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Abstract: Weconsider the nonlinearwave equationknownas theφ6 model in dimension
1+1. We describe the long-time behavior of this model’s solutions close to a sum of
two kinks with energy slightly larger than twice the minimum energy of non-constant
stationary solutions. We prove orbital stability of two moving kinks. We show for low

energy excess ε that these solutions can be described for a long time of order− ln (ε)ε− 1
2

as the sumof twomoving kinks such that each kink’s center is close to an explicit function
which is a solution of an ordinary differential system. We give an optimal estimate in
the energy norm of the remainder and we prove that this estimate is achieved during a

finite instant t of order − ln (ε)ε− 1
2 .

1. Introduction

1.1. Background. We consider a nonlinear wave equation known as the φ6 model. For
the potential function U (φ) = φ2(1 − φ2)2 and U̇ (φ) = 2φ − 8φ3 + 6φ5, the equation
is written as

∂2t φ(t, x) − ∂2xφ(t, x) + U̇ (φ(t, x)) = 0, (t, x) ∈ R × R. (1)

The potential energy Epot , the kinetic energy Ekin and total energy Etotal associated to
the Eq. (1) are given by

Epot (φ(t)) = 1

2

∫
R

∂xφ(t, x)2 dx +
∫
R

φ(t, x)2(1 − φ(t, x)2)2 dx,

Ekin(φ(t)) = 1

2

∫
R

∂tφ(t, x)2 dx,

Etotal(φ(t), ∂tφ(t)) = 1

2

∫
R

[
∂xφ(t, x)2 + ∂tφ(t, x)2

]
dx

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-023-04668-y&domain=pdf
http://orcid.org/0000-0003-2841-8444


1164 A. Moutinho

+
∫
R

φ(t, x)2(1 − φ(t, x)2)2 dx .

The vacuum setV of the potential functionU is the setU−1{0} = {0, 1,−1}.We say that
if a solution φ(t, x) of the integral equation associated to (1) has Etotal(φ, ∂tφ) < +∞,

then it is in the energy space. The solutions of (1) in the energy space have constant total
energy Etotal(φ(t), ∂tφ(t)).

From standard energy estimate techniques, the Cauchy Problem associated to (1) is
locally well-posed in the energy space. Moreover, if Etotal(φ(0), ∂tφ(0)) = E0 < +∞,

then there exists M(E0) > 0 such that ‖φ(0, x)‖L∞(R) < M(E0), otherwise the facts
thatU ∈ C∞(R) and limφ→±∞ U (φ) = +∞would imply that

∫
R
U (φ(0, x)) dx > E0.

Therefore, similarly to the proof ofTheorem6.1 from thebook [27] of Shatah andStruwe,
we can verify that the partial differential equation (1) is globally well-posed in the energy
space since U is a Lipschitz function when restricted to the space of real functions φ

satisfying ‖φ‖L∞(R) < K0 for some positive number K0.

The stationary solutions of (1) are the critical points of the potential energy. The
unique constant solutions of (1) in the energy space are the functions φ ≡ v, for any
v ∈ V. The only non-constant stationary solutions of (1) with finite total energy are the
topological solitons called kinks and anti-kinks, for more details see chapter 5 of [19].
Each topological soliton H connects different numbers v1, v2 ∈ V, more precisely,

lim
x→−∞ H(x) = v1, lim

x→+∞ H(x) = v2, V ∩ {H(x)| x ∈ R} = ∅.

The kinks of (1) are given by

H0,1(x − a) = e
√
2(x−a)

(1 + e2
√
2(x−a))

1
2

, H−1,0(x − a) = −H0,1(−x + a),

for any real a. The anti-kinks of (1) are given by −H0,1(x − a), H0,1(−x + a) for any
a ∈ R.

In the article [21], for the φ6 model, Manton did approximate computations to verify
that the force between two static kinks is repulsive and the force between a kink and
anti-kink is attractive. Furthermore, it was also obtained by approximate computations
in [21] that the force of interaction between two topological solitons of the φ6 model
has an exponential decay with the distance between the solitons.

The study of kink and multi-kinks solutions of nonlinear wave equations has appli-
cations in many domains of mathematical physics. More precisely, the model (1) that
we study has applications in condensed matter physics [2] and cosmology [9,12,31].

It is well known that the set of solutions in energy space of (1) for any potential U is
invariant under space translation, time translation, and space reflection. Moreover, if H
is a stationary solution of (1) and −1 < v < 1, then the function

φ(t, x) = H

(
x − vt

(1 − v2)
1
2

)
,

which is denominated the Lorentz transformation of H, is also a solution of the partial
differential equation (1).

The problemof stability ofmulti-kinks is of great interest inmathematical physics, see
for example [6,8]. For the integrablemodelmKdV,Muñoz proved in [23] the H1 stability
and asymptotic stability of multi-kinks. However, for many non-integrable models such
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as the φ6 nonlinear wave equation, the asymptotic and long-time dynamics of multi-
kinks after the instant where the collision or interaction happens are still unknown, even
though there are numerical studies of kink-kink collision for the φ6 model, see [8], which
motivate our research on the topic of the description of long time behavior of a kink-kink
pair.

For one-dimensional nonlinear wave equation models, results of stability of a single
kink were obtained, for example, asymptotic stability under odd perturbations of a single
kink of φ4 model was proved in [16] and the study of the decay rate of this odd pertur-
bation during a long time was studied in [5]. Also, in [17], Martel, Muñoz, Kowalczyk,
and Van Den Bosch proved asymptotic stability of a single kink for a general class of
nonlinear wave equations, including the model which we study here.

The main purpose of our paper is to describe the long time behavior of solutions
φ(t, x) of (1) in the energy space such that

lim
x→+∞ φ(t, x) = 1,

lim
x→−∞ φ(t, x) = − 1,

with total energy equal to 2Epot (H01) + ε, for 0 < ε 
 1. More precisely, we proved
orbital stability for a sum of two moving kinks with total energy 2Epot (H0,1) + ε and
we verified that the remainder has a better estimate during a long time interval which
goes to R as ε → 0, indeed we proved that the estimate of the remainder during this
long time interval is optimal. Also, we prove that the dynamics of the kinks’ movement
is very close to two explicit functions d j : R → R defined in Theorem 4 during a long
time interval. This result is very important to understand the behavior of two kinks after
the instant of collision, which happens when the kinetic energy is minimal, indeed, our
main results Theorems 2 and 4 describe the dynamics of the kinks before and after the
collision instant for a long time interval. The numerical study of interaction and collision
between kinks for the φ6 model was done in [8], in which it was verified that the collision
of kinks is close to an elastic collision when the speed of each kink is low and smaller
than a critical speed vc.

For nonlinear wave equation models in dimension 2 + 1, there are similar results
obtained in the dynamics of topological multi-solitons. For the Higgs Model, there are
results in the description of the dynamics of multi-vortices in [28] obtained by Stuart
and in [11] obtained by Gustafson and Sigal. Indeed, we took inspiration from the proof
and statement of Theorem 2 of [11] to construct our main results. Also, in [29], Stuart
described the dynamics of monopole solutions for the Yang–Mills–Higgs equation. For
more references, see also [7,10,20,30].

In [1], Bethuel, Orlandi, and Smets described the asymptotic behavior of solutions
of a parabolic Ginzburg–Landau equation closed to multi-vortices in the initial instant.
For more references, see also [14,26].

There are also results in the dynamics of multi-vortices for nonlinear Schrödinger
equation, for example, the description of the dynamics of multi-vortices for the Gross–
Pitaevski equation was obtained in [24] by Ovchinnikov and Sigal and results in the
dynamics of vortices for the Ginzburg–Landau–Schrödinger equations were proved in
[4] by Colliander and Jerrard, see also [15] for more information about Gross–Pitaevski
equation.

1.2. Main results. We recall that the objective of this paper is to show orbital stability for
the solutions of the Eq. (1) which are close to a sum of two interacting kinks in an initial
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instant and estimate the size of the time interval where better stability properties hold.
The main techniques of the proof are modulation techniques adapted from [13,22,25]
and a refined energy estimate method to control the size of the remainder term.

Notation 1. For any D ⊂ R, any non-negative real function f : D ⊂ R → R, a real
function g with domain D is in O ( f (x)) if and only if there is a uniform constant
C > 0 such that 0 ≤ |g(x)| ≤ C f (x). We denote that two real non-negative functions
f, g : D ⊂ R → R≥0 satisfy

f � g,

if there is a constant C > 0 such that

f (x) ≤ Cg(x), for all x ∈ D.

If f � g and g � f, we denote that f ∼= g. We use the notation (x)+ := max(x, 0). If

g(t, x) ∈ C1(R, L2(R)) ∩ C(R, H1(R)), then we define
−−→
g(t) ∈ H1(R) × L2(R) by

−−→
g(t) = (g(t), ∂t g(t)),

and we also denote the energy norm of the remainder
−−→
g(t) as

∥∥∥−−→g(t)
∥∥∥ = ‖g(t)‖H1 + ‖∂t g(t)‖L2

to simplify our notation in the text, where the norms ‖·‖H1 , ‖·‖L2 are defined, respec-
tively,

‖ f1‖2H1 =
∫
R

d f1(x)

dx

2

+ f1(x)
2 dx, ‖ f2‖2L2 =

∫
R

f2(x)
2 dx,

for any f1 ∈ H1(R) and any f2 ∈ L2(R). Finally, we consider the hyperbolic functions
sech, cosh : R → R and we are going to use the following notations

cosh (x) = ex + e−x

2
, sech (x) = (cosh (x))−1 , for every x ∈ R.

Definition 1. We define S as the set g ∈ L∞(R) such that
∥∥g(x) − H0,1(x) − H−1,0(x)

∥∥
H1 < +∞.

From the observations made about the local well-posedness of partial differential
equation (1) in the energy space and, since 1, −1 are inV,we have that (1) is also locally
well-posed in the affine space S× L2(R). Motivated by the proof and computations that
we are going to present, we also consider:

Definition 2. We define for x1, x2 ∈ R

Hx2
0,1(x) := H0,1(x − x2) and Hx1−1,0(x) := H−1,0(x − x1),

and we say that x2 is the kink center of Hx2
0,1(x) and x1 is the kink center of Hx1−1,0(x).
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There are also non-stationary solutions (φ(t, x), ∂tφ(t, x)) of (1) with finite total
energy Etotal(φ(t), ∂tφ(t)) that satisfy for all t ∈ R

lim
x→+∞ φ(t, x) = 1, lim

x→−∞ φ(t, x) = 0. (2)

But, for any a ∈ R, the kinks H0,1(x − a) are the unique functions that minimize the
potential energy in the set of functions φ(x) satisfying condition (2), the proof of this fact
follows from the Bogomolny identity, see [19] or section 2 of [13]. By similar reasoning,
we can verify that all functions φ(x) ∈ S have Epot (φ) > 2Epot (H0,1).

Definition 3. We define the energy excess ε of a solution (φ(t), ∂tφ(t)) ∈ S × L2(R)

as the following value

ε = Etotal(φ(t), ∂tφ(t)) − 2Epot (H0,1).

We recall the notation (x)+ := max(x, 0). It’s not difficult to verify the following
inequalities

(D1)
∣∣H0,1(x)

∣∣ ≤ e−√
2(−x)+ ,

(D2)
∣∣H−1,0(x)

∣∣ ≤ e−√
2(x)+ ,

(D3)
∣∣Ḣ0,1(x)

∣∣ ≤ √
2e−√

2(−x)+ ,

(D4)
∣∣Ḣ−1,0(x)

∣∣ ≤ √
2e−√

2(x)+ .

Moreover, since

Ḧ0,1(x) = U̇ (H0,1(x)), (3)

we can verify by induction the following estimate
∣∣∣∣d

k H0,1(x)

dxk

∣∣∣∣ �k min
(
e−2

√
2x , e

√
2x
)

(4)

for all k ∈ N\{0}. The following result is crucial in the framework of this manuscript:

Lemma 1 (Modulation Lemma). There exist C0, δ0 > 0, such that if 0 < δ ≤ δ0, x1, x2
are real numbers with x2 − x1 ≥ 1

δ
and g ∈ H1(R) satisfies ‖g‖H1 ≤ δ, then for

φ(x) = H−1,0(x − x1) + H0,1(x − x2) + g(x), there exist unique y1, y2 such that for

g1(x) = φ(x) − H−1,0(x − y1) − H0,1(x − y2),

the four following statements are true

1 〈g1, ∂x H−1,0(x − y1)〉L2 = 0,
2 〈g1, ∂x H0,1(x − y2)〉L2 = 0,
3 ‖g1‖H1 ≤ C0δ,

4 |y2 − x2| + |y1 − x1| ≤ C0δ.

We will refer to the first and second statements as the orthogonality conditions of the
Modulation Lemma.

Proof. The proof follows from the implicit function theorem for Banach spaces. ��
Now, our main results are the following:
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Theorem 2. There exist C, δ0 > 0, such that if ε < δ0 and

(φ(0), ∂tφ(0)) ∈ S × L2(R)

with Etotal(φ(0), ∂tφ(0)) = 2Epot (H0,1)+ε, then there exist functions x1, x2 ∈ C2(R)

such that, for all t ∈ R, the unique global time solution φ(t, x) of (1) is given by

φ(t) = H0,1(x − x2(t)) + H−1,0(x − x1(t)) + g(t), (5)

with g(t) satisfying, for any t ∈ R, the orthogonality conditions of the Modulation
Lemma and

e−√
2(x2(t)−x1(t)) + max

j∈{1,2}
∣∣ẍ j (t)∣∣ + max

j∈{1,2} ẋ j (t)
2 +
∥∥∥−−→g(t)

∥∥∥2
H1×L2

≤ Cε. (6)

Furthermore, we have that

‖(g(t), ∂t g(t))‖2H1×L2 ≤ C min

(
ε,

[∥∥∥−−→g(0)
∥∥∥2 + ε2

]
exp

(Cε
1
2 |t |

ln 1
ε

))
for all t ∈ R.

(7)

Remark 1. In notation of the statement of Theorem 2, for any δ > 0, there exists K (δ) ∈
(0, 1) such that if 0 < ε < K (δ), Etotal(φ(0), ∂tφ(0)) = 2Epot (H0,1) + ε, then we
have that ‖(g(0), ∂t g(0))‖H1×L2 < δ and x2(0) − x1(0) > 1

δ
, for the proof see Lemma

21 and Corollary 22 in the Appendix Section A.

Theorem 3. In notation of Theorem 2, there exist constants δ, κ > 0 such that if 0 <

ε < δ, then ε
κ+1 ≤

∥∥∥−−→g(T )

∥∥∥ for some T ∈ R satisfying 0 ≤ T ≤ (κ + 1)
ln 1

ε

ε
1
2

.

Proof. See the Appendix Section B. ��
Remark 2. Theorem 3 implies that estimate (7) is relevant in a time interval (−T, T )

for a T > 0 of order −ε− 1
2 ln (ε). More precisely, for any function r : R+ → R+

with limh→0 r(h) = 0, there is a positive value δ(r) such that if 0 < ε < δ(r) and∥∥∥−−→g(0)
∥∥∥ ≤ r(ε)ε, then ε �

∥∥∥−−→g(t)
∥∥∥ for some 0 < t = O

(
ln 1

ε

ε
1
2

)
.

Remark 3. Theorem 3 also implies the existence of a δ0 > 0 such that if 0 < ε < δ0,

then, for any (φ(0, x), ∂tφ(0, x)) ∈ S × L2(R) with Etotal(φ(0), ∂tφ(0)) equals to

2Epot (H0,1) + ε, g(t, x) defined in identity (5) satisfies ε � lim sup
t→+∞

∥∥∥−−→g(t)
∥∥∥ , similarly

we have that ε � lim sup
t→−∞

∥∥∥−−→g(t)
∥∥∥ .

Theorem 4. Let φ satisfy the assumptions in Theorem 2 and x1, x2, and g be as in the
conclusion of this theorem. Let the functions d1, d2 be defined for any t ∈ R by

d1(t) = a + bt − 1

2
√
2
ln
( 8

v2
cosh

(√
2vt + c

)2)
, (8)

d2(t) = a + bt +
1

2
√
2
ln
( 8

v2
cosh

(√
2vt + c

)2)
, (9)
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where a, b, c ∈ R and v ∈ (0, 1) are the unique real values satisfying d j (0) =
x j (0), ḋ j (0) = ẋ j (0) for j ∈ {1, 2}. Let d(t) = d2(t) − d1(t), z(t) = x2(t) − x1(t).
Then, for all t ∈ R, we have

|z(t) − d(t)| ≤ C min(ε
1
2 |t |, εt2), |ż(t) − ḋ(t)| ≤ Cε|t |.

Furthermore, for any t ∈ R,

ε max
j∈{1, 2}

∣∣d j (t) − x j (t)
∣∣ = O

(
max

( ∥∥∥−−→g(0)
∥∥∥ , ε

)2 (
ln

1

ε

)11

exp

(
Cε

1
2 |t |

ln 1
ε

))
,

(10)

ε
1
2 max

j∈{1, 2}
∣∣ḋ j (t) − ẋ j (t)

∣∣ = O

(
max

( ∥∥∥−−→g(0)
∥∥∥ , ε

)2 (
ln

1

ε

)11

exp

(
Cε

1
2 |t |

ln 1
ε

))
.

(11)

Remark 4. If
∥∥∥−−→g(0)

∥∥∥ = O (ε) , then the estimates (10) and (11) imply that the functions

x j (t), ẋ j (t) are very close to d j (t), ḋ j (t) during a time interval of order − ln (ε)ε− 1
2 .

Remark 5. The proof of Theorems 2 and 4 for t ≤ 0 is analogous to the proof for t ≥ 0,
so we will only prove them for t ≥ 0.

Theorem 4 describes the repulsive behavior of the kinks.More precisely, if the kinetic
energy of the kinks and the energy norm of the remainder g are small enough in the initial

instant t = 0, then the kinks will move away with displacement z(t) ∼= ε
1
2 t + ln 1

ε
when

t > 0 is big enough belonging to a large time interval.
Furthermore, using Theorem 4, we can also deduce the following corollary.

Corollary 5. With the same hypotheses as in Theorem 4, we have that

max
j∈{1, 2}

∣∣d̈ j (t) − ẍ j (t)
∣∣ = O

(
max

( ∥∥∥−−→g(0)
∥∥∥ , ε

)
ε

1
2 exp

(Cε
1
2 |t |

ln 1
ε

))

+ O

(
max

( ∥∥∥−−→g(0)
∥∥∥ , ε

)2 (
ln

1

ε

)11

exp
(Cε

1
2 |t |

ln 1
ε

))
.

Proof of Corollary 5. It follows directly fromTheorem 4 and fromLemma 19 presented
in the Appendix Section A. ��

1.3. Resume of the proof. In this subsection, we present how the article is organized and
explain briefly the content of each section.
Section2. In this section,weproveorbital stability of a perturbationof a sumof twokinks.
Moreover, we prove that if the initial data (φ(0, x), ∂tφ(0, x)) satisfies the hypotheses
of Theorem 2, then there are real functions x1, x2 of class C2 such that for all t ≥ 0∥∥∥φ(t, x) − Hx2(t)

0,1 − Hx1(t)−1,0

∥∥∥
H1

� ε
1
2 ,∥∥∥∂t

(
φ(t, x) − Hx2(t)

0,1 − Hx1(t)−1,0

)∥∥∥
L2

� ε
1
2 .
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First, for every z > 0, we are going to demonstrate the following estimate

Epot
(
H0,1(x − z) + H−1,0(x)

) = 2Epot
(
H0,1

)
+ 2

√
2e−√

2z + O
(
(z + 1)e−2

√
2z
)

.

(12)

The proof of this inequality is similar to the demonstration of Lemma 2.7 of [13] and it
follows using the Fundamental Theorem of Calculus.

The proof of the orbital stability will follow from studying the expression

Epot (H
x2(t)
0,1 + Hx1(t)−1,0 + g) − Epot (H

x2(t)
0,1 + Hx1(t)−1,0 ),

using the fact that the kinks are critical points of Epot and the spectral properties of the
operator D2Epot

(
H0,1

)
, which is also non-negative. Moreover, from the modulation

lemma,wewill introduce the functions x2, x1 thatwill guarantee the following coercivity
property

∥∥∥−−→g(t)
∥∥∥2 � Epot (H

x2(t)
0,1 + Hx1(t)−1,0 + g) − Epot (H

x2(t)
0,1 + Hx1(t)−1,0 ).

