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Abstract: We present a family of new solutions to the tetrahedron equation of the form
RLLL = LLLR, where L operator may be regarded as a quantized six-vertex model
whose Boltzmann weights are specific representations of the g-oscillator or g-Weyl
algebras. When the three L’s are associated with the g-oscillator algebra, R coincides
with the known intertwiner of the quantized coordinate ring A, (s/3). On the other hand,
L’s based on the g-Weyl algebra lead to new R’s whose elements are either factorized
or expressed as a terminating g-hypergeometric type series.

1. Introduction

Tetrahedron equation [24] is a key to integrability for lattice models in statistical me-
chanics in three dimensions. Among its several versions and formulations, let us focus
on the so-called RLLL relation:

Ras6L236L135L124 = L124L135L236 R456. (D

Indices here specify the tensor components on which the associated operators act non-
trivially. When the spaces 4, 5, 6 are evaluated away appropriately, it reduces to the
Yang-Baxter equation Ly3L13L12 = LiaL13L>3 [1]. Thus (1) may be viewed as a
quantization of the Yang—Baxter equation along the direction of the auxiliary spaces 4,
5 and 6. It has appeared in several guises and studied from various point of view. See
for example [3,12,18,19,21,23] and the references therein. A survey from a quantum
group theoretical perspective is available in [14].

In this paper we take the spaces 1, 2, 3 as V = C? and consider the three kinds of L
operators:

L? € End(V ® V) @ mz(W,), (2)
L* € End(V ® V) @ mx(W,), 3)
L? € End(V ® V) ® 710(0,). “4)
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They all have the six-vertex model structure [1], i.e., weight conservation property, with
respect to the component V @ V. The last component is taken from specific representa-
tions wy, w7z of the g-Weyl algebra W, (6) on F' = ®,,¢7C|m) or o of the g-oscillator
algebra O, (10) on Fy = @,ez.,C|m). In short, these L operators may be viewed as
quantized six-vertex models whose Boltzmann weights are End(F') or End(F)-valued.
They naturally lead to the generalizations of (1) to

C /B A A 7B ,C
Ras6 Ly3gL135L 154 = Lio4L35L536R4s6, 4)

where A, B and C can be any one of Z, X and O. Let us temporarily call it the RLLL
relation of type ABC.

The main result of this paper is the explicit solution R for types ZZZ, OZZ, ZZO,
70Z, 00Z, 700, 0Z0, 000, XXZ, ZXX and XZX. They turn out to be unique up
to normalization in each sector specified by a parity condition in an appropriate sense.
Elements of R are either factorized or expressed as a terminating g-hypergeometric
type series. See Table 1 in Sect.6 for a summary. They are new except for type OOO,
where the RLLL relation [3] is equivalent (cf. Sect.5.2 and [14, Lem 3.22]) with the
intertwining relation of the quantized coordinate ring A, (s/3), and the R coincides with
the intertwiner obtained in [9]. We will show a similar link to A, (s/3) also for type ZZZ
in Proposition 16.

The representations 7z and wx of the g-Weyl algebra XZ = gZ X are natural ones
in which Z and X become diagonal, respectively. See (8) and (9). They are g-analogue
of the coordinate and the momentum representations of the canonical commutation
relation, which are formally interchanged via a g-difference analogue of the Fourier
transformation. The representation ¢ is a restriction of the special case of 7y as ex-
plained around (12). One of our motivation is to investigate systematically how these L
operators, including their mixtures, lead to a variety of solutions R for the associated
RLLL relation. The new R’s obtained in this paper will be important inputs to many
interesting future problems which will be discussed in the last section.

The layout of the paper is as follows. In Sect. 2, the L operators L?, LX associated
with the g-Weyl algebra and L© for the g-oscillator algebra are introduced. L is a
restriction of LX, and appeared in the earlier works [3,5,17,18,23]. The RL L L relation
is formulated. In Sects. 3 and 4, the solutions R are presented for the choices L = LZ, 19
and L = L%, L%, respectively. Some results in the former case can be reproduced as
a limit of the latter. In Sect.5, a connection to the representation theory of A (sl3) is
explained. A new result is Proposition 16. Section 6 contains a summary and discussion
on the tetrahedron equation of the form RRRR = RRRR. Conjecture 17 is promising.
Appendix A provides the list of explicit forms of the RLL L relation for type ZZZ.

2. Quantized Six-Vertex Models

We assume that ¢ is generic throughout the paper.

2.1. q-Weyl algebra W, and q-oscillator algebra O,. Let W, be the g-Weyl algebra,
which is an associative algebra with generators X!, Z*! obeying the relation

XZ =qZX (6)
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and those following from the obvious ones XX ! = X~ 'Xx = zz7 ' = z71z = 1.
Introduce the infinite dimensional vector spaces!:

F = @Qm), F, = @ Clm). (7
meZ meZs=o

The algebra W, has irreducible representations 7z (resp. wx) on F' where Z (resp. X)
is diagonal:

w7z Xlm)y=|m—1), X 'm)=|m+1), Zlm)=q"|m), Z 'm)=q "|m),
(8)
wx s X|m) = q™m), X" 'm)=gq"m), Zim)=1|m+1), Z ' m)=|m—1).
9)

They are g-analogue of the “coordinate” and the “momentum” representations of the
canonical commutation relation.

Let O, be the g-oscillator algebra, which is an associative algebra with generators
a*, a”, k obeying the relation

ka* =ga'k, ka  =¢ 'ak, a"at=1-—¢’k%, ata =1-Kk> (10)
There is an embedding ¢ : O, < W, given by
ik X, at> Z, oa e Z7N (1 - XD, (11)
The composition Oy < Wy BN End(F) yields the representation:
kim) =¢"|m), a*lm)=|m+1), a"|lm)=(1—g*")|m—1). 12)

Due to a™ |0) = 0, the subspace F. C F becomes invariant and irreducible. We let o :
O, — End(F}) denote the resulting irreducible representation obtained by restricting
(12) tom > 0.

2.2. 3D L operator. Let V. = Cvyg @ Cv; be the two dimensional vector space. We
consider g-Weyl algebra-valued L operator

L=Lrsiw= Y Ei®E;®LYecEndVRV)®W,, (13)

a,b,i, j=0,1
L =Ounlessa+b =i+, (14)
LY =r, Ll =s, LI)=rwX, L} =—qrX, L)) =2,
L% =27V rs — Pwx?). (15)

Here r, s, t, w are parameters whose dependence has been suppressed in the notation
E?j}’. They are assumed to be generic throughout. The symbol E;; denotes the matrix
unit on V acting on the basis as E;;jv;y = 8j¢v;. The L operator £ may be viewed as a
quantized six-vertex model where the Boltzmann weights are WV, -valued. See Fig. 1 for
a graphical representation.

1 The actual coefficient field will contain many parameters introduced subsequently including g.
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b 0 1 0 1 0 1
itea R B e A = =N I B B Y

; 0 1 0 1 1 0

fo’ r s twX —qtX 7z Z7Yrs —t2wX?)

Fig. 1. £ = Ly 5 1w as a Wy-valued six-vertex model. Assigning another perpendicular arrow corresponding
to the Wq -modules leads to a unit of the three dimensional (3D) lattice. In this context, L will also be called
the 3D L operator

b 0 1 0 1 0 1
e e e e B I = N O S
7 0 1 0 1 1
Eff’ 1 1 uk —qu 'k ar a”
Fig. 2. L = Ll |12 s an (’)q -valued six-vertex model. The last two relations in (10) is a quantization

of the free Fermion condition [1, Fig. 10.1, eq.(10.16.4)| 7 =g =01

Note that £ does not contain X !, which will be a key in Remark 1 below. Although
t can be absorbed into the normalization of X, we keep it for convenience. It is easy to
see

Lrsiw) ™ =)Lyt (16)

For the special choice of the parameters (7, s, t, w) = (1, 1, M’l, Mz), L only contains

the combinations appearing in the RHS of (11) which can be pulled back to the g-
oscillator algebra. Therefore we regard it as O, -valued, i.e.,
Ly 1,2 €End(VRV)®O0,. 17

Its elements are given by

LO=1, Ll =1, LIS =puk, LY = —qu'k, £ =at, L%h=a. (8)

See Fig.2.
Now we introduce the three types of (represented) L operators:
L“=Lf,,=(0®1®72)(Lryw) € End(V®V ® F), (19)
LX=L) ,,=0®1®rx)(Lrsu) €End(V @V ®F), (20)
LO=L7 =(1®1®7m0) L)) ,-1,2) €End(VQV ® F,). 1)

From (16) and (17) we have

(L) =)7L, (L) =)7L

r,s,t,w rtw,w r,s,t,w s,rtw,wl?
LH'= ij,l. (22)
Remark 1. The operator L% in (19) keeps the subspace V ® V ® EBmSn Clm) C F

invariant for any n € Z.
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Zl!ﬂﬂ Ro : 7 = Zaﬂﬁ ! I3 a oIt
k Tk

Fig. 3. A pictorial representation of the quantized Yang—Baxter equation (24)

2.3. RLLL relation. Quantized six-vertex model satisfies the quantized Yang—Baxter
equation. It is a version of the tetrahedron equation having the form of the Yang—Baxter
equation up to conjugation:

Ras6L236L135L 124 = L124L135L236 Ra56. (23)

We also call it RLLL relation. The indices denote the tensor components on which the
respective operators act non-trivially. The operator L will be taken as LZ, LX or LY in
(19)—(21). The conjugation operator R, which we call 3D R in this paper, will be the
main object of study in what follows. In terms of the components of L, (23) reads as

RY («forlock)=> «heorse )R (24)
o.B.y o.B.y

for arbitrary a, b, c, i, j, k € {0, 1}. See Fig.3.

