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Abstract: We present a family of new solutions to the tetrahedron equation of the form
RLLL = LLLR, where L operator may be regarded as a quantized six-vertex model
whose Boltzmann weights are specific representations of the q-oscillator or q-Weyl
algebras. When the three L’s are associated with the q-oscillator algebra, R coincides
with the known intertwiner of the quantized coordinate ring Aq(sl3). On the other hand,
L’s based on the q-Weyl algebra lead to new R’s whose elements are either factorized
or expressed as a terminating q-hypergeometric type series.

1. Introduction

Tetrahedron equation [24] is a key to integrability for lattice models in statistical me-
chanics in three dimensions. Among its several versions and formulations, let us focus
on the so-called RLLL relation:

R456L236L135L124 = L124L135L236R456. (1)

Indices here specify the tensor components on which the associated operators act non-
trivially. When the spaces 4, 5, 6 are evaluated away appropriately, it reduces to the
Yang–Baxter equation L23L13L12 = L12L13L23 [1]. Thus (1) may be viewed as a
quantization of the Yang–Baxter equation along the direction of the auxiliary spaces 4,
5 and 6. It has appeared in several guises and studied from various point of view. See
for example [3,12,18,19,21,23] and the references therein. A survey from a quantum
group theoretical perspective is available in [14].

In this paper we take the spaces 1, 2, 3 as V = C
2 and consider the three kinds of L

operators:

LZ ∈ End(V ⊗ V ) ⊗ πZ (Wq), (2)

LX ∈ End(V ⊗ V ) ⊗ πX (Wq), (3)

LO ∈ End(V ⊗ V ) ⊗ πO(Oq). (4)
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They all have the six-vertex model structure [1], i.e., weight conservation property, with
respect to the component V ⊗ V . The last component is taken from specific representa-
tions πX , πZ of the q-Weyl algebraWq (6) on F = ⊕m∈ZC|m〉 or πO of the q-oscillator
algebra Oq (10) on F+ = ⊕m∈Z≥0C|m〉. In short, these L operators may be viewed as
quantized six-vertex models whose Boltzmann weights are End(F) or End(F+)-valued.
They naturally lead to the generalizations of (1) to

R456L
C
236L

B
135L

A
124 = L A

124L
B
135L

C
236R456, (5)

where A, B and C can be any one of Z, X and O. Let us temporarily call it the RLLL
relation of type ABC.

The main result of this paper is the explicit solution R for types ZZZ, OZZ, ZZO,
ZOZ, OOZ, ZOO, OZO, OOO, XXZ, ZXX and XZX. They turn out to be unique up
to normalization in each sector specified by a parity condition in an appropriate sense.
Elements of R are either factorized or expressed as a terminating q-hypergeometric
type series. See Table 1 in Sect. 6 for a summary. They are new except for type OOO,
where the RLLL relation [3] is equivalent (cf. Sect. 5.2 and [14, Lem 3.22]) with the
intertwining relation of the quantized coordinate ring Aq(sl3), and the R coincides with
the intertwiner obtained in [9]. We will show a similar link to Aq(sl3) also for type ZZZ
in Proposition 16.

The representations πZ and πX of the q-Weyl algebra X Z = qZ X are natural ones
in which Z and X become diagonal, respectively. See (8) and (9). They are q-analogue
of the coordinate and the momentum representations of the canonical commutation
relation, which are formally interchanged via a q-difference analogue of the Fourier
transformation. The representation πO is a restriction of the special case of πX as ex-
plained around (12). One of our motivation is to investigate systematically how these L
operators, including their mixtures, lead to a variety of solutions R for the associated
RLLL relation. The new R’s obtained in this paper will be important inputs to many
interesting future problems which will be discussed in the last section.

The layout of the paper is as follows. In Sect. 2, the L operators LZ , LX associated
with the q-Weyl algebra and LO for the q-oscillator algebra are introduced. LO is a
restriction of LX , and appeared in the earlier works [3,5,17,18,23]. The RLLL relation
is formulated. In Sects. 3 and 4, the solutions R are presented for the choices L = LZ , LO

and L = LZ , LX , respectively. Some results in the former case can be reproduced as
a limit of the latter. In Sect. 5, a connection to the representation theory of Aq(sl3) is
explained. A new result is Proposition 16. Section6 contains a summary and discussion
on the tetrahedron equation of the form RRRR = RRRR. Conjecture 17 is promising.
Appendix A provides the list of explicit forms of the RLLL relation for type ZZZ.

2. Quantized Six-Vertex Models

We assume that q is generic throughout the paper.

2.1. q-Weyl algebra Wq and q-oscillator algebra Oq . Let Wq be the q-Weyl algebra,
which is an associative algebra with generators X±1, Z±1 obeying the relation

X Z = qZ X (6)
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and those following from the obvious ones XX−1 = X−1X = Z Z−1 = Z−1Z = 1.
Introduce the infinite dimensional vector spaces1:

F =
⊕

m∈Z
C|m〉, F+ =

⊕

m∈Z≥0

C|m〉. (7)

The algebra Wq has irreducible representations πZ (resp. πX ) on F where Z (resp. X )
is diagonal:

πZ : X |m〉 = |m − 1〉, X−1|m〉 = |m + 1〉, Z |m〉 = qm |m〉, Z−1|m〉 = q−m |m〉,
(8)

πX : X |m〉 = qm |m〉, X−1|m〉 = q−m |m〉, Z |m〉 = |m + 1〉, Z−1|m〉 = |m − 1〉.
(9)

They are q-analogue of the “coordinate” and the “momentum” representations of the
canonical commutation relation.

Let Oq be the q-oscillator algebra, which is an associative algebra with generators
a+, a−,k obeying the relation

k a+ = q a+k, k a− = q−1a−k, a−a+ = 1 − q2k2, a+a− = 1 − k2. (10)

There is an embedding ι : Oq ↪→ Wq given by

ι : k �→ X, a+ �→ Z , a− �→ Z−1(1 − X2). (11)

The composition Oq
ι

↪→ Wq
πX−→ End(F) yields the representation:

k|m〉 = qm |m〉, a+|m〉 = |m + 1〉, a−|m〉 = (1 − q2m)|m − 1〉. (12)

Due to a−|0〉 = 0, the subspace F+ ⊂ F becomes invariant and irreducible. We let πO :
Oq → End(F+) denote the resulting irreducible representation obtained by restricting
(12) to m ≥ 0.

2.2. 3D L operator. Let V = Cv0 ⊕ Cv1 be the two dimensional vector space. We
consider q-Weyl algebra-valued L operator

L = Lr,s,t,w =
∑

a,b,i, j=0,1

Eai ⊗ Ebj ⊗ Lab
i j ∈ End(V ⊗ V ) ⊗ Wq , (13)

Lab
i j = 0 unless a + b = i + j, (14)

L00
00 = r, L11

11 = s, L10
10 = twX, L01

01 = −qt X, L10
01 = Z ,

L01
10 = Z−1(rs − t2wX2). (15)

Here r, s, t, w are parameters whose dependence has been suppressed in the notation
Lab
i j . They are assumed to be generic throughout. The symbol Ei j denotes the matrix

unit on V acting on the basis as Ei jvk = δ jkvi . The L operator L may be viewed as a
quantized six-vertex model where the Boltzmann weights areWq -valued. See Fig. 1 for
a graphical representation.

1 The actual coefficient field will contain many parameters introduced subsequently including q.
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Fig. 1. L = Lr,s,t,w as aWq -valued six-vertex model. Assigning another perpendicular arrow corresponding
to the Wq -modules leads to a unit of the three dimensional (3D) lattice. In this context, L will also be called
the 3D L operator
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Fig. 2. L = L1,1,μ−1,μ2 as an Oq -valued six-vertex model. The last two relations in (10) is a quantization
of the free Fermion condition [1, Fig. 10.1, eq.(10.16.4)|ω7=ω8=0]

Note that L does not contain X−1, which will be a key in Remark 1 below. Although
t can be absorbed into the normalization of X , we keep it for convenience. It is easy to
see

(Lr,s,t,w)−1 = (rs)−1Ls,r,tw,w−1 . (16)

For the special choice of the parameters (r, s, t, w) = (1, 1, μ−1, μ2), L only contains
the combinations appearing in the RHS of (11) which can be pulled back to the q-
oscillator algebra. Therefore we regard it as Oq -valued, i.e.,

L1,1,μ−1,μ2 ∈ End(V ⊗ V ) ⊗ Oq . (17)

Its elements are given by

L00
00 = 1, L11

11 = 1, L10
10 = μk, L01

01 = −qμ−1k, L10
01 = a+, L01

10 = a−. (18)

See Fig. 2.
Now we introduce the three types of (represented) L operators:

LZ = LZ
r,s,t,w = (1 ⊗ 1 ⊗ πZ )(Lr,s,t,w) ∈ End(V ⊗ V ⊗ F), (19)

LX = LX
r,s,t,w = (1 ⊗ 1 ⊗ πX )(Lr,s,t,w) ∈ End(V ⊗ V ⊗ F), (20)

LO = LO
μ = (1 ⊗ 1 ⊗ πO)(L1,1,μ−1,μ2) ∈ End(V ⊗ V ⊗ F+). (21)

From (16) and (17) we have

(LZ
r,s,t,w)−1 = (rs)−1LZ

s,r,tw,w−1 , (LX
r,s,t,w)−1 = (rs)−1LX

s,r,tw,w−1 ,

(LO
μ )−1 = LO

μ−1 . (22)

Remark 1. The operator LZ in (19) keeps the subspace V ⊗ V ⊗ ⊕
m≤n C|m〉 ⊂ F

invariant for any n ∈ Z.
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Fig. 3. A pictorial representation of the quantized Yang–Baxter equation (24)

2.3. RLLL relation. Quantized six-vertex model satisfies the quantized Yang–Baxter
equation. It is a version of the tetrahedron equation having the form of the Yang–Baxter
equation up to conjugation:

R456L236L135L124 = L124L135L236R456. (23)

We also call it RLLL relation. The indices denote the tensor components on which the
respective operators act non-trivially. The operator L will be taken as LZ , LX or LO in
(19)–(21). The conjugation operator R, which we call 3D R in this paper, will be the
main object of study in what follows. In terms of the components of L , (23) reads as

R
∑

α,β,γ

(Lαβ
i j ⊗ Laγ

αk ⊗ Lbc
βγ ) =

∑

α,β,γ

(Lab
αβ ⊗ Lαc

iγ ⊗ Lβγ

jk ) R (24)

for arbitrary a, b, c, i, j, k ∈ {0, 1}. See Fig. 3.
From the conservation condition (14), the Eq. (24) becomes 0 = 0 unless a +b + c =

i + j + k. There are 20 choices of (a, b, c, i, j, k) ∈ {0, 1}6 satisfying it. Among them,
the cases (0, 0, 0, 0, 0, 0) and (1, 1, 1, 1, 1, 1) yield the trivial relation R(1 ⊗ 1 ⊗ 1) =
(1⊗1⊗1)R for any choice of L = LZ , LX , LO . Thus there are 18 non-trivial equations
on R. By setting2

R(|i〉 ⊗ | j〉 ⊗ |k〉) =
∑

a,b,c

Ra,b,c
i, j,k |a〉 ⊗ |b〉 ⊗ |c〉, (25)

they are translated into linear recursion relations on the matrix elements Ra,b,c
i, j,k . We say

that R is locally finite if the sum (25) consists of finitely many terms, i.e., Ra,b,c
i, j,k = 0 for

all but finitely many (a, b, c) for any given (i, j, k).