Therefore, the estimate above and (12) will imply that

e−√
2(x2(t)−x1(t)) +

∥∥∥−−→g(t)
∥∥∥2 � ε. (13)

From the orthogonality conditions of the Modulation Lemma and standard ordinary
differential equation techniques, see Chapter 1 of [3], we also obtain uniform bounds for∥∥ẋ j (t)∥∥L∞(R)

,
∥∥ẍ j (t)∥∥L∞(R)

for j ∈ {1, 2}.More precisely, themodulation parameters
x1 and x2 are going to satisfying the following estimate

max
j∈{1,2}

∥∥ẋ j (t)∥∥2L∞(R)
+
∥∥ẍ j (t)∥∥L∞(R)

� ε. (14)

The main techniques of this section are an adaption of sections 2 and 3 of [13].
Section 3. In this section, we study the long-time behavior of ẋ j (t), x j (t) for j ∈ {1, 2}.
More precisely, we prove that the parameters x1 and x2 satisfy the following system of
differential inequalities

ẋ j (t) = p j (t) + O (ζ(t)) , (15)

ṗ j (t) = (−1) j+1
1∥∥Ḣ0,1
∥∥2
L2

d

dz

∣∣∣
z=x2(t)−x1(t)

Epot

(
Hz
0,1 + H−1,0

)
+ O (α(t)) , (16)

for j ∈ {1, 2}, where α(t), ζ(t) are non-negative functions depending only on the

functions
(
x j (t)

)
j∈{1,2} ,

(
ẋ j (t)

)
j∈{1,2} ,

∥∥∥−−→g(t)
∥∥∥ and satisfying

α(t) � ε

ln ln 1
ε

, ζ(t) � ε ln
1

ε
, for all t ∈ R, (17)

because of the estimates (13) and (14). However, the estimates (17) can be improved

during a large time interval if we could use the estimate (7) in the place of
∥∥∥−−→g(t)

∥∥∥ =
O(ε

1
2 ).
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Our proof of estimates (15), (16) is based on the proof of Lemma 3.5 from [13].
First, for each j ∈ {1, 2}, the estimate (15) is obtained from the time derivative of the
equations

〈
φ(t, x) − H−1,0(x − x1(t)) − H0,1 (x − x2(t)) , ∂x H0,1(x − x2(t))

〉
L2 = 0,〈

φ(t, x) − H−1,0(x − x1(t)) − H0,1 (x − x2(t)) , ∂x H−1,0(x − x1(t))
〉
L2 = 0,

which are the orthogonality conditions of the Modulation Lemma. Indeed, we are going
to obtain that

ẋ1(t) = −
〈
∂tφ(t, x), ∂x H

x1(t)−1,0 (x)
〉
L2∥∥∂x H0,1

∥∥2
L2

+ O (ζ(t)) ,

ẋ2(t) = −
〈
∂tφ(t, x), ∂x H

x2(t)
0,1 (x)

〉
L2∥∥∂x H0,1

∥∥2
L2

+ O (ζ(t)) .

Next, we are going to construct a smooth cut-off function 0 ≤ χ ≤ 1 satisfying

χ(x) =
{
1, if x ≤ θ(1 − γ ),

0, if x ≥ θ,

where 0 < γ, θ < 1 are parameters that will be chosen later with the objective of
minimizing the modulus of the time derivative of

p1(t) = −
〈
∂tφ(t), ∂x H

x1(t)−1,0 (x) + ∂x

(
χ
(

x−x1(t)
x2(t)−x1(t)

)
g(t)

)〉
L2∥∥∂x H0,1

∥∥2
L2

,

p2(t) = −
〈
∂tφ(t), ∂x H

x2(t)
0,1 (x) + ∂x

([
1 − χ

(
x−x1(t)

x2(t)−x1(t)

)]
g(t)

)〉
L2∥∥∂x H0,1

∥∥2
L2

,

fromwhichwith the second timederivative of the orthogonality conditions ofModulation
Lemma and the partial differential equation (1), we will deduce the estimate (16) for
j ∈ {1, 2}.
Section 4. In Section 4, we introduce a function F(t) with the objective of controlling∥∥∥−−→g(t)

∥∥∥ for a long time interval. More precisely, we show that the function F(t) satisfies

for a constant K > 0 the global estimate
∥∥∥−−→g(t)

∥∥∥2 � F(t)+K ε2 and we show that |Ḟ(t)|
is small enough for a long time interval. We start the function from the quadratic part of
the total energy of φ(t), more precisely with

D(t) = ‖∂t g(t, x)‖2L2 + ‖∂x g(t, x)‖2L2 +
∫
R

Ü (Hx2(t)
0,1 (x) + Hx1(t)−1,0 (x))g(t, x)2 dx .

However, we obtain that the terms of worst decay that appear in the computation of Ḋ(t)
are of the form ∫

R

[
∂t

(
g(t, x)k

)]
J (x1, x2, ẋ1, ẋ2, x) dx, (18)
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where k ∈ {1, 2, 3} and the function J satisfies for some l ∈ Q≥0 the following estimates

sup
t∈R

max
j∈{1,2}

∥∥∥∥ ∂

∂x j
J (x1(t), x2(t), ẋ1(t), ẋ2(t), x)

∥∥∥∥
L2

� εl ,

sup
t∈R

max
j∈{1,2}

∥∥∥∥ ∂

∂ ẋ j
J (x1(t), x2(t), ẋ1(t), ẋ2(t), x)

∥∥∥∥
L2

� εl−
1
2 ,

and

sup
t∈R

‖J (x1(t), x2(t), ẋ1(t), ẋ2(t), x)‖L2 � εl if k = 1, otherwise

sup
t∈R

‖J (x1(t), x2(t), ẋ1(t), ẋ2(t), x)‖L∞
x (R) � εl when k ∈ {2, 3}.

But, we can cancel these bad terms after we add to the function D(t) correction terms
of the form

−
∫
R

(
g(t, x)k

)
J (x1(t), x2(t), ẋ1(t), ẋ2(t), x) dx, (19)

and now, in the time derivative of the sum of D(t)with these correction terms, we obtain

an expression with a size of order εl+
1
2

∥∥∥−−→g(t)
∥∥∥k which is much smaller than εl

∥∥∥−−→g(t)
∥∥∥k

because of inequality (14) obtained in Section 2 of this manuscript. Next, we consider a
smooth cut-off function 0 ≤ ω ≤ 1 satisfying

ω(x) =
{
1, if x ≤ 1

2 ,

0, if x ≥ 3
4 ,

and ω1(t, x) = ω
(

x−x1(t)
x2(t)−x1(t)

)
. Based on the argument in the proof of Lemma 4.2 of

[13], we aggregate the last correction term

2
∫
R

∂t g(t, x)∂x g(t, x) [ẋ1(t)ω1(t, x) + ẋ2(t) (1 − ω1(t, x))] dx,

whose time derivative will cancel with the term

−
∫
R

U (3)(Hx2(t)
0,1 (x) + Hx1(t)−1,0 (x))(ẋ2(t)∂x H

x2(t)
0,1 + ẋ1(t)∂x H

x1(t)−1,0 )g(t, x)2 dx,

which comes from Ḋ(t), since we cannot remove this expression using the correction
terms similar to (19). Finally, we evaluate the time derivative of the function F(t) ob-
tained from the sum D(t) with all the correction terms described above.

Remaining Sections. In the remaining part of this paper, we prove our main results, the
estimate (7) of Theorem 2 is a consequence of the energy estimate obtained in Section 4
and the estimates with high precision of the modulation parameters x1(t), x2(t) which
are obtained in Section 5. In Section 5, we prove the result of Theorem 4, where we study
the evolution of the precision of the modulation parameters estimates by comparing it
with a solution of a system of ordinary differential equations. Complementary informa-
tion is given in Appendix Section A and the proof of Theorem 3 is in the Appendix
Section B.
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2. Global Stability of Two Moving Kinks

Before the presentation of the proofs of the main theorems, we define a function to study
the potential energy of a sum of two kinks.

Definition 4. The function A : R+ → R is defined by

A(z) := Epot (H
z
0,1(x) + H−1,0(x)). (20)

The study of the function A is essential to obtain global control of the norm of the
remainder g and the lower bound of x2(t) − x1(t) in Theorem 2.

Remark 6. It is easy to verify that Epot (H0,1(x−x2)+H−1,0(x−x1)) = Epot (H0,1(x−
(x2 − x1)) + H−1,0(x)).

We will use several times the following elementary estimate from the Lemma 2.5 of
[13] given by:

Lemma 6. For any real numbers x2, x1, such that x2−x1 > 0 and α, β > 0with α �= β

the following bound holds:
∫
R

e−α(x−x1)+e−β(x2−x)+ dx �α,β e−min(α,β)(x2−x1),

For any α > 0, the following bound holds
∫
R

e−α(x−x1)+e−α(x2−x)+ dx �α (1 + (x2 − x1))e
−α(x2−x1).

The main result of this section is the following

Lemma 7. The function A is of class C2 and there is a constant C > 0, such that

1.
∣∣∣ Ä(z) − 4

√
2e−√

2z
∣∣∣ ≤ C(z + 1)e−2

√
2z,

2.
∣∣∣ Ȧ(z) + 4e−√

2z
∣∣∣ ≤ C(z + 1)e−2

√
2z,

3.
∣∣∣A(z) − 2Epot (H0,1) − 2

√
2e−√

2z
∣∣∣ ≤ C(z + 1)e−2

√
2z .

Proof. By the definition of A, it’s clear that

A(z) = 1

2

∫
R

(
∂x
[
Hz
0,1(x) + H−1,0(x)

])2
dx +

∫
R

U (Hz
0,1(x) + H−1,0(x)) dx

= ∥∥∂x H0,1
∥∥2
L2 +

∫
R

∂x H
z
0,1(x)∂x H−1,0(x) dx +

∫
R

U (Hz
0,1(x) + H−1,0(x)) dx .

Since the functions U and H0,1 are smooth and ∂x H0,1(x) has exponential decay when
|x | → +∞, it is possible to differentiate A(z) in z. More precisely, we obtain

Ȧ(z) = −
∫
R

∂2x H
z
0,1(x)∂x H−1,0(x) dx −

∫
R

U̇ (Hz
0,1(x) + H−1,0(x))∂x H

z
0,1(x) dx

=
∫
R

∂x H
z
0,1(x)

[
U̇ (H−1,0)(x) − U̇ (H−1,0(x) + Hz

0,1(x))
]
dx .
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For similar reasons, it is always possible to differentiate A(z) twice, precisely, we
obtain

Ä(z) =
∫
R

∂x H
z
0,1(x)

2Ü (H−1,0(x) + Hz
0,1(x))

− ∂2x H
z
0,1(x)

[
U̇ (H−1,0(x)) − U̇

(
H−1,0(x) + Hz

0,1(x))
]
dx . (21)

Then, integrating by parts, we obtain

Ä(z) =
∫
R

∂x H
z
0,1(x)∂x H−1,0(x)

[
Ü (H−1,0(x)) − Ü (H−1,0(x) + Hz

0,1(x))
]
dx . (22)

Now, we consider the function

B(z) =
∫
R

∂x H0,1(x)∂x H−1,0(x + z)
[
Ü (0) − Ü (H0,1(x))

]
dx . (23)

Then, we have

Ä(z) − B(z) =
∫
R

∂x H
z
0,1(x)∂x H−1,0(x)

[
Ü (H−1,0(x)) − Ü (H−1,0(x) + Hz

0,1(x))
]
dx

−
∫
R

∂x H
z
0,1(x)∂x H−1,0(x)

[
Ü (0) − Ü (Hz

0,1(x))
]
dx . (24)

Also, it is not difficult to verify the following identity
[
Ü (H−1,0(x)) − Ü (H−1,0(x) + Hz

0,1(x))
]− [

Ü (0) − Ü (Hz
0,1(x))

]

= −
∫ H−1,0(x)

0

∫ Hz
0,1(x)

0
U (4)(ω1 + ω2) dω1 dω2. (25)

So, the identities (25) and (24) imply the following inequality
∣∣ Ä(z) − B(z)

∣∣
≤
∫
R

∣∣∣∂x Hz
0,1(x)∂x H−1,0(x)

∣∣∣
∣∣∣∣∣
∫ H−1,0(x)

0

∫ Hz
0,1(x)

0
U (4)(ω1 + ω2) dω1 dω2

∣∣∣∣∣ dx .

SinceU is smooth and
∥∥H0,1

∥∥
L∞ = 1, we have that there is a constant C > 0 such that

∣∣ Ä(z) − B(z)
∣∣ ≤ C

∫
R

∣∣∣∂x Hz
0,1(x)∂x H−1,0(x)H−1,0(x)H

z
0,1(x)

∣∣∣ dx . (26)

Now, using the inequalities from (D1) to (D4) and Lemma 6 to inequality (26), we
obtain that there exists a constant C1 independent of z such that

∣∣ Ä(z) − B(z)
∣∣ ≤ C1(z + 1)e−2

√
2z . (27)

Also, it is not difficult to verify that the estimate
∣∣∣∂x H−1,0(x) − √

2e−√
2x
∣∣∣ ≤ C min(e−3

√
2x , e−√

2x ), (28)
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and the identity (23) imply the inequality
∣∣∣∣B(z) − √

2e−√
2z
∫
R

e−√
2x∂x H0,1(x)(Ü (0) − Ü (H0,1(x))) dx

∣∣∣∣
�
∫
R

H0,1(x)∂x H0,1(x)min
(
e−3

√
2(x+z), e−√

2(x+z)) dx
�
∫
R

e−2
√
2(−x)+ min

(
e−3

√
2(x+z), e−√

2(x+z)) dx

�
∫ 0

−∞
e−2

√
2(z−x)+e−√

2x dx +
∫ +∞

0
e−2

√
2(z−x)+e−3

√
2(x)+ dx .

Since we have the following identity and estimate from Lemma 6

∫ 0

−∞
e−2

√
2(z−x)e−√

2x dx = e−2
√
2z

√
2

, (29)

∫ +∞

0
e−2

√
2(z−x)+e−3

√
2(x)+ � e−2

√
2z, (30)

we obtain, then:
∣∣∣∣B(z) − √

2e−√
2z
∫
R

e−√
2x∂x H0,1(x)

[
Ü (0) − Ü (H0,1(x))

]
dx

∣∣∣∣ � e−2
√
2z, (31)

which clearly implies with (27) the inequality
∣∣∣∣ Ä(z) − √

2e−√
2z
∫
R

e−√
2x∂x H0,1(x)

[
Ü (0) − Ü (H0,1(x))

]
dx

∣∣∣∣ � (z + 1)e−2
√
2z .

(32)

Also, we have the identity
∫
R

(
8(H0,1(x))

3 − 6(H0,1(x))
5)e−√

2x dx = 2
√
2, (33)

for the proof see the end of Appendix A. Since we have the identity Ü (0) − Ü (φ) =
24φ2 − 30φ4, by integration by parts, we obtain

∫
R

e−√
2x

√
2

∂x H0,1(x)
[
Ü (0) − Ü (H0,1(x))

]
dx

=
∫
R

(
8(H0,1(x))

3 − 6(H0,1(x))
5)e−√

2x dx .

In conclusion, inequality (32) is equivalent to
∣∣∣ Ä(z) − 4

√
2e−√

2z
∣∣∣ � (z + 1)e−2

√
2z .

The identities

U̇ (φ) + U̇ (θ) − U̇ (φ + θ) = 24φθ(φ + θ) − 6
( 4∑

j=1

(
5
j

)
φ jω5− j

)
,
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Ȧ(z) = −
∫
R

∂x H
z
0,1(x)

[
U̇ (Hz

0,1(x) + H−1,0(x)) + U̇ (H−1,0(x)) − U̇ (Hz
0,1(x))

]
dx

and Lemma 6 imply the following estimate for z > 0

∣∣ Ȧ(z)
∣∣ � e−√

2z,

so lim|z|→+∞
∣∣ Ȧ(z)

∣∣ = 0. In conclusion, integrating inequality
∣∣∣ Ä(z) − 4

√
2e−√

2z
∣∣∣ �

(z + 1)e−2
√
2z from z to +∞ we obtain the second result of the lemma

∣∣∣ Ȧ(z) + 4e−√
2z
∣∣∣ � (z + 1)e−2

√
2z . (34)

Finally, from the fact that limz→+∞ Epot (H−1,0+H
z
0,1(x)) = 2Epot (H0,1), we obtain

the last estimate integrating inequality (34) from z to +∞, which is
∣∣∣2Epot (H0,1) + 2

√
2e−√

2z − A(z)
∣∣∣ � (z + 1)e−2

√
2z .

��
It is not difficult to verify that the Fréchet derivative of Epot as a linear functional

from H1(R) to R is given by

(DEpot (φ))(v) :=
∫
R

∂xφ(x)∂xv(x) + U̇ (φ(x))v(x) dx . (35)

Also, for any v, w ∈ H1(R), it is not difficult to verify that

〈
D2Epot (φ)v, w

〉
L2

=
∫
R

∂xv(x)∂xw(x) dx +
∫
R

Ü (φ(x))v(x)w(x) dx . (36)

Moreover, the operator D2Epot
(
H0,1

) : H2(R) ⊂ L2(R) → L2(R) satisfies the fol-
lowing property.

Lemma 8. The operator D2Epot
(
H0,1

)
satisfies:

ker
(
D2Epot

(
H0,1

)) = {c∂x H0,1(x)| c ∈ R},
〈
D2Epot

(
H0,1

)
g, g

〉
L2

≥ c

[
‖g‖2L2 − 〈

g, ∂x H0,1
〉2
L2

1∥∥∂x H0,1
∥∥2
L2

]
,

for a constant c > 0 and any g ∈ H1(R).

Proof. See Proposition 2.2 from [13], see also [18]. ��
Lemma 9 (Coercivity Lemma). There exist C, c, δ > 0, such that if x2 − x1 ≥ 1

δ
, then

for any g ∈ H1(R) we have
〈
D2Epot (H

x2
0,1 + Hx1−1,0)g, g

〉
L2

≥ c ‖g‖2H1 − C
[
〈g, ∂x H

x1−1,0〉2L2 + 〈g, ∂x H
x2
0,1〉2L2

]
.

(37)
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Proof of Coercivity Lemma. The proof of this Lemma is analogous to the proof of
Lemma 2.4 in [13]. ��
Lemma 10. There is a constant C2, such that if x2 − x1 > 0, then

∥∥∥DEpot (H
x2
0,1 + Hx1−1,0)

∥∥∥
L2(R)

≤ C2e
−√

2(x2−x1). (38)

Proof. By the definition of the potential energy, the equation (3), and the exponential
decay of the two kinks functions, we have that

DEpot (H
x2
0,1 + Hx1−1,0) = U̇ (Hx2

0,1 + Hx1−1,0) − U̇ (Hx2
0,1) − U̇ (Hx1−1,0)

as a bounded linear operator from L2(R) to C. So, we have that

DEpot (H
x2
0,1 + Hx1−1,0) = − 24Hx2

0,1H
x1−1,0

[
Hx2
0,1 + Hx1−1,0

]

+ 6
[ 4∑

j=1

(
5
j

)
(Hx1−1,0)

j (Hx2
0,1)

5− j
]
,

and, then, the conclusion follows directly from Lemma 6, (D1) and (D2). ��
Theorem 11 (Orbital Stability of a sum of two moving kinks). There exists δ0 > 0 such
that if the solution φ of (1) satisfies (φ(0), ∂tφ(0)) ∈ S × L2(R) and the energy excess
ε = Etotal(φ) − 2Epot (H0,1) is smaller than δ0, then there exist x1, x2 : R → R

functions of class C2, such that for all t ∈ R denoting g(t) = φ(t) − H0,1(x − x2(t)) −
H−1,0(x − x1(t)) and z(t) = x2(t) − x1(t), we have:

1. ‖g(t)‖H1 = O(ε
1
2 ),

2. z(t) ≥ 1√
2

[
ln 1

ε
+ ln 2

]
,

3. ‖∂tφ(t)‖2L2 ≤ 2ε,

4. max j∈{1,2}
∣∣ẋ j (t)∣∣2 + max j∈{1,2}

∣∣ẍ j (t)∣∣ = O(ε).

Proof. First, from the fact that Etotal(φ(x)) > 2Epot (H0,1), we deduce, from the con-
servation of total energy, the estimate

‖∂tφ(t)‖2L2 ≤ 2ε. (39)

From Remark 1, we can assume if ε 
 1 that there exist w1, w2 ∈ R such that

φ(0, x) = H0,1(x − w2) + H−1,0(x − w1) + g1(x),

and

‖g1‖H1 < δ, w2 − w1 >
1

δ
,

for a small constant δ > 0. Since the Eq. (1) is locally well-posed in the space S×L2(R),

we conclude that there is a δ1 > 0 depending only on δ and ε such that if −δ1 ≤ t ≤ δ1,

then
∥∥φ(t, x) − H0,1(x − w2) − H−1,0(x − w1)

∥∥
H1 ≤ 2δ. (40)
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If δ, ε > 0 are small enough, then, from the inequality (40) and the Modulation
Lemma, we obtain in the time interval [−δ1, δ1] the existence of modulation param-
eters x1(t), x2(t) such that for

g(t) = φ(t) − H0,1(x − x2(t)) − H−1,0(x − x1(t)),

we have
〈
g(t), ∂x H0,1(x − x2(t))

〉
L2 = 〈

g(t), ∂x H−1,0(x − x1(t))
〉
L2 = 0, (41)

1

|x2(t) − x1(t)| + ‖g(t)‖H1 � δ. (42)

From now on, we denote z(t) = x2(t) − x1(t). From the conservation of the total
energy, we have for −δ1 ≤ t ≤ δ1 that

Etotal(φ(t)) = ‖∂tφ(t)‖2L2

2
+ Epot

(
Hx2(t)
0,1 + Hx1(t)−1,0

)

+
〈
DEpot

(
Hx2(t)
0,1 + Hx1(t)−1,0

)
, g(t)

〉
L2

+

〈
D2Epot

(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t), g(t)

〉
L2

2
+ O(‖g(t)‖3H1).

