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Abstract: We consider random normal matrix and planar symplectic ensembles, which
can be interpreted as two-dimensional Coulomb gases having determinantal and Pfaffian
structures, respectively. For a class of radially symmetric potentials with soft edges, we
derive the asymptotic expansions of the log-partition functions up to and including
the O(1)-terms as the number N of particles increases. Notably, our findings stress
that the formulas of the O(log N )- and O(1)-terms in these expansions depend on the
connectivity of the droplet. For random normal matrix ensembles, our formulas agree
with the predictions proposed by Zabrodin and Wiegmann up to an additive constant
depending on N but not on the background potential. For planar symplectic ensembles,
the expansions contain a new kind of ingredient in the O(N )-terms, the logarithmic
potential evaluated at the origin in addition to the entropy of the ensembles.

1. Introduction and Main Results

The Coulomb gas ensemble in the complex plane is governed by the law

dP(β)
N (z1, . . . , zN ) := 1

Z (β)
N

N∏

j>k=1

|z j − zk |β
N∏

j=1

e− βN
2 Q(z j ) d A(z j ), (1.1)

where N is the number of particles, β is the inverse temperature and d A(z) := d2z/π
is the area measure. Here, Q : C → R is called the confining/external potential that
satisfies suitable potential theoretic conditions. We refer to [38,56,61] and references
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therein for recent developments of two-dimensional Coulomb gases. Contrary to (1.1),
the configurational canonical Coulomb gas ensemble in the upper-half plane [39,50] (cf.
[20, Appendix A]) has an additional complex conjugation symmetry (i.e. the particles
come in complex conjugate pairs) and is governed by the law

d P̃(β)
N (z1, . . . , zN ) := 1

Z̃ (β)
N

N∏

j>k=1

|z j − zk |β |z j − z̄k |β

×
N∏

j=1

|z j − z̄ j |β e−βNQ(z j ) d A(z j ).

(1.2)

In (1.1) and (1.2), the normalization constants

Z (β)
N :=

∫

CN

N∏

j>k=1

|z j − zk |β
N∏

j=1

e− βN
2 Q(z j ) d A(z j ), (1.3)

Z̃ (β)
N :=

∫

CN

N∏

j>k=1

|z j − zk |β |z j − z̄k |β
N∏

j=1

|z j − z̄ j |β e−βNQ(z j ) d A(z j ) (1.4)

that make (1.1) and (1.2) probability measures are called partition functions. Further-
more, the logarithm of a partition function (divided by N 2) is often called free energy.

For the special value β = 2, (1.1) and (1.2) represent joint probability distributions
of the random normal matrix and planar symplectic ensembles, respectively. In particu-
lar, if Q(z) = |z|2, these correspond to the complex and symplectic Ginibre ensembles
[42]. An important feature of this special value β = 2 is that, due to the factors identi-
fied in terms of Vandermonde determinants, the ensembles (1.1) and (1.2) form deter-
minantal and Pfaffian point processes in the plane [38], respectively. In other words,
all their correlation functions can be expressed in terms of the (pre-)kernel of planar
(skew-)orthogonal polynomials. We refer the reader to [19,21] for recent reviews on
these models. In the sequel, for β = 2, we omit the superscript (β) in (1.3) and (1.4),
and simply write ZN ≡ Z (2)

N and Z̃N ≡ Z̃ (2)
N .

We mention that the definition of partition functions (1.3) and (1.4) is more common
in the statistical physics community. On the other hand, in the random matrix theory
community, another widely used convention for the (canonical) partition functions is

ZN := 1

N ! ZN , Z̃N := 1

N ! Z̃N , (1.5)

see e.g. [38, Section 1.4]. The prefactor 1/N ! in (1.5) allows writing ZN and Z̃N in
terms of a structured determinant and Pfaffian, respectively.

In this work, we study the asymptotic expansions of ZN and Z̃N as N → ∞.

1.1. Summary of previous results. Before introducing our results, let us summarize some
known results on the asymptotics of Z (β)

N for general β and Q. Cf. the literature on Z̃ (β)
N

is much more limited.
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• (Zabrodin–Wiegmann prediction) In [67], it was predicted that the partition func-
tion Z (β)

N has an asymptotic expansion of the form

log Z (β)
N = C0N

2 + C1N log N + C2N + C3 log N + C4 + O(
1

N
). (1.6)

Furthermore, they proposed explicit formulas for the constants C j ≡ C j (β, Q)

( j = 0, . . . , 4) depending on β and Q, cf. (1.28). Incidentally, the formulas for C3
and C4 in [67] have been controversial as pointed out for instance in [59,62]. (See
also [23,47,63] for a similar prediction, which contains non-trivial O(

√
N )-terms

for β �= 2.)
• (Asymptotic of the leading order O(N 2)-term) It was shown in [44, Theorem
2.11] and [24, Theorem 1.1] (among others) that as N → ∞,

log Z (β)
N = −β

2
N 2 IQ[μQ] + o(N 2).

Here μQ is Frostman’s equilibrium measure [58], a unique probability measure that
minimizes the weighted logarithmic energy

IQ[μ] := −
∫∫

C2
log |z − w| dμ(z) dμ(w) +

∫

C

Q dμ. (1.7)

• (Asymptotic up to the O(N )-term) It was shown by Leblé and Serfaty [53, Corol-
lary 1.1] that as N → ∞,

log Z (β)
N = −β

2
N 2 IQ[μQ] + β

4
N log N −

(
C(β) +

(
1 − β

4

)
EQ[μQ]

)
N + o(N ),

(1.8)

where C(β) is a constant independent of the potential Q and

EQ[μQ] :=
∫

C

log(�Q) dμQ (1.9)

is the entropy associated with μQ .1 Here, � := ∂∂̄ is the quarter of the usual Lapla-
cian. The precise assumptions on the potential Q can be found in [53, Section 2.1].
Notably, it is assumed that �Q is bounded above in the droplet. We also refer the
reader to [14,62] for the expansion (1.8) with quantitative error bounds.

Beyond the general cases mentioned above, for β = 2 with a specific (and funda-
mental from the random matrix theory viewpoint) potential, there have been several
works on the precise asymptotic expansion of the partition functions, see e.g. [27,28]
and references therein. This type of potential usually contains certain singularities. As
a result, the asymptotic expansions of the associated partition functions are more com-
plicated (for instance, some non-trivial O(

√
N ) terms appear as well). Several topics in

this direction will be discussed in a separate remark at the end of the next subsection.

1 We mention that the physical entropy is − ∫
C
log(�Q/π) dμQ .
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Fig. 1. Eigenvalues of complex Ginibre (left) and complex induced Ginibre (right) matrices where N = 1000,
i.e. the model (1.1) with β = 2 and Q(ζ ) = |ζ |2 − 2c log |ζ |, where c = 0 (left) and c > 0 (right)

1.2. Main results. Westudy asymptotic behaviors of ZN and Z̃N for the exactly-solvable
case where Q is radially symmetric. Our main findings are summarized as follows.

(i) We derive the large-N expansions of log ZN and log Z̃N up to and including the
O(1)-terms.

(ii) In the large-N expansions, the formulas of the O(log N )- and O(1)-terms depend
on whether the limiting spectrum is an annulus or a disc, see Theorems 1.1 and
1.2, respectively, cf. Fig. 1. This distinction is crucial in the asymptotic analysis but
seems not considered in [67]. Nonetheless, a precise prediction of the log N term
given in terms of the Euler index of the droplet was made in the earlier work [47]
of Jancovici, Manificat, and Pisani. We refer the reader to [19, Section 4.1] for a
review and more references.

(iii) For the partition function ZN of random normal matrix ensembles, our expansions
(1.17) and (1.23) up to the O(N )-terms agree with the formula (1.8) with β =
2. Furthermore, we verify from (1.23) that the asymptotic formula given in [67,
Eqs.(1.2), (C.7)] holds up to an additive constant (1.34). Here, the meaning of
constant is with respect to the background potential Q, not with respect to N . Thus
the prediction (1.6) is faulty at the level of C3.

(iv) For the partition function Z̃N of planar symplectic ensembles, the asymptotic for-
mulas (1.18) and (1.24) are new to the best of our knowledge. Contrary to (1.8),
the O(N )-terms in these expansions contain not only the entropy but also the
logarithmic potential (1.14).

Let us be more precise in introducing our results. It is well known [15,44] that under
some mild assumptions on Q, as N → ∞, the empirical measures 1

N

∑N
j=1 δz j of (1.1)

and (1.2) weakly converge to μQ , which takes the form

dμQ = �Q · 1S d A. (1.10)

Here S ≡ SQ is a certain compact subset of C called the droplet, see Fig. 1.
We consider the casewhere the external potential Q is radially symmetric, i.e. Q(z) =

q(|z|) for some function q defined in [0,∞). Throughout this paper, we focus on the
case Q is independent of N . We assume the basic growth condition

lim inf|z|→∞
Q(z)

2 log |z| > 1, (1.11)
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which guarantees that ZN , Z̃N < +∞. Furthermore, we assume that Q is C∞-smooth
in a neighborhood of the droplet, subharmonic in C, and strictly subharmonic in a
neighborhood of the droplet. We mention that away from the origin, the latter conditions
can be written as the requirements that rq ′(r) is increasing on (0,∞), and strictly
increasing in a neighborhood of the droplet, cf. (2.3). Under the above assumptions, the
droplet is given by

S = Ar0,r1 := {z ∈ C : r0 ≤ |z| ≤ r1}, (1.12)

where r0 is the largest solution to rq ′(r) = 0 and r1 is the smallest solution to rq ′(r) =
2, see [58, Section IV.6]. (We mention that the annular droplets often appear in non-
Hermitian random matrix theory, see e.g. [43].) In particular, if r0 = 0, we denote
Dr1 = A0,r1 . Henceforth, we keep the assumptions on Q described above. For instance,
we cover the case Q(z) = |z|2λ − 2c log |z| for general λ > 0 and c > 0, see Sect. 4.1.
However, our result does not cover the case Q(z) = |z|2λ with λ �= 1 since it is not
strictly subharmonic at the origin, which is inside the droplet.

For a radially symmetric potential Q, by using (1.10) and (1.12), one can show that
the energy IQ[μQ] in (1.7) is given by

IQ[μQ] = q(r1) − log r1 − 1

4

∫ r1

r0
rq ′(r)2 dr. (1.13)

Similarly, in terms of the logarithmic potential

Uμ(z) =
∫

log
1

|z − w| dμ(w), (1.14)

we have

UμQ (0) = −
∫

S
log |w| dμQ(w) = − log r1 +

q(r1) − q(r0)

2
. (1.15)

See [58, Section IV.6] for more details.
For the annular droplet case, we have the following.