3. Solutions of RLLL Relation for L = LZ and LO

In this section we treat the cases in which L124, L135 and L236 are chosen as LZor LO

independently. It turns out that they always admit a unique R up to normalization in a
sector specified by appropriate parity conditions. Their explicit forms will be presented
case by case. We write the characteristic function as θ(true) = 1, θ(false) = 0, δab =

2 a, b, c, i, j, k here are labels of the basis of F or F+ and have different meaning from those in (24) labeling
the basis of V .
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θ(a = b) and use the following notation:

(z; q)m = (z; q)∞
(zqm; q)∞

, (z; q)∞ =
∏

n≥0

(1 − zqn),

(
n

m

)

q
= (q; q)n

(q; q)m(q; q)n−m
,

(26)

2φ1

(
α, β

γ
; q, z

)
=

∑

n≥0

(α; q)n(β; q)n

(γ ; q)n(q; q)n
zn . (27)

The above convention for (z; q)m valid for any m ∈ Z is standard and essential in
the working below. In particular 1/(q; q)a = 0 for a ∈ Z<0, and we will freely use
(z; q)m = 1/(zqm; q)−m and (z; q)m/(z; q)n = (zqn; q)m−n , etc. The q-binomial

(n
m

)
q

is zero unless 0 ≤ m ≤ n. The q-hypergeometric series will always appear in the
terminating situation, i.e., α or β ∈ qZ≤0 .

3.1. ZZZ type. We consider the RLLL relation

R456L
Z
236L

Z
135L

Z
124 = LZ

124L
Z
135L

Z
236R456, (28)

where LZ
124, L

Z
135, L

Z
236 are given by (19) with (r, s, t, w) = (r1, s1, t1, w1),

(r2, s2, t2, w2), (r3, s3, t3, w3). In this case, R ∈ End(F ⊗ F ⊗ F) and the sum (25)
extends over a, b, c ∈ Z. The equality (28) holds in End(V ⊗ V ⊗ V ⊗ F ⊗ F ⊗ F).

The 18 equations (24) corresponding to (28) have been listed in Appendix A. As
an illustration consider the cases (a, b, c, i, j, k) = (0, 0, 1, 0, 0, 1), (1, 0, 0, 1, 0, 0),
(1, 0, 0, 0, 0, 1), (1, 1, 0, 0, 1, 1), (1, 0, 1, 0, 1, 1) and (1, 1, 0, 1, 0, 1):

R(1 ⊗ X ⊗ X) = (1 ⊗ X ⊗ X)R, R(X ⊗ X ⊗ 1) = (X ⊗ X ⊗ 1)R, (29)

− r1r3R(1 ⊗ Z ⊗ 1) = (qt1t3w1X ⊗ Z ⊗ X − r2Z ⊗ 1 ⊗ Z)R, (30)

R(−qt1t3w3X ⊗ Z ⊗ X + s2Z ⊗ 1 ⊗ Z) = s1s3(1 ⊗ Z ⊗ 1)R, (31)

t1R(X ⊗ Z ⊗ Z−1(r3s3 − t23w3X
2) + s2t3Z ⊗ 1 ⊗ X) = s3t2(Z ⊗ X ⊗ 1)R, (32)

R(t3w3Z
−1(r1s1−t21w1X

2) ⊗ Z ⊗ X+s2t1w1X ⊗ 1 ⊗ Z)=s1t2w2(1 ⊗ X ⊗ Z)R. (33)

Taking their matrix elements for the transition |i〉 ⊗ | j〉 ⊗ |k〉 �→ |a〉 ⊗ |b〉 ⊗ |c〉, we
get the recursion relations for elements of R:

Ra,b,c
i, j−1,k−1 = Ra,b+1,c+1

i, j,k , Ra,b,c
i−1, j−1,k = Ra+1,b+1,c

i, j,k , (34)

(qa+cr2 − q jr1r3)R
a,b,c
i, j,k = q1+bt1t3w1R

a+1,b,c+1
i, j,k , (35)

(qi+ks2 − qbs1s3)R
a,b,c
i, j,k = q1+ j t1t3w3R

a,b,c
i−1, j,k−1, (36)

q jr3s3t1R
a,b,c
i−1, j,k − q j+2t1t

2
3w3R

a,b,c
i−1, j,k−2 + qi+ks2t3R

a,b,c
i, j,k−1 = qa+ks3t2R

a,b+1,c
i, j,k ,

(37)

q jr1s1t3w3R
a,b,c
i, j,k−1 − q j+2t21 t3w1w3R

a,b,c
i−2, j,k−1

+ qi+ks2t1w1R
a,b,c
i−1, j,k = qc+i s1t2w2R

a,b+1,c
i, j,k . (38)

Each recursion relation is actually a collection of infinitely many linear equations on
infinitely many Ra,b,c

i, j,k ’s depending on the choice of (a, b, c, i, j, k) ∈ Z
6.
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Given two integers d and d ′, we write the pair (d mod 2, d ′ mod 2) ∈ Z2×Z2 simply
as (d, d ′)mod 2.

Proposition 2. (i) Any recursion relation consists of only those Ra,b,c
i, j,k ’s having the same

parity pair (d1, d2)mod 2, where d1 = a+c− j and d2 = b− i−k. (ii) Each subsystem of
recursion relations corresponding to a given (d1, d2)mod 2 allows a solution of dimension
at most one.

Proof. Claim (i) can be checked directly. Let us prove Claim (ii). First, we reduce b, c
and k to 0 by using (34) and (36). The result reads

Ra,b,c
i, j,k = q(c+i− j)(c−k)

(
t1t3w3

s2

)−c+k 1

(qb−i−k s1s3
s2

; q2)−c+k
Ra−b+c,0,0
i−k−b+2c, j−b,0. (39)

Applying this to (37) and (38) with b = c = k = 0 we get

q jr3t
2
1w3R

a,0,0
i−1, j,0 + q− j s1(q

i+1s2 − s1s3)R
a,0,0
i+1, j,0 = qat1t2w3R

a−1,0,0
i−1, j−1,0, (40)

q2s3t
2
1w1R

a,0,0
i−1, j,0 + r1(q

i+1s2 − s1s3)R
a,0,0
i+1, j,0 = qi+1t1t2w2R

a−1,0,0
i−1, j−1,0. (41)

Eliminating Ra,0,0
i+1, j,0 here leads to the recursion relation

Ra,0,0
i, j,0 = qi

t2w2

s3t1w1

1 − qa−i+ j−2 r1w3
s1w2

1 − q2 j−2 r1r3w3
s1s3w1

Ra−1,0,0
i, j−1,0 . (42)

We remark that combination of (39) and (42) allows one to express Ra,b,c
i, j,k in terms of

R0,0,0
i−k−b+2c, j−a−c,0 whose indices satisfy i − k −b+2c ≡ d2 and j −a− c ≡ d1 mod 2.

Next, consider (35) and (37) again with a = b = c = k = 0. Reducing them to the
relations among R0,0,0

•,•,0 by the above remark, and taking a suitable combination, we get

R0,0,0
i, j,0 = q2+i

t22w2

r2s1s3

(1 − q j−2+i r3w2
s3w1

)(1 − q j−2−i r1w3
s1w2

)

(1 − q j r1r3
r2

)(1 − q2 j−2 r1r3w3
s1s3w1

)(1 − q2 j−4 r1r3w3
s1s3w1

)
R0,0,0
i, j−2,0, (43)

R0,0,0
i, j,0 = q−2i+ j+2 s3t

2
1w1w3

s1s2w2

1 − qi+ j−2 r3w2
s3w1

(1 − q−i s1s3
s2

)(1 − q−i+ j r1w3
s1w2

)
R0,0,0
i−2, j,0. (44)

Thus we find any Ra,b,c
i, j,k is uniquely expressed as R0,0,0

p2,p1,0
times known factors, where

p1, p2 ∈ {0, 1} are determined by p1 ≡ d1, p2 ≡ d2 mod 2. ��
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For a, b, c, i, j, k ∈ Z set

Ra,b,c
i, j,k =

(
r2

t1t3w1

) d1
2

(
s2

t1t3w3

) d2
2

(
t2
s1t3

) d3
2

(
t2w2

s3t1w1

) d4
2

× qϕ
d2

(
s1s3
s2

)
d3

(
r3w2
s3w1

)
d4

(
r1w3
s1w2

)

−d1

(
q2r1r3
r2

)
d3+d4

(
r1r3w3
s1s3w1

) , (45)

ϕ = 1

4

(
(d1 − d2)(d1 + d2 + d3 + d4) + d3d4

) − d1, (46)
(
d1
d2

)
=

(
a + c − j
b − i − k

)
,

(
d3
d4

)
=

(−a − b + c + i + j − k
a − b − c − i + j + k

)
, (47)

m(z) = 1

(zqm; q2)∞ (m ∈ Z), (48)

where d1 and d2 are the same as those in Proposition 2. It is easy to see ϕ ∈ Z + (d1 −
1)d2/2. The dependence on t1, t2, t3 is actually by the combination t−a+i

1 t−b+ j
2 t−c+k

3 ,
which corresponds to a similarity transformation.

By Proposition 2, we know that the solution R of (28), if exists, is unique up to
normalization in each sector specified by (d1, d2)mod 2. The following result establishes
the existence together with an explicit form.

Theorem 3. The 3D R defined by (45)–(48) satisfies the RLLL relation (28).

Proof. From Proposition 2 and d3 ≡ d4 ≡ d1 + d2 mod 2, the replacement

m(z) → ̃m(z) =
{

(z; q2)∞/(zqm; q2)∞ = (z; q2)m/2 (m ∈ 2Z),

(zq; q2)∞/(zqm; q2)∞ = (zq; q2)(m−1)/2 (m ∈ 2Z + 1)

(49)

changes the individual recursion relations only by an overall scalar. The results become
the relations among finitely many rational functions. To check them is straightforward.