From the conservation condition (14), the Eq. (24) becomes 0 = O unlessa+b +c =
i + j + k. There are 20 choices of (a, b, ¢, i, j, k) € {0, 1}6 satisfying it. Among them,
the cases (0,0, 0,0,0,0) and (1, 1, 1, 1, 1, 1) yield the trivial relation R(1 Q® 1 ® 1) =
(1®1® 1) R for any choice of L = L%, LX, L9 . Thus there are 18 non-trivial equations
on R. By setting?

R(i)® 1)) ® k) = Y RV la) ® |b) ® |c), (25)

a,b,c

they are translated into linear recursion relations on the matrix elements R k We say

that R is locally finite if the sum (25) consists of finitely many terms, i.e., Rl” ]h k‘ = 0 for

all but finitely many (a, b, c) for any given (i, j, k).

3. Solutions of RLLL Relation for L = LZ and L©

In this section we treat the cases in which L4, L135 and L3¢ are chosen as LZor LO
independently. It turns out that they always admit a unique R up to normalization in a
sector specified by appropriate parity conditions. Their explicit forms will be presented
case by case. We write the characteristic function as 6(true) = 1, f(false) = 0, §;, =

2 a,b,c,i, J, khereare labels of the basis of F or F; and have different meaning from those in (24) labeling
the basis of V.
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0(a = b) and use the following notation:

(23 9o 0 (n> (45 @n
'; m = —’ ; OO = 1 - 4 9 = —’
@) (2™ @)oo @) g( @) m)y (4 @m(q: Dn—m
(26)
a, fB (@ @)n(B: @n
g,z =y — 2 A e 27
2¢1( 14 1 Z) Z(V;q)n(q;q)nz @7

n>0

The above convention for (z; q), valid for any m € Z is standard and essential in
the working below. In particular 1/(g; g), = 0 for a € Z o, and we will freely use
@ @m = 1/(2q": ¢)—m and (2: O /(22 @)n = (2q": @)m—n, etc. The g-binomial ()
is zero unless 0 < m < n. The g-hypergeometric series will always appear in the
terminating situation, i.e., @ or 8 € qZSO.

3.1. ZZZ type. We consider the RLLL relation

RasoL336L{3sL 1oy = LTa4Li35L 536 Raso, (28)
where LIZM,LIZ%,LZZ36 are given by (19) with (r,s,t,w) = (r1,s1,1, wy),

(ra, $2, 2, w2), (r3, s3, t3, w3). In this case, R € End(F ® F ® F) and the sum (25)
extends over a, b, ¢ € Z. The equality (28) holdsinEnd(VQ VR VR FQRQ F ® F).
The 18 equations (24) corresponding to (28) have been listed in Appendix A. As
an illustration consider the cases (a, b, ¢, i, j, k) = (0,0,1,0,0, 1), (1,0,0, 1,0, 0),
(1,0,0,0,0,1),(1,1,0,0,1,1),(1,0,1,0,1,1) and (1, 1,0, 1, 0, 1):

RI®X®X)=(1I®X®X)R, RX®X®1)=(X®X® DR, (29)
—rnRAI®ZID =@ X®ZOX -—nZ®1® Z)R, (30)
R(—gntzunX ®@Z R X +5ZR®1®7Z) =s5155(1® Z® 1R, @31
HRX®Z®Z (s —3usX?) +51Z® 1@ X) = s30(Z @ X ® R, (32)

R(BusZ ' (risi— w1 XH @ Z @ X+sa:tiwi X @ 1 @ Z)=s1bwo(1® X @ Z)R. (33)

Taking their matrix elements for the transition |i) ® | j) ® k) — |a) ® |b) ® |c), we
get the recursion relations for elements of R:

R e = R RS = R (34)
(@ ry — g/ rir) REV = g nw R (35)
(™52 = g s1s3) RV = g s REG S (36)
@ rassn RS = a7 P ws RIS 5+ q B RV = ¢ sn R
(37
qu1S1t3w3Riay’;?}:;l — qj+2t12t3w1w3R?;bz”cj’k7]
+ qi+kszt1 wi R?;bl”cj’k = qc+islt2w2Rz’leZ]’c. (38)

Each recursion relation is actually a collection of infinitely many linear equations on
a,b,c,

infinitely many Ri,/,k s depending on the choice of (a, b, ¢, i, j, k) € 7ZO.
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Given two integers d and d’, we write the pair (d mod 2, d’ mod 2) € Z; x Z, simply
as (d» d/)modZ-

Proposition 2. (i) Any recursion relation consists of only those R“ b i S having the same

parity pair (dy, d2)mod 2, Wheredy = a+c— jandd, = b—i — k. (11) Each subsystem of
recursion relations corresponding to a given (dy, d3)mod 2 allows a solution of dimension
at most one.

Proof. Claim (i) can be checked directly. Let us prove Claim (ii). First, we reduce b, ¢
and k to 0 by using (34) and (36). The result reads

Rbe — gleri=pe—h <t1t3W3>_C+k 1 RA—b+¢.0.0 (39)
i,j.k $ (qbflfk %; q2)7c+k i—k—b+2c,j—b,0
Applying this to (37) and (38) with b = ¢ = k = 0 we get
; 0.0 i i 0,0
g/ rsfwsRNY o+ g7 s1g™ s —s1s3>R,+1 o =q"nnwsRIT o (40)
; -1,
42S3t12w1Ria;()1’f)j,0 +r1(g"™ sy — S183)Rl+1 0= =g wr R 001 0 41)

aOO

i1 o here leads to the recursion relation

Eliminating R;

_ a—i+j—2rjw3
Ra,O,O i nhwy 1 q siw2 pa—1,0,0 (42)
00 T ey 1= g2i—2mmws i j-10°
S1S3Wq
We remark that combination of (39) and (42) allows one to express Ra b, ‘ in terms of

0,0,0
Ri7k7b+2c,j7a7c,

Next, consider (35) and (37) again with a = b = ¢ = k = 0. Reducing them to the
relations among R?:?’g by the above remark, and taking a suitable combination, we get

o Whose indices satisfy i —k —b+2c =djand j —a —c = d; mod 2.

2 _ ,j 2+ 3wy Jj—2—iriws
RO,O,O _ q2+i LHws (I-¢q S3W1 s (=4 s1w2) RO 0,0 (43)
i,j,0 — S ETE _ 2 —2r1r3w3 2 —4rr3w3y i, j—2,0°
rasis3 (1 —¢q/522)(1 A S/ A yorrmd)
2 _ it+j—2r3wy
RO00 _ q—2i+j+2s3tlw1w3 I-q s3w1 RO-0.0 (44)
0 = —— R5 o
b sisowy (1 —q 223 (1 — g~/ I 1=

Thus we find any R{" ;( is uniquely expressed as R . p1 o times known factors, where
p1, p2 € {0, 1} are determmed by pi=di,pp=domod2. O
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Fora,b,c,i, j, k € Z set

LY
&

1 3

d dy d3 dy
Ra-bc 2 2 52 2 \?2 [ hwy \?2
Lk 3w ntzws S113 S3f W

e () 0 (B2) 0 (32) (45)
q o q2,1r3 ® rir3ws ’
_d1< r2 ) d3+dy S1S3W]
1
@ = Z((dl — dy)(dy +da +d3 +dy) + d3ds) — dy, (46)

d\ _ (a+c—j\ (5 _(—a—b+c+i+j—k (47)
dy) ~\b—i—k) \ds) " \a—b-—c—i+j+k)’
1) [ — mEZ, 48
m(2) (qu;qz)oo ( ) @

where d; and d> are the same as those in Proposition 2. It is easy to see ¢ € Z + (d] —
1)d>/2. The dependence on 11, 1, t3 is actually by the combination 7, “*'z, bt ty ek
which corresponds to a similarity transformation.

By Proposition 2, we know that the solution R of (28), if exists, is unique up to
normalization in each sector specified by (d1, d2)mod2- The following result establishes

the existence together with an explicit form.

