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Abstract: We consider the nonlinear wave equation known as the ¢® model in dimension
1+1. We describe the long-time behavior of this model’s solutions close to a sum of
two kinks with energy slightly larger than twice the minimum energy of non-constant
stationary solutions. We prove orbital stability of two moving kinks. We show for low

energy excess € that these solutions can be described for a long time of order — In (¢€)e =
as the sum of two moving kinks such that each kink’s center is close to an explicit function
which is a solution of an ordinary differential system. We give an optimal estimate in
the energy norm of the remainder and we prove that this estimate is achieved during a

1
finite instant ¢ of order — In (€)e™ 2.

1. Introduction

1.1. Background. We consider a nonlinear wave equation known as the #°® model. For
the potential function U (¢) = ¢>(1 — ¢?)? and U (¢p) = 2¢ — 8¢p> + 6¢°, the equation
is written as

Z2p(t,x) — 32p(1, x) + U(p(1,x)) =0, (1,x) e R x R. (1)

The potential energy £, the kinetic energy Ey;, and total energy E; ;4 associated to
the Eq. (1) are given by

E,m,<¢<t>)=% fR A (r, %)% dx + fR o, x)>(1 — (1, x)H)? dx,
1
Eiin(9 (1) =5 fR dp(1, x) dx,

1
Erorat(@(0). 8,6(1)) = 5 /R (020,07 + 8,91, %] dx
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+ / o, x)2(1 — ¢(r, )} dx.
R

The vacuum set V of the potential function U is the set U ~1{0} = {0, 1, —1}. We say that
if a solution ¢ (¢, x) of the integral equation associated to (1) has E; 41 (¢, 9;¢) < +00,
then it is in the energy space. The solutions of (1) in the energy space have constant total
energy Etoral (¢ (1), 010 ()).

From standard energy estimate techniques, the Cauchy Problem associated to (1) is
locally well-posed in the energy space. Moreover, if E;y41(¢(0), ;¢ (0)) = E¢ < + 00,
then there exists M (Ep) > 0 such that [[¢(0, x)||p®r) < M(Ep), otherwise the facts
thatU € C*°(R) andlimy_, +o0 U(¢) = + 0o would imply thatfR U(p(0,x))dx > Ey.
Therefore, similarly to the proof of Theorem 6.1 from the book [27] of Shatah and Struwe,
we can verify that the partial differential equation (1) is globally well-posed in the energy
space since U is a Lipschitz function when restricted to the space of real functions ¢
satisfying ||¢ || Loory < Ko for some positive number Kj.

The stationary solutions of (1) are the critical points of the potential energy. The
unique constant solutions of (1) in the energy space are the functions ¢ = v, for any
v € V. The only non-constant stationary solutions of (1) with finite total energy are the
topological solitons called kinks and anti-kinks, for more details see chapter 5 of [19].
Each topological soliton H connects different numbers vy, vo € V, more precisely,

Iim H(x) =vy, xEToo Hx)=v, VN{HX)|x e R} = 0.

X—>—00
The kinks of (1) are given by

eﬁ(x*a)
Ho1(x —a) = ————, H-10(x —a) = —Hp1(—x +a),
(1 + e2V2@-a)y3

for any real a. The anti-kinks of (1) are given by —Hy 1 (x — a), Hp 1(—x + a) for any
a eR.

In the article [21], for the $® model, Manton did approximate computations to verify
that the force between two static kinks is repulsive and the force between a kink and
anti-kink is attractive. Furthermore, it was also obtained by approximate computations
in [21] that the force of interaction between two topological solitons of the ¢® model
has an exponential decay with the distance between the solitons.

The study of kink and multi-kinks solutions of nonlinear wave equations has appli-
cations in many domains of mathematical physics. More precisely, the model (1) that
we study has applications in condensed matter physics [2] and cosmology [9,12,31].

It is well known that the set of solutions in energy space of (1) for any potential U is
invariant under space translation, time translation, and space reflection. Moreover, if H
is a stationary solution of (1) and —1 < v < 1, then the function

¢t x)=H (x——vtl> ,
(1—v2)2

which is denominated the Lorentz transformation of H, is also a solution of the partial
differential equation (1).

The problem of stability of multi-kinks is of great interest in mathematical physics, see
for example [6,8]. For the integrable model mKdV, Mufioz proved in [23] the H' stability
and asymptotic stability of multi-kinks. However, for many non-integrable models such
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as the ¢® nonlinear wave equation, the asymptotic and long-time dynamics of multi-
kinks after the instant where the collision or interaction happens are still unknown, even
though there are numerical studies of kink-kink collision for the ¢6 model, see [8], which
motivate our research on the topic of the description of long time behavior of a kink-kink
pair.

For one-dimensional nonlinear wave equation models, results of stability of a single
kink were obtained, for example, asymptotic stability under odd perturbations of a single
kink of ¢* model was proved in [16] and the study of the decay rate of this odd pertur-
bation during a long time was studied in [5]. Also, in [17], Martel, Mufioz, Kowalczyk,
and Van Den Bosch proved asymptotic stability of a single kink for a general class of
nonlinear wave equations, including the model which we study here.

The main purpose of our paper is to describe the long time behavior of solutions
¢ (¢, x) of (1) in the energy space such that

lim ¢(,x)=1,
xX—>+00

lim ¢, x)=—1,
X——00

with total energy equal to 2E ., (Ho1) + €, for 0 < € <« 1. More precisely, we proved
orbital stability for a sum of two moving kinks with total energy 2E ., (Ho,1) + € and
we verified that the remainder has a better estimate during a long time interval which
goes to R as ¢ — 0, indeed we proved that the estimate of the remainder during this
long time interval is optimal. Also, we prove that the dynamics of the kinks’ movement
is very close to two explicit functions d; : R — R defined in Theorem 4 during a long
time interval. This result is very important to understand the behavior of two kinks after
the instant of collision, which happens when the kinetic energy is minimal, indeed, our
main results Theorems 2 and 4 describe the dynamics of the kinks before and after the
collision instant for a long time interval. The numerical study of interaction and collision
between kinks for the ¢6 model was done in [8], in which it was verified that the collision
of kinks is close to an elastic collision when the speed of each kink is low and smaller
than a critical speed v,.

For nonlinear wave equation models in dimension 2 + 1, there are similar results
obtained in the dynamics of topological multi-solitons. For the Higgs Model, there are
results in the description of the dynamics of multi-vortices in [28] obtained by Stuart
and in [11] obtained by Gustafson and Sigal. Indeed, we took inspiration from the proof
and statement of Theorem 2 of [11] to construct our main results. Also, in [29], Stuart
described the dynamics of monopole solutions for the Yang—Mills—Higgs equation. For
more references, see also [7,10,20,30].

In [1], Bethuel, Orlandi, and Smets described the asymptotic behavior of solutions
of a parabolic Ginzburg—Landau equation closed to multi-vortices in the initial instant.
For more references, see also [14,26].

There are also results in the dynamics of multi-vortices for nonlinear Schrodinger
equation, for example, the description of the dynamics of multi-vortices for the Gross—
Pitaevski equation was obtained in [24] by Ovchinnikov and Sigal and results in the
dynamics of vortices for the Ginzburg-Landau—Schrodinger equations were proved in
[4] by Colliander and Jerrard, see also [15] for more information about Gross—Pitaevski
equation.

1.2. Main results. We recall that the objective of this paper is to show orbital stability for
the solutions of the Eq. (1) which are close to a sum of two interacting kinks in an initial
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instant and estimate the size of the time interval where better stability properties hold.
The main techniques of the proof are modulation techniques adapted from [13,22,25]
and a refined energy estimate method to control the size of the remainder term.

Notation 1. For any D C R, any non-negative real function f : D C R — R, areal
function g with domain D is in O (f(x)) if and only if there is a uniform constant
C > Osuchthat 0 < |g(x)| < Cf(x). We denote that two real non-negative functions
/8 : D C R — Ry satisfy

fse
if there is a constant C > 0 such that
f(x) <Cg(x),forall x € D.
If f < gandg < f, we denote that f = g. We use the notation (x); := max(x, 0). If

H
g(t,x) € CY(R, L2(R)) N C(R, H'(R)), then we define g(r) € H'(R) x L*(R) by

—
g(t) = (g(1), 9,g(1)),

. —>
and we also denote the energy norm of the remainder g(¢) as

4@ = 1sOl + 10012

to simplify our notation in the text, where the norms ||-|| 51, ||-|| 2 are defined, respec-
tively,

dfi(x)?
A2, =/R(;—x + fio)?dx, ||f2||iz=/sz<x>2dx,

forany fi € H'(R) and any f» € L?(R). Finally, we consider the hyperbolic functions
sech, cosh : R — R and we are going to use the following notations

e +e ¥

cosh (x) = — sech (x) = (cosh ()c))_1 , for every x € R.

Definition 1. We define S as the set ¢ € L°°(R) such that
|lg(x) = Ho1(x) — H-1,0(x) | ;1 < +00.

From the observations made about the local well-posedness of partial differential
equation (1) in the energy space and, since 1, —1 are in VV, we have that (1) is also locally
well-posed in the affine space S x L2(R). Motivated by the proof and computations that
we are going to present, we also consider:

Definition 2. We define for x;, x, € R
HG, (x) i= Ho,1 (x = x2) and HY (x) := H1 o(x = x1),

and we say that x; is the kink center of H(’)Q1 (x) and x is the kink center of Hf‘l 0(X).
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There are also non-stationary solutions (¢ (¢, x), d:¢ (¢, x)) of (1) with finite total
energy E;pq1(¢p (1), 9,¢ (1)) that satisfy for all t € R

Jlim ¢, x) =1, lim ¢, x) = 0. 2

But, for any a € R, the kinks Hp j(x — a) are the unique functions that minimize the
potential energy in the set of functions ¢ (x) satisfying condition (2), the proof of this fact
follows from the Bogomolny identity, see [19] or section 2 of [13]. By similar reasoning,
we can verify that all functions ¢ (x) € S have E o () > 2E 0 (Ho,1).

Definition 3. We define the energy excess € of a solution (¢ (¢), 9;¢(¢)) € S x L%(R)
as the following value

€ = Etora1(9(1), 3¢ (1)) — 2E por (Ho, 1).

We recall the notation (x); := max(x, 0). It’s not difficult to verify the following
inequalities

(D1) |Ho,1(x)| < e V205,
(D2) |H_10(x)| < e V2005,
(D3) |Ho,1(x)| < v/2e™ Y20+,
(D4) |H_10(x)| < v2e~ V20,
Moreover, since

Ho,1(x) = U(Ho,1(x)), 3)

we can verify by induction the following estimate

<, min (e_zﬁx, eﬁx) 4

for all kK € N\{0}. The following result is crucial in the framework of this manuscript:

Lemma 1 (Modulation Lemma). There exist Cy, 69 > 0, such that if0 < § < 8¢, x1, x2

are real numbers with x; — x| > % and g € H'(R) satisfies || g|ly1 < &, then for

¢(x) = H_1 o(x —x1) + Ho1(x — x2) + g(x), there exist unique yi, y» such that for
g1(x) = ¢(x) — H_1,0(x — y1) — Ho,1(x — y2),

the four following statements are true

1 (g1, 0xH_10(x —y1));2 =0,
2 (g1, 0xHo1(x — y2));2 =0,
3 llgillgr < Cod,

4 |y2 — x2| + |y1 — x1] < Coé.

We will refer to the first and second statements as the orthogonality conditions of the
Modulation Lemma.

Proof. The proof follows from the implicit function theorem for Banach spaces. O

Now, our main results are the following:
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Theorem 2. There exist C, 8o > 0, such that if e < §y and
(#(0), 9:¢(0)) € S x L*(R)

with E;o1a1 (¢ (0), 0,9 (0)) = 2E »o; (Ho,1) +€, then there exist functions x1, x2 € CZ(R)
such that, for all t € R, the unique global time solution ¢ (t, x) of (1) is given by

¢ (1) = Ho,1(x —x2(2)) + H-10(x — x1(1)) + g(1), )

with g(t) satisfying, for any t € R, the orthogonality conditions of the Modulation
Lemma and

—V2(x2(t)—x1 (1)) . . 2 H — Hz

e + max |[x;(f)|+ max x;(f)” + t < Ce. 6
je{1,2}| il je(l.2) i@ 8(0) Hix[2 — (6)

Furthermore, we have that

1
2 Ce2
I(g(®), 38131, ;> < Cmin <€’ |:H576))H +52i| exp( 1Ezlll

)) forallt € R.
(7

Remark 1. In notation of the statement of Theorem 2, for any § > 0, there exists K (§) €

(0,1) such that if 0 < € < K(8), Erora1(¢(0), 9,¢(0)) = 2E o (Hp,1) + €, then we

have that [|(g(0), 9;g(0O) | g1 72 < & and x2(0) — x1(0) > %, for the proof see Lemma
21 and Corollary 22 in the Appendix Section A.

1
ne

Theorem 3. In notation of Theorem 2, there exist constants §, k > 0 such that if 0 <
In

€ < 8, then < < Hg(T)H for some T € R satisfying0 < T < (k +1)—¢.

+1 — 1
K 3

Proof. See the Appendix Section B. O

Remark 2. Theorem 3 implies that estimate (7) is relevant in a time interval (—7, T)

fora T > 0 of order — 7 In (). More precisely, for any function r : Ry — R,
with limy,_. o r(h) = 0, there is a positive value &(r) such that if 0 < € < §(r) and

— 1
Hg(O) H <r(e)e, thene < Hg?SH for some 0 < t = O(mf )
€2

Remark 3. Theorem 3 also implies the existence of a §o > 0 such that if 0 < € < o,
then, for any (¢ (0, x), 9;¢(0,x)) € S X L2(R) with E;pra1(¢(0), 3,4 (0)) equals to
2Epoi(Ho 1) + €, g(t, x) defined in identity (5) satisfies € < lim sup ngs H , similarly

—>+00
. —>
we have that € < lim sup Hg(t) H .

—>—00

Theorem 4. Let ¢ satisfy the assumptions in Theorem 2 and x1, x», and g be as in the
conclusion of this theorem. Let the functions dy, da be defined for any t € R by

di(t)y=a+bt — ﬁ In (f—z cosh (\/Evt + 6)2), (8)
dr(t) =a+bt+ %ln (f—z cosh (\/Evt+c)2), )
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where a, b, c € R and v € (0,1) are the unique real values satisfying d;(0) =
x;j(0), d;j(0) = x;(0) for j € {1, 2}. Let d(t) = da(t) — dy (1), z(t) = x2(t) — x1(2).
Then, for allt € R, we have

12() — d(1)| < Cmin(e2|t], er2), |2(t) — d(1)] < Celt].

2/ 1\ Cex ]
,6) <1HE> exXp (W s

(10)

2/ 1\ Cer It
,e) In — exp i .
€ lng

(1)

Furthermore, for any t € R,

—
€ max [d;0) —x;0)] = 0 (max ( |50

1 . . (0
€2 jetla) |dj (1) = %;()| = O | max ( Hg(O)

Remark 4. 1f H(m H = O (¢€), then the estimates (10) and (11) imply that the functions
xj(t), x;(t) are very close to d;(t), dj (t) during a time interval of order — In (e)e_%.

Remark 5. The proof of Theorems 2 and 4 for ¢+ < 0 is analogous to the proof for r > 0,
so we will only prove them for ¢ > 0.

Theorem 4 describes the repulsive behavior of the kinks. More precisely, if the kinetic
energy of the kinks and the energy norm of the remainder g are small enough in the initial

instant t = 0, then the kinks will move away with displacement z(¢) = € 2t +1n % when
t > 0 is big enough belonging to a large time interval.
Furthermore, using Theorem 4, we can also deduce the following corollary.

Corollary 5. With the same hypotheses as in Theorem 4, we have that

max |d;(t) — ¥;(t)| =0 (max ( H(R(}S) ,E)E% exp (Clejl|t|)>

JEil, 2}
— i N2\ cer ]
+o<max(Hg<o> 9 () e ().

Proof of Corollary 5. It follows directly from Theorem 4 and from Lemma 19 presented
in the Appendix Section A. O

1.3. Resume of the proof. In this subsection, we present how the article is organized and
explain briefly the content of each section.

Section 2. In this section, we prove orbital stability of a perturbation of a sum of two kinks.
Moreover, we prove that if the initial data (¢ (0, x), 3,¢ (0, x)) satisfies the hypotheses
of Theorem 2, then there are real functions x;, x» of class C2 such that for all > 0

=

[0 — H3®O - 1)

Se,

H!