Theorem 1.1. (Large-N expansion of the partition functions: annular droplet case)
Suppose that r0 > 0, i.e. the droplet S in (1.12) is an annulus. Let

FQ[Ar0,r1 ] := 1

12
log

(r20�Q(r0)

r21�Q(r1)

)
− 1

16

(
r1

(∂r�Q)(r1)

�Q(r1)
− r0

(∂r�Q)(r0)

�Q(r0)

)

+
1

24

∫ r1

r0

(∂r�Q(r)

�Q(r)

)2
r dr.

(1.16)

Then as N → ∞, the following holds.

(i) (Random normal matrix ensemble) We have

log ZN = −N 2 IQ[μQ] + 1

2
N log N +

( log(2π)

2
− 1 − 1

2
EQ[μQ]

)
N

+
1

2
log N +

log(2π)

2
+ FQ[Ar0,r1 ] + O(N−1). (1.17)
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(ii) (Planar symplectic ensemble) We have

log Z̃N = −2N2 IQ [μQ ] + 1

2
N log N +

( log(4π)

2
− 1 −UμQ (0) − 1

2
EQ [μQ ]

)
N

+
1

2
log N +

log(2π)

2
+
1

2
FQ [Ar0,r1 ] +

1

8
log

(�Q(r0)

�Q(r1)

)
+ O(N−1). (1.18)

Using the convention (1.5) together with (2.22), our result can also be rewritten as

logZN = −N 2 IQ[μQ] − 1

2
N log N +

( log(2π)

2
− 1

2
EQ[μQ]

)
N

+FQ[Ar0,r1 ] + O(N−1) (1.19)

and

log Z̃N = −2N 2 IQ[μQ] − 1

2
N log N +

( log(4π)

2
−UμQ (0) − 1

2
EQ[μQ]

)
N

+
1

2
FQ[Ar0,r1 ] +

1

8
log

(�Q(r0)

�Q(r1)

)
+ O(N−1). (1.20)

Wemention that these formulas (1.19) and (1.20) aswell as the formulas (1.25) and (1.26)
below are more convenient to compare with some asymptotic results in the previous
literature [27,28].

We mention that the term log(r1/r0) is the extremal length of the annulus (1.12), see
e.g. [40, p.142].

Remark (Renormalized energy). It is worth pointing out that a characteristic difference
between the expansions (1.17) and (1.18) is the appearance of the logarithmic potential
UμQ (0) in the O(N )-term of (1.18). This additional term can be rewritten as

UμQ (0) = −
∫

S
log |w − w̄| dμQ(w). (1.21)

To see this, we use the polar coordinate to rewrite the right-hand side of (1.21) as

−
∫ 2π

0

∫ r1

r0
r log |2r sin θ | �Q(r) dr dθ

= UμQ (0) −
∫ 2π

0
log |2 sin θ |

∫ r1

r0
r �Q(r) dr dθ

= UμQ (0) − 1

2

∫ 2π

0
log |2 sin θ | dθ = UμQ (0).

Here, the last identity
∫ 2π
0 log |2 sin θ | dθ = 0 is an elementary exercise in complex

analysis. The interpretation (1.21) is natural from the perspective of the repulsion term
|z j − z̄ j |β in (1.2) and is closely related to the notion of the next-order energy, see e.g.
[54]. (We thank T. Leblé for pointing out this.)

In Sect. 4.1 we present an example of Theorem 1.1 for the Mittag-Leffler ensembles
from which we expect that the error terms O(N−1) are optimal.

For the disc droplet case, we have the following.
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Theorem 1.2. (Large-N expansion of the partition functions: disc droplet case) Suppose
that r0 = 0, i.e. the droplet S in (1.12) is a disc. Let

FQ[Dr1 ] := 1

12
log

( 1

r21�Q(r1)

)
− 1

16
r1

(∂r�Q)(r1)

�Q(r1)
+
1

24

∫ r1

0

(∂r�Q(r)

�Q(r)

)2
r dr.

(1.22)

Then as N → ∞, the following holds.

(i) (Random normal matrix ensemble) We have

log ZN = −N 2 IQ[μQ] + 1

2
N log N +

( log(2π)

2
− 1 − 1

2
EQ[μQ]

)
N +

5

12
log N

+
log(2π)

2
+ ζ ′(−1) + FQ[Dr1 ] + O(N− 1

12 (log N )3).

(1.23)

(ii) (Planar symplectic ensemble) We have

log Z̃N = −2N 2 IQ[μQ] + 1

2
N log N

+
( log(4π)

2
− 1 −UμQ (0) − 1

2
EQ[μQ]

)
N +

11

24
log N

+
log(2π)

2
+
1

2
ζ ′(−1) +

1

2
FQ[Dr1 ] +

5

24
log 2 +

1

8
log

( �Q(0)

�Q(r1)

)

+ O(N− 1
12 (log N )3).

(1.24)

Here ζ is the Riemann zeta function.

Again, using the convention (1.5), we have

logZN = −N 2 IQ[μQ] − 1

2
N log N +

( log(2π)

2
− 1

2
EQ[μQ]

)
N − 1

12
log N

+ ζ ′(−1) + FQ[Dr1 ] + O(N− 1
12 (log N )3)

(1.25)

and

log Z̃N = −2N 2 IQ[μQ] − 1

2
N log N

+
( log(4π)

2
−UμQ (0) − 1

2
EQ[μQ]

)
N − 1

24
log N

+
1

2
ζ ′(−1) +

1

2
FQ[Dr1 ] +

5

24
log 2 +

1

8
log

( �Q(0)

�Q(r1)

)
+ O(N− 1

12 (log N )3).

(1.26)

In Sect. 4.2, we provide an example of Theorem 1.2 for truncated unitary ensembles.
Contrary to Theorem 1.1, the error terms in Theorem 1.2 do not coincide with the
expected optimal orders O(N−1). Our error bounds originate from a decomposition of
the analytic expressions of ZN , Z̃N (see Sect. 1.3), which depends on sufficiently large
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but seemingly arbitrary number mN > 0. (Such a decomposition was not necessary for
the proof of Theorem 1.1.) Later, we choose mN = N 1/6 that gives rise to the control of
the total error bounds presented in Theorem 1.2. We mention that such error estimates
also naturally appeared in similar computations, see e.g. [17,27,28]. Nevertheless, we
expect that the estimates can be improved with more effort.

In terms of the function χ := 1
2 log�Q, one can rewrite (1.22) as

FQ[Dr1 ] = 1

12
log

( 1

r21

)
− 1

12π

∮

∂S
κ χ ds− 1

4

∫

S
�χ d A+

1

12

∫

S
|∇χ |2 d A,

(1.27)

where S = Dr1 and κ = 1/r1 is the curvature of the boundary, see [67, p.8960] and
(1.33). Here, the third term

∫
S �χ d A on the right-hand side of (1.27) is known as a “zero

mode” of the loop operator (cf. [67, Eq.(5.26)]), whereas the fourth term corresponds to
the Dirichlet energy of χ .

We end this subsection by giving some crucial remarks on our theorems.

Remark (Comparison with Zabrodin-Wiegmann formula). We compare our formula
(1.23) with the prediction by Zabrodin and Wiegmann. For β = 2 and a radially sym-
metric Q associated with a disc droplet of radius r1, the asymptotic formula (1.6) is
written in [67, Eqs.(1.2),(C.7)] as

log ZN = F0N
2 + F1/2N + F1 + c(N ) + O(N−1),

(
c(N ) := log N ! − 1

2
N log N + γ̃ N

)

= F0N
2 +

1

2
N log N +

(
γ̃ − 1 + F1/2

)
N +

1

2
log N +

log(2π)

2
+ F1 + O(N−1),

(1.28)

where γ̃ is a “numerical” constant [67, p.8938] (that is not explicitly presented). (For
reader’s convenience, let us mention that in [67], the authors use a different convention
for β so that β = 2 in our case corresponds to β = 1 in [67]. Furthermore, the Planck
constant � in [67] is identified as 1/N .) The coefficients F0, F1/2 and F1 in (1.28) are
given by

F0 := π

∫ r21

0
(Wrad(x) − W ′

rad(x)x log x)σrad(x) dx, (1.29)

F1/2 := −π

2

∫ r21

0
σrad(x) log(πσrad(x)) dx, (1.30)

F1 := 1

12
log

( 1

r21

)
− 1

6
χrad(r

2
1 ) − 1

4
r21χ ′

rad(r
2
1 )

+
1

3

∫ r21

0
x(χ ′

rad(x))
2 dx, (1.31)

where

Wrad(r) := −Q(
√
r), σrad(r) := 1

π
�Q(

√
r), χrad(r) := 1

2
log�Q(

√
r).

(1.32)
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Using (1.32), it is straightforward to check that the formulas (1.29), (1.30) and (1.31)
can be identified as

F0 = −IQ[μQ], F1/2 = −1

2
EQ[μQ], F1 = FQ[Dr1 ], (1.33)

where IQ , EQ and FQ[Dr1 ] are given by (1.13), (1.9) and (1.22). (Cf. the identification
of F0 follows from the computation (2.16) below.) Then by letting γ̃ = log(2π)/2, one
can deduce from (1.33) that the asymptotic formula (1.28) agrees with our result (1.23)
up to the additive terms

− 1

12
log N + ζ ′(−1). (1.34)

We remark that the asymptotic expansion of the partition function of the complex
Ginibre ensemble was presented in [23,65], where the universal coefficient for the log N
in the case of disc geometry is also exhibited, see also [19, Section 4.1] for further
references. Furthermore, one can also observe the term ζ ′(−1) in (1.34). Indeed, the
term ζ ′(−1) and its generalizations have appeared in similar situations in the Hermitian
matrix theory, see [31, Remark 1.3, Proposition 1.4], [26, Theorem 1.1], [29, Theorem
1.2]. Interestingly, the coefficients of the ζ ′(−1) term depend on the connectivity of the
droplet (i.e. the number of disjoint intervals in this case) and the number of hard edges.

Remark (Non-triviality of the limit r0 → 0). The formulas (1.23) and (1.24) cannot be
recovered by simply taking the limit r0 → 0 of (1.17) and (1.18). Namely, it is obvious
that as r0 → 0, the terms

− 1

12
log

( 1

r20�Q(r0)

)
+

1

16
r0

(∂r�Q)(r0)

�Q(r0)
(1.35)

do not correspond to the terms (1.34). (One may however notice that for the standard
microscale r0 = O(1/

√
N ), at least the − 1

12 log N term in (1.34) follows.)
From the viewpoint of the proof, the origin of (1.34) and (1.35) is essentially similar in

the sense that these terms arise from the asymptotic behaviors of the summand in (1.37)
of lower degrees. Nevertheless, it is essential (but seems not discussed in [67]) that
these asymptotic behaviors depend on whether the droplet is contractible or not, i.e. for
the radially symmetric potentials, disc or annulus. We remark that the contractible case
requires considerably more analysis than the other case, see the following subsection
for more discussion.