Theorem 3. The 3D R defined by (45)—(48) satisfies the RLLL relation (28).
Proof. From Proposition 2 and d3 = ds = d| +d» mod 2, the replacement

(2 400/ (24"™; 4P oo = (25 4PIm)2 (m €27),

(245 4900/ (24" 4P oo = 245 4D m-1yy2 (m € 2Z+1)
(49)

D (2) = Dp(z) = !

changes the individual recursion relations only by an overall scalar. The results become
the relations among finitely many rational functions. To check them is straightforward.
O

As the above proof indicates, one may just postulate the property
Pi2(2) = (1 — 24™) P (2) (50)

instead of specifying ®,,(z) concretely as (48). Another option of such sort is to make
the replacement

q2r1r3 di ,dy rir3 dTl %)
() () a(2) e
r r rirs

which makes the formula (45) more symmetric with respect to d; and d; at the cost of
the appearance of the factor (—1)4/%. The R is not locally finite. From (22), its inverse
is given by

R~ = (scalar)R | (52)

r,~<—>s,',t[—>t,-w,~,w[—>wi’1 (i=1,2,3) *
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FoolD  For=2Fip FiaO Foi D Foo=2Fii FioO
R[0,0] R[1,1]

L Foo— Fio— Fi1 — Foa J L Foo— Foq1— Fi1— Fipo J
R[1,0] R[0,1]

Fig. 4. Action of the four fundamental solutions R[0, 0], R[1, 0], R[O, 1], R[1, 1] on the subspaces Fp, p,
defined in (53). For example in R[1, 0], the condition (d1,dr) = (@ +c — j,b —i —k) = (1,0) on
li) ® 1)) ® |k) = |a) ® |b) ® |c) enforces R[1,0]1Fp o S F1,0, R[1,0]F1,0 € F1.1, R[1,01F1,1 € Fo.1
and R[1, 0]F¢,1 € Fo,0

The parity condition on (d;, d>) mixes the indices i, j, k labeling incoming states
and a, b, c concerning outgoing ones. See (25). To illustrate the resulting sectors, we
introduce the subspace

Fpipr = b Cli)® /) ® k) C F® (p1.pp=0.,1).  (53)
i+k=p, j=pr mod2

From the proof of Proposition 2, the solution space of R is four dimensional whose basis
corresponds to the “initial condition” of the recursion relation taken as
0,0,0 50,0,0 50,0,0 10,0,0
(Rp0.0- Ri00: Rovo Rilo) = (1,0,0,0), (0,1,0,0), (0,0, 1,0), (0,0,0, ). Call
them R[O0, O], R[O, 1], R[1, 0], R[1, 1] respectively so that R[py, p>] is the base corre-
sponding to the choice R%z?ﬁ .o = 1 according to the remark after (42).> Then they act
on (53) as in Fig. 4.
Similar decompositions according to a parity condition also take place in the forth-
coming Theorems 9, 10, 11, 13, 14 and 15.

Remark 4. Let L%+ be the 3D L operator (19) with 777 in (8) replaced by

Xlm)=|mF1), X 'm)=|m*1), Zm)=q*m), Z7'\m)=q™"|m).

(54
Theorem 3 is concerned with L? = L%+ Consider a variant of (28) given by
Zen  Zey  Ze Zey  Zey  Ze
R(e1, €2, £3)as6 L3 L135 L1og = L1o4 L1335 Laozg R(e1, €2, 83)as6 (1, 22, €3 € (=1, 1)
(55)
Then elements of R(eq, &2, €3) is given by
a,b,c __ pela,erb, ezc
R(e1, €2, €3) =R (56)

i,j.k e1i, e2j, 3k ?
where the RHS is defined by (45)—(48) which corresponds to R(+, +, +).

3 The formula (45) has not been so normalized.
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3.2. OZZ type. We consider the RLLL relation

R456L2236L1Z35L1024 = L1024L1235L2236R456v (57
where L% and L% are given by (19) with (r,s,f,w) = (r2,52, 7, w2) and

(r3, 83, 13, w3), respectively. In this case, R € End(F;® F ® F) and the sum (25) extends
overa € Z=q and b, ¢ € Z. The equality (57) holdsinEnd(V@ V@V R F,Q FQ F).
Here are some examples of the RLLL relation (57):

R = RGE T a RS = a R (58)
C]““’”zRia,'jl?}f . qut2Ria,’jbfl,k + qb(l _ q2a+2)ut3Ria’J]r.’lk,b,c+l —0, (59)
qcrlegf;}c,b,c _ qu3RZ}‘l?}cc _ q1+a+but3Rz}(?}<c+l -0, (60)
qi+jr3S3RZf}f +q*usan Ri“ﬁf”;’k_l - qk/,LS3t2RZ;,1€’b+1’C - q2+i+jt32w3sz/.lf}(C_2 =0.
(61)
The boundary condition
R&P¢ =0 if min(a,i) <O. (62)

ijk =

has to be taken into account. Thus for example when a = 0, (60) is to be understood as
i 0.b, 0.b,c+1
q'r3 Ri’j,kc +q"*un Ri,j,kﬁ- =0.
Fora,b,c,i, j, k € Z, set

—b+j —c+k
gove — () (Y () (_us)
ijk r3 5 S2 r3

x — 1 . q(a—b+j—l)c—(i—b+j—l)k—aj+bi
(4% 97)a
i .

) 1 oy

% Zqﬂ(ﬁ+2] 2b ])(_y)ﬁ< ) (xq2k 2¢ 2,3+2;q2) , (63)
=0 by ‘
2

Y = [V ) _ r3ws3 ;= xq2k_26+2. (64)

£ y - 2 £
rawz nes3
For the convenience of the proof of Theorem 5, we have enlarged the range of the indices
a andi from Zxq to Z. The property (62) is satisfied thanks to the factor ( é)qz /(0% ¢)a.

The formula (63) is also presented as a terminating ¢g-hypergeometric series:

asg i Hw —b+j ¢ —c+k
w0 2 (2) () ()
) r3 52 ns2 r3

.2
(2397 a  (a—b+j—1)e—(i—b+j—k—aj+bi

4% qHa
-2 ,—1,2
q ,Z 4 i+2 7 —2a—
X 2¢1 ( Z71q72a+2 ’qZ’ yq21+2] 2a 2b> . (65)

Theorem 5. The RLLL relation (57) has a unique solution R up to normalization. It is
given by (63)—(65).



New Solutions to the Tetrahedron Equation 3257

Proof. The first claim, i.e., uniqueness, can be shown by an argument similar to Propo-
sition 2. To prove the second claim, let Sl i—bk—c (x, y) denote the second line of (63).

One sees that S“] LX) = Zﬂ o(=)# S i p ),
where S7; | 5(x) = qPB+2i- l)( ) (xq*—2P+2; 42), is a polynomial in x and y.
The Eq. (57) is reduced to the recurs1on relations among Slff i, (X, y) with coefficients

including ¢, g, qi, qj , qk , X, y only. By picking the coefficients of yﬁ , they are reduced
to the relations containing finitely many Slff kB (x)’s. To check them is straightforward.
This proves the recursion relations for generic a and i. This fact together with (62) assure
that they are also valid in the vicinity of ¢ =0andi =0. O

As for the last point of the proof, a similar and more detailed explanation is available
in the proof of Theorem 9. The R is not locally finite.

3.3. ZZO type. We consider the RLLL relation

Rass L6 L35 Liay = LiryLiz5 L6 Rase, (66)
where L124 and LlZ35 are given by (19) with (r,s,¢,w) = (r1,s1,t,w;) and

(2, 52, 12, W), respectively. In this case, R € End(F ® F ® Fy) and the sum (25) extends
overa,b € Z and ¢ € Z>¢. The equality (66) holdsinEnd(VQ VRV FQF ® Fy).
Here are some examples of the RLLL relation (66):

Rlahlcj k= Rza}rlkbﬂ ‘ ‘IkRz{l'jh’Cl k= qCRia’jbzl’Cs (67)
g un R —q zzsz,“j’ et a1 = nw R =0, (68)
q Mrleankc I 6] ur Rtajb c q1+b+ctlwlRla-;lkb c_ =0, (69)
q’ /Lrlisl it k —q vltzszla]b;:] el q2+f+kp.t1 wq Rla bzcj x

+q sztlwlRl 1 ;k+1 =0. (70)

One has the boundary condition analogous to (62):
Rl.“f;f =0 if min(c, k) <O. (71)

Fora,b,c,i, j, k € Z>y, set

k —b+j —a+i
iJ.k r 52 52 Mury

5 21 . gebri=Da=(k=b+j=Di—cj+bk
(G~ 97)c
k k
« Zqﬂ(mzﬁzbq) (—y)P (xqzzfzafzﬂn; qz) 7 (72)
BJ 2 ¢
p=0 !
2
Sy W r i
Y= 2W2 _ 1% 1’ z qu2l—2a+2’ (73)

2,0 Y
W2ra s1wi
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where we have redefined x, y, z changing (64). It is also presented as a terminating
g-hypergeometric series:

m\E /s k ¢ —b+j Hw —a+i
() () (2 ()
7 ri) \s2 52 wry

)
o (397 (c—btj—1)a—(k—b+j—1)i—cj+bk
(4% 4%
% 1,2
g *,z71q e
x m( g0 R L 2‘). (74)

Theorem 6. The RLLL relation (66) has a unique solution R up to normalization. It is
given by (72)—(74).

The proof is similar to Theorem 5. The R is not locally finite.