D=

<e

8z‘ ((p(ta x) - H(izl(t) - Hillft()))‘

L2
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First, for every z > 0, we are going to demonstrate the following estimate

Eport (H(),](x —-2)+ H—l,O(x)) =2Epor (H()’l) + Zx/ie_ﬁz + 0 ((Z + 1)6‘_2ﬁz> .
(12)
The proof of this inequality is similar to the demonstration of Lemma 2.7 of [13] and it
follows using the Fundamental Theorem of Calculus.
The proof of the orbital stability will follow from studying the expression
Epor (HyA" + HY )+ 8) — Epor (H" + HY),

using the fact that the kinks are critical points of £, and the spectral properties of the

operator D’E pot (Ho,l) , which is also non-negative. Moreover, from the modulation
lemma, we will introduce the functions x7, x| that will guarantee the following coercivity

property
6O < Epor 130 5 19 4 ) — By (130 + 179,
Therefore, the estimate above and (12) will imply that
V22011 (1) | H%HZ <e (13)
From the orthogonality conditions of the Modulation Lemma and standard ordinary
differential equation techniques, see Chapter 1 of [3], we also obtain uniform bounds for

||x i) || L®(R) * Xj() H Lo(R) for j € {1, 2}. More precisely, the modulation parameters
x1 and x; are going to satisfying the following estimate

. 2 "
. . <
jg}‘i‘é} ;@ ”LOO(]R) + %@ ”LOO(R) ~ € (14)
The main techniques of this section are an adaption of sections 2 and 3 of [13].
Section 3. In this section, we study the long-time behavior of X (¢), x;(¢) for j € {1, 2}.
More precisely, we prove that the parameters x| and x; satisfy the following system of
differential inequalities

Xj(t) =pj(t)+ 0 (1), (15)

. d
pi(t) =(=1J* ——— — Epor (HS  + H-10) + O (a(t)), (16)
: G o (15 -10)

z=x2(1)—x1 (1)

for j € {l,2}, where «(t), £(¢) are non-negative functions depending only on the
functions (xj (t))je{l,Z} , (xj (t))je{l,Z} , Hg(t) H and satisfying

1
a(t) < —— ¢(t) < eln-,forall 7 € R, 17)
€

T
lnlng

because of the estimates (13) and (14). However, the estimates (17) can be improved

during a large time interval if we could use the estimate (7) in the place of H gT)t) ” =

0(e).
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Our proof of estimates (15), (16) is based on the proof of Lemma 3.5 from [13].
First, for each j € {1, 2}, the estimate (15) is obtained from the time derivative of the
equations

{p(r,x) = Ho1,0(x —x1 (1)) = Ho,1 (x — x2(1)) , 9 Ho,1 (x — x2(1))) ;2 = O,
{p(t, x) = Ho10(x —x1(1)) = Ho,1t (x — x2(1)) , 9 H-1,0(x — x1(1))) 2 = 0,

which are the orthogonality conditions of the Modulation Lemma. Indeed, we are going
to obtain that

(o000, 0,175 (o)

() = — 1+ 0,
0x Ho. |1
(ot 0, 01320 )
o) = — =+ 0 ().
8x Ho. |-

Next, we are going to construct a smooth cut-off function 0 < x < 1 satisfying

ity <00 —y),
x(x) = {o, ifx >0,

where 0 < y, 6 < 1 are parameters that will be chosen later with the objective of
minimizing the modulus of the time derivative of

(s, om0+ o (x (F74%5) s ).,

p1(t) =— 3 ,
[0 Ho.t [
(oo a3+ o ([1 - x (572it) [0)),.
[0 Ho [ 2

from which with the second time derivative of the orthogonality conditions of Modulation

Lemma and the partial differential equation (1), we will deduce the estimate (16) for

Jj {1, 2}.

Section 4. In Section 4, we introduce a function F'(¢) with the objective of controlling
—

H g() H for a long time interval. More precisely, we show that the function F (¢) satisfies

2 .
< F(t)+Ke€? and we show that | F ()|

is small enough for a long time interval. We start the function from the quadratic part of
the total energy of ¢ (¢), more precisely with

for a constant K > 0 the global estimate ” g?>) ‘

D() = 13,8(t, )15 + 1:8(t, )12 + /R U (HZ" (o) + HY ) (0)g (1, x)? dx.

However, we obtain that the terms of worst decay that appear in the computation of D(¢)
are of the form

fR[a, (g(t,x)k)] J(x1, X2, %1, %2, X) dx, (18)
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where k € {1, 2, 3} and the function J satisfies for some / € Q¢ the following estimates

0
sup max | ——J (x1(1), x2(1), ¥1(0), B2(0), )| S €,
leRjG{l,Z} ax/ 12

d . . -1
sup max | —J(x1 (1), x2(t), X1(2), X2(1), x)|| Se€ 2,
reR (1,2} || 0 12

and
sup [|J (x1(2), x2(t), X1 (), %2(1), )|l ;2 < € if k = 1, otherwise
teR

sup || (x1(1), x2(0), #1(8), 22(0), X) | Loy S € whenk € {2, 3}
teR

But, we can cancel these bad terms after we add to the function D(¢) correction terms
of the form

- fR (g.0") @10, 020, 110, 220, ) v, 19)

and now, in the time derivative of the sum of D(¢) with these correction terms, we obtain

. . . i =k L L==1%
an expression with a size of order €72 || g(¢) ” which is much smaller than € H g() H

because of inequality (14) obtained in Section 2 of this manuscript. Next, we consider a
smooth cut-off function 0 < w < 1 satisfying

1,if x
0,if x

)

wlx) =

IV 1A
B —

’

and w1 (¢, x) = @ ()%lx(f)(o

[13], we aggregate the last correction term

) . Based on the argument in the proof of Lemma 4.2 of

> / Byt )y g (1. ) L1 (DN (1, 1) + (1) (1 — w1 (1, x))] dx,
R
whose time derivative will cancel with the term

- / U (HGA" (x) + HE G ) Ga(00x Hy 3" + 61 (00 HY g (1, x)° d,
A ,

which comes from D(t), since we cannot remove this expression using the correction
terms similar to (19). Finally, we evaluate the time derivative of the function F(¢) ob-
tained from the sum D(¢) with all the correction terms described above.

Remaining Sections. In the remaining part of this paper, we prove our main results, the
estimate (7) of Theorem 2 is a consequence of the energy estimate obtained in Section 4
and the estimates with high precision of the modulation parameters x;(¢), x2(¢) which
are obtained in Section 5. In Section 5, we prove the result of Theorem 4, where we study
the evolution of the precision of the modulation parameters estimates by comparing it
with a solution of a system of ordinary differential equations. Complementary informa-
tion is given in Appendix Section A and the proof of Theorem 3 is in the Appendix
Section B.
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2. Global Stability of Two Moving Kinks

Before the presentation of the proofs of the main theorems, we define a function to study
the potential energy of a sum of two kinks.

Definition 4. The function A : Ry — R is defined by
A(2) := Epor (Hg 1 (x) + H-1,0(x)). (20)

The study of the function A is essential to obtain global control of the norm of the
remainder g and the lower bound of x> (#) — x1(¢) in Theorem 2.

Remark 6. 1tis easy to verify that E o (Ho,1 (x —x2)+H_1,0(x —x1)) = E pos (Ho,1 (x —
(x2 = x1)) + H-1 0(x)).

We will use several times the following elementary estimate from the Lemma 2.5 of
[13] given by:

Lemma 6. For any real numbers x>, x1, such that x —x1 > Oanda, B > Owitha # B
the following bound holds:

/ T B g < i@ p) (),
R

For any o > 0, the following bound holds
/ efa(xfmhefa(xwxn dx <4 (14 (x2 — xl))efa(Xzfxn.
R

The main result of this section is the following
Lemma 7. The function A is of class C? and there is a constant C > 0, such that
L |A@ - 4v2e V%] < Cat eV,

2. ‘A(z) +4eV%| < C(z 4+ 1)e 2V,

3, ‘A(z) — 2E o (Ho1) — 242 V2| < Cz + 1)e 2V,

Proof. By the definition of A, it’s clear that
1 2
A7) = 3 /R (ax[HS,l(x) + H,l,o(x)]) dx + A% U(Hé,l(x) + H_10(x))dx
2
= [0 Ho.1 |72 + A Oy Hi  (x)dx H_1,0(x) dx + /R U(Hj (x) + H-10(x)) dx.

Since the functions U and Hj j are smooth and d Hy 1 (x) has exponential decay when
|x] — +00, it is possible to differentiate A(z) in z. More precisely, we obtain

Ax) =-— /R OFHG | ()3 H_y 0(x)dx — /R U(H§ {(x) + H_1 0(x))0, Hf | (x) dx

= fR O HE | ()[U(H-1,0)(x) — U(H-1,0(x) + H{ | (x))] dx.
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For similar reasons, it is always possible to differentiate A(z) twice, precisely, we
obtain

A = [ 005, 0020 (Hor o)+ 5, (0)
— 0 HG  ()[U(H-10(x)) — U(H-10(x) + Hj ()] dx. ~ (21)
Then, integrating by parts, we obtain
AQR) = /R Oy H ()0 Ho1 0(0)[U (H-1,0(x)) = U(H_1,0(x) + H , (x))] dx.(22)
Now, we consider the function
B(z) = /RBXHOJ(X)BXH_LQ(X +2)[U(0) — U(Ho,1(x))] dx. (23)
Then, we have
3@ = BG) = [ 0085, 00, Hor o[ 0CH-10060) = U CH-100) + H 50 ]
_ /R8XH§’1(x)8xH_1,0(x)[U'(O) _ U'(H(il(x))]dx. (24)
Also, it is not difficult to verify the following identity
[U(H-10(x)) = U(H-_1,0(x) + H; ()] = [U0) — U(H ; (x))]

H_1o() pHE, ()
=— f / UD (01 + 02) doy dw,. (25)
0 0

So, the identities (25) and (24) imply the following inequality

|AGz) — B(2)|

<.

Since U is smooth and H Hy 1 ” Lo = 1, we have that there is a constant C > 0 such that

dx.

Hoot) pHi 0
0 HG 1 (1)0Ho1,0(3)| / f U (1 + w2) do; dan
0 0

|A@) —B(z)| < C /R ang,l(x)axH_l,o(x)H_l,o(x)Hg,l(x)\ dx.  (26)

Now, using the inequalities from (D1) to (D4) and Lemma 6 to inequality (26), we
obtain that there exists a constant C independent of z such that

|A(z) — B()| < C1(z + e 2V, @27)
Also, it is not difficult to verify that the estimate

By H_1 0(x) — v/2¢7 V| < Cmin(e V2 ¢~ V2), (28)
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and the identity (23) imply the inequality
‘B(z) —V2e™V% / eV Ho,1 (x) (U (0) — U (Ho,1 (x)) dx
R

< f Ho 1 (x)9 Ho 1 (x) min (e 732049 o =V20:42)) g1
R

~

< f ¢~ 2Y2(=94 min (6_3“5()‘“), e_ﬁ(“z)) dx
R

0 +00
</ e~ 2V2@=2)4 ,—V/2x dx+/ e 2V2G@=2)4 ;=324 g
—00 0

Since we have the following identity and estimate from Lemma 6

0 -2V2
/ e BB gy L C (29)
—o0 V2
+00
/ efZﬁ(zfX)+e*3«/§(X)+ g ef2~/§z’ (30)
0

we obtain, then:

‘B(z)—ﬁe—ﬁz / e V29, Hy 1 ())[U(0) — U (Ho 1 (x)] dx| S e V%, (31)
R

which clearly implies with (27) the inequality

’A@)—ﬁe-ﬁz / eV, Ho  (0)[U(0) — U (Ho 1 (x))] dx| S (2 + e 2V,
R

(32)

Also, we have the identity
/ (8(Ho,1(x))* — 6(Ho,1(x))%)e™ V2 dx = 2V2, (33)
R

for the proof see the end of Appendix A. Since we have the identity U (0) — U (¢p) =
24¢> — 30¢*, by integration by parts, we obtain

—+/2x
/Reﬂ 3¢ Ho,1(0)[U(0) — U (Ho,1 (x))] dx

In conclusion, inequality (32) is equivalent to ‘A(z) - 4\/56_‘52 < (z+ 1)6_2“52.

The identities
SN pi3—i
<j)¢ '),

U@)+U(@©) —U(p +6) = 2440 (¢ +6) — 6(

4
]:

1
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A(z) = - /R 0, HE () [U (H§  (x) + Hoy 0(x)) + U(H-1,0(x)) — U(H | (x))] dx
and Lemma 6 imply the following estimate for z > 0
|A@)| S eV,

s0 lim||— 400 |A(z)| = 0. In conclusion, integrating inequality A(z) — 4\/§e’ﬁz <

(z+ 1)e‘2ﬁz from z to +00 we obtain the second result of the lemma

‘A(z) +4eVE| < 2+ De WV, (34)

Finally, from the fact thatlim; 100 E por (H_1,0+H(§’ 1 (X)) = 2E po; (Hop,1), we obtain
the last estimate integrating inequality (34) from z to +0co, which is

‘2E,,OI(HO,1) +2v/2e V% A(z)‘ < (4 eV

O

It is not difficult to verify that the Fréchet derivative of E,; as a linear functional
from H'(R) to R is given by

(DEpot (@) (v) := /I‘an¢(x)3xv(x) +U(p(x))v(x) dx. (35)
Also, for any v, w € H 1 (R), it is not difficult to verify that
<D2Ep0,(¢)v, w> - / 9, 0(x) 9, w(x) dx +/ J(¢()v@wx)dx.  (36)
L? R R

Moreover, the operator D*E pot (Ho,l) :H 2(}R) C LZ(R) — Lz(R) satisfies the fol-
lowing property.

Lemma 8. The operator D*E pot (Ho,l) satisfies:

ker (D2 Epor (Ho,1)) = {ed Ho,1 (¥)| ¢ € R),

1
D*E ,o; (Ho, g,g> > c|lgl2s —{g. B Hoajpo ——— |-
(D7 (o) 8}, = ¢ Vel — b Bebos o o o

for a constant ¢ > 0 and any g € H'(R).
Proof. See Proposition 2.2 from [13], see also [18]. O
Lemma 9 (Coercivity Lemma). There exist C, c, § > 0, such that if x; — x| > %, then
for any g € H'(R) we have
(D2 Epor (H3? + HY, )8, 8) , = ellglly = € [t 02 o) + (8, 0G|
(37)
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Proof of Coercivity Lemma. The proof of this Lemma is analogous to the proof of
Lemma 2.4 in [13]. a

Lemma 10. There is a constant Cy, such that if x, — x1 > 0, then

< Cze—«/i(m—m). (38)

X X
HDEpOt(HO,zl + H_ll’o) I2R) —

Proof. By the definition of the potential energy, the equation (3), and the exponential
decay of the two kinks functions, we have that

DE o (Hy + HYY ) = U(Hy3 + HY, o) — U(Hy3) — U(HY, )
as a bounded linear operator from Lz(R) to C. So, we have that

DEpot(Hg,zl + Hfll,O) == 24Hé21 Hfll,o[H())c,zl + Hfll,o]
4

+6[ 3 (j) (H ) (Hg3)

j=1
and, then, the conclusion follows directly from Lemma 6, (D1) and (D2). O

Theorem 11 (Orbital Stability of a sum of two moving kinks). There exists o > O such
that if the solution ¢ of (1) satisfies (¢ (0), 3;$(0)) € S x L*(R) and the energy excess
€ = Eiora1(@®) — 2E o1 (Ho1) is smaller than 8o, then there exist x1, x : R — R

functions of class C2, such that for all t € R denoting g(t) = ¢ (t) — Hp,1(x —x2(1)) —
H_10(x —x1(2)) and z(t) = x2(t) — x1(t), we have:

1
L@l = O(e2),
2. z(t) > \/—7 [1112 +ln2] s
3.0 (I3, < 2e,

. 2 .
4. maxjc(1,2) [X; ()] + maxjeq o) | ¥ (1) = O(e).

Proof. First, from the fact that Eyor4/(¢p (X)) > 2E por (Ho,1), we deduce, from the con-
servation of total energy, the estimate

13 ()7 < 2e. (39)

From Remark 1, we can assume if € < 1 that there exist w;, wy € R such that

¢(0,x) = Ho1(x —wp) + H_1 o(x — wy) + g1(x),
and
1

lgillgr <6, wo —wy > 3

for a small constant § > 0. Since the Eq. (1) is locally well-posed in the space S x L?(R),
we conclude that there is a §; > 0 depending only on § and € such thatif —§; <t < §1,
then

|, x) = Ho1(x — wa) — H_yox — wp)| ;1 < 26. (40)
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If §,e¢ > 0 are small enough, then, from the inequality (40) and the Modulation
Lemma, we obtain in the time interval [—§;, §1] the existence of modulation param-
eters x1(t), x2(¢) such that for

gt) = (t) — Ho,1(x —x2(8)) — H_1 0(x — x1(1)),
we have
(¢(0), 9 Ho,1(x — x2(1))),2 = (8(), 0xH_1,0(x — x1(1)));» =0, (41)

P SraE—— 1 S 8. 42
|x2(t)—x1(t)|+”g(t)”H S (42)

From now on, we denote z(f) = x»(t) — x1(¢). From the conservation of the total

energy, we have for —§; <t < §; that

13: ()13
2
+(DEpor (HyZ" + HY). g(),.»
(D2Epor (H3" + H' )2 ()., 8(0)),»
2

Erorat (6 (1)) = Epor (" + HYG)

+0(lg®30)-

From Lemma 7 and (42), the above identity implies that

13:(1)112, _
€ =TL +23/2e V20 4 (DEp()t(H(;zl(l) + Hf11(,lo))’ g()2

D2E sz(t) +Hxl(l‘) (1), g()
+( por ( 0.1 2—1,0)g 8 )Lz + 0( ”g(t)“?*-ﬂ +Z(l‘)€72ﬁZ(l)) (43)

for any + € [—41,81]. From (38), it is not difficult to verify that ‘(DE pot ( H(;C,zl(l)

+Hf1](’t0))‘, g(t))Lz(R) < Cze_‘/iw) ||g(t)||H|<R). So, the.Eq. (43) and the Coercivity
Lemma imply, while —§; < ¢ < §y, the following inequality

()3 cllg®?
€ +C26—\/§Z(l) ”g(t)”H] - ” t¢(2)”L2 +2ﬁe_ﬁz([) + ”g(z)”Hl
+0 (I8 +2(0e V=0, (44)

Finally, applying the Young inequality in the term C ze_ﬁz O g @)l g1 (R)» We obtain
that the inequality (44) can be rewritten in the form

3,0 (0|3 N3
e > 1?0l "”(2)”“ 12330 VEw 18O (4)”H1 +0 (18Ol + @) + e =0).
(45)

Then, the estimates (45), (42) imply for § > 0 small enough the following inequality

2 2
Oy, 8@

2 8 (46)
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So, the inequality (46) implies the estimates

_ €
D < 2 g0l S 47)

1
fort € [—41, 81]. Inconclusion, if % <In (é) 2 we can conclude by a bootstrap argument
that the inequalities (39), (47) are true for all # € R. More precisely, we study the set

3,0 ()% cllg)?
c=lberyles I t¢(2)||L2 42 VED IIg(g)II,L,l’if i <b.

and prove that M = sup,.c b = +00. We already have checked that C is not empty,
also C is closed by its definition. Now from the previous argument, we can verify that
C is open. So, by connectivity, we obtain that C = R. .

