� = 0.

(1.2)

Our goal of this paper is to prove the above problem (1.2) admits a local in time strong
(regular) solution. The above Schrödinger flow with starting manifold is a bounded
domain � ⊂ R

n with n ≥ 2 is a challenging problem, there is few results on the
well-posedness of initial-Neumann boundary value problem (1.2) in the literature.

1.2. Strategy and main results. In the present paper, we are intend to studying the local
well-posedness of the above equation (1.2). However, the method involving harmonic
analysis in R

n used in [2–6,24] may not be effective for the equation in a bounded
domain or a complete compact manifold. And hence, we still apply a similar parabolic
perturbation approximation and intrinsic geometric energy method with that in [18]
since Carbou and Jizzini [11] have shown that the corresponding problem of the approx-
imating equation is well-posed. More precisely, we will employ the following parabolic
perturbation equation to approximate (1.2)⎧⎪⎨

⎪⎩
∂t uε = ε(�uε + |∇uε|2uε) + uε × �uε, (x,t) ∈ � × R

+,
∂uε

∂ν
= 0, (x,t) ∈ ∂� × R

+,

uε(x, 0) = u0 : � → S
2, ∂u0

∂ν
|∂� = 0

(1.3)

where ε ∈ (0, 1) is the perturbation constant, since the perturbed equation and the
Schrödinger flow into S2 (Landau–Lifshitz equation without dissipative term) share the
same compatible conditions of the initial data.

Because of the space of test functions associated to equation (1.2) is much smaller
than that for the setting in [18], it is more difficult for us to get the desired geometric
energy estimates on the solutions of (1.2). We need to overcome some new essential
difficulties caused by the boundary of domain manifold.

Our main conclusions can be presented as follows.

Theorem 1.1. Let � be a smooth bounded domain in R
3. Assume that the initial value

maps u0 ∈ H3(�,S2) with ∂u0
∂ν

|∂� = 0. Then, there exists a positive number T0 > 0
depending only on ‖u0‖H3 and the geometry of � such that the equation (1.2) admits
a unique regular solution u ∈ L∞([0, T0], H3(�,S2)) ∩ C0([0, T0], H2(�,S2)) with
initial value u0.

Remark 1.2. 1. Theorem1.1 still holds for the case of� being a smooth bounded domain
in R2 (also see [37,38]).
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2. If the initialmap u0 satisfies some furthermore compatibility and applicable regularity
conditions, we also prove (1.2) admits a unique smooth solution u with initial value
u0. We will present these results in another paper [15].

3. In forthcoming papers we will extend the results in Theorem 1.1 to the case the
startingmanifold of the Schrödinger flow is a 2 or 3 dimensional compact Riemannian
maniflodwith smooth boundary and the targetmanifold is a compactKählermanifold.

4. It is still open for the case the dimension of the starting manifold is greater than three.

On the other hand, we recall that the self-induced vector field is defined by

hd(u) := ∇
∫

�

∇N (x − y)u(y) dy

in the sense of distributions. Hence, the following estimates of hd is a fundamental result
in theory of singular integral operators, its proof can be found in [10,11,14].

Proposition 1.3. Let p ∈ (1,∞) and� be a smooth bounded domain inR3. Assume that
u ∈ Wk,p(�,R3) for k ∈ N. Then, the restriction of hd(u) to� belongs toWk,p(�,R3).
Moreover, there exists constants Ck,p, which is independent of u, such that

‖hd(u)‖Wk,p(�) ≤ Ck,p‖u‖Wk,p(�).

In fact, hd : Wk,p(�,R3) → Wk,p(�,R3) is a bounded linear operator.

With Proposition 1.3 at hand, we take an almost same argument as that in the proof
of Theorem 1.1 to conclude the following result.

Theorem 1.4. Let � be a smooth bounded domain in R
3. Assume that the initial value

maps u0 ∈ H3(�,S2) with ∂u0
∂ν

|∂� = 0, and � ∈ C∞(S2). Then, there exists a positive
number T0 > 0 depending only on ‖u0‖H3 and the geometry of � such that the initial-
Neumann boundary value problem of equation (1.1) admits a unique regular solution
u ∈ L∞([0, T0], H3(�,S2)) ∩ C0([0, T0], H2(�,S2)) with initial value u0.

To prove the above conclusions we need to overcome two essential difficulties. One is
how to find test functions which are compatible with Neumann boundary condition (i.e.,
these test functions produce vanishing boundary terms when integrations by parts are
taken) and the other is how to get a uniform H3 Sobolev norm estimate of uε (“uniform”
means “independent of ε ∈ (0, 1)”). We will make full use of the geometric structures
of the Schrödinger flow to overcome the two difficulties. Our proofs provided here are
based on the following two crucial observations:

1. By L2-estimate of Laplacian operator with Neumann boundary condition (i.e.
∂uε

∂ν
|∂� = 0) and the equation (1.3), we can infer the following critical equivalent norm

estimate:

‖uε‖2H3 ≤ C(1 + ‖uε‖2H2 + ‖∂t uε‖2H1)
3,

where C is independent of ε, namely Lemma 3.6. In order to show uniform H3 norm
estimate, the above equivalent norm inequality implies that it is enough to get a uniform
bound of

‖uε‖2H2 + ‖∂t uε‖2H1 .

2. By the orthogonality of τ(uε) and uε ×�uε, we can see that ∂t uε and τ(uε) satisfy
the Neumann boundary conditions in the sense of distribution, which are induced by
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∂uε

∂ν
|∂� = 0 (i.e. Lemma 3.5). This implies that ∂t uε, �∂t uε and �τ(uε) are suitable

candidates for test functions compatible with Neumann boundary condition.
Therefore, in order to derive required energy estimates on the solutions to Schrödinger

flow as ε → 0, we should consider the equation satisfied by ∂t uε and choose ∂t uε,
�∂t uε and �τ(uε) as the test functions of the equation satisfied by ∂t uε such as (3.7)
and (3.8). We will see that one can use the facts |uε| = 1, (R3,×) is a Lie algebra and
J (u) = u× : TuS2 → TuS2 is a integrable complex structure on S

2, i.e. ∇S
2
J = 0,

to infer a concise intrinsic equation of ∂t uε (i.e. Formula (1.4)), from which it is not
difficult to show ∂t uε satisfies an extrinsic parabolic-type equation (i.e. Formula (3.7))
and another key fourth order differential equation (i.e. Formula (3.8)).

Concretely, the proof of Theorem 1.1 is divided into three steps. In the first step, we
consider the parabolic perturbation approximation equation (1.3). Recall that the local
well-posedness for this parabolic system is established recently in [11], which can be
formulated as the following proposition (also see our recent work [14]).

Proposition 1.5. Suppose that u0 ∈ H3(�,S2), there exists a positive number Tε de-
pending only on ε and ‖u0‖H2 such that the equation (1.3) admits a unique regular
solution uε on � × [0, Tε) which satisfies for any T < Tε that

1. |uε(x, t)| = 1 for all (x, t) ∈ � × [0, T ];
2. uε ∈ L∞([0, T ], H3(�)) ∩ L2([0, T ], H4(�)).

In Sect. 3, we will extend Tε stated in this proposition to the maximal existence time
of solution uε satisfying the above properties.

In the second step, we get the uniform H3-energy estimates of uε with respect to ε.
Our basic idea is to make full use of the integrality of complex structure to get higher
geometric energy estimates of solution uε to

∂t u = ετ(u) + J (u)τ (u)

as in [18]. Inspired by this idea and the above two new observations, we consider the
corresponding equation of ∂t uε from the viewpoint of intrinsic geometry. For simplicity
we let M be a bounded domain � ⊂ R

n and choose the natural coordinates x =
{x1, . . . , xn} on �. Noting that ∇ J = 0, we take a simple calculation to show

∇∂t∂t uε + (1 − ε2)∇i∇i (τ (uε)) − 2εJ (uε)∇i∇i (τ (uε))

= ε2RN (τ (uε),∇i uε)∇i uε + εJ (uε)R
N (τ (uε),∇i uε)∇i uε

+ εRN (J (uε)τ (uε),∇i uε)∇i uε + J (uε)R
N (J (uε)τ (uε),∇i uε)∇i uε. (1.4)

Here, ∇i = ∇N
∂u
∂xi

and RN is the Riemannian curvature tensor of N .

In particular, if the target manifold N = S
2 with the complex structure J (u) = u×

for u ∈ S
2, then it is not difficult to show that uε satisfies the following extrinsic formula

(to see Formula (3.8) for precise form)
∂2uε

∂t2
+ (1 − ε2)�τ(uε) − 2ε�(uε × �uε)

= ε{ ∂

∂t
(|∇uε|2uε) − 2div(∇uε×̇∇2uε) + uε × �(|∇uε|2uε)}

+ε|∇uε|2uε × �uε + �(|∇uε|2uε) − 2div2((∇uε⊗̇∇uε))uε

−2
〈
∇|∇uε|2,∇uε

〉
− 2 〈�uε,∇uε〉 · ∇uε − |∇uε|2�uε (1.5)
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by using the fact |u| = 1 and

RS
2
(X,Y )Z = 〈Y, Z〉 X − 〈X, Z〉 Y

for any X,Y and Z in �(TS2).
Let ε = 0. After contracting some terms in the above extrinsic formula, we obtain

again the nice equation in [45] (also to see Formula (3.14))

∂2u

∂t2
+ �2u = − 2div2((∇u⊗̇∇u)u) + 2div((∇u⊗̇∇u) · ∇u)

− div(|∇u|2∇u). (1.6)

Then, by taking ∂t uε and ∂t�uε as test functions to the extrinsic equation (1.5)
respectively, we can obtain the desired H3-estimates of uε on a uniform time interval
[0, T0] with 0 < T0 < Tε by a delicate complicated computation and by using the
following essential geometric information from the target manifold (S2, J = u×) ↪→
(R3,×):

(1) The cross product (R3,×) additionally satisfies the Lagrangain formula

a × (b × c) = 〈a, c〉 b − 〈a, b〉 c
for any vectors a, b, c ∈ R

3.
(2) Any u ∈ S

2 ⊂ R
3 can be considered as a vector in T⊥

u S
2.Namely, for any X ∈ TuS2,

we have

〈u, X〉 = 0.