��
As the above proof indicates, one may just postulate the property

m+2(z) = (1 − zqm)m(z) (50)

instead of specifying m(z) concretely as (48). Another option of such sort is to make
the replacement

1/−d1

(
q2r1r3
r2

)
→ q− d21

4 + d1
2

(
−r1r3

r2

) d1
2

d1

(
r2
r1r3

)
, (51)

which makes the formula (45) more symmetric with respect to d1 and d2 at the cost of
the appearance of the factor (−1)d1/2. The R is not locally finite. From (22), its inverse
is given by

R−1 = (scalar)R |ri↔si ,ti→tiwi ,wi→w−1
i (i=1,2,3) . (52)
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R[0, 0]

F0,0 F0,1 F1,0 F1,1

R[1, 1]

F0,1 F0,0 F1,1 F1,0

R[1, 0]

F0,0 1,0 1,1 0,1

R[0, 1]

F0,0 0,1 1,1F F F F F F1,0

Fig. 4. Action of the four fundamental solutions R[0, 0], R[1, 0], R[0, 1], R[1, 1] on the subspaces Fp1,p2
defined in (53). For example in R[1, 0], the condition (d1, d2) = (a + c − j, b − i − k) ≡ (1, 0) on
|i〉 ⊗ | j〉 ⊗ |k〉 �→ |a〉 ⊗ |b〉 ⊗ |c〉 enforces R[1, 0]F0,0 ⊆ F1,0, R[1, 0]F1,0 ⊆ F1,1, R[1, 0]F1,1 ⊆ F0,1
and R[1, 0]F0,1 ⊆ F0,0

The parity condition on (d1, d2) mixes the indices i, j, k labeling incoming states
and a, b, c concerning outgoing ones. See (25). To illustrate the resulting sectors, we
introduce the subspace

Fp1,p2 =
⊕

i+k≡p1, j≡p2 mod 2

C|i〉 ⊗ | j〉 ⊗ |k〉 ⊂ F⊗3 (p1, p2 = 0, 1). (53)

From the proof of Proposition 2, the solution space of R is four dimensional whose basis
corresponds to the “initial condition” of the recursion relation taken as
(R0,0,0

0,0,0, R
0,0,0
1,0,0 , R

0,0,0
0,1,0 , R

0,0,0
1,1,0) = (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1). Call

them R[0, 0], R[0, 1], R[1, 0], R[1, 1] respectively so that R[p1, p2] is the base corre-
sponding to the choice R0,0,0

p2,p1,0
= 1 according to the remark after (42).3 Then they act

on (53) as in Fig. 4.
Similar decompositions according to a parity condition also take place in the forth-

coming Theorems 9, 10, 11, 13, 14 and 15.

Remark 4. Let LZ± be the 3D L operator (19) with πZ in (8) replaced by

X |m〉 = |m ∓ 1〉, X−1|m〉 = |m ± 1〉, Z |m〉 = q±m |m〉, Z−1|m〉 = q∓m |m〉.
(54)

Theorem 3 is concerned with LZ = LZ+ . Consider a variant of (28) given by

R(ε1, ε2, ε3)456L
Zε3
236 L

Zε2
135 L

Zε1
124 = L

Zε1
124 L

Zε2
135 L

Zε3
236 R(ε1, ε2, ε3)456 (ε1, ε2, ε3 ∈ {−1, 1}).

(55)

Then elements of R(ε1, ε2, ε3) is given by

R(ε1, ε2, ε3)
a,b,c
i, j,k = Rε1a, ε2b, ε3c

ε1i, ε2 j, ε3k
, (56)

where the RHS is defined by (45)–(48) which corresponds to R(+,+,+).

3 The formula (45) has not been so normalized.
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3.2. OZZ type. We consider the RLLL relation

R456L
Z
236L

Z
135L

O
124 = LO

124L
Z
135L

Z
236R456, (57)

where LZ
135 and LZ

236 are given by (19) with (r, s, t, w) = (r2, s2, t2, w2) and
(r3, s3, t3, w3), respectively. In this case, R ∈ End(F+⊗F⊗F) and the sum (25) extends
over a ∈ Z≥0 and b, c ∈ Z. The equality (57) holds in End(V ⊗V ⊗V ⊗ F+ ⊗ F ⊗ F).

Here are some examples of the RLLL relation (57):

Ra,b,c
i, j−1,k−1 = Ra,b+1,c+1

i, j,k , qi Ra,b,c
i, j−1,k = qa Ra,b+1,c

i, j,k , (58)

qa+cr2R
a,b,c
i, j,k − qkμt2R

a,b,c
i, j−1,k + qb(1 − q2a+2)μt3R

a+1,b,c+1
i, j,k = 0, (59)

qcr2R
a−1,b,c
i, j,k − q jr3R

a,b,c
i, j,k − q1+a+bμt3R

a,b,c+1
i, j,k = 0, (60)

qi+ j r3s3R
a,b,c
i, j,k + qkμs2t3R

a,b,c
i+1, j,k−1 − qkμs3t2R

a−1,b+1,c
i, j,k − q2+i+ j t23w3R

a,b,c
i, j,k−2 = 0.

(61)

The boundary condition

Ra,b,c
i, j,k = 0 if min(a, i) < 0. (62)

has to be taken into account. Thus for example when a = 0, (60) is to be understood as
q jr3R

0,b,c
i, j,k + q1+bμt3R

0,b,c+1
i, j,k = 0.

For a, b, c, i, j, k ∈ Z, set

Ra,b,c
i, j,k =

(
r2
r3

)a (
s3
s2

)i ( t2w2

μs2

)−b+ j (
−μt3

r3

)−c+k

× 1

(q2; q2)a q
(a−b+ j−1)c−(i−b+ j−1)k−aj+bi

×
i∑

β=0

qβ(β+2 j−2b−1) (−y)β
(
i

β

)

q2

(
xq2k−2c−2β+2; q2

)

a
, (63)

x = μ2s2
r2w2

, y = r3w3

μ2s3
, z = xq2k−2c+2. (64)

For the convenience of the proof of Theorem 5, we have enlarged the range of the indices
a and i fromZ≥0 toZ. The property (62) is satisfied thanks to the factor

( i
β

)
q2

/(q2; q2)a .
The formula (63) is also presented as a terminating q-hypergeometric series:

Ra,b,c
i, j,k = θ(i ≥ 0)

(
r2
r3

)a (
s3
s2

)i ( t2w2

μs2

)−b+ j (
−μt3

r3

)−c+k

× (z; q2)a
(q2; q2)a q

(a−b+ j−1)c−(i−b+ j−1)k−aj+bi

× 2φ1

(
q−2i , z−1q2

z−1q−2a+2 ; q2, yq2i+2 j−2a−2b
)

. (65)

Theorem 5. The RLLL relation (57) has a unique solution R up to normalization. It is
given by (63)–(65).
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Proof. The first claim, i.e., uniqueness, can be shown by an argument similar to Propo-
sition 2. To prove the second claim, let Sai, j−b,k−c(x, y) denote the second line of (63).

One sees that Sai, j,k(x, y) = ∑i
β=0(−y)β Sai, j,k,β(x),

where Sai, j,k,β(x) = qβ(β+2 j−1)
( i
β

)
q2

(xq2k−2β+2; q2)a is a polynomial in x and y.

The Eq. (57) is reduced to the recursion relations among Sai, j,k(x, y) with coefficients

including q, qa, qi , q j , qk, x, y only. By picking the coefficients of yβ , they are reduced
to the relations containing finitely many Sai, j,k,β(x)’s. To check them is straightforward.
This proves the recursion relations for generic a and i . This fact together with (62) assure
that they are also valid in the vicinity of a = 0 and i = 0. ��

As for the last point of the proof, a similar and more detailed explanation is available
in the proof of Theorem 9. The R is not locally finite.

3.3. ZZO type. We consider the RLLL relation

R456L
O
236L

Z
135L

Z
124 = LZ

124L
Z
135L

O
236R456, (66)

where LZ
124 and LZ

135 are given by (19) with (r, s, t, w) = (r1, s1, t1, w1) and
(r2, s2, t2, w2), respectively. In this case, R ∈ End(F⊗F⊗F+) and the sum (25) extends
over a, b ∈ Z and c ∈ Z≥0. The equality (66) holds in End(V ⊗V ⊗V ⊗ F ⊗ F ⊗ F+).

Here are some examples of the RLLL relation (66):

Ra,b,c
i−1, j−1,k = Ra+1,b+1,c

i, j,k , qk Ra,b,c
i, j−1,k = qcRa,b+1,c

i, j,k , (67)

qa+cμr2R
a,b,c
i, j,k − qi t2w2R

a,b,c
i, j−1,k + qb(1 − q2c+2)t1w1R

a+1,b,c+1
i, j,k = 0, (68)

qaμr2R
a,b,c−1
i, j,k − q jμr1R

a,b,c
i, j,k − q1+b+ct1w1R

a+1,b,c
i, j,k = 0, (69)

q j+kμr1s1R
a,b,c
i, j,k − qi s1t2w2R

a,b+1,c−1
i, j,k − q2+ j+kμt21w1R

a,b,c
i−2, j,k

+ qi s2t1w1R
a,b,c
i−1, j,k+1 = 0. (70)

One has the boundary condition analogous to (62):

Ra,b,c
i, j,k = 0 if min(c, k) < 0. (71)

For a, b, c, i, j, k ∈ Z≥0, set

Ra,b,c
i, j,k =

(
r2
r1

)c (
s1
s2

)k (
μt2
s2

)−b+ j (
− t1w1

μr1

)−a+i

× 1

(q2; q2)c q
(c−b+ j−1)a−(k−b+ j−1)i−cj+bk

×
k∑

β=0

qβ(β+2 j−2b−1) (−y)β
(
k

β

)

q2

(
xq2i−2a−2β+2; q2

)

c
, (72)

x = s2w2

μ2r2
, y = μ2r1

s1w1
, z = xq2i−2a+2, (73)
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where we have redefined x, y, z changing (64). It is also presented as a terminating
q-hypergeometric series:

Ra,b,c
i, j,k = θ(k ≥ 0)

(
r2
r1

)c (
s1
s2

)k (
μt2
s2

)−b+ j (
− t1w1

μr1

)−a+i

× (z; q2)c
(q2; q2)c q

(c−b+ j−1)a−(k−b+ j−1)i−cj+bk

× 2φ1

(
q−2k, z−1q2

z−1q−2c+2 ; q2, yq2 j+2k−2b−2c
)

. (74)

Theorem 6. The RLLL relation (66) has a unique solution R up to normalization. It is
given by (72)–(74).

The proof is similar to Theorem 5. The R is not locally finite.

3.4. ZOZ type. We consider the RLLL relation

R456L
Z
236L

O
135L

Z
124 = LZ

124L
O
135L

Z
236R456, (75)

where LZ
124 and L

Z
236 are givenby (19)with (r, s, t, w) = (r1, s1, t1, w1) and (r3, s3, t3, w3),

respectively. In this case, R ∈ End(F ⊗ F+ ⊗ F) and the sum (25) extends over a, c ∈ Z

and b ∈ Z≥0. The equality (75) holds in End(V ⊗ V ⊗ V ⊗ F ⊗ F+ ⊗ F).
Here are some examples of the RLLL relation (75):

q j Ra,b,c
i, j,k−1 = qbRa,b,c+1

i, j,k , q j Ra,b,c
i−1, j,k = qbRa+1,b,c

i, j,k , (76)

qa+c Ra,b,c
i, j,k − r1r3R

a,b,c
i, j+1,k − qt1t3w1R

a+1,b−1,c+1
i, j,k = 0, (77)

qi+k Ra,b,c
i, j,k − s1s3R

a,b−1,c
i, j,k − qt1t3w3R

a,b,c
i−1, j+1,k−1 = 0, (78)

qa+ j+kr1R
a,b,c
i, j,k − μr1s1t3R

a,b−1,c+1
i, j,k − qa+cμt1R

a+1,b,c
i, j,k + μt21 t3w1R

a+2,b−1,c+1
i, j,k = 0.