3.4. ZOZ type. We consider the RLLL relation
RasoL336L a5 Lias = LTasL {35 L33 Rase. (75)

where L%, and L%, are givenby (19) with (r, 5, £, w) = (r1, 51, t1, wi) and (r3, 53, 13, w3),
respectively. In this case, R € End(F ® F; ® F) and the sum (25) extends overa, ¢ € Z
and b € Zx¢. The equality (75) holds inEnd(V @V VR F ® F, ® F).

Here are some examples of the RLLL relation (75):

i pa,b,c  _ b pab,c+l i pa,b,c b pat+lb,c
q]Ri,j,k—l = Ri,j,k > qui—l,j,k =q R,',j,k ) (76)
b, b, 1,b—1,c+1
anrCRl-a,j’kC — r1r3RZj+ik —qh t3w1RZ-;,k =0, )
i+k pa.b,c b—1.¢ b.e
qH' R;fj’kc — S1S3R:{j’k ¢ qt1t3w3R?—lfj+1,k—1 =0, (78)
qu+j+kr]Rﬁf}(C _ Mrlslt3Ria’,ﬁk—l,c+l _ qa+c'b”1 Ria’;’lk,b,c + Mt12t3w1Ria’;’2k,b—l,c+l —0.
(79)
The boundary condition is given by
ROVE =0 if min(b, j) <0. (80)
Fora,b,c,i, j, k € Z>o, set
b a—i c—k
S18 r r
RO = 0(j = 0) %) (—1) (—“ : )
I (rir3) \ uty w3
x 1 (j—b)(a+c)+b(a+c—i—k)—(i—a)(k—c)
@ 4*w
b b
% Zqﬂ(ﬁ+2i—2a+l) (—y)P < ) <q2j+2k—2c—2/3x—l; q—2>
purs B/ B
% (q2k—20—2ﬂ+2x—1; qz) ’ (81)
b—p
2 2
s r
Pl Y ol (82)

riwy’ s3w3
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This can also be expressed as a terminating series similar to a generalized
g-hypergeometric 3¢»:

b a—i c—k
S18 r &
R?’-b}fze(jEO)(”).( 1) <M3>
I (rir3)) \ uty Bws

(q2—2(,‘+2kx —

1 2
4 )bq(j—b)(a+c)+b(a+c—i—k)—(i—a)(k—c)
(q% 9%
b _ _ i
o Z(q2i+2j72u72b+2y)ﬂ (@2 qHp(q> Hx: ) p(q* 2 x: g7
(6]2; qZ)ﬂ(q—2b+2c—2kx; q2)2ﬂ(q20—2j—2kx; qZ)ﬂ'

(83)

B=0

The difference from 3¢, is the factors (e; q2)2,3.

Theorem 7. The RLLL relation (75) has a unique solution R up to normalization. It is
given by (81)—(82).

The proof is similar to Theorem 5. The R is not locally finite.

3.5. OOZ type. We consider the RLLL relation
RaseLiagLi3sL{ay = L L35 L33 Rase, (84)

where Llo24 and Llo35 are given by (21) with © = 1 and p», respectively, and L§36 is
given by (19) with (r, s, t, w) = (r3, 53, 13, w3). In this case, R € End(F; ® Fy ® F)
and the sum (25) extends over a,b € Zso and ¢ € Z. The equality (84) holds in
End(VRQVOVRIF,.QF.QF).

Here are some examples of the RLLL relation (84):

@ = g™ IR =0, @R = a R (85
(12q"* = 1g"™ ™ REVE = (1 = ¢*Hrsws R,y (86)
(Mglqj+k _ Mflqa+c)RZ}'£j}¢C =(1- q2a+2)t3RZ;}éb_l’C+l, (87)
ROV — g RIS+ q T ws RN =0, (88)
qkuluztsR?;lfj;k_l + qiM2r3S3Rz’jb;ik - qb+kM183RZ;};b’c

— q2+iu2t32w3 qu,fii,k—z =0. (89)

As these examples indicate, every recursion relation consists of those R?’;’}f having the
same parity of a — c + j + k.
Fora,b,c,i, j, k,d € Z, set

Jfs2 ¢

. T i —q [ M253 w3
R@){[ = 6(e € Z)F(min(i, j) = 00877 55 (nat3) ™ (%> (}?3—83)
bk @470 )i

(612; qz)f(qza_28§ qz)efa

1 1
e=@—ctjrk+d), f=-(b+cti—k=d). O

. (90)
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For the convenience of the proof of Theorem 9, we have defined R(d)f’ jb k‘ enlarging the

range of the indices a, b, i, j from Z> to Z. We note that R(d);" bkc = qbdR(O)?;’kcw

and O (e € Z)S‘”b =6(f € Z)aa”’ sincee+ f =i+ € Zholdswhena+b =i+ ;.
The comblnatlons e and f can be elther positive or negative.

Lemma 8.
R(d)l‘.f’;”‘kc =0 if min(a,b,i, j) <O. (92)

Proof. The assertion is obvious if min(i, j) < 0. Thus we are to show that min(a, b) <
0 leads to R(d)a bkc = 0 assuming that min(Z, j) > 0. Suppose a < 0. Then (90)
indeed vanishes due to (¢2*?; ¢%)i—a = (4***% ¢ 00/ (@% % ¢%)oo = 0. Suppose
b < 0. We may further concentrate on the non-trivial case e > a since otherwise
1/(¢**7%¢;,g%)e—q = 0. Then 1/(q% g*) s = Obecause of f =i+j—e = (a—e)+b <
0. O

When a, b,i, j > 0, R(d);"’j”’,f is divergence-free and R(d)fjbk‘ = 0 unless e >
max(a, j) and f > 0. From these conditions it follows that

R(d)?]bkc—() unless |b —i| <k—c+d <b+i. (93)

Theorem 9. The RLLL relation (84) has a non-trivial solution if and only if d =
logq(m) € Z. Up to overall normalization it is given by R bkc = R(d)?ﬁ’,f specified
by (90) and (91).

Proof. The only if part of the first claim can be shown by an argument similar to Propo-
sition 2. To show the rest, one first checks that the formula (90) satisfies the recursion
relation when a, b, ¢, i, j, k are generic, i.e., when 6(min(i, j) > 0) = 1. This can be
done easily since (90) is factorized. The remaining task is to verify the boundary con-
dition (92) to assure that the contribution from the “unwanted terms” to the recursion
relation is zero. This has been guaranteed by Lemma 8. For example in (88) at b = 0,
ie.,

a,—1,c k pa,0,c
3R 4 R,+1/k+‘1 i ws Ry ,+1k 1 =0, 94)

the first term is unwanted. O

From (90) and (93), R is locally finite. From (22), its inverse is given by

R '=R| (95)

1. -1
wi—>p o (=1,2), r3<s3,3>0Bw3,,w3—>w;y

where the normalization has been deduced from Rg:g:g (d) = 848555 and jog,’g(—d) =
888556,



New Solutions to the Tetrahedron Equation 3261
3.6. ZOO type. We consider the RLLL relation
0O y0 7Z V4 0 0
RasoLyzeL 1351124 = LiaaL135L736 Raso, (96)

where LIO35 and L2036 are given by (21) with & = o and u3, respectively, and LlZ24 is
given by (19) with (r, s, ¢, w) = (r1, 51, 1, wy). In this case, R € End(F ® Fy ® F,)
and the sum (25) extends over a € Z and b,c € Zx¢. The equality (96) holds in
End(VQVRVRFRQF; R Fy).

Here are some examples of the RLLL relation (96):

j+k __b+cy pa.b.c _ jpabc __ _bpat+lbc
(q 7Rk = 0. ¢ RV ik =4 R ;i o7
—1_a+b —1 _i+ky pa,b,c 2k a,b,c
(1o g — s q' )Ri,j,k =-g¢q )th,',Lj.'.]’k,]a (98)
i+ b,c 242 +1,b—1,c+1
(n2q"™ = p1g™ )R = (1= = Hnwi R 7, 99)
a,b—1,c i pa,b,c k+1 a,b,c _
SIR e " =4 R v e R =0, (100)
b+i D=1 24k 2 b, i Jb,c k b,
g7 s R+ q T ustfwi RS — g wi RISy — gt psrisi R = 0.
(101)
As these examples indicate, every recursion relation consists of those R?’jb}f having the
same parity of —a + ¢ +i + j. The boundary condition is given by
b, . . :
Rff'j,kc =0 if min(b,c, j, k) <O. (102)

Fora,b,c,i, j, k,d € Z, set

c j t2 €
R@)PE = 0(e € Z)O(min(j, k) = 082 s’f< 2 ) ( il ) ( lwl)

Hw 25151 r181
ajbi @4 1@ 4P
xq 2.2\ (20— 2 ’ (103)
(G797 £ (=7 g7 )e—c
1 1
e:z(—a+c+i+j—d), f:i(a+b—i+k+d). (104)

We note that R(){"7 = ¢ "/ RO)1), , and 6(e € Z)s0t = 0(f € Z)sh since
e+ f =j+k e Zwhenb+c = j+k. The combinations e and f can be either positive
or negative. From b, ¢, j, k > 0 and the definition (26), Rl.“j’;f (d) is divergence-free and
R(d)?"ﬁ’,f = O unless e > max(c, j) and f > 0. From these conditions it follows that

R(){0¢ =0 unless [b—k| <i—a—d<b+k. (105)
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Theorem 10. The RLLL relation (96) has a non-trivial solution if and only if d =
logq(%) € Z. Up to overall normalization it is given by RZ’J?}(C = R(d)ﬁ’ﬁ’,f specified
by (103) and (104).