In conclusion, it remains to prove that the modulation parameters x1 (¢), x»(¢) are of
class C? and that the fourth item of the statement of Theorem 11 is true.
(Proof of the C2 regularity of x|, x,, and of the fourth item.)

For 89 > 0 small enough, we denote (y;(¢), y2(¢)) to be the solution of the following

system of ordinary differential equations, with the function g () = ¢ (¢, x) —Hoy, 21(0 (x)—
H\ ),
2 ) . ) ) .
(loxHoal7: = (a1 a221F) o+ ({a:Hg3". 0121 | )52
= (090, 21" ) |
. 2 .
((cH33". 0:1215) )i+ (o Hoa 72 = (1), 82H33) | )i2(0)

=~ (g0, 2. 13" )

(48)

. (49)
with initial condition (y2(0), y1(0)) = (x2(0), x1(0)). This system of ordinary differen-
tial equations is motivated by the time derivative of the orthogonality conditions of the
Modulation Lemma.

Since we have the estimate In (%) < x2(0) — x1(0) and g1(0) = g(0), Lemma 6 and
the inequalities in (47) imply that the matrix

2 0 0 0
Hax HO,l ”Lz - <gl (O)a 8%HZ11(’0)>L2 <axH({21( )a atzl1(,0)>L2 (50)
0 0 2
(0015, 0.1, D) [oxHot |2 = (g1(0), 02H3) |

L2

is positive, so we have from Picard—Lindel6f Theorem that y,(¢), yi(f) are of class
C! for some interval [—§, 8], with § > 0 depending on |x2(0) — x1(0)| and €. From
the fact that (y2(0), y1(0)) = (x2(0), x1(0)), we obtain, from the Eqgs. (48) and (49),
that (y2(¢), y1(¢)) also satisfies the orthogonality conditions of Modulation Lemma
for t € [—4,5]. In conclusion, the uniqueness of Modulation Lemma implies that

(y2(8), y1(t)) = (x2(¢), x1(¢)) for t € [—8, §]. From this argument, we also have for
t € [=$§, 8] that e—V202(0)=31(1) < ﬁj By bootstrap, we can show, repeating the
argument above, that

sup {C > 0 (y2(2), y1(1)) = (x2(2), x1(2)), for 1 € [-C, C]} = +00. (51)
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Also, the argument above implies that if (y1(¢), y2(¢)) = (x1(¢), x2(¢)) in an instant
t, then yy, yp are of class C lina neighborhood of ¢. In conclusion, x1, x; are functions

in C!(R). Finally, since [|g(1)|| 1 = O(e2) and e~ VZ® = O(e), the following matrix

2
JocHoa |3 = {s. 0207 G) - {ocmy”. 0cH™ )

M(t):= )
(om0, Q) | o Ho.t 7 = {g0). 92 H3")

L2

(52)

is uniformly positive for all 7 € R. So, from the estimate [|9;¢ (1)l 2r) = O(e%), the
identities x; (t) = y;(¢) for j = 1, 2 and the Eqgs. (48) and (49), we obtain

1
Xi ()| = O(e2). 53
jmax, li; ()] = O(e2) (53)

Since the matrix M (t) is invertible for any ¢ € R, we can obtain from the Egs. (48),
(49) that the functions X1 (¢), x2(¢) are given by

x2(2) —<8t¢(l‘), 8xH(i21(l)(x)>L2

Now, since we have that (¢ (), 9;¢(¢)) € C(R, S x LZ(R)) and x (), x2(t) are of class
C!, we can deduce that (g(1), 3;g(t)) € C(R, H'(R) x L*(R)). So, by definition, we
can verify that M () € C' (R, RY).

Also, since ¢ (¢, x) is the solution in distributional sense of (1), we have that for any
v1, y2 € R the following identities hold

(0 HYY L 070 (0),2 = —(02H. dep ()2 — (0 HYY . U9(1)),2.
(0 H\ o 070 (1),2 = —(02H” . 0 (®)),2 — (0 HY . Ud(1))),2.

Since (1) is locally well-posed in S x L?(R), we obtain from the identities above that the
following functions h(t, y) :=(0x Hy |, 07¢(1)),> and 1(1, y):= (3. H” | (. 07 (1)),»
are continuous in the domain R x R.

So, from the continuity of the functions A (¢, y), I(¢, y) and from the fact that x|, x; €
CL1(R), we obtain that the functions

)= = (06, HYGW) |\ ha)i= = (06(), 0:HZ ) |

are of class C!. In conclusion, from the Eq. (54), by chain rule and product rule, we
verify that x1, xp are in C 2(R).
Now, since x1, x2 € C2(R) and x|, x> satisfy (54), we deduce after differentiate in

time the function
x1(2)
M@ [Xz(t)}

the following equations
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. 2 .
#1000 Hoa |2 + (080, 0 HYQ) ) #5200 (0BG 0 HG30)
= 510 (21, eg ) |+ (2HIY, g (1)

+ia? (0BG, 02H") |+ 0k (0211, 0cH3")

L2

L2

L2

w2, a9 m) | — (011G, o2 w) . (55)
520 ([0 Hoa 72 + (:80). 0:HGZ") ) + 2o G, 0 H3 "),
= (1) <a§H5ﬁ21(’), 3, g(t)>L2 +i2(1) <a§H(;ﬁ21">, 8,g(t)>L2
+31 (k2 () <afo11(f0), aﬁH(;?l(’))Lz +i1(0)? <axH(§21(’>, afoll(fo))Lz
+ia(0 (0213, at¢(t)>L2 — (o H3". af¢(z)>L2. (56)

Also, from the identity g(t) = ¢(t) — Hf‘l(’to) — Hézl(t), we obtain that 9,g(¢) =

8 (1, x) + 5103 HYY G + 52(0)9, Hyy" . so, from the estimates (39) and (53), we
obtain that

13,8tz = O(e?). (57)

Now, since ¢ (¢) is a distributional solution of (1), we also have, from the global
equality ¢ (¢) = Hfll(,[o) + Hy 21(0 + g(t), the following identity

(0120, 920 ))
= (0129, 02() = U (HX9) 8 )) ,
- <ax HY, [U (Hfll(,lo) + H(?f”) -U (Hfll(,to)ﬂ 8(’)>L2
+ (B0, O (HOD) + 0 (") = O (B + HZD))
— (0.0 0 (B9 + B3 + 5 0) = O (HG + H3")) |
+ (029U (B0 + HA") s 0) .
Since 9y Hf'l(to) € ker (DZE pot (Hf‘fg)) we have by integration by parts that <8x Hf‘l(’to) ,

3Z2g(t) —U (Hfll(,to)) g(t)>L2 = 0. Since we have

. x1(1) y x2(1) y x1(1) x2(1)
O (HYQ) + 0 (") = 0 (B2 + H3")

4 (3) (et ()™ 0
— ] —-1,0 0,1 ’

x1(t) p7x2(1) x1(1) x2(t)
=24H7 o Hy (H—ll,O + Hy ) —6

j=1
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Lemma 6 implies <8x Hfll(’?.), U (Hf‘lstg) +U (H(izl(l)) -U (Hfll(’to) + H&21(1)>>L2
=0 (e_ﬁ(z(’ ))>. Also, from Taylor’s Expansion Theorem, we have the estimate

o0 1 5 50) 0 (540,
(oS, 0 (175 + H330) 20) |, = 0.

From Lemma 6, the fact that U is a smooth function and Hp ; € L°°(R), we can obtain
(2. [0 (H23F + 3") = 0 (H255) | s0)

=of /R 0 H L HA 190 dx)

L2

= 0(e™VEO gl 20)7).
In conclusion, we have

(0.4 020 )) , = 0 (eI +e7VED), (59)
and by similar arguments, we have

(033" 020 )) , = O (g +e™VED). (60)

Also, the Egs. (55) and (56) form a linear system with X (), X»(¢). Recalling that the
Matrix M (t) is uniformly positive, we obtain from the estimates (47), (53), (57), (59)
and (60) that

ax_|%;(1)] = 0(e). (61)
jell2)
O

The Theorem 11 can also be improved when the kinetic energy of the solution is included
in the computation and additional conditions are added, more precisely:

Theorem 12. There exist C, c, 6o > 0, such that if 0 < € < §g, (¢ (0, x), 9:¢(0, x)) €
S x L2(R) and E;pra1 (¢ (0, x), 3;¢(0, x))) = 2E o1 (Ho,1) +€, then there are x3, X1 €

C*(R) such that g(t, x) = ¢(t, x) — H&zl(’) (x) — Hfll(fo) (x) satisfies
(s, 0.HZO () | =0, (3.0, 0. HE () | =0,
and, forallt € R,

ce < e V2RO 4 (0(1), 88131, 12 + 1O + 112 (OF < Ce. (62)
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Proof. From Modulation Lemma and Theorem 11, we can rewrite the solution ¢ (¢) in
the form

ot x) = H' Q) + H) P (o) + g (1, x)

with x1(¢), x2(t), g(t) satisfying the conclusion of Theorem 11. First, we denote

9o (1) = (H () + HZ O (0, =21 00 HY ) = 200 HH ") € 8 x LA(R),
(63)
then we apply Taylor’s Expansion Theorem in E (¢ (¢)) around ¢, (). More precisely,
for R, (¢) the residue of quadratic order of Taylor’s Expansion of E (¢ (¢), d;¢ (¢)) around

¢o (), we have:
2Epot(I'I(),l) +e€= Etotal(¢o (t)) + <DEt0tal(¢a (t))’ (g(t), alg(t))>L2><L2
D7 B @ ) (80, i8®). (80). 818(1)) 2,
2

+ R, (1),
(64)

such that for (v1, 12) € S x L2(R) and (v, v2) € H'(R) x L?(R), we have the identities

2 2
8 vill72 + llv2l

Erorar(vi, v2) = > L2 +f U(vi(x))dx,
R

(DEorai (v, v2), (V1,02)) 212 = /Raxw(x)axm(x) +U(w)vp + 12 (x)va(x) dx,

(65)
—32+U 0
DErgran (1. v2) = [ i+ U ]1] (66)
with DzEm,a[(vl, V) defined as a linear operator from H 2(IR) X LZ(R) to LZ(R).
So, from identities (65) and (66), it is not difficult to verify that
Ro'(t) — / ( xl(t)(x) + H())"Zl(t)(x) +g(t,x)) _ ( Xl(t)( )+ sz(t)(x)>
R
- /R U (Hf'l(fg () + H(;?l(”(x)) g(t, x)dx
U (150 + B W) g0, )2
_ / dx,
R 2
and, so,
R0 =0 (IlgI3) (67)

Also, we have

(DEtoral (ds (1)), (8(1), 0:8(1))) 212
( DE o (me) sz(t)>, gm)m
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— (2100 HG + 200 HED, g ) . (68)

The orthogonality conditions satisfied by g(¢) also imply for all # € R that
(8. a:12G) | =2 (g, 92 . (69)
(8. 033" | =2 (g0, 92HE") . (70)

So, the inequality (38) and the identities (68), (69), (70) imply that

(D Erorar 9o (1), (@01, 8180 22| = O (Ne®llp sup [5;0)[)
Jjell.2)

+0(lgllyr e™=0). a1
From the Coercivity Lemma and the definition of D?E,ptal (¢o (1)), we have that

(D? Erorar @0 0)(8(0). 8,80, (20, ig D)) , = 1(g(0). 880N 11,2 (72)

L2xL

Finally, there is the identity

. Hxl(t) . HXZ(I) 2
x1(0)0xH™ g (x) + x2(8)9x Hy 7 (x) L2

L. i 2
= 2x1(0)x2(1) <3xHé’,(f), 3xH71,0>L2 +3%1(0)* |0y Ho.1 | 12

+i2(0) |0 Ho.1 |35 - (73)

From Lemma 6, we have that )(8XH571, 8XH_1,0)L2‘ = 0(16_“52) for z big enough.

Then, it is not difficult to verify that Lemma 7, (67), (71), (72) and (73) imply directly
the statement of the Theorem 12 which finishes the proof. O

Remark 7. Theorem 12 implies that it is possible to have a solution ¢ of the Eq. (1) with
energy excess € > 0 small enough to satisfy all the hypotheses of Theorem 2. More

precisely, in notation of Theorem 2, if ||(g(0, x), 0;8(0, X)) | g1 12 K 6% and

eVEO 451 (0)2 +12(0) Z e,

then we would have that E; 441 (¢(0), 3,¢(0)) — 2E 0, (Hp,1) = €.

3. Long Time Behavior of Modulation Parameters

Even though Theorem 11 implies the orbital stability of a sum of two kinks with
low energy excess, this theorem does not explain the movement of the kinks’ centers
x2(t), x1(¢) and their speed for a long time. More precisely, we still don’t know if there
is an explicit smooth real function d(¢), such that (z(¢), z(¢)) is close to (d(¢), d(¢)) in
a large time interval.

But, the global estimates on the modulus of the first and second derivatives of
x1(t), x2(t) obtained in Theorem 11 will be very useful to estimate with high preci-
sion the functions x (), x2(¢) during a very large time interval. Moreover, we first have
the following auxiliary lemma.
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Lemma 13. Let 0 < 0, y < 1. We recall the function
A(z) = Epot(H(il + H—I,O)

for any z > 0. We assume all the hypotheses of Theorem 11 and let x (x) be a smooth
function satisfying

<00 -y,
x() = {O, x o (74)

and 0 < x(x) < 1 forall x € R. In notation of Theorem 11, we denote

x —x1(2)
z(t)

and | g = 16, dg @)l 12w -

e 1 2
X0t = x( ). &) = (g0, dg (1)) € H'(®) x LA(R)

o) = [ mas 11501 [1+ o oy ma o] (e 50)

V() |, A je(1.2) i(0? (e—zﬁzm(;:—;))
z(y

”g(t) H [y —— yzl(t) + <e—ﬁz(t)(%))] + ‘ —

Then, for 6 = é:—; and the correction terms

. 2 —
+ max i(t t
,“2x1()z()e

e_‘fzz(’)[l + m]
(75)

(3 (1), 9 HE) () + B (07, )8 (1))

pi(t) =— ,
o Ho. -
) (i (1), 0 HZ " (x) + 3, ([1 = xo(t. 2)18(1))
2 = s
|9 Ho |72

we have the following estimates, for j € {1, 2},

) Xl oo
|Xj(t) _pj(t)| S [1 * z(1) :I(Je{l 2} |x,(t)| Hg(t)” Hg(t)H )
+ max |40 2(1)e V=D, (76)
p,-(r>+(—1)fM < o). (77)
|9+ Ho.1 ;-
lnln(é)

Remark 8. We will take y = O With this value of y and the estimates of Theo-

rem 11, we will see in Lemma 16 that 3C > 0 such that

2
(10 gDl r2 +€mn L) & |t|€;>
€X .

Inln (1) Inl

at) S
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Proof. For y <« 1 enough and from the definition of x (x), it is not difficult to verify
that

1

. .. 1
X ooy S " X1 ooy S X (78)

We will only do the proof of the estimates (76) and (77) for j = 1, the proof for the
case j = 2 is completely analogous. From the proof of Theorem 11, we know that
x1(1), x2(t) solve the linear system

am] _ | —@e®, acH )
M@) [iz(t)i| - |:—(8t¢(l‘), acH ") |

where M (t) is the matrix defined by (52). Then, from Cramer’s rule, we obtain that

2
B <31¢(t), 8foll(,3>L2 (<axH())C,21(t)’ axg(t)>L2 + H 9y Ho 1 ”L2 )
det(M (1))
o0 0 [, )

+ L2 (79)
det(M (1))

x1(1) =

Using the definition (52) of the matrix M(¢),
implies the following estimate

— 1 .
’g(r)” = 0O(e?) and Lemma 6 which

(0130, 011G | = 0 (200eVED), (80)
we obtain that

)det(M(t)) — |axHo1 |}

= 0( g_(z))H +z(;)2e*2ﬁz<')) = 0(e?). @l

So, from the estimate (81) and the identity (79), we obtain that

(), 0,111 |

)'Cl(l‘) + 3
” dx Ho, 1 ”LZ(R)

= o(|{a iy, ackiy”) L (00, 0k ") )
+0 (|(mo @, a1 Q@) | |[|6@] +z0%=0T) . 82

Finally, from the definition of g(¢, x) in Theorem 11 we know that

L2

L2

%1, x) = —i1 (D0 H G (v) — 2(0) 0 HPZ" (x) + 8,82, %),
from the Modulation Lemma, we also have verified that
% .
(e, 0.111%) |, = o([e@| o),

(org. :1153") | = of |¢@] 1520001),
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—
and from Theorem 11 we have that Hg(t) H +Mmaxe(1,2) |)éj (t)| « 1. In conclusion, we
can rewrite the estimate (82) as

< (p(1), By HXl(t)> .

x1() +
” dx Ho.1 ||L2(R)

:0( max |x](t)}Hg(t)” ”g(t)H )

je{l1,2}

+O<Z(t)e V() max 1% (r)|) (83)

By similar reasoning, we can also deduce that

x2(1)
R i YT I Pt

H axH0»1”L2(R) jett2)

—/22(0) G
+0(2(ne™™ max o)) 64

Following the reasoning of Lemma 3.5 of [13], we will use the terms p(¢), p2(f)
with the objective of obtaining the estimates (77), which have high precision and will
be useful later to approximate x;(t), x;(¢) by explicit smooth functions during a long
time interval.

First, it is not difficult to verify that

.60, 2000z 2 = 0([1+ P2 [+ max (50|23 ).

z(1) Jje(1.2}

which clearly implies with estimate (83) the inequality (76) for j = 1. The proof of
inequality (76) for j = 2 is completely analogous.