It is worthy to point out that we use the geometric and algebraic structures ( i.e., the
antisymmetry of J = u×, the above properties (1) and (2) on Lie algebraic structure)
associated with this system to eliminate some terms involving high order derivatives of
uε in the process of getting uniform H3-estimates, hence the remaining terms can be
well-controlled by applying Lemmas 2.1 and Lemma 3.6 on equivalent Sobolev norms.
For more details we refer to Sects. 3.1 and 3.2.

Therefore, by letting ε → 0, the existence part of Theorem 1.1 is proved.
In the last step, we show the uniqueness of the solution u we obtained by adopting

the intrinsic energy method introduced in [32,44].

1.3. A related problem. Recently, Chern et al [16] described a new approach for the
purely Eulerian simulation of incompressible fluids. In their setting, the fluid state is rep-
resented by aC2-valued wave function evolving under the Schrödinger equation subject
to incompressibility constraints. The underlying dynamical system is Hamiltonian and
governed by the kinetic energy of the fluid together with an energy of Landau–Lifshitz
type. They deduced the following

∂t u + Lvu = α̃(u × �u),

where α̃ is a real number, u : �×[0, T ) → S
2 and Lv is the Lie derivative with respect

to the field v on�with div(v) ≡ 0. They called this dynamical system as incompressible
Schrödinger flow.
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If � ⊂ R
3 is a smooth bounded domain, Lv is just the ∇v , and hence the above can

be written as

∂t u + ∇vu = α̃(u × �u),

with div(v) ≡ 0 on �.
For simplicity, we let α̃ = 1 and consider the following initial-Neumann boundary

value problem of incompressible Schrödinger flow

⎧⎪⎨
⎪⎩

∂t u + ∇vu = u × �u, (x,t) ∈ � × R
+,

∂u
∂ν

= 0, (x,t) ∈ ∂� × R
+,

u(x, 0) = u0 : � → S
2, ∂u0

∂ν
|∂� = 0.

(1.7)

Here we always suppose that the field v is smooth enough and div(v) ≡ 0 on �.
In order to prove the local in time well-posedness, the first thing that needs to be done

is to establish the local existence to the following approximation problem

⎧⎪⎨
⎪⎩

∂t u = ετv(u) + u × (�u + u × ∇vu), (x,t) ∈ � × R
+,

∂u
∂ν

= 0, (x,t) ∈ ∂� × R
+,

u(x, 0) = u0 : � → S
2, ∂u0

∂ν
|∂� = 0,

(1.8)

where we denote

τv(u) = τ(u) + u × ∇vu = �u + |∇u|2u + u × ∇vu.

It should be noted that the two terms in the right hand side of the above equation are
orthogonal.

Then, by letting ε → 0 we can also obtain some similar results as that for (1.2) and
the proof goes almost the same as that stated in Theorem 1.1 except for that we need to
treat the term∇vu. Since div(v) ≡ 0 on�, and if we additionally provide that v satisfies
the boundary compatibility condition

〈v, ν〉 |∂�×R+ ≡ 0,

the term ∇vu does not cause any essential difficulties. In a forthcoming paper we will
study this problem and elucidate the details.

It is worthy to point out that Huang [23] has ever considered the coupled system
of Navier–Stokes equation and incompressible Schrödinger flow defined on a closed
manifold or Rn , and shown the local in time existence of the initial value problem of
this system in some suitable Sobolev spaces.

The rest of our paper is organized as follows. In Sect. 2, we introduce the basic nota-
tions on Sobolev space and some critical preliminary lemmas. In Sect. 3 and Sect. 4, we
give the proof of local existence of regular solution to (1.2) stated in Theorem 1.1. The
uniqueness will built up in Sect. 5. We close with two “Appendices”. First, this is the lo-
cally regular estimates of the approximate solution uε. Secondly, it is the characterisation
and formulation of the Schrödinger flow in moving frame and parallel transport.
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2. Preliminary

In this section, we first recall some notations on Sobolev spaces, which will be used in
whole context. Let u = (u1, u2, u3) : � → S

2 ↪→ R
3 be a map. We set

Hk(�,S2) = {u ∈ Wk,2(�,R3) : |u| = 1 for a.e. x ∈ �}.
Moreover, let (B, ‖.‖B) be a Banach space and f : [0, T ] → B be a map. For any p > 0
and T > 0, we define

‖ f ‖L p([0,T ],B) :=
(∫ T

0
‖ f ‖p

Bdt

) 1
p

,

and

L p([0, T ], B) := { f : [0, T ] → B : ‖ f ‖L p([0,T ],B) < ∞}.
In particular, we denote

L p([0, T ], Hk(�,S2))

= {u ∈ L p([0, T ], Hk(�,R3)) : |u| = 1 for a.e. (x,t) ∈ � × [0, T ]},
where k, l ∈ N and p ≥ 1.

Next, we need to recall some crucial preliminary lemmas which wewill use later. The
L2 theory of Laplace operator with Neumann boundary condition implies the following
Lemma of equivalent norms, to see [51].

Lemma 2.1. Let � be a bounded smooth domain in R
m and k ∈ N. There exists a

constant Ck,m such that, for all u ∈ Hk+2(�) with ∂u
∂ν

|∂� = 0,

‖u‖H2+k (�) ≤ Ck,m(‖u‖L2(�) + ‖�u‖Hk (�)). (2.1)

Here, for simplicity we denote H0(�) := L2(�).

In particular, the above lemma implies that we can define the Hk+2-norm of u as
follows

‖u‖Hk+2(�) := ‖u‖L2(�) + ‖�u‖Hk (�).

In order to show the uniform estimates and the convergence of solutions to the ap-
proximate equation constructed in the coming sections, we also need to use the Gronwall
inequality and the classical compactness results in [8,41].

Lemma 2.2. Let f : [0,∞) → [0,∞) be a nondecreasing continuous function such
that f > 0 on (0,∞) and

∫ ∞
1

1
f dx < ∞. Let y be a continuous function which is

nonnegative on [0, T ′) and let g be a nonnegative function in L1
loc(R

+). We assume that
there exists a positive number y0 > 0 such that for all t ≥ 0, we have the inequality

y(t) ≤ y0 +
∫ t

0
g(s)ds +

∫ t

0
f (y(s))ds.

Then, there exists a positive number T ∗ and a constant C(T ∗), which both depend only
on y0, g and f , such that for all T < min{T ′, T ∗}, there holds true

sup
0≤t≤T

y(t) ≤ C(T ∗).
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Lemma 2.3 (Aubin-Lions-Simon compact Lemma, see Theorem II.5.16 in [8] or [41]).
Let X ⊂ B ⊂ Y beBanach spaces with compact embedding X ↪→ B. Let 1 ≤ p, q, r ≤
∞. For T > 0, we define

Ep,r = { f ∈ L p((0, T ), X),
d f

dt
∈ Lr ((0, T ),Y )},

then the following properties holds

1. If p < ∞ and p < q, the embedding Ep,r ∩ Lq((0, T ), B) in Ls((0, T ), B) is
compact for all 1 ≤ s < q.

2. If p = ∞ and r > 1, the embedding of Ep,r in C0([0, T ], B) is compact.

Lemma 2.4 (Theorem II.5.14 in [8]). Let k ∈ N, then the space

E2,2 = { f ∈ L2((0, T ), Hk+2(�)),
∂ f

∂t
∈ L2((0, T ), Hk(�))}

is continuously embedded in C0([0, T ], Hk+1(�)).

To end this section, we briefly introduce the notations of Galerkin basis and Galerkin
projection. Let � be a smooth bounded domain in R

m , λi be the i th eigenvalue of the
operator �− I with Neumann boundary condition, whose corresponding eigenfunction
is fi . That is,

(� − I ) fi = −λi fi with
∂ fi
∂ν

|∂� = 0.

Without loss of generality, we assume { fi }∞i=1 are completely standard orthonor-
mal basis of L2(�,R1). Let Hn = span{ f1, . . . fn} be a finite subspace of L2, Pn :
L2(�,R1) → Hn be the canonical projection. In fact, for any f ∈ L2, we define

f n = Pn f =
n∑
1

〈 f, fi 〉L2 fi ,

then,

lim
n→∞ ‖ f − fn‖L2 = 0.

3. Parabolic Perturbation to the Schrödinger Flow

In this section, we consider the parabolic perturbation to the Schrödinger flow (1.2):
⎧⎪⎨
⎪⎩

∂t uε = ε(�uε + |∇uε|2uε) + uε × �uε, (x,t) ∈ � × R
+,

∂uε

∂ν
= 0, (x,t) ∈ ∂� × R

+,

uε(x, 0) = u0 : � → S
2, ∂u0

∂ν
|∂� = 0.

(3.1)

Here ε ∈ (0, 1) is the perturbation constant. The local in time regular solution to equation
(3.1) is established in [10,11,14] by virtue of Galerkin approximation method in the
following theorem, the proof of which can also be found in [14].
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Theorem 3.1. Suppose that u0 ∈ H3(�). Then there exists a maximal existence time Tε

depending on ‖u0‖H2 such that equation (3.1) admits a unique regular solution uε on
� × [0, Tε) which satisfies that for any T < Tε

1. |uε(x, t)| = 1 for all (x, t) ∈ [0, T ] × �;
2. uε ∈ L∞([0, T ], H3(�)) ∩ L2([0, T ], H4(�));

3. ∂uε

∂t ∈ L∞([0, T ], H1(�)) ∩ L2([0, T ], H2(�)) and ∂2uε

∂t2
∈ L2([0, T ], L2(�)).

Moreover, there exists a constant C(T, ε) > 0 such that

sup
t≤T

(‖uε‖2H3(�)
+ ‖∂uε

∂t
‖2H1(�)

)

+
∫ T

0
(‖uε‖2H4(�)

+ ‖∂uε

∂t
‖2H2(�)

+ ‖∂2uε

∂t2
‖2L2(�)

)dt ≤ C(T, ε).
(3.2)

Proof. Let unε be the solution to the Galerkin approximation equation to (3.1):
{

∂t unε = ε�uε + εPn(|∇unε |2unε ) + Pn(unε × �unε ), (x,t) ∈ � × R
+,

unε (x, 0) = ∑n
i=1

∫
�

〈u0, fi 〉 dx fi (x), x ∈ �.
(3.3)

By establishing some delicate energy estimates and taking a process of convergence
for unε as n → ∞, we can obtain a solution u1 to equation (3.1) on �×[0, T1) for some
T1 > 0 depending only on ε and ‖u0‖H2(�), which satisfies estimate (3.2) for all T < T1
(cf. [11,14]).