The proof is similar to Theorem 9. From (103) and (105), R is locally finite. From
(22), its inverse is given by

R '=R - (106)

—1,. -
|ﬂi_>Mi (i=2,3), ri<>s1,ti~>Hwp,wi—>w;

where the normalization has been deduced from R(‘)’”g”g d) = 8% dég 85 and Ri}?:&o (—d) =
888056,

3.7. OZO type. We consider the RLLL relation

Ras6 L6 L35 Lrg = L1y Li35L 536 Rase, 107)
where le35 is given by (19) with (r, s, t, w) = (r2, 52, 2, wy), and LIO24 and L2036 are

given by (21) with u = w1 and u3, respectively. In this case, R € End(F: ® F ® F})
and the sum (25) extends over a,c € Zxo and b € Z. The equality (107) holds in
End(VQVQRVRF,QFQF,).

Here are some examples of the RLL L relation (107):

ORI = a R RS = a RO (108)
para R P = (@M + g ) ROV (109)
2 RETS iy = @ s+ g uD R (110)
g para R+ g0 = PRI — s RY g =0, (D

i+] 2k a,b,c 2+k 2 a,b,c
9"l —q ),u'3r2R,',j’k_1 —q M1t2w2Ri+1,j_2,k
k \b, j 2+2¢ b+l e+l
+q MIVZSZR,'aH,?’k -q'(1—¢q * C)/,Ll/,L3t2R?’j,k =0 (112)

As these examples indicate, every recursion relation consists of those R’ ’J.b}f having the
same parity ofa +b + ¢ — j.

ROVE =0 if min(a, c,i k) < 0. (113)

Fora,b,c,i, j, k,d € Z, set

' 2w\
R(d)‘f‘?’,ka = 0(e € Z)O(min(i, k) > 0)551:15},5(“3&)_1( U3r2 Sw2
b L Hhwy 7282

242e-2k. 2
bh—cj @7 q )k

(@% 4% (g% 72—

1 1
e=(+j+k=b—d—1. f=_(@+btc—j+d+1). (115

X q (114)

We note that R(d){7 = ¢~ R(0){"/}*/ and 6(e € Z)5{7¢ = 0(f € Z)6{ since

e+ f = c+iwhena—c =i — k. The combinations ¢ and f can be either positive
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a,b,c
i,j.k

R(d)?’;”kc = 0 unless e > max(i, k) and f > 0. From these conditions it follows that

or negative. From a, c, i, k > 0 and the definition (26), R(d) is divergence-free and

R(d)ﬁ’j?f’k“ =0 unlessla—c|<j—b—d—1<a+ec. (116)

Theorem 11. The RLLL relation (107) has a non-trivial solution if and only if

d::logq(—%) € 7. Up to overall normalization it is given by R*¢ = R(d)*"¢

: ijk ijk
specified by (114) and (115).

The proof is similar to Theorem 9. R is not locally finite.

3.8. 000 type. We consider the RLLL relation
Rass L3s6L{3sL (s = LiaaLi3sL 5 Rase. (117)

where L3, LG, LY, are given by (21) with & = sy, po, 3. In this case, R €
End(F; ® F; ® F;) and the sum (25) extends over a, b, ¢ € Zx¢. The equality (117)
holds in End(V ® V® V ® Fy ® Fy ® Fy). The problem of finding the solution to
(117) was studied in [3,5]. The result has been shown [15, eq.(2.29)] to coincide with
the intertwiner of the quantized coordinate ring A, (sl3) that had been obtained earlier
in [9]. See also the explanation in Sect.5.2. For w;’s general, the following formula is
valid (cf. [14, eq.(3.85)]):

i b k +b
RAbc _ satbsbrc (M3 KM M2 qik+b(k—i+l) a
i.j.k i+j ©j+k wr w3 wi a .2
—~2b —2i
q »q .2 =2
X 261 ( g-2a-2 P94 ) (118)
R is obviously locally finite. From (22) and [14, eq.(3.60)], its inverse is given by

R'=R| (119)

pi—py ! (=1,2,3) ¢
Remark 12. Let fRZ’}’)’,f = Rz’j}j}f | ii=1(i=1,2,3) be the parameter-free 3D R of type OOO.
It satisfies the tetrahedron equation (164). See Sect.5.2. It is known ([15, Prop.24], [14,
€q.(3.63)]) that R?jbk‘ is a polynomial in g with integer coefficients satisfying

abe _ @*1a0)i@%1q%);@% 4k ik

SR 4P)a @ aPb g g e
When ¢ is a primitive root of unity of odd degree N > 3, it follows that
RZ’}”’,{C = 0 if max(i, j, k) > N and max(a, b,c) < N. It implies that the subspace
D) kz0.max.j.o=n Cli) ® 1)) ® |k) C Fy ® F ® Fy is invariant under R. This fact
was originally shown in [11, Th.2.2.1b] for each tensor component by resorting to the
recursion relations, where an important consequence on the quotient was also pointed
out in Proposition 2.3.2 therein. The above proof based on (120) is an illuminating sim-
plification and has a natural generalization to the quantized coordinate rings of other
types [14, egs. (5.75), (8.39)].

(120)
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4. Solutions of RLLL Relation for L = LZ and LX

In this section we deal with the RLLL relations which contain L% (19) and LX (20).
As mentioned after (15), the parameters r, s, ¢, w are assumed to be generic, hence the
boundary conditions like (62), (71), (80), (92), (102) and (113) need not be considered.
We shall only treat the types XXZ, ZXX and XZX, and leave ZZX, XZZ, ZXZ and
XXX cases for future study as they are considerably more complicated. Throughout the
section, R € End(F ® F ® F) with the sum (25) extending over a, b, ¢ € Z, and the
RLLL relationholdsinEnd(VQ VRV RFQF ® F).

4.1. XXZ type. We consider the RLL L relation
Rass L3 LissLios = LivaLissL3s6 Rase, (121)

where Lf(24 and Li(35 are given by (20) with (r, s, ¢, w) = (r1, 51, f1, wy) and (r2, $2, 2, w2),
respectively, and LZZ36 is given by (19) with (r, s, ¢, w) = (r3, 53, 13, W3).

Here are some examples of the RLL L relation (24), which are natural extensions of
those for the OOZ type:

@™ = q"RTE =0, @RIV = "RV, (122
(s12w2g"” = satiwig ™RV = tsws(rist — Fwig™ RNy, (123)
(rltzq”k — rzthaﬂ)RzankC =n3(r1s1 — 4 wl‘l2a+2)Rijrlkb berd, (124)
s1s3R" s k —q S2R;a+}1)5k +q' t1t3w3Rl J+1 k-1 =0 (125)

a—1,b,c 2+4i—k

b.c i ab,c
q S”ZRl ik ta nt w3Ri,j+l,k—2 —q “S?“Rz ,+1 p — S2BRETS jk-1=0.

(126)
Fora,b,c,i, j, k € Z, set
. B . 5 g
RO _ sath <S1S3)l <51t3) ¢ <Sls3t2w2)j 252 13W3 gCi—bk
Bk TR sy ) ris2t3w3 1wy 1353
btct+i—k+2 tibwy . 2 h+2twity . 2 2a21{W1, 2y
« (q ot = ris2 aq )g a— b(‘] s8] 7‘] ) (q “ r1s1 aq )l*(l RO,O,O
—b+c+i—k 211 . 2 h+2 201w . 2 0,0,n°
(q reri= rin’ q )g—a (q " sihwy’ q )g_J
(127)
2¢9+h=a—c+j+k(geZ, h=0,1), (128)
where Rg 8 8 and Rg 8 (1) can be taken arbitrarily.
Theorem 13. Recursion relations derived from (121) consists of only those Rla jbkc s

having the same parity of a — ¢ + j + k. Each subsystem specified by h admits a unique
solution up to normalization, which is given by (127)—(128).

Proof. The former assertion on the parity can be verified directly. Solving a partial set

of recursion relations already leads to (127)—(128), proving the uniqueness. Then it is

straightforward to check that it actually satisfies all the remaining recursion relations.
0
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R is not locally finite.