Remark (Invariance of the O(1)-terms under the dilation). For a > 0, let Qa(z) :=
Q(z/a). Then the droplet associated with Qa is given by {z ∈ C : ar0 ≤ |z| ≤ ar1},
where r0 and r1 are given in (1.12). Then it follows from (1.16) and (1.22) that

FQ[Ar0,r1 ] = FQa [Aar0,ar1 ], FQ[Dr1 ] = FQa [Dar1]. (1.36)

This in turn means that the O(1)-terms in the expansions in Theorems 1.1 and 1.2 are
invariant under the dilation {z j } �→ {a · z j }. The property (1.36) can be expected from
the analytic expression (1.37) below. More precisely, by the change of variables when
computing the orthogonal norms, the asymptotic expansions of the partition functions
associated with Qa and Q should differ only up to the O(N )-term, see [19, below
Eq.(5.13)] for a similar discussion.
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Remark (Weight function with singularities and classical problems in random
matrix theory). In Theorems 1.1 and 1.2, we focus on the weight function e−NQ without
any kind of singularities. In contrast, if a specific singularity is allowed for the weight
function, the problems of deriving asymptotic expansions of the associated partition
function are (when combined with Theorems 1.1 and 1.2) equivalent to several classical
problems in random matrix theory.

To be more concrete, we list various problems in this direction. If the weight function
has a hard-edge inside the droplet, the associated partition function provides the large
gap (hole) probability, see [1,2,8,18,27,37,41,46] and references therein. The weight
function with a jump-type singularity gives rise to the moment generating function of
the disc counting function. It has been extensively studied in recent years [4,11,17,25,
28,30]. (We also refer to [35,51,52,64] for physical motivations of these problems from
the counting statistics of rotating free fermions.) Finally, a root-type singularity arises
in the study of the log-characteristic polynomials [17,33,66].

We stress that the literature mentioned above is limited mainly to a particular model,
such as the Ginibre ensemble, when deriving precise asymptotic results or to the leading
order asymptotic when considering general potentials. We expect that Theorems 1.1 and
1.2 provide the building blocks for obtaining precise asymptotic results on the problems
mentioned above with general radially symmetric potentials.

Remark (Planar point processes with a general external potential Q). For a general
potential Q beyond a radially symmetric one, the asymptotic behaviors of planar orthog-
onal polynomials (of sufficiently large degrees) with respect to e−NQ d A were recently
obtained in [45]. We expect that this will be helpful to extend Theorem 1.1 (i) to a
general potential Q associated with a “non-contractible” droplet. On the other hand,
for the extension of Theorem 1.2 (i), it is required to derive asymptotics of orthogonal
polynomials of lower degrees as well.

Such a generalization of Theorems 1.1 and 1.2 (ii) for planar symplectic ensembles
seems at present far from being solved. More precisely, in order to obtain an analytic
expression of Z̃N , it is required to construct the associated skew-orthogonal polynomial.
However, for a non-radially symmetric potential, this construction has been known only
in a few special cases [3,48] (cf. see [7] for a possible generality).

Remark (Multi-component ensembles). For a general Q, as a consequence of the asso-
ciated equilibrium measure problem, it is possible that the droplet consists of several
disconnected components, see e.g. [5,13,16,32,55] and references therein. In relation
with themodels (1.1), suchmulti-component ensembles have recently gained a particular
interest due to their special statistical properties at the boundaries of the droplets as well
as some theta function oscillations in various statistics, see e.g. [9,10,22,27]. For these
models, it would also be interesting to investigate the precise asymptotic behaviours of
the partition functions, for which it is expected that the coefficient of the log N -term is
again related to the Euler characteristics of the droplets and that certain theta function
behaviours appear.

1.3. Outline of the proof. In this subsection, we outline the proofs of our main results.
Using the determinantal (resp., Pfaffian) structure and de Bruijn’s type formulas, one can
express ZN (resp., Z̃N ) in terms of the (skew-)orthogonal norms. Consequently, since
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Q is radially symmetric, we find

log ZN = log N ! +
N−1∑

j=0

log h j , log Z̃N = log N ! +
N−1∑

j=0

log(2h̃2 j+1), (1.37)

where

h j :=
∫

C

|z|2 j e−NQ(z) d A(z), h̃ j :=
∫

C

|z|2 j e−2NQ(z) d A(z). (1.38)

These formulas can be found for instance in [28, Lemma 1.9] and [7, Remark 2.5].
In particular, for planar symplectic ensembles, we have used the explicit construction
of skew-orthogonal polynomials associated with radially symmetric potentials, see [7,
Corollary 3.3].

In order to obtain the large-N expansions of partition functions up to the O(1)-terms,
we need to derive asymptotic behaviors of h j and h̃ j up to the first subleading terms,
for which we apply Laplace’s method. For this purpose, let rτ be a unique number rτ
such that rτq ′(rτ ) = 2τ for 0 ≤ τ ≤ 1. Such a function τ �→ rτ plays an important
role in Laplace’s method, and we defer more explanations to Sect. 2.1. In the asymptotic
expansions of h j and h̃ j , one should distinguish the following two cases depending on
a small constant ε > 0.

• Case 1: r j/N � N−ε. For the annular droplet case where r0 > 0, this case covers
all j = 0, 1, . . . , N − 1 (Lemma 2.1). On the other hand, for the disc droplet case
where r0 = 0, this case covers only j = mN ,mN + 1, . . . , N − 1 for mN = N ε with
some ε > 0 (Lemma 3.2).

• Case 2: r j/N 
 N−ε. This covers the remaining disc droplet case with j =
0, 1, . . . ,mN − 1 (Lemma 3.1). Notably, the asymptotic expansion involves gamma
functions in this case.

Furthermore, we apply the Euler–Maclaurin formula (see e.g. [57, Section 2.10]) to
precisely analyze the summations in (1.37)

n∑

j=m

f ( j) =
∫ n

m
f (x) dx +

f (m) + f (n)

2

+
l−1∑

k=1

B2k

(2k)!
(
f (2k−1)(n) − f (2k−1)(m)

)
+ Rl , (1.39)

where Bk is the Bernoulli number defined by

t

et − 1
=

∞∑

n=0

Bn
tn

n! . (1.40)

Here, the error term Rl is given by [57, Eq.(2.10.1)]

Rl =
∫ n

m

B2l − B2l(x − �x�)
(2l)! f (2l)(x) dx,

where Bl is the Bernoulli polynomial [57, Chapter 24]. Using the inequality

|B2l − B2l(x)| ≤ (2 − 21−2l)|B2l | = 4(1 − 4−l)
(2l)!

(2π)2l
ζ(2l)
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(see [57, Eqs.(24.9.2),(25.6.2)]), one can notice that the error term Rl satisfies the esti-
mate

|Rl | ≤ 4 ζ(2l)

(2π)2l

∫ n

m
| f (2l)(x)| dx .

Here ζ is the Riemann zeta function. In particular, for the disc droplet case, in the
summation of lower degrees j = 0, 1, . . . ,mN − 1, we consider the Barnes G-function
[57, Section 5.17]

G(z + 1) = (2π)z/2e−(z+z2(1+γ ))/2
∞∏

n=0

(
1 +

z

n

)n
e−z+z2/(2n)

(here γ is Euler’s constant), which can also be defined recursively by

G(z + 1) = �(z)G(z), G(1) = 1. (1.41)

We then use its asymptotic expansion [57, Eq.(5.17.5)]:

logG(z + 1) = z2 log z

2
− 3

4
z2 +

log(2π)z

2
− log z

12
+ ζ ′(−1) + O(

1

z2
), (z → ∞).

(1.42)

This asymptotic expansion leads to the appearance of the Riemann zeta function in
Theorem 1.2.

Plan of the paper. The rest of this paper is organized as follows. In Sect. 2, we prove
Theorem 1.1. Section 2.1 is devoted to deriving asymptotic behaviors of h j and h̃ j
using Laplace’s method. Then we show Theorem 1.1 (i) on random normal matrices in
Sect. 2.2 and Theorem 1.1 (ii) on planar symplectic ensembles in Sect. 2.3. Section3
is structured in parallel with a goal to show Theorem 1.2 albeit it requires considerably
more computations compared to those in Sect. 2. In Sect. 4, we present examples of
Theorems 1.1 and 1.2 for the Mittag-Leffler and truncated unitary ensembles whose
partition functions can be explicitly expressed in terms of well-known special functions.

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Throughout this section, we assume that r0 > 0.

2.1. Asymptotics of the orthogonal norm. We first introduce an auxiliary function Vτ in
(0,∞)

Vτ (r) := q(r) − 2τ log r. (2.1)

With the following choices of τ = τ( j), τ̃ ( j)

τ ( j) := j

N
, τ̃ ( j) := j

2N
, (2.2)
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the integrands in h j , h̃ j (1.38) can be expressed in terms of Vτ :

r2 j e−Nq(r) = e−NVτ ( j)(r), r2 j e−2Nq(r) = e−NVτ̃ ( j)(r).

For a radially symmetric potential Q, we represent �Q in terms of q as

4�Q(z)|z=r = 1

r
(rq ′(r))′ = q ′(r)

r
+ q ′′(r). (2.3)

Differentiating (2.1), we have

V ′
τ (r) = q ′(r) − 2τ

r
, V ′′

τ (r) = 4�Q(r) − 1

r
V ′

τ (r),

V (3)
τ (r) = 4∂r�Q(r) − 4

r
�Q(r) +

2

r2
V ′

τ (r),

V (4)
τ (r) = 4∂2r �Q(r) +

12

r2
�Q(r) − 4

r
∂r�Q(r) − 6

r3
V ′

τ (r). (2.4)

We now set the stage to apply Laplace’s method. Since rq ′(r) is strictly increasing
inside the droplet, for 0 ≤ τ ≤ 1, there exists a unique number r(τ ) such that

V ′
τ (r(τ )) = 0, V ′′

τ (r(τ )) > 0. (2.5)

Moreover, by (2.3) and the relation (2.5), it follows that

dr(τ )

dτ
= 2

(rq ′(r))′
∣∣∣
r=r(τ )

= 1

2r(τ )�Q(r(τ ))
> 0. (2.6)

Thus r(τ ) is an increasing function of τ . On the other hand, r(1) = r1, r(0) = r0, where
r0, r1 are given in (1.12). Therefore, we denote rτ = r(τ )making the notation consistent
with (1.12). We also mention here that rτ corresponds to the outer radius of the so-called
“τ -droplet” [45]. By (2.4) and (2.5), rτ satisfies

rτq
′(rτ ) = 2τ. (2.7)

In particular, q ′(r0) = 0 and r1q ′(r1) = 2.
Let

B1(r) := − 1

32

∂2r �Q(r)

(�Q(r))2
− 19

96r

∂r�Q(r)

(�Q(r))2
+

5

96

(∂r�Q(r))2

�Q(r)3
+

1

12r2
1

�Q(r)
. (2.8)

Here, the subscript 1 is added toB to emphasize that this function appears as the first sub-
leading term of the asymptotic expansion of orthonormal polynomials, see Lemma 2.1
below. Indeed, function B1 is closely related to function Bτ,1 in [45, Theorem 1.3].