Without loss of generality, we assume that T1 is not the maximal existence time, then
the solution u1 satisfies

sup
t<T1

(‖u1‖2H3(�)
+ ‖∂u1

∂t
‖2H1(�)

)

+
∫ T1

0
(‖u1‖2H4(�)

+ ‖∂u1
∂t

‖2H2(�)
+ ‖∂2u1

∂t2
‖2L2(�)

)dt < ∞.

It implies

u1 ∈ C0([0, T1], H3(�)), (3.4)

∂u1
∂t

∈ C0([0, T1], H1(�)), (3.5)

by applying Lemma 2.4. Then, there exist maps uT1(x) ∈ H3(�) and vT1(x) ∈ H1(�)

such that

lim
T→T1

‖u1(·, t) − uT1‖H3(�) = 0,

and

lim
T→T1

‖∂t u1(·, t) − vT1‖H1(�) = 0.

Next, we need to show that uT1(x) satisfies the Neumann boundary condition, i.e.,

∂uT1
∂ν

|∂� = 0.
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Since ∂u1(x,t)
∂ν

|∂�×[0,T1) = 0, it follows that
∫ T1

0

∫
�

〈�u1, φ〉 dxdt +
∫ T1

0

∫
�

〈∇u1,∇φ〉 dxdt = 0,

for all φ ∈ C∞(�̄ × [0, T1)). In particular, if we choose φ(x, t) = f (x)η(t) for all
f ∈ C∞(�̄) and η ∈ C∞[0, T1), and denote g(t) = ∫

�
〈�u1, f 〉+ 〈∇u1,∇ f 〉 dx , then

g(t) ∈ C0[0, T1] and there holds∫ T1

0
g(t)η(t)dt = 0,

which follows g(t) ≡ 0, that is∫
�

〈�u1, f 〉 + 〈∇u1,∇ f 〉 dx ≡ 0.

And hence we get

∂uT1
∂ν

|∂� = 0

as t → T1. Here we have used the fact (3.4).
Therefore, by taking the same argument as that in above, we conclude that there exists

a regular solution w1 to equation (3.1) on � × [T1, T2) by replacing u0 with uT1 . Thus,
it is not difficult to show the map

u2(x, t) =
{
u1(x, t) (x, t) ∈ � × [0, T1),
w1(x, t) (x, t) ∈ � × [T1, T2),

is a solution to equation (3.1) on � × [0, T2) satisfying Estimates (3.2) on � × [0, T2),
since we have the compactness (3.4 and 3.5). By repeating this process, we can get a
maximal solution uε on � × [0, Tε), which satisfies Estimate (3.2).

Finally, as in [11,14]we canfinish the proof of uniqueness by considering the equation
of the difference of two solutions and applying a direct energy method. ��
Remark 3.2. 1. Since Tε is the maximal existence time, if Tε < ∞, then we have

sup
t<Tε

(‖uε‖2H3(�)
+ ‖∂uε

∂t
‖2H1(�)

)

+ lim
T→Tε

{
∫ T

0
(‖uε‖2H4(�)

+ ‖∂uε

∂t
‖2H2(�)

+ ‖∂2uε

∂t2
‖2L2(�)

)dt} = ∞.

2. Let {Ti } be the existence times of Galerkin approximation solution constructed in the
above Theorem 3.1. If we set

S := {T1, T2, . . . , Ti , . . . },
then for all [T, T ′] ⊂ [0, Tε) \ S, the estimates in [11,14] also imply the Galerkin
approximation solution unε satisfies

sup
T≤t≤T ′

(‖unε‖2H2(�)
+ ‖∂unε

∂t
‖2H1(�)

)

+
∫ T ′

T
(‖unε‖2H3(�)

+ ‖∂unε
∂t

‖2H2(�)
)dt < ∞.
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Next, we show the uniform energy estimates of the solution uε, which is independent
of ε, and hence obtain a regular solution to the Schrödinger flow (1.2) by taking limit of
the sequence of approximation solutions {uε} as ε → 0.

First of all, by choosing uε and −�uε as test functions for equation (3.1), we can
show the uniform H1-estimates as follows.

∂

∂t

∫
�

(|uε|2 + |∇uε|2)dx + 2ε
∫

�

|uε × �uε|2dx = 0. (3.6)

3.1. Uniform H2-estimates. However, to show directly the further uniform H2-estimate
on uε by usual energy estimates seems difficult, because of the spin term of

uε × �uε.

To proceed, we need to show the following formulas to parabolic perturbation of the
Schrödinger flow in the below lemma, which is mentioned in Sect. 1.

Lemma 3.3. Let uε be the regular solution to equation (3.1) obtained in the above. Then
the following properties hold true

1. For a.e. (x, t) ∈ � × [0, Tε), we have

∂2uε

∂t2
= ε(�

∂uε

∂t
+

∂

∂t
(|∇uε|2uε)) +

∂uε

∂t
× �uε + uε × �

∂uε

∂t
; (3.7)

2. For a.e. (x, t) ∈ � × [0, Tε), we have

∂2uε

∂t2
+ (1 − ε2)�(τ(uε)) − 2ε�(uε × �uε)

= ε{ ∂

∂t
(|∇uε|2uε) − 2div(∇uε×̇∇2uε) + uε × �(|∇uε|2uε)}

+ ε|∇uε|2uε × �uε + �(|∇uε|2uε) − 2div2((∇uε⊗̇∇uε))uε

− 2
〈
∇|∇uε|2,∇uε

〉
− 2 〈�uε,∇uε〉 · ∇uε − |∇uε|2�uε, (3.8)

where

div(∇uε×̇∇2uε) :=
3∑

i, j=1

∂i (∂ j uε × ∂i j uε),

and

div2((∇uε⊗̇∇uε))uε :=
3∑

i, j=1

∂i j ((∂i uε · ∂ j uε))uε.

Proof. The formula (3.7) is given directly by equation (3.1). We need only to show (3.8)
presented in the above. A simple calculation gives
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∂2uε

∂t2
− ε2�(�uε + |∇uε|2uε)

= ε{ ∂

∂t
(|∇uε|2uε) + �(uε × �uε) + uε × �2uε}

+ε{uε × �(|∇uε|2uε) + |∇uε|2uε × �uε}
+{(uε × �uε) × �uε + uε × (uε × �2uε) + 2uε × (∇uε×̇∇�uε)}

= ε I + I I (3.9)

For the term uε × �2uε in part I , there holds

uε × �2uε = �(uε × �uε) − 2div(∇uε×̇∇2uε).

Next,we turn to presenting the calculation of I I . By applying theLagrangian formula

a × (b × c) = 〈a, c〉 b − 〈a, b〉 c
and

(a × b) × c = 〈a, c〉 b − 〈b, c〉 a
for any vectors a, b, c in R3, we have

(uε × �uε) × �uε = 〈uε,�uε〉 �uε − |�uε|2uε

= − |∇uε|2�uε − |�uε|2uε, (3.10)

uε × (uε × �2uε) =
〈
�2uε, uε

〉
uε − �2uε

= − (|�uε|2 + 2|∇2uε|2 + 4 〈∇�uε,∇uε〉)uε − �2uε, (3.11)

and

uε × (∇uε×̇∇�uε) =
3∑

i=1

uε × (∂i uε × ∂i�uε)

=
3∑

i=1

〈∂i�uε, uε〉 ∂i uε − 〈∂i uε, uε〉 ∂i�uε

= 〈∇�uε, uε〉 ∇uε

= −
〈
∇|∇uε|2,∇uε

〉
− 〈�uε,∇uε〉 · ∇uε. (3.12)

Here, we have used the fact |uε| ≡ 1.
Moreover, we have〈

�2uε, uε

〉
− |�uε|2 = − 2(|�uε|2 + |∇2uε|2 + 2 〈∇�uε,∇uε〉)

= − 2div2(∇uε⊗̇∇uε). (3.13)

By combining the above equations (3.10)-(3.13) with (3.9), we get the desired formula
(3.8). ��
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Remark 3.4. Let ε = 0, we have

∂2u

∂t2
+ �2u = − 2div2((∇u⊗̇∇u))u − 2

〈
∇|∇u|2,∇u

〉

− 2 〈�u,∇u〉 · ∇u − |∇u|2�u.

And hence, a tedious but direct calculation again gives the fourth order differential
formula of the Schrödinger flow in Sect. 1:

∂2u

∂t2
+ �2u = − 2div2((∇u⊗̇∇u)u) + 2div((∇u⊗̇∇u) · ∇u)

− div(|∇u|2∇u). (3.14)

Here

div2((∇u⊗̇∇u)u) :=
3∑

i, j=1

∂i j ((∂i u · ∂ j u)u)

and

div((∇u⊗̇∇u) · ∇u) :=
3∑

i, j=1

∂i ((∂i u · ∂ j u)∂ j u).

In the following context, we will need to use the following compatibility conditions
on the parabolic boundary ∂� × [0, Tε) which is satisfied by uε in the sense trace, and
to adopt an equivalent H3-norm of the solution uε to equation (3.1) which is related to
the H1-norm of ∂uε

∂t .

Lemma 3.5. The solution uε satisfies the following compatibility conditions on the
boundary:

{
∂
∂ν

∂uε

∂t |∂�×[0,Tε) = 0,
∂τ(uε)

∂ν
|∂�×[0,Tε) = 0

(3.15)

in the sense of trace.