From Lemma 7 and (42), the above identity implies that

ε =‖∂tφ(t)‖2L2

2
+ 2

√
2e−√

2z(t) +
〈
DEpot

(
Hx2(t)
0,1 + Hx1(t)−1,0

)
, g(t)

〉
L2

+

〈
D2Epot

(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t), g(t)

〉
L2

2
+ O

(
‖g(t)‖3H1 + z(t)e−2

√
2z(t)

)
(43)

for any t ∈ [−δ1, δ1]. From (38), it is not difficult to verify that
∣∣∣〈DEpot (H

x2(t)
0,1

∣∣∣
+Hx1(t)−1,0 ), g(t)〉L2(R) ≤ C2e−√

2z(t) ‖g(t)‖H1(R) . So, the Eq. (43) and the Coercivity
Lemma imply, while −δ1 ≤ t ≤ δ1, the following inequality

ε + C2e
−√

2z(t) ‖g(t)‖H1 ≥ ‖∂tφ(t)‖2L2

2
+ 2

√
2e−√

2z(t) +
c ‖g(t)‖2H1

2

+ O
(
‖g(t)‖3H1 + z(t)e−2

√
2z(t)

)
. (44)

Finally, applying the Young inequality in the termC2e−√
2z(t) ‖g(t)‖H1(R), we obtain

that the inequality (44) can be rewritten in the form

ε ≥ ‖∂tφ(t)‖2L2

2
+ 2

√
2e−√

2z(t) +
c ‖g(t)‖2H1

4
+ O

(
‖g(t)‖3H1 + (z(t) + 1)e−2

√
2z(t)

)
.

(45)

Then, the estimates (45), (42) imply for δ > 0 small enough the following inequality

ε ≥ ‖∂tφ(t)‖2L2

2
+ 2e−√

2z(t) +
c ‖g(t)‖2H1

8
. (46)
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So, the inequality (46) implies the estimates

e−√
2z(t) <

ε

2
, ‖g(t)‖2H1 � ε, (47)

for t ∈ [−δ1, δ1]. In conclusion, if 1
δ

� ln ( 1
ε
)
1
2 ,wecan conclude by a bootstrap argument

that the inequalities (39), (47) are true for all t ∈ R. More precisely, we study the set

C =
{
b ∈ R>0| ε ≥ ‖∂tφ(t)‖2L2

2
+ 2e−√

2z(t) +
c ‖g(t)‖2H1

8
, if |t | ≤ b.

}

and prove that M = supb∈C b = +∞. We already have checked that C is not empty,
also C is closed by its definition. Now from the previous argument, we can verify that
C is open. So, by connectivity, we obtain that C = R>0.

In conclusion, it remains to prove that the modulation parameters x1(t), x2(t) are of
class C2 and that the fourth item of the statement of Theorem 11 is true.
(Proof of the C2 regularity of x1, x2, and of the fourth item.)

For δ0 > 0 small enough, we denote (y1(t), y2(t)) to be the solution of the following
systemof ordinary differential equations,with the function g1(t) = φ(t, x)−Hy2(t)

0,1 (x)−
Hy1(t)

−1,0 (x),

( ∥∥∂x H0,1
∥∥2
L2 −

〈
g1(t), ∂2x H

y1(t)
−1,0

〉
L2

)
ẏ1(t) +

( 〈
∂x H

y2(t)
0,1 , ∂x H

y1(t)
−1,0

〉
L2

)
ẏ2(t)

= −
〈
∂tφ(t), ∂x H

y1(t)
−1,0 (x)

〉
L2

, (48)
( 〈

∂x H
y2(t)
0,1 , ∂x H

y1(t)
−1,0

〉
L2

)
ẏ1(t) +

( ∥∥∂x H0,1(t)
∥∥2
L2 −

〈
g1(t), ∂2x H

y2
0,1

〉
L2

)
ẏ2(t)

= −
〈
∂tφ(t), ∂x H

y2(t)
0,1 (x)

〉
L2

, (49)

with initial condition (y2(0), y1(0)) = (x2(0), x1(0)). This system of ordinary differen-
tial equations is motivated by the time derivative of the orthogonality conditions of the
Modulation Lemma.

Since we have the estimate ln ( 1
ε
) � x2(0) − x1(0) and g1(0) = g(0), Lemma 6 and

the inequalities in (47) imply that the matrix
⎡
⎣
∥∥∂x H0,1

∥∥2
L2 −

〈
g1(0), ∂2x H

y1(0)
−1,0

〉
L2

〈
∂x H

y2(0)
0,1 , ∂x H

y1(0)
−1,0

〉
L2〈

∂x H
y2(0)
0,1 , ∂x H

y1(0)
−1,0

〉
L2

∥∥∂x H0,1
∥∥2
L2 −

〈
g1(0), ∂2x H

y2
0,1

〉
L2

⎤
⎦ (50)

is positive, so we have from Picard–Lindelöf Theorem that y2(t), y1(t) are of class
C1 for some interval [−δ, δ], with δ > 0 depending on |x2(0) − x1(0)| and ε. From
the fact that (y2(0), y1(0)) = (x2(0), x1(0)), we obtain, from the Eqs. (48) and (49),
that (y2(t), y1(t)) also satisfies the orthogonality conditions of Modulation Lemma
for t ∈ [−δ, δ]. In conclusion, the uniqueness of Modulation Lemma implies that
(y2(t), y1(t)) = (x2(t), x1(t)) for t ∈ [−δ, δ]. From this argument, we also have for
t ∈ [−δ, δ] that e−√

2(y2(t)−y1(t)) ≤ ε

2
√
2
. By bootstrap, we can show, repeating the

argument above, that

sup {C > 0| (y2(t), y1(t)) = (x2(t), x1(t)), for t ∈ [−C,C]} = +∞. (51)
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Also, the argument above implies that if (y1(t), y2(t)) = (x1(t), x2(t)) in an instant
t, then y1, y2 are of class C1 in a neighborhood of t. In conclusion, x1, x2 are functions

inC1(R). Finally, since ‖g(t)‖H1 = O(ε
1
2 ) and e−√

2z(t) = O(ε), the following matrix

M(t) :=
⎡
⎣
∥∥∂x H0,1

∥∥2
L2 −

〈
g(t), ∂2x H

x1(t)−1,0

〉
L2

〈
∂x H

x2(t)
0,1 , ∂x H

x1(t)−1,0

〉
L2〈

∂x H
x2(t)
0,1 , ∂x H

x1(t)−1,0

〉
L2

∥∥∂x H0,1
∥∥2
L2 −

〈
g(t), ∂2x H

x2(t)
0,1

〉
L2

⎤
⎦

(52)

is uniformly positive for all t ∈ R. So, from the estimate ‖∂tφ(t)‖L2(R) = O(ε
1
2 ), the

identities x j (t) = y j (t) for j = 1, 2 and the Eqs. (48) and (49), we obtain

max
j∈{1,2}

∣∣ẋ j (t)∣∣ = O(ε
1
2 ). (53)

Since the matrix M(t) is invertible for any t ∈ R, we can obtain from the Eqs. (48),
(49) that the functions ẋ1(t), ẋ2(t) are given by

[
ẋ1(t)
ẋ2(t)

]
= M(t)−1

⎡
⎣−

〈
∂tφ(t), ∂x H

x1(t)−1,0 (x)
〉
L2

−
〈
∂tφ(t), ∂x H

x2(t)
0,1 (x)

〉
L2

⎤
⎦ . (54)

Now, since we have that (φ(t), ∂tφ(t)) ∈ C(R, S× L2(R)) and x1(t), x2(t) are of class
C1, we can deduce that (g(t), ∂t g(t)) ∈ C(R, H1(R) × L2(R)). So, by definition, we
can verify that M(t) ∈ C1(R,R4).

Also, since φ(t, x) is the solution in distributional sense of (1), we have that for any
y1, y2 ∈ R the following identities hold

〈
∂x H

y2
0,1, ∂2t φ(t)

〉
L2 = −〈∂2x H y2

0,1, ∂xφ(t)
〉
L2 − 〈

∂x H
y2(t)
0,1 , U̇ (φ(t))

〉
L2 ,〈

∂x H
y1
−1,0, ∂2t φ(t)

〉
L2 = −〈∂2x H y1

−1,0, ∂xφ(t)
〉
L2 − 〈

∂x H
y1
−1,0, U̇ (φ(t))

〉
L2 .

Since (1) is locally well-posed in S×L2(R),we obtain from the identities above that the
following functions h(t, y) := 〈∂x H y

0,1, ∂2t φ(t)
〉
L2 and l(t, y) := 〈∂x H y

−1,0, ∂2t φ(t)
〉
L2

are continuous in the domain R × R.

So, from the continuity of the functions h(t, y), l(t, y) and from the fact that x1, x2 ∈
C1(R), we obtain that the functions

h1(t) := −
〈
∂tφ(t), ∂x H

x1(t)−1,0 (x)
〉
L2

, h2(t) := −
〈
∂tφ(t), ∂x H

x2(t)
0,1 (x)

〉
L2

are of class C1. In conclusion, from the Eq. (54), by chain rule and product rule, we
verify that x1, x2 are in C2(R).

Now, since x1, x2 ∈ C2(R) and ẋ1, ẋ2 satisfy (54), we deduce after differentiate in
time the function

M(t)

[
ẋ1(t)
ẋ2(t)

]

the following equations
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ẍ1(t)
( ∥∥∂x H0,1

∥∥2
L2 +

〈
∂x g(t), ∂x H

x1(t)−1,0

〉
L2

)
+ ẍ2(t)

〈
∂x H

x1(t)−1,0 , ∂x H
x2(t)
0,1

〉
L2

= ẋ1(t)
2
〈
∂2x H

x1(t)−1,0 , ∂x g(t)
〉
L2

+ ẋ1(t)
〈
∂2x H

x1(t)−1,0 , ∂t g(t)
〉
L2

+ ẋ2(t)
2
〈
∂x H

x1(t)−1,0 , ∂2x H
x2(t)
0,1

〉
L2

+ ẋ1(t)ẋ2(t)
〈
∂2x H

x1(t)−1,0 , ∂x H
x2(t)
0,1

〉
L2

+ ẋ1(t)
〈
∂2x H

x1(t)−1,0 , ∂tφ(t)
〉
L2

−
〈
∂x H

x1(t)−1,0 , ∂2t φ(t)
〉
L2

, (55)

ẍ2(t)
( ∥∥∂x H0,1

∥∥2
L2 +

〈
∂x g(t), ∂x H

x2(t)
0,1

〉
L2

)
+ ẍ1(t)

〈
∂x H

x1(t)−1,0 , ∂x H
x2(t)
0,1

〉
L2

= ẋ2(t)
2
〈
∂2x H

x2(t)
0,1 , ∂x g(t)

〉
L2

+ ẋ2(t)
〈
∂2x H

x2(t)
0,1 , ∂t g(t)

〉
L2

+ ẋ1(t)ẋ2(t)
〈
∂x H

x1(t)−1,0 , ∂2x H
x2(t)
0,1

〉
L2

+ ẋ1(t)
2
〈
∂x H

x2(t)
0,1 , ∂2x H

x1(t)−1,0

〉
L2

+ ẋ2(t)
〈
∂2x H

x2(t)
0,1 , ∂tφ(t)

〉
L2

−
〈
∂x H

x2(t)
0,1 , ∂2t φ(t)

〉
L2

. (56)

Also, from the identity g(t) = φ(t) − Hx1(t)−1,0 − Hx2(t)
0,1 , we obtain that ∂t g(t) =

∂tφ(t, x) + ẋ1(t)∂x H
x1(t)−1,0 + ẋ2(t)∂x H

x2(t)
0,1 , so, from the estimates (39) and (53), we

obtain that

‖∂t g(t)‖L2 = O(ε
1
2 ). (57)

Now, since φ(t) is a distributional solution of (1), we also have, from the global
equality φ(t) = Hx1(t)−1,0 + Hx2(t)

0,1 + g(t), the following identity

〈
∂x H

x1(t)−1,0 , ∂2t φ(t)
〉
L2

=
〈
∂x H

x1(t)−1,0 , ∂2x g(t) − Ü
(
Hx1(t)−1,0

)
g(t)

〉
L2

−
〈
∂x H

x1(t)−1,0 ,
[
Ü
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
− Ü

(
Hx1(t)−1,0

)]
g(t)

〉
L2

+
〈
∂x H

x1(t)−1,0 , U̇
(
Hx1(t)−1,0

)
+ U̇

(
Hx2(t)
0,1

)
− U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1

)〉
L2

−
〈
∂x H

x1(t)−1,0 , U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1 + g(t)
)

− U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1

)〉
L2

+
〈
∂x H

x1(t)−1,0 , Ü
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
g(t)

〉
L2

.

Since ∂x H
x1(t)−1,0 ∈ ker

(
D2Epot

(
Hx1(t)−1,0

))
,wehaveby integrationbyparts that

〈
∂x H

x1(t)−1,0 ,

∂2x g(t) − Ü
(
Hx1(t)−1,0

)
g(t)

〉
L2

= 0. Since we have

U̇
(
Hx1(t)−1,0

)
+ U̇

(
Hx2(t)
0,1

)
− U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1

)

= 24Hx1(t)−1,0 H
x2(t)
0,1

(
Hx1(t)−1,0 + Hx2(t)

0,1

)
− 6

4∑
j=1

(
5
j

)(
Hx1(t)−1,0

) j (
Hx2(t)
0,1

)5− j
,(58)
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Lemma 6 implies
〈
∂x H

x1(t)−1,0 , U̇
(
Hx1(t)−1,0

)
+ U̇

(
Hx2(t)
0,1

)
− U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1

)〉
L2

= O
(
e−√

2(z(t))
)
. Also, from Taylor’s Expansion Theorem, we have the estimate

〈
∂x H

x1(t)−1,0 , U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1 + g(t)
)

− U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1

)〉
L2

−
〈
∂x H

x1(t)−1,0 , Ü
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
g(t)

〉
L2

= O(‖g(t)‖2H1).

From Lemma 6, the fact thatU is a smooth function and H0,1 ∈ L∞(R), we can obtain

〈
∂x H

x1(t)−1,0 ,
[
Ü
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
− Ü

(
Hx1(t)−1,0

)]
g(t)

〉
L2

= O
( ∫

R

∂x H
x1(t)−1,0 H

x2(t)
0,1 |g(t)| dx

)

= O
(
e−√

2z(t) ‖g(t)‖H1 z(t)
1
2

)
.

In conclusion, we have

〈
∂x H

x1(t)−1,0 , ∂2t φ(t)
〉
L2

= O
(

‖g(t)‖2H1 + e−√
2z(t)

)
, (59)

and by similar arguments, we have

〈
∂x H

x2(t)
0,1 , ∂2t φ(t)

〉
L2

= O
(

‖g(t)‖2H1 + e−√
2z(t)

)
. (60)

Also, the Eqs. (55) and (56) form a linear systemwith ẍ1(t), ẍ2(t).Recalling that the
Matrix M(t) is uniformly positive, we obtain from the estimates (47), (53), (57), (59)
and (60) that

max
j∈{1,2}

∣∣ẍ j (t)∣∣ = O(ε). (61)

��
The Theorem 11 can also be improvedwhen the kinetic energy of the solution is included
in the computation and additional conditions are added, more precisely:

Theorem 12. There exist C, c, δ0 > 0, such that if 0 < ε ≤ δ0, (φ(0, x), ∂tφ(0, x)) ∈
S× L2(R) and Etotal((φ(0, x), ∂tφ(0, x))) = 2Epot (H0,1)+ ε, then there are x2, x1 ∈
C2(R) such that g(t, x) = φ(t, x) − Hx2(t)

0,1 (x) − Hx1(t)−1,0 (x) satisfies

〈
g(t, x), ∂x H

x2(t)
0,1 (x)

〉
L2

= 0,
〈
g(t, x), ∂x H

x1(t)−1,0 (x)
〉
L2

= 0,

and, for all t ∈ R,

cε ≤ e−√
2(x2(t)−x1(t)) + ‖(g(t), ∂t g(t))‖2H1×L2 + |ẋ1(t)|2 + |ẋ2(t)|2 ≤ Cε. (62)
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Proof. From Modulation Lemma and Theorem 11, we can rewrite the solution φ(t) in
the form

φ(t, x) = Hx1(t)−1,0 (x) + Hx2(t)
0,1 (x) + g(t, x)

with x1(t), x2(t), g(t) satisfying the conclusion of Theorem 11. First, we denote

φσ (t) =
(
Hx1(t)−1,0 (x) + Hx2(t)

0,1 (x),−ẋ1(t)∂x H
x1(t)−1,0 − ẋ2(t)∂x H

x2(t)
0,1

)
∈ S × L2(R),

(63)

then we apply Taylor’s Expansion Theorem in E(φ(t)) around φσ (t). More precisely,
for Rσ (t) the residue of quadratic order of Taylor’s Expansion of E(φ(t), ∂tφ(t)) around
φσ (t), we have:

2Epot (H0,1) + ε = Etotal(φσ (t)) + 〈DEtotal(φσ (t)), (g(t), ∂t g(t))〉L2×L2

+

〈
D2Etotal(φσ (t))

(
g(t), ∂t g(t)

)
,
(
g(t), ∂t g(t)

)〉
L2×L2

2
+ Rσ (t),

(64)

such that for (ν1, ν2) ∈ S×L2(R) and (v1, v2) ∈ H1(R)×L2(R), we have the identities

Etotal(ν1, ν2) = ‖∂xν1‖2L2 + ‖ν2‖2L2

2
+
∫
R

U (ν1(x)) dx,

〈DEtotal(ν1, ν2), (v1, v2)〉L2×L2 =
∫
R

∂xν1(x)∂xv1(x) + U̇ (ν1)v1 + ν2(x)v2(x) dx,

(65)

D2Etotal(ν1, ν2) =
[−∂2x + Ü (ν1) 0

0 I

]
(66)

with D2Etotal(ν1, ν2) defined as a linear operator from H2(R) × L2(R) to L2(R).

So, from identities (65) and (66), it is not difficult to verify that

Rσ (t) =
∫
R

U
(
Hx1(t)−1,0 (x) + Hx2(t)

0,1 (x) + g(t, x)
)

−U
(
Hx1(t)−1,0 (x) + Hx2(t)

0,1 (x)
)
dx

−
∫
R

U̇
(
Hx1(t)−1,0 (x) + Hx2(t)

0,1 (x)
)
g(t, x) dx

−
∫
R

Ü
(
Hx1(t)−1,0 (x) + Hx2(t)

0,1 (x)
)
g(t, x)2

2
dx,

and, so,

|Rσ (t)| = O
(
‖g(t)‖3H1

)
. (67)

Also, we have

〈DEtotal(φσ (t)), (g(t), ∂t g(t))〉L2×L2

=
〈
DEpot

(
Hx1(t)−1,0 + Hx2(t)

0,1

)
, g(t)

〉
L2
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−
〈
ẋ1(t)∂x H

x1(t)−1,0 + ẋ2(t)∂x H
x2(t)
0,1 , ∂t g(t)

〉
L2

. (68)

The orthogonality conditions satisfied by g(t) also imply for all t ∈ R that
〈
∂t g(t), ∂x H

x1(t)−1,0

〉
L2

= ẋ1(t)
〈
g(t), ∂2x H

x1(t)−1,0

〉
L2

, (69)
〈
∂t g(t), ∂x H

x2(t)
0,1

〉
L2

= ẋ2(t)
〈
g(t), ∂2x H

x2(t)
0,1

〉
L2

. (70)

So, the inequality (38) and the identities (68), (69), (70) imply that
∣∣〈DEtotal(φσ (t)), (g(t), ∂t g(t))〉L2×L2

∣∣ = O
(

‖g(t)‖H1 sup
j∈{1,2}

∣∣ẋ j (t)∣∣2
)

+ O
(

‖g(t)‖H1 e−√
2z(t)

)
. (71)

From the Coercivity Lemma and the definition of D2Etotal(φσ (t)), we have that
〈
D2Etotal(φσ (t))(g(t), ∂t g(t)), (g(t), ∂t g(t))

〉
L2×L2

∼= ‖(g(t), ∂t g(t))‖2H1×L2 .(72)

Finally, there is the identity
∥∥∥ẋ1(t)∂x Hx1(t)−1,0 (x) + ẋ2(t)∂x H

x2(t)
0,1 (x)

∥∥∥2
L2

= 2ẋ1(t)ẋ2(t)
〈
∂x H

z(t)
0,1 , ∂x H−1,0

〉
L2

+ ẋ1(t)
2
∥∥∂x H0,1

∥∥2
L2

+ ẋ2(t)
2
∥∥∂x H0,1

∥∥2
L2 . (73)

FromLemma 6, we have that
∣∣∣〈∂x Hz

0,1, ∂x H−1,0〉L2

∣∣∣ = O
(
ze−√

2z
)
for z big enough.