Lemma 2.1. As N → ∞, the following holds.

• For each j with 0 ≤ j ≤ N − 1,

h j = N− 1
2 e−NVτ ( j)(rτ ( j))

( 2πr2τ( j)

�Q(rτ( j))

) 1
2
(
1 +

1

N
B1(rτ( j)) + O(N−2)

)
.
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• For each j with 0 ≤ j ≤ 2N − 1,

h̃ j = (2N )−
1
2 e−2NVτ̃ ( j)(rτ̃ ( j))

( 2πr2τ̃ ( j)

�Q(rτ̃ ( j))

) 1
2
(
1 +

1

2N
B1(rτ̃ ( j)) + O(N−2)

)
.

Here, the error terms are uniform for j .

Proof. It suffices to show the first assertion as the second one follows by replacing N
with 2N .

Write δN := log N/
√
N . As seen in (2.1), (2.5) and (2.6), the function Vτ has a

global minimum at r = rτ and rτ( j+ 1
2 ) − rτ( j) = O(N−1). As N → ∞, uniformly for

j with 0 ≤ j ≤ N − 1 we have

Vτ( j+ 1
2 )(r) ≥ Vτ( j+ 1

2 )(rτ( j) + δN )

= Vτ( j+ 1
2 )(rτ( j+ 1

2 )) +
1

2
V ′′

τ( j+ 1
2 )

(rτ( j+ 1
2 ))(rτ( j) + δN − rτ( j+ 1

2 ))
2 + O(δ3N )

for all r with r > rτ( j) + δN since rq ′(r) is increasing in (0,∞). A similar estimate
holds for r < rτ( j) − δN . Thus we deduce from the estimate

Vτ( j+ 1
2 )(rτ( j+ 1

2 )) − Vτ( j)(rτ( j)) = O(N−1)

that there exists a positive number c > 0 such that for all j ∈ {0, 1, · · · , N − 1} and r
with |r − rτ( j)| > δN

Vτ( j+ 1
2 )(r) − Vτ( j)(rτ( j)) ≥ c δ2N . (2.9)

We split h j in (1.38) into two integrals

h j =
∫ ∞

0
e−NVτ ( j)(r)2r dr

=
∫

|r−rτ ( j)|<δN

e−NVτ ( j)(r)2r dr +
∫

|r−rτ ( j)|>δN

e−NVτ ( j)(r)2r dr.

Using (1.11), we choose sufficiently large M > 0 such that
∫ ∞

0

(
r2e−q(r)

)M
r dr < +∞. (2.10)

We then use (2.9) and (2.10) to find an error estimate for the second integral
∫

|r−rτ ( j)|>δN

e−NVτ ( j)(r)2r dr

= e−NVτ ( j)(rτ ( j))

∫

|r−rτ ( j)|>δN

e−N
(
Vτ ( j)(r)−Vτ ( j)(rτ ( j))

)
2r dr

≤ e−NVτ ( j)(rτ ( j))e−c(N−M)δ2N

∫

|r−rτ ( j)|>δN

e−M
(
Vτ ( j)(r)−Vτ ( j)(rτ ( j))

)
2r dr

= e−NVτ ( j)(rτ ( j))εN ,

(2.11)
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where εN = O(e−c(log N )2) for some c > 0 and the O-constants are bounded uniformly
for all j with 0 ≤ j ≤ N − 1. We deduce from the asymptotic expansion of Vτ (r) near
the critical point rτ and (2.11) that

h j = e−NVτ ( j)(rτ ( j))

×
( ∫ δN

−δN

e−2N�Q(rτ ( j))r2e−N ( 1
3! V

(3)
τ ( j)(rτ ( j))r3+

1
4! V

(4)
τ ( j)(rτ ( j))r4+O(r5))2(rτ( j) + r) dr + εN

)
.

A change of variables gives that

eNVτ ( j)(rτ ( j))h j

= 2 rτ( j)√
N

∫ √
NδN

−√
NδN

e
−2�Q(rτ ( j))r2− 1√

N
1
3! V

(3)
τ ( j)(rτ ( j))r3− 1

N
1
4! V

(4)
τ ( j)(rτ ( j))r4+O(N− 3

2 r5)

(
1 +

r

rτ( j)
√
N

)
dr + εN .

Using the Taylor series expansion of the function

e
− 1√

N
1
3! V

(3)
τ ( j)(rτ ( j))r3− 1

N
1
4! V

(4)
τ ( j)(rτ ( j))r4

,

we have the asymptotic expansion

√
N

2rτ( j)
eNVτ ( j)(rτ ( j))h j

=
∫ ∞
−∞

e−2�Q(rτ ( j))r
2[
1 − 1

N

( 1

6rτ( j)
V (3)

τ ( j)(rτ( j)) +
1

24
V (4)

τ ( j)(rτ( j))
)
r4 +

1

N

1

72
(V (3)

τ ( j)(rτ( j)))
2r6

]
dr

+ O(N−2)

since the odd terms vanish in the integral, leaving only the even terms. Note that the
O-terms are uniform for j ∈ {0, 1, · · · , N − 1}.

Combining (2.4) with the elementary Gaussian integrals

∫

R

e−2ar2 dr =
√

π

2

1

a1/2
,

∫

R

e−2ar2r4 dr =
√

π

2

3

16

1

a5/2
,

∫

R

e−2ar2r6 dr =
√

π

2

15

64

1

a7/2
,

we obtain the desired asymptotic behavior after some straightforward computations. ��
The following elementary integration will be helpful later.

Lemma 2.2. We have
∫

S
B1 dμQ = FQ[Ar0,r1 ] − 1

4
log

(�Q(r1)

�Q(r0)

)
+
1

3
log

(r1
r0

)
,

where FQ[Ar0,r1 ] is given in (1.16).
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Proof. By (2.8) and (1.10), we have
∫

S
B1 dμQ = 1

6
log

(r1
r0

)
− 19

48
log

(�Q(r1)

�Q(r0)

)

− 1

16

∫ r1

r0

[∂2r �Q(r)

�Q(r)
− 5

3

(∂r�Q(r)

�Q(r)

)2]
r dr.

Then the lemma follows using integration by parts

∫ r1

r0

[ ∂2r �Q(r)

�Q(r)
− 5

3

( ∂r�Q(r)

�Q(r)

)2]
r dr

= r1
(∂r�Q)(r1)

�Q(r1)
− r0

(∂r�Q)(r0)

�Q(r0)
+ log

(�Q(r0)

�Q(r1)

)
− 2

3

∫ r1

r0

( ∂r�Q(r)

�Q(r)

)2
r dr. (2.12)

��

2.2. Random normal matrix ensemble. In this subsection, we prove Theorem 1.1 (i).
By Lemma 2.1, we have

log h j = −NVτ( j)(rτ( j)) +
1

2

(
log(2πr2τ( j)) − log N − log�Q(rτ( j))

)

+
1

N
B1(rτ( j)) + O(N−2) (2.13)

as N → ∞ uniformly for j ∈ {0, 1, · · · , N − 1}. In the following lemmas, we analyze
the asymptotic behavior of the partial sum of each term in (2.13).

Lemma 2.3. As N → ∞, we have

N−1∑

j=0

Vτ( j)(rτ( j)) = N IQ[μQ] −UμQ (0) +
1

6N
log

(r0
r1

)
+ O(N−3).

Proof. The sequence τ in (2.2) can be extended to the function on [0, N ]: τ(t) = t/N .

Using the Euler–Maclaurin formula (1.39) and (2.2), we have

N−1∑

j=0

Vτ( j)(rτ( j)) =
∫ N

0
Vτ(t)(rτ(t)) dt − 1

2

(
Vτ(N )(rτ(N )) − Vτ(0)(rτ(0))

)

+
1

12

[
∂t Vτ(t)(rτ(t))

∣∣
t=N − ∂t Vτ(t)(rτ(t))

∣∣
t=0

]
+ O(N−3). (2.14)

Here, we also used the second Bernoulli number B2 = 1/6, which can be easily seen
from the definition (1.40). For the first term on the right-hand side of (2.14), the change
of variables s = rτ(t), the definition (2.1) of Vτ , the definition (2.2) of τ , the formula
(2.6) of dr/dτ , and the eq (2.7) rτq ′(rτ ) = 2τ for rτ give that

1

N

∫ N

0
Vτ(t)(rτ(t)) dt = 2

∫ r1

r0

(
q(s) − sq ′(s) log s

)
s�Q(s) ds. (2.15)
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We use the polar coordinate system to represent the first term on the right-hand side of
the above equation as

2
∫ r1

r0
sq(s)�Q(s) ds =

∫

S
Q · �Q dA.

By (2.3), the method of integration by parts, and the relation r1q ′(r1) = 2, q ′(r0) = 0
(see (2.7)), the second term in (2.15) is simplified to

−2
∫ r1

r0
s2q ′(s) log s�Q(s) ds = −1

4

∫ r1

r0
log s · ((sq ′(s))2)′ ds

= − log r1 +
1

4

∫ r1

r0
s(q ′(s))2 ds.

Applying the method of integration by parts again to the last integral,

1

4

∫ r1

r0
s(q ′(s))2 ds = 1

2
q(r1) − 1

4

∫ r1

r0
q(s)(sq ′(s))′ ds.

Using the formula (1.13) of IQ[μQ], the representation (2.3) of �Q in terms of q, and
the equation (2.7) rτq ′(rτ ) = 2τ for rτ , we have

1

N

∫ N

0
Vτ(t)(rτ(t)) dt =

∫

S
Q · �Q dA − log r1 +

1

2
q(r1) − 1

4

∫ r1

r0
q(s)(sq ′(s))′ ds

= 1

2

∫

S
Q · �Q dA − log r1 +

1

2
q(r1) = IQ[μQ].

(2.16)

For the next term on the right-hand side of (2.14), we observe that

Vτ(N )(rτ(N ))−Vτ(0)(rτ(0))=V1(r1) − V0(r0)=q(r1)−q(r0) − 2 log r1 = 2UμQ (0),

(2.17)

where we have used in (1.15). To analyze the remaining term in (2.14), we use the
Leibniz rule and obtain

∂t Vτ(t)(rτ(t))
∣∣
t=N = 1

N

[
∂τ (q(rτ ) − 2 log rτ )

∣∣
τ=1 − 2 log r1

]
,

∂t Vτ(t)(rτ(t))
∣∣
t=0 = 1

N

[
∂τq(rτ )

∣∣
τ=0 − 2 log r0

]
.