Now, the demonstration of the inequality (77) is similar to the proof of the second
inequality of Lemma 3.5 of [13]. First, we have

(). 0 (012G 00)) | (B0, 8 (Bixoz 1)),

pi(t) =—
o Hoa |- |9 Ho. |72

x1(t)

{3 G®ag ). 3d ), (3 HYG, afd’(f)}Lz
o Hoa |72

{Bexo@8®). FP®)2  {xo®deg @), Fp(®)), (85)

o Ho 2 |9 Ho |72
=I1+11+I1II+IV+V+VI, (86)

and we will estimate each term one by one. More precisely, from now on, we will work
with a general cut-off function x (x), that is a smooth function 0 < x < 1 satisfying

1, ifx <6(1—y),

0, ifx > 6. (87)

x(x) =
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with0 < 0, y < 1 and
X —xl(t))
z(t)

The reason for this notation is to improve the precision of the estimate of p{(¢) by the
searching of the y, 6 which minimize o (7).

xo(t. ) = x ( (88)

(ap o). aZH”(”)

||9x Ho,1 ||L2
Step 2. (Estimate of //.) We have, by chain rule and definition of yg, that

(0r (1), 0 (B x0(1)g(1))), 2
o Ho.1 |7

oo, (i (52) S )s o))

o Hoa |7
<8t 5(0). s ( (xZ/Efll)(t))I:J'cl(t)z(t)';((/\;)—le(t))i(t)]g(t)>>L2
o Ho 1|2

Step 1. (Estimate of 7) We will only use the identity I = x(¢)

I1=—

So, we obtain that

O\ 2@ . G=x10)z@®)

(a,¢(z) X(X EQ )[le(z) +%]g(”>y
2

2(1) |0 Ho 1 ;2

(oo 2 (552) e0),,
[ Ho.i |72
x=x () )| X0 | =X (0)2(@)
(o0, 7 (S0 ) [ + S0 o o)
+ , . (89)
o Hoa |12

First, since the support of x is contained in [6(1 — y), 6], from the estimates (D3)
and (D4) we obtain that

11 =

am|?
-1.0 L%(suppaxxoa,x))

=0 (e
L2 (ﬂupp 3.¥X0(f,x))

Now, we recall the identity 9, (¢, x) = —x1(¢)dy Hxl(t) )%2(t)8xH({21(t) +0,8(1),
by using the estimates (90), (91) in the identity (89), we deduce that

— 0(6—2\@9(1—1/)2([))’ (90)

X2(t)

fzﬁafe)z(r)), 1)

max 1,2y |4 ()] | — H H
z(1)

. — (12 maxe1, 2} | X ()
il [s0) = z(t)z’ il

11 =0<||X||Loo(R)
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max;ef1,2) X, (£)” )Cj(t)2

—V2z(0) min((1=6),06(1=y)) || = H H

+e 1) !

Rl == 5 8@

+ HgT)l)H e*ﬁz(t)min((]fe)ﬂ(lfy)) ”X”LO"(R) " ||X||L°°(R) max i (t)
2(1)? 20y ety

92)

Since ;V < max((1 — 6) 0(1 —y)) for 0 < y,0 < 1, we have that the estimate (92)

is minimal when 6 = 5—~. So, from now on, we consider
-y
0= —-—, 93
z_y (93)

which implies with (78) and (92) that /1 = O (x(t)).
Step 3. (Estimate of 771.) We deduce from the identity

(9x (X0(1)3:8(1)), (1)) 2
(X

11l = —

that
<X<x z)(ctl)(t))atg(t) —x1(1)0x fll(,to) X (1) 0y xz(t)+a’g(t)>L2

20 | Ho. | 2
(ot 92,80, =100 HIG — 200 HZ + 181, ) |

11 =—

o Ho. |7
=II1.1+1112. (94)

The identity (93) and the estimates (78), (90) and (91) imply by Cauchy—Schwarz
inequality that

¢ —V2z(0) (A=
max je(1, 2 | ()] e V22(1)(3=5)

yz(1)

i1 =of 6]+ - [0 ). - o9

z(t)

In conclusion, we have estimated that /71.1 = O («x(?)).
Also, from condition (87) and the estimate (4), we can deduce that

X — 1-y
1 = xoenaz e L=0(VEVED) 96)

L+ | rowazg?

Additionally, we have that

(ot 0[32,00) +21032H G + 02 H |, a9 0)

[ Ho.i |2

1112 = —

7

By integration by parts, we have that

‘(x( Z(f;()) (D0, hg(1,3) | = (y ()||at¢<>||L2(suppaxo(,»)
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In conclusion, from the estimates (78), (90), (91) and identity (93), we obtain that

‘(x(x_z(—);(’))aﬁxcb(r,x), 0o (t,1) |

= o [+ T [EOE]) o
Also, from Lemma (6), the estimate (4) and the fact of 0 < xo < 1, we deduce that
= 0(ze =), (99)
= 0(2(ne™V=D). (100)

(o002 H30, 0,15 G) |

oo, )

L2

From the estimates (90), (91) and identity (93), we can verify by integration by parts the
following estimates

x1(6)? —2fz(t)(2_y) 101
0<yz(t) ) o

20 ¢ 00\ _ (207 2vod)
(oOn@a B0, Hwa?) = 0Tk 7). aoy

<(1 = X011 (1)3; HXIl(t())s X1(2)0x HXIU)>

2

Finally, from Cauchy—Schwarz inequality and the estimate (96) we obtain that

(= xoensi a2, a8 ) =0(|x1<r)|]\%){ SEOED) 0y
fzz(r)@:—;))_ (104)

(oon0aH", ag0) =013

In conclusion, we obtain from the estimates (99), (100), (101), (102) (103) and (104)
that

(02050, 9. 0)

[ Ho |

1112 = —31(1) L2 4 O(a()). (105)

This estimate of /77.2 and the estimate (95) of I71.1 imply

(0200, 9. )

L+ 0((). (106)
|19 Ho.1 |

111 = —%(t)

In conclusion, from the estimates /I = O(a/(t)), (106) and the definition of I, we
havethat I + I1 + 111 = O(«(t)).

2
Step 4. (Estimate of V.) We recall that V = — (Brx0()g®). 6 $ ()2

llox Ho.1 ]I 2
020 = 02w + [0 (HA) + 0 (H") = 0 (B4 + 153" |

O (B + HE") = 0 (B9 + B +e0) ] aom)

, and that
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First, by integration by parts, using estimate (78), we have the following estimate

T (0 x0(1)928(1), g(1)) 12 = o([ﬁ + —yzzl(t)z] H g—(;)Hz)
= O(a(0)). (108)

Second, since U is smooth and || g(?) ||« = 0(6%) for all € R, we deduce that
(0 (HG + H3?) = O () + 3O+ 50)  8ox00)g)
— 2
el
S ——— = 0(a@®). (109)
z()y
Next, from Eq. (58) and Lemma 6, we have that

. x1(1) y x2(1) y x1(1) x2(1)
[0 (5 9) + 0 (") = 0 (B9 + 1g3")|

L2

= 0@ V=D, (110)
L2
then, by Holder inequality we have that
(0 (H49) + 0 (H3") = 0 (B9 + HZ ) o028 0)
—
||
S ——e

~oya()

Clearly, the estimates (108), (109) and (111) imply that V = O («(t)).
Step 5. (Estimate of V 1.) We know that

(0xg(Mx0 (1), 07 (1)),,
5 .
| 9x Ho.1 [
We recall the Eq. (107) which implies that

L2

—V2z(1) _ o). (111)

2
loxHo.1 [ V1
= (ocgx0), U (HNG + 3" +20)) = O (HG + HZ)) |
+{ocgxo, U (B + H2") = 0 (H59) - 0 (H"))
— (g0, 322) .

By integration by parts, we have from estimate (78) that

(Beg(t, X)xo(t, x), 2g(t, x)) 2 = o(yzl([) ‘57)”2) (112)

From the estimate (110) and Cauchy—Schwarz inequality, we can obtain the following
estimate

(ous 0. U (25 + B3 ) =0 (HG) - U (1537))
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- ofet0 )
Then, to conclude the estimate of VI we just need to study the following term C(¢) :=

(e x0(r), UH) + HZD + g(1)) — UH" G + HYA")) . Since we have from
Taylor’s theorem that

U ( HY @, sz(:) + g(t)) _U ( Hfllfr()) + Hﬁz))
_ © (g0 4 g2 gt
Z v +Hy
k-1
from estimate (78), we can deduce using integration by parts that

g*!
C(t)+<X0(l)ax (Hfllitg +H(i21(’)) ZU(k)< HYD 4 xz(l)) - 1)')L2

= O(u(1)).

Since

_0( —V22(0)(32% )

oo+ ] xowna

we obtain that

k—1
Ca) = _<3 OO ZU(k) ( xl(t) xz(z)) g() )
R N (k — D2

)
, we deduce that

).

(114)

V2 (5%

+0( ! (g(t)H +eo
yz(t)

Also, from Lemma 6 and the fact that [|g(#) ]| S

S (0 _ g (g ® e v
(o0 . [0/ (H9Q) = U (H29 + 33 e ) , = 0(e7V%®

In conclusion, we obtain that
) =- /R o H (0 (B + A+ g) = 0 (HOG + ") ) dx
+ /Rafog{gU( "'(’)) g(t, x)dx + O(a(t)). (115)
So
— Lot BN (O (G + B+ 00) = U (HG + HZ") ) dx

| Hoa [
Jr 0x HXI(I)U (Hxl(t)) g(t,x)dx

[ Ho.1 |2

VI =

+ O(a(?)). (116)
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Step 6. (Sum of 7V, V1.) From the identities (107) and

(0. HG, 970 (1),2

1V = — 3
dHo1 |2
| L

we obtain that

10 (145) + 0 (5) & (et ). o)

L2
IV =-— .
|0 Ho.1 ][
(0260) = (0 (HAQ + HA" +5)) = U (B2 + HZ) ). an 1Y) |
o 2
|0 Ho.1 72

(117)

In conclusion, from the identity

[83 _ U ( Xl(t)> ]8X xl(t) =0
and by integration by parts, we have that
<U (Hxl(t)> + U ( x2(’)> U (Hfll(’lo) + H(;zl(t)) ax xl(t)>

[ Ho. |7

2

IV+VI =—

+0(a(t)).
From our previous results, we conclude that
I+11+111+1V+V+VI
(0 (H9) + 0 (Hg3) = 0 (H5G + ) L 0ch )

o Ho 7
+0(a(t)). (118)

L2

The conclusion of the lemma follows from estimate (118) with identity

AG@) = (U (Hor0) + 0 (H5$) = 0 (Horo+ H3)  0uH-10)

L’

which can be obtained from (21) by integration by parts with the fact that

(0 (Horo+ HGY) dnHor0+0:HGS) | =0,

Remark 9. Since, we know from Lemma 6 that

‘A(z(t)) +4eVEO| < 7(1)eVEO),
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and, by elementary calculus with change of variables, that |dxHo, || iz = ﬁ then

the estimates (76) and (77) obtained in Lemma 13 motivate us to study the following
ordinary differential equation

d(t) = 163/2e V240, (119)
Clearly, the solution of (119) satisfies the equation
d rd(1)?
—[L + 8e—ﬁd0>] —0. (120)
dtlL 4

As a consequence, it can be verified that if d(f9) > O for some #y € R, then there are
real constants v > 0, ¢ such that

18
a0 = (5 cosh (v2ur +¢)”) forall 1 € R. (121)

In conclusion, the solution of the equations
di (1) = —8/2e7 V2O,

(1) = 8+/2e VW),
dy(t) —di(t) =d(t) > 0,

are given by

dy(t) = a+bt + ﬁln (f—z cosh (ﬁut+c)2), (122)
di(t) =a+bt — ﬁln (f—z cosh (ﬁvt+c)2), (123)

for a, b real constants. So, we now are motivated to study how close the modulation
parameters x1, xp of Theorem 11 can be to functions d;, d> satisfying, respectively the
identities (123) and (122) for constants v #~ 0, a, b, c.

At first view, the statement of the Lemma 13 seems too complex and unnecessary
for use and that a simplified version should be more useful for our objectives. However,
we will show later that for a suitable choice of y depending on the energy excess of
the solution ¢ (#), we can get a high precision in the approximation of the modulation
parameters x1, x2 by smooth functions d;, d; satisfying (123) and (122) for a large time
interval.

4. Energy Estimate Method

Before applying Lemma 13, we need to construct a function F'(¢) to get better estimate
on the value of [|(g(?), 3;g(¢)) || g1 « 2 than that obtained in Theorem 11.

From now on, we consider ¢ (t) = Hp,1(x — x2(¢)) + H-1,0(x — x1(¢)) + g(¢, x),
with x1(¢), x2(¢) satisfying the orthogonality conditions of the Modulation Lemma and
X1, x2, (g(t), 0;g(¢)) and € > 0 satisfying all the properties of Theorem 11. Before we
enunciate the main theorem of this section, we consider the following notation

—_— —
(D2 Erorar (HGH" + HI)) 20, 80)
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/ 08,0 + g, 0%+ U (A" () + B 00) g1, )7 dx.

We also denote w (¢, x) = a)(#‘éi)@)) for @ a smooth cut-off function with the image

contained in the interval [0, 1] and satisfying the following condition

1, if x
@) = {o, if x

We consider now the following function

IV IA
GBI

F@) =(D*Eygrar (3 + HYY) 80, 80 o, 0
2/ B,g(t)axg(t)[)'q(t)a)l(t,x)+5C2(t)(1 — w) (t,x))] dx
/ (U H D) + UHZ) = OHPD + B ) dx
fg(t)[ LOPO2HSY + 52 (002 H "2(”]dx

1
3 fR UDHZ + B g (t) dx. (124)

Since x, x» are functions of class C2, it is not difficult to verify that (g(¢), 0;g(¢))
solves the integral equation associated to the following partial differential equation

02g(t, x) — 82g(t, x) + U(Hyy" (x) + H* ) (x))g (2, x) (ID)
[0 0+ HYG @)+ g 0) = O @) + B 0)

— U (HGE 0+ B G 0o .0 |

+UH G 0)) + UH (0) = UHGE () + B (1)
— 510292 H ) () — 520702 Hy " (x)

+ 310 HY' (o) + 521 HEZ (x)

in the space H'(R) x L2(R).

Theorem 14. Assuming the hypotheses of Theorem 11 and recalling its notation, let §(t)
be the following quantity

5) = ng))’“ R ) |4 (f)| + max }xj(t)| ﬁsm))
7 (B0 e 7 0]

7 7
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Then, there exist positive constants A1, A>, Az such that the function F(t) satisfies the
inequalities

2
F+ A€ = 4 @[ < A38().

Remark 10. Theorems 11 and 14 imply

R

[F)] <

Proof. Since the formula defining function F'(¢) is very large, we decompose the function
in a sum of five terms Fy, F,, F3, F4 and Fs5. More specifically:

Fi(t) = /R g +0,g(0)? + U (Hfll(fo) + H(;ﬁzl(’)) e(t, x)% dx,

Fa(t) =— 2/ g0 [U (H9Q) + 0 (H3") = U (B3 + 1) ] ax,
F(t) = / g [£10202HY ) + 52007 H "] dx,

Fy(t) =2A 0 g (1)0xg (1) (X1 (N1 (1) +x2(1)(1 — w1 (1)) dx,

Fs(t) = % /R U (HA" + 1Y) g dx.

First, we prove that |F (t)‘ 4(t). The main idea of the proof of this item is to

estimate each derivative a{t( ), for 1 < j < 5, with an error of size O(3(¢)), then we
will check that the sum of these estimates are going to be a value of order O(5(t)),
which means that the main terms of the estimates of these derivatives cancel.
Step 1. (The derivative of Fi(¢).) By definition of F(t), we have that
dFi(1)
dt

= 2/ (afg(t,x) — 92g(t. x) + U(Hy " (x) + HY G (0))g 1, x)) dg(t, x)dx
R

—/xl(t)a Hx'(’)(x)UG)( HPO (x )+Hx1(’>(x)) o(r, x)% dx
R
- /R (1 HED U@ (H({Zl(f)(x) + Hj‘l(f(}(x)) ¢(t, x)2dx.

Moreover, from the identity (II) satisfied by g (¢, x), we can rewrite the value of == ar 1 (’)
as

dF(t .
1( ) / [U( x.(:)) <H(;C,21(t)) U (Hfllf%) + Hﬁ(z))] 8,0(1) dx

/]R A"+ B +g0) = U (HYQ + HE) | org 0 dx

+2/]R Hy" + H“‘”) g()d,g(t) dx
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—2/ [xl(t) OZHY) 4 da(0)02H, xZ(t)]atg(t)dx

R

+2 f [xl(t)a HY +5c'2(t)axH5f2l(’)]atg(z) dx

— / [xl(t)afogffgmz(t)a H"z(”]u@( x2<’>+HX1")) ¢(1)dx,
R

and, from the orthogonality conditions of the Modulation Lemma, we obtain

dFl(t)

Q‘

_» / U (1" + HY9) g (1 dx
R
2/[
R
+2/ [ xl(t) (H(izl([)> _U (Hfll(,t()) + Hézl(t)>] 9,g(t) dx
R
2/[
R

+2 fR F (0 (DdFHN) +Xz(t)xz(t)a)%H(izl(t)]g(t) dx

A+ B+ 90) = O (B9 + H3) Jong o) dx
311202 x'<’)+x2(r) 023" g 1) dx

/ 0 H ’”(’)+x2(t)a sz(o]U(s)( HEO 4 Hx1<t)> )2 dx.

which implies

dF1(l)

=2 i ( HR2O 4 Hf‘l(to)) ¢(1)d,2(t, x) dx

—2 /R [0 (H” + 55+ 50) = 0 (B + A Jorg ) dx
+2 /R 0 (H9) + 0 (HA") = O (H5Q + 3 ”) | g o) ax
. 2/R [xl (0202 HY ) + (1202 H ’”(”]atg(z) dx

_ / [X1(t)3 Hxl(t) +X2(l)axH(')le(t):|U(3> (ngl(l) + Hill(lo)) g(t)2 dx
R , , ,
+0 (8(1)). (125)

Step 2. (The derivative of F»(¢).) It is not difficult to verify that

4 () :2/ g0 (K)o HY Qi () dx

i
f (t)U( xz(f)) 0, H2D 52 (1) dox




1198 A. Moutinho
- ZAatg(t) [0 (149) + 0 (H3) = 0 (3 + 195)] dx
-2 U sz(t) Hxl(t) 9 Hxl(f) . 9 HXZ(I) : d
01 TH o X _1,0xl(t)+ x 11 x2(7) | g(@) dx.
R ,
From the definition of the function U, we can deduce that
U (HA" @)+ B 0) = U (HY @)
- 0(
U (HA" )+ B 0) = U (HA" @)

_ O(IHxl(t)( )H(’)ﬁzl(’)(X)‘ ‘Hxl(t)(x)) )

H\ G () Hy (x)‘ * ‘H(izl(t)(”’ )

therefore, we obtain from Lemma 6 and Cauchy—Schwarz inequality that
/ﬂé (0 (H3”) = 0 (H3® + H59) |0 HgZ g dx
—_—
g Hg(t) H e—ﬁz(f),
fR [0 (17%9) — 0 (3 + 179 |0 0 di

<[

sz(t)

In conclusion, we obtain from the identity satisfied by that

‘“;2:” = —Z/RBIg(t) [U( “(’)) + U( xz(“)] dx

/ dg(t, U ( HEO 4 H"“”) dx + 0(5(1)). (126)

Step 3. (The derivative of F3(¢).) From the definition of F3(¢), we obtain that

dFs(1)
dt

/ B8O HY\ ) + 52 (002 Hy ] dx
/g(l)[xl(t) 0; Hmt)+"‘2(I)33$H6‘,21(”]dx
/g(t)[xl(t)xl(t)a2 xl(')+X2(t)x2(t)82 xZ(’)]dx,

which can be rewritten as

dFs ® _
dt

/ 08010202 + (0202 H2 O] dx

/ g1 H ) + 20?0} HZ [ dx + 0(6(1)).  (127)
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Step 4. (Sum of 401 4B (4B |y 1f we sum the estimates (125), (126) and (127), we
obtain that

dF'l 7 X X
> dt(t) _2/ U( H" +H ‘(”)g(t)a,g(z)dx

i=1

—2 f [0 (Hg3O + B2 G+ 200) = O (HA" + BN Jong ) dx
_ / I:).Cl(t)ax xl(t) +x2(t)ax XZ(’):I U(3)< xZ(t)+Hxl(t)> (I)de
R

/g(t) [xl(t) 03 HY ) + 52(1*03 H, xz(’)] dx + 0(5(1)).