(79)

The boundary condition is given by

Ra,b,c
i, j,k = 0 if min(b, j) < 0. (80)

For a, b, c, i, j, k ∈ Z≥0, set

Ra,b,c
i, j,k = θ( j ≥ 0)

(s1s3)b

(r1r3) j

(
r1
μt1

)a−i (
μr3
t3w3

)c−k

× 1

(q2; q2)b q
( j−b)(a+c)+b(a+c−i−k)−(i−a)(k−c)

×
b∑

β=0

qβ(β+2i−2a+1) (−y)β
(
b

β

)

q2

(
q2 j+2k−2c−2βx−1; q−2

)

β

×
(
q2k−2c−2β+2x−1; q2

)

b−β
, (81)

x = μ2s1
r1w1

, y = μ2r3
s3w3

. (82)
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This can also be expressed as a terminating series similar to a generalized
q-hypergeometric 3φ2:

Ra,b,c
i, j,k = θ( j ≥ 0)

(s1s3)b

(r1r3) j

(
r1
μt1

)a−i (
μr3
t3w3

)c−k

× (q2−2c+2k x−1, q2)b
(q2; q2)b q( j−b)(a+c)+b(a+c−i−k)−(i−a)(k−c)

×
b∑

β=0

(q2i+2 j−2a−2b+2y)β
(q−2b; q2)β(q2c−2k x; q2)β(q2c−2 j−2k x; q2)2β

(q2; q2)β(q−2b+2c−2k x; q2)2β(q2c−2 j−2k x; q2)β .

(83)

The difference from 3φ2 is the factors (•; q2)2β .
Theorem 7. The RLLL relation (75) has a unique solution R up to normalization. It is
given by (81)–(82).

The proof is similar to Theorem 5. The R is not locally finite.

3.5. OOZ type. We consider the RLLL relation

R456L
Z
236L

O
135L

O
124 = LO

124L
O
135L

Z
236R456, (84)

where LO
124 and LO

135 are given by (21) with μ = μ1 and μ2, respectively, and LZ
236 is

given by (19) with (r, s, t, w) = (r3, s3, t3, w3). In this case, R ∈ End(F+ ⊗ F+ ⊗ F)

and the sum (25) extends over a, b ∈ Z≥0 and c ∈ Z. The equality (84) holds in
End(V ⊗ V ⊗ V ⊗ F+ ⊗ F+ ⊗ F).

Here are some examples of the RLLL relation (84):

(qi+ j − qa+b)Ra,b,c
i, j,k = 0, q j Ra,b,c

i, j,k−1 = qbRa,b,c+1
i, j,k , (85)

(μ2q
b+c − μ1q

i+k)Ra,b,c
i, j,k = (1 − q2i )t3w3R

a,b,c
i−1, j+1,k−1, (86)

(μ−1
2 q j+k − μ−1

1 qa+c)Ra,b,c
i, j,k = (1 − q2a+2)t3R

a+1,b−1,c+1
i, j,k , (87)

s3R
a,b−1,c
i, j,k − qk Ra,b,c

i+1, j,k + qi+1μ−1
1 t3w3R

a,b,c
i, j+1,k−1 = 0, (88)

qkμ1μ2t3R
a,b,c
i+1, j,k−1 + qiμ2r3s3R

a,b,c
i, j+1,k − qb+kμ1s3R

a−1,b,c
i, j,k

− q2+iμ2t
2
3w3R

a,b,c
i, j+1,k−2 = 0. (89)

As these examples indicate, every recursion relation consists of those Ra,b,c
i, j,k having the

same parity of a − c + j + k.
For a, b, c, i, j, k, d ∈ Z, set

R(d)
a,b,c
i, j,k = θ(e ∈ Z)θ(min(i, j) ≥ 0)δa+bi+ j s

i
3(μ2t3)

−a
(

μ2s3
t3w3

) j
(
t23w3

r3s3

)e

× qcj−bk (q2+2e−2 j ; q2) j (q2a+2; q2)i−a

(q2; q2) f (q2a−2e; q2)e−a
, (90)

e = 1

2
(a − c + j + k + d), f = 1

2
(b + c + i − k − d). (91)
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For the convenience of the proof of Theorem 9, we have defined R(d)
a,b,c
i, j,k enlarging the

range of the indices a, b, i, j from Z≥0 to Z. We note that R(d)
a,b,c
i, j,k = qbd R(0)a,b,c

i, j,k+d

and θ(e ∈ Z)δa+bi+ j = θ( f ∈ Z)δa+bi+ j since e + f = i + j ∈ Z holds when a + b = i + j .
The combinations e and f can be either positive or negative.

Lemma 8.

R(d)
a,b,c
i, j,k = 0 if min(a, b, i, j) < 0. (92)

Proof. The assertion is obvious if min(i, j) < 0. Thus we are to show that min(a, b) <

0 leads to R(d)
a,b,c
i, j,k = 0 assuming that min(i, j) ≥ 0. Suppose a < 0. Then (90)

indeed vanishes due to (q2a+2; q2)i−a = (q2a+2; q2)∞/(q2i+2; q2)∞ = 0. Suppose
b < 0. We may further concentrate on the non-trivial case e ≥ a since otherwise
1/(q2a−2e; q2)e−a = 0. Then 1/(q2; q2) f = 0 because of f = i + j−e = (a−e)+b <

0. ��
When a, b, i, j ≥ 0, R(d)

a,b,c
i, j,k is divergence-free and R(d)

a,b,c
i, j,k = 0 unless e ≥

max(a, j) and f ≥ 0. From these conditions it follows that

R(d)
a,b,c
i, j,k = 0 unless |b − i | ≤ k − c + d ≤ b + i. (93)

Theorem 9. The RLLL relation (84) has a non-trivial solution if and only if d :=
logq

(
μ1
μ2

) ∈ Z. Up to overall normalization it is given by Ra,b,c
i, j,k = R(d)

a,b,c
i, j,k specified

by (90) and (91).

Proof. The only if part of the first claim can be shown by an argument similar to Propo-
sition 2. To show the rest, one first checks that the formula (90) satisfies the recursion
relation when a, b, c, i, j, k are generic, i.e., when θ(min(i, j) ≥ 0) = 1. This can be
done easily since (90) is factorized. The remaining task is to verify the boundary con-
dition (92) to assure that the contribution from the “unwanted terms” to the recursion
relation is zero. This has been guaranteed by Lemma 8. For example in (88) at b = 0,
i.e.,

s3R
a,−1,c
i, j,k − qk Ra,0,c

i+1, j,k + qi+1μ−1
1 t3w3R

a,0,c
i, j+1,k−1 = 0, (94)

the first term is unwanted. ��
From (90) and (93), R is locally finite. From (22), its inverse is given by

R−1 = R |
μi→μ−1

i (i=1,2), r3↔s3,t3→t3w3,w3→w−1
3

, (95)

where the normalization has been deduced from Ra,b,c
0,0,0(d) = δa0δ

b
0δ

c
d and Ra,b,c

0,0,d(−d) =
δa0δ

b
0δ

c
0.
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3.6. ZOO type. We consider the RLLL relation

R456L
O
236L

O
135L

Z
124 = LZ

124L
O
135L

O
236R456, (96)

where LO
135 and LO

236 are given by (21) with μ = μ2 and μ3, respectively, and LZ
124 is

given by (19) with (r, s, t, w) = (r1, s1, t1, w1). In this case, R ∈ End(F ⊗ F+ ⊗ F+)
and the sum (25) extends over a ∈ Z and b, c ∈ Z≥0. The equality (96) holds in
End(V ⊗ V ⊗ V ⊗ F ⊗ F+ ⊗ F+).

Here are some examples of the RLLL relation (96):

(q j+k − qb+c)Ra,b,c
i, j,k = 0, q j Ra,b,c

i−1, j,k = qbRa+1,b,c
i, j,k , (97)

(μ−1
2 qa+b − μ−1

3 qi+k)Ra,b,c
i, j,k = (1 − q2k)t1R

a,b,c
i−1, j+1,k−1, (98)

(μ2q
i+ j − μ1q

a+c)Ra,b,c
i, j,k = (1 − q2c+2)t1w1R

a+1,b−1,c+1
i, j,k , (99)

s1R
a,b−1,c
i, j,k − qi Ra,b,c

i, j,k+1 + qk+1μ3t1R
a,b,c
i−1, j+1,k = 0, (100)

qb+iμ2s1R
a,b,c−1
i, j,k + q2+kμ3t

2
1w1R

a,b,c
i−2, j+1,k − qi t1w1R

a,b,c
i−1, j,k+1 − qkμ3r1s1R

a,b,c
i, j+1,k = 0.

(101)

As these examples indicate, every recursion relation consists of those Ra,b,c
i, j,k having the

same parity of −a + c + i + j . The boundary condition is given by

Ra,b,c
i, j,k = 0 if min(b, c, j, k) < 0. (102)

For a, b, c, i, j, k, d ∈ Z, set

R(d)
a,b,c
i, j,k = θ(e ∈ Z)θ(min( j, k) ≥ 0)δb+cj+k s

k
1

(
μ2

t1w1

)c (
s1

μ2t1

) j
(
t21w1

r1s1

)e

× qaj−bi (q
2+2e−2 j ; q2) j (q2+2c; q2)k−c

(q2; q2) f (q2c−2e; q2)e−c
, (103)

e = 1

2
(−a + c + i + j − d), f = 1

2
(a + b − i + k + d). (104)

We note that R(d)
a,b,c
i, j,k = q−bd R(0)a,b,c

i−d, j,k and θ(e ∈ Z)δb+cj+k = θ( f ∈ Z)δb+cj+k since
e + f = j + k ∈ Z when b + c = j + k. The combinations e and f can be either positive
or negative. From b, c, j, k ≥ 0 and the definition (26), Rabc

i jk (d) is divergence-free and

R(d)
a,b,c
i, j,k = 0 unless e ≥ max(c, j) and f ≥ 0. From these conditions it follows that

R(d)
a,b,c
i, j,k = 0 unless |b − k| ≤ i − a − d ≤ b + k. (105)
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Theorem 10. The RLLL relation (96) has a non-trivial solution if and only if d :=
logq

(
μ3
μ2

) ∈ Z. Up to overall normalization it is given by Ra,b,c
i, j,k = R(d)

a,b,c
i, j,k specified

by (103) and (104).

The proof is similar to Theorem 9. From (103) and (105), R is locally finite. From
(22), its inverse is given by

R−1 = R |
μi→μ−1

i (i=2,3), r1↔s1,t1→t1w1,w1→w−1
1

, (106)

where thenormalizationhas beendeduced from Ra,b,c
0,0,0(d) = δa−dδ

b
0δ

c
0 and R

a,b,c
−d,0,0(−d) =

δa0δ
b
0δ

c
0.

3.7. OZO type. We consider the RLLL relation

R456L
O
236L

Z
135L

O
124 = LO

124L
Z
135L

O
236R456, (107)

where LZ
135 is given by (19) with (r, s, t, w) = (r2, s2, t2, w2), and LO

124 and LO
236 are

given by (21) with μ = μ1 and μ3, respectively. In this case, R ∈ End(F+ ⊗ F ⊗ F+)
and the sum (25) extends over a, c ∈ Z≥0 and b ∈ Z. The equality (107) holds in
End(V ⊗ V ⊗ V ⊗ F+ ⊗ F ⊗ F+).