It follows from r1q ′(r1) = 2, r0q ′(r0) = 0 and the formula (2.6) of dr/dτ that

∂t Vτ(t)(rτ(t))
∣∣
t=N − ∂t Vτ(t)(rτ(t))

∣∣
t=0

= 1

N

[ q ′(r1)
2r1�Q(r1)

−2 log r1− 1

r21�Q(r1)
− q ′(r0)
2r0�Q(r0)

+2 log r0
]
= 2

N
log

(r0
r1

)
.

(2.18)

Combining (2.14), (2.16), (2.17), and (2.18), the proof is complete. ��
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Lemma 2.4. As N → ∞, we have

N−1∑

j=0

log�Q(rτ( j)) = NEQ[μQ] − 1

2
log

(�Q(r1)

�Q(r0)

)
+ O(N−1), (2.19)

and

N−1∑

j=0

log rτ( j) = −NUμQ (0) − 1

2
log

(r1
r0

)
+ O(N−1). (2.20)

Proof. As in Lemma 2.3, we apply the Euler–Maclaurin formula (1.39) and obtain

N−1∑

j=0

log�Q(rτ( j)) =
∫ N

0
log�Q(rτ(t)) dt − 1

2
log

(�Q(r1)

�Q(r0)

)

+
1

12

[
∂t log�Q(rτ(t))

∣∣
t=N − ∂t log�Q(rτ(t))

∣∣
t=0

]
+ O(N−3).

(2.21)

It follows from a change of variables and (2.6) that the first term on the right-hand side
of (2.21) gives the entropy term

∫ N

0
log�Q(rτ(t)) dt = N

∫ r1

r0
log�Q(s)2s�Q(s) ds = N

∫

S
log�Q dμQ .

By the chain rule and the formula (2.6) of dr/dτ again, we also observe that

∂t log�Q(rτ(t))
∣∣
t=N − ∂t log�Q(rτ(t))

∣∣
t=0 = 1

2N

( (∂r�Q)(r1)

r1(�Q(r1))2
− (∂r�Q)(r0)

r0(�Q(r0))2

)

= O(N−1).

Combining all of the above, we obtain (2.19). The equation (2.20) follows similarly. ��
We are now ready to prove the first assertion of Theorem 1.1.

Proof of Theorem 1.1 (i). Combining Lemmas 2.3 and 2.4 with (2.13), we obtain

N−1∑

j=0

log h j = −N 2 IQ[μQ] − N

2
log N + N

( log(2π)

2
− 1

2
EQ[μQ]

)

− 1

3
log

(r1
r0

)
+
1

4
log

(�Q(r1)

�Q(r0)

)
+

∫

S
B1 dμQ + O(N−1),

whereB1 is given by (2.8). Then the desired asymptotic expansion (1.17) follows from

log N ! = N log N − N +
1

2
log N +

1

2
log(2π) + O(

1

N
), (N → ∞) (2.22)

(see e.g. [57, Eq.(5.11.1)]) and Lemma 2.2. ��
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2.3. Planar symplectic ensemble. In this subsection, we prove Theorem 1.1 (ii).
Recall that by Lemma 2.1,

log h̃ j = − 2NVτ̃ ( j)(rτ̃ ( j)) +
1

2

(
log(πr2τ̃ ( j)) − log N − log�Q(rτ̃ ( j))

)

+
1

2N
B1(rτ̃ ( j)) + O(N−2)

(2.23)

as N → ∞ uniformly for j ∈ {0, 1, · · · , N − 1}. In the following lemmas, we derive
asymptotic expansions for the partial sum of each term on the right-hand side of (2.23).
We obtain the following as a counterpart of Lemma 2.3.

Lemma 2.5. As N → ∞, we have

N−1∑

j=0

Vτ̃ (2 j+1)(rτ̃ (2 j+1)) = N IQ[μQ] − 1

12N
log

(r0
r1

)
+ O(N−3). (2.24)

Proof. Applying Lemma 2.3 by replacing N with 2N , we have

2N−1∑

j=0

Vτ̃ ( j)(rτ̃ ( j)) = 2N IQ[μQ] −UμQ (0) +
1

12N
log

(r0
r1

)
+ O(N−3). (2.25)

It follows from Vτ̃ (2 j)(rτ̃ (2 j)) = Vτ( j)(rτ( j)) and Lemma 2.3 that

N−1∑

j=0

Vτ̃ (2 j)(rτ̃ (2 j)) = N IQ[μQ] −UμQ (0) +
1

6N
log

(r0
r1

)
+ O(N−3). (2.26)

Then (2.24) follows from (2.25) and (2.26). ��
Lemma 2.6. As N → ∞, we have

N−1∑

j=0

log�Q(rτ̃ (2 j+1)) = NEQ[μQ] + O(N−1),

and

N−1∑

j=0

log rτ̃ (2 j+1) = −NUμQ (0) + O(N−1).

Proof. By Lemma 2.4, we have

2N−1∑

j=0

log�Q(rτ̃ ( j)) = 2NEQ[μQ] − 1

2
log

(�Q(r1)

�Q(r0)

)
+ O(N−1),

2N−1∑

j=0

log rτ̃ ( j) = −2NUμQ (0) − 1

2
log

(r1
r0

)
+ O(N−1).
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Along the lines of Lemma 2.4, one can also show that

N−1∑

j=0

log�Q(rτ̃ (2 j)) = NEQ[μQ] − 1

2
log

(�Q(r1)

�Q(r0)

)
+ O(N−1),

N−1∑

j=0

log rτ̃ (2 j) = −NUμQ (0) − 1

2
log

(r1
r0

)
+ O(N−1).

This completes the proof. ��
We now prove the second assertion of Theorem 1.1.

Proof of Theorem 1.1 (ii). By Lemmas 2.5 and 2.6, we have

N−1∑

j=0

log(2h̃2 j+1) = −2N 2 IQ[μQ] − N

2
log N +

N

2
log 2 +

N

2
log(2π)

− NUμQ (0) − N

2
EQ[μQ] + 1

2

∫

S
B1 dμQ +

1

6
log

(r0
r1

)
+ O(N−1).

Combining (1.37), (2.22), and Lemma 2.2 completes the proof. ��

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Throughout this section, we let r0 = 0.

3.1. Asymptotics of the orthogonal norm. Let δN = N−1/2 log N and mN = N ε for
0 < ε < 1/5. As explained in Sect. 1.3, for the disc droplet case, the asymptotic
behaviors of h j and h̃ j depend on whether the degree j is sufficiently small or not, see
Lemmas 3.1 and 3.2, respectively.

Lemma 3.1. As N → ∞, the following holds.

• For j = 0, 1, . . . ,mN − 1, we have

log h j = −Nq(0) − ( j + 1) log
(N

2
q ′′(0)

)
+ log j ! + O

(
N− 1

2 ( j + 1)
3
2 (log N )3

)
.

• For j = 0, 1, . . . , 2mN − 1, we have

log h̃ j = −2Nq(0) − ( j + 1) log(Nq ′′(0)) + log j ! + O
(
N− 1

2 ( j + 1)
3
2 (log N )3

)
.

Here, the O-constants are uniformly bounded for j .

Proof. The second assertion is an immediate consequence of the first one. Recall that
τ( j) = j/N . Let

r∗
τ := rτ · log N ,
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where rτ is given in (2.5) or (2.7), rτq ′(rτ ) = 2τ . We consider the decomposition

h j =
∫ ∞

0
2r2 j+1e−Nq(r) dr =

∫ r∗
τ ( j+ 1

2 )

0
2r2 j+1e−Nq(r) dr +

∫ ∞

r∗
τ ( j+ 1

2 )

2r2 j+1e−Nq(r) dr.

Due to strict subharmonicity of Q in a neighborhood of the droplet, rτ defined in (2.5)

satisfies rτ = O(τ
1
2 ) as τ → 0. Since the function Vτ in (2.1) has a global minimum at

r = rτ and increases in (rτ ,∞), for all r > r∗
τ( j+ 1

2 )
, we have

Vτ( j+ 1
2 )(r) ≥ Vτ( j+ 1

2 )(r
∗
τ( j+ 1

2 )
) = q(r∗

τ( j+ 1
2 )

) − 2 j + 1

N
log(r∗

τ( j+ 1
2 )

)

= q(0) +
1

2
q ′′(0)(r∗

τ( j+ 1
2 )

)2 − 2 j + 1

N
log(r∗

τ( j+ 1
2 )

) + O(r∗
τ( j+ 1

2 )
)3,

(3.1)

where the O-constants are uniform for j ∈ {0, 1, · · · ,mN −1}. Here, we also have used
q ′(0) = 0, which follows from (2.3) and the fact that �Q(z) ∈ (0,∞) near the origin.
Using (3.1), it follows that

eNq(0)
∫ ∞

r∗
τ ( j+ 1

2 )

2r2 j+1e−Nq(r) dr =
∫ ∞

r∗
τ ( j+ 1

2 )

2 e
−N (V

τ ( j+ 1
2 )

(r)−q(0))
dr

≤ e
−c1(N−M)(r∗

τ ( j+ 1
2 )

)2

(r∗
τ( j+ 1

2 )
)(2 j+1)

N−M
N

∫ ∞

r∗
τ ( j+ 1

2 )

2 e
−M(V

τ ( j+ 1
2 )

(r)−q(0))
dr =: εN ( j)

for some c1 > 0. Here, M is given by (2.10). Since rτ = O(τ
1
2 ), there exists c2 > 0

such that

εN ( j) = O
(
(r∗

τ( j+ 1
2 )

)(2 j+1)
N−M
N · e−c2( j+

1
2 )(log N )2

)

= O
(( 2 j+1

2N (log N )2
)(2 j+1) N−M

2N e−c2( j+
1
2 )(log N )2

)
.

Therefore we obtain

h j =
∫ ∞
0

2r2 j+1e−Nq(r) dr =
∫ r∗

τ ( j+ 1
2 )

0
2r2 j+1e−Nq(r) dr + e−Nq(0)εN ( j)

=
∫ r∗

τ ( j+ 1
2 )

0
2r2 j+1e

−N (q(0)+ 1
2 q

′′(0)r2)+O(N (r∗
τ ( j+ 1

2 )
)3)

dr + e−Nq(0)εN ( j)

= e−Nq(0)
[
N−( j+1)

∫ ∞
0

2r2 j+1e−
1
2 q

′′(0)r2 dr
(
1 + O(N (r∗

τ( j+ 1
2 )

)3)
)
+ εN ( j)

]

= e−Nq(0)
[
N−( j+1)�( j + 1)

( 1
2
q ′′(0)

)−( j+1) (
1 + O

(
N− 1

2
(
j + 1

2
) 3
2 (log N )3

))
+ εN ( j)

]
,

where the O-constants are uniformly bounded for j and εN ( j) is negligible. This com-
pletes the proof. ��
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Recall that the sequences τ( j) and τ̃ ( j) are given by (2.2): τ( j) := j/N , τ̃ ( j) :=
j/(2N ) and the function B1 is given by (2.8):

B1(r) := − 1

32

∂2r �Q(r)

(�Q(r))2
− 19

96r

∂r�Q(r)

(�Q(r))2
+

5

96

(∂r�Q(r))2

�Q(r)3
+

1

12r2
1

�Q(r)
.