— 4
More precisely, from Taylor’s Expansion Theorem and since H g() H < 4(1),

; df;it(t) __ /]R[U(3) (sz(z) +Hx1(z)) g(®) ]a,g(t) dx

- /R L0100 G + i B [ U@ (O + H9G) g%
/g(t) [xl(t) 5 Hx‘(’)+xz(t)38$H&21(’)] dx+ 0. (128)

Step 5. (The derivative of Fy4(¢).) The computation of the derivative of F4(¢) will be more
careful since the motivation for the addition of this term is to cancel with the expression

_/ I:xl(t)ax xl(’)+x2(t)ax XZ(T):I U(3)< X2(t)+HX1(l)> (I)de
R

of (128). The construction of functional F4(t) is based on the momentum correction term
of Lemma 4.2 of [13]. To estimate dr. 4(’) with precision of O(§(¢)), it is just necessary
to study the time derivative of

Z/R3;g(t)3xg(t)f€1(t)w1(t)dx, (129)

since the estimate of the other term in F4(¢) is completely analogous. First, we have the
identity

d
P / g (081 o1 (1) dx| =210 / w11, X)3,g(1)dg (1) dx
t R R
+25,(1) / 011, 1) ¢ (1)dr g (1) dx
R
£25(0) /R B0 (1) g (135 (1) dx

+2x1(z)/ w1 (t, X)37  g(t, x) 3 g (t) dx.
R
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X=X (1) ), we have

x2(H)—x1() /°

X —x1(1) ) (—fcl(t)z(t) — (D (x — xl“”) . (130)
x2(t) — x1(2) 2(1)?

From the definition of w; (7, x) = o(

1 (1, x) = a)(

Since in the support of @(x) is contained in the set 3 <x< 3, we obtain the following
estimate:

. O] =12
2000) [ B wagmaen dr =0 ma FL@]") = 06,
R jel12) z(1)

(131)
Clearly, from integration by parts, we deduce that

% ()]
]e{l 2} z(t)

2400 [ o10% s @rg dr = 0 ( ol ) = 06).(132)

Also, we have
.. .. — |12
2x1(t)/ w1 (1)3,(1)9, 8 () dx = 0( max |¥;(0)] Hg(t)” ): 0(5(1)). (133)
R Jje{1,2}

So, to estimate the time derivative of (129) with precision O(§(¢)), it is enough to
estimate

2)&1(t)/1;a)1(t,x)8,2g(t,x)axg(t,x)dx.
We have that
2600 [ 01000050 dx =200 [ 0109 20s0)ds
—251(1) /R o1 (T (Hfll‘fg + H({Zl(’)) g(1)0xg(t) dx
£2010) [ 010 [0~ 260 g0 dx

+251(0) /R w1 (OT (Hfllf’g + H(;‘ﬁ(”) 2(1)dr (1) dx.
(134)

From integration by parts, the first term of right-hand side of Eq. (134) satisfies

2)€1(t)/a)l(t)azg(t)axg(t)dx= O | max 0]
R * jell2y z(1)

&) ) = 0(5(1)). (135)

From Taylor’s Expansion Theorem, we have that

. g/
”U (sz(z) N Hxl(t) +g(t)> Z v (H ( 204 f11(,to)> G-D!,,
e
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3
—0 <Hg(z)H ) . (136)

Also, we have verified the identity

4
U@)+U®) - Ug+0) = 24663 +6) — 6( 3 (j) #165),

j=1

which clearly implies with the inequalities (D1), (D2) and Lemma 6 the estimate

[0 () + 0 (H59) = 0 (13" + #9Q)| L =0 (e7VE0) . a37)

L2(R)

Finally, it is not difficult to verify that

H—xl(t) 02H Y — b2 ()22 + % (100, HY ) + $2(1) 9, H2O

L%(R)

=0 ( max |x,(r)} yjé,-(z);). (138)

Then, from estimates (136), (137) and (138) and the partial differential equation (II)
satisfied by g(¢, x), we can obtain the estimate

2600) [ 1) [0~ 0260+ 0 (0 + 153°) 2] g0 d
= —5,(1) / w1 (HU® (Hfll(fo) + H(;?l(’)) 2(1)20,2(t) dx
—21(1)° / 0T H Q0. g(1) dx — 21 (1)ia (1) / w1 (00 ", g (1) dx
200 [ @10 = DB Qarg ) dx+ 0 (Hg(r)H max, |fc,~(t>|>
i O% 0O e + e vZ=®
om0 6|+ s 1550 [ ).

which, by integration by parts and by Cauchy—Schwarz inequality using the estimate
(96) for w1, we obtain that

261(1) / w1(0) |07 — 03 + U (HG + B ) g(0)] drg(0) dx

x1(¢
_% 3( ) / w1 (HUW (Hfllsz) + H(;zlm) [ax HOO 5, Hﬁ(z)] 20 dx
R

o f oo o (g 0l |70

f()

+0 ( max |x (r)| ) +0@@)). (139)
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Now, to finish the estimate of 2x; (¢) fR wi(t, x)atzg(t, Xx)0xg(t, x)dx, it remains to
study the integral given by

— 2k () /R o100 (H90) + B3O (0) g0dgydx,  (140)
which by integration by parts is equal to
i) | orUS (BN + HPAD) 0, HY ) g (1) dx
1 e 1 1,0 0.1 xd1_1 08
+i1(0) /R o (U (Hfll(fg + H({Zf’)) 0 H Vg (> dx + 0((1)).  (141)

Since the support of w; (¢, x) is included in {x| (x — x2(¢)) < —Z(S—t)} and the support

of 1 — wi(¢, x) is included in {x| (x — x1(¢)) > %}, from the exponential decay
properties of the kink solutions in (D1), (D2), (D3), (D4) we obtain the estimates

ENG /R @10 = DUD (B + HA") o B Qg0 dx| = 06 @), (142)

(1) /R o1 (U (Hf'l(fo) + Hé‘ﬁ(’)) 0 H2 Vg0 dx| = 0(1),  (143)

1,
‘gxlm /R (1 — o1 )UDEHNG + H D)o HY (g3 dr| = 06(1)),  (144)

%J'Cz(t) fR @ )U® (B0 + HZ ") o, Hyi Vg7 di| = 06, (145)
In conclusion, we obtain that the estimates (142), (143) imply the following estimate
—241(1) /R w1 (¢, 0T (Hf'lf’g + H(;?l")) ¢(1)deg (1) dx
_ /R B H QU (H({Zl(’) + Hfll(fo)) e dx +0(B@1).  (146)
Then, the estimates (134), (139), (144), (145) and (146) imply that

2% </R 0:g(1)dxg (1) x1 () w1 (1) dx)
= —2%(0)° /R 02H\ ) oxg (1) dx

+ % /R u® (Hfgfg + H(;?](”) (xl (z)afollffO)) g(1)® dx

+ /R (xl(r)ax Hf'lf’o)) UDHZD + HY g (1) dx + 0(5(1)).

By an analogous argument, we deduce that

d
2_d (/ 3rg(t)3xg(t)5€2(t)(1—wl(t))dX)
t \Jr
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= 25,() / HE 0, g(1) dx
X (t
+x23( ) / U@ ( HAO szm) 0 H2O g1 dx
/ xz(t)ax XZ(T)U(?)) ( XZ([) +Hx1(t)) g(t)Z dx
R
+06(1)).

In conclusion, we have that

dFy(t)
dt

:f [xl(t)a HAY + 35(1), sz(’)] UW( xz(’)+Hx1(’)) e dx
R
200" [ RHE s dx =200 [ 9HYGogw) d
1
+ /R §U<4) (Hf'l(fo) + H({21<’)) [x (1)3, H) +x2(t)axH({21(’)] ¢() dx
+0B)). (147)

Step 6. (The derivative of F5(¢).) We have that

dFs(t)

- = f u® (Hfllfg) + Hg?l(”) 8(1%0,g(1) dx
R
1
-3 / U (HG + HA") [ 0a BN + 200 BB g0)? dx.
R

(148)

Step 7. (Conclusion of estimate of |F(t)]) From the identities (147) and (148), we obtain
that

dFy(1) N dFs(t)
dt dt

- / (0 HY U ( HR2O 4 HX‘(')) e dx
R
/ 20 HEOUD (HRO + B ) g0 dx
—2%1(1)? / 02H 0,8 () dx — 2i2(1)° /R 02Hy "0, g (1) dx
+ fR u® (Hfllf’g + H&Zf”) g(O)2,g(t)dx + OB(1)).  (149)
Then, the sum of identities (128) and (149) implies Zl 1 dF (l) = 0(§(t)), this finishes
the proof of inequality |F (t)| = 0(@(1)).

Proof of F(¢) + Ale2 > A262. The Coercivity Lemma implies that 3¢ > 0, such that
o2
Fi(t) >c H g(@) H . Also, from Theorem 11, we have the global estimate

max &5 (07 + | (0)] + e VED + Hg?BHZ = 0(e), (150)
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which implies that |F3(r)| = O(Hgﬁ’)w e), \Fa(t)] = 0(”%“26%), \Fs(t)| =

H 2 L .
O( Hg(t) ” 62>. Also, since

‘U( xlm(x)) ( XZ(t)(x)> . ( X2(t)( )+Hx1(t)(x)>‘
_ 0(‘ Xl(l)( )H&z](t)( )[ xz(t)( HHXI(I)(X)]D

Lemma 6 and Cauchy—Schwarz inequality imply that
R0 = 0( )] /%),

2
Then, the conclusion of F (1) + Aje? > A H gz)) ” follows from Young inequality
for € small enough. O

Remark 11. In the proof of Theorem 14, from Theorem 11 we have |F>(2)| + |F3(t)| =

— A —> 12 1
) (Hg(t)H e) Since |F4(t)| +|Fs5(1)| = O (Hg(t)” 62>
Young inequality implies that

2
, then

ol < 5@+

Remark 12. (General Energy Estimate) For any 0 < 0, y < 1, we can create a smooth
cut-off function 0 < x(x) < 1 such that

) = 0, ifx <6 —vy),
XY= 01 irx > 0.

We define

B x —x1(t)
w0t =x <X2(l) —xl(t)) |

If we consider the following function

_ —>
L(t) = <D2Emtal(H()){,21(t) + Hfll(,g)g(t)’ g(t)>L2xL2

2/R3t8(t)3xg(t)[5€1(t)xo(t) +x2(t) (1 — XO(I))]dX

=2 o0 (0 (153) 0 (5) =0 (4 043))
/g(l‘)l:xl(t) 32 xl(t)+x2(t) 9 sz(t)] dx

1

Z 3) ((gr® x1(t) 3

+3/léU (H2 +[‘Il )g([)dx

then, by a similar proof to the Theorem 14, we obtain that if 0 < € « 1 and

1) = 8(0)+ max [0 max(e™ =00, o=VEON) [oG
Jeul,
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. L =
— max &)’ e T (1)

) (151)
Je(1.2}

then there are positive constants Aj, Az > 0 such that

L) = 081(1)), L(t) + Are” > Are™.

Our first application of Theorem 14 is to estimate the size of the remainder H g—(ts H during

a long time interval. More precisely, this corresponds to the following theorem, which
is a weaker version of Theorem 2.

Theorem 15. There is § > 0, such that if 0 < € < 6, (¢(0), 0:¢(0)) € S x L%*(R) and
Eto1al (#(0), 0:¢(0)) = 2E o (Ho,1) + €, then there exist x1, X2 € CZ(R) such that the
unique solution of (1) is given, for any t € R, by

¢(t) = Ho,1 (x —x2(2)) + H-1 0(x — x1 (1)) + g(1), (152)
with g(t) satisfying orthogonality conditions of the Modulation Lemma and

[, e[, e (end) Jew(S51). asy
SN gype = § H'x L2 enE °xp 111% ’

forallt € R.

Proof of Theorem 15. In notation of Theorem 14, from Theorem 14 and Remark 11,
there are uniform positive constants A, A; such that for all # > 0

A Hg?SHZ < F)+ A€ < C( Hg?ﬁ”zuz) (154)

From now on, we denote G (t) := F(t) + A (6 In %)2 . From the inequality (154) and
Remark 10, there is a constant C > 0 such that, for all r > 0, G(t) satisfies

' 1
G(t) <G(0)+C (/ G(s)e—zlds> .
0 lng

1
In conclusion, from Gronwall Lemma, we obtain that G(¢) < G(0) exp (Clg 2]’ ) for

all + > 0. Then, from the definition of G and inequality (154), we verify the inequality
(153) for any + > 0. The proof of inequality (153) for the case t < 0 is completely
analogous. O

5. Global Dynamics of Modulation Parameters

Lemma 16. In notation of Theorem 2, 3C > 0, such that if the hypotheses of Theo-

rem 2 are true, then for gﬁ)) = (g(0, x), 0;g(0, x)) we have that there are functions
p1(t), p2(t) € CI(REO), such that for j € {1, 2} and any t > 0, we have:

1
— 1\ 1 2Ce1t
v . _ . < _ 5
550 = p; 0 5 ([s@) L +em=)eexp( 1 ). s
(|50, .t emd)” et
. 2t
pi(0) — (—1)784/2eVED| < HxL exp( - ) (156)
lnln; lng
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Proof. In the notation of Lemma 13, we consider the functions p;(¢) for j € {1, 2} and
we consider 6 = 1:_;, the value of y will be chosen later. From Lemma 13, we have
that

1
yz(t)

+ max |x;(z t)e
je{1’2}| NOIKG!

I ms o o] « [« )

—v2z(1)

0 = ps0)] 5 [1+

We recall from Theorem 11 the estimates max je(1, 2 |4 (1)| = O(e?), eV =
O(¢€). From Theorem 15, we have that

7] = (J#] e oo ()

ne

N .
Hg(O) H+e In 2
elnl

€

To simplify our computations, we denote co = . Then, we obtain for any

je{l, 2}andall t > 0O that

. 1 3 1 Cert
|Xj() —pj®)| S| 1+ : coezln—exp( : )
yIng € In 2

1 1N /2Cert
w1 — (coeln—> ep () (s
'}/h‘l; € lng

Y
Since e~ V220 < €, wededuce fore « 1 thatz(¢)eVZ® <e ln% < TTv é
Then, for any > 0, we obtain from the same estimates and the definition (75) of «(#)
that
21-y)

1
1\2 1 k 1oy Cezt
a(t)gc(z)(eln—) [max ( ) +62£i|exp<2 El )
€ ke(l,2) \yz(t) lnE
1+=5—=

v 1 Ce%t 1 6% €y
+co|€” @21In—|exp (—1> 1+ + 7|+ .
€ In ¢ yz@)  (yz(@)) 2Dy

(158)

However, if y In % < 1landz(0) = 1n é which is possible, then the right-hand side

1
of inequality (158) is greater than or equivalent to (e In %)2 while 0 <t < lnf . But,
€2

In

it is not difficult to verify for y =

In

1
]nl < that the right-hand side of inequality (158) is

smaller than (e In %)2 .
Therefore, from now on, we are going to study the right-hand side of (158) for

L_ <y < 1.Since we know that In (é) < z(r) from Theorem 11, the inequality (158)

In(1)
implies for m(;l) <y < landt > 0 that

a(t)Sﬂ(t%:(coelné)Z[ 11+6§_;:|exp<2C6%1t>

yln-=
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2(1—y)
v 1 Ce2t € v
+coe” 22 In— exp( i ) + 1
€ In - yInz
= B1(t) + B2(¢) + B3(t), respectively. (159)

1
For € > 0 small enough, it is not difficult to verify that if 83(t) > B (¢), theny > h;rlln <.

1
€

1
, , we obtain from the following estimate

Bs(0) 626% €? SInIné €? <1 1)2—1/
3(1) = > ——ex =—(In- ,
ylné lné P 2—vy ln% €

1

(eln(€) % (el
that B3() > Wlfy < T , then =

2
1
nl
HEB < Bi(t) forany t > 0.