Proof. By using the results in Theorem 3.1 and the estimates in Remark 3.2, without
loss of generality, we assume the Galerkin approximation solution unε satisfies

∂unε
∂t

⇀
∂uε

∂t
weakly in L2([T, T ′], H2(�)),

for any [T, T ′] ⊂ [0, Tε) \ S.
Let φ be a given function in C∞(�̄ × [0, Tε)). Since

∂

∂ν

∂unε
∂t

|∂�×[T,T ′] = 0,

it follows that there holds
∫ T ′

T

∫
�

〈
�

∂unε
∂t

, φ

〉
dxdt +

∫ T ′

T

∫
�

〈
∇ ∂unε

∂t
,∇φ

〉
dxdt = 0.
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Letting n → ∞, we can see immediately that

∫ T ′

T

∫
�

〈
�

∂uε

∂t
, φ

〉
dxdt +

∫ T ′

T

∫
�

〈
∇ ∂uε

∂t
,∇φ

〉
dxdt = 0.

Since ∂uε

∂t ∈ L2
loc([0, Tε), H2(�)), it follows for any 0 < T < Tε, there holds

∫ T

0

∫
�

〈
�

∂uε

∂t
, φ

〉
dxdt = −

∫ T

0

∫
�

〈
∇ ∂uε

∂t
,∇φ

〉
dxdt, (3.16)

that is

∂

∂ν

∂uε

∂t
|∂�×[0,Tε) = 0.

In consideration of the fact that ∇τ(uε) is orthogonal to uε × ∇τ(uε), we can see
that the equation

∂uε

∂t
= ετ(uε) + uε × τ(uε)

implies ∂τ(uε)
∂ν

|∂�×[0,Tε) = 0 in the sense of trace, since ∂uε

∂ν
|∂�×[0,Tε) = 0.

Now we provide the details of the proof for ∂τ(uε)
∂ν

|∂�×[0,Tε) = 0. By the equation

∂uε

∂t
= ετ(uε) + uε × τ(uε)

we can show that

LHS of (3.16) = ε

∫ T

0

∫
�

〈�τ(uε), φ〉 dxdt +
∫ T

0

∫
�

〈�(uε × τ(uε)), φ〉 dxdt

=
∫ T

0

∫
�

〈ε�τ(uε) + �uε × τ(uε), φ〉 dxdt

+
∫ T

0

∫
�

〈2∇uε × ∇τ(uε) + uε × �τ(uε), φ〉 dxdt

and

RHS of (3.16)

= ε

∫ T

0

∫
�

〈�τ(uε), φ〉 dxdt − ε

∫ T

0

∫
∂�

〈
∂τ(uε)

∂ν
, φ

〉
dxdt

−
∫ T

0

∫
�

〈∇uε,∇(τ (uε) × φ)〉 dxdt +
∫ T

0

∫
�

〈∇uε,∇τ(uε) × φ〉 dxdt

+
∫ T

0

∫
�

〈div(uε × ∇τ(uε)), φ)〉 dxdt −
∫ T

0

∫
∂�

〈
uε × ∂τ(uε)

∂ν
, φ)

〉
dxdt

= ε

∫ T

0

∫
�

〈�τ(uε), φ〉 dxdt −
∫ T

0

∫
∂�

〈
ε
∂τ(uε)

∂ν
+ uε × ∂τ(uε)

∂ν
, φ

〉
dxdt

+
∫ T

0

∫
�

〈�uε × τ(uε) + 2∇uε × ∇τ(uε) + uε × �τ(uε), φ〉 dxdt.
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Then, the fact “LHS = RHS” leads to
∫ T

0

∫
∂�

〈
ε
∂τ(uε)

∂ν
+ uε × ∂τ(uε)

∂ν
, φ

〉
dxdt = 0

in the sense of trace. ��
Lemma 3.6. The solution uε has the following properties:

1. �uε = 1
1+ε2

(ε ∂uε

∂t − uε × ∂uε

∂t ) − |∇uε|2uε for a.e. (x, t) ∈ � × [0, Tε);
2. There exists a constant C which is independent of ε such that there holds∫

�

|∇�uε|2dx ≤ C(1 +
1

1 + ε2
)(1 + ‖uε‖2H2 + ‖∂uε

∂t
‖2H1)

3,

and hence we have

‖uε‖2H3 ≤ C(1 + ‖uε‖2H2 + ‖∂uε

∂t
‖2H1)

3

where C does not depend on ε ∈ (0, 1].
Proof. Since uε satisfies the perturbation equation (3.1):

∂uε

∂t
= ετ(u) + uε × τ(uε),

a direct calculation shows

τ(uε) = 1

1 + ε2
(ε

∂uε

∂t
− uε × ∂uε

∂t
).

Thus, the proof of the first claim of the lemma is finished. And hence, there holds

∇�uε = 1

1 + ε2
(ε∇ ∂uε

∂t
− ∇uε × ∂uε

∂t
− uε × ∇ ∂uε

∂t
)

− |∇uε|2∇uε − 2
〈
∇2uε,∇uε

〉
uε.

Immediately it follows
∫

�

|∇�uε|2dx ≤ C

(1 + ε2)2

∫
�

(
(1 + ε2)|∇ ∂uε

∂t
|2 + |∇uε|2|∂uε

∂t
|2

)
dx

+ C
∫

�

(
|∇uε|6 + |∇2uε|2|∇uε|2

)
dx

≤ C

1 + ε2

(
‖∇ ∂uε

∂t
‖2L2 +

1

1 + ε2
I

)
+ C(‖uε‖6H2 + I I ).

Here,

I =
∫

�

|∇uε|2|∂uε

∂t
|2dx

≤C‖∇uε‖2L4‖∂uε

∂t
‖2L4 ≤ C(‖uε‖4H2 + ‖∂uε

∂t
‖4H1),
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and

I I =
∫

�

|∇2uε|2|∇uε|2dx
≤‖∇2uε‖2L3‖∇uε‖2L6 ≤ ‖∇2uε‖L2‖∇2uε‖L6‖∇uε‖2L6

≤C‖uε‖3H2(‖uε‖H2 + ‖∇�uε‖L2)

≤C(δ)(‖uε‖4H2 + ‖uε‖6H2) + δ‖∇�uε‖2L2 .

To get the above estimate of I I , we have used the interpolation inequality

‖∇2uε‖L3 ≤ ‖∇2uε‖
1
2
L2‖∇2uε‖

1
2
L6

and Lemma 2.1. Thus, in view of the estimates of I and I I , we finish the proof of the
estimate in the second assertion of the lemma. ��

Now, we are in the position to show the uniform H2-estimates of solution uε. By
choosing ∂uε

∂t as a test function to Formula (3.8), we obtain

∫
�

〈
∂2uε

∂t2
,
∂uε

∂t

〉
dx + (1 − ε2)

∫
�

〈
�(�uε + |∇uε|2uε),

∂uε

∂t

〉
dx

= ε

{∫
�

〈
2�(uε × �uε) +

∂

∂t
(|∇uε|2uε) − 2div(∇uε×̇∇2uε),

∂uε

∂t

〉
dx

}

+ ε

{∫
�

〈
uε × �(|∇uε|2uε) + |∇uε|2uε × �uε,

∂uε

∂t

〉
dx

}

+
∫

�

〈
�(|∇uε|2uε) − 2div2((∇uε⊗̇∇uε))uε − 2 〈�uε,∇uε〉 · ∇uε,

∂uε

∂t

〉
dx

−
∫

�

〈
2

〈
∇|∇uε|2,∇uε

〉
+ |∇uε|2�uε,

∂uε

∂t

〉
dx .

For the sake of convenience, we rewrite the above identity as the following

∫
�

〈
∂2uε

∂t2
,
∂uε

∂t

〉
dx + (1 − ε2)

∫
�

〈
�(�uε + |∇uε|2uε),

∂uε

∂t

〉
dx

= ε(I1 + I2 + I3 + I4 + I5) + (I I1 + I I2 + I I3 + I I4 + I I5). (3.17)

First of all, we estimate the left hand side of the above identity:

LHS =1

2

∂

∂t

∫
�

|∂uε

∂t
|2dx +

1 − ε2

2

∂

∂t

∫
�

|�uε|2dx

− (1 − ε2)

∫
�

〈
∇(|∇uε|2uε),∇ ∂uε

∂t

〉
dx .

Here we have used the compatibility boundary conditions in Lemma 3.5.
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For the last term in the above identity we have the following estimate:

(1 − ε2)

∣∣∣∣
∫

�

〈
∇(|∇uε|2uε),∇ ∂uε

∂t

〉
dx

∣∣∣∣
≤ C

∫
�

|∇uε|6 + |∇uε|2|∇2uε|2 + |∇ ∂uε

∂t
|2dx

≤ C(‖uε‖6H2 + ‖uε‖2H3‖uε‖2H2 + ‖∇ ∂uε

∂t
‖2L2)

≤ C(1 + ‖uε‖2H2 + ‖∂uε

∂t
‖2H1)

4,
(3.18)

where we have used the estimates in Lemma 3.6.
Next, we estimate the nine terms on the right hand side step by steps.