Let us compare the 3D R (127) for XXZ with (90) for OOZ. To fit LX in (121) to
L9, we specialize the parameters as

ri=si=1 t= Mi_l, Lwp = Wi (129)

fori = 1, 2. Then (127) becomes

g
b _ cath —a [ #2583 ’3 w3

R = 8970 st (uat3)

ik l+] ® 3w3 r3s3

. (q—b cHit+k+2 ul : q2) (q2a+2’ qZ)l_a e 000
xq“ e TR 2 =g —) Ry (130)
(q=or et = 49)b 78

Using the notation e, f in (91), where g = ¢ — %(h + d), and assuming d € Z is so
chosen that e € Z, this is rewritten as

e
bc +b —a [ K283 t3w?
R = 8970 s (nats)
Lk ™ l+/ H 3w3 r383

242e—2j—d 1. 2\ . (,2a+2. 2.
ch_bk(q 2 47i@ g )i—a
(q2+dM2 2)]‘(6]2‘1 2e+a’;ﬁ 2)6 —ua
_ — 5 (h+d)
1—g "2 /2, 3(
i [ 13W3 0,0,0
x R-0:0. (131
1— qd% 7383 0.0.A

Note that the condition e € Z is equivalent to h +d € 27Z. Therefore, if R8:8:2 (h=0,1)
are taken as

_ghr2 /2
I—g¢g w [ Fws3
1-— qd “2 r383

L (h+d)
) Rg,’(o),'z? — O(h+de2l)y=0(eZ) (132
in the limit  — u2q9, the 3D R (90) for the OOZ case is formally reproduced.

4.2. ZXX type. We consider the RLLL relation
R456L236L135L124 - L124L135L§36R456’ (133)

where L]Z24 is given by (19) with (r, s, t, w) = (r1, 51, t1, w1), and Li(zss and L§46 are
given by (20) with (r, s, t, w) = (2, 52, 2, wy) and (r3, 53, 13, W3), respectively.

Here are some examples of the RLL L relation (24), which are natural extensions of
those for the ZOO type:
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(qj+k b+C)Rlajbkc =0, q/ Ra blaj = qulq-;lléb,c’ (134)
(53029 — 213" VRETE = 11(r3sy — Bwag™IRENG L s (135)
(r3t2w2q' - r213w3€1a+c)R,ajbkC = llwl(F383 -1 w3q26+2)R,ajlkb berl o (136)
S1S3Rl i k — qlszR?’j ;<L+1 +q t1t3w3Rl 1 j+1 =0, (137)
q S1l2w2R,ankC Y gy 2t3w1w3R,~a;2’,j+1,k - SZIIU)IR?;IT,CJ-JH]

— ¢ rsinwsRE | =0, (138)

Every recursion relation consists of those RZ’}?}(C having the same parity of —a+c+i+ j.
Fora,b,c,i, j, k € Z, set

k —c j 2 8
Rabe _ ghre (5153 S3I1W1> S1S3t2)] rasy Hwi b
AN Hw r3saty 3wy 181

2w
5 (qa+b i+k+2 tzrl;s;g%’ q2)g b C(qh+212rt;;l;2’ qZ)g(q2c+2 r33s33;q2)k_c 0.0.0
h,0,0°
(qa btk 233 g2) g (@2 23 4P
(139)
28+h=—a+c+i+j(geZ h=0,1), (140)
where Rg’g’g and R?’g’g can be taken arbitrarily.

Theorem 14. Recursion relations derived from (133) consists of only those Rla jbkc s

having the same parity of —a + c +1i + j. Each subsystem specified by h admits a unique
solution up to normalization, which is given by (139)—(140).

The proof is similar to Theorem 13. R is not locally finite.
As the XXZ type, by specializing the parameters as (129) with i = 2, 3 and taking
the limit 3 — u2g? with appropriate tuning of Rg:g:g (h = 0, 1), one can reproduce

the 3D R (103) for ZOO from (139).

4.3. XZX type. We consider the RLLL relation

Rase L6 L{35L124 = LiagLT35L36 Rase (141)
where Lf,, and L are given by (20) with (r,s,z,w) = (r1,s1,t,w;) and

(r3, 53, 13, w3), respectively, and LIZ35 is given by (19) with (r, s, ¢, w) = (r2, 52, 2, W2).
Here are some examples of the RLL L relation (24), which are natural extensions of
those for the OZO type:
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a,b,c __ ¢ pab+lc a,b,c __ _apab+l,c
G R = aREC @ R =g RO (142)
PR = (nwig e +r1r3q’)R,“/b,f, (143)
,b,c 1+i+j+k b
SQRiH jk+1 = (htzwzg P + 51539 )Rl ]k , (144)
—1 2 2a+2y b +1,b, ,b,c
q V2I1Rl i k +13(r1s1 — t{wigq *g +chaj s ¢ — rltsz{l,j—Ll,kH =0, (145)
g b rzszt3w3Rla],l(bC —q b+‘t2t3w2w3Rla],1(b+2c
2k~ pa,b,c 2+2, a,b,c+1
— s1twa(r3ss — Fwsg VR |+ g sanwi(r3s3 — wzg PR =0,
(146)
Fora,b,c,i, j, k € Z, set
c k i 2 §
R-bc _Sa_c( rn ) (S]l‘3> <r2t3w3> r3s3 ywz qbk—cj
bk TR 5] rswy ) \ 3wz r2s2
h+lhtzws. 2 —h+ls3tjwy . 2
( q 5153 »q )g ( q rll?w’i’q )l —8 0.0.0
x h+1713t1. 2 —h+308Bw. 2 RO:h:O (147)
(—q 0 4 )g—k (—q s 0 4 e+i—g
20+h=—b+i+j+k(geZ, h=0,1), (148)
where Rg’g’g and Rg’?’g can be taken arbitrarily.
Theorem 15. Recursion relations derived from (141) consists of only those Rla kac’ s

having the same parity of —b +1i + j + k. Each subsystem specified by h admits a unique
solution up to normalization, which is given by (147)—(148).

The proof is similar to Theorem 13. R is not locally finite.
Let us compare the 3D R (147) for XZX with (114) for OZO. To fit LX in (141) to
L9, we specialize the parameters as (129) with i = 1, 3. Then (147) becomes

i 8
b.c —k [ H372 282
R =815 (uan) ™ ( > 3
s Js t2u)2 tz wr

(— q—b+l+j k+lu3’ C]z)k
bk— —h+1 M1 0,0,0
“ (— qa+b c—j+1 Ml : q2)c 1 (1 +tq _> RO,h,O' (149)

xq

Using the notation e, f in (115), where g = e — %(h —d — 1), and assuming d € Z is
so chosen that e € Z, this is rewritten as

e
b.c +h . —k [ H372 t2w2
RS = 8175 (uat2)
Lik l+] Hhwy 15X

2e—2k+d+2 13
i (—¢ o4k )k
( q7d+2lli; 2)f( q72e+21 dﬁl 2)e ;

Chel i —Lh—d—-1)

A A R00.0 150

T\ s, 0.1.0° (150)
3
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Note that the condition e € Z is equivalentto h —d — 1 € 27Z. Therefore, if R&B:g (h =
0, 1) are taken as

—h+1
L+q7"* /L_; <t22w2

L(h—d—1)
0,0,0 _
Trq i ) Ry — O(h—d—1€2Z)=0(eZ) (151)
3

2582

in the limit 1 — —u3g?, the 3D R (114) for the OZO case is formally reproduced.

5. Relation to the Representation Theory of the Quantized Coordinate Ring

5.1. Quantized coordinate ring A, (sl3). The algebra A, (s/3) is a Hopf algebra dual to
the quantized universal enveloping algebra U, (s/3). See for example [6,8,10,13,20] and
the references therein. It is generated by #;; (1 < i, j < 3) with the relations

0 i< j,k>1),
[t 151 = ., G=pk>D (152)
(g—q Dtity (< j, k<D,
tiktjk = qtjrtik @ < ), Tty = qtejti (@ < j), (153)
> (=) tig oy t30y = 1. (154)

0663

where &3 denotes the symmetric group of degree 3 and /(o) is the length of the permu-
tation o. The coproduct A : A, (sl3) — Ay (s13)®V is given by the matrix product form
Atij = Zlfiz,...,i/\/fS liiy @ liziy @ -+~ D tiy j-

The following maps define the algebra homomorphisms to the g-Weyl algebra (6):

p1:Ag(slz) = Wy,

tH1 ti2 t13 Z —glthz) giX 0 (155)
byt ts | — —qh1 X zZ 01,

131 132 133 0 0 uf]

02 - Aq(sl3) - W 5

1 ha h3 uy! 0 0 (156)
itz | = | 0 Z7'ur — g0ho X?) g2X

131 132 133 0 —qhy X Z

Here, u;, gi, h; are arbitrary parameters.
We let pz; = mz o p; and px; = mx o p; denote the representations A, (sl3) —
End(F) obtained by the compositions with 7wz and wx in (8) and (9).

5.2. 3D R of type OOO as an intertwiner of po ;. From the remark after (16), one can
restrict px; with (u;, gi, h;) = (1, w, ui_l) from End(F) to End(F}). The resulting
representation will be denoted by pp ; : Ay (sl3) — End(Fy).