Recall also that Vτ is given by (2.1) Vτ (r) := q(r) − 2τ log r and rτ is given by (2.5)
or (2.7) rτq ′(rτ ) = 2τ . As a counterpart of Lemma 2.1, we show the following lemma.

Lemma 3.2. As N → ∞, the following holds.

• For j = mN ,mN + 1, . . . , N − 1, we have

log h j = −NVτ( j)(rτ( j)) +
1

2
log

( 2πr2τ( j)

N�Q(rτ( j))

)
+

1

N
B1(rτ( j)) + O( j−

3
2 (log N )α).

• For j = 2mN , 2mN + 1, . . . , 2N − 1, we have

log h̃ j = −2NVτ̃ ( j)(rτ̃ ( j)) +
1

2
log

( πr2τ̃ ( j)

N�Q(rτ̃ ( j))

)

+
1

2N
B1(rτ̃ ( j)) + O( j−

3
2 (log N )α).

Here the O-constants are uniformly bounded for j and α > 0 is a small constant.

Proof. This lemma can be shown in a similar way to Lemma 2.1. Recall that rτ satisfies

rτ = O(τ
1
2 ) as τ → 0. Note that for d ≥ 1

|V (d)
τ (rτ )| = |q(d)(rτ ) + (−1)d 2τ (d − 1)! r−d

τ | ≤ C1(1 + τ− d
2 +1),

where C1 > 0 is a constant that can be taken uniformly for all τ . We now split the
integral for h j by

h j =
∫ ∞

0
2r2 j+1e−Nq(r) dr =

∫ ∞

0
2re−NVτ ( j)(r) dr

=
∫ rτ ( j)+δN

rτ ( j)−δN

2re−NVτ ( j)(r) dr +
∫

|r−rτ ( j)|>δN

2re−NVτ ( j)(r) dr

and first compute the integral over the outer region. For mN ≤ j < N , we have

rτ( j+ 1
2 ) − rτ( j) = O(( j N )−

1
2 ).

Since Vτ is increasing in (rτ ,∞), the Taylor series expansion for Vτ gives

Vτ( j+ 1
2 )(r) ≥ Vτ( j+ 1

2 )(rτ( j) + δN )

= Vτ( j+ 1
2 )(rτ( j+ 1

2 )) +
1

2
V ′′

τ( j+ 1
2 )

(rτ( j+ 1
2 ))

(
rτ( j) + δN − rτ( j+ 1

2 )

)2

+ O(τ ( j)−
1
2 δ3N ) (3.2)
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for all r > rτ( j)+δN . Here, O(τ ( j)− 1
2 δ3N ) = O(N−1 j− 1

2 (log N )3) and the O-constants
are uniformly bounded for j ∈ {mN , · · · , N − 1}. Similarly, since Vτ is decreasing in
(0, rτ ), we have

Vτ( j+ 1
2 )(r) ≥ Vτ( j+ 1

2 )(rτ( j) − δN )

= Vτ( j+ 1
2 )(rτ( j+ 1

2 )) +
1

2
V ′′

τ( j+ 1
2 )

(rτ( j+ 1
2 ))

(
rτ( j) − δN − rτ( j+ 1

2 )

)2

+ O(τ ( j)−
1
2 δ3N ) (3.3)

for all r < rτ( j) − δN . Using the Taylor series for Vτ again, we have

Vτ( j+ 1
2 )(rτ( j+ 1

2 )) − Vτ( j)(rτ( j)) = Vτ( j)(rτ( j+ 1
2 )) − Vτ( j)(rτ( j)) − 1

N
log rτ( j+ 1

2 )

= O(( j N )−1) − 1

N
log rτ( j+ 1

2 ),

(3.4)

where the error term is uniform for j . Thus, it follows from (3.2), (3.3), and (3.4) that

eNVτ ( j)(rτ ( j))
∫

|r−rτ ( j)|>δN

2r2 j+1e−Nq(r) dr =
∫

|r−rτ ( j)|>δN

2e
−N

(
V
τ ( j+ 1

2 )
(r)−Vτ ( j)(rτ ( j))

)

dr

≤ e−c1(log N )2e
N−M
N log r

τ ( j+ 1
2 )

∫

|r−rτ ( j)|>δN

2e
−M

(
V
τ ( j+ 1

2 )
(r)−Vτ ( j)(rτ ( j))

)

dr

= O(e−c2(log N )2 )

for some c1, c2 > 0. Here M is given by (2.10). For the integral near the critical point
rτ( j), we use the Taylor series expansion to obtain

∫ rτ ( j)+δN

rτ ( j)−δN

2re−NVτ ( j)(r) dr = e−NVτ ( j)(rτ ( j))

∫ δN

−δN

2(rτ( j) + t) e−N ( 12 V
′′
τ ( j)(rτ ( j))t2+

1
6 V

(3)
τ ( j)(rτ ( j))t3+

1
24 V

(4)
τ ( j)(rτ ( j))t4+O(τ ( j)−

3
2 |t |5))dt

= e−NVτ ( j)(rτ ( j))
1√
N

∫ √
NδN

−√
NδN

2e−2�Q(rτ ( j))t2
(
rτ( j) +

t√
N

)

(
1 − V (3)

τ ( j)(rτ( j))

6
√
N

t3 − V (4)
τ ( j)(rτ( j))

24N
t4 +

(V (3)
τ ( j)(rτ( j)))

2

72N
t6 + ε′

N ,1

)
dt

where ε′
N ,1 = O( j− 3

2 (log N )α) for some α > 0 and the O-constant is uniformly
bounded for j ∈ {mN , · · · , N − 1}. Combining the all of the above, we obtain

h j = e−NVτ ( j)(rτ ( j))
[ 1√

N

( 2πr2τ( j)

�Q(rτ( j))

) 1
2
(
1 +

1

N
B1(rτ( j)) + εN ,1

)
+ εN ,2

]

where εN ,1 = O( j− 3
2 (log N )α) and εN ,2 = O(e−c2(log N )2). ��



1650 S.-S. Byun, N.-G. Kang, S.-M. Seo

3.2. Random normal matrix ensemble. In this subsection, we show Theorem 1.2 (i).
According to the asymptotic expansions of h j given in Lemmas 3.1 and 3.2, we analyze
the summation in (1.37) through the decomposition

N−1∑

j=0

log h j =
mN−1∑

j=0

log h j +
N−1∑

j=mN

log h j . (3.5)

The asymptotic behaviors of each summation on the right-hand side of (3.5) are given
in Lemma 3.3 and 3.7, respectively.

Lemma 3.3. As N → ∞, we have

mN−1∑

j=0

log h j = −mN Nq(0) − mN (mN + 1)

2

(
log N + log

(1
2
q ′′(0)

))

+
1

2
m2

N logmN − 3

4
m2

N +
log(2π)

2
mN − 1

12
logmN + ζ ′(−1)

+ O(m−2
N + N− 1

2 (1−5ε)(log N )3).

Proof. By Lemma 3.1, we have

mN−1∑

j=0

log h j = −mN Nq(0) − mN (mN + 1)

2

(
log N + log

(1
2
q ′′(0)

))
+ logG(mN + 1)

+ O(N− 1
2 (1−5ε)(log N )3),

where G is the Barnes G-function (1.41). Now the lemma follows from (1.42). ��
Lemma 3.4. As N → ∞, we have

N−1∑

j=mN

Vτ( j)(rτ( j)) = N IQ[μQ] −UμQ (0) − 1

6N
log r1

− mNq(0) − 3

4

m2
N

N
+

1

2N

(
m2

N − mN +
1

6

)
log

( mN

N�Q(0)

)

+
mN

2N
+ O(N− 1

2 (3−5ε)).

Proof. By applying the Euler–Maclaurin formula (1.39), we have

N−1∑

j=mN

Vτ( j)(rτ( j)) =
∫ N

mN

Vτ(t)(rτ(t)) dt − 1

2

(
Vτ(N )(rτ(N )) − Vτ(mN )(rτ(mN ))

)

+
1

12

(
∂t (Vτ(t)(rτ(t)))

∣∣
t=N − ∂t (Vτ(t)(rτ(t)))

∣∣
t=mN

)
+ O(N−1−2ε).

(3.6)
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Here we have used ∂3t (Vτ(t)(rτ(t)))
∣∣
t=mN

= O(N−3(τ (mN ))−2) = O(m−2
N N−1) and

B2 = 1/6. By the change of variables s = rτ(t) and the formula (1.13) of IQ[μQ], we
obtain

∫ N

mN

Vτ(t)(rτ(t)) dt = 2N
∫ r1

rτ (mN )

(q(s) − sq ′(s) log s)s�Q(s) ds

= N
(1
2

∫

S\Sτ (mN )

Q · �Q dA − log r1 + (τ (mN ))2 log rτ(mN )

+
1

2
(q(r1) − τ(mN ) · q(rτ(mN )))

)

= N IQ[μQ] − N

2

∫

Sτ (mN )

Q · �QdA +
m2

N

N
log rτ(mN ) − mN

2
q(rτ(mN )).

Observe here that

rτ =
( 2τ

q ′′(0)

) 1
2
+ O(τ ) =

( τ

�Q(0)

) 1
2
+ O(τ ) as τ → 0. (3.7)

Thus we have

log rτ(mN ) = 1

2
log

( τ(mN )

�Q(0)

)
+ O(τ (mN )

1
2 ) = 1

2
log

( τ(mN )

�Q(0)

)
+ O(N− 1

2 (1−ε)
), (3.8)

q(rτ(mN )) = q(0) +
1

2
q ′′(0)(rτ(mN ))

2 + O((τ (mN ))
3
2 ) = q(0) + τ(mN ) + O(N− 3

2 (1−ε)
), (3.9)

and

1

2

∫

Sτ (mN )

Q · �Q dA = 1

4

∫ rτ (mN )

0
q(s) · (sq ′(s))′ ds

= 1

2
τ(mN ) · q(rτ(mN )) − 1

4

∫ rτ (mN )

0
s(q ′(s))2 ds

= 1

2
τ(mN ) · q(rτ(mN )) − 1

4
(q ′′(0))2

∫ rτ (mN )

0
s3 ds + O(r5τ(mN ))

= 1

2
τ(mN ) · q(rτ(mN )) − 1

4
τ(mN )2 + O(N− 5

2 (1−ε)).