I1 =2
∫

�

〈
�(uε × �uε),

∂uε

∂t

〉
dx

= − 2
∫

�

〈
�(ε(�uε + |∇uε|2uε) − ∂uε

∂t
),

∂uε

∂t

〉
dx

= − 2ε
∫

�

〈
�uε + |∇uε|2uε,�

∂uε

∂t

〉
dx

− 2
∫

�

〈
∇ ∂uε

∂t
,∇ ∂uε

∂t

〉
dx

= − ε
∂

∂t

∫
�

|�uε|2dx − 2‖∇ ∂uε

∂t
‖2L2

+ 2ε
∫

�

〈
∇(|∇uε|2uε),∇ ∂uε

∂t

〉
dx

≤ − ε
∂

∂t

∫
�

|�uε|2dx − 2‖∇ ∂uε

∂t
‖2L2

+ Cε(1 + ‖uε‖2H2 + ‖∂uε

∂t
‖2H1)

4.
(3.19)

Here, we have used the compatibility conditions in Lemma 3.5 in the line 3 of the above
inequality (3.19), and applied Lemma 3.6 in the last line.

|I2| =
∣∣∣∣
∫

�

〈
∂

∂t
(|∇uε|2uε),

∂uε

∂t

〉
dx

∣∣∣∣ ≤
∫

�

|∇uε|2|∂uε

∂t
|2dx

≤C‖uε‖2H2‖∂uε

∂t
‖2H1 ≤ C(‖uε‖2H2 + ‖∂uε

∂t
‖2H1)

2.
(3.20)

Here we have used the fact
〈
uε,

∂uε

∂t

〉
= 0.

|I3| =
∣∣∣∣
∫

�

〈
div(∇uε×̇∇2uε),

∂uε

∂t

〉
dx

∣∣∣∣

=
∣∣∣∣∣∣
∫

�

3∑
j=1

〈
∂ j uε × ∂ j�uε,

∂uε

∂t

〉
dx

∣∣∣∣∣∣
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≤C‖∇uε‖L6‖∇�uε‖L2‖∂uε

∂t
‖L3

≤C(‖∇�uε‖2L2 + ‖uε‖2H2‖∂uε

∂t
‖2H1)

≤C(1 + ‖uε‖2H2 + ‖∂uε

∂t
‖2H1)

3. (3.21)

|I4| =
∣∣∣∣
∫

�

〈
uε × �(|∇uε|2uε),

∂uε

∂t

〉
dx

∣∣∣∣ ≤ C
∫

�

|∇2uε||∇uε|2|∂uε

∂t
|dx

≤C‖∇2uε‖L2‖∇uε‖2L6‖∂uε

∂t
‖L6 ≤ C(1 + ‖uε‖6H2 + ‖∂uε

∂t
‖2H1). (3.22)

For the term

|I5| =
∣∣∣∣
∫

�

〈
|∇uε|2uε × �uε,

∂uε

∂t

〉
dx

∣∣∣∣
and the term

|I I1| =
∣∣∣∣
∫

�

〈
�(|∇uε|2uε),

∂uε

∂t

〉
dx

∣∣∣∣ ,

we can derive the same estimates as that of term I4.
On the other hand, a simple calculation leads to

|I I2 + I I3 + I I4 + I I5| ≤ 2

∣∣∣∣
∫

�

〈
div2((∇uε⊗̇∇uε))uε,

∂uε

∂t

〉
dx

∣∣∣∣
+ 2

∣∣∣∣
∫

�

〈
〈�uε,∇uε〉 · ∇uε,

∂uε

∂t

〉
dx

∣∣∣∣
+ 2

∣∣∣∣
∫

�

〈
(∇|∇uε|2 · ∇uε),

∂uε

∂t

〉
dx

∣∣∣∣
+

∣∣∣∣
∫

�

〈
|∇uε|2�uε,

∂uε

∂t

〉
dx

∣∣∣∣
≤ C

∫
�

|∇uε|2|∇2uε||∂uε

∂t
|dx

≤ C(1 + ‖uε‖6H2 + ‖∂uε

∂t
‖2H1). (3.23)

Therefore, by combining inequalities (3.18)-(3.23) with equation (3.17), we get the
uniform H2-estimates of uε as follows:

1

2

∂

∂t

∫
�

|∂uε

∂t
|2dx +

1 + ε2

2

∂

∂t

∫
�

|�uε|2dx

≤ C(1 + ε)(1 + ‖uε‖2H2 + ‖∂uε

∂t
‖2H1)

4,
(3.24)

where the constant C is independent of ε (0 < ε < 1) and uε.
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3.2. Uniform H3-estimates. In this subsection, we show the uniform H3-estimates of
solution uε. By a similar argument with that in the above subsection, we choose −�∂uε

∂t
as a test function of equation (3.7)(or (3.8)). However, it seems that it is not easy to get

energy estimates directly, since the regularity of ∂2uε

∂t2
∈ L2(� × [0, T ]) and �2uε ∈

L2(�×[0, T ]) for all T < Tε established in Theorem 3.1 is not high enough, and hence
integration by parts does not make sense. To proceed, first of all, we enhance the local
regularity of solution such that ∂uε

∂t ∈ L2
loc((0, Tε), H3(�)) by using the L2-estimates

of parabolic equation, since ∂uε

∂t satisfies equation (3.7):

{
∂v
∂t − ε�v − uε × �v = f (uε,∇v, v),

v(x, 0) = ∂uε

∂t |t=0,
∂v
∂ν

|∂�×(0,Tε) = 0,
(3.25)

which is linear and uniformly parabolic equation when ε > 0. Here

f (uε,∇v, v) = v × �uε + 2ε 〈∇uε,∇v〉 uε + ε|∇uε|2v ∈ L2
loc([0, Tε), H

1(�)),

and

∂uε

∂t
|t=0 = ε(�u0 + |∇u0|2u0) + u0 × �u0.

Moreover, since uε ∈ L∞([0, T ], H3(�)) and ∂uε

∂t ∈ L2([0, T ], L2(�)) for all
T < Tε, then Lemma 2.3 implies

uε ∈ C0([0, T ], H2(�)).

Immediately it follows that uε ∈ C0(� × [0, T ]). Indeed, for any (x, t) and (x0, t0) we
have

|uε(x, t) − uε(x0, t0)|
≤ |uε(x, t) − uε(x0, t)| + |uε(x0, t) − uε(x0, t0)|
≤ sup

�

|∇uε|(·, t)|x − x0| + |uε(x0, t) − uε(x0, t0)|
≤ C‖uε‖L∞([0,T ],H3(�))|x − x0| + C‖uε(·, t) − uε(·, t0)‖H2(�). (3.26)

and hence it implies uε ∈ C0(� × [0, T ]). Hence, the L2-theory of parabolic equation
tells us that

∂2uε

∂t2
∈ L2

loc((0, Tε), H
1(�)),

which guarantees the integration by parts in the process of energy estimatesmakes sense.
For the fluency and shortness of this article, we give the above process of improving
regularity of ∂uε

∂t in “Appendix A”.

Now, we turn back to show the uniform H3-estimates of uε. To this end, we choose
−�∂uε

∂t as a test function of (3.7) and take a simple calculation to obtain
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1

2

(∫
�

|∇ ∂uε(T )

∂t
|2dx −

∫
�

|∇ ∂uε(0)

∂t
|2dx

)
+ ε

∫ T

0

∫
�

|�∂uε

∂t
|2dxdt

= −
∫ T

0

∫
�

〈
∂uε

∂t
× �uε,�

∂uε

∂t

〉
dxdt

−ε

∫ T

0

∫
�

〈
∂

∂t
(|∇uε|2uε),�

∂uε

∂t

〉
dxdt

= V +W, (3.27)

since ∂uε

∂t ∈ C0([0, T ], H1(�)) for T < Tε.

In order to get the desired estimates of ∂uε

∂t , we turn to estimating the terms V and
W .

|V | =
∣∣∣∣
∫ T

0

∫
�

〈
∂uε

∂t
× ∇�uε,∇ ∂uε

∂t

〉
dxdt

∣∣∣∣
≤

∣∣∣∣
∫ T

0

∫
�

〈
∂uε

∂t
× (∇uε × ∂uε

∂t
+ uε × ∇ ∂uε

∂t
),∇ ∂uε

∂t

〉
dxdt

∣∣∣∣
+

∣∣∣∣
∫ T

0

∫
�

〈
∂uε

∂t
× ∇(|∇uε|2uε),∇ ∂uε

∂t

〉
dxdt

∣∣∣∣ . (3.28)

Here we have used the fact:

�uε = 1

1 + ε2
(ε

∂uε

∂t
− uε × ∂uε

∂t
) − |∇uε|2uε.

Using again the Lagrangian formula, there holds

∂uε

∂t
× (uε × ∇ ∂uε

∂t
)

=
〈
∇ ∂uε

∂t
,
∂uε

∂t

〉
uε −

〈
∂uε

∂t
, uε

〉
∇ ∂uε

∂t

=
〈
∇ ∂uε

∂t
,
∂uε

∂t

〉
uε.

Noting |uε| = 1 implies

〈
∇ ∂uε

∂t
, uε

〉
= −

〈
∂uε

∂t
,∇uε

〉
,

we have that

〈
∂uε

∂t
× (uε × ∇ ∂uε

∂t
),∇ ∂uε

∂t

〉
=

〈
∇ ∂uε

∂t
,
∂uε

∂t

〉
·
〈
uε,∇ ∂uε

∂t

〉

= −
〈
∇ ∂uε

∂t
,
∂uε

∂t

〉
·
〈
∇uε,

∂uε

∂t

〉
.
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Then, it follows that there holds

|V | ≤ 2
∫ T

0

∫
�

|∂uε

∂t
|2|∇uε||∇ ∂uε

∂t
|dxdt

+ 2
∫ T

0

∫
�

(|∇uε|3 + |∇2uε||∇uε|)|∂uε

∂t
||∇ ∂uε

∂t
|dxdt

≤ C
∫ T

0
‖∂uε

∂t
‖2L6‖∇uε‖L6‖∇ ∂uε

∂t
‖L2dt

+ C
∫ T

0
‖∇uε‖3L∞‖∂uε

∂t
‖L2‖∇ ∂uε

∂t
‖L2dt

+ C
∫ T

0
‖∇uε‖L∞‖∇2uε‖L3‖∂uε

∂t
‖L6‖∇ ∂uε

∂t
‖L2dt

≤ C
∫ T

0
(‖uε‖2H2 + ‖∂uε

∂t
‖6H1)dt

+ C
∫ T

0
(‖uε‖3H3 + ‖uε‖2H3)‖∂uε

∂t
‖2H1dt

≤ C
∫ T

0
(1 + ‖uε‖2H2 + ‖∂uε

∂t
‖2H1)

6dt.
(3.29)

Here we have used the estimate in Lemma 3.6, and used the Sobolov embedding in-
equality

‖∇uε‖L∞ ≤ C‖uε‖H3 ≤ C(1 + ‖uε‖2H2 + ‖∂uε

∂t
‖2H1)

3/2.

Next, we give the estimates of W as follows.

|W | ≤ ε

∫ T

0

∫
�

| ∂

∂t
(|∇uε|2uε)||�∂uε

∂t
|dxdt

≤ Cε

∫ T

0

∫
�

|∂uε

∂t
|2|∇uε|4 + |∇uε|2|∇ ∂uε

∂t
|2dxdt

+
ε

2

∫ T

0

∫
�

|�∂uε

∂t
|2dxdt

≤ Cε

∫ T

0
(1 + ‖uε‖2H2 + ‖∂uε

∂t
‖2H1)

4dt +
ε

2

∫ T

0

∫
�

|�∂uε

∂t
|2dxdt.