Then, it is not difficult to verify that Lemma 7, (67), (71), (72) and (73) imply directly
the statement of the Theorem 12 which finishes the proof. ��
Remark 7. Theorem 12 implies that it is possible to have a solution φ of the Eq. (1) with
energy excess ε > 0 small enough to satisfy all the hypotheses of Theorem 2. More

precisely, in notation of Theorem 2, if ‖(g(0, x), ∂t g(0, x))‖H1×L2 
 ε
1
2 and

e−√
2z(0) + ẋ1(0)

2 + ẋ2(0)
2 ∼= ε,

then we would have that Etotal(φ(0), ∂tφ(0)) − 2Epot (H0,1) ∼= ε.

3. Long Time Behavior of Modulation Parameters

Even though Theorem 11 implies the orbital stability of a sum of two kinks with
low energy excess, this theorem does not explain the movement of the kinks’ centers
x2(t), x1(t) and their speed for a long time. More precisely, we still don’t know if there
is an explicit smooth real function d(t), such that (z(t), ż(t)) is close to (d(t), ḋ(t)) in
a large time interval.

But, the global estimates on the modulus of the first and second derivatives of
x1(t), x2(t) obtained in Theorem 11 will be very useful to estimate with high preci-
sion the functions x1(t), x2(t) during a very large time interval. Moreover, we first have
the following auxiliary lemma.
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Lemma 13. Let 0 < θ, γ < 1. We recall the function

A(z) = Epot (H
z
0,1 + H−1,0)

for any z > 0. We assume all the hypotheses of Theorem 11 and let χ(x) be a smooth
function satisfying

χ(x) =
{
1, if x ≤ θ(1 − γ ),

0, if x ≥ θ,
(74)

and 0 ≤ χ(x) ≤ 1 for all x ∈ R. In notation of Theorem 11, we denote

χ0(t, x) = χ
( x − x1(t)

z(t)

)
,
−−→
g(t) = (g(t), ∂t g(t)) ∈ H1(R) × L2(R)

and
∥∥∥−−→g(t)

∥∥∥ = ‖(g(t), ∂t g(t))‖H1(R)×L2(R) ,

α(t) =
∥∥∥−−→g(t)

∥∥∥ max
j∈{1, 2}

∣∣ẋ j (t)∣∣
[
1 +

1

z(t)γ
+

1

z(t)2γ 2 max
j∈{1, 2}

∣∣ẋ j (t)∣∣
](

e−√
2z(t)( 1−γ

2−γ
)
)

+ max
j∈{1,2} ẋ j (t)

2z(t)e−√
2z(t) +

max j∈{1, 2} ẋ j (t)2

z(t)γ

(
e−2

√
2z(t)( 1−γ

2−γ
)
)

+
∥∥∥−−→g(t)

∥∥∥2
[ 1

γ 2z(t)2
+

1

γ z(t)
+
(
e−√

2z(t)( 1−γ
2−γ

)
)]

+
∥∥∥−−→g(t)

∥∥∥ e−√
2z(t)

[
1 +

1

γ z(t)

]
.

(75)

Then, for θ = 1−γ
2−γ

and the correction terms

p1(t) = −
〈
∂tφ(t), ∂x H

x1(t)−1,0 (x) + ∂x (χ0(t, x)g(t))
〉

∥∥∂x H0,1
∥∥2
L2

,

p2(t) = −
〈
∂tφ(t), ∂x H

x2(t)
0,1 (x) + ∂x ([1 − χ0(t, x)]g(t))

〉
∥∥∂x H0,1

∥∥2
L2

,

we have the following estimates, for j ∈ {1, 2},
∣∣ẋ j (t) − p j (t)

∣∣ �
[
1 +

‖χ̇‖L∞

z(t)

](
max
j∈{1,2}

∣∣ẋ j (t)∣∣
∥∥∥−−→g(t)

∥∥∥ +
∥∥∥−−→g(t)

∥∥∥2
)

+ max
j∈{1,2}

∣∣ẋ j (t)∣∣ z(t)e−√
2z(t), (76)

∣∣∣∣∣ ṗ j (t) + (−1) j
Ȧ(z(t))∥∥∂x H0,1

∥∥2
L2

∣∣∣∣∣ � α(t). (77)

Remark 8. We will take γ = ln ln ( 1
ε
)

ln ( 1
ε
)

. With this value of γ and the estimates of Theo-

rem 11, we will see in Lemma 16 that ∃C > 0 such that

α(t) �

(
‖(g0, g1)‖H1×L2 + ε ln 1

ε

)2
ln ln ( 1

ε
)

exp
(2C |t | ε 1

2

ln 1
ε

)
.
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Proof. For γ 
 1 enough and from the definition of χ(x), it is not difficult to verify
that

‖χ̇‖L∞(R) � 1

γ
, ‖χ̈‖L∞(R) � 1

γ 2 . (78)

We will only do the proof of the estimates (76) and (77) for j = 1, the proof for the
case j = 2 is completely analogous. From the proof of Theorem 11, we know that
ẋ1(t), ẋ2(t) solve the linear system

M(t)

[
ẋ1(t)
ẋ2(t)

]
=
[
−〈∂tφ(t), ∂x H

x1(t)−1,0 〉
−〈∂tφ(t), ∂x H

x2(t)
0,1 〉

]
,

where M(t) is the matrix defined by (52). Then, from Cramer’s rule, we obtain that

ẋ1(t) =
−
〈
∂tφ(t), ∂x H

x1(t)−1,0

〉
L2

( 〈
∂x H

x2(t)
0,1 , ∂x g(t)

〉
L2

+
∥∥∂x H0,1

∥∥2
L2

)

det(M(t))

+

〈
∂tφ(t), ∂x H

x2(t)
0,1

〉
L2

〈
∂x H

x2(t)
0,1 , ∂x H

x1(t)−1,0

〉
L2

det(M(t))
. (79)

Using the definition (52) of the matrix M(t),
∥∥∥−−→g(t)

∥∥∥ = O(ε
1
2 ) and Lemma 6 which

implies the following estimate
〈
∂x H

x2(t)
0,1 , ∂x H

x1(t)−1,0

〉
L2

= O
(
z(t)e−√

2z(t)
)

, (80)

we obtain that∣∣∣det(M(t)) − ∥∥∂x H0,1
∥∥4
L2

∣∣∣ = O
( ∥∥∥−−→g(t)

∥∥∥ + z(t)2e−2
√
2z(t)

)
= O(ε

1
2 ). (81)

So, from the estimate (81) and the identity (79), we obtain that
∣∣∣∣∣∣∣
ẋ1(t) +

〈
∂tφ(t), ∂x H

x1(t)−1,0

〉
L2∥∥∂x H0,1

∥∥2
L2(R)

∣∣∣∣∣∣∣
= O

( ∣∣∣
〈
∂x H

x1(t)−1,0 , ∂x H
x2(t)
0,1

〉
L2

〈
∂tφ(t), ∂x H

x2(t)
0,1

〉
L2

∣∣∣
)

+O
(∣∣∣
〈
∂tφ(t), ∂x H

x1(t)−1,0 (x)
〉
L2

∣∣∣
[ ∥∥∥−−→g(t)

∥∥∥ + z(t)2e−2
√
2z(t)

])
. (82)

Finally, from the definition of g(t, x) in Theorem 11 we know that

∂tφ(t, x) = −ẋ1(t)∂x H
x1(t)−1,0 (x) − ẋ2(t)∂x H

x2(t)
0,1 (x) + ∂t g(t, x),

from the Modulation Lemma, we also have verified that
〈
∂t g(t), ∂x H

x1(t)−1,0

〉
L2

= O
( ∥∥∥−−→g(t)

∥∥∥ |ẋ1(t)|
)
,

〈
∂t g(t), ∂x H

x2(t)
0,1

〉
L2

= O
( ∥∥∥−−→g(t)

∥∥∥ |ẋ2(t)|
)
,
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and from Theorem 11 we have that
∥∥∥−−→g(t)

∥∥∥ + max j∈{1,2}
∣∣ẋ j (t)∣∣ 
 1. In conclusion, we

can rewrite the estimate (82) as
∣∣∣∣∣∣∣
ẋ1(t) +

〈
∂tφ(t), ∂x H

x1(t)−1,0

〉
L2∥∥∂x H0,1

∥∥2
L2(R)

∣∣∣∣∣∣∣
= O

(
max
j∈{1,2}

∣∣ẋ j (t)∣∣
∥∥∥−−→g(t)

∥∥∥ +
∥∥∥−−→g(t)

∥∥∥2
)

+ O
(
z(t)e−√

2z(t) max
j∈{1,2}

∣∣ẋ j (t)∣∣
)
. (83)

By similar reasoning, we can also deduce that
∣∣∣∣∣∣∣
ẋ2(t) +

〈
∂tφ(t), ∂x H

x2(t)
0,1

〉
L2∥∥∂x H0,1

∥∥2
L2(R)

∣∣∣∣∣∣∣
= O

(
max
j∈{1,2}

∣∣ẋ j (t)∣∣
∥∥∥−−→g(t)

∥∥∥ +
∥∥∥−−→g(t)

∥∥∥2
)

+ O
(
z(t)e−√

2z(t) max
j∈{1,2}

∣∣ẋ j (t)∣∣
)
. (84)

Following the reasoning of Lemma 3.5 of [13], we will use the terms p1(t), p2(t)
with the objective of obtaining the estimates (77), which have high precision and will
be useful later to approximate x j (t), ẋ j (t) by explicit smooth functions during a long
time interval.

First, it is not difficult to verify that

〈∂tφ(t), ∂x (χ0(t)g(t))〉L2 = O
([

1 +
‖χ̇‖L∞

z(t)

] ∥∥∥−−→g(t)
∥∥∥2 + max

j∈{1,2}
∣∣ẋ j (t)∣∣

∥∥∥−−→g(t)
∥∥∥
)
,

which clearly implies with estimate (83) the inequality (76) for j = 1. The proof of
inequality (76) for j = 2 is completely analogous.

Now, the demonstration of the inequality (77) is similar to the proof of the second
inequality of Lemma 3.5 of [13]. First, we have

ṗ1(t) = −
〈
∂tφ(t), ∂t

(
∂x H

x1(t)−1,0 (x)
)〉

L2∥∥∂x H0,1
∥∥2
L2

−
〈
∂tφ(t), ∂x

(
∂tχ0(t)g(t)

)〉
L2∥∥∂x H0,1

∥∥2
L2

−
〈
∂x
(
χ0(t)∂t g(t)

)
, ∂tφ(t)

〉
L2∥∥∂x H0,1

∥∥2
L2

−
〈
∂x H

x1(t)−1,0 , ∂2t φ(t)
〉
L2∥∥∂x H0,1

∥∥2
L2

−
〈
∂xχ0(t)g(t), ∂2t φ(t)

〉
L2∥∥∂x H0,1

∥∥2
L2

−
〈
χ0(t)∂x g(t), ∂2t φ(t)

〉
L2∥∥∂x H0,1

∥∥2
L2

(85)

= I + I I + I I I + I V + V + V I, (86)

and we will estimate each term one by one. More precisely, from now on, we will work
with a general cut-off function χ(x), that is a smooth function 0 ≤ χ ≤ 1 satisfying

χ(x) =
{
1, if x ≤ θ(1 − γ ),

0, if x ≥ θ.
(87)
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with 0 < θ, γ < 1 and

χ0(t, x) = χ
( x − x1(t)

z(t)

)
. (88)

The reason for this notation is to improve the precision of the estimate of ṗ1(t) by the
searching of the γ, θ which minimize α(t).

Step 1. (Estimate of I ) We will only use the identity I = ẋ1(t)

〈
∂tφ(t), ∂2x H

x1(t)
−1,0

〉
L2

‖∂x H0,1‖2
L2

.

Step 2. (Estimate of I I.) We have, by chain rule and definition of χ0, that

I I = −
〈
∂tφ(t), ∂x

(
∂tχ0(t)g(t)

)〉
L2∥∥∂x H0,1

∥∥2
L2

= −
〈
∂tφ(t), ∂x

(
χ̇
(
x−x1(t)
z(t)

)
d
dt

[
x−x1(t)
z(t)

]
g(t)

)〉
L2∥∥∂x H0,1

∥∥2
L2

=
〈
∂tφ(t), ∂x

(
χ̇
(
x−x1(t)
z(t)

)[
ẋ1(t)z(t)+(x−x1(t))ż(t)

z(t)2

]
g(t)

)〉
L2∥∥∂x H0,1

∥∥2
L2

.

So, we obtain that

I I =
〈
∂tφ(t), χ̈

(
x−x1(t)
z(t)

)[
ẋ1(t)
z(t) + (x−x1(t))ż(t)

z(t)2

]
g(t)

〉
L2

z(t)
∥∥∂x H0,1

∥∥2
L2

+

〈
∂tφ(t), χ̇

(
x−x1(t)
z(t)

)
ż(t)
z(t)2

g(t)
〉
L2∥∥∂x H0,1

∥∥2
L2

+

〈
∂tφ(t), χ̇

(
x−x1(t)
z(t)

)[
ẋ1(t)
z(t) + (x−x1(t))ż(t)

z(t)2

]
∂x g(t)

〉
L2∥∥∂x H0,1

∥∥2
L2

. (89)

First, since the support of χ̇ is contained in [θ(1 − γ ), θ ], from the estimates (D3)
and (D4) we obtain that

∥∥∥∂x Hx1(t)−1,0

∥∥∥2
L2
x

(
supp ∂xχ0(t,x)

) = O
(
e−2

√
2θ(1−γ )z(t)

)
, (90)

∥∥∥∂x Hx2(t)
0,1

∥∥∥2
L2
x

(
supp ∂xχ0(t,x)

) = O
(
e−2

√
2(1−θ)z(t)

)
, (91)

Now, we recall the identity ∂tφ(t, x) = −ẋ1(t)∂x H
x1(t)−1,0 − ẋ2(t)∂x H

x2(t)
0,1 + ∂t g(t),

by using the estimates (90), (91) in the identity (89), we deduce that

I I = O

(
‖χ̇‖L∞(R)

max j∈{1, 2}
∣∣ẋ j (t)∣∣

z(t)

∥∥∥−−→g(t)
∥∥∥2

+ ‖χ̈‖L∞(R)

∥∥∥−−→g(t)
∥∥∥2 max j∈{1, 2}

∣∣ẋ j (t)∣∣
z(t)2
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+ e−√
2z(t)min((1−θ),θ(1−γ )) ‖χ̈‖L∞(R)

max j∈{1, 2} ẋ j (t)2

z(t)2

∥∥∥−−→g(t)
∥∥∥

+
∥∥∥−−→g(t)

∥∥∥ e−√
2z(t)min((1−θ),θ(1−γ ))

[‖χ̈‖L∞(R)

z(t)2
+

‖χ̇‖L∞(R)

z(t)

]
max
j∈{1, 2} ẋ j (t)

2
)

.

(92)

Since 1−γ
2−γ

≤ max((1 − θ), θ(1 − γ )) for 0 < γ, θ < 1, we have that the estimate (92)

is minimal when θ = 1−γ
2−γ

. So, from now on, we consider

θ = 1 − γ

2 − γ
, (93)

which implies with (78) and (92) that I I = O(α(t)).
Step 3. (Estimate of I I I.) We deduce from the identity

I I I = −〈∂x (χ0(t)∂t g(t)), ∂tφ(t)〉L2∥∥∂x H0,1
∥∥2
L2

that

I I I =−
〈
χ̇
(
x−x1(t)
z(t)

)
∂t g(t), −ẋ1(t)∂x H

x1(t)−1,0 − ẋ2(t)∂x H
x2(t)
0,1 + ∂t g(t)

〉
L2

z(t)
∥∥∂x H0,1

∥∥2
L2

−
〈
χ0(t, x)∂2t,x g(t), −ẋ1(t)∂x H

x1(t)−1,0 − ẋ2(t)∂x H
x2(t)
0,1 + ∂t g(t, x)

〉
L2∥∥∂x H0,1

∥∥2
L2

= I I I.1 + I I I.2. (94)

The identity (93) and the estimates (78), (90) and (91) imply by Cauchy–Schwarz
inequality that

I I I.1 = O

(
max j∈{1, 2}

∣∣ẋ j (t)∣∣ e−√
2z(t)( 1−γ

2−γ
)

γ z(t)

∥∥∥−−→g(t)
∥∥∥ + 1

z(t)γ

∥∥∥−−→g(t)
∥∥∥2
)

. (95)

In conclusion, we have estimated that I I I.1 = O(α(t)).
Also, from condition (87) and the estimate (4), we can deduce that

∥∥∥(1 − χ0(t))∂
2
x H

x1(t)−1,0

∥∥∥
L2

+
∥∥∥χ0(t)∂

2
x H

x2(t)
0,1

∥∥∥
L2

= O
(
e−√

2z(t)( 1−γ
2−γ

)
)
. (96)

Additionally, we have that

I I I.2 = −
〈
χ0(t, x)

[
∂2t,xφ(t) + ẋ1(t)∂2x H

x1(t)−1,0 + ẋ2(t)∂2x H
x2(t)
0,1

]
, ∂tφ(t)

〉
L2∥∥∂x H0,1

∥∥2
L2

. (97)

By integration by parts, we have that
∣∣∣∣
〈
χ
( x − x1(t)

z(t)

)
∂2t,xφ(t, x), ∂tφ(t, x)

〉
L2

∣∣∣∣ = O
( 1

γ z(t)
‖∂tφ(t)‖2L2

x (supp ∂xχ0(t))

)
.
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In conclusion, from the estimates (78), (90), (91) and identity (93), we obtain that
∣∣∣∣
〈
χ
( x − x1(t)

z(t)

)
∂2t,xφ(t, x), ∂tφ(t, x)

〉
L2

∣∣∣∣
= O

(
1

γ z(t)

∥∥∥−−→g(t)
∥∥∥2 + max

j∈{1, 2}
ẋ j (t)2

γ z(t)

[
e−2

√
2z(t)( 1−γ

2−γ
)
])

. (98)

Also, from Lemma (6), the estimate (4) and the fact of 0 ≤ χ0 ≤ 1, we deduce that
∣∣∣
〈
χ0(t, x)∂

2
x H

x2(t)
0,1 , ∂x H

x1(t)−1,0

〉
L2

∣∣∣ = O
(
z(t)e−√

2z(t)
)
, (99)∣∣∣

〈
(1 − χ0(t, x))∂

2
x H

x1(t)−1,0 , ∂x H
x2(t)
0,1

〉
L2

∣∣∣ = O
(
z(t)e−√

2z(t)
)
. (100)

From the estimates (90), (91) and identity (93), we can verify by integration by parts the
following estimates

〈
(1 − χ0(t))ẋ1(t)∂

2
x H

x1(t)−1,0 , ẋ1(t)∂x H
x1(t)−1,0

〉
L2

= O
( ẋ1(t)2

γ z(t)
e−2

√
2z(t)( 1−γ

2−γ
)
)
, (101)

〈
χ0(t)ẋ2(t)∂

2
x H

x2(t)
0,1 , ẋ2(t)∂x H

x2(t)
0,1

〉
L2

= O
( ẋ2(t)2

γ z(t)
e−2

√
2z(t)( 1−γ

2−γ
)
)
. (102)

Finally, from Cauchy–Schwarz inequality and the estimate (96) we obtain that

〈
(1 − χ0(t))ẋ1(t)∂

2
x H

x1(t)−1,0 , ∂t g(t)
〉
L2

= O
(

|ẋ1(t)|
∥∥∥−−→g(t)

∥∥∥ e−√
2z(t)( 1−γ

2−γ
)
)
, (103)

〈
χ0(t)ẋ1(t)∂

2
x H

x2(t)
0,1 , ∂t g(t)

〉
L2

= O
(

|ẋ2(t)|
∥∥∥−−→g(t)

∥∥∥ e−√
2z(t)( 1−γ

2−γ
)
)
. (104)

In conclusion, we obtain from the estimates (99), (100), (101), (102) (103) and (104)
that

I I I.2 = −ẋ1(t)

〈
∂2x H

x1(t)−1,0 , ∂tφ(t)
〉
L2∥∥∂x H0,1

∥∥2 + O(α(t)). (105)

This estimate of I I I.2 and the estimate (95) of I I I.1 imply

I I I = −ẋ1(t)

〈
∂2x H

x1(t)−1,0 , ∂tφ(t)
〉
L2∥∥∂x H0,1

∥∥2 + O(α(t)). (106)

In conclusion, from the estimates I I = O(α(t)), (106) and the definition of I, we
have that I + I I + I I I = O(α(t)).