Combining all of the above asymptotic expansions, we obtain

∫ N

mN

Vτ(t)(rτ(t)) dt

= N IQ[μQ] − mNq(rτ(mN )) +
1

4

m2
N

N
+
m2

N

N
log rτ(mN ) + O(N− 1

2 (3−5ε))

= N IQ[μQ] − mNq(0) − 3

4

m2
N

N
+
m2

N

2N
log

( mN

N�Q(0)

)
+ O(N− 1

2 (3−5ε)).

(3.10)
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Furthermore, it follows from the formula (1.15) of UμQ (0), (3.8) and (3.9) that

Vτ(N )(rτ(N )) − Vτ(mN )(rτ(mN )) = q(r1) − 2 log r1 − q(rτ(mN )) + 2τ(mN ) · log rτ(mN )

= q(r1) − 2 log r1 − q(0) − mN

N
+
mN

N
log

( mN

N�Q(0)

)
+ O(N− 3

2 (1−ε))

= 2UμQ (0) − mN

N
+
mN

N
log

( mN

N�Q(0)

)
+ O(N− 3

2 (1−ε)).

(3.11)

Similarly, we have

∂t (Vτ(t)(rτ(t)))
∣∣
t=N − ∂t (Vτ(t)(rτ(t)))

∣∣
t=mN

= 2

N
(log rτ(mN ) − log r1)

= 1

N
log

( mN

N�Q(0)

)
− 2

N
log r1 + O(N− 1

2 (3−ε)).

(3.12)

Now the lemma follows from (3.6), (3.10), (3.11) and (3.12). ��
Lemma 3.5. As N → ∞, we have

N−1∑

j=mN

log�Q(rτ( j)) = NEQ[μQ] − 1

2
log

(�Q(r1)

�Q(0)

)
− mN log�Q(0) + O(N− 1

2 (1−ε)),

and

N−1∑

j=mN

log rτ( j) = −NUμQ (0) +
mN

2
− 1

2
log r1 −

(mN

2
− 1

4

)
log

( mN

N�Q(0)

)
+ O(N−ε).

Proof. Using the Euler–Maclaurin formula (1.39),

N−1∑

j=mN

log�Q(rτ( j)) =N
∫

S\Sτ (mN )

log�Q dμQ − 1

2
log

( �Q(r1)

�Q(rτ(mN ))

)

+
1

12

(
∂t log�Q(rτ(t)))

∣∣
t=N − ∂t log�Q(rτ(t)))

∣∣
t=mN

)

+ o(N−1τ(mN )−
1
2 ).

We verify from (3.7) that
∫

Sτ (mN )

log�Q dμQ = �Q(0) · log�Q(0) · r2τ(mN ) + O(τ (mN )3)

= mN

N
log�Q(0) + O(N−3(1−ε))

and

∂t log�Q(rτ(t))
∣∣
t=mN

= 1

2N

∂r�Q(rτ(mN ))

rτ(mN )(�Q(rτ(mN )))2
= O(N−1τ(mN )−

1
2 ) = O(N− 1

2 (1+ε)).
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Observe that log�Q(rτ(mN )) = log�Q(0) + O(rτ(mN )). Combining above equations,
we obtain the first assertion. Similarly, by using the Euler–Maclaurin formula (1.39),
(3.8), and (3.9), we have

N∑

j=mN

log rτ( j) = N
∫

S\Sτ(mN )

log |z| dμQ − 1

2
log

( r1
rτ(mN )

)
+ O(m−1

N )

= N

2

(
2 log r1 − 2τ(mN ) log rτ(mN ) − q(r1) + q(rτ(mN ))

)

− 1

2
log

( r1
rτ(mN )

)

= N
(
log r1 − q(r1) − q(0)

2
+
1

2
τ(mN )

)
− 1

2
log r1

−
(mN

2
− 1

4

)
log

( τ(mN )

�Q(0)

)
+ O(N−ε),

which completes the proof. ��
Lemma 3.6. As N → ∞, we have

1

N

N−1∑

j=mN

B1(rτ( j)) = FQ[Dr1 ] +
1

3
log r1 − 1

12
log

(mN

N

)
− 1

4
log

(�Q(r1)

�Q(0)

)

+
1

6
log�Q(0) + O(N−ε + N− 1

2 (1−ε)),

where FQ[Dr1 ] is given in (1.22).

Proof. Observe that

N−1∑

j=mN

B1(rτ( j)) = N
∫

S\Sτ (mN )

B1 dμQ + O(τ (mN )−1).

By (3.7) and (3.8),
∫

S\Sτ (mN )

B1 dμQ = 1

6
log

( r1
rτ(mN )

)
− 19

48
log

( �Q(r1)

�Q(rτ(mN ))

)

− 1

16

∫ r1

rmN

[∂2r �Q(r)

�Q(r)
− 5

3

(∂r�Q(r)

�Q(r)

)2]
r dr

= 1

6
log r1 − 1

12
log

( τ(mN )

�Q(0)

)
− 19

48
log

(�Q(r1)

�Q(0)

)

− 1

16

∫ r1

0

[∂2r �Q(r)

�Q(r)
− 5

3

(∂r�Q(r)

�Q(r)

)2]
r dr + O(N− 1

2 (1−ε)).

Thus we have

1

N

N−1∑

j=mN

B1(rτ( j)) = 1

6
log r1 − 1

12
log

( mN

N�Q(0)

)
− 19

48
log

(�Q(r1)

�Q(0)

)

− 1

16

∫ r1

0

[∂2r �Q(r)

�Q(r)
− 5

3

(∂r�Q(r)

�Q(r)

)2]
r dr + O(N−ε + N− 1

2 (1−ε)).

Now the lemma follows from (2.12). ��
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Lemma 3.7. As N → ∞, we have

N−1∑

j=mN

log h j = −N 2 IQ[μQ] + N − mN

2
log

(2π
N

)
+ NmNq(0) +

3

4
m2

N − 1

2
NEQ[μQ]

− 1

2
mN (mN + 1) log

( 1

�Q(0)

)
+ FQ[Dr1 ] − 1

2

(
m2

N − 1

6

)
log

(mN

N

)

+ O(N− 1
12 (log N )3).

Proof. By Lemma 3.2, we have

N−1∑

j=mN

log h j =
N−1∑

j=mN

(
− NVτ( j)(rτ( j)) + log rτ( j) − 1

2
log�Q(rτ( j)) +

1

N
B1(rτ( j))

)

+
(N − mN )

2
log

(2π
N

)
+ O(m

− 1
2

N (log N )α) + O(N− 1
2 (1−5ε)).

Now Lemmas 3.2, 3.4, 3.5 and 3.6 complete the proof. Here, for the error term, we take
ε = 1/6 so that ε/2 = (1 − 5ε)/2 = 1/12. ��

We are now ready to prove the first assertion of Theorem 1.1.

Proof of Theorem 1.2 (i). By combining Lemmas 3.3, 3.7 and (3.5), we obtain

N−1∑

j=0

log h j = −N 2 IQ[μQ] − 1

2
N log N − N

2

(
EQ[μQ] − log(2π)

)

− log N

12
+ ζ ′(−1) + FQ[Dr1 ]

+O(N− 1
12 (log N )3).

Note here that all the terms involving mN in Lemmas 3.3 and 3.7 vanish. Then the
desired asymptotic expansion (1.23) follows from (1.37) and (2.22). This completes the
proof. ��

3.3. Planar symplectic ensemble. In this subsection, we prove the second assertion of
Theorem 1.2.

As a counterpart of Lemma 3.3, we have the following.

Lemma 3.8. As N → ∞, we have

mN−1∑

j=0

log h̃2 j+1 = −2mN Nq(0) + m2
N logmN +

(
log 2 − 3

2
− log(Nq ′′(0))

)
m2

N

+
1

2
mN logmN +

(
log 2 − 1

2
+
1

2
logπ − log(Nq ′′(0))

)
mN

− 1

24
logmN +

5

24
log 2 +

1

2
ζ ′(−1) + O(m−1

N + N− 1
2 (1−5ε)(log N )3).
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Proof. By Lemma 3.1 and (4.6), we have

log h̃2 j+1 = − 2Nq(0) − (2 j + 2) log(Nq ′′(0)) + log
(22 j+1√

π
�( j + 1)�( j + 3

2 )
)

+ O(N− 1
2 (1−3ε)).

Thus we have

mN−1∑

j=0

log h̃2 j+1 = −2mN Nq(0) − mN (mN + 1) log(Nq ′′(0)) + m2
N log 2 − mN

2
logπ

+ log
(
G(mN + 1)

G(mN + 3
2 )

G( 32 )

)
+ O(N− 1

2 (1−5ε)).

Now the lemma follows from the asymptotic expansion (1.42) of the Barnes G function
and

G( 12 ) = 2
1
24 exp

(3
2
ζ ′(−1)

)
π− 1

4 , G( 32 ) = G( 12 )�( 12 ) = G( 12 )
√

π.

��
Lemma 3.9. As N → ∞, we have

N−1∑

j=mN

Vτ̃ (2 j+1)(rτ̃ (2 j+1))

= N IQ[μQ] + 1

12N
log r1 − mNq(0) − 3

4

m2
N

N

+
1

4N

(
2m2

N − 1

6

)
log

( mN

N�Q(0)

)
+ O(N− 1

2 (3−5ε)).

Proof. By using Lemma 3.4 with N → 2N , we have

2N−1∑

j=2mN

Vτ̃ ( j)(rτ̃ ( j))

= 2N IQ[μQ] −UμQ (0) − 1

12N
log r1 − 2mNq(0) − 3

2

m2
N

N

+
1

4N

(
4m2

N − 2mN +
1

6

)
log

( mN

N�Q(0)

)
+
mN

2N
+ O(N− 1

2 (3−5ε)).

On the other hand, by the Euler–Maclaurin formula (1.39), we have

N−1∑

j=mN

Vτ̃ (2 j)(rτ̃ (2 j)) = 1

2

∫ 2N

2mN

Vτ̃ (t)(rτ̃ (t)) dt − 1

2

(
Vτ̃ (2N )(rτ̃ (2N )) − Vτ̃ (2mN )(rτ̃ (2mN ))

)

+
1

12

(
∂t (Vτ̃ (2t)(rτ̃ (2t)))

∣∣
t=N − ∂t (Vτ̃ (2t)(rτ̃ (2t)))

∣∣
t=mN

)

+ O(N−1−2ε).
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Following the proof of Lemma 3.4, we have

N−1∑

j=mN

Vτ̃ (2 j)(rτ̃ (2 j)) = N IQ [μQ ] −UμQ (0) − 1

6N
log r1

− mNq(0) − 3

4

m2
N
N

+
1

2N
(m2

N − mN +
1

6
) log

( mN

N�Q(0)

)

+
mN

2N
+ O(N− 1

2 (3−5ε)),

which completes the proof. ��
Lemma 3.10. As N → ∞, we have

N−1∑

j=mN

log�Q(rτ̃ (2 j+1)) = NEQ[μQ] − mN log�Q(0) + O(N− 1
2 (1−ε)),

and

N−1∑

j=mN

log rτ̃ (2 j+1) = −NUμQ (0) +
mN

2
− mN

2
log

( mN

N�Q(0)

)
+ O(N−ε).