(3.30)

Here we have used the fact:
∫

�

|∂uε

∂t
|2|∇uε|4dx ≤ ‖∂uε

∂t
‖2L6‖∇uε‖4L6 ,

and

‖∇uε‖L∞ ≤ C‖uε‖H3 ≤ C(1 + ‖uε‖2H2 + ‖∂uε

∂t
‖2H1)

3/2.
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Therefore, we concludes

1

2

∫
�

|∇ ∂uε

∂t
|2dx |t=T +

ε

2

∫ T

0

∫
�

|�∂uε

∂t
|2dxdt

≤ 1

2

∫
�

|∇ ∂uε

∂t
|2dx |t=0 + C

∫ T

0
(1 + ‖uε‖2H2 + ‖∂uε

∂t
‖2H1)

6dt.
(3.31)

By combining the estimates (3.6),(3.24) with (3.31), we can derive that there holds

((1 + ε2)‖uε‖2H2(T ) + ‖∂uε

∂t
‖2H1(T )) + ε

∫ T

0

∫
�

|�∂uε

∂t
|2dxdt

≤ ((1 + ε2)‖u0‖H2 + ‖∂uε

∂t
‖2H1 |t=0) + C

∫ T

0
(1 + ‖uε‖2H2 + ‖∂uε

∂t
‖2H1)

6dt
(3.32)

for all 0 < T < Tε.
By using theGronwall-type inequality in Lemma2.2, the desired estimates of approx-

imated solution uε are derived from (3.32), we formulated the estimates in the following
lemma.

Lemma 3.7. There exists a positive number T0 and a constant C(T0), which both depend
only on ‖u0‖H3 , such that for all T < min{T0, Tε}, the solution uε obtained in Theorem
(3.1) satisfies the following uniform estimate:

sup
0<t≤T

(‖uε‖2H2 + ‖∂uε

∂t
‖2H1) ≤ C(T0).

Proof. Let

y(t) = ((1 + ε2)‖uε‖2H2 + ‖∂uε

∂t
‖2H1)(t).

For any T < Tε, since uε ∈ L2([0, T ], H4(�)), ∂uε

∂t ∈ L2([0, T ], H2(�)) and ∂2uε

∂t2
∈

L2([0, T ], L2(�)), the embedding Lemma 2.4 implies

y(t) = ((1 + ε2)‖uε‖2H2 + ‖∂uε

∂t
‖2H1)(t) ∈ C0([0, Tε)),

and hence

∂uε

∂t
|t=0 = ε(�u0 + |∇u0|2u0) + u0 × �u0,

and

∇ ∂uε

∂t
|t=0 = ∇(ε�u0 + ε|∇u0|2u0 + u0 × �u0).

Thus, a direct calculation shows

‖∂uε

∂t
‖2H1 |t=0 ≤ C(1 + ε2)(1 + ‖u0‖6H3).

��
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Let y0 = C(1 + ‖u0‖6H3) and f (y) = C(1 + y)6. Then, the function y(t) satisfies the
following inequality

y(t) ≤ y0 +
∫ t

0
f (y(s))ds.

Then, the Gronwall-type inequality in Lemma 2.2 implies that there exists a positive
number T0 > 0 and a constant C(T0), which both depend only on y0, such that for all
T < min{T0, Tε} there holds

sup
0<t≤T

y(t) ≤ C(T0).

Thus, the proof is completed.

4. Regular Solution to the Schrödinger Flow

In this section, we prove the local existence of strong solutions to (1.2) in Theorem 1.1.
To this end, we need to give an uniform lower bound of existence times Tε and the
compactness of the approximation solution uε to (3.1). Consequently, we can claim that
the limit map u of sequence {uε} is a strong solution to (1.2).
Theorem 4.1. There exists a positive time T0 depending only on ‖u0‖H3(�) such that
the equation (1.2) admits a local regular solution on [0, T0], which satisfies

u ∈ L∞([0, T0], H3(�)) ∩ C0([0, T0], H2(�,S2)).

Proof. We divide the proof into three steps.
Step 1: The uniform positive lower bound of Tε.

We claim T0 < Tε, where T0 was obtained in Lemma 3.7. Suppose that T0 ≥ Tε,
then Lemma 3.7 and Lemma 3.6 tell us that there holds

sup
0<t<Tε

(‖uε‖2H3 + ‖∂uε

∂t
‖2H1) ≤ C(T0).

Since v = ∂uε

∂t satisfies the following equation
{

∂v
∂t − ε�v − uε × �v = f (uε,∇v, v),

v(x, 0) = ∂uε

∂t |t=0,
∂v
∂t |∂�×(0,Tε) = 0,

where

f (uε,∇v, v) = v × �uε + 2ε 〈∇uε,∇v〉 uε + ε|∇uε|2v,

and we can easily to verify that the homogeneous term f ∈ L2([0, Tε], L2(�)), it
follows from the L2-estimates in Theorem A.1 in “Appendix A” that

∂uε

∂t
∈ L2([δ, Tε], H2(�)),

and

∂2uε

∂t2
∈ L2([δ, Tε], L2(�))
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for any small 0 < δ < Tε. By equation (3.1) and then applying Theorem 3.1, we know
that there holds

sup
0<t<Tε

(‖uε‖2H3 + ‖∂uε

∂t
‖2H1)

+
∫ Tε

0
(‖uε‖2H4 + ‖∂uε

∂t
‖2H2 + ‖∂2uε

∂t2
‖2L2)dt < ∞.

Thus, it implies that the existence interval [0, Tε] can be extended, which is a contradic-
tion with the definition of Tε. Therefore, we have

T0 < Tε.

Step 2: The compactness of uε.
Lemma 3.7 tells us there exists a constant C(T0), which is independent of ε, such

that there holds true

sup
0<t≤T0

‖uε‖H3 + sup
0<t≤T0

‖∂uε

∂t
‖H1 ≤ C(T0).

Without loss of generality, we assume there exists a map in u ∈ L∞([0, T0], H3(�))

such that

uε ⇀ u weakly* in u ∈ L∞([0, T0], H3(�)),

∂uε

∂t
⇀

∂u

∂t
weakly* in L∞([0, T0], H1(�)),

∂uε

∂t
⇀

∂u

∂t
weakly in L2([0, T0], H1(�)).

Let X = H3(�), B = H2(�) and Y = L2, by Lemma 2.3 we have

uε → u strongly in C0([0, T0], H2(�)),

and hence

uε → u a.e. (x,t) ∈ � × [0, T0].
It follows immediately that |u| = 1 for a.e. (x, t) ∈ [0, T0] × �.
Step 3: The regular solution to (1.2).

Since uε is a strong solution to (3.1), there holds
∫ T0

0

∫
�

〈
∂uε

∂t
, φ

〉
dxdt − ε

∫ T0

0

∫
�

〈
�uε + |∇uε|2uε, φ

〉
dxdt

=
∫ T0

0

∫
�

〈uε × �uε, φ〉 dxdt,

for all φ ∈ C∞(�̄ × [0, T ]). By using the convergence results on uε in Step 2, it is easy
to show directly u is a strong solution to (1.2) by letting ε → 0.

To complete the proof, we need to check u satisfies the Neumann boundary condition,
that is ∂u

∂ν
|∂�×[0,T0] = 0. Since for any ξ ∈ C∞(�̄ × [0, T0]), there holds

∫ T0

0

∫
�

〈�uε, ξ 〉 dxdt = −
∫ T0

0

∫
�

〈∇uε,∇ξ 〉 dxdt.
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Letting n → ∞, we have

∫ T0

0

∫
�

〈�u, ξ 〉 dxdt = −
∫ T0

0

∫
�

〈∇u,∇ξ 〉 dxdt.

This means that there holds true

∂u

∂ν
|∂�×[0,T0] = 0.

��

5. The Uniqueness of Solutions to the Schrödinger Flow

In this section, we show the uniqueness of the solution u to (1.2)(or (B1)) in the space

S = {u |u ∈ L∞([0, T ], H3(�)) and
∂u

∂t
∈ L∞([0, T ], H1(�))}.

We will only give the sketches of the proof for the uniqueness in Theorem 1.1, since
the arguments go almost the same as that of the proof of uniqueness for the Schrödinger
flows from a general compact Riemannian manifold to a Kähler manifold in [44], and
need only tomodify some of their treatments tomatch theNeumann boundary conditions
such that integration by parts holds true. In their proof the following intrinsic energy:

Q1 =
∫

�

d2(u1, u2)dx

and

Q2 =
∫

�

|P∇2u2 − ∇1u1|2dx =
∫

�

|�|2dx

was adopted and the geometric energy method was used to achieve a Gronwall-type
inequality for Q1 + Q2, from which the uniqueness of solutions follows. For the sake of
simplicity and fluency, some notations about moving frame and parallel transportation
as well as some critical lemmas are given in “Appendix B”, for more details we refer to
[44]. Now, we turn to presenting the proof.

The proof of the uniqueness in Theorem 1.1. Let u1, u2 : � × [0, T ] → S
2 be two

solution to (1.2) in spaceS . An important fact is that the uniqueness is a local property.
Namely, once we know u1 = u2 on a small time interval [0, T ′], then we can prove
u1 = u2 on the whole interval [0, T ] by repeating the argument. Therefore, we only
need to prove the uniqueness in a small interval [0, T ′]. Our proof is divided into the
following three steps.

Step 1: Estimate of the distance d(u1, u2).
Since ul ∈ S with l = 1, 2, the embedding Lemma 2.3 implies ul ∈ C0([0, T ],

H2(�)), and hence ul ∈ C0(�̄ × [0, T ]). Therefore,
‖ul − u0‖C0(�̄)(t) ≤ C‖ul − u0‖H2(�)(t) → 0,

as t → 0.
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By using the fact S2 is of bounded geometry and taking t ≤ T ′ with T ′ small enough,
then one can see that there exists a constant C such that

d(ul , u0)(t) ≤ C‖ul − u0‖C0(�̄)(t) <
π

4
,

for 0 < t ≤ T ′ and l = 1, 2. This guarantees the parallel transportation between two
solutions u1 and u2 can be well-defined (to see Sect. B.2).