Step 4. (Estimate of V .) We recall that V = −〈∂xχ0(t)g(t), ∂2t φ(t)〉L2
‖∂x H0,1‖2

L2
, and that

∂2t φ(t) = ∂2x g(t) +
[
U̇
(
Hx1(t)−1,0

)
+ U̇

(
Hx2(t)
0,1

)
− U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1

) ]

+
[
U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
− U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1 + g(t)
) ]

. (107)
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First, by integration by parts, using estimate (78), we have the following estimate

− 1∥∥∂x H0,1
∥∥2
L2

〈∂xχ0(t)∂
2
x g(t), g(t)〉L2 = O

([ 1

γ z(t)
+

1

γ 2z(t)2

] ∥∥∥−−→g(t)
∥∥∥2
)

= O(α(t)). (108)

Second, since U is smooth and ‖g(t)‖L∞ = O
(
ε

1
2
)
for all t ∈ R, we deduce that

∣∣∣
〈
U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
− U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1 + g(t)
)

, ∂xχ0(t)g(t)
〉
L2

∣∣∣

�

∥∥∥−−→g(t)
∥∥∥2

z(t)γ
= O(α(t)). (109)

Next, from Eq. (58) and Lemma 6, we have that
∥∥∥U̇

(
Hx1(t)−1,0

)
+ U̇

(
Hx2(t)
0,1

)
− U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1

)∥∥∥
L2

= O(e−√
2z(t)), (110)

then, by Hölder inequality we have that
〈
U̇
(
Hx1(t)−1,0

)
+ U̇

(
Hx2(t)
0,1

)
− U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1

)
, ∂xχ0(t)∂x g(t)

〉
L2

�

∥∥∥−−→g(t)
∥∥∥

γ z(t)
e−√

2z(t) = O(α(t)). (111)

Clearly, the estimates (108), (109) and (111) imply that V = O(α(t)).
Step 5. (Estimate of V I.) We know that

V I = −
〈
∂x g(t)χ0(t), ∂2t φ(t)

〉
L2∥∥∂x H0,1

∥∥2
L2

.

We recall the Eq. (107) which implies that
∥∥∂x H0,1

∥∥2
L2 V I

=
〈
∂x g(t)χ0(t), U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1 + g(t)
)

− U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1

)〉
L2

+
〈
∂x g(t)χ0(t), U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1

)
− U̇

(
Hx1(t)−1,0

)
− U̇

(
Hx2(t)
0,1

)〉
L2

−
〈
∂x g(t)χ0(t), ∂2x g(t)

〉
L2

.

By integration by parts, we have from estimate (78) that

〈∂x g(t, x)χ0(t, x), ∂2x g(t, x)〉L2 = O
( 1

γ z(t)

∥∥∥−−→g(t)
∥∥∥2
)
. (112)

From the estimate (110) andCauchy–Schwarz inequality, we can obtain the following
estimate 〈

∂x g(t)χ0(t), U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
− U̇

(
Hx1(t)−1,0

)
− U̇

(
Hx2(t)
0,1

)〉
L2
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= O
(
e−√

2z(t)
∥∥∥−−→g(t)

∥∥∥
)
. (113)

Then, to conclude the estimate of V I we just need to study the following term C(t) :=〈
∂x g(t)χ0(t), U̇ (Hx1(t)−1,0 + Hx2(t)

0,1 + g(t)) − U̇ (Hx1(t)−1,0 + Hx2(t)
0,1 )

〉
L2 . Since we have from

Taylor’s theorem that

U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1 + g(t)
)

− U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1

)

=
6∑

k=2

U (k)
(
Hx1(t)−1,0 + Hx2(t)

0,1

) g(t)k−1

(k − 1)! ,

from estimate (78), we can deduce using integration by parts that

C(t) +
〈
χ0(t)∂x

(
Hx1(t)−1,0 + Hx2(t)

0,1

)
,

6∑
k=3

U (k)
(
Hx1(t)−1,0 + Hx2(t)

0,1

) g(t)k−1

(k − 1)!
〉
L2

= O(α(t)).

Since ∥∥∥χ0(t)∂x H
x2(t)
0,1

∥∥∥
L∞ +

∥∥∥(1 − χ0(t))∂x H
x1(t)−1,0

∥∥∥
L∞ = O

(
e−√

2z(t)( 1−γ
2−γ

)
)
,

we obtain that

C(t) = −
〈
∂x H

x1(t)−1,0 ,

6∑
k=3

U (k)
(
Hx1(t)−1,0 + Hx2(t)

0,1

) g(t)k−1

(k − 1)!
〉
L2

+ O

(
1

γ z(t)

∥∥∥−−→g(t)
∥∥∥2 + e−√

2z(t)( 1−γ
2−γ

)
∥∥∥−−→g(t)

∥∥∥2
)

.

Also, from Lemma 6 and the fact that ‖g(t)‖L∞ �
∥∥∥−−→g(t)

∥∥∥, we deduce that
〈
∂x H

x1−1,0,
[
Ü
(
Hx1(t)−1,0

)
− Ü

(
Hx1(t)−1,0 + Hx2(t)

0,1

) ]
g(t)

〉
L2

= O
(
e−√

2z(t)
∥∥∥−−→g(t)

∥∥∥
)
.

(114)

In conclusion, we obtain that

C(t) = −
∫
R

∂x H
x1(t)−1,0

(
U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1 + g(t)
)

− U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1

) )
dx

+
∫
R

∂x H
x1(t)−1,0 Ü

(
Hx1(t)−1,0

)
g(t, x) dx + O(α(t)). (115)

So

V I =
− ∫

R
∂x H

x1(t)−1,0

(
U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1 + g(t)
)

− U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1

) )
dx

∥∥∂x H0,1
∥∥2
L2

+

∫
R

∂x H
x1(t)−1,0 Ü

(
Hx1(t)−1,0

)
g(t, x) dx

∥∥∂x H0,1
∥∥2
L2

+ O(α(t)). (116)
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Step 6. (Sum of I V, V I.) From the identities (107) and

I V = −
〈
∂x H

x1(t)−1,0 , ∂2t φ(t)
〉
L2∥∥∂x H0,1

∥∥2
L2

,

we obtain that

I V = −
〈
U̇
(
Hx1(t)−1,0

)
+ U̇

(
Hx2(t)
0,1

)
− U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1

)
, ∂x H

x1(t)−1,0

〉
L2∥∥∂x H0,1

∥∥2
L2

−
〈
∂2x g(t) −

(
U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1 + g(t)
)

− U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1

) )
, ∂x H

x1(t)−1,0

〉
L2∥∥∂x H0,1

∥∥2
L2

.

(117)

In conclusion, from the identity
[
∂2x − Ü

(
Hx1(t)−1,0

) ]
∂x H

x1(t)−1,0 = 0

and by integration by parts, we have that

I V + V I = −
〈
U̇
(
Hx1(t)−1,0

)
+ U̇

(
Hx2(t)
0,1

)
− U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1

)
, ∂x H

x1(t)−1,0

〉
L2∥∥∂x H0,1

∥∥2
L2

+O(α(t)).

From our previous results, we conclude that

I + I I + I I I + I V + V + V I

= −
〈
U̇
(
Hx1(t)−1,0

)
+ U̇

(
Hx2(t)
0,1

)
− U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1

)
, ∂x H

x1(t)−1,0

〉
L2∥∥∂x H0,1

∥∥2
L2

+ O(α(t)). (118)

The conclusion of the lemma follows from estimate (118) with identity

Ȧ(z(t)) = −
〈
U̇
(
H−1,0

)
+ U̇

(
Hz(t)
0,1

)
− U̇

(
H−1,0 + Hz(t)

0,1

)
, ∂x H−1,0

〉
L2

,

which can be obtained from (21) by integration by parts with the fact that
〈
U̇
(
H−1,0 + Hz(t)

0,1

)
, ∂x H−1,0 + ∂x H

z(t)
0,1

〉
L2

= 0.

��
Remark 9. Since, we know from Lemma 6 that

∣∣∣ Ȧ(z(t)) + 4e−√
2z(t)

∣∣∣ � z(t)e−2
√
2z(t),
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and, by elementary calculus with change of variables, that
∥∥∂x H0,1

∥∥2
L2 = 1

2
√
2
, then

the estimates (76) and (77) obtained in Lemma 13 motivate us to study the following
ordinary differential equation

d̈(t) = 16
√
2e−√

2d(t). (119)

Clearly, the solution of (119) satisfies the equation

d

dt

[ ḋ(t)2

4
+ 8e−√

2d(t)
]

= 0. (120)

As a consequence, it can be verified that if d(t0) > 0 for some t0 ∈ R, then there are
real constants v > 0, c such that

d(t) = 1√
2
ln
( 8

v2
cosh

(√
2vt + c

)2)
for all t ∈ R. (121)

In conclusion, the solution of the equations

d̈1(t) =− 8
√
2e−√

2d(t),

d̈2(t) = 8
√
2e−√

2d(t),

d2(t) − d1(t) = d(t) > 0,

are given by

d2(t) = a + bt +
1

2
√
2
ln
( 8

v2
cosh

(√
2vt + c

)2)
, (122)

d1(t) = a + bt − 1

2
√
2
ln
( 8

v2
cosh

(√
2vt + c

)2)
, (123)

for a, b real constants. So, we now are motivated to study how close the modulation
parameters x1, x2 of Theorem 11 can be to functions d1, d2 satisfying, respectively the
identities (123) and (122) for constants v �= 0, a, b, c.

At first view, the statement of the Lemma 13 seems too complex and unnecessary
for use and that a simplified version should be more useful for our objectives. However,
we will show later that for a suitable choice of γ depending on the energy excess of
the solution φ(t), we can get a high precision in the approximation of the modulation
parameters x1, x2 by smooth functions d1, d2 satisfying (123) and (122) for a large time
interval.

4. Energy Estimate Method

Before applying Lemma 13, we need to construct a function F(t) to get better estimate
on the value of ‖(g(t), ∂t g(t))‖H1×L2 than that obtained in Theorem 11.

From now on, we consider φ(t) = H0,1(x − x2(t)) + H−1,0(x − x1(t)) + g(t, x),
with x1(t), x2(t) satisfying the orthogonality conditions of the Modulation Lemma and
x1, x2, (g(t), ∂t g(t)) and ε > 0 satisfying all the properties of Theorem 11. Before we
enunciate the main theorem of this section, we consider the following notation

〈
D2Etotal

(
Hx2(t)
0,1 + Hx1(t)−1,0

)−−→
g(t),

−−→
g(t)

〉
L2
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=
∫
R

∂x g(t, x)
2 + ∂t g(t, x)

2 + Ü
(
Hx2(t)
0,1 (x) + Hx1(t)−1,0 (x)

)
g(t, x)2 dx .

We also denote ω1(t, x) = ω
( x−x1(t)
x2(t)−x1(t)

)
forω a smooth cut-off function with the image

contained in the interval [0, 1] and satisfying the following condition

ω(x) =
{
1, if x ≤ 3

4 ,

0, if x ≥ 4
5 .

We consider now the following function

F(t) = 〈D2Etotal

(
Hx2(t)
0,1 + Hx1(t)−1,0

)−−→
g(t),

−−→
g(t)

〉
L2×L2

+ 2
∫
R

∂t g(t)∂x g(t)
[
ẋ1(t)ω1(t, x) + ẋ2(t)(1 − ω1(t, x))

]
dx

− 2
∫
R

g(t)
(
U̇ (Hx1(t)−1,0 ) + U̇ (Hx2(t)

0,1 ) − U̇ (Hx2(t)
0,1 + Hx1(t)−1,0 )

)
dx

+ 2
∫
R

g(t)
[
ẋ1(t)

2∂2x H
x1(t)−1,0 + ẋ2(t)

2∂2x H
x2(t)
0,1

]
dx

+
1

3

∫
R

U (3)(Hx2(t)
0,1 + Hx1(t)−1,0 )g(t)3 dx . (124)

Since x1, x2 are functions of class C2, it is not difficult to verify that (g(t), ∂t g(t))
solves the integral equation associated to the following partial differential equation

∂2t g(t, x) − ∂2x g(t, x) + Ü (Hx2(t)
0,1 (x) + Hx1(t)−1,0 (x))g(t, x) (II)

= −
[
U̇ (Hx2(t)

0,1 (x) + Hx1(t)−1,0 (x) + g(t, x)) − U̇ (Hx2(t)
0,1 (x) + Hx1(t)−1,0 (x))

− Ü (Hx2(t)
0,1 (x) + Hx1(t)−1,0 (x))g(t, x)

]

+ U̇ (Hx1(t)−1,0 (x)) + U̇ (Hx2(t)
0,1 (x)) − U̇ (Hx2(t)

0,1 (x) + Hx1(t)−1,0 (x))

− ẋ1(t)
2∂2x H

x1(t)−1,0 (x) − ẋ2(t)
2∂2x H

x2(t)
0,1 (x)

+ ẍ1(t)∂x H
x1(t)−1,0 (x) + ẍ2(t)∂x H

x2(t)
0,1 (x)

in the space H1(R) × L2(R).

Theorem 14. Assuming the hypotheses of Theorem 11 and recalling its notation, let δ(t)
be the following quantity

δ(t) =
∥∥∥−−→g(t)

∥∥∥
(
e−√

2z(t) max
j∈{1,2}

∣∣ẋ j (t)∣∣ + max
j∈{1,2}

∣∣ẋ j (t)∣∣3 e−
√
2z(t)
5

)

+
∥∥∥−−→g(t)

∥∥∥2
(max j∈{1, 2}

∣∣ẋ j (t)∣∣
z(t)

+ max
j∈{1, 2} ẋ j (t)

2 + max
j∈{1, 2}

∣∣ẍ j (t)∣∣
)

+
∥∥∥−−→g(t)

∥∥∥4 +
∥∥∥−−→g(t)

∥∥∥ max
j∈{1,2}

∣∣ẋ j (t)ẍ j (t)∣∣ .
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Then, there exist positive constants A1, A2, A3 such that the function F(t) satisfies the
inequalities

F(t) + A1ε
2 ≥ A2

∥∥∥−−→g(t)
∥∥∥2 ,

∣∣Ḟ(t)
∣∣ ≤ A3δ(t).

Remark 10. Theorems 11 and 14 imply

∣∣Ḟ(t)
∣∣ � ε

1
2

ln ( 1
ε
)

∥∥∥−−→g(t)
∥∥∥2 +

∥∥∥−−→g(t)
∥∥∥ ε

3
2 .

Proof. Since the formula defining function F(t) is very large,wedecompose the function
in a sum of five terms F1, F2, F3, F4 and F5. More specifically:

F1(t) =
∫
R

∂t g(t)
2 + ∂x g(t)

2 + Ü
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
g(t, x)2 dx,

F2(t) = − 2
∫
R

g(t)
[
U̇
(
Hx1(t)−1,0

)
+ U̇

(
Hx2(t)
0,1

)
− U̇

(
Hx2(t)
0,1 + Hx1(t)−1,0

)]
dx,

F3(t) = 2
∫
R

g(t)
[
ẋ1(t)

2∂2x H
x1(t)−1,0 + ẋ2(t)

2∂2x H
x2(t)
0,1

]
dx,

F4(t) = 2
∫
R

∂t g(t)∂x g(t)(ẋ1(t)ω1(t) + ẋ2(t)(1 − ω1(t))) dx,

F5(t) = 1

3

∫
R

U (3)
(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)3 dx .

First, we prove that
∣∣Ḟ(t)

∣∣ � δ(t). The main idea of the proof of this item is to

estimate each derivative
dFj (t)
dt , for 1 ≤ j ≤ 5, with an error of size O(δ(t)), then we

will check that the sum of these estimates are going to be a value of order O(δ(t)),
which means that the main terms of the estimates of these derivatives cancel.
Step 1. (The derivative of F1(t).) By definition of F1(t), we have that

dF1(t)

dt

= 2
∫
R

(
∂2t g(t, x) − ∂2x g(t, x) + Ü (Hx2(t)

0,1 (x) + Hx1(t)−1,0 (x))g(t, x)
)

∂t g(t, x) dx

−
∫
R

ẋ1(t)∂x H
x1(t)−1,0 (x)U (3)

(
Hx2(t)
0,1 (x) + Hx1(t)−1,0 (x)

)
g(t, x)2 dx

−
∫
R

ẋ2(t)∂x H
x2(t)
0,1 (x)U (3)

(
Hx2(t)
0,1 (x) + Hx1(t)−1,0 (x)

)
g(t, x)2 dx .

Moreover, from the identity (II) satisfied by g(t, x), we can rewrite the value of dF1(t)
dt

as

dF1(t)

dt
= 2

∫
R

[
U̇
(
Hx1(t)−1,0

)
+ U̇

(
Hx2(t)
0,1

)
− U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1

)]
∂t g(t) dx

− 2
∫
R

[
U̇
(
Hx2(t)
0,1 + Hx1(t)−1,0 + g(t)

)
− U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1

)]
∂t g(t) dx

+ 2
∫
R

Ü
(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)∂t g(t) dx
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− 2
∫
R

[
ẋ1(t)

2∂2x H
x1(t)−1,0 + ẋ2(t)

2∂2x H
x2(t)
0,1

]
∂t g(t) dx

+ 2
∫
R

[
ẍ1(t)∂x H

x1(t)−1,0 + ẍ2(t)∂x H
x2(t)
0,1

]
∂t g(t) dx

−
∫
R

[
ẋ1(t)∂x H

x1(t)−1,0 + ẋ2(t)∂x H
x2(t)
0,1

]
U (3)

(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)2 dx,

and, from the orthogonality conditions of the Modulation Lemma, we obtain

dF1(t)

dt

= 2
∫
R

Ü
(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)∂t g(t) dx

− 2
∫
R

[
U̇
(
Hx2(t)
0,1 + Hx1(t)−1,0 + g(t)

)
− U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1

) ]
∂t g(t) dx

+ 2
∫
R

[
U̇
(
Hx1(t)−1,0

)
+ U̇

(
Hx2(t)
0,1

)
− U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1

)]
∂t g(t) dx

− 2
∫
R

[
ẋ1(t)

2∂2x H
x1(t)−1,0 + ẋ2(t)

2∂2x H
x2(t)
0,1

]
∂t g(t) dx

+2
∫
R

[
ẍ1(t)ẋ1(t)∂

2
x H

x1(t)−1,0 + ẍ2(t)ẋ2(t)∂
2
x H

x2(t)
0,1

]
g(t) dx

−
∫
R

[
ẋ1(t)∂x H

x1(t)−1,0 + ẋ2(t)∂x H
x2(t)
0,1

]
U (3)

(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)2 dx,

which implies

dF1(t)

dt

= 2
∫
R

Ü
(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)∂t g(t, x) dx

− 2
∫
R

[
U̇
(
Hx2(t)
0,1 + Hx1(t)−1,0 + g(t)

)
− U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1

) ]
∂t g(t) dx

+ 2
∫
R

[
U̇
(
Hx1(t)−1,0

)
+ U̇

(
Hx2(t)
0,1

)
− U̇

(
Hx1(t)−1,0 + Hx2(t)

0,1

)]
∂t g(t) dx

− 2
∫
R

[
ẋ1(t)

2∂2x H
x1(t)−1,0 + ẋ2(t)

2∂2x H
x2(t)
0,1

]
∂t g(t) dx

−
∫
R

[
ẋ1(t)∂x H

x1(t)−1,0 + ẋ2(t)∂x H
x2(t)
0,1

]
U (3)

(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)2 dx

+ O (δ(t)) . (125)

Step 2. (The derivative of F2(t).) It is not difficult to verify that

dF2(t)

dt
= 2

∫
R

g(t)Ü
(
Hx1(t)−1,0

)
∂x H

x1(t)−1,0 ẋ1(t) dx

+ 2
∫
R

g(t)Ü
(
Hx2(t)
0,1

)
∂x H

x2(t)
0,1 ẋ2(t) dx
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− 2
∫
R

∂t g(t)
[
U̇
(
Hx1(t)−1,0

)
+ U̇

(
Hx2(t)
0,1

)
− U̇

(
Hx2(t)
0,1 + Hx1(t)−1,0

)]
dx

− 2
∫
R

Ü
(
Hx2(t)
0,1 + Hx1(t)−1,0

) [
∂x H

x1(t)−1,0 ẋ1(t) + ∂x H
x2(t)
0,1 ẋ2(t)

]
g(t) dx .

From the definition of the function U , we can deduce that

Ü
(
Hx2(t)
0,1 (x) + Hx1(t)−1,0 (x)

)
− Ü

(
Hx1(t)−1,0 (x)

)

= O
( ∣∣∣Hx1(t)−1,0 (x)Hx2(t)

0,1 (x)
∣∣∣ +
∣∣∣Hx2(t)

0,1 (x)
∣∣∣2
)
,

Ü
(
Hx2(t)
0,1 (x) + Hx1(t)−1,0 (x)

)
− Ü

(
Hx2(t)
0,1 (x)

)

= O
( ∣∣∣Hx1(t)−1,0 (x)Hx2(t)

0,1 (x)
∣∣∣ +
∣∣∣Hx1(t)−1,0 (x)

∣∣∣2
)
,

therefore, we obtain from Lemma 6 and Cauchy–Schwarz inequality that
∣∣∣∣
∫
R

[
Ü
(
Hx2(t)
0,1

)
− Ü

(
Hx2(t)
0,1 + Hx1(t)−1,0

)]
∂x H

x2(t)
0,1 g(t) dx

∣∣∣∣
�
∥∥∥−−→g(t)

∥∥∥ e−√
2z(t),∣∣∣∣

∫
R

[
Ü
(
Hx1(t)−1,0

)
− Ü

(
Hx2(t)
0,1 + Hx1(t)−1,0

)]
∂x H

x1(t)−1,0 g(t) dx

∣∣∣∣
�
∥∥∥−−→g(t)

∥∥∥ e−√
2z(t).