The representation po ; is irreducible and well-studied [13]. In fact, the isomorphism
of the tensor product representations po,1 ® 00,2 ® 00,1 = 0,2 ® po,1 ® po,2 is valid,
and they turn out to be irreducible. Let ® € End(ng’ 3) be the intertwiner, i.e., the unique
solution to the intertwining relation ®o (00,1 ®00.2®p00.1) = (00.2®p0.19p0,2) 0P
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up to normalization. Set R = ® o P where P is the transposition P(|i) ® |j) ® |k)) =
k) ® 1) ® |i). We also call R the intertwiner. The intertwining relation for the generator
t;m reads as

R(p0o.1 ® 02 ® po.1)(Atim) = (002 ® po.1 ® po.2)(At)R (1 <1,m <3),
(157)

where A = P o A o P, hence Aty,, = Zj’k tkm @ tjk ® t;. It is known that the set of
equations (157) are equivalent to the RL L L relation (117)|,,;—, under the identification
R = R. See [15, Sec.2] and [14, Lem.3.22]. As a result, the 3D R (118) with u3 = u;
is identified with the intertwiner of the A, (s/3) modules.

5.3. 3D R oftype ZZZ as an intertwiner of pz ;. Considerthe equationon R € End(F®3)
given by

R(pz1® pz2® pz.1)Ntim) = (p22® pz.1 ® pz2)(Atim)R (1 <1,m < 3),
(158)

which includes the parameters u;, g;, h;(i = 1, 2). On the other hand, recall that the
RLLL relation (28) of ZZZ type contains 18 equations depending on ry, Sy, ty, We (@ =
1,2, 3). Now we state a result analogous to the OOO case in the previous subsection.

Proposition 16. The intertwining relation (158) and the RLLL relation (28) are equiv-
alent provided that the parameters in the former obey the constraint u1 = uy(=:u) and
g1h1 = g2ho(=: p), and those in the latter satisfy

2 2 2
r.._n §2 83 r —u S1S3_u2 fwi _tzwz_t3w3_p
31 15 ’ 15 13 ’ rir3 ’ 52 ’ risi ras2 1383 u’
(159)

Proof. Set L = Yy ., L ® Lo} @ L and £l =, 5, Lo ® L2 @ LY 50
that (24) reads as Rﬁfﬁf = Ef’jbkCR. Then one can directly check that the relations (159)

validate the equalities

(021 ® pz2 ® pz.1)(Nitiy) = Azmﬁ?jbc = Bim ( ~j-‘/]’-’/,f/

~1
Ty <>Sy ty =1y Wy Wy —> Wy, ) ’

(160)
~Aabc a'b'c!
(z2® pz,1 @ pz2)(Alim) = Almﬁijk = Bim ( 1K |y sy by =ty wy —w) ! ) )
(161)
where the constants Ay,,, By, are given by
1 pu P’
r3s;  hiresatz hihou
_ | g _u P
(Alm)lfl,m§3 = ]H’22S2 rasa  haratiu | (162)
@hihy  ghatiu 1
u prasz rau
_ 1 pu p*
rﬁzsz hirasats  hihau
_ _gnts _u_ 14
(Blm)lfl,m§3 = _[””2232 7252 Taraiii . (163)
q2h1h2 _qhztlu 1

u prasa ru
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Table 1. Type ABC of R456L§36L{335L11424 = Lf24Lf35Lg36R456 and the basic feature of the solution

R — RABC

ABC 1(Z) Feature Locally finiteness #i(Sector) Formula
777 3 Factorized No 4 45)
0ZZ 201 No (65)
770 2 21 No 1 (74)
70Z 3¢o-like No (83)
00z Factorized Yes (90)
700 1 Factorized Yes 1 (103)
0Z0 Factorized No (114)
000 0 291 Yes 1 (118)
XXZ Factorized No (127)
7ZXX 1 factorized No 2 (139)
X7ZX Factorized No (147)
We observe the factorization when the number #(Z) of Z in ABC is odd. fi(sector) is the dimension of the
a,b,c

solution space for the recursion relations of R; ik

The correspondence between the indices I, m and a, b, ¢, i, j, k,a',b',c',i', j/, k' is
specified as follows:

[ | abe | i'j'K m | ijk | a'b'd

1| 001 | O11 1 | 100 | 110

21010 | 101 2 | 010 | 101

31100 | 110 3 1001 | oO11
The relations (160) and (161) including Ay, enable us to identify (158) with RE?/.L’,f =
ﬁ?fb,(CR ,covering the case a+b+c = i+ j+k = 1 of the latter. Let us show the other case

’

a'+b' +c =i'+j'+k' =2 of the RLLL relation in the form R fabe — L

l'/J/k/
Due to (52) it is equivalent to R (ff’/f’/,@/

(PN
ToRT

ry<—>sy,ty—>tywy,wy—>w;l )
Ef,f’,kc, ry sy by =t w5 ) R. This equality follows from (158) by applying the

relations (160) and (161) including Byj,,. O

6. Discussion

6.1. Summary. In this paper we have studied the tetrahedron equation of the form
R456Lg36Lf35L‘1424 = L{*24Lf35L2C36R456 for the three kinds of 3D L operators
L%, L*, L9 in (19)-(21) which can be regarded as quantized six-vertex models with
Boltzmann weights taken from the g-Weyl algebra W, (6) or the g-oscillator algebra O,
(10). In each case the solution R has been obtained explicitly whose elements are fac-
torized or expressed in terms of terminating g-hypergeometric type series as in Table 1.
They are new except for the OOO case.

6.2. On tetrahedron equation of the form RRRR = RRRR. Let us discuss the tetra-
hedron equation of the form

R4s56 R236 R135 R124 = R124 R135 R236 Ras6. (164)
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A standard strategy for the proof is to compare the two maneuvers:
Ri24R135 R236 Rase Laps LaysLgyaLas3LpsaLysi
= Ri124R135R236 L gyaLaysLapeLas3LpsaLysi Rase
= Ri124R135LgyaLaysLgso Las3LapgeLysi R23eRase

= R124R135LgyaLgs2LaysLas3Lysi LageR236 Ras6
= RipaLlgyaLgsrLysi Las3LoysLapeR135R236 Ras6
= LysiLpsaLpyaLas3LaysLapeR124R135R236 Ras6,
= LysiLgsoLas3LgyaLlaysLape R124 R135 R236 Rase, (165)
R4s6R236 R135 R124 Lap6 LaysLgyaLlas3LgsaLys
= R4s6R236R135R124 Lop6 LaysLas3LpyaLlgsaLysi
= R4s6R236 R135Lap6Lay5Las3Lysi LgsaLgyaR124
= R4s6R236Lap6Lys1 Las3LaysLpsaLgyaRi35R124

= R4seR236Lys1 Lap6Las3LpsoLaysLgyaRi3s5R124
= R4seLys1Lgs2Las3LagoLaysLpyaRa36R135R 124
= Lys1LpsoLas3LpyaLlaysLapeRaseRo36R135R124. (166)

The underlines indicate the components to be rewritten by the RLLL = LLLR rela-
tion or trivial commutativity of the operators acting on distinct set of components. The
above relations show that the composition (R124R135R236R456)_1R456R236R135R124
commutes with LogeLaysLgyaLas3LpgsaLysi. Therefore if the action of the latter is
irreducible, Schur’s lemma compels Rj24 R135R236 Ras6 = (scalar) Ras56R236 R135R124
and the scalar can be fixed by considering the special case.

In this type of argument, RLLL = LLLR serves as an auxiliary linear problem for
RRRR = RRRR, which is analogous to the quantum group symmetry ensuring the
Yang-Baxter equation. It indeed works when all the L’s are LY, where RLLL = LLLR
is identified with the intertwining relation of the quantized coordinate ring A, (s/3). See
Sect.5.2. The corresponding 3D R of type OOO (118) certainly satisfies the tetrahedron
equation Rj24 R135R236 Rase = Ras6Ro36 R135 R124 [3,9].

The results in this paper suggest a natural generalization where the six L operators in
(165) and (166) are taken either as LZ or L (resp. LZ or LX) in the context of Sect.3
(resp. Sect.4). Let us exhibit them as L5ﬂ6Lo€y5Lgy4LgE3Lg$2L;éél’ where A, B, C, D,
E and F assume Z, O or X. The corresponding generalization of (164) reads as

REE" REGT RISERU® = RUPRISERISTRRET. (160
where Rf‘zﬁD for example denotes the 3D R of type ABD acting on the tensor components
1,2 and 4. Let us call (167) the RRRR relation of type ABCDEEF. Its proof or disproof
is an important future problem. It has been settled only for type OOOOQQO as explained
in the above. However, the argument employed there does not persist naively when
L7 is involved since the irreducibility no longer holds due to Remark 1. Moreover,
the presence of locally non-finite 3D R makes the convergence of the compositions in
RRRR = RRRR non-trivial.* In spite of such difficulties, we have made promising
observations which are reported below.