Here are some examples of the RLLL relation (107):

qk Ra,b,c
i, j−1,k = qcRa,b+1,c

i, j,k , qi Ra,b,c
i, j−1,k = qa Ra,b+1,c

i, j,k , (108)

μ3r2R
a−1,b,c−1
i, j,k = (q1+a+b+cμ1 + q jμ3)R

a,b,c
i, j,k , (109)

μ1s2R
a,b,c
i+1, j,k+1 = (q1+i+ j+kμ3 + qbμ1)R

a,b,c
i, j,k , (110)

qaμ3r2R
a,b,c−1
i, j,k + qb+c(1 − q2a+2)μ1R

a+1,b,c
i, j,k − t2μ1μ3R

a,b,c
i, j−1,k+1 = 0, (111)

qi+ j (1 − q2k)μ3r2R
a,b,c
i, j,k−1 − q2+kμ1t

2
2w2R

a,b,c
i+1, j−2,k

+ qkμ1r2s2R
a,b,c
i+1, j,k − q j (1 − q2+2c)μ1μ3t2R

a,b+1,c+1
i, j,k = 0. (112)

As these examples indicate, every recursion relation consists of those Ra,b,c
i, j,k having the

same parity of a + b + c − j .

Ra,b,c
i, j,k = 0 if min(a, c, i, k) < 0. (113)

For a, b, c, i, j, k, d ∈ Z, set

R(d)
a,b,c
i, j,k = θ(e ∈ Z)θ(min(i, k) ≥ 0)δa−c

i−k r
c
2(μ3t2)

−k
(

μ3r2
t2w2

)i
(
t22w2

r2s2

)e

× qbk−cj (q2+2e−2k; q2)k
(q2; q2) f (q2i−2e; q2)e−i

, (114)

e = 1

2
(i + j + k − b − d − 1), f = 1

2
(a + b + c − j + d + 1). (115)

We note that R(d)
a,b,c
i, j,k = q−dk R(0)a,b+d, j

i, j,k and θ(e ∈ Z)δa−c
i−k = θ( f ∈ Z)δa−c

i−k since
e + f = c + i when a − c = i − k. The combinations e and f can be either positive
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or negative. From a, c, i, k ≥ 0 and the definition (26), R(d)
a,b,c
i, j,k is divergence-free and

R(d)
a,b,c
i, j,k = 0 unless e ≥ max(i, k) and f ≥ 0. From these conditions it follows that

R(d)
a,b,c
i, j,k = 0 unless |a − c| ≤ j − b − d − 1 ≤ a + c. (116)

Theorem 11. The RLLL relation (107) has a non-trivial solution if and only if
d:= logq

(−μ1
μ3

) ∈ Z. Up to overall normalization it is given by Ra,b,c
i, j,k = R(d)

a,b,c
i, j,k

specified by (114) and (115).

The proof is similar to Theorem 9. R is not locally finite.

3.8. OOO type. We consider the RLLL relation

R456L
O
236L

O
135L

O
124 = LO

124L
O
135L

O
236R456, (117)

where LO
124, L

O
135, L

O
236 are given by (21) with μ = μ1, μ2, μ3. In this case, R ∈

End(F+ ⊗ F+ ⊗ F+) and the sum (25) extends over a, b, c ∈ Z≥0. The equality (117)
holds in End(V ⊗ V ⊗ V ⊗ F+ ⊗ F+ ⊗ F+). The problem of finding the solution to
(117) was studied in [3,5]. The result has been shown [15, eq.(2.29)] to coincide with
the intertwiner of the quantized coordinate ring Aq(sl3) that had been obtained earlier
in [9]. See also the explanation in Sect. 5.2. For μi ’s general, the following formula is
valid (cf. [14, eq.(3.85)]):

Ra,b,c
i, j,k = δa+bi+ j δ

b+c
j+k

(
μ3

μ2

)i (
−μ1

μ3

)b (
μ2

μ1

)k

qik+b(k−i+1)
(
a + b

a

)

q2

× 2φ1

(
q−2b, q−2i

q−2a−2b ; q2, q−2c
)

. (118)

R is obviously locally finite. From (22) and [14, eq.(3.60)], its inverse is given by

R−1 = R |
μi→μ−1

i (i=1,2,3) . (119)

Remark 12. LetRa,b,c
i, j,k = Ra,b,c

i, j,k |μi=1(i=1,2,3) be the parameter-free 3D R of type OOO.
It satisfies the tetrahedron equation (164). See Sect. 5.2. It is known ([15, Prop.24], [14,
eq.(3.63)]) that Ra,b,c

i, j,k is a polynomial in q with integer coefficients satisfying

R
a,b,c
i, j,k = (q2; q2)i (q2; q2) j (q2; q2)k

(q2; q2)a(q2; q2)b(q2; q2)cR
i, j,k
a,b,c. (120)

When q is a primitive root of unity of odd degree N ≥ 3, it follows that
R
a,b,c
i, j,k = 0 if max(i, j, k) ≥ N and max(a, b, c) < N . It implies that the subspace⊕
i, j,k≥0,max(i, j,k)≥N C|i〉 ⊗ | j〉 ⊗ |k〉 ⊂ F+ ⊗ F+ ⊗ F+ is invariant under R. This fact

was originally shown in [11, Th.2.2.1b] for each tensor component by resorting to the
recursion relations, where an important consequence on the quotient was also pointed
out in Proposition 2.3.2 therein. The above proof based on (120) is an illuminating sim-
plification and has a natural generalization to the quantized coordinate rings of other
types [14, eqs. (5.75), (8.39)].
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4. Solutions of RLLL Relation for L = LZ and LX

In this section we deal with the RLLL relations which contain LZ (19) and LX (20).
As mentioned after (15), the parameters r, s, t, w are assumed to be generic, hence the
boundary conditions like (62), (71), (80), (92), (102) and (113) need not be considered.
We shall only treat the types XXZ, ZXX and XZX, and leave ZZX, XZZ, ZXZ and
XXX cases for future study as they are considerably more complicated. Throughout the
section, R ∈ End(F ⊗ F ⊗ F) with the sum (25) extending over a, b, c ∈ Z, and the
RLLL relation holds in End(V ⊗ V ⊗ V ⊗ F ⊗ F ⊗ F).

4.1. XXZ type. We consider the RLLL relation

R456L
Z
236L

X
135L

X
124 = LX

124L
X
135L

Z
236R456, (121)

where LX
124 and L

X
135 are givenby (20)with (r, s, t, w) = (r1, s1, t1, w1) and (r2, s2, t2, w2),

respectively, and LZ
236 is given by (19) with (r, s, t, w) = (r3, s3, t3, w3).

Here are some examples of the RLLL relation (24), which are natural extensions of
those for the OOZ type:

(qi+ j − qa+b)Ra,b,c
i, j,k = 0, q j Ra,b,c

i, j,k−1 = qbRa,b,c+1
i, j,k , (122)

(s1t2w2q
b+c − s2t1w1q

i+k)Ra,b,c
i, j,k = t3w3(r1s1 − t21w1q

2i )Ra,b,c
i−1, j+1,k−1, (123)

(r1t2q
j+k − r2t1q

a+c)Ra,b,c
i, j,k = t3(r1s1 − t21w1q

2a+2)Ra+1,b−1,c+1
i, j,k , (124)

s1s3R
a,b−1,c
i, j,k − qks2R

a,b,c
i+1, j,k + qi+1t1t3w3R

a,b,c
i, j+1,k−1 = 0, (125)

qbs3t2R
a−1,b,c
i, j,k + q2+i−k t1t

2
3w3R

a,b,c
i, j+1,k−2 − qi−kr3s3t1R

a,b,c
i, j+1,k − s2t3R

a,b,c
i+1, j,k−1 = 0.

(126)

For a, b, c, i, j, k ∈ Z, set

Ra,b,c
i, j,k = δa+bi+ j

(
s1s3
s2

)i ( s1t3
t2

)−a (
s1s3t2w2

r1s2t3w3

) j
(
r2s2
t22w2

t23w3

r3s3

)g

qcj−bk

× (qb+c+i−k+2 t1t2w2
r1s2

; q2)g−a−b(qh+2
t1w1t2
r2s1

; q2)g(q2a+2 t
2
1w1
r1s1

; q2)i−a

(q−b+c+i−k r2t1
r1t2

; q2)g−a(qh+2
s2t1w1
s1t2w2

; q2)g− j
R0,0,0
0,0,h,

(127)

2g + h = a − c + j + k (g ∈ Z, h = 0, 1), (128)

where R0,0,0
0,0,0 and R0,0,0

0,0,1 can be taken arbitrarily.

Theorem 13. Recursion relations derived from (121) consists of only those Ra,b,c
i, j,k ’ s

having the same parity of a − c + j + k. Each subsystem specified by h admits a unique
solution up to normalization, which is given by (127)–(128).

Proof. The former assertion on the parity can be verified directly. Solving a partial set
of recursion relations already leads to (127)–(128), proving the uniqueness. Then it is
straightforward to check that it actually satisfies all the remaining recursion relations.

��
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R is not locally finite.
Let us compare the 3D R (127) for XXZ with (90) for OOZ. To fit LX in (121) to

LO , we specialize the parameters as

ri = si = 1, ti = μ−1
i , tiwi = μi (129)

for i = 1, 2. Then (127) becomes

Ra,b,c
i, j,k = δa+bi+ j s

i
3(μ2t3)

−a
(

μ2s3
t3w3

) j
(
t23w3

r3s3

)g

× qcj−bk
(q−b−c+i+k+2 μ1

μ2
; q2) j (q2a+2; q2)i−a

(q−b+c+i−k μ2
μ1

; q2)b+1
(
1 − q−h μ2

μ1

)
R0,0,0
0,0,h . (130)

Using the notation e, f in (91), where g = e − 1
2 (h + d), and assuming d ∈ Z is so

chosen that e ∈ Z, this is rewritten as

Ra,b,c
i, j,k = δa+bi+ j s

i
3(μ2t3)

−a
(

μ2s3
t3w3

) j
(
t23w3

r3s3

)e

× qcj−bk
(q2+2e−2 j−d μ1

μ2
; q2) j (q2a+2; q2)i−a

(q2+d μ2
μ1

; q2) f (q2a−2e+d μ2
μ1

; q2)e−a

× 1 − q−h μ2
μ1

1 − qd μ2
μ1

(
t23w3

r3s3

)− 1
2 (h+d)

R0,0,0
0,0,h . (131)

Note that the condition e ∈ Z is equivalent to h +d ∈ 2Z. Therefore, if R0,0,0
0,0,h (h = 0, 1)

are taken as

1 − q−h μ2
μ1

1 − qd μ2
μ1

(
t23w3

r3s3

)− 1
2 (h+d)

R0,0,0
0,0,h → θ(h + d ∈ 2Z) = θ(e ∈ Z) (132)

in the limit μ1 → μ2qd , the 3D R (90) for the OOZ case is formally reproduced.