In conclusion, we obtain from the identity satisfied by dF2(t)
dt that

dF2(t)

dt
= −2

∫
R

∂t g(t)
[
U̇
(
Hx1(t)−1,0

)
+ U̇

(
Hx2(t)
0,1

)]
dx

+ 2
∫
R

∂t g(t, x)U̇
(
Hx2(t)
0,1 + Hx1(t)−1,0

)
dx + O(δ(t)). (126)

Step 3. (The derivative of F3(t).) From the definition of F3(t), we obtain that

dF3(t)

dt
= 2

∫
R

∂t g(t)
[
ẋ1(t)

2∂2x H
x1(t)−1,0 + ẋ2(t)

2∂2x H
x2(t)
0,1

]
dx

− 2
∫
R

g(t)
[
ẋ1(t)

3∂3x H
x1(t)−1,0 + ẋ2(t)

3∂3x H
x2(t)
0,1

]
dx

+ 4
∫
R

g(t)
[
ẋ1(t)ẍ1(t)∂

2
x H

x1(t)−1,0 + ẋ2(t)ẍ2(t)∂
2
x H

x2(t)
0,1

]
dx,

which can be rewritten as

dF3(t)

dt
= 2

∫
R

∂t g(t)
[
ẋ1(t)

2∂2x H
x1(t)−1,0 + ẋ2(t)

2∂2x H
x2(t)
0,1

]
dx

− 2
∫
R

g(t)
[
ẋ1(t)

3∂3x H
x1(t)−1,0 + ẋ2(t)

3∂3x H
x2(t)
0,1

]
dx + O(δ(t)). (127)



Dynamics of Two Interacting Kinks for the φ6 Model 1199

Step 4. (Sum of dF1
dt , dF2

dt , dF3
dt .) If we sum the estimates (125), (126) and (127), we

obtain that

3∑
i=1

dFi (t)

dt
= 2

∫
R

Ü
(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)∂t g(t) dx

− 2
∫
R

[
U̇
(
Hx2(t)
0,1 + Hx1(t)−1,0 + g(t)

)
− U̇

(
Hx2(t)
0,1 + Hx1(t)−1,0

) ]
∂t g(t) dx

−
∫
R

[
ẋ1(t)∂x H

x1(t)−1,0 + ẋ2(t)∂x H
x2(t)
0,1

]
U (3)

(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)2dx

− 2
∫
R

g(t)
[
ẋ1(t)

3∂3x H
x1(t)−1,0 + ẋ2(t)

3∂3x H
x2(t)
0,1

]
dx + O(δ(t)).

More precisely, from Taylor’s Expansion Theorem and since
∥∥∥−−→g(t)

∥∥∥4 ≤ δ(t),

3∑
i=1

dFi (t)

dt
= −

∫
R

[
U (3)

(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)2

]
∂t g(t) dx

−
∫
R

[
ẋ1(t)∂x H

x1(t)−1,0 + ẋ2(t)∂x H
x2(t)
0,1

]
U (3)

(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)2dx

− 2
∫
R

g(t)
[
ẋ1(t)

3∂3x H
x1(t)−1,0 + ẋ2(t)

3∂3x H
x2(t)
0,1

]
dx + O(δ(t)). (128)

Step 5. (The derivative of F4(t).) The computation of the derivative of F4(t)will bemore
careful since the motivation for the addition of this term is to cancel with the expression

−
∫
R

[
ẋ1(t)∂x H

x1(t)−1,0 + ẋ2(t)∂x H
x2(t)
0,1

]
U (3)

(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)2dx

of (128). The construction of functional F4(t) is based on themomentum correction term
of Lemma 4.2 of [13]. To estimate dF4(t)

dt with precision of O(δ(t)), it is just necessary
to study the time derivative of

2
∫
R

∂t g(t)∂x g(t)ẋ1(t)ω1(t) dx, (129)

since the estimate of the other term in F4(t) is completely analogous. First, we have the
identity

d

dt

[
2
∫
R

∂t g(t)∂x g(t)ẋ1(t)ω1(t) dx
]

= 2ẍ1(t)
∫
R

ω1(t, x)∂t g(t)∂x g(t) dx

+ 2ẋ1(t)
∫
R

ω1(t, x)∂
2
t g(t)∂x g(t) dx

+ 2ẋ1(t)
∫
R

∂tω1(t)∂t g(t)∂x g(t) dx

+ 2ẋ1(t)
∫
R

ω1(t, x)∂
2
t,x g(t, x)∂t g(t) dx .
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From the definition of ω1(t, x) = ω
( x−x1(t)
x2(t)−x1(t)

)
, we have

∂tω1(t, x) = ω̇
( x − x1(t)

x2(t) − x1(t)

)(−ẋ1(t)z(t) − ż(t)(x − x1(t))

z(t)2

)
. (130)

Since in the support of ω̇(x) is contained in the set 3
4 ≤ x ≤ 4

5 , we obtain the following
estimate:

2ẋ1(t)
∫
R

∂tω1(t)∂t g(t)∂x g(t) dx = O

(
max
j∈{1,2}

∣∣ẋ j (t)∣∣
z(t)

∥∥∥−−→g(t)
∥∥∥2
)

= O(δ(t)).

(131)

Clearly, from integration by parts, we deduce that

2ẋ1(t)
∫
R

ω1(t)∂
2
t,x g(t)∂t g(t) dx = O

(
max
j∈{1,2}

∣∣ẋ j (t)∣∣
z(t)

∥∥∥−−→g(t)
∥∥∥2
)

= O(δ(t)). (132)

Also, we have

2ẍ1(t)
∫
R

ω1(t)∂t g(t)∂x g(t) dx = O
(

max
j∈{1,2}

∣∣ẍ j (t)∣∣
∥∥∥−−→g(t)

∥∥∥2
)

= O(δ(t)). (133)

So, to estimate the time derivative of (129) with precision O(δ(t)), it is enough to
estimate

2ẋ1(t)
∫
R

ω1(t, x)∂
2
t g(t, x)∂x g(t, x) dx .

We have that

2ẋ1(t)
∫
R

ω1(t)∂
2
t g(t)∂x g(t) dx = 2ẋ1(t)

∫
R

ω1(t)∂
2
x g(t)∂x g(t) dx

− 2ẋ1(t)
∫
R

ω1(t)Ü
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
g(t)∂x g(t) dx

+ 2ẋ1(t)
∫
R

ω1(t)
[
∂2t g(t) − ∂2x g(t)

]
∂x g(t) dx

+ 2ẋ1(t)
∫
R

ω1(t)Ü
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
g(t)∂x g(t) dx .

(134)

From integration by parts, the first term of right-hand side of Eq. (134) satisfies

2ẋ1(t)
∫
R

ω1(t)∂
2
x g(t)∂x g(t) dx = O

(
max
j∈{1,2}

∣∣ẋ j (t)∣∣
z(t)

∥∥∥−−→g(t)
∥∥∥2
)

= O(δ(t)). (135)

From Taylor’s Expansion Theorem, we have that

∥∥∥∥U̇
(
Hx2(t)
0,1 + Hx1(t)−1,0 + g(t)

)
−

3∑
j=1

U ( j)
(
Hx2(t)
0,1 + Hx1(t)−1,0

) g(t) j−1

( j − 1)!
∥∥∥∥
L2
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= O

(∥∥∥−−→g(t)
∥∥∥3
)

. (136)

Also, we have verified the identity

U̇ (φ) + U̇ (θ) − U̇ (φ + θ) = 24φθ(φ + θ) − 6
( 4∑

j=1

(
5
j

)
φ jθ5− j

)
,

which clearly implies with the inequalities (D1), (D2) and Lemma 6 the estimate

∥∥∥U̇
(
Hx2(t)
0,1

)
+ U̇

(
Hx1(t)−1,0

)
− U̇

(
Hx2(t)
0,1 + Hx1(t)−1,0

)∥∥∥
L2(R)

= O
(
e−√

2z(t)
)

. (137)

Finally, it is not difficult to verify that

∥∥∥−ẋ1(t)
2∂2x H

x1(t)−1,0 − ẋ2(t)
2∂2x H

x2(t)
0,1 + ẍ1(t)∂x H

x1(t)−1,0 + ẍ2(t)∂x H
x2(t)
0,1

∥∥∥
L2(R)

= O

(
max
j∈{1,2}

∣∣ẋ j (t)∣∣2 + ∣∣ẍ j (t)∣∣
)

. (138)

Then, from estimates (136), (137) and (138) and the partial differential equation (II)
satisfied by g(t, x), we can obtain the estimate

2ẋ1(t)
∫
R

ω1(t)
[
∂2t g(t) − ∂2x g(t) + Ü

(
Hx1(t)−1,0 + Hx2(t)

0,1

)
g(t)

]
∂x g(t) dx

= −ẋ1(t)
∫
R

ω1(t)U
(3)
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
g(t)2∂x g(t) dx

− 2ẋ1(t)
3
∫
R

∂2x H
x1(t)−1,0 ∂x g(t) dx − 2ẋ1(t)ẋ2(t)

2
∫
R

ω1(t)∂
2
x H

x2(t)
0,1 ∂x g(t) dx

− 2ẋ1(t)
3
∫
R

(ω1(t) − 1)∂2x H
x1(t)−1,0 ∂x g(t) dx + O

(∥∥∥−−→g(t)
∥∥∥4 max

j∈{1,2}
∣∣ẋ j (t)∣∣

)

+ O

(
max
j∈{1,2}

∣∣ẍ j (t)ẋ j (t)∣∣
∥∥∥−−→g(t)

∥∥∥ + e−√
2z(t) max

j∈{1,2}
∣∣ẋ j (t)∣∣

∥∥∥−−→g(t)
∥∥∥
)

,

which, by integration by parts and by Cauchy–Schwarz inequality using the estimate
(96) for ω1, we obtain that

2ẋ1(t)
∫
R

ω1(t)
[
∂2t g(t) − ∂2x g(t) + Ü

(
Hx1(t)−1,0 + Hx2(t)

0,1

)
g(t)

]
∂x g(t) dx

= ẋ1(t)

3

∫
R

ω1(t)U
(4)
(
Hx1(t)−1,0 + Hx2(t)

0,1

) [
∂x H

x1(t)−1,0 + ∂x H
x2(t)
0,1

]
g(t)3 dx

− 2ẋ1(t)
3
∫
R

∂2x H
x1(t)−1,0 ∂x g(t) dx + O

(
max
j∈{1,2}

∣∣ẋ j (t)∣∣
z(t)

∥∥∥−−→g(t)
∥∥∥3
)

+O

(
max
j∈{1,2}

∣∣ẋ j (t)∣∣3 e−
√
2z(t)
5

∥∥∥−−→g(t)
∥∥∥
)
+ O(δ(t)). (139)
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Now, to finish the estimate of 2ẋ1(t)
∫
R

ω1(t, x)∂2t g(t, x)∂x g(t, x) dx, it remains to
study the integral given by

− 2ẋ1(t)
∫
R

ω1(t)Ü
(
Hx1(t)−1,0 (x) + Hx2(t)

0,1 (x)
)
g(t)∂x g(t) dx, (140)

which by integration by parts is equal to

ẋ1(t)
∫
R

ω1(t)U
(3)
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
∂x H

x1(t)−1,0 g(t)
2 dx

+ẋ1(t)
∫
R

ω1(t)U
(3)
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
∂x H

x2(t)
0,1 g(t)2 dx + O(δ(t)). (141)

Since the support of ω1(t, x) is included in {x | (x − x2(t)) ≤ − z(t)
5 } and the support

of 1 − ω1(t, x) is included in {x | (x − x1(t)) ≥ 3z(t)
4 }, from the exponential decay

properties of the kink solutions in (D1), (D2), (D3), (D4) we obtain the estimates
∣∣∣∣ẋ1(t)

∫
R

(ω1(t) − 1)U (3)
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
∂x H

x1(t)−1,0 g(t)
2 dx

∣∣∣∣ = O(δ(t)), (142)
∣∣∣∣ẋ2(t)

∫
R

ω1(t)U
(3)
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
∂x H

x2(t)
0,1 g(t)2 dx

∣∣∣∣ = O(δ(t)), (143)
∣∣∣∣13 ẋ1(t)

∫
R

(1 − ω1(t))U
(4)(Hx1(t)−1,0 + Hx2(t)

0,1 )∂x H
x1(t)−1,0 g(t)

3 dt

∣∣∣∣ = O(δ(t)), (144)
∣∣∣∣13 ẋ2(t)

∫
R

(ω1(t))U
(4)
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
∂x H

x2(t)
0,1 g(t)3 dt

∣∣∣∣ = O(δ(t)). (145)

In conclusion, we obtain that the estimates (142), (143) imply the following estimate

− 2ẋ1(t)
∫
R

ω1(t, x)Ü
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
g(t)∂x g(t) dx

=
∫
R

ẋ1(t)∂x H
x1(t)−1,0U

(3)
(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)2 dx + O(δ(t)). (146)

Then, the estimates (134), (139), (144), (145) and (146) imply that

2
d

dt

(∫
R

∂t g(t)∂x g(t)ẋ1(t)ω1(t) dx

)

= −2ẋ1(t)
3
∫
R

∂2x H
x1(t)−1,0 ∂x g(t) dx

+
1

3

∫
R

U (4)
(
Hx1(t)−1,0 + Hx2(t)

0,1

) (
ẋ1(t)∂x H

x1(t)−1,0

)
g(t)3 dx

+
∫
R

(
ẋ1(t)∂x H

x1(t)−1,0

)
U (3)(Hx2(t)

0,1 + Hx1(t)−1,0 )g(t)2 dx + O(δ(t)).

By an analogous argument, we deduce that

2
d

dt

(∫
R

∂t g(t)∂x g(t)ẋ2(t)(1 − ω1(t)) dx

)
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= −2ẋ2(t)
3
∫
R

∂2x H
x2(t)
0,1 ∂x g(t) dx

+
ẋ2(t)

3

∫
R

U (4)
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
∂x H

x2(t)
0,1 g(t)3 dx

+
∫
R

ẋ2(t)∂x H
x2(t)
0,1 U (3)

(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)2 dx

+ O(δ(t)).

In conclusion, we have that

dF4(t)

dt
=
∫
R

[
ẋ1(t)∂x H

x1(t)−1,0 + ẋ2(t)∂x H
x2(t)
0,1

]
U (3)

(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)2 dx

− 2ẋ2(t)
3
∫
R

∂2x H
x2(t)
0,1 ∂x g(t) dx − 2ẋ1(t)

3
∫
R

∂2x H
x1(t)−1,0 ∂x g(t) dx

+
∫
R

1

3
U (4)

(
Hx1(t)−1,0 + Hx2(t)

0,1

) [
ẋ1(t)∂x H

x1(t)−1,0 + ẋ2(t)∂x H
x2(t)
0,1

]
g(t)3 dx

+ O(δ(t)). (147)

Step 6. (The derivative of F5(t).) We have that

dF5(t)

dt
=
∫
R

U (3)
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
g(t)2∂t g(t) dx

− 1

3

∫
R

U (4)
(
Hx1(t)−1,0 + Hx2(t)

0,1

) [
ẋ1(t)∂x H

x1(t)−1,0 + ẋ2(t)∂x H
x2(t)
0,1

]
g(t)3 dx .

(148)

Step 7. (Conclusion of estimate of |Ḟ(t)|) From the identities (147) and (148), we obtain
that

dF4(t)

dt
+
dF5(t)

dt
=
∫
R

ẋ1(t)∂x H
x1(t)−1,0U

(3)
(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)2 dx

+
∫
R

ẋ2(t)∂x H
x2(t)
0,1 U (3)

(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)2 dx

− 2ẋ1(t)
3
∫
R

∂2x H
x1(t)−1,0 ∂x g(t) dx − 2ẋ2(t)

3
∫
R

∂2x H
x2(t)
0,1 ∂x g(t) dx

+
∫
R

U (3)
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
g(t)2∂t g(t) dx + O(δ(t)). (149)

Then, the sum of identities (128) and (149) implies
∑5

i=1
dFi (t)
dt = O(δ(t)), this finishes

the proof of inequality
∣∣Ḟ(t)

∣∣ = O(δ(t)).
Proof of F(t) + A1ε

2 ≥ A2ε
2. The Coercivity Lemma implies that ∃ c > 0, such that

F1(t) ≥ c
∥∥∥−−→g(t)

∥∥∥2 . Also, from Theorem 11, we have the global estimate

max
j∈{1,2}

∣∣ẋ j (t)∣∣2 + ∣∣ẍ j (t)∣∣ + e−√
2z(t) +

∥∥∥−−→g(t)
∥∥∥2 = O(ε), (150)



1204 A. Moutinho

which implies that |F3(t)| = O
( ∥∥∥−−→g(t)

∥∥∥ ε
)
, |F4(t)| = O

( ∥∥∥−−→g(t)
∥∥∥2 ε

1
2

)
, |F5(t)| =

O
( ∥∥∥−−→g(t)

∥∥∥2 ε
1
2

)
. Also, since

∣∣∣U
(
Hx1(t)−1,0 (x)

)
+ U̇

(
Hx2(t)
0,1 (x)

)
− U̇

(
Hx2(t)
0,1 (x) + Hx1(t)−1,0 (x)

)∣∣∣
= O

(∣∣∣Hx1(t)−1,0 (x)Hx2(t)
0,1 (x)

[
Hx2(t)
0,1 (x) + Hx1(t)−1,0 (x)

]∣∣∣
)

,

Lemma 6 and Cauchy–Schwarz inequality imply that

|F2(t)| = O
( ∥∥∥−−→g(t)

∥∥∥ e−√
2z(t)

)
.

Then, the conclusion of F(t) + A1ε
2 ≥ A2

∥∥∥−−→g(t)
∥∥∥2 follows from Young inequality

for ε small enough. ��
Remark 11. In the proof of Theorem 14, from Theorem 11 we have |F2(t)| + |F3(t)| =
O
(∥∥∥−−→g(t)

∥∥∥ ε
)

. Since |F4(t)|+ |F5(t)| = O

(∥∥∥−−→g(t)
∥∥∥2 ε

1
2

)
and |F1(t)| �

∥∥∥−−→g(t)
∥∥∥2 , then

Young inequality implies that

|F(t)| �
∥∥∥−−→g(t)

∥∥∥2 + ε2.

Remark 12. (General Energy Estimate) For any 0 < θ, γ < 1, we can create a smooth
cut-off function 0 ≤ χ(x) ≤ 1 such that

χ(x) =
{
0, if x ≤ θ(1 − γ ),

1, if x ≥ θ.

We define

χ0(t, x) = χ

(
x − x1(t)

x2(t) − x1(t)

)
.

If we consider the following function

L(t) =
〈
D2Etotal(H

x2(t)
0,1 + Hx1(t)−1,0 )

−−→
g(t),

−−→
g(t)

〉
L2×L2

+ 2
∫
R

∂t g(t)∂x g(t)
[
ẋ1(t)χ0(t) + ẋ2(t) (1 − χ0(t))

]
dx

− 2
∫
R

g(t)
(
U̇
(
Hx1(t)−1,0

)
+ U̇

(
Hx2(t)
0,1

)
− U̇

(
Hx2(t)
0,1 + Hx1(t)−1,0

))
dx

+ 2
∫
R

g(t)
[
ẋ1(t)

2∂2x H
x1(t)−1,0 + ẋ2(t)

2∂2x H
x2(t)
0,1

]
dx

+
1

3

∫
R

U (3)
(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)3 dx,

then, by a similar proof to the Theorem 14, we obtain that if 0 < ε 
 1 and

δ1(t) = δ(t) + max
j∈{1,2}

∣∣ẋ j (t)∣∣3 max(e−√
2z(t)(1−θ), e−√

2z(t)θ(1−γ ))

∥∥∥−−→g(t)
∥∥∥
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− max
j∈{1,2}

∣∣ẋ j (t)∣∣3 e−
√
2
5 z(t)

∥∥∥−−→g(t)
∥∥∥ , (151)

then there are positive constants A1, A2 > 0 such that∣∣L̇(t)
∣∣ = O(δ1(t)), L(t) + A1ε

2 ≥ A2ε
2.

Our first application of Theorem 14 is to estimate the size of the remainder
∥∥∥−−→g(t)

∥∥∥ during
a long time interval. More precisely, this corresponds to the following theorem, which
is a weaker version of Theorem 2.