2
) < B(t) when t > 0, so we choose

In conclusion, for any case we have that

Inln =
y = I: lf As a consequence, there exists a constant C; > 0 such that, forany € R,
€

N | —

) (e In

o) = Cicp Inln

) 2ceh
exp (T ). (160)

lnz

So, the estimates (157), (160), Remark 9 and our choice of y imply the inequalities (155)
and (156). |

Remark 13. If ——» ( ) Hg(O) H for a constant m > 0, then, for y = 8, we have from

Lemma 13 that there is p(r) € C%(R) satisfying for all r > 0

2() — p(0)] S €2 (161)
|z
p(1) — 1682 VED| < SO (162)

Then, for the smooth real function d(¢) satisfying
d(t) = 16v/2¢V210_(d(0), d(0)) = (z(0). 2(0)),
and since ¢~ V20 <, 1né < z(¢), we can deduce for any ¢ > 0 that Y (¢) = (z(r) —

d(t)) satisfies the following integral inequality for a constant K > 0

g(0)
YY) < K 6 t+ H H —t +/ / e|Y(sp)| dsids | = A (Y] (1),

Y(0) =0, Y(0)=0.
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Indeed, for any k € Nand all 7 > 0, |Y(r)] < A® (|Y]) (r). We also can verify for
any 7 > 0 that A® (]Y]) (¢) is a Cauchy sequence in the Banach space L*° [0, T']. In

conclusion, we can deduce for any r > 0 that |V (¢)| < Q(IK%), where Q(7) is the
solution of the following integral equation

)
L P
Ini 0 Jo '

By standard ordinary differential equation techniques, we deduce for any ¢ > 0 that

o) = e

2(t) = d(1)] S QUK ?) = Hg(O) H Hg(o) H K
2 € ln 2
~[s@] | [s®@ H S Tl H
2 € ln = € ln =
(163)
and from z(0) = d (0) and the estimates (161) and (162), we obtain that
2(0) =d(1)] S 1p(0) = 2(0)] + /0 e es) — (o)l ds, (164)
from which with (163) we obtain for all # > 0 that
20 -] 5 K el |50 + Hg(o) H (165)

However, the precision of the estimates (163) and (165) is very bad when e_% < t,
which motivate us to apply Lemma 13 to estimate the modulation parameters x (), x2(t)

€2

Remark 14. We recall from Theorem 4 the definitions of the functions di(¢), d»(t). If

Hg(O) H )5, then, using estimates

jmax |dj(t) x; ()| = O(min(elt], €2 t]), max, |d (1) — ()| = O(elt),

we deduce for a positive constant C large enough the inequalities (10) and (11) of
Theorem 4.

Remark 15. If

Hg(O) ” (in 6)5’

the estimates of max je(1,2) |x;(t) —d;(t)|, max (1,2 |, (t) — d;(#)| can be done by
studying separated cases depending on the initial data z(0), z(0).
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—
Lemma 17. 3K > 0 such thatif” 20) H <

2 G

1
(161)5’ Where g(o) = (g(ov-x)a a[g(os )C)) )

and all the hypotheses of Theorem 4 are true and 61 < V220 < €, then we have

(m Z)8 ~

fort > 0 that

2
max(”g%)) ,eln%) (ln%)6 Kelt
jgg?,xﬁ |xj(t) _dj(t)’ =0 elnln% exp( In = ) '
(166)
6 1
_ . — 1\2 (Inl) Ke2t
jg}?’xz} |xj(t) —dj(t)} =0 (max ( Hg(O)) ,€ln Z) E% lnln% exp( hlé ) .
(167)

Proof of Lemma 17. First, in notation of Lemma 16, we consider
p(t):=p2(t) — p1(®), 2(t) :=x2(t) — x1 (1), 2(1) :=x2(2) — X1 (2).

Also, motivated by Remark 9, we consider the smooth function d(¢) solution of the
following ordinary differential equation

c'l.(t) — 16\/§efx/§d(t),
(d(0), d(0)) = (2(0), 2(0)).

Step 1. (Estimate of z(¢), z(¢)) From now on, we denote the functions W () = z(t) —
d(t), V(t) = p(t) —d(t). Then, Lemma 16 implies that W, V satisfy for any t € Rx>g
the following differential estimates

IN 1 /2Ces
,elnf)EZexp< 1 ) ,
€ lng

W@ty — V)| =0 (max ( HgWS

max(”gws €ln l)2 2C %t
V(t)+16ﬁe—ﬁd<’>—mfze—fzw)‘:o D ¢ exp( 161 )
nin < ng

From the above estimates and Taylor’s Expansion Theorem, we deduce for > 0 the
following system of differential equations, while |W (z)| < 1 :

I\ 1 [2Cedt
,eln—>ezexp< ] )),
€ In

W) =V)+ o(max ( Hg—((%

V) =—32eV24OW (1) 1+ 0 (e*ﬁd“)W(t)z)

— 1 2
max (Hg(O) ,€ln g> ZCE%I
+0 i exp( 7 )
lnln; ln;

(168)
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Recalling Remark 9, we have that

d(t) = % cosh (v2vt + c)2>, (169)

1
ElII(v

where v > 0 and ¢ € R are chosen such that (d(0), d(0)) = (z(0), z(0)). Moreover, it
is not difficult to verify that

(Z(O) + 80— 2 z(O)) , ¢ = arctanh ‘O I
4 [32¢V%0 + 2(0)%]

Moreover, since 8¢=V2:0) = 2 gech (¢)? < 4v?e~ 2l we obtain from the hypothesis

l
for e=V22(0) that ——; I <v< ¢? and as a consequence the estimate |¢| < In (ln( ).
In ¢

Also, it is not dlfﬁcult to verify that the functions
n(t) = (v/2vt + ¢) tanh (v/2vt + ¢) — 1, m(¢) = tanh (v2vt + ¢)
generate all solutions of the following ordinary differential equation
§(t) = =320y (1), (170)

which is obtained from the linear part of the system (168).
To simplify our computations, we use the following notation

error((f) = max ( H(@H ,€ln %)e% exp (2511%)7
€

1 2 1
,€ln z) 2Cert
exp( )

1 1
Inln - lng

max
errory(t) = e_ﬁd(t)(z(t) — d(t))2 + ( H

From the variation of parameters technique for ordinary differential equations, we

can write that
[VVV((,[))} = c1(1) [%ﬂ roo) [28] , (171)

such that for any # > 0
m@) n@) | [0y [0Cerrori (1))
m@) @) || é@) |~ | Oterror(@)) |’

m©) n© | [a@] [ 0
i(0) 1(0) | [ 2(0) | ([Hg(O)H+eln ] i) :
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The presence of an error in the condition of the initial data c¢1(0), ¢2(0) comes from

estimate (155) of Lemma 16. Since for all t € R m(t)r'z(t) —m()n(t) = V/2v, we can

verify by Cramer’s rule and from the fact that —=—— 1 < v that

(ln g)
— 1 1\*
¢1(0) =0 max(( eln -) lc tanh (¢) — 1| <ln -) , (172)
€ €
c0)=0 (max (

A
eln( )) |tanh ()| <ln -) ) , (173)
€
and, for all # > 0, the estimates

1
1é1(5)] =0 (% ()] max (Hg_’

1) 2Ce%t
,€ln — exp( i )
€ ]ng

+0 (|n(t)|v sech (v2vi +¢)° |W(z)|2)

N 12 1
max(Hg ,eln;) 2Ceit
exp( ) ,

+0 | |n(t
In@)] vlnlné

(174)

é2(t)] = 0 (Im(t)l vsech (v2vi +¢)° |W(t)|2)

N 1\2 1
max(Hg ,elng) 2Ceit
exp (1)

+0 | |m(t
Im(®) v]nln%

+0 (max <Hg

Since we have for all x > 0 that

1 2Ce2
,€ln —) exp( 0 e )62 sech(x/_vt+c)2>. (175)
ni
€

h (x)? tanh h (x)?
A (_sech x| Stanh (o)) sech 007 | onh () sech (x)2
dx 2 2 2

_ lrtanh () — 1 sech (x)?  |n(x)|sech (x)?
- 2 - 2 E)

we deduce from the Fundamental Theorem of Calculus, the identity n(t) = (2vt +
T Sv S €? and the estimates (174), (175) that

1

1 1 2Cte2

,eln— ) {In- _—
en€><n€)exp( lné ))

5

1\2 (Inl
761n_> ( 6)1
€ elnln;

1

¢) tanh(+/2v7 + ¢) — 1, estimate —<—; 1
n

—_—
lc1(t) —c1(0)| =0 (max O

2C6%l‘ —
+0 (exp (577) Il o ma (|
€



1212

sech (x)zx

A. Moutinho

3tanh (x)

=

for any r > 0. From a similar argument,

je2(t) = 201 = 0 (IW O g0

+o(max(H@3)

+o<maX(Hm)

for any r > 0.
. 1
From the estimates v < €2, |¢| < In

1 1
W)l Loogo.r [e%t +Inln —] Inln- <1,
s € €

that

W )12 0,0y 1+ 10D S IW ) 10,1

V2vt+c
|

||W<s>||i§0[0,,]>, (176)

we deduce that

_tanh (x/zvt +c¢) — tanh (c)])
| 2Cert
,€ln —

Y] 22
,elné)(ln£>exp< )) (177)

2
thé—l
In >

In %, we obtain for € << 1 while ¢ > 0 and

(nf)’

1
elnln;

€

Also, from |n(1)| < (v/2v]t] + |c|), we deduce for any ¢ > 0 that

(0] < €2t +Inln

(178)
— 179
lnln% ( )

1 1 3

€

L (m _) exp [ 2 (180)

€ € ln;

In conclusion, the estimates (176), (177), (179), (180) and the definition of W (¢) =
z(t) — d(t) imply that while 7 > 0 and the condition (178) is true, then

max ( || g(0) ,eln% (ln%) 2C + et
WIS £ = ( 6H1n1n1> exp<( ;ll)e”) as1)

Then, from the expression for V (¢)

in the equation (171) and the estimates (176),

(177), (180), we obtain that if inequality (181) is true and ¢ > 0, then

In(H)° :
v mos ([ e (D) 2o (HE2)
€7 €XInln (1) In ¢
, 14 (n1)? (4C +3)es
0),eln— € . (182
e ([ @] ) e (T ) 09
which implies the following estimate
6 1
] N 1,2 (Inl) (4C +3)e2t
|W(t)|§max(ﬂg(0) ,elng) 1 1exp( A ) (183)

€Zlnln - In ¢
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1

— €2 . .
Indeed, from the bound Hg(O) H < —<£=—, we deduce that (178) is true if 0 <
(ln %)
[ln In %:| In % . .
t < =————. As a consequence, the estimates (181) and (183) are true if 0 < ¢ <
(4C+2)e2
[ln In %] In %
@C+2)e?

But, for + > 0, we have that
1 2t
| €
|W(t)|§e2t§3<ln—)exp ok
€ 31I1;

Since f(¢) defined in inequality (181) is strictly increasing and f(0) <

1
. 1 2t
W(t)| <et < 36% In — ) exp € .
~o € 3ln%

(184)
1

(ln é)zlnln é ’

there is an instant T); > 0 such that

1
exp (ﬂ) fTyy=—— (185)

1

In 2 ln% (Inln é)

from which with estimate (181) and condition (178) we deduce that (181) is true for

1
0 <t < Ty. Also, from the identity (185) and the fact that Hg—((T)H < €2 1 we deduce
(ln é)
1 1 (2C +2)e2 Ty
1 12 S 12 ;P 1 ’
In - (ln In g) (ln E) Inln 2 In <

Inln %(ln %)

from which we obtain that 7j; > (oS I for ¢ « 1. In conclusion, since f(¢)
2

€
is an increasing function, we have for t > T); and € < 1 that

[17(C+1)+4]e%z> 1 ([17(C+1)+1]e%t>
> exp
In

1 2 1
3In; %(lnln%) 3In:

1
(n 1) ar
- (lnlen l)2 o 3Inl )’
€ €

from which with the estimates (184) and (181) we deduce for all # > 0 that

f(t)exp (

N 2 p
max ( [g(0)],elnl (lnl) 8C +9)eit
Wl < ( f> Tooxp(E2) 0 ase)
elnlng lng

As consequence, we obtain from the estimates (172), (173), (176), (177) and (186)
that

. max ( |g(©0)[,emlnd) (Inl 1
o < (] | 1) (in) op (A€ HIBEHY o
€2Inln?! In 2
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forallt > 0.
Step 2. (Estimate of |x{(¢) + x2(¢)|, |X1(f) + X2(t)| .) First, we define

M (1) := (x1(t) + x2()) — (d1 (1) + d2(1)), N(t):= (p1(t) + pa(t)) — (d1 (1) + da(1)).
(188)

From the inequalities (155), (156) of Lemma 16, we obtain for all # > 0, respectively:

i~ 0o o [T e )t xp (S5,
IN®D| < maX(Hg(_O; €l é)z exp (2C61%t).

1
Inln - In <

Also, from inequality (155) and the fact that for j € {1, 2} d;(0) = x;(0), dj 0 =
%/(0), we deduce that M(0) = 0 and [N(0)| S max (| ¢(0)
the Fundamental Theorem of Calculus, we obtain for all # > 0 that

, €ln %) 6%. Then, from

N 2
maX(Hg(O) ,6lné> In { 4CeTt
N@) =0 - ] exp( ; ) , (189)
€2 lnln ¢ In 2
2
N , maX(Hé?(T) ,elné) (Inl)* 4Cert 190
1) = :
® elnln! eXp( In ¢ ) Y

In conclusion, for K = 16C +18, we verify from triangle inequality that the estimates
(186) and (190) imply (166) and the estimates (187) and (189) imply (167). |

Remark 16. The estimates (190) and (189) are true for any initial data éf(?) e H'(R) x
L%(R) such that the hypotheses of Theorem 4 are true.
Remark 17. (Similar Case) If we add the following conditions

1 2
2 1
e*ﬁl(o) < El 8,%,-%1)56%’_(111_) <c <0,
(ng)” (ng) €
to the hypotheses of Theorem 4, then, by repeating the above proof of Lemma 17, we
would still obtain for any # > 0 the estimates (174), (175), (176) and (177).
However, since now |c¢| < (1n é)z , if € <« 1 enough, we can verify while r > 0 and

€ €

1\? 1
W) 10,0 (&r + <1n -) )lnln— <1, (191)

that

1

WS g0, (1 + 10 OD S NW S zoeg0,07 ——»
s s Inln <
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which implies by a similar reasoning to the proof of Lemma 17 for a uniform constant
C > 1 and any ¢ € R the following estimates

AGINS max(‘

2
,elné) (ln%)7 Ceét)

ex = t,C), 192
prey p(lng fit.C) (192)

7 1

. 1,2 (Inl Cert
}W(t)|,§max(H_) ,eln—) (1 ) exp( < ):fz(t,C). (193)

€ eilnln% In 2

1

From the estimates (192), (193) and H 2(0) H =, we deduce that the condition

. Inln = <1n )
(191) holds while 0 < ¢t < ————*. Indeed, since ”g(O) H we can

- 4(c+1)ez

€
10 »
1
(m2)

Inln = (In
verify that there is an instant —(1) < Ty such that (191) and (192) are true for
4(C+1)e?

1
€2Ty 1
fl(TM,C)eXp<1 1 )Z 24l
ne (ln%) 2lnln%

In conclusion, we can repeat the argument in the proof of step 1 of Lemma 17 and
deduce that there is | < K < C + 1 such that forall 7 > 0

0<t<Tyand

W) S fit, K),

S 201, K). (194)

Lemma 18. In notation of Theorem 4, 3K > 1, § > O such thatif 0 <€ <4, 0 <v <
1 1

€2 2(0) = (g(0, x), 32(0, x)) and ”g(O) H —5, then we have for all t > 0
(1 *) (m)
that
H 2
max(H ,elné) 1\2 Kte%
max |d;(t) —x;()| =0 In — ex(—),
Jelt, 2}| @) ()| elnln% < 6) P ln%
(195)
—_ 2
) _ max ( H ,eln %) 1 Kte%
max_|d;(t) — % (1)| =0 : <ln -) exp (—1) . (196)
JE{1.2} €2 ln]n% € h’lg

Proof of Lemma 18. First, we recall that

1 8
dt) = ﬁ In (E cosh («/zvt + c)),

which implies that

v2 2
e~V — N — sech (\/Evt + c) . (197)
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We recall the notation W (¢) = z(¢) —d(t), V(t) = p(t) — d(t). From the first inequality
of Lemma 16, we have that

|V(0)|gmax<HgE3H,e1n%)e%. (198)

We already verified that W, V satisfy the following ordinary differential system

W0 =00 s[5 )l (7).
V() =—32e"V4OW () + 0 (e*ﬁ“”W(z)z) (199)

N 1\2 1
max(Hg(O)‘,eln ;) 2Ceit
+0 I exp( I )
lnlng lng

2

However, since v- <

61 <. we deduce from (197) that e V24" < 61 s for all
1 Ini

€ €

In

t > 0. So, while [|[W(s)|| 9, < 1, we have from the system of ordinary differential
equations above for some constant C > 0 independent of € that

— 2 1

. € max(”g(O)‘ ,elng) 2Cert

V()] S ——5 IWE) | oo + 1 Xp( : ),forallt >0,
1 Inln 2 n

€

from which we deduce the following estimate for any r > 0

(23
V@)=Vl =0 ( 8 ||W(S)||L°°[O,t]>
lng
H 2
max(Hg(O) ,eln %) ln% 2Ces s
+0 T N xp( T )
€2Inln - lng

In conclusion, while |W (s)|| L[o,;; < 1. we have that

—_ 2
] max(Hg(O) ,eln(é)) lné 2Ce%t
W] < 1VO)+0 : exp( )
i 1 Inl
€2 lnlné €
23
+0 T 1)8 W Loogo.r ] - (200)
0l

Finally, since W (0) = 0, the Fundamental Theorem of Calculus and (200) imply the
following estimate for all # > 0

max(Hm‘,Eln(%))zln(%)z 2Cert
IW©lx0 < VO 140 clnin () ()
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2
+0< ae. ||W<s>||Loow,,])- 201)
In (1)

Then, the estimates (198) and (201) imply if € < 1 that

N 2 5
max (|g@|.ein )" (in?) (2C +)ett
W)l S 1 exp ] . )
€lnln < In <
(ln é)lnlnel (lnel)lnlné
for0 <t < ~—+———. From (202) and (200), we deduce for 0 < t < ~—+—— that
(8C+4)e 2 (8C+4)e2
: max (| g . einl) (in1) QC + et
[W)| < 1 1 exp - . (203)
€2Inln < In -

Since |[W ()| < e%t, |W(t)‘ < et forall + > 0, we can verify by a similar argument
to the proof of Step 1 of Lemma 17 that for all # > O thereisaconstant 1 < K < (C+1)
such that

|W()|<max(”g(0) et o) (Keét) (204)

t €X s

~ elnlné P Ini

) max(”g(O) ,eln%) (ln%) Keit

W) < 1 exp< : ) (205)
eflnlné In 2

In conclusion, estimates (195) and (196) follow from Remark 16, inequalities (204),
(205) and triangle inequality. O

Remark 18. We recall the definition (169) of d(¢). It is not difficult to verify that if
— !
1 -

1 1
621 €2 < v and one of the following statements

(m2)" ()

1. e V2O <« —f—<andc >0,
(ln é)
2. e—V2(0) K —S—<andc < — (ln é)z

o)

In
were true, then we would have that e~V2d0) < ( 61)8 for0 <t < (
In 2 €

op—

)2

. Moreover,

Bl

assuming V20 (In %)8 < €, if ¢ > 0, then we have for all ¢ > 0 that

2 2
2
e VU = L gech (v2ut +¢)" < = sech ()2 = e VEO « <
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. 2. 1 .
otherwise if ¢ < — (ln é) ,since 0 < v < €2, then there is 1 < K such that for

2
K(Inl
0<t< ( 16) ,then2}\/§vt+c‘ > |¢|, and so

€2

2
e~V < v?sech (—E) < ;8
2 (In})

In conclusion, the result of Lemma 18 would be true for these two cases.