4.2. ZXX type. We consider the RLLL relation

R456L
X
236L

X
135L

Z
124 = LZ

124L
X
135L

X
236R456, (133)

where LZ
124 is given by (19) with (r, s, t, w) = (r1, s1, t1, w1), and LX

135 and LX
246 are

given by (20) with (r, s, t, w) = (r2, s2, t2, w2) and (r3, s3, t3, w3), respectively.
Here are some examples of the RLLL relation (24), which are natural extensions of

those for the ZOO type:
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(q j+k − qb+c)Ra,b,c
i, j,k = 0, q j Ra,b,c

i−1, j,k = qbRa+1,b,c
i, j,k , (134)

(s3t2q
a+b − s2t3q

i+k)Ra,b,c
i, j,k = t1(r3s3 − t23w3q

2k)Ra,b,c
i−1, j+1,k−1, (135)

(r3t2w2q
i+ j − r2t3w3q

a+c)Ra,b,c
i, j,k = t1w1(r3s3 − t23w3q

2c+2)Ra+1,b−1,c+1
i, j,k , (136)

s1s3R
a,b−1,c
i, j,k − qi s2R

a,b,c
i, j,k+1 + qk+1t1t3w3R

a,b,c
i−1, j+1,k = 0, (137)

qbs1t2w2R
a,b,c−1
i, j,k + q2−i+k t21 t3w1w3R

a,b,c
i−2, j+1,k − s2t1w1R

a,b,c
i−1, j,k+1

− q−i+kr1s1t3w3R
a,b,c
i, j+1,k = 0. (138)

Every recursion relation consists of those Ra,b,c
i, j,k having the same parity of−a +c+ i + j .

For a, b, c, i, j, k ∈ Z, set

Ra,b,c
i, j,k = δb+cj+k

(
s1s3
s2

)k (
s3t1w1

t2w2

)−c (
s1s3t2
r3s2t1

) j
(
r2s2
t22w2

t21w1

r1s1

)g

qaj−bi

× (qa+b−i+k+2 t2t3w3
r3s2

; q2)g−b−c(qh+2
t2t3w2
r2s3

; q2)g(q2c+2 t
2
3w3
r3s3

; q2)k−c

(qa−b−i+k r2t3w3
r3t2w2

; q2)g−c(qh+2
s2t3
s3t2

; q2)g− j
R0,0,0
h,0,0,

(139)

2g + h = −a + c + i + j (g ∈ Z, h = 0, 1), (140)

where R0,0,0
0,0,0 and R0,0,0

1,0,0 can be taken arbitrarily.

Theorem 14. Recursion relations derived from (133) consists of only those Ra,b,c
i, j,k ’ s

having the same parity of −a + c + i + j . Each subsystem specified by h admits a unique
solution up to normalization, which is given by (139)–(140).

The proof is similar to Theorem 13. R is not locally finite.
As the XXZ type, by specializing the parameters as (129) with i = 2, 3 and taking

the limit μ3 → μ2qd with appropriate tuning of R0,0,0
h,0,0 (h = 0, 1), one can reproduce

the 3D R (103) for ZOO from (139).

4.3. XZX type. We consider the RLLL relation

R456L
X
236L

Z
135L

X
124 = LX

124L
Z
135L

X
236R456, (141)

where LX
124 and LX

236 are given by (20) with (r, s, t, w) = (r1, s1, t1, w1) and
(r3, s3, t3, w3), respectively, and LZ

135 is given by (19) with (r, s, t, w) = (r2, s2, t2, w2).
Here are some examples of the RLLL relation (24), which are natural extensions of

those for the OZO type:
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qk Ra,b,c
i, j−1,k = qcRa,b+1,c

i, j,k , qi Ra,b,c
i, j−1,k = qa Ra,b+1,c

i, j,k , (142)

r2R
a−1,b,c−1
i, j,k = (t1t3w1q

1+a+b+c + r1r3q
j )Ra,b,c

i, j,k , (143)

s2R
a,b,c
i+1, j,k+1 = (t1t3w3q

1+i+ j+k + s1s3q
b)Ra,b,c

i, j,k , (144)

qar2t1R
a,b,c−1
i, j,k + t3(r1s1 − t21w1q

2a+2)qb+c Ra+1,b,c
i, j,k − r1t2R

a,b,c
i, j−1,k+1 = 0, (145)

q−b+cr2s2t3w3R
a−1,b,c
i, j,k − q−b+ct22 t3w2w3R

a−1,b+2,c
i, j,k

− s1t2w2(r3s3 − t23w3q
2k)Ra,b,c

i, j−1,k−1 + qas2t1w1(r3s3 − t23w3q
2+2c)Ra,b,c+1

i, j,k = 0.
(146)

For a, b, c, i, j, k ∈ Z, set

Ra,b,c
i, j,k = δa−c

i−k

(
r2
r1r3

)c (
s1t3
t2

)k (
r2t3w3

r3t2w2

)i
(
r3s3
t23w3

t22w2

r2s2

)g

qbk−cj

× (−qh+1 t1t3w3
s1s3

; q2)g
(−qh+1 r3t1s1t3

; q2)g−k

(−q−h+1 s3t1w1
r1t3w3

; q2)i−g

(−q−h+3 t1t3w1
r1r3

; q2)c+i−g
R0,0,0
0,h,0 (147)

2g + h = −b + i + j + k (g ∈ Z, h = 0, 1), (148)

where R0,0,0
0,0,0 and R0,0,0

0,1,0 can be taken arbitrarily.

Theorem 15. Recursion relations derived from (141) consists of only those Ra,b,c
i, j,k ’ s

having the same parity of −b + i + j + k. Each subsystem specified by h admits a unique
solution up to normalization, which is given by (147)–(148).

The proof is similar to Theorem 13. R is not locally finite.
Let us compare the 3D R (147) for XZX with (114) for OZO. To fit LX in (141) to

LO , we specialize the parameters as (129) with i = 1, 3. Then (147) becomes

Ra,b,c
i, j,k = δa−c

i−k r
c
2(μ3t2)

−k
(

μ3r2
t2w2

)i
(
r2s2
t22w2

)g

× qbk−cj
(−q−b+i+ j−k+1 μ3

μ1
; q2)k

(−qa+b−c− j+1 μ1
μ3

; q2)c+1
(
1 + q−h+1μ1

μ3

)
R0,0,0
0,h,0. (149)

Using the notation e, f in (115), where g = e − 1
2 (h − d − 1), and assuming d ∈ Z is

so chosen that e ∈ Z, this is rewritten as

Ra,b,c
i, j,k = δa+bi+ j r

c
2(μ3t2)

−k
(

μ3r2
t2w2

)i
(
t22w2

r2s2

)e

× qbk−cj
(−q2e−2k+d+2 μ3

μ1
; q2)k

(−q−d+2 μ1
μ3

; q2) f (−q−2e+2i−d μ1
μ3

; q2)e−i

× 1 + q−h+1 μ1
μ3

1 + q−d μ1
μ3

(
t22w2

r2s2

)− 1
2 (h−d−1)

R0,0,0
0,h,0. (150)
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Note that the condition e ∈ Z is equivalent to h − d − 1 ∈ 2Z. Therefore, if R0,0,0
0,h,0 (h =

0, 1) are taken as

1 + q−h+1 μ1
μ3

1 + q−d μ1
μ3

(
t22w2

r2s2

)− 1
2 (h−d−1)

R0,0,0
0,h,0 → θ(h − d − 1 ∈ 2Z) = θ(e ∈ Z) (151)

in the limit μ1 → −μ3qd , the 3D R (114) for the OZO case is formally reproduced.

5. Relation to the Representation Theory of the Quantized Coordinate Ring

5.1. Quantized coordinate ring Aq(sl3). The algebra Aq(sl3) is a Hopf algebra dual to
the quantized universal enveloping algebraUq(sl3). See for example [6,8,10,13,20] and
the references therein. It is generated by ti j (1 ≤ i, j ≤ 3) with the relations

[tik, t jl ] =
{
0 (i < j, k > l),
(q − q−1)t jk til (i < j, k < l),

(152)

tik t jk = qt jk tik (i < j), tki tk j = qtk j tki (i < j), (153)
∑

σ∈S3

(−q)l(σ )t1σ1 t2σ2 t3σ3 = 1, (154)

whereS3 denotes the symmetric group of degree 3 and l(σ ) is the length of the permu-
tation σ . The coproduct � : Aq(sl3) → Aq(sl3)⊗N is given by the matrix product form
�ti j = ∑

1≤i2,...,iN≤3 tii2 ⊗ ti2i3 ⊗ · · · ⊗ tiN j .
The following maps define the algebra homomorphisms to the q-Weyl algebra (6):

ρ1 : Aq(sl3) → Wq ,⎛

⎝
t11 t12 t13
t21 t22 t23
t31 t32 t33

⎞

⎠ �→
⎛

⎝
Z−1(u1 − g1h1X2) g1X 0

−qh1X Z 0
0 0 u−1

1

⎞

⎠ ,
(155)

ρ2 : Aq(sl3) → Wq ,⎛

⎝
t11 t12 t13
t21 t22 t23
t31 t32 t33

⎞

⎠ �→
⎛

⎝
u−1
2 0 0
0 Z−1(u2 − g2h2X2) g2X
0 −qh2X Z

⎞

⎠ .
(156)

Here, ui , gi , hi are arbitrary parameters.
We let ρZ ,i = πZ ◦ ρi and ρX,i = πX ◦ ρi denote the representations Aq(sl3) →

End(F) obtained by the compositions with πZ and πX in (8) and (9).

5.2. 3D R of type OOO as an intertwiner of ρO,i . From the remark after (16), one can
restrict ρX,i with (ui , gi , hi ) = (1, μi , μ

−1
i ) from End(F) to End(F+). The resulting

representation will be denoted by ρO,i : Aq(sl3) → End(F+).
The representation ρO,i is irreducible and well-studied [13]. In fact, the isomorphism

of the tensor product representations ρO,1⊗ρO,2⊗ρO,1 � ρO,2⊗ρO,1⊗ρO,2 is valid,
and they turn out to be irreducible. Let ∈ End(F⊗3

+ ) be the intertwiner, i.e., the unique
solution to the intertwining relation◦(ρO,1⊗ρO,2⊗ρO,1) = (ρO,2⊗ρO,1⊗ρO,2)◦
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up to normalization. Set R =  ◦ P where P is the transposition P(|i〉 ⊗ | j〉 ⊗ |k〉) =
|k〉⊗| j〉⊗|i〉. We also callR the intertwiner. The intertwining relation for the generator
tlm reads as

R(ρO,1 ⊗ ρO,2 ⊗ ρO,1)(�
′tlm) = (ρO,2 ⊗ ρO,1 ⊗ ρO,2)(�tlm)R (1 ≤ l,m ≤ 3),

(157)

where �′ = P ◦ � ◦ P , hence �′tlm = ∑
j,k tkm ⊗ t jk ⊗ tl j . It is known that the set of

equations (157) are equivalent to the RLLL relation (117)|μ3=μ1 under the identification
R = R. See [15, Sec.2] and [14, Lem.3.22]. As a result, the 3D R (118) with μ3 = μ1
is identified with the intertwiner of the Aq(sl3) modules.