Theorem 15. There is δ > 0, such that if 0 < ε < δ, (φ(0), ∂tφ(0)) ∈ S × L2(R) and
Etotal(φ(0), ∂tφ(0)) = 2Epot (H0,1) + ε, then there exist x1, x2 ∈ C2(R) such that the
unique solution of (1) is given, for any t ∈ R, by

φ(t) = H0,1(x − x2(t)) + H−1,0(x − x1(t)) + g(t), (152)

with g(t) satisfying orthogonality conditions of the Modulation Lemma and

∥∥∥−−→g(t)
∥∥∥2
H1×L2

≤ C

[∥∥∥−−→g(0)
∥∥∥2
H1×L2

+

(
ε ln

1

ε

)2
]
exp

(
Cε

1
2 |t |

ln 1
ε

)
, (153)

for all t ∈ R.

Proof of Theorem 15. In notation of Theorem 14, from Theorem 14 and Remark 11,
there are uniform positive constants A2, A1 such that for all t ≥ 0

A2

∥∥∥−−→g(t)
∥∥∥2 ≤ F(t) + A1ε

2 ≤ C
( ∥∥∥−−→g(t)

∥∥∥2 + ε2
)
. (154)

From now on, we denote G(t) := F(t)+ A1
(
ε ln 1

ε

)2
. From the inequality (154) and

Remark 10, there is a constant C > 0 such that, for all t ≥ 0, G(t) satisfies

G(t) ≤ G(0) + C

(∫ t

0
G(s)

ε
1
2

ln 1
ε

ds

)
.

In conclusion, from Gronwall Lemma, we obtain that G(t) ≤ G(0) exp
(
Cε

1
2 t

ln 1
ε

)
for

all t ≥ 0. Then, from the definition of G and inequality (154), we verify the inequality
(153) for any t ≥ 0. The proof of inequality (153) for the case t < 0 is completely
analogous. ��

5. Global Dynamics of Modulation Parameters

Lemma 16. In notation of Theorem 2, ∃C > 0, such that if the hypotheses of Theo-

rem 2 are true, then for
−−→
g(0) = (g(0, x), ∂t g(0, x)) we have that there are functions

p1(t), p2(t) ∈ C1(R≥0), such that for j ∈ {1, 2} and any t ≥ 0, we have:

∣∣ẋ j (t) − p j (t)
∣∣ �

( ∥∥∥−−→g(0)
∥∥∥
H1×L2

+ ε ln
1

ε

)
ε

1
2 exp

(2Cε
1
2 t

ln 1
ε

)
, (155)

∣∣∣ ṗ j (t) − (−1) j8
√
2e−√

2z(t)
∣∣∣ �

( ∥∥∥−−→g(0)
∥∥∥
H1×L2

+ ε ln 1
ε

)2

ln ln 1
ε

exp
(2Cε

1
2 t

ln 1
ε

)
. (156)
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Proof. In the notation of Lemma 13, we consider the functions p j (t) for j ∈ {1, 2} and
we consider θ = 1−γ

2−γ
, the value of γ will be chosen later. From Lemma 13, we have

that
∣∣ẋ j (t) − p j (t)

∣∣ �
[
1 +

1

γ z(t)

](
max
j∈{1,2}

∣∣ẋ j (t)∣∣
∥∥∥−−→g(t)

∥∥∥ +
∥∥∥−−→g(t)

∥∥∥2
)

+ max
j∈{1,2}

∣∣ẋ j (t)∣∣ z(t)e−√
2z(t).

We recall from Theorem 11 the estimates max j∈{1, 2}
∣∣ẋ j (t)∣∣ = O(ε

1
2 ), e−√

2z(t) =
O(ε). From Theorem 15, we have that

∥∥∥−−→g(t)
∥∥∥ �

(∥∥∥−−→g(0)
∥∥∥ + ε ln

1

ε

)
exp

(Cε
1
2 |t |

ln 1
ε

)
.

To simplify our computations, we denote c0 =
∥∥∥−−→g(0)

∥∥∥+ε ln 1
ε

ε ln 1
ε

. Then, we obtain for any

j ∈ {1, 2} and all t ≥ 0 that

∣∣ẋ j (t) − p j (t)
∣∣ �

[
1 +

1

γ ln 1
ε

]
c0ε

3
2 ln

1

ε
exp

(Cε
1
2 t

ln 1
ε

)

+

[
1 +

1

γ ln 1
ε

](
c0ε ln

1

ε

)2

exp
(2Cε

1
2 t

ln 1
ε

)
. (157)

Since e−√
2z(t) � ε,wededuce for ε 
 1 that z(t)e−√

2z(t) � ε ln 1
ε

< ε
1− γ

(2−γ )2 ln 1
ε
.

Then, for any t ≥ 0, we obtain from the same estimates and the definition (75) of α(t)
that

α(t) � c20

(
ε ln

1

ε

)2 [
max

k∈{1, 2}

( 1

γ z(t)

)k
+ ε

1−γ
2−γ

]
exp

(
2
Cε

1
2 t

ln 1
ε

)

+ c0

[
ε
2− γ

(2−γ )2 ln
1

ε

]
exp

(Cε
1
2 t

ln 1
ε

)[
1 +

1

γ z(t)
+

ε
1
2

(γ z(t))2

]
+

ε
1+ 2(1−γ )

2−γ

z(t)γ
.

(158)

However, if γ ln 1
ε

≤ 1 and z(0) ∼= ln 1
ε
, which is possible, then the right-hand side

of inequality (158) is greater than or equivalent to
(
ε ln 1

ε

)2
while 0 ≤ t � ln 1

ε

ε
1
2

. But,

it is not difficult to verify for γ = ln ln 1
ε

ln 1
ε

that the right-hand side of inequality (158) is

smaller than
(
ε ln 1

ε

)2
.

Therefore, from now on, we are going to study the right-hand side of (158) for
1

ln( 1
ε
)

< γ < 1. Since we know that ln ( 1
ε
) � z(t) from Theorem 11, the inequality (158)

implies for 1
ln ( 1

ε
)

< γ < 1 and t ≥ 0 that

α(t) � β(t) :=
(
c0ε ln

1

ε

)2 [ 1

γ ln 1
ε

+ ε
1−γ
2−γ

]
exp

(
2
Cε

1
2 t

ln 1
ε

)
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+ c0ε
2− γ

2(2−γ ) ln
1

ε
exp

(Cε
1
2 t

ln 1
ε

)
+

ε
1+ 2(1−γ )

2−γ

γ ln 1
ε

= β1(t) + β2(t) + β3(t), respectively. (159)

For ε > 0 small enough, it is not difficult to verify that if β3(t) ≥ β1(t), then γ ≥ ln ln 1
ε

ln 1
ε

.

Moreover, if we have that 1 > γ > 8
ln ln 1

ε

ln 1
ε

, we obtain from the following estimate

β3(t) = ε2ε
−γ
2−γ

γ ln 1
ε

>
ε2

ln 1
ε

exp

(
8 ln ln 1

ε

2 − γ

)
= ε2

ln 1
ε

(
ln

1

ε

) 8
2−γ

,

that β3(t) >

(
ε ln ( 1

ε
)
)2

ln ln 1
ε

. If γ ≤ ln ln ( 1
ε
)

ln 1
ε

, then

(
ε ln 1

ε

)2
ln ln 1

ε

� β1(t) for any t ≥ 0.

In conclusion, for any case we have that

(
ε2 ln 1

ε

)2
ln ln 1

ε

� β(t) when t ≥ 0, so we choose

γ = ln ln 1
ε

ln 1
ε

.As a consequence, there exists a constantC1 > 0 such that, for any t ∈ R≥0,

α(t) ≤ C1c
2
0

(
ε ln 1

ε

)2
ln ln 1

ε

exp
(2Cε

1
2 t

ln 1
ε

)
. (160)

So, the estimates (157), (160), Remark 9 and our choice of γ imply the inequalities (155)
and (156). ��

Remark 13. If ε
1
2(

ln 1
ε

)m �
∥∥∥−−→g(0)

∥∥∥ for a constant m > 0, then, for γ = 1
8 , we have from

Lemma 13 that there is p(t) ∈ C2(R) satisfying for all t ≥ 0

|ż(t) − p(t)| � ε
1
2

∥∥∥−−→g(0)
∥∥∥ , (161)

∣∣∣ ṗ(t) − 16
√
2e−√

2z(t)
∣∣∣ �

∥∥∥−−→g(0)
∥∥∥2

z(t)
. (162)

Then, for the smooth real function d(t) satisfying

d̈(t) = 16
√
2e−√

2d(t), (d(0), ḋ(0)) = (z(0), ż(0)),

and since e−√
2z(t) � ε, ln 1

ε
� z(t), we can deduce for any t ≥ 0 that Y (t) = (z(t) −

d(t)) satisfies the following integral inequality for a constant K > 0

|Y (t)| ≤ K

⎛
⎜⎝ε

1
2

∥∥∥−−→g(0)
∥∥∥ t +

∥∥∥−−→g(0)
∥∥∥2

ln 1
ε

t2 +
∫ t

0

∫ s

0
ε |Y (s1)| ds1 ds

⎞
⎟⎠ = �(|Y |) (t),

Y (0) = 0, Ẏ (0) = 0.
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Indeed, for any k ∈ N and all t ≥ 0, |Y (t)| ≤ �(k) (|Y |) (t). We also can verify for
any T > 0 that �(k) (|Y |) (t) is a Cauchy sequence in the Banach space L∞ [0, T ] . In

conclusion, we can deduce for any t ≥ 0 that |Y (t)| � Q(t K
1
2 ), where Q(t) is the

solution of the following integral equation

Q(t) = ε
1
2

∥∥∥−−→g(0)
∥∥∥ t +

∥∥∥−−→g(0)
∥∥∥2

ln 1
ε

t2 +
∫ t

0

∫ s

0
εQ(s1) ds1 ds.

By standard ordinary differential equation techniques, we deduce for any t ≥ 0 that

|z(t) − d(t)| � Q(t K
1
2 ) =

⎛
⎜⎝
∥∥∥−−→g(0)

∥∥∥
2

+

∥∥∥−−→g(0)
∥∥∥2

ε ln 1
ε

⎞
⎟⎠ eε

1
2 t K

1
2

+

⎛
⎜⎝

−
∥∥∥−−→g(0)

∥∥∥
2

+

∥∥∥−−→g(0)
∥∥∥2

ε ln 1
ε

⎞
⎟⎠ e−ε

1
2 t K

1
2 − 2

∥∥∥−−→g(0)
∥∥∥2

ε ln 1
ε

,

(163)

and from ż(0) = ḋ(0) and the estimates (161) and (162), we obtain that

∣∣ż(t) − ḋ(t)
∣∣ � |p(0) − ż(0)| +

∫ t

0
ε |z(s) − d(s)| ds, (164)

from which with (163) we obtain for all t ≥ 0 that

∣∣ż(t) − ḋ(t)
∣∣ � eε

1
2 t K

1
2
ε

1
2

⎛
⎜⎝
∥∥∥−−→g(0)

∥∥∥ +
∥∥∥−−→g(0)

∥∥∥2
ε ln 1

ε

⎞
⎟⎠ . (165)

However, the precision of the estimates (163) and (165) is very bad when ε− 1
2 
 t,

whichmotivate us to applyLemma13 to estimate themodulation parameters x1(t), x2(t)

for |t | � ln 1
ε

ε
1
2

.

Remark 14. We recall from Theorem 4 the definitions of the functions d1(t), d2(t). If∥∥∥−−→g(0)
∥∥∥ ≥ ε

1
2(

ln 1
ε

)5 , then, using estimates

max
j∈{1, 2}

∣∣d j (t) − x j (t)
∣∣ = O(min(ε|t |, ε 1

2 |t |)), max
j∈{1, 2}

∣∣ḋ j (t) − ẋ j (t)
∣∣ = O(ε|t |),

we deduce for a positive constant C large enough the inequalities (10) and (11) of
Theorem 4.

Remark 15. If
∥∥∥−−→g(0)

∥∥∥ ≤ ε
1
2(

ln 1
ε

)5 ,

the estimates of max j∈{1,2}
∣∣x j (t) − d j (t)

∣∣ , max j∈{1, 2}
∣∣ẋ j (t) − ḋ j (t)

∣∣ can be done by
studying separated cases depending on the initial data z(0), ż(0).
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Lemma 17. ∃K > 0 such that if
∥∥∥−−→g(0)

∥∥∥ ≤ ε
1
2(

ln 1
ε

)5 , where
−−→
g(0) = (g(0, x), ∂t g(0, x)) ,

and all the hypotheses of Theorem 4 are true and ε(
ln 1

ε

)8 � e−√
2z(0) � ε, then we have

for t ≥ 0 that

max
j∈{1, 2}

∣∣x j (t) − d j (t)
∣∣ = O

⎛
⎜⎝
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln 1

ε

)2 (
ln 1

ε

)6
ε ln ln 1

ε

exp
(K ε

1
2 t

ln 1
ε

)
⎞
⎟⎠ ,

(166)

max
j∈{1, 2}

∣∣ẋ j (t) − ḋ j (t)
∣∣ = O

(
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln

1

ε

)2 (
ln 1

ε

)6
ε

1
2 ln ln 1

ε

exp
(K ε

1
2 t

ln 1
ε

))
.

(167)

Proof of Lemma 17. First, in notation of Lemma 16, we consider

p(t) := p2(t) − p1(t), z(t) := x2(t) − x1(t), ż(t) := ẋ2(t) − ẋ1(t).

Also, motivated by Remark 9, we consider the smooth function d(t) solution of the
following ordinary differential equation

{
d̈(t) = 16

√
2e−√

2d(t),

(d(0), ḋ(0)) = (z(0), ż(0)).

Step 1. (Estimate of z(t), ż(t)) From now on, we denote the functions W (t) = z(t) −
d(t), V (t) = p(t) − ḋ(t). Then, Lemma 16 implies that W, V satisfy for any t ∈ R≥0
the following differential estimates

∣∣Ẇ (t) − V (t)
∣∣ = O

(
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln

1

ε

)
ε
1
2 exp

(2Cε
1
2 t

ln 1
ε

))
,

∣∣∣V̇ (t) + 16
√
2e−

√
2d(t) − 16

√
2e−

√
2z(t)

∣∣∣ = O

⎛
⎜⎝
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln 1

ε

)2
ln ln ( 1ε )

exp
(2Cε

1
2 t

ln 1
ε

)
⎞
⎟⎠ .

From the above estimates and Taylor’s Expansion Theorem, we deduce for t ≥ 0 the
following system of differential equations, while |W (t)| < 1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẇ (t) = V (t) + O
(
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln

1

ε

)
ε

1
2 exp

(2Cε
1
2 t

ln 1
ε

))
,

V̇ (t) = − 32e−√
2d(t)W (t) + O

(
e−√

2d(t)W (t)2
)

+ O

⎛
⎜⎝
max

(∥∥∥−−→g(0)
∥∥∥ , ε ln 1

ε

)2
ln ln 1

ε

exp
(2Cε

1
2 t

ln 1
ε

)
⎞
⎟⎠ .

(168)
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Recalling Remark 9, we have that

d(t) = 1√
2
ln
( 8

v2
cosh (

√
2vt + c)

2)
, (169)

where v > 0 and c ∈ R are chosen such that (d(0), ḋ(0)) = (z(0), ż(0)). Moreover, it
is not difficult to verify that

v =
( ż(0)2

4
+ 8e−√

2z(0)
) 1

2
, c = arctanh

⎛
⎝ ż(0)[

32e−√
2z(0) + ż(0)2

] 1
2

⎞
⎠.

Moreover, since 8e−√
2z(0) = v2 sech (c)2 ≤ 4v2e−2|c|, we obtain from the hypothesis

for e−√
2z(0) that ε

1
2(

ln 1
ε

)4 � v � ε
1
2 and as a consequence the estimate |c| � ln (ln ( 1

ε
)).

Also, it is not difficult to verify that the functions

n(t) = (
√
2vt + c) tanh (

√
2vt + c) − 1, m(t) = tanh (

√
2vt + c)

generate all solutions of the following ordinary differential equation

ÿ(t) = −32e−√
2d(t)y(t), (170)

which is obtained from the linear part of the system (168).
To simplify our computations, we use the following notation

error1(t) = max
( ∥∥∥(−−→g(0)

∥∥∥ , ε ln
1

ε

)
ε

1
2 exp

(2Cε
1
2 t

ln 1
ε

)
,

error2(t) = e−√
2d(t)(z(t) − d(t))2 +

max
( ∥∥∥−−→g(0)

∥∥∥ , ε ln 1
ε

)2
ln ln 1

ε

exp
(2Cε

1
2 t

ln 1
ε

)
.

From the variation of parameters technique for ordinary differential equations, we
can write that

[
W (t)
V (t)

]
= c1(t)

[
m(t)
ṁ(t)

]
+ c2(t)

[
n(t)
ṅ(t)

]
, (171)

such that for any t ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
m(t) n(t)
ṁ(t) ṅ(t)

][
ċ1(t)
ċ2(t)

]
=
[
O(error1(t))
O(error2(t))

]
,

[
m(0) n(0)
ṁ(0) ṅ(0)

][
c1(0)
c2(0)

]
=
[

0

O
([ ∥∥∥−−→g(0)

∥∥∥ + ε ln 1
ε

]
ε

1
2

)
]

.
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The presence of an error in the condition of the initial data c1(0), c2(0) comes from
estimate (155) of Lemma 16. Since for all t ∈ R m(t)ṅ(t) − ṁ(t)n(t) = √

2v, we can

verify by Cramer’s rule and from the fact that ε
1
2(

ln 1
ε

)4 � v that

c1(0) = O

(
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln

1

ε

)
|c tanh (c) − 1|

(
ln

1

ε

)4
)

, (172)

c2(0) = O

(
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln

(1
ε

))
|tanh (c)|

(
ln

1

ε

)4
)

, (173)

and, for all t ≥ 0, the estimates

|ċ1(t)| =O

(
ε

1
2

v
|ṅ(t)|max

(∥∥∥−−→g(0)
∥∥∥ , ε ln

1

ε

)
exp

(2Cε
1
2 t

ln 1
ε

))

+ O
(
|n(t)|v sech (

√
2vt + c)

2 |W (t)|2
)

+ O

⎛
⎜⎝|n(t)|

max
( ∥∥∥−−→g(0)

∥∥∥ , ε ln 1
ε

)2
v ln ln 1

ε

exp
(2Cε

1
2 t

ln 1
ε

)
⎞
⎟⎠ , (174)

|ċ2(t)| = O
(
|m(t)| v sech (

√
2vt + c)

2 |W (t)|2
)

+ O

⎛
⎜⎝|m(t)|

max
( ∥∥∥−−→g(0)

∥∥∥ , ε ln 1
ε

)2
v ln ln 1

ε

exp
(2Cε

1
2 t

ln 1
ε

)
⎞
⎟⎠

+ O

(
max

(∥∥∥−−→g(0)
∥∥∥ , ε ln

1

ε

)
exp

(2Cε
1
2 t

ln 1
ε

)
ε

1
2 sech(

√
2vt + c)2

)
. (175)

Since we have for all x ≥ 0 that

d

dx

(
− sech (x)2x

2
+
3 tanh (x)

2

)
= sech (x)2

2
+ x tanh (x) sech (x)2

≥ |x tanh (x) − 1| sech (x)2

2
= |n(x)| sech (x)2

2
,

we deduce from the Fundamental Theorem of Calculus, the identity n(t) = (
√
2vt +

c) tanh(
√
2vt + c) − 1, estimate ε

1
2

ln ( 1
ε
)
4 � v � ε

1
2 and the estimates (174), (175) that

|c1(t) − c1(0)| = O

(
max

(∥∥∥−−→g(0)
∥∥∥ , ε ln

1

ε

)(
ln

1

ε

)
exp

(2Ctε
1
2

ln 1
ε

))

+ O

(
exp

(2Cε
1
2 t

ln 1
ε

)
‖n(s)‖L∞

s [0,t] max
( ∥∥∥−−→g(0)

∥∥∥ , ε ln
1

ε

)2 (ln 1
ε

)5
ε ln ln 1

ε

)
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+ O

(∣∣∣∣∣−
sech (x)2x

2
+
3 tanh (x)

2

∣∣∣
√
2vt+c

c

∣∣∣∣∣ ‖W (s)‖2L∞
s [0,t]

)
, (176)

for any t ≥ 0. From a similar argument, we deduce that

|c2(t) − c2(0)| = O
(
‖W (s)‖2L∞

s [0,t]
[
tanh (

√
2vt + c) − tanh (c)

])

+ O

(
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln

1

ε

)2 [
exp

(
2Cε

1
2 t

ln 1
ε

)
− 1

] (
ln 1

ε

)5
ε ln ln 1

ε

)

+ O

(
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln

1

ε

)(
ln

1

ε

)
exp

(
2Ct

ε
1
2

ln 1
ε

))
, (177)

for any t ≥ 0.