Step 2: Estimate of Q1.
Let d : S

2 × S
2 → R be the distance function on S

2, and ∇̃ = ∇S
2 ⊗ ∇S

2
be

the product connection on S
2 × S

2. Suppose {x1, x2, x3} is the coordinates of �, and
∇i = ∇ ∂

∂xi
is the bull-back connection on u∗

1TS
2 (or u∗

2TS
2). Then a direct calculation

shows

∂

∂t

∫
�

d2(u1, u2)dx

=
∫

�

〈
∇̃d2, (∇i (J∇i u1),∇i (J∇i u2))

〉
dx

=
∫

�

〈
∇̃d2(·, u2),∇i (J∇i u1)

〉
dx +

∫
�

〈
∇̃d2(u1, ·),∇i (J∇i u2)

〉
dx

=
∫

�

∂

∂xi

〈
∇̃d2(·, u2), J∇i u1

〉
dx −

∫
�

〈
∇i ∇̃d2(·, u2), J∇i u1

〉
dx

+
∫

�

∂

∂xi

〈
∇̃d2(u1, ·), J∇i u2

〉
dx −

∫
�

〈
∇i ∇̃d2(u1, ·), J∇i u2

〉
dx

= −
(∫

�

〈
∇i ∇̃d2(·, u2), J∇i u1

〉
dx +

∫
�

〈
∇i ∇̃d2(u1, ·), J∇i u2

〉
dx

)

= −
∫

�

〈
∇∇̃d2, (J∇u1, J∇u2)

〉
dx

= −
∫

�

∇̃2d2(X,Y )dx,
(5.1)

where X = (∇u1,∇u2) and Y = (J∇u1, J∇u2). Moreover, here we have used the
Stokes formula:∫

�

∂

∂xi

〈
∇̃d2(·, u2), J∇i u1

〉
dx =

∫
∂�

〈
∇̃d2(·, u2), J (∇i u1 · νi )

〉
ds = 0,

and ∫
�

∂

∂xi

〈
∇̃d2(u1, ·), J∇i u2

〉
dx =

∫
∂�

〈
∇̃d2(u1, ·), J (∇i u2 · νi )

〉
ds = 0,

since the Neumann boundary conditions are satisfied:
∑3

i=1 ∇i ul · νi = 0 for l = 1, 2,
where ν is the normal outer vector of ∂� and ds is the area element of ∂�.

Therefore, Lemma B.1 gives

1

2

∂

∂t
Q1 ≤ Q2 + C(‖u1‖2H3(�)

+ ‖u2‖2H3(�)
)Q1.
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Step 3: Estimate of Q2.
Let {eα}2α=1 be a local frame of the pull-back bundle u∗

1TS
2 over � × [0, T ], such

that the complex structure J in this frame is reduced to J0 = √−1. Denote the parallel
transportation by P , let ∇l = u∗

l ∇S
2
and

� = P∇2u2 − ∇1u1 = φ2 − φ1

be defined as in “Appendix B”. Then, a direct calculation shows

1

2

∂

∂t

∫
�

|P∇2u2 − ∇1u1|2dx = 1

2

∂

∂t

∫
�

|�|2dx

=
∫

�

〈
�,∇1,t�

〉
dx =

∫
�

〈
�, (∇1,t − ∇2,t )φ2

〉
dx

−
∫

�

〈
�, (∇1∇1,i − ∇2∇2,i )J0φ2,i

〉
dx +

∫
�

〈
�,∇1(J0∇1,i�i )

〉
dx

= I + I I + I I I. (5.2)

Next, we estimate the above three terms step by steps.

|I | ≤Q2 + C
∫

�

|(∇1,t − ∇2,t )φ2|2dx

≤Q2 + C‖∇2u2‖2L∞(�)

∫
�

d2(u1, u2)(|∇t u2|2 + |∇t u1|2)dx

≤Q2 + C‖u2‖2H3(�)
‖d(u1, u2)‖2L4(‖∂u1

∂t
‖2L4 + ‖∂u2

∂t
‖2L4)

≤Q2 + C‖u2‖2H3(�)
(‖∂u1

∂t
‖2H1 + ‖∂u2

∂t
‖2H1)‖d(u1, u2)‖2H1

≤C{‖u2‖2H3(�)
(‖∂u1

∂t
‖2H1 + ‖∂u2

∂t
‖2H1) + 1}(Q1 + Q2).

Here, in the second line and the last line of the above inequality, we have usedLemmaB.2
and the fact

|∇d(u1, u2)| ≤ |�| = |P∇2u2 − ∇1u1|
respectively. By taking an analogous argument to that for term I and using Lemma B.2,
we have

|I I | ≤ CC1(‖u1‖4H3 + ‖u2‖4H3 + 1)(Q1 + Q2),

where C1 comes from Lemma B.2.
For the term I I I , a simple calculation shows

I I I =
∫

�

div 〈�, J0∇1 · �〉 dx −
∫

�

〈∇1 · �, J0∇1 · �〉 dx = 0.

Here we denote ∇1 · � = ∇1,i�i and have used the Stokes formula:
∫

�

div 〈�, J0∇1 · �〉 dx
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=
∫

∂�

〈P∇2,i u2 · νi − ∇1u1,i · νi , J0∇1 · �
〉
ds = 0

since we have the Neumann boundary condition

3∑
i=1

∇i ul · νi = 0, l = 1, 2,

and ∇ · � ∈ W 1,2(�).
Therefore, by combining the estimates in Step 2 and Step 3, we have that for all

0 < t ≤ T ′ there holds true
∂

∂t
(Q1 + Q2) ≤ C̃(Q1 + Q2),

which implies the uniqueness of solutions. Thus, the proof is completed. ��
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Appendix A Locally Regular Estimates of uε

In this section, we establish the regular estimates of the solution v : � × [0, T ] → R
3

to the following uniform parabolic equation:{
∂v
∂t − ε�v − u × �v = f (x, t), (x, t) ∈ � × [0, T ],
v(x, 0) = v0 : � → R

3, ∂v
∂ν

|∂�×[0,T ] = 0.
(A1)

where

u ∈ L∞([0, T ], H3(�)) ∩ C0(� × [0, T ]) (A2)

and

f (x, t) ∈ L2([0, T ], H1(�)). (A3)

Our main result on locally regular estimates of solution v to the above equation (A1)
is as follows.
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Theorem A.1. Let v ∈ W 2,1
2 (�×[0, T ]) is a strong solution to (A1) satisfying conditions

(A2) and (A3). Then v ∈ L∞
loc((0, T ], H2(�))∩L2

loc((0, T ], H3(�)). Moreover, for any
δ > 0, there exists a positive constant C(δ) depending on ‖u‖L∞([0,T ],H3(�)) such that
there holds

‖v‖L2([δ,T ],H2(�)) + ‖∂v

∂t
‖L2([δ,T ],L2(�))

≤ C(δ)
(‖v‖L2([0,T ]×�) + ‖ f ‖L2(�×[0,T ])

)
and

‖v‖L2([δ,T ],H3(�)) + ‖∂v

∂t
‖L2([δ,T ],H1(�))

≤ C(δ)
(‖v‖L2([0,T ],H1(�)) + ‖ f ‖L2([0,T ],H1(�))

)
.

Proof. Let η(t) be a smooth cut-off function such that supp η ⊂ (0, T ] and η ≡ 1 on
[δ, T ] for any δ > 0. Then ηv is a strong solution of the following equation

{
∂ω
∂t − ε�ω − u × �ω = f̃ , (x,t) ∈ � × [0, T ],
∂ω
∂ν

|∂�×[0,T ] = 0, ω(x, 0) = 0, x ∈ �.
(A4)

Here

f̃ = η f +
∂η

∂t
v,

it is easy to see that the assumptions in Theorem A.1 imply

f̃ ∈ L2([0, T ], H1(�)).

By the Galerkin approximation method, we claim that there exists a solution w ∈
L∞([0, T ], H2(�)) ∩ L2([0, T ], H3(�)) to the above equation (A4). Namely, we con-
sider the following Galerkin approximation equation to (A4)

{
∂ωn

∂t − ε�ωn − Pn(u × �ωn) = Pn( f̃ ), (x,t) ∈ � × [0, T ],
ωn(x, 0) = 0, x ∈ �,

(A5)

where the Galerkin projection Pn is defined in Sect. 2. By the assumptions satisfied by
u and f̃ , one can show there exists a unique solution wn(x, t) = ∑n

i=1 gi (t) fi (x) to
(A5) on � × [0, T ] (cf. [9]).

Then by taking wn , �wn and �2wn as test functions to (A5), a simple calculation
shows

∂

∂t

∫
�

|ωn|2dx + ε

∫
�

|∇ωn|2dx

≤ C(ε)‖u‖L∞([0,T ],H3)

∫
�

|ωn|2dx + C(ε)

∫
�

| f̃ |2dx,
∂

∂t

∫
�

|∇ωn|2dx + ε

∫
�

|�ωn|2dx ≤ C(ε)

∫
�

| f̃ |2dx,
∂

∂t

∫
�

|�ωn|2dx + ε

∫
�

|∇�ωn|2dx
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≤ C(ε)‖u‖L∞([0,T ],H3)

∫
�

|�ωn|2dx + C(ε)

∫
�

|∇ f̃ |2dx .

The Gronwall inequality gives the following inequalities

sup
0≤t≤T

‖wn‖2H1 + ε

∫ T

0

∫
�

|�ωn|2dxdt

≤ C(ε, ‖u‖L∞([0,T ],H3), T )

∫ T

0

∫
�

| f̃ |2dxdt,

and

sup
0≤t≤T

∫
�

|�ωn|2dx + ε

∫ T

0

∫
�

|∇�ωn|2dxdt

≤ C(ε, ‖u‖L∞([0,T ],H3), T )

∫ T

0

∫
�

|∇ f̃ |2dxdt.