5.3. 3D R of typeZZZasan intertwiner ofρZ ,i . Consider the equationon R ∈ End(F⊗3)

given by

R(ρZ ,1 ⊗ ρZ ,2 ⊗ ρZ ,1)(�
′tlm) = (ρZ ,2 ⊗ ρZ ,1 ⊗ ρZ ,2)(�tlm)R (1 ≤ l,m ≤ 3),

(158)

which includes the parameters ui , gi , hi (i = 1, 2). On the other hand, recall that the
RLLL relation (28) of ZZZ type contains 18 equations depending on rα, sα, tα,wα(α =
1, 2, 3). Now we state a result analogous to the OOO case in the previous subsection.

Proposition 16. The intertwining relation (158) and the RLLL relation (28) are equiv-
alent provided that the parameters in the former obey the constraint u1 = u2(=:u) and
g1h1 = g2h2(=: p), and those in the latter satisfy

r1
t1

= r2
t2

,
s2
t2

= s3
t3

,
r2
r1r3

= u,
s1s3
s2

= u2,
t21w1

r1s1
= t22w2

r2s2
= t23w3

r3s3
= p

u
.

(159)

Proof. Set Labc
i jk = ∑

α,β,γ Lαβ
i j ⊗Laγ

αk ⊗Lbc
βγ and L̃abc

i jk = ∑
α,β,γ Lab

αβ ⊗Lαc
iγ ⊗Lβγ

jk so

that (24) reads as RLabc
i jk = L̃abc

i jk R. Then one can directly check that the relations (159)
validate the equalities

(ρZ ,1 ⊗ ρZ ,2 ⊗ ρZ ,1)(�
′tlm) = AlmLabc

i jk = Blm
(
L̃a′b′c′
i ′ j ′k′

∣∣∣rγ ↔sγ ,tγ →tγ wγ ,wγ →w−1
γ

)
,

(160)

(ρZ ,2 ⊗ ρZ ,1 ⊗ ρZ ,2)(�tlm) = AlmL̃abc
i jk = Blm

(
La′b′c′
i ′ j ′k′

∣∣∣rγ ↔sγ ,tγ →tγ wγ ,wγ →w−1
γ

)
,

(161)

where the constants Alm, Blm are given by

(Alm)1≤l,m≤3 =

⎛

⎜⎜⎝

1
r22 s2

pu
h1r2s2t3

p2

h1h2u

− qh1t3
pr22 s2

− u
r2s2

p
h2r2t1u

q2h1h2
u − qh2t1u

pr2s2
1
r2u

⎞

⎟⎟⎠ , (162)

(Blm)1≤l,m≤3 =

⎛

⎜⎜⎝

− 1
r22 s2

pu
h1r2s2t3

p2

h1h2u

− qh1t3
pr22 s2

u
r2s2

p
h2r2t1u

q2h1h2
u − qh2t1u

pr2s2
1
r2u

⎞

⎟⎟⎠ . (163)
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Table 1. Type ABC of R456L
C
236L

B
135L

A
124 = L A

124L
B
135L

C
236R456 and the basic feature of the solution

R = RABC

ABC �(Z) Feature Locally finiteness �(Sector) Formula

ZZZ 3 Factorized No 4 (45)
OZZ 2φ1 No (65)
ZZO 2 2φ1 No 1 (74)
ZOZ 3φ2-like No (83)
OOZ Factorized Yes (90)
ZOO 1 Factorized Yes 1 (103)
OZO Factorized No (114)
OOO 0 2φ1 Yes 1 (118)
XXZ Factorized No (127)
ZXX 1 factorized No 2 (139)
XZX Factorized No (147)

We observe the factorization when the number �(Z) of Z in ABC is odd. �(sector) is the dimension of the
solution space for the recursion relations of Ra,b,c

i, j,k

The correspondence between the indices l,m and a, b, c, i, j, k, a′, b′, c′, i ′, j ′, k′ is
specified as follows:

l abc i ′ j ′k′
1 001 011
2 010 101
3 100 110

m i jk a′b′c′
1 100 110
2 010 101
3 001 011

The relations (160) and (161) including Alm enable us to identify (158) with RLabc
i jk =

L̃abc
i jk R, covering the case a+b+c = i + j +k = 1 of the latter. Let us show the other case

a′ +b′ + c′ = i ′ + j ′ + k′ = 2 of the RLLL relation in the form R−1L̃a′b′c′
i ′ j ′k′ = La′b′c′

i ′ j ′k′ R−1.

Due to (52) it is equivalent to R
(
L̃a′b′c′
i ′ j ′k′

∣∣∣rγ ↔sγ ,tγ →tγ wγ ,wγ →w−1
γ

)
=

(
La′b′c′
i ′ j ′k′

∣∣∣rγ ↔sγ ,tγ →tγ wγ ,wγ →w−1
γ

)
R. This equality follows from (158) by applying the

relations (160) and (161) including Blm . ��

6. Discussion

6.1. Summary. In this paper we have studied the tetrahedron equation of the form
R456LC

236L
B
135L

A
124 = L A

124L
B
135L

C
236R456 for the three kinds of 3D L operators

LZ , LX , LO in (19)–(21) which can be regarded as quantized six-vertex models with
Boltzmann weights taken from the q-Weyl algebraWq (6) or the q-oscillator algebraOq
(10). In each case the solution R has been obtained explicitly whose elements are fac-
torized or expressed in terms of terminating q-hypergeometric type series as in Table 1.
They are new except for the OOO case.

6.2. On tetrahedron equation of the form RRRR = RRRR. Let us discuss the tetra-
hedron equation of the form

R456R236R135R124 = R124R135R236R456. (164)
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A standard strategy for the proof is to compare the two maneuvers:

R124R135R236R456Lαβ6Lαγ 5Lβγ 4Lαδ3Lβδ2Lγ δ1

= R124R135R236Lβγ 4Lαγ 5Lαβ6Lαδ3Lβδ2Lγ δ1R456

= R124R135Lβγ 4Lαγ 5Lβδ2Lαδ3Lαβ6Lγ δ1R236R456

= R124R135Lβγ 4Lβδ2Lαγ 5Lαδ3Lγ δ1Lαβ6R236R456

= R124Lβγ 4Lβδ2Lγ δ1Lαδ3Lαγ 5Lαβ6R135R236R456

= Lγ δ1Lβδ2Lβγ 4Lαδ3Lαγ 5Lαβ6R124R135R236R456,

= Lγ δ1Lβδ2Lαδ3Lβγ 4Lαγ 5Lαβ6R124R135R236R456, (165)

R456R236R135R124Lαβ6Lαγ 5Lβγ 4Lαδ3Lβδ2Lγ δ1

= R456R236R135R124Lαβ6Lαγ 5Lαδ3Lβγ 4Lβδ2Lγ δ1

= R456R236R135Lαβ6Lαγ 5Lαδ3Lγ δ1Lβδ2Lβγ 4R124

= R456R236Lαβ6Lγ δ1Lαδ3Lαγ 5Lβδ2Lβγ 4R135R124

= R456R236Lγ δ1Lαβ6Lαδ3Lβδ2Lαγ 5Lβγ 4R135R124

= R456Lγ δ1Lβδ2Lαδ3Lαβ6Lαγ 5Lβγ 4R236R135R124

= Lγ δ1Lβδ2Lαδ3Lβγ 4Lαγ 5Lαβ6R456R236R135R124. (166)

The underlines indicate the components to be rewritten by the RLLL = LLLR rela-
tion or trivial commutativity of the operators acting on distinct set of components. The
above relations show that the composition (R124R135R236R456)

−1R456R236R135R124
commutes with Lαβ6Lαγ 5Lβγ 4Lαδ3Lβδ2Lγ δ1. Therefore if the action of the latter is
irreducible, Schur’s lemma compels R124R135R236R456 = (scalar)R456R236R135R124
and the scalar can be fixed by considering the special case.

In this type of argument, RLLL = LLLR serves as an auxiliary linear problem for
RRRR = RRRR, which is analogous to the quantum group symmetry ensuring the
Yang–Baxter equation. It indeedworkswhen all the L’s are LO , where RLLL = LLLR
is identified with the intertwining relation of the quantized coordinate ring Aq(sl3). See
Sect. 5.2. The corresponding 3D R of type OOO (118) certainly satisfies the tetrahedron
equation R124R135R236R456 = R456R236R135R124 [3,9].

The results in this paper suggest a natural generalization where the six L operators in
(165) and (166) are taken either as LZ or LO (resp. LZ or LX ) in the context of Sect. 3
(resp. Sect. 4). Let us exhibit them as LF

αβ6L
E
αγ 5L

D
βγ 4L

C
αδ3L

B
βδ2L

A
γ δ1, where A, B, C, D,

E and F assume Z, O or X. The corresponding generalization of (164) reads as

RDEF
456 RBCF

236 RACE
135 RABD

124 = RABD
124 RACE

135 RBCF
236 RDEF

456 , (167)

where RABD
124 for example denotes the 3D R of typeABDacting on the tensor components

1, 2 and 4. Let us call (167) the RRRR relation of type ABCDEF. Its proof or disproof
is an important future problem. It has been settled only for type OOOOOO as explained
in the above. However, the argument employed there does not persist naively when
LZ is involved since the irreducibility no longer holds due to Remark 1. Moreover,
the presence of locally non-finite 3D R makes the convergence of the compositions in
RRRR = RRRR non-trivial.4 In spite of such difficulties, we have made promising
observations which are reported below.

4 The convergence also matters when one attempts to perform the reduction of the 3D R’s to the solutions
of the Yang–Baxter equation by the trace [3] and the boundary vectors [16,18].
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From Table 1, the tetrahedron equation (167) consisting of only locally finite 3D R’
s are of type OOOOOO and the following:

Type Tetrahedron equation

ZOOOOO : ROOO
456 ROOO

236 RZOO
135 RZOO

124 = RZOO
124 RZOO

135 ROOO
236 ROOO

456 , (168)

OOOZOO : RZOO
456 ROOO

236 ROOO
135 ROOZ

124 = ROOZ
124 ROOO

135 ROOO
236 RZOO

456 , (169)

OOOOOZ : ROOZ
456 ROOZ

236 ROOO
135 ROOO

124 = ROOO
124 ROOO

135 ROOZ
236 ROOZ

456 , (170)

ZOOOOZ : ROOZ
456 ROOZ

236 RZOO
135 RZOO

124 = RZOO
124 RZOO

135 ROOZ
236 ROOZ

456 . (171)

In these equations, images of any given input vector |i〉 ⊗ | j〉 ⊗ |k〉 ⊗ |l〉 ⊗ |m〉 ⊗ |n〉 by
the two sides are linear combinations of finitely many bases with finite coefficients, so
one can compare them directly.