From the following inequality

oo |70

,eln%) < <lné> max(”g—((i)) ,6),

we deduce from Lemmas 17, 18 and Remarks 16, 17 and 18 the statement of Theorem
4,

6. Proof of Theorem 2

—
If H g(0) H >e€ln é, the result of Theorem 2 is a direct consequence of Theorem 15. So,

—9 1
from now on, we assume that H g0)| <eln.
We recall from Theorem 4 the notations v, ¢, di(t), d>(t) and we denote d(t) =
dy(t) — di(t) that satisfies
1
V2
From the definition of dy (¢), da(t), d(t), we know that max j¢(1, 2) |d] (t)| e V240

(0] <v2 sech (ﬁvt + c)2> and since z(0) = d(0), z(0) = d’(O), we have that v, c satisfy
the following identities

8 2
d(t) = In (ﬁ cosh («/Evt + c)2>, e*ﬁd(” = % sech (x/zvt + c)2.

. . 1 . .
b= (e—ﬁz(o> .\ (X2(0) —x1(0) )2> * o _ arctanh <X2(0) — i <0>)7
2 2v

so Theorem 11 implies that v < € 2,
From the Corollary 5 and the Theorem 4, we deduce that 3C > 0 such thatif e <« 1

(ln In é) In é
and 0 <t < ~————, then we have that
€2

. . 3 1\’ Cter
max [0 = o(jg}%} ld;j0])+o0 <e2 <ln g) exp ( i )) (206)

eVED = ¢=VHO 1 0 (max (7O, VEO) 12 — d(1))

1\’ /Cter
=V 40 (e <1n —) e (=) ) (207)
€ In <
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Next, we consider a smooth function 0 < x;(x) < 1 that satisfies

1, ifx <
_ ] = 30
1) = :o, ifx > 1.
‘We denote
x1(t)
a0 = o (2210
x2(1)

From Theorem 14 and Remark 12, the estimates (206) and (207) of the modulation
parameters imply that for the following function

L1t = (D? Errar (HA" + HYQ) 80, 80O 1212
+2 /R 008 ([£1()1a(1, ) +32(0) (1 = xa(0) | dx
= z/ g 0)(0 (HN9) + U (") = 0 (HA” + HYQ) ) dx
/ gt )1 020FHN Y + 520202 HyH " ()] dx
1
3 /R U (H(;?l(’) + Hf'lf’g) g(1)* dx,
and the following quantity 8 (#) denoted by

51(t) = Hg—(f)H( —V22(0) max x L5 0]+ may 1500

3 ,M>
je(1,2)

+ 5] max [0 [£0)| + Hﬁ”zma"jet’é; [£@)]
”g(I)H <max xJ(t) + max |xJ(t)|>+Hg—> 4’
je{l,2}

we have |I;1(t)} = 0(81(1)) for t > 0. Moreover, estimates (206), (207) and the bound
L1(t) = O(81(¢)) imply that for

2 1 9 Ct %
S (1) = Hg—(;)H v2e% sech (ﬁvt+c) + Hg—(;)H €? (ln —) exp( 61 )
€ h’l;
b8 [5] + mas B2 [+
€le
§ a2 18

. . (ln In é) In é
|ILi(t)| = 0(:1) if 0 <1 < ~—F—.
€2
Now, similarly to the proof of Theorem 15, we denote G(s) = max (‘ , e) .
From Theorem 14 and Remark 12, we have that there are positive constants K, k > 0
independent of € such that

k Hg—(tSHZ < Li(t)+ K.
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We recall that Theorem 11 implies that
1 2
1<_>< 0. —V2z(0) SONEIN 2] = 0(e),
n )~ z(1), e jleﬂ{?llé} |x/( )| jlel{lixz} |x/( )| = 0(e)

from which with the definition of G (s) and estimates (206) and (207) we deduce that
8 () < G(r)v” sech (\/Evt +c) €2+ G(t)e0 +G(t) 1—1
n =

€

Inlnl)inl
while 0 <t < %

€2
In conclusion, the Fundamental Theorem of Calculus implies that 3K > 0 indepen-
dent of € such that

, %
G’ <k (GO + / G(s)v2sech(~/§vs+c>2€%+G<S)€%+G(S)21e_lds ’
0 e

(208)

Inlni)nl
while 0 <t < %
€2

Since %[tanh («/ivt +0)] = V/2v sech (ﬁvt + c)2, we verify that while the term
G (s)v? sech (v/2v1 + c)ze% is dominant in the integral of the estimate (208), then G (t) <
1

€2
In(l
Inln1)nl
integral of (208) from an instant 0 < #y < % Similarly to the proof of 15, we
€

Inlni)nl 1
have for fg < < % that G(1) < G (10) exp (c("h’l#)
€ €
. . (]n In %) In %
In conclusion, in any case we have for 0 < ¢t < ~——~—— that
€

G (0). The remaining case corresponds when G(s)? is the dominant term in the

[S]

[S]

[S]

1
Gr) £ GO exp (€57). 209)

€

Inln
But, for 7 > (—1 and K > 2 we have that

1 1T 2KerT
e\ln—Jexp| K— | =€exp| ——
€ In 2 In >

In conclusion, from the result of Theorem 15, we can exchange the constant C > 0 by
a larger constant such that estimate (209) is true for all # > 0.
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Appendix A Auxiliary Results

We start the Appendix Section by presenting the following lemma:

Lemma 19. With the same hypothesis as in Theorem 4 and using its notation, we have

while max je(1,2) |dj(t) —xj(t)‘ < 1 that max je(1,2) ‘dj(t) —5C'j(t)| = O(maxje{l,z}

[dj0) = x;0)] € + ez 4 g0 7).
Lemma 20. For U(¢) = ¢*(1 — ¢>)2, we have that

U( X1(t)( )+Hx2(t>(x)) ( xl(f)(x)> ( Xz(t)( ))

o o xl(t)( ) . xz(t)( )
= e :
(1 4 e=2V2G=x10))3 (] 4 2V2E—x2(0))3
xl(t) 3 x2() 3
0 () Hy7 (%)
e~ VED 0.1 +r(t, x),

+
(1 +e—2f G=x10)) 3 (1 4 €2V2@—x2(0))7

such that ||lr ()| 2w = 0(6—2«52(!))_

Proof. By direct computations, we verify that
. x1(1) x2(t) . x1(t) x2(1)
O (9 + H3") = 0 (H99) = 0 (H53")
x1(1) pyx2(1) x1(1) x2(1)
= —24H\ g Hy ) (H—II,O + Hy )
43050 20 [( Hf‘1(3)3 . ( Hérzl(r))q

2
x1(1) 77x2(1) x1(t) x2(t)
+60 (B9 G HA ) [H0 G+ A"
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First, from the definition of Hp ;(x), we verify that

0672\/§z(1) H(;Ql(t)

2
60 (Hxl(t)HXZ([)) I:Hxl(l) + HXZ(I)] —
—1,077°0.1 —10 70,1 (1+ezﬁ(x—xz<z>))(1+e—2ﬁ(x—x1(z)>)
—zfz(t)H)m(t)

(1 re- 2f(x —x1M)(1 +ezf(x )

Using (4), we can verify using by induction for any k € N that
dk e2ﬁx dk

A P [ Ho.1 ()]
dxk (1 4 €2V2x) 'd g [Aor

Hoa() _ V™
(1+e2V2x) (1+62V2r)3
that 60(Hxl(t)Hx2(t)) (Hfll(to) + ngl(t)) is in H*(R) and it satisfies for all k > 0 the
following estimate ’ ’

=0(),

ar_ 1 ‘
dx* |:(1 +€2ﬁx):|
(A1)

and since is a Schwartz function, we deduce using Lemma 6

k
H 38 i ( HOO HEOR A sz(t))] 0 (e—Zﬁz(t)). (A2)
X
Next, using the identity
—V2z(1)
e
HY Q0 H Y () = - . (A3

(1 + V20— 1 (] 4 e~2V20—x1(0)) 3
the identity

1 e2V2x

1— = :
(1+e2VI)s (1 4e2V2)7 4 (1 +2V2x)

and Lemma 6, we deduce that

Xl(t)
24(Hf11(f()))2H(i21(1) +24e—ﬁz(t) S 5 — ( —2fz(t))’
(1+ e—ZI(X—M(l)))z 12
(A4)
x1(1) 3
3O(Hf'1(t0))4H(')le(I) +30e— V20 ( (HZ} (X)) | ) -0 (673\/510)) )
' ’ (1 + e=2V2(—x1(0)) 3 12
(A5)

2 4
The estimate of the remaining terms —24Hf'1(‘2 (H(’)C 2](r)> . 30Hf'1<‘2 (H(’)C z](t)> is
completely analogous to (A4) and (A5) respectively. In conclusion, all of the estimates
above imply the estimate stated in the Lemma 20. O
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Proof of Lemma 19. First, we recall the global estimate e~V < €. We also recall
the identity (33)

fR (8(Ho,1(x))* — 6(Ho,1(x))%)e V2 dx = 2V2,

which, by integration by parts, implies that

H, H Ho,1(x))*9 H
24 Hot @0 Ho1 () 3 (Ho 1 G0 Hoa() (AG)
R (1 + e2V2())3 (1 +€2V2())2

We recall di(¢), dy(t) defined in (8) and (9) respectively and d(¢) = da(t) — d; ().

Since dj(1) = (—1)78+/2e V24 for j € {1, 2}, we have d(1) = 165/2¢ V24,
which implies clearly with the identities

1
L2 22

thatd (1) H dx Ho 1 || iz = (=1)/ 4e~V24() We also recall the partial differential equation
satisfied by the remainder g(, x) (II), which can be rewritten as

U( Xz(t)( )+ Hxl(t)(x)) _ U( xl(')(x)) ( Xz(t)(x)> — ()0, H X2(t)(x)

- ( (1, x) — 92g(t, x)+U( HyX" (x )+H’”U)(x)) g(t, x))

2
XH0,1‘

k—1
*) xm) o) 8O 2s0 x1(t>
+§ u® () + H3 )—(k_l)! 10292 HY Y (x)

— (002 HY" () + F1(0d. HY) (). (A7)
Furthermore, from the estimate (A6), Lemma 20 and Lemma 6, we obtain that
(0 (B0 + H3”) = 0 (H25) = 0 (B33 013"
. 2 . -
=¥2(t) |0xHo,1|| ;2 — Gi2(t) — da (1)) || 0x Ho,1 ”Lz
+0(15 0] ze %)

L2

+0(e fw),?}?xz i (0) = d; 0] + e VEO0) ). (A8)

We recall from the proof of Theorem 14 the following estimate

‘/R[U "2")(x)) ( xz(”(x)+Hx'(’)(x))]axH({zl")(x)g(t,x)dx
- of |75

Also, from the Modulation Lemma, we have that

(78(0). 9 H ") 2 = © . 0053 2] + 20 (1500, 0, H)
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dr. '
= [xz(t)(g(t), a’%Hﬁ(Z))LZ] +X%2(1)(0:8(t), 0x H&zl(z))Lz
= Xa2()(g(1), 8§H(i21(t)>L2 +2%2(1) (8,8 (1), Oy H())C,zl(t))Lz
— (0 (g(1), 3] HY") 1.

In conclusion, since 9y H(izl(t) € ker D?E o (H&zl(t)) and e~V = (€%> , We
obtain from (AS8) and (A7) that

|52(6) — da(1)| = O(jg{lfcz} |dj (1) = x;(0)] € + ex(t)eVED & Hg_(rS H e%),
the estimate of |5c'1 (1) — dy (t)| is completely analogous, which finishes the proof of
Lemma 19. |
Lemma 21. For any § > 0 there is a €(8) > 0 such that if
|6 (x) — Ho1(x) || ;1 < +00, 0 < Epos (¢ (x)) — Epos(Ho1) < €(8),  (A9)
then there is a real number y such that
|#(x) — Ho.1(x — y)|| ;1 < 6.

Proof of Lemma 21. The proof of Lemma 21 will follow by a contradiction argument.
We assume the existence of a sequence of real functions (¢, (x)),, satisfying

lim Epol(¢n) = Epot(HO,l)s (AlO)
n—+o0
| (x) = Ho 1 (x) | 1 <+ 00, (Al1)
such that
lim inf ||¢,(x) — Ho1(x +y)| ;1 > O. (A12)
n—+00 yeR

First, the condition (A10) and the fact that limg_, 1o U (¢) = +00 imply the existence
of a positive constant ¢, which satisfies ||¢,||; < cifn > 1.

Next, since U(¢) = ¢*(1 — ¢*)? and |E pos (¢n) — Epor (Ho,1)| < 1for 1 < n, itis
not difficult to verify from the definition of the potential energy functional E ,,, that if
1 « n, then

dg (x) |°
“¢n(x) - l||%2({x|¢n(x)>l}) + H dx

f, iEpot(¢n) - Epot(H0,1)| .
L2({x|¢pn (x)>1})

By an analogous argument, we can verify that

N dg(x)
({x]=1 <pp(x)<0)) dx

S| Epor (@) = Epor(Ho )|
and if there is xg € R such that ¢, (xg) < — 1 we would obtain that

/+°° 1d¢n(x)*
v 2 dx

2

¢ I,

L2({x|— 1 < (x) <0}

+U(¢n(x)) dx

0
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e [ (|dnt0
2 Jx dx

dx

+00 d " 2
- / \/2U(¢n<x))' fn(r) —¢2U<¢n(x>)> dx
X0 0

1 0
> / V2U (@) d¢ = Epoi(Ho) + / V20U $)d9 > Epor(Ho,1),
2 )

which contradicts (A10) if n > 1. Thus, if we consider the following function

@n(x) = min (max (¢, (x), 0), 1),

which satisfies E or (9n) > Epor (Ho,1) and

dgn(x) %, if0 < ¢, (x) <1,
dx 0, for almost every x € R satisfying either ¢, (x) < 0 or ¢, (x) > 1,

we can deduce with the estimates above and inequality lim sup,,_, , o, [¢nll ~ < c that
if n > 1, then

lpn (X) = @n ()17 +

’

deu(x) don(x) 2
dx N dx ’LZ 5 |EP0[ (¢n) - EPO[ (HO,I)

’Epat (Pn) — Epat (@n)’ S |Eput (Pn) — Eput (H0,1)| .

Consequently, using triangle inequality and conditions (A10), (A12), we would obtain
that

i inf | @n(x) = Ho1(x + 9)| ;1 > 0.
In conclusion, we can restrict the proof to the case where 0 < ¢, (x) <l andn > 1.
Now, from the density of H 2(R) in H'(R), we can also restrict the contradiction
d¢

hypotheses to the situation where </ (x) is a continuous function for all n € N. Also,

we have that if |¢(x) — Ho,1(x)| ;1 < +00, then E o (¢(x)) = Epos(Ho,1(x)). In
conclusion, there is a sequence of positive numbers (€,),, such that
Epot(¢n) = Epot(HO,l) +é€,, lim e, =0.
n—+00
Also, Ty¢(x) = ¢(x — y) satisfies £,y (¢ (x)) = Epor(ty¢p(x)) for any y € R. In
conclusion, since for all n € N, limy_, 400 ¢, (x) = 1 and limy— _ ¢, (x) = 0, we can
restrict to the case where

1
¢ (0) = —,
n \/E
foralln € N.
Next, we consider the notations (v); = max(v,0) and (v)_ = — (v — (v)4+) . Since
% is a continuous function on x, we deduce that (%) and (%) are also
" _

continuous functions on x for all n € N. In conclusion, for any n € N, we have that the
set

(A13)

U= {x € R d‘p’ix) < o}
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is an enumerable union of disjoint open intervals (ax n, bk n)keN, Which are bounded,
since limy 400 @5 (x) = 1, limy— o ¢ (x) =0and 0 < ¢, (x) < 1.