Proof. By Lemma 3.5 with N → 2N , we have

2N−1∑

j=2mN

log�Q(rτ̃ ( j)) = 2NEQ[μQ] − 1

2
log

(�Q(r1)

�Q(0)

)

− 2mN log�Q(0) + O(N− 1
2 (1−ε)),

2N−1∑

j=2mN

log rτ̃ ( j) = −2NUμQ (0) + mN − 1

2
log r1

−
(
mN − 1

4

)
log

( mN

N�Q(0)

)
+ O(N−ε).

Following the proof of Lemma 3.5, we also have

N−1∑

j=mN

log�Q(rτ̃ (2 j)) = NEQ[μQ] − 1

2
log

(�Q(r1)

�Q(0)

)

− 2mN log�Q(0) + O(N− 1
2 (1−ε)),

N−1∑

j=mN

log rτ̃ (2 j) = −NUμQ (0) + mN − 1

2
log r1

−
(
mN − 1

4

)
log

( mN

N�Q(0)

)
+ O(N−ε).

This completes the proof. ��
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Lemma 3.11. As N → ∞, we have

1

2N

N−1∑

j=mN

B1(rτ̃ (2 j+1)) = 1

2
FQ[Dr1 ] +

1

6
log r1 − 1

24
log

(mN

N

)
− 1

8
log

(�Q(r1)

�Q(0)

)

+
1

12
log�Q(0) + O(m−1

N ).

Proof. This lemma follows along the same lines of Lemma 3.6. ��
Lemma 3.12. As N → ∞, we have

N−1∑

j=mN

log h̃2 j+1 = −2N 2 IQ [μQ ] − N

2
log N + N

( logπ

2
−UμQ (0) − 1

2
EQ [μQ ]

)

+
3

2
m2

N −
(
m2

N − 1

24

)
log

(mN

N

)
+ mN

(
2Nq(0) +

1

2
+
1

2
log

(mN

π

))

−
(
m2

N +
1

8

)
log

( 1

�Q(0)

)
+
1

2
FQ [Dr1 ] +

1

8
log

( 1

�Q(r1)

)

+ O(m
− 1

2
N (log N )α).

Proof. Note that by Lemma 3.2, we have

N−1∑

j=mN

log h̃2 j+1 =
N−1∑

j=mN

(
− 2NVτ̃ (2 j+1)(rτ̃ (2 j+1)) + log rτ̃ (2 j+1)

− 1

2
log�Q(rτ̃ (2 j+1)) +

1

2N
B1(rτ̃ (2 j+1))

)

+
(N − mN )

2
log

( π

N

)
+ O(m

− 1
2

N (log N )α).

The lemma now follows from Lemmas 3.9, 3.10 and 3.11. ��
We now finish the proof of Theorem 1.2.

Proof of Theorem 1.2 (ii). Combining Lemmas 3.8 and 3.12, after long but straightfor-
ward simplifications, we obtain

N−1∑

j=0

log(2h̃2 j+1) = N log 2 +
mN−1∑

j=0

log h̃2 j+1 +
N−1∑

j=mN

log h̃2 j+1

= −2N 2 IQ[μQ] − 1

2
N log N + N

( log(4π)

2
−UμQ (0) − 1

2
EQ[μQ]

)
− 1

24
log N

+
5

24
log 2 +

1

2
ζ ′(−1) +

1

2
FQ[Dr1 ] +

1

8
log

( �Q(0)

�Q(r1)

)
+ O(m−1

N + N− 1
2 (1−5ε)(log N )3).

Again, it is noteworthy that all the terms in Lemmas 3.8 and 3.12 involving mN cancel
each other. Now the asymptotic behavior (1.24) follows from (1.37) and the asymptotic
expansion (2.22) of log N ! with ε = 1/6. ��
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4. Examples: Mittag–Leffler Ensemble and Truncated Unitary Ensemble

This section presents examples of our Theorems 1.1 and 1.2 for somewell-known planar
point processes. We also refer to [36, Section 4] for further examples in the context of
the induced spherical ensembles.

4.1. Mittag–Leffler ensemble. Let us consider the potential

Q(z) = |z|2λ − 2c log |z|, λ, c > 0. (4.1)

The models (1.1) and (1.2) associated with the potential (4.1) are known as the Mittag-
Leffler ensemble [12]. We refer to [17,27,30] and [6] for recent studies on complex and
symplectic Mittag-Leffler ensembles, respectively. Using (1.12), we have

r0 =
( c
λ

) 1
2λ

, r1 =
(1 + c

λ

) 1
2λ

, �Q(z) = λ2|z|2λ−2. (4.2)

In particular, by (4.2), the Mittag-Leffler ensemble (4.1) falls into the class considered
in Theorem 1.1. Let us recall that Q is required to be C∞ in a neighborhood of S.

By direct computations using (1.9), (1.13) and (1.15), we have

IQ[μQ] = 1

2λ
log

( cc
2

(1 + c)(1+c)2

)
+
1 + 2c

2λ

(
log λ +

3

2

)
, (4.3)

EQ[μQ] = 1 + λ

λ
log λ +

1 − λ

λ

(
1 + log

( cc

(1 + c)1+c

))
. (4.4)

It also follows from (1.16) and

r
(∂r�)Q(r)

�Q(r)
= 2λ − 2, r2�Q(r) = λ2r2λ

that

FQ[Ar0,r1 ] =
(λ

6
− (λ − 1)2

6

)
log

(r0
r1

)
= −λ2 − 3λ + 1

12λ
log

( c

1 + c

)
. (4.5)

On the other hand, by using (1.37),

h j = 2
∫ ∞

0
r2 j+1+2cN e−Nr2λ dr = 1

λ
N− j+1+cN

λ �
( j + Nc + 1

λ

)
,

and the analogous formula for h̃ j , we have

ZN = N !
λN

N− (2c+1)N2+N
2λ

N−1∏

j=0

�
( j + Nc + 1

λ

)
,

Z̃N = N !
(λ/2)N

(2N )−
(2c+1)N2+N

λ

N−1∏

j=0

�
( j + Nc + 1

λ/2

)
.
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Furthermore, using the multiplication theorem of gamma function ( [57, Eq. (5.5.6)])

�(nz) = (2π)
1−n
2 nnz−

1
2

n−1∏

k=0

�(z + k
n ) (4.6)

and the characteristic property (1.41) of the Barnes G-function, we have that for 1
λ

∈ N,

ZN = N ! N− (2c+1)N2+N
2λ (2π)(

1
2− 1

2λ )N
(1
λ

)( 1
2λ+

c
λ
)N2+( 1

λ
+ 1
2− 1

2λ )N

×
1
λ
−1∏

k=0

G(N + Nc + 1 + λk)

G(Nc + 1 + λk)
.

(4.7)

Similarly, for 2
λ

∈ N, we have

Z̃N = N ! (2N )−
(2c+1)N2+N

λ (2π)(
1
2− 1

λ
)N

(2
λ

)( 1
λ
+ 2c

λ
)N2+( 2

λ
+ 1
2− 1

λ
)N

×
2
λ
−1∏

k=0

G(N + Nc + 1 + λ
2 k)

G(Nc + 1 + λ
2 k)

.

(4.8)

Then by using (1.42), one can directly check that the partition functions (4.7) and (4.8)
satisfy the expansions (1.17) and (1.18) with (4.3), (4.4) and (4.5).

4.2. Truncated unitary ensemble. We now consider the potential

Q(z) =
⎧
⎨

⎩
−α log

(
1 − |z|2

R2(1 + α)

)
if |z| ≤ R

√
1 + α,

∞ otherwise,
α, R > 0. (4.9)

Themodels associatedwith (4.9) correspond to the truncated unitary ensembles at strong
non-unitarity [49,68]. These models provide a one-parameter generalization of the Gini-
bre ensembles that can be recovered in the extremal case, i.e. limα→∞ Q(z) = |z|2/R2.
(See [34,60] and references therein for recent works on these models.) In this case, we
have

r0 = 0, r1 = R, �Q(z) = R2 α(1 + α)

(R2(1 + α) − |z|2)2 . (4.10)

From (4.10), we see that the truncated unitary ensembles are contained in the class
covered in Theorem 1.2. (The hard edge condition imposed in (4.9) outside the droplet
does not harm the proof of Theorem 1.2.)

It is easy to verify from (1.9), (1.13) and (1.15) that

IQ[μQ] = −α

2
− α(2 + α)

2
log

( α

1 + α

)
− log R, (4.11)

EQ[μQ] = −2 − (1 + 2α) log
( α

1 + α

)
− 2 log R. (4.12)
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Since

r
(∂r�)Q(r)

�Q(r)

∣∣∣
r=R

= 4r2

R2(1 + α) − r2

∣∣∣
r=R

= 4

α
, R2�Q(R) = 1 + α

α
,

we deduce from (1.22) that

FQ [DR ] = 1

12
log

( α

1 + α

)
− 1

4α
+
1

3

( 1

α
+ log

( α

1 + α

))
= 1

12

( 1

α
+ 5 log

( α

1 + α

))
. (4.13)

Notice here that FQ[DR] is independent of R, which is consistent with the invariance of
theO(1)-termsof (1.23) and (1.24) under thedilation, see the remarkbelowTheorem1.2.

Using the Euler’s beta integral

�(a)�(b)

�(a + b)
=

∫ 1

0
ta−1(1 − t)b−1 dt, (a, b > 0),

the orthogonal norm h j is computed as

h j =
∫ R

√
1+α

0
r2 j+1

(
1 − r2

R2(1 + α)

)αN
dr = R2 j+2(1 + α) j+1

�(αN + 1)�( j + 1)

�(αN + j + 2)
.

Then by (1.37) and (1.41), we have

ZN = N ! RN (N+1)(1 + α)
N2
2 + N

2 �(αN + 1)N
G(N + 1)G(αN + 2)

G(αN + N + 2)
. (4.14)

Similarly, by (1.37) and the duplication formula of the gamma function (i.e. (4.6) with
n = 2),

Z̃N = N ! R2N (N+1)2−2αN2
(1 + α)N

2+N �(2αN + 1)N

× G(N + 1)
G(N + 3

2 )

G( 32 )

G(αN + 2)

G(αN + N + 2)

G(αN + 3
2 )

G(αN + N + 3
2 )

.
(4.15)

Then by using (1.42), it is again straightforward to check that the partition functions
(4.14) and (4.15) satisfy the expansions (1.23) and (1.24) with (4.11), (4.12) and (4.13).
In the extremal case where α → ∞, the expansion of the partition function ZN of the
complex Ginibre ensemble appears in [65].
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