The tetrahedron equation (167) containing only one locally non-finite 3D R on each
side are the following:

Type Tetrahedron equation

OZOOOO : ROOO
456 RZOO

236 ROOO
135 ROZO

124 = ROZO
124 ROOO

135 RZOO
236 ROOO

456 , (172)

OOOOZO : ROZO
456 ROOO

236 ROOZ
135 ROOO

124 = ROOO
124 ROOZ

135 ROOO
236 ROZO

456 , (173)

ZZOOOO : ROOO
456 RZOO

236 RZOO
135 RZZO

124 = RZZO
124 RZOO

135 RZOO
236 ROOO

456 , (174)

ZOOZOO : RZOO
456 ROOO

236 RZOO
135 RZOZ

124 = RZOZ
124 RZOO

135 ROOO
236 RZOO

456 , (175)

OZOZOO : RZOO
456 RZOO

236 ROOO
135 ROZZ

124 = ROZZ
124 ROOO

135 RZOO
236 RZOO

456 , (176)

OOOZZO : RZZO
456 ROOO

236 ROOZ
135 ROOZ

124 = ROOZ
124 ROOZ

135 ROOO
236 RZZO

456 , (177)

OOOZOZ : RZOZ
456 ROOZ

236 ROOO
135 ROOZ

124 = ROOZ
124 ROOO

135 ROOZ
236 RZOZ

456 , (178)

OOOOZZ : ROZZ
456 ROOZ

236 ROOZ
135 ROOO

124 = ROOO
124 ROOZ

135 ROOZ
236 ROZZ

456 , (179)

ZZOZOO : RZOO
456 RZOO

236 RZOO
135 RZZ Z

124 = RZZ Z
124 RZOO

135 RZOO
236 RZOO

456 , (180)

OOOZZZ : RZZ Z
456 ROOZ

236 ROOZ
135 ROOZ

124 = ROOZ
124 ROOZ

135 ROOZ
236 RZZ Z

456 . (181)

In these equations, transition amplitudes for any pair of input and output bases |i〉 ⊗
| j〉 ⊗ |k〉 ⊗ |l〉 ⊗ |m〉 ⊗ |n〉 → |a〉 ⊗ |b〉 ⊗ |c〉 ⊗ |d〉 ⊗ |e〉 ⊗ | f 〉 by the two sides are
finite. Explcitly they are the two sides of

∑

u,v,w,x,y,z

Rd,e, f
x,y,z R

b,c,z
v,w,n R

a,w,y
u,k,m Ru,v,x

i, j,l =
∑

u,v,w,x,y,z

Ra,b,d
u,v,x R

u,c,e
i,w,y R

v,w, f
j,k,z Rx,y,z

l,m,n, (182)

where each factor also depends on the type as specified in (167) in general. For instance
the leftmost Rd,e, f

x,y,z is an element of RDEF , whereas the next Rb,c,z
v,w,n is the one for RBCF ,

etc.
There are a couple of tetrahedron equations involvingmore than one locally non-finite

3D R’s on each side,which, nevertheless, allowonlyfinitelymanyquintet (u, v, w, x, y, z)
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in (182) thanks to the constraint (116). Such types of ABCDEF are the following:

Type Tetrahedron equation

OOZOOO : ROOO
456 ROZO

236 ROZO
135 ROOO

124 = ROOO
124 ROZO

135 ROZO
236 ROOO

456 , (183)

ZOZOOO : ROOO
456 ROZO

236 RZZO
135 RZOO

124 = RZOO
124 RZZO

135 ROZO
236 ROOO

456 , (184)

ZOOOZO : ROZO
456 ROOO

236 RZOZ
135 RZOO

124 = RZOO
124 RZOZ

135 ROOO
236 ROZO

456 , (185)

OZZOOO : ROOO
456 RZZO

236 ROZO
135 ROZO

124 = ROZO
124 ROZO

135 RZZO
236 ROOO

456 , (186)

OZOOOZ : ROOZ
456 RZOZ

236 ROOO
135 ROZO

124 = ROZO
124 ROOO

135 RZOZ
236 ROOZ

456 , (187)

OOZZOO : RZOO
456 ROZO

236 ROZO
135 ROOZ

124 = ROOZ
124 ROZO

135 ROZO
236 RZOO

456 , (188)

OOZOZO : ROZO
456 ROZO

236 ROZZ
135 ROOO

124 = ROOO
124 ROZZ

135 ROZO
236 ROZO

456 , (189)

OOZOOZ : ROOZ
456 ROZZ

236 ROZO
135 ROOO

124 = ROOO
124 ROZO

135 ROZZ
236 ROOZ

456 , (190)

ZOZOZO : ROZO
456 ROZO

236 RZZ Z
135 RZOO

124 = RZOO
124 RZZ Z

135 ROZO
236 ROZO

456 , (191)

OZZOOZ : ROOZ
456 RZZ Z

236 ROZO
135 ROZO

124 = ROZO
124 ROZO

135 RZZ Z
236 ROOZ

456 . (192)

Note that (186), (189), (191) and (192) contain three locally non-finite 3D R’s. To
summarize so far, type OOOOOO and (168)–(181) and (183)–(192) are the complete
list of tetrahedron equations of type ABCDEF ∈ {O,Z}6 which allow finitely many
(u, v, w, x, y, z) in (182) enabling us to perform a direct check for various
(a, b, c, d, e, f ) and (i, j, k, l,m, n).

When doing so, parameters in the 3D R’s are to be chosen with care. Let us illus-
trate it along the example (169). The representations πO and πZ carry the parameter
μ and the quartet (r, s, t, w), respectively. Thus the tensor components corresponding
to 1, 2, 3, 4, 5 and 6 are assigned with the parameters μ1, μ2, μ3, (r4, s4, t4, w4), μ5
and μ6, respectively. ROOO

236 and ROOO
135 are given by (118) by replacing (μ1, μ2, μ3)

with (μ2, μ3, μ6) and (μ1, μ3, μ5), respectively. In view of the presence of RZOO
456 and

Theorem 10, we assume μ6
μ5

= qd for some d ∈ Z, and take RZOO
456 to be (103) with

(r1, s1, t1, w1) → (r4, s4, t4, w4), μ2 → μ5 and μ3 → μ6. Similarly from ROOZ
124

and Theorem 9, we postulate μ1
μ2

= qd
′
for some d ′ ∈ Z, and ROOZ

124 is given by (90)
with (r3, s3, t3, w3) → (r4, s4, t4, w4) and d → d ′. With these choices, the tetrahedron
equation (169) depends on the seven continuous parameters μ1, μ3, μ5, r4, s4, t4, w4
and the two integer parameters d, d ′ in addition to the ubiquitous q. Parameters in the
other tetrahedron equations are to be tuned similarly. They can be arbitrary as long as
the relevant 3D R’s are non-singular, being free from the vanishing q-shifted factorials
in the denominators (if any).

Now we state a conjecture based on computer experiments, indicating a sort of co-
herence prevailing the 3D R’s obtained in Sect. 3.

Conjecture 17. The tetrahedron equations (168)–(181) and (183)–(192) are valid in
full generality of parameters.
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Typically, equalities have been checked for about 10,000 choices of the pairs
((a, b, c, d, e, f ), (i, j, k, l,m, n)).

Let us turn to the tetrahedron equation in which at least one side of (182) becomes
a sum over infinitely many (u, v, w, x, y, z)’s. A typical examples is type ZZZZZZ. A
possible regularization in such a circumstance is to specialize q to a root of unity and
thereby to replace F by a finite dimensional vector space. For RXXX , such a recipe is
known [5] to yield the 3D R corresponding to [2], which is closely related with the
generalized Chiral Potts models [2,4,7,22]. It is an interesting problem to explore a
similar connection for the other 3D R’s in this paper. Remark 12 is a key to such studies
concerning ROOO .

Finally the whole setting concerning the quantized Yang–Baxter equation RLLL =
LLLR in this paper has a natural analogue in the quantized reflection equation
K (GLGL) = (LGLG)K [17] which is related to the quantized coordinate rings of
type B and C . It awaits a discovery of new 3D K ’s different from the known ones in
[15] and [14, Chap. 5 & 6].
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Appendix A: Explicit form of R456LZ
236L

Z
135L

Z
124 = LZ

124L
Z
135L

Z
236R456

We write down (28) explicitly together with the corresponding choice of (abci jk) in
(24) or in Fig. 3. As mentioned around (25), there are 18 non-trivial cases. To save the
space, we write Yα = Z−1(rαsα − t2αwαX2).

(001001) : R(1 ⊗ X ⊗ X) = (1 ⊗ X ⊗ X)R, (193)

(001010) : R(
r2t1X ⊗ 1 ⊗ Y3 + t3Z ⊗ Y2 ⊗ X

) = r1t2
(
1 ⊗ X ⊗ Y3

)
R, (194)

(001100) : R(−qt1t3w1X ⊗ Y2 ⊗ X + r2Y1 ⊗ 1 ⊗ Y3
) = r1r3

(
1 ⊗ Y2 ⊗ 1

)
R, (195)

(010001) : r1t2R(1 ⊗ X ⊗ Z) = (
r2t1X ⊗ 1 ⊗ Z + t3Y1 ⊗ Z ⊗ X

)
R, (196)

(010010) : R(
qr2t1t3w3X ⊗ 1 ⊗ X − Z ⊗ Y2 ⊗ Z

)

= (
qr2t1t3w3X ⊗ 1 ⊗ X − Y1 ⊗ Z ⊗ Y3

)
R, (197)

(010100) : R(
t1w1X ⊗ Y2 ⊗ Z + r2t3w3Y1 ⊗ 1 ⊗ X

) = r3t2w2
(
Y1 ⊗ X ⊗ 1

)
R,

(198)

(011011) : R(X ⊗ X ⊗ 1) = (X ⊗ X ⊗ 1)R, (199)

(011101) : s3t2R
(
Y1 ⊗ X ⊗ 1

) = (
t1X ⊗ Y2 ⊗ Z + s2t3Y1 ⊗ 1 ⊗ X

)
R, (200)

http://creativecommons.org/licenses/by/4.0/
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(011110) : s1s3R
(
1 ⊗ Y2 ⊗ 1

) = (−qt1t3w3X ⊗ Y2 ⊗ X + s2Y1 ⊗ 1 ⊗ Y3
)
R, (201)

(100001) : r1r3R(1 ⊗ Z ⊗ 1) = (−qt1t3w1X ⊗ Z ⊗ X + r2Z ⊗ 1 ⊗ Z)R, (202)

(100010) : r3t2w2R(Z ⊗ X ⊗ 1) = (
t1w1X ⊗ Z ⊗ Y3 + r2t3w3Z ⊗ 1 ⊗ X

)
R,

(203)

(100100) : R(X ⊗ X ⊗ 1) = (X ⊗ X ⊗ 1)R, (204)

(101011) : R(t1X ⊗ Z ⊗ Y3 + s2t3Z ⊗ 1 ⊗ X) = s3t2(Z ⊗ X ⊗ 1)R, (205)

(101101) : R(−qs2t1t3w1X ⊗ 1 ⊗ X + Y1 ⊗ Z ⊗ Y3
)

= (−qs2t1t3w1X ⊗ 1 ⊗ X + Z ⊗ Y2 ⊗ Z
)
R, (206)

(101110) : R(
s1t2w21 ⊗ X ⊗ Y3) = (

s2t1w1X ⊗ 1 ⊗ Y3 + t3w3Z ⊗ Y2 ⊗ X
)
R,

(207)

(110011) : R(−qt1t3w3X ⊗ Z ⊗ X + s2Z ⊗ 1 ⊗ Z) = s1s3(1 ⊗ Z ⊗ 1)R, (208)

(110101) : R(
t3w3Y1 ⊗ Z ⊗ X + s2t1w1X ⊗ 1 ⊗ Z

) = s1t2w2(1 ⊗ X ⊗ Z)R,

(209)

(110110) : R(1 ⊗ X ⊗ X) = (1 ⊗ X ⊗ X)R. (210)
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