4 The convergence also matters when one attempts to perform the reduction of the 3D R’s to the solutions
of the Yang—Baxter equation by the trace [3] and the boundary vectors [16,18].
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From Table 1, the tetrahedron equation (167) consisting of only locally finite 3D R’
s are of type OOOOOO and the following:

Type Tetrahedron equation

700000 : RZF RGO R(S R = RGIORESORIGORETC,  (168)
000700 : RZ99 RGQO RAZO RYYZ = RAQZROZORIZORZC.  (169)
000007 : ROOZRIIZRIZORAO = ROQORILO RIOZRIOZ,  (170)
700007 : RO9Z ROQZ REQO RZQO = REQORZQORIOZRIOZ.  (171)

In these equations, images of any given input vector i) ® | j) ® |k) ® |I) ® |m) ® |n) by
the two sides are linear combinations of finitely many bases with finite coefficients, so
one can compare them directly.

The tetrahedron equation (167) containing only one locally non-finite 3D R on each
side are the following:

Type Tetrahedron equation

020000 : REZORELORATORYLC = ROFORAGORELORIIC,  (172)
000070 : REZZORZIORGIZRAJC = ROYORAIZRIAZORILC,  (173)
220000 : RO REQORIZORE® = REZOREQOREQORAZO,  (174)
200700 : REGO RIS RIZOREG? = REQZ REQOROZORIZO,  (179)
0Z0Z00 : REZOREIORAIORYE? = REZZROIORELORELC, (176)
000770 : RZORQIORCIZ R = RAJZ RO RATORELC, (177)
000Z0Z : RZZZROZZRAIORAY? = RO RAZORGIZ REQ?, (178)
000077 : RZEZRAZZRAIZROO = ROYORGIZ RGO RO, (179)
720700 : REZOREQOREQORE? = REGZREQOREORESS.  (80)
000ZZZ : R{e* REI“RAT* ROT = RO RAI“ R RIS (181)

In these equations, transition amplitudes for any pair of input and output bases |i) ®
YRk R)®|m) @ |n) — |a) ®1b) @ |c) ® |d) ® le) ® | f) by the two sides are
finite. Explcitly they are the two sides of

Z jof)i{Rb,c,z REW-Y pUVX Z RZ:S:gRy,c,e Rv,w,fo,y,z (182)

v,w,n N k,m TN Ll iw,y™jkz “lmn’
U0, W,xX,y,2 U, 0,w,x,y,2

where each factor also depends on the type as specified in (167) in general. For instance

the leftmost Rf:;’, Zf is an element of RPEF whereas the next Rﬁm is the one for RBCT,
etc.

There are a couple of tetrahedron equations involving more than one locally non-finite
3D R’soneach side, which, nevertheless, allow only finitely many quintet («, v, w, x, y, z)
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in (182) thanks to the constraint (116). Such types of ABCDEEF are the following:

Type Tetrahedron equation

00Z000 : REZORLZORCZORAYC = RAORCGEZORGEORLOC,  (183)
707000 : Ri5g” Ry6 O RESORG1 = RG3ORESORAGORESS,  (184)
700070 : Rix” R3¢ R “ Rf53” = R0 O RES R3¢ O RGO, (189)
077000 : REZORFZORGEORAEC = ROFOROEOREZORAYC, (186)
0Z000Z : REZ*RES“RAIORAEC = ROFORAIO REL“RLIZ, (187)
00ZZ00 : REZORLEORGEORAY% = ROY“ROEORIECRLLC, (188)
00Z0ZO0 : REZORLEORGEZROYC = ROYORAE“ROECORLEC, (189)
00Z00Z : REI*ROE“REZOROLC = REJORGEC RAZZ ROOZ, (190)
202020 : RYZO RYZO REZZREQC = REQOREFZRYZOREZO.  (19)
0Z200Z : R REL“ROZORYGC = REFORAEO RELZ RO (192)

Note that (186), (189), (191) and (192) contain three locally non-finite 3D R’s. To
summarize so far, type OOOOOO and (168)—(181) and (183)—(192) are the complete
list of tetrahedron equations of type ABCDEF e {0,Z}° which allow finitely many
(u,v,w,x,y,z) in (182) enabling us to perform a direct check for various
(a,b,c,d,e, f)and (i, j, k,l, m, n).

When doing so, parameters in the 3D R’s are to be chosen with care. Let us illus-
trate it along the example (169). The representations 7o and w7 carry the parameter
w and the quartet (r, s, t, w), respectively. Thus the tensor components corresponding
to 1, 2, 3,4, 5 and 6 are assigned with the parameters w1, (o, i3, (r4, sS4, t4, wa), U5

and pg, respectively. R%go and Rggo are given by (118) by replacing (w1, o, 13)

with (w2, 13, ne) and (1, 13, 1s), respectively. In view of the presence of R42520 and

Theorem 10, we assume % = qd for some d € Z, and take RZ00 {4 be (103) with

456
(r1,s1,t1, wy) — (r4, S4, s, ws), o — s and w3 — pe. Similarly from Rlozfz

and Theorem 9, we postulate % = qd/ for some d’ € Z, and R%fz is given by (90)

with (73, 53, 13, w3) — (74, 54, 14, wa) and d — d’. With these choices, the tetrahedron
equation (169) depends on the seven continuous parameters (L1, L3, 45, F4, S4, 14, W4
and the two integer parameters d, d’ in addition to the ubiquitous . Parameters in the
other tetrahedron equations are to be tuned similarly. They can be arbitrary as long as
the relevant 3D R’s are non-singular, being free from the vanishing g-shifted factorials
in the denominators (if any).

Now we state a conjecture based on computer experiments, indicating a sort of co-
herence prevailing the 3D R’s obtained in Sect. 3.

Conjecture 17. The tetrahedron equations (168)—(181) and (183)—(192) are valid in
full generality of parameters.
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Typically, equalities have been checked for about 10,000 choices of the pairs
((a,b,c,d,e, f), (,j, k,1I,m,n)).

Let us turn to the tetrahedron equation in which at least one side of (182) becomes
a sum over infinitely many (u, v, w, x, y, z)’s. A typical examples is type ZZZZ77. A
possible regularization in such a circumstance is to specialize g to a root of unity and
thereby to replace F by a finite dimensional vector space. For RXXX  such a recipe is
known [5] to yield the 3D R corresponding to [2], which is closely related with the
generalized Chiral Potts models [2,4,7,22]. It is an interesting problem to explore a
similar connection for the other 3D R’s in this paper. Remark 12 is a key to such studies
concerning R999.

Finally the whole setting concerning the quantized Yang—Baxter equation RLLL =
LLLR in this paper has a natural analogue in the quantized reflection equation
K(GLGL) = (LGLG)K [17] which is related to the quantized coordinate rings of
type B and C. It awaits a discovery of new 3D K’s different from the known ones in
[15] and [14, Chap. 5 & 6].
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Appendix A: Explicit form of R456L2236L1235L1224 = LIZZ4L1Z35LZZ36R456
We write down (28) explicitly together with the corresponding choice of (abcijk) in

(24) or in Fig. 3. As mentioned around (25), there are 18 non-trivial cases. To save the
space, we write Yy = Z 7 (rgsq — tozlwaXz).

(001001) : RI®X®X) = (1 ® X ® X)R, (193)
(001010) : R(NH X ®1®Y3+53ZQ0 Y, @ X) =riz(l® X ® Y3)R, (194)
(001100) : R(—g113wiIX @ Y2 @ X +nY1®1Q@Y3) =rir3(1® Y2 ® 1)R, (195)
(010001) : riLRI® X ® Z) = (N X ®1®Z+153Y1 ® Z® X)R, (196)
(010010) : R(gratizwsX @1 X —ZQY>,® Z)
= (qgnnBwiX®1® X — Y ® Z® Y3)R, (197)
(010100) : R(tiw1 X @ Y2 ® Z + ratzw3Y1 ® 1 @ X) = r3nowa (Y1 © X ® 1)R,
(198)
(011011) : RIX®X® 1) = (X ® X ® R, (199)

(011101) : s30R(V1 @ X ® 1) = (1 X Q@ Y2 ® Z+513Y1 ® 1 ® X)R, (200)
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(011110) : S1S3R(1 XY, ® 1) = (—qt1t3w3X R, X +571®1® Yg)R, (201)
(100001) : rmROI®RZD) =(—qtizsw X QR ZRQIX+mnZQ1KQ Z)R, (202)
(100010) : buwrR(Z® X ® 1) = (t1w1X RZRJQY3+rmz3u3ZR®1® X)R,

(203)
(100100) : R(X®XQ®1) =(XQXQ1)R, (204)
(I01011) : R(H X ®ZRY3+5mB3Z Q1R X) =530(ZQ X ® 1)R, (205)
(101101) : R(—qS2t1t3w1X RIKX+YIRZR® Y3)
=(—g2nBwIXQ1®X+ZRY2® Z)R, (206)
(101110) : R(Sﬂzu&l RXR®Y3) = (S2l1w1X RIQSY3+13w3Z QY ® X)R,
(207)

(110011) : R(—qt13u3X R Z QX +502Z R 1 Z) =5153(1 R Z R 1)R, (208)
(110101) : R(l3w3Y1 RZRX X+t XR1®R Z) =s1hbuw(l1® X ® Z)R,

(209)

(110110) : R(OI®X®X) =(1® X ® X)R. (210)
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