By using Equation (A5) again and then applying Lemma 2.1, one obtains

sup
0≤t≤T

‖wn‖2H1 + ε

(∫ T

0

∫
�

|∂wn

∂t
|2dxdt +

∫ T

0
‖wn‖2H2dt

)

≤ C(ε, ‖u‖L∞([0,T ],H3), T )

∫ T

0

∫
�

| f̃ |2dxdt,

sup
0≤t≤T

‖wn‖2H2 + ε

(∫ T

0

∫
�

|∇ ∂wn

∂t
|2dxdt +

∫ T

0
‖wn‖2H3dt

)

≤ C(ε, ‖u‖L∞([0,T ],H3), T )

∫ T

0

∫
�

| f̃ |2 + |∇ f̃ |2dxdt.

Therefore by letting n → ∞, wn converges to a solution w of (A4) as we claimed,
which satisfies

‖ω‖L∞([0,T ],H1(�)) + ‖ω‖L2([0,T ],H2(�)) + ‖∂ω

∂t
‖L2([0,T ],L2(�))

≤ C(ε)‖ f̃ ‖L2([0,T ]×�),

‖ω‖L∞([0,T ],H2(�)) + ‖ω‖L2([0,T ],H3(�)) + ‖∂ω

∂t
‖L2([0,T ],H1(�))

≤ C(ε)‖ f̃ ‖L2([0,T ],H1(�)).

Then the uniqueness of strong solutions to (A4) implies ηv = ω. Therefore the desired
result is proved. ��

Now, we apply the above Theorem A.1 to show the local estimates of solution ∂uε

∂t
to (3.7) which can be summarized as the following theorem.
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Theorem A.2. The solution uε to (3.1) obtained in Theorem 3.1 satisfies

∂uε

∂t
∈ L2

loc((0, Tε), H
3(�))

and

∂2uε

∂t2
∈ L2

loc((0, Tε), H
1(�)).

Proof. Since ∂uε

∂t satisfies the following equation:{
∂v
∂t − ε�v − uε × �v = f (uε,∇v, v),

v(x, 0) = ∂uε

∂t |t=0,
∂v
∂t |∂�×(0,Tε) = 0,

(A6)

where

f (uε,∇v, v) = v × �uε + 2ε 〈∇uε,∇v〉 uε + ε|∇uε|2v,

then, by the above TheoremA.1 we need only to check that uε and f (uε,∇v, v) satisfies
the conditions (A2) and (A3) respectively.

Since uε ∈ L∞([0, T ], H3(�)) and ∂uε

∂t ∈ L2([0, T ], L2(�)) for all T < Tε, then
(2) of Lemma 2.3 implies

uε ∈ C0([0, T ], H2(�)).

Indeed, for any (x, t) and (x0, t0) we have

|uε(x, t) − uε(x0, t0)|
≤ |uε(x, t) − uε(x0, t)| + |uε(x0, t) − uε(x0, t0)|
≤ sup

�

|∇uε|(·, t)|x − x0| + |uε(x0, t) − uε(x0, t0)|
≤ C‖uε‖L∞([0,T ],H3(�))|x − x0| + C‖uε(·, t) − uε(·, t0)‖H2(�). (A7)

This implies uε ∈ C0(� × [0, T ]).
Next, we want to show f (uε,∇v, v) ∈ L2([0, T ], H1(�)). A simple calculations

shows∫ T

0

∫
�

| f |2dxdt ≤ C(1 + ε)(‖uε‖4L∞([0,T ],H3)
+ 1)‖∂uε

∂t
‖2L2([0,T ],H1)

≤ C(T ),

and

∇ f =∇ ∂uε

∂t
× �uε +

∂uε

∂t
× ∇�uε

+ ∇2 ∂uε

∂t
#∇uε#uε + ∇ ∂uε

∂t
#∇2uε#uε

+ ∇ ∂uε

∂t
#∇uε#∇uε +

∂uε

∂t
#∇2uε#∇uε,

where “#” denotes the linear contraction. Thus, we have∫ T

0

∫
�

|∇ f |2dxdt ≤ C(‖uε‖4L∞([0,T ],H3)
+ 1)‖∂uε

∂t
‖L2([0,T ],H2) ≤ C(T ).

Here, we have used the estimate (3.2). Therefore, from Theorem A.1 we can obtain the
desired results. ��
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Appendix B The Schrödinger Flow in Moving Frame and Parallel Transportation

B.1 The Schrödinger flow in moving frame. Let � be a smooth bounded domain in R3.
Suppose that u : � × [0, T ] → S

2 is a solution to the Schrödinger flow

⎧⎪⎨
⎪⎩

∂t u = J (u)τ (u), (x,t) ∈ � × R
+,

∂u
∂ν

= 0, (x,t) ∈ ∂� × R
+,

u(x, 0) = u0 : � → S
2,

(B1)

where J (u) = u×. We are going to rewrite the above equation in a chosen gauge of the
pull-back bundle u∗TS2 over � × [0, T ].

Let ∇S
2
be the connection on S

2 and ∇ = u∗∇S
2
be the pull-back connection on

u∗TS2. Let {x1, x2, x3, t} be the canonical coordinates on � × [0, T ], denote ∇t = ∇ ∂
∂t

and ∇i = ∇ ∂
∂x1

for i = 1, 2, 3. Recall that the tension field τ(u) = tr∇2u = ∇i∇i u, we

can write the equation (B1) in the form

∇t u = J (u)∇i∇i u = ∇i (J (u)∇i u).

Furthermore, let {eα}2α=1 be a local frame of the pull-back bundle u∗TS2 over � ×
[0, T ], such that the complex structure J in this frame is reduced to J0 = √−1. If we
denote φ := ∇u = uα

i eα ⊗ dxi , where i = 1, 2, 3, then

∇t u = J0∇iφi and ∇tφ = ∇(J0∇iφi ),

The Neumann condition on boundary in (B1) is equivalent to

3∑
i=1

φi · νi |∂�×[0,T ] = 0,

where ν = (ν1, ν2, ν3) is the outer normal vector of ∂�.

B.2 Parallel transportation and some lemmas. Let B ⊂ S
2 be an open geodesic ball with

radius < π
2 . Then for any y1, y2 ∈ B, there exists a unique minimizing geodesic γ (s) :

[0, 1] → S
2 connecting y1 and y2, and let P : Ty2S2 → Ty1S

2 be the linear map given
by parallel transport along γ . Let {e1(s), e2(s)} be the frame gotten by parallel transport
along γ , set eα(y1) = eα(0) and eα(y2) = eα(1). Then, for any X = Xα(y2)eα(1) ∈
Ty2S

2, the above linear map P has the following formula

PX = Xα(y2)eα(0).

Let d : S2 × S
2 → R be the distance function on S

2, and ∇̃ = ∇S
2 ⊗ ∇S

2
be the

product connection on S2×S
2.We have the following estimates for gradient andHessian

of the distance function, whose proof can be found in [12,43,44].

Lemma B.1. Suppose that X = (X1, X2) and Y = (Y1,Y2) are two vectors in Ty1S
2 ×

Ty2S
2 where d(y1, y2) < π

2 . Then, there hold true

1. 1
2 ∇̃d2(X) = 〈

γ ′(0),PX2 − X1
〉
,
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2. 1
2 |∇̃2d2(X,Y )| ≤ |PX2 − X1||PY2 − Y1| + Cd2(y1, y2)(|X1| + |X2|)(|Y1| + |Y2|).
On the other hand, let ul : � × [0, T ] → S

2, l = 1, 2, with

sup
�×[0,T ]

d(u1(x, t), u2(x, t)) <
π

2

and denote ∇l = u∗
l ∇S

2
. Then, for any (x, t) ∈ � × [0, T ] there exists a unique

minimizing geodesic γ(x,t)(s) : [0, 1] → S
2 connecting u1(x, t) and u2(x, t). More

precisely, we define a map U : � × [0, T ] × [0, 1] → S
2 such that U (x, t, s) =

γ(x,t)(s), then u∗
l TS

2 = U∗TS2|s=l−1 and ∇l = U∗∇S
2 |s=l−1. Therefore, we can

define a global bundle isomorphism P : u∗
2TS

2 → u∗
1TS

2 by the parallel transportation
along each geodesic. And hence, P can be extended naturally to a bundle isomorphism
from u∗

2TS
2 ⊗ T ∗� to u∗

1TS
2 ⊗ T ∗�.

Let {e1, e2} be a fixed local frame of bundle u∗
1TS

2 such that J (u1) = √−1. For
each point (x, t), we transport parallel this frame to get a moving frame {e1(s), e2(s)}
along the geodesic γ(x,t)(s), and set e1,α = eα(0) and e2,α = eα(1) for α = 1, 2. Under
this local frame {e1(1), e2(1)} of u∗

2TS
2, we still have

J (u2) = √−1,

since ∇ ∂γ
∂s
J (γ ) = ∂

∂s J ◦ γ = 0 and J ◦ γ (0, x, t) = √−1.

On the other hand, if we denote ∇lul = uα
l,i el,α ⊗ dxi and set φl = uα

l,i e1,α ⊗ dxi ,
then

P∇2u2 = Puα
2,i e2,α ⊗ dxi = uα

2,i e1,α ⊗ dxi = φ2,

and hence

� := P∇2u2 − ∇1u1 = (uα
2,i − uα

1,i )e1,α ⊗ dxi = φ2 − φ1.

Denote the difference of the two connections by

B = ∇2 − ∇1 = (
〈∇2eα(1), eβ(1)

〉 − 〈∇1eα(0), eβ(0)
〉
)eβ(0),

which is a tensor. The following estimates for the difference of connections is essential
to control the energy

∫
�

|�|2dx in the proof of the uniqueness, whose proof can be found
in [44].

Lemma B.2. The exists constant C independing on u1 and u2, such that the following
estimates hold true.

1. |Bt | = |∇2,t − ∇1,t | ≤ C(|∇t u1| + |∇t u2|)d(u1, u2),
2. |Bi | = |∇2,i − ∇1,i | ≤ C(|∇i u1| + |∇i u2|)d(u1, u2),

where i = 1, 2, 3. Moreover, for any i, k = 1, 2, 3, we have

|(∇2,k∇2,i − ∇1,k∇1,i )J0φ2,i | ≤ C1(|�| + (|∇2
1u1| + |∇2

2u2| + 1)d(u1, u2)),

where C1 depends only on ‖u1‖H3(�) and ‖u2‖H3(�).
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