Now, let E be a set of disjoint open bounded intervals (%; ,,l; ,) C R satisfying the
conditions

&n(hin) = ¢nlin), (Al4)
and {i| (hjn,lin) € E} =1 C Z.Forany i € I, the following function

Pn(x)ifx < hi,n:
Pn(x +li,n - hi,n) ifx > hi,n,

fin(x) = {

satisfies E po; (Ho,1) < Epor(fi,n) < Epot($n) = Epor(Hop,1) + €,, which implies that

/l'%" 1d¢y(x)?
h

2 dx +U(pn(x)) < €.

in

Furthermore, we can deduce from Lebesgue’s dominated convergence theorem that

> / 1d¢”(x) FU@n () < e, (A15)

iel

for every finite or enumerable collection E of disjoint open bounded intervals (h; ,, [; ) C
R, i € I C Z such that ¢,,(h; ,) = ¢n(l;.n). In conclusion, we can deduce from (A15)

that
2
/ (d¢"(x)> dx < 2e,, (A16)
R dx ) _

and so for 1 <« n we have that

H dgn(x) 'dd)n (x)

=< 8en, ¢n(0) = = (AL7)

dx L2 - \/z

Moreover, we can verify that

depn
pm(qsn):—[f (‘ fnx)
R

from which we deduce with lim,_, o ¢, (x) = 0 and lim,_, ;o ¢, (x) = 1 that

don 2 1
Epuz(H0,1)+€n2§|: /R (‘ ‘f’d;x) \/2U(¢>n(x)>> dx]+ fo J2U @) do

_1 ‘dqbn(x)
2 /]R( dx |

Then, from estimate (A17), we have that

dﬁ;x) VZU@n () + 1a(x), $n(0) = (AI8)

— V2U (¢p(x)) ) dx:|+[,/2U(¢,, ' ¢"()

2
2U(¢>n(X))) dX] + Epot (Ho,1)-

&
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with [, 17, < €, forall 1 < n.
We recall that U(¢) = ¢>(1 — ¢2)? is a Lipschitz function in the set {¢|0 < ¢ <
1}. Then, because Hp 1(x) is the unique solution of the following ordinary differential

equation

W) _ Auee,

dx
¢(0) = 1
V2
we deduce from Gronwall Lemma that for any K > 0 we have
: . don(x) .
1 — H, 0 =0, 1 — H, =0.
n—1>I-POO ”¢n ()C) 0.1 (X) HL [=K.K] n—1>I-II—IOO ” dx 0.1 (x) L2[—-K.,K]
(A19)
2
Also, if 1 <« n, then H % 2 < 2Epo(Hp,1) + 1, and so we obtain from Cauchy-
Schwarz inequality that
L déen|? 1
|fpn(x) = Gu (W] = [x — yI2 p <Ml|x—y|2, (A20)
X |12

for a constant M > 0. The inequality (A20) implies that for any 1 > » > 0O there is a
number i (w) € N such that if n > h(w) then

[60C) = Ho ()| ooy 1 pypy < @ (A21)

otherwise we would obtain that there are 0 < 6 < ‘—11, a subsequence (my),cN and a
sequence of real numbers (x;),en With lim,_, yoo m,, = +00, |x,| > n + 1 such that

|@m, (xn) — 1| > O if x, > 0, (A22)
|§m,, (xn)| > 0 if x, < 0. (A23)
However, since we are considering ¢, (x) € C l(]R) and 0 < ¢, < 1, we would obtain

from the intermediate value theorem that there would exist a sequence (y,), with y, >
Xp >n+1lory, <x, <—n—1such that

1 =0 < m,(yn) <1406, if y, >0, (A24)
®m, (yn) = 0 otherwise. (A25)

But, estimates (A20), (A24), (A25) and identity U (¢) = ¢ (1 — ¢?)* would imply that
1< f U(¢m, (x)) dx foralln > 1, (A26)
|x|>n—-2

and because of estimate (A19) and the following identity

L
lim 51‘10,1(36)2 +U(Hp,1(x)) = Epor (Ho,1(x)), (A27)

K—+00 J_g
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estimate (A26) would imply that limy,— yo00 E por (¢m,) > E por (Hop,1) which contradicts
our hypotheses.

In conclusion, for any 1 > @ > 0 there is a number /(w) such that if n > h(w) then
(A21) holds. So we deduce for any 0 < w < 1 that there is a number %1 (w) such that

if n > hi(w), then |¢,(x) — Ho,1(x)| < w forall x € R. (A28)

Then, if v < ﬁ, n > h(w) and K > 200, estimates (A28) and (A19) imply that

+00 2 +00 2
f U@y + 230075 o 1 / (1= g2+ 222907 40 (a29)
2 2 dx

K dx K
—K 1d 2 1 —K d 2
/ Ulgnay) + 22000075 1 / fu? + 20 (A30)
o0 2 dx 2 J_x dx
In conclusion, from estimates (A28), (A29), (A30) and
1.
lim —Ho 1 (x)? + U (Hp,1(x))dx =0,
K—+00 Ix|>K 2

we obtain that lim,,_, ;o ||¢,, (x) — Ho.1(x) || 12 = 0 and, from the initial value problem

(A18) satisfied for each ¢,,, we conclude that lim,—, 1~ H ‘Zi(x) — I-'Io,l(x) H b= 0.In

X
conclusion, inequality (A12) is false. O

From Lemma 21, we obtain the following corollary:

Corollary 22. For any § > O there exists €g > 0 such that if 0 < € < €,
| (x) — Ho,1(x) = H_1,0(x)|| ;;i < +00 and E o1 (¢p) = 2E pos (Ho,1) + €, then there
exist xp, x1 € R such that

¢(x) — Ho.1(x — x2) + H_1 0(x —x1)| ;1 < 6. (A31)

k]

o | =

X2 — X1 =

Proof of Corollary 22. First, from a similar reasoning to the proof of Lemma 21 we can
assume by density that % € H!(R). Next, from hypothesis
||¢>(x) — Hp,1(x) — H_1,0(x)HH.(R) < +o00o, we deduce using the intermediate value
theorem that there is a y € R such that ¢(y) = 0. Now, we consider the functions

o) ifx <y,
¢- () = {O otherwise,
and
_ 0 ifx <y,
9+ (0) = {¢>(x) otherwise.

Clearly, ¢ (x) = ¢_(x) forx < yand ¢ (x) = ¢;(x) forx > y.Fromidentity U (0) = 0,
we deduce that

Epot (¢) = Epot (p-) + Epot (@+),
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also, we have that

Epot(H—l,O) < Epot(d’—)s Epot(HO,l) < Epot(¢+)-

In conclusion, since E o (¢) = 2E po; (Ho,1) +€, Lemma 21 implies thatif e < €9 < 1,
then there exist x, x; € R such that

|6 (x) = Ho1(x — x2) — H_1 0(x —x1)| s
< ¢+ — Hoi(x = x2) | jo + |6— — Horo(x —x1) ||y €™

So, to finish the proof of Corollary 22, we need only to verify that we have x, — x| > %
if 0 < ¢p < 1. But, we recall that Hp 1(0) = [,
deduce that

4
)

< 5. (A32)

from which with estimate (A32) we

| <8 o+
—| 30, _ xl JR—
V2 V2
soif ¢g <« 1, then x; < y < xp. Using the fact that U is a smooth function, Lemma
10 and identity (35), we can verify the existence of a constant C > 0 satisfying the
following inequality

|DE por (Ho,1 (x — x2) + H_y0(x —x1) +u) (V)| < C llv]l g .

b4 (x2) — <3, (A33)

forany u, v e H I(R) such that |ju|| gt < 1. Therefore, using estimate (A32) and the
Fundamental Theorem of Calculus, we deduce that if 0 < €y < 1, then

| E por (¢) — Epor (Ho1(x — x2) + H_1 0(x — x1))| < e 2V (A34)

Furthermore, since the function A(z) = Epo (HS 1)+ H_l’o(x)) is a continuous

function on Rxo and A(z) > 2E o (Ho,1) for any z > 0, we have for any k > 0 that
there exists §; > 0 satisfying

sup A(z) > 2Epo; (Ho,1) + Sk
{z€[0,k1}

In conclusion, we obtain from Lemma 7 and the estimate (A34) that x; — x; > % if
0<e K 1lande < ¢. |

Now, we complement our manuscript by presenting the proof of identity (33).
Proof of Identity (33). From the definition of the function Hy 1 (x), we have

8 24/2x 2 44/2x
f (8(Ho.1(x))® — 6(Ho.1 (x)°)e V2 dx = f ST
R R (1+e2V20)3

by the change of variable y(x) = (1 + 22 ), we obtain

f (S(Ho,l(X))3 — 6(Ho1(x))°)e ™V dx

/ 2(y -0,
2f

1 3 1 |00
y,= ——(—4y~1 —4y~2)| =22
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Appendix B Proof of Theorem 3

Proof of Theorem 3. We use the notations of Theorems 2 and 4. Clearly, if the result of
Theorem 3 is false, then by contradiction for any N >> 1 the inequality

7] <

1
& =T if e < 1 enough.
2
From Modulation Lemma, we can Edenote the solution ¢ (¢, x) as
ot x) = H Q00 + H " (x) + g2, x),
such that
(g(t, x), aH () 2 = 0, (g(t,x), 3 HyZ" (0)) 2 =

Also, for all # > 0, we have that g(z, x) has a unique representation as

g(t,x) = Prt)d2HY ) (x) + Pan)d2 Hy " (x) + 7 (1, x), (B36)
such that r(¢) satisfies the following new orthogonality conditions
<I"([) 32 X1(1)> — 0 (I"(t) 82 X2(f)>L2 =0. (B37)

In conclusion, we deduce that

2 Ho, 1” (PZ+ PR + ()2, +2P P, (32H5<I’), azH,1,0>L2.

(B38)

We recall from Theorem 11 that % lné < z(¢) for all + > 0. Since, from Lemma

6, we have that <32 HYO, 92H, xz“)>L2 < 2e VED and (e VED < eln L if

0 < € <« 1, we deduce from the Eq. (B38) that there is a uniform constant K > 1 such
that for all # > 0 we have the following estimate

_”g(;g”ﬁ < PO+ [Pa0] + Ir ]2 = K 20 (B39)

From Theorem 11 and the orthogonality conditions (B37), we deduce that
1
(ar @), 21330 | =ia (r), 03HE") | = 0(Ir@)l2 €?)),
(B,r(t), aﬁf‘ff&) _xz(z‘)<r(l‘) 0> H xl(“) = 0(||r(t)|ILze%).
In conclusion, estimate (B39) and Lemma 6 imply that there is a K > 1 such that
. . E—
|PL0)] + [0+ i 0] < K | 50 (B40)

for all # > 0. Finally, Minkowski inequality and estimate (B39) imply that there is a
uniform constant K > 1 such that

181, )l 2 < K 80 (B41)
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We recall from Theorem 12 the following estimate
€ — 2
== 6@+ 0102 + 5202+ VED < ke (B42)

for some uniform constant K > 1. Now, from hypothesis (B35), we obtain from Theorem
4 and Corollary 5 that there are constants M € N and C > 0 such that for all # > 0 the
following inequalities are true

i) — d; ()] = (1 1>M+1 <1oc€it) (B43)
max ([Xx; —daj € n-— €X s

jeltzy ™ 7= P Pt

max |%;(1) — d;(t)] <63<1n1>Mex <10c€%t) (B44)
jett2y e ) 7P 1n§ ’

s/ 1 10Ce31

max |xJ(t)—d(t)|<62 In - exp( : ) (B45)
jeti2 e in (1)

for a uniform constant C > 0.
From the partial differential equation (1) satisfied by ¢ (¢, x) and the representation
(B36) of g(¢, x), we deduce in the distributional sense that for any #(x) € H L(R) that

<h(x>, (Pr(0) + 210D HA G + (Pa(0) + 52(0)D] H521(1)>
_ (h(x), P1(t)[( — 82 + U(Hxl(t)))a ! m]),;
_ <h(x), Pz(t)[( — 92+ U(H’“z")))82 xz(f):I>L2

_ <h(x), [afr(t) — 02r () + U(HZ" + Hf'lf’g)r(t)])

L2

— (ne), [0 + BN + 0N — o D)) |
+ (o). 5100 B @)+ 00 B )
= {ne). PO + 11 - D)ozt () |

- <h(X), Pz(t)[(l'f' (H " + B ) — U Hé‘ﬁ(’))) 92K xzm]>

o <||h||L2 [Ilg(t)ll L+ max |x,(t)|])

<||h||L2 [ max |P (t)x](t)| + max |P (t)| «/fz(t)i|)

+0 (ij(t)jéj(t)y + ‘Pj(t)icj(t)z‘) : (B46)

L2

From Lemma 20 and estimates (B43) and (B45), we obtain from (B46) that

<h(x), (P (1) +)'61(t)2)83Hf11(f0) +(Py(t) + %2(1) )32 xz(l)>

L2

— (e P (= a2+ D)) |
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— (heor, P [ (= 02+ G ™) a2
a <h(x)’ [8,2r(t) = r()+ U(H())C,zl(t) + Hf]l(,t(;)r(t)])u

o (”””m Jmax [0 = dj o) +eﬁd<z>D

o <||h||L2 [Iz(t) —d@®)] V220 +e*2ﬁz(t)i|)

L2

[ 2 .
+0 (IIhlle _Ilg(t)llﬂl * max, |Xj(t)|])

0 (||h||L2 _jg}%xz} | P (1)x;(1)] +j1€1?%x2} |P; ()] eVED |Pj(z)5ej(r)|D

+0 (llhlle

Py (0)3;1)?)) (B47)

From the condition (B37), we deduce that

dr. :
(2ro. a2mg3?) L = 7 [0 (ro, 22530+ o (aro, 07 G30) .

5

d
(o7r. 972G = = [0 (ro. 9717 G) |+ (@, o3HG)
which imply with Theorem 11 the existence of a uniform constant C > 0 such that

ol ol
(B48)

(o2r), a2m3?) | =< ce?

<a2r(t) 82 Xl(t)> 2’ S CE%

. — —
From (B39), (B40) and (B41), we obtain that Hr(t) H < H ) H .

In conclusion, after we apply the partial differential equation (B47) in the distributional
sense to aZH“(’) 92H™\"), the estimates (B39), (B40), (B41), (B43), (B45) and (B48)

imply that there is a uniform constant K; > 0 such that if € <« 1 enough, then for

1
j € {1, 2} we have that for 0 < ¢ < Nln g

1
€2

. N\ 10Cert
‘P](t)+x1(t)2‘ < Kl ef\/zd(l) +E% (1n —) exp< 61 )+i ,
€ ]nE N

1
from which we deduce forall0 <t < N In < that

€2

2 M+1 1
. 1 10Ce31
3 B0+ < 2K (fﬁd(l) +ed (m —> exp (1—61> + %) .
€

j=1 ne
(B49)

Since [ 3231 Bj()| = —|321 B0+ (02| + X311 %07, we deduce from the
estimates (B49) and (B42) that

> 70|z - [0 ]
j=1
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1\ M+! 10Ce21 2K
— 2K, [e“fzd(’) te <ln —) exp( 61 )] _2Rie
€ lng N

(B50)

We recall that from the statement of Theorem 4 that e~ V24() — % sech (ﬁvt + 0)2,
1

withv = (#+8€_\f22(0)) *, which implies thatv < €7 . Since we have verified in The-

orem 11 thate V% < ¢, the mean value theorem implies that [e =220 — ¢=v2d(®)
O(e |z(t) — d(1)]), from which we deduce from (B43) that

M 10Ce:s
— 2 _
_O<e (lné) exp( ~ ) .

€

‘e—ﬁz(t) _ V2

1
In conclusion, if € < 1 enough, we obtain for 0 < ¢ < &,(6) from (B50) that
€

[}

> Fo) = = [em0 ]
j=1

VAR 10Ce? ¢ 2K
— 4K [e_“/id(’) +e (= exp( ¢ )] — 16.
€ ln% N

(B51)
The conclusion of the demonstration will follow from studying separate cases in the

choice of v > 0, ¢. We also observe that K, K| are uniform constants and the value of
N e N, can be chosen at the beginning of the proof to be as much large as we need.

Case 1. (v2 < (IMSW.) From inequality (B51), we deduce that
2 M+1 1
. € —> 2 3 1 10Ce2t 2K €
‘;:1 (1) Y g() i€ (In2 exp Il N

1
then, from (B35) we deduce for0 <t < In  that if € is small enoughand N > 10K K7,
€2

then ’Z?:l ﬁj(t)‘ > &, and so,

2 2
. et .
;ij > e~ [ 2 PO,

Jj=1

which contradicts the fact that (B40) and (B35) should be true for ¢ < 1.
Case 2. (v > (HfW, lc] > 2In (%).) It is not difficult to verify that for 0 <

. Inl 2 .
t < mln(zjcflzv, Nn—g), we have that e—V24® < % sech (%)2 < €3. Therefore, if N >
€
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10K K and e > 0is small enough, estimate (B51) would imply that ‘Z 1 P (t)‘ i<

1
is true in this time interval. Also, since now v = €2, we have that

1
Ing e

6% ~ 2\/51) '
so we obtain a contradiction by a similar argument to the Case 1.
(1+41<1)2 K3yl

Case 3. (v2 >mand|c|<2ln JFor N >» landty = ——————=<, we
€2

2(1+4K1)7K7\/§1n%
1

2
that e—v2d4(® < ‘g sech
€2

have during the time interval {7 <t <

12< 5 €
(211’12) € andﬁ<20—,(

ﬁ is true in this time interval. From the Fundamental Calculus Theorem, we have that

Z Pi(t)| > Z P (10)| -

In conclusion, estimate (B50) implies that ‘Z =1 P; (t)‘ >

11 !
In conclusion, hypothesis (B35) and estimate (B40) imply for 7 = ZM

and N > 1 that

(S

€

2 1 1 1
) €2(1+2K)2+/2Int
S pymy| > CUFRIVEIN G
j=1 8K 2
which contradicts the fact that (B35) and (B40) should be true, which finishes our
proof. O
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