From the estimates v � ε
1
2 , |c| � ln ln 1

ε
, we obtain for ε 
 1 while t ≥ 0 and

‖W (s)‖L∞
s [0,t]

[
ε

1
2 t + ln ln

1

ε

]
ln ln

1

ε
≤ 1, (178)

that

‖W (s)‖2L∞
s [0,t] (1 + |n(t)|) � ‖W (s)‖L∞

s [0,t]
1

ln ln 1
ε

. (179)

Also, from |n(t)| ≤ (
√
2v|t | + |c|), we deduce for any t ≥ 0 that

|n(t)| � ε
1
2 t + ln ln

1

ε
�
(
ln

1

ε

)
exp

(
ε

1
2 t

ln 1
ε

)
(180)

In conclusion, the estimates (176), (177), (179), (180) and the definition of W (t) =
z(t) − d(t) imply that while t ≥ 0 and the condition (178) is true, then

|W (t)| � f (t) =
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln 1

ε

)2 (
ln 1

ε

)6
ε ln ln 1

ε

exp

(
(2C + 1)ε

1
2 t

ln 1
ε

)
. (181)

Then, from the expression for V (t) in the equation (171) and the estimates (176),
(177), (180), we obtain that if inequality (181) is true and t ≥ 0, then

|V (t)| � max
( ∥∥∥−−→g(0)

∥∥∥ , ε ln
(1

ε

))2 ln ( 1
ε
)
6

ε
1
2 ln ln ( 1

ε
)
exp

(
(4C + 3)ε

1
2 t

ln 1
ε

)

+ max
( ∥∥∥−−→g(0)

∥∥∥ , ε ln
1

ε

)4 (
ln 1

ε

)12
ε

3
2
[
ln ln 1

ε

]2 exp
( (4C + 3)ε

1
2 t

ln 1
ε

)
, (182)

which implies the following estimate

∣∣Ẇ (t)
∣∣ � max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln

1

ε

)2 (
ln 1

ε

)6
ε

1
2 ln ln 1

ε

exp
( (4C + 3)ε

1
2 t

ln 1
ε

)
. (183)
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Indeed, from the bound
∥∥∥−−→g(0)

∥∥∥ � ε
1
2(

ln 1
ε

)4 , we deduce that (178) is true if 0 ≤

t ≤
[
ln ln 1

ε

]
ln 1

ε

(4C+2)ε
1
2

. As a consequence, the estimates (181) and (183) are true if 0 ≤ t ≤
[
ln ln 1

ε

]
ln 1

ε

(4C+2)ε
1
2

.

But, for t ≥ 0, we have that

|W (t)| � ε
1
2 t � 3

(
ln

1

ε

)
exp

(
ε

1
2 t

3 ln 1
ε

)
,
∣∣Ẇ (t)

∣∣ � εt � 3ε
1
2

(
ln

1

ε

)
exp

(
ε

1
2 t

3 ln 1
ε

)
.

(184)

Since f (t) defined in inequality (181) is strictly increasing and f (0) � 1(
ln 1

ε

)2
ln ln 1

ε

,

there is an instant TM > 0 such that

exp

(
ε

1
2 TM
ln 1

ε

)
f (TM ) = 1

ln 1
ε

(
ln ln 1

ε

)2 , (185)

from which with estimate (181) and condition (178) we deduce that (181) is true for

0 ≤ t ≤ TM .Also, from the identity (185) and the fact that
∥∥∥−−→g(0)

∥∥∥ � ε
1
2(

ln 1
ε

)4 we deduce

1

ln 1
ε

(
ln ln 1

ε

)2 � 1(
ln 1

ε

)2
ln ln 1

ε

exp

(
(2C + 2)ε

1
2 TM

ln 1
ε

)
,

from which we obtain that TM ≥ 3
8(C+1)

ln ln 1
ε

(
ln 1

ε

)

ε
1
2

for ε 
 1. In conclusion, since f (t)

is an increasing function, we have for t ≥ TM and ε 
 1 that

f (t) exp

(
[17(C + 1) + 4]ε 1

2 t

3 ln 1
ε

)
≥ 1

ln 1
ε

(
ln ln 1

ε

)2 exp

(
[17(C + 1) + 1]ε 1

2 t

3 ln 1
ε

)

≥
(
ln 1

ε

)1+ 1
8

(
ln ln 1

ε

)2 exp

(
ε

1
2 t

3 ln 1
ε

)
,

from which with the estimates (184) and (181) we deduce for all t ≥ 0 that

|W (t)| �
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln 1

ε

)2 (
ln 1

ε

)6
ε ln ln 1

ε

exp

(
(8C + 9)ε

1
2 t

ln 1
ε

)
. (186)

As consequence, we obtain from the estimates (172), (173), (176), (177) and (186)
that

∣∣Ẇ (t)
∣∣ �

max
( ∥∥∥−−→g(0)

∥∥∥ , ε ln 1
ε

)2 (
ln 1

ε

)6
ε

1
2 ln ln 1

ε

exp

(
(16C + 18)ε

1
2 t

ln 1
ε

)
, (187)
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for all t ≥ 0.
Step 2. (Estimate of |x1(t) + x2(t)| , |ẋ1(t) + ẋ2(t)| .) First, we define
M(t) := (x1(t) + x2(t)) − (d1(t) + d2(t)), N (t) := (p1(t) + p2(t)) − (ḋ1(t) + ḋ2(t)).

(188)

From the inequalities (155), (156) of Lemma 16, we obtain for all t ≥ 0, respectively:

∣∣Ṁ(t) − N (t)
∣∣ � max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln

1

ε

)
ε

1
2 exp

(Cε
1
2 t

ln 1
ε

)
,

∣∣Ṅ (t)
∣∣ �

max
( ∥∥∥−−→g(0)

∥∥∥ , ε ln 1
ε

)2
ln ln 1

ε

exp
(2Cε

1
2 t

ln 1
ε

)
.

Also, from inequality (155) and the fact that for j ∈ {1, 2} d j (0) = x j (0), ḋ j (0) =
ẋ j (0), we deduce that M(0) = 0 and |N (0)| � max

(∥∥∥−−→g(0)
∥∥∥ , ε ln 1

ε

)
ε

1
2 . Then, from

the Fundamental Theorem of Calculus, we obtain for all t ≥ 0 that

N (t) = O

⎛
⎜⎝
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln 1

ε

)2
ln 1

ε

ε
1
2 ln ln 1

ε

exp
(4Cε

1
2 t

ln 1
ε

)
⎞
⎟⎠ , (189)

M(t) = O

⎛
⎜⎝
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln 1

ε

)2 (
ln 1

ε

)2
ε ln ln 1

ε

exp
(4Cε

1
2 t

ln 1
ε

)
⎞
⎟⎠ . (190)

In conclusion, for K = 16C+18,we verify from triangle inequality that the estimates
(186) and (190) imply (166) and the estimates (187) and (189) imply (167). ��
Remark 16. The estimates (190) and (189) are true for any initial data

−−→
g(0) ∈ H1(R) ×

L2(R) such that the hypotheses of Theorem 4 are true.

Remark 17. (Similar Case) If we add the following conditions

e−√
2z(0) 
 ε(

ln 1
ε

)8 ,
ε

1
2(

ln 1
ε

)4 � v � ε
1
2 , −

(
ln

1

ε

)2

< c < 0,

to the hypotheses of Theorem 4, then, by repeating the above proof of Lemma 17, we
would still obtain for any t ≥ 0 the estimates (174), (175), (176) and (177).

However, since now |c| ≤ (
ln 1

ε

)2
, if ε 
 1 enough, we can verify while t ≥ 0 and

‖W (s)‖L∞
s [0,t]

(
ε

1
2 t +

(
ln

1

ε

)2
)
ln ln

1

ε
≤ 1, (191)

that

‖W (s)‖2L∞
s [0,t] (1 + |n(t)|) � ‖W (s)‖L∞

s [0,t]
1

ln ln 1
ε

,
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which implies by a similar reasoning to the proof of Lemma 17 for a uniform constant
C > 1 and any t ∈ R≥0 the following estimates

|W (t)| �
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln 1

ε

)2 (
ln 1

ε

)7
ε ln ln 1

ε

exp
(Cε

1
2 t

ln 1
ε

)
= f1(t,C), (192)

∣∣Ẇ (t)
∣∣ � max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln

1

ε

)2 (
ln 1

ε

)7
ε

1
2 ln ln 1

ε

exp
(Cε

1
2 t

ln 1
ε

)
= f2(t,C). (193)

From the estimates (192), (193) and
∥∥∥−−→g(0)

∥∥∥ ≤ ε
1
2(

ln 1
ε

)5 , we deduce that the condition

(191) holds while 0 ≤ t ≤ ln ln 1
ε

(
ln 1

ε

)

4(C+1)ε
1
2

. Indeed, since
∥∥∥−−→g(0)

∥∥∥2 ≤ ε(
ln 1

ε

)10 , we can

verify that there is an instant
ln ln 1

ε

(
ln 1

ε

)

4(C+1)ε
1
2

≤ TM such that (191) and (192) are true for

0 ≤ t ≤ TM and

f1(TM ,C) exp

(
ε

1
2 TM
ln 1

ε

)
= 1
(
ln 1

ε

)2+ 1
2 ln ln 1

ε

.

In conclusion, we can repeat the argument in the proof of step 1 of Lemma 17 and
deduce that there is 1 < K � C + 1 such that for all t ≥ 0

|W (t)| � f1(t, K ),
∣∣Ẇ (t)

∣∣ � f2(t, K ). (194)

Lemma 18. In notation of Theorem 4, ∃K > 1, δ > 0 such that if 0 < ε < δ, 0 < v ≤
ε
1
2(

ln 1
ε

)4 ,
−−→
g(0) = (g(0, x), ∂t g(0, x)) and

∥∥∥−−→g(0)
∥∥∥ ≤ ε

1
2(

ln 1
ε

)5 , then we have for all t ≥ 0

that

max
j∈{1, 2}

∣∣d j (t) − x j (t)
∣∣ = O

⎛
⎜⎝
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln 1

ε

)2
ε ln ln 1

ε

(
ln

1

ε

)2

exp
(Ktε

1
2

ln 1
ε

)
⎞
⎟⎠ ,

(195)

max
j∈{1, 2}

∣∣ḋ j (t) − ẋ j (t)
∣∣ = O

⎛
⎜⎝
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln 1

ε

)2

ε
1
2 ln ln 1

ε

(
ln

1

ε

)
exp

(Ktε
1
2

ln 1
ε

)
⎞
⎟⎠ . (196)

Proof of Lemma 18. First, we recall that

d(t) = 1√
2
ln

(
8

v2
cosh

(√
2vt + c

))
,

which implies that

e−√
2d(t) = v2

8
sech

(√
2vt + c

)2
. (197)
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We recall the notationW (t) = z(t)−d(t), V (t) = p(t)− ḋ(t). From the first inequality
of Lemma 16, we have that

|V (0)| � max

(∥∥∥−−→g(0)
∥∥∥ , ε ln

1

ε

)
ε

1
2 . (198)

We already verified that W, V satisfy the following ordinary differential system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẇ (t) = V (t) + O
(
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln

1

ε

)
ε

1
2 exp

(Cε
1
2 t

ln 1
ε

))
,

V̇ (t) = − 32e−√
2d(t)W (t) + O

(
e−√

2z(t)W (t)2
)

+ O

⎛
⎜⎝
max

(∥∥∥−−→g(0)
∥∥∥ , ε ln 1

ε

)2
ln ln 1

ε

exp
(2Cε

1
2 t

ln 1
ε

)
⎞
⎟⎠ .

(199)

However, since v2 ≤ ε(
ln 1

ε

)8 , we deduce from (197) that e−√
2d(t) � ε(

ln 1
ε

)8 for all

t ≥ 0. So, while ‖W (s)‖L∞[0,t] < 1, we have from the system of ordinary differential
equations above for some constant C > 0 independent of ε that

∣∣V̇ (t)
∣∣ � ε(

ln 1
ε

)8 ‖W (s)‖L∞[0,t] +
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln 1

ε

)2
ln ln 1

ε

exp
(2Cε

1
2 t

ln 1
ε

)
, for all t ≥ 0,

from which we deduce the following estimate for any t ≥ 0

|V (t) − V (0)| = O

(
εt(

ln 1
ε

)8 ‖W (s)‖L∞[0,t]

)

+ O

⎛
⎜⎝
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln 1

ε

)2
ln 1

ε

ε
1
2 ln ln 1

ε

exp
(2Cε

1
2 t

ln 1
ε

)
⎞
⎟⎠ .

In conclusion, while ‖W (s)‖L∞[0,t] < 1, we have that

∣∣Ẇ (t)
∣∣ ≤ |V (0)| + O

⎛
⎜⎝
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln ( 1

ε
)
)2

ln 1
ε

ε
1
2 ln ln 1

ε

exp
(2Cε

1
2 t

ln 1
ε

)
⎞
⎟⎠

+ O

(
εt(

ln 1
ε

)8 ‖W (s)‖L∞[0,t]

)
. (200)

Finally, sinceW (0) = 0, the Fundamental Theorem of Calculus and (200) imply the
following estimate for all t ≥ 0

‖W (s)‖L∞[0,t] ≤ |V (0)| t + O

⎛
⎜⎝
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln ( 1

ε
)
)2

ln ( 1
ε
)
2

ε ln ln ( 1
ε
)

exp
(2Cε

1
2 t

ln ( 1
ε
)

)
⎞
⎟⎠
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+ O

(
εt2

ln ( 1
ε
)
8

‖W (s)‖L∞[0,t]

)
. (201)

Then, the estimates (198) and (201) imply if ε 
 1 that

|W (t)| �
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln 1

ε

)2 (
ln 1

ε

)2
ε ln ln 1

ε

exp

(
(2C + 1)ε

1
2 t

ln 1
ε

)
, (202)

for 0 ≤ t ≤
(
ln 1

ε

)
ln ln 1

ε

(8C+4)ε
1
2

. From (202) and (200), we deduce for 0 ≤ t ≤
(
ln 1

ε

)
ln ln 1

ε

(8C+4)ε
1
2

that

∣∣Ẇ (t)
∣∣ �

max
( ∥∥∥−−→g(0)

∥∥∥ , ε ln 1
ε

)2 (
ln 1

ε

)2
ε

1
2 ln ln 1

ε

exp

(
(2C + 1)ε

1
2 t

ln 1
ε

)
. (203)

Since |W (t)| � ε
1
2 t,

∣∣Ẇ (t)
∣∣ � εt for all t ≥ 0, we can verify by a similar argument

to the proof of Step 1 of Lemma 17 that for all t ≥ 0 there is a constant 1 < K � (C +1)
such that

|W (t)| �
max

( ∥∥∥−−→g(0)
∥∥∥ , ε ln 1

ε

)2 (
ln 1

ε

)2
ε ln ln 1

ε

exp
(K ε

1
2 t

ln 1
ε

)
, (204)

∣∣Ẇ (t)
∣∣ �

max
( ∥∥∥−−→g(0)

∥∥∥ , ε ln 1
ε

)2 (
ln 1

ε

)2
ε

1
2 ln ln 1

ε

exp
(K ε

1
2 t

ln 1
ε

)
. (205)

In conclusion, estimates (195) and (196) follow from Remark 16, inequalities (204),
(205) and triangle inequality. ��
Remark 18. We recall the definition (169) of d(t). It is not difficult to verify that if∥∥∥−−→g(0)

∥∥∥ ≤ ε
1
2(

ln 1
ε

)5 , ε
1
2(

ln 1
ε

)4 � v and one of the following statements

1. e−√
2z(0) 
 ε(

ln 1
ε

)8 and c > 0,

2. e−√
2z(0) 
 ε(

ln 1
ε

)8 and c ≤ − (ln 1
ε

)2

were true, then we would have that e−√
2d(t) 
 ε(

ln 1
ε

)8 for 0 ≤ t �
(
ln 1

ε

)2

ε
1
2

. Moreover,

assuming e−√
2z(0)

(
ln 1

ε

)8 
 ε, if c > 0, then we have for all t ≥ 0 that

e−√
2d(t) = v2

8
sech (

√
2vt + c)

2 ≤ v2

8
sech (c)2 = e−√

2z(0) 
 ε(
ln 1

ε

)8 ,
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otherwise if c ≤ − (ln 1
ε

)2
, since 0 < v � ε

1
2 , then there is 1 � K such that for

0 ≤ t ≤ K
(
ln 1

ε

)2

ε
1
2

, then 2
∣∣∣√2vt + c

∣∣∣ > |c| , and so

e−√
2d(t) ≤ v2 sech

(
− c

2

)2 
 ε(
ln 1

ε

)8 .

In conclusion, the result of Lemma 18 would be true for these two cases.

From the following inequality

max
( ∥∥∥−−→g(0)

∥∥∥ , ε ln
1

ε

)
≤
(
ln

1

ε

)
max

( ∥∥∥−−→g(0)
∥∥∥ , ε

)
,

we deduce from Lemmas 17, 18 and Remarks 16, 17 and 18 the statement of Theorem
4.

6. Proof of Theorem 2

If
∥∥∥−−→g(0)

∥∥∥ ≥ ε ln 1
ε
, the result of Theorem 2 is a direct consequence of Theorem 15. So,

from now on, we assume that
∥∥∥−−→g(0)

∥∥∥ < ε ln 1
ε
.

We recall from Theorem 4 the notations v, c, d1(t), d2(t) and we denote d(t) =
d2(t) − d1(t) that satisfies

d(t) = 1√
2
ln
( 8

v2
cosh (

√
2vt + c)

2)
, e−√

2d(t) = v2

8
sech (

√
2vt + c)

2
.

From the definition of d1(t), d2(t), d(t), we know that max j∈{1, 2}
∣∣d̈ j (t)

∣∣+ e−√
2d(t) =

O
(
v2 sech (

√
2vt + c)

2
)
and since z(0) = d(0), ż(0) = ḋ(0), we have that v, c satisfy

the following identities

v =
(
e−√

2z(0) +
( ẋ2(0) − ẋ1(0)

2

)2) 1
2

, c = arctanh
( ẋ2(0) − ẋ1(0)

2v

)
,

so Theorem 11 implies that v � ε
1
2 .

From the Corollary 5 and the Theorem 4, we deduce that ∃C > 0 such that if ε 
 1

and 0 ≤ t ≤
(
ln ln 1

ε

)
ln 1

ε

ε
1
2

, then we have that

max
j∈{1, 2}

∣∣ẍ j (t)∣∣ = O
(

max
j∈{1,2}

∣∣d̈ j (t)
∣∣ ) + O

(
ε

3
2

(
ln

1

ε

)9

exp
(Ctε

1
2

ln 1
ε

))
, (206)

e−√
2z(t) = e−√

2d(t) + O
(
max

(
e−√

2d(t), e−√
2z(t)

)
|z(t) − d(t)|

)

= e−√
2d(t) + O

(
ε2
(
ln

1

ε

)9

exp
(Ctε

1
2

ln 1
ε

))
. (207)
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Next, we consider a smooth function 0 ≤ χ2(x) ≤ 1 that satisfies

χ2(x) =
{
1, if x ≤ 9

20 ,

0, if x ≥ 1
2 .

We denote

χ2(t, x) = χ2

( x − x1(t)

x − x2(t)

)
.

From Theorem 14 and Remark 12, the estimates (206) and (207) of the modulation
parameters imply that for the following function

L1(t) =
〈
D2Etotal

(
Hx2(t)
0,1 + Hx1(t)−1,0

)−−→
g(t),

−−→
g(t)

〉
〉L2×L2

+ 2
∫
R

∂t g(t)∂x g(t)
[
ẋ1(t)χ2(t, x) + ẋ2(t) (1 − χ2(t))

]
dx

− 2
∫
R

g(t, x)
(
U̇
(
Hx1(t)−1,0

)
+ U̇

(
Hx2(t)
0,1

)
− U̇

(
Hx2(t)
0,1 + Hx1(t)−1,0

) )
dx

+ 2
∫
R

g(t, x)
[
ẋ1(t)

2∂2x H
x1(t)−1,0 + ẋ2(t)

2∂2x H
x2(t)
0,1 (x)

]
dx

+
1

3

∫
R

U (3)
(
Hx2(t)
0,1 + Hx1(t)−1,0

)
g(t)3 dx,

and the following quantity δ1(t) denoted by

δ1(t) =
∥∥∥−−→g(t)

∥∥∥
(
e−√

2z(t) max
j∈{1,2}

∣∣ẋ j (t)∣∣ + max
j∈{1,2}

∣∣ẋ j (t)∣∣3 e− 9
√
2z(t)
20

)

+
∥∥∥−−→g(t)

∥∥∥ max
j∈{1,2}

∣∣ẋ j (t)∣∣ ∣∣ẍ j (t)∣∣ +
∥∥∥−−→g(t)

∥∥∥2 max j∈{1, 2}
∣∣ẋ j (t)∣∣

z(t)

+
∥∥∥−−→g(t)

∥∥∥2
(

max
j∈{1, 2} ẋ j (t)

2 + max
j∈{1, 2}

∣∣ẍ j (t)∣∣
)
+
∥∥∥−−→g(t)

∥∥∥4 ,

we have
∣∣L̇1(t)

∣∣ = O(δ1(t)) for t ≥ 0. Moreover, estimates (206), (207) and the bound
L̇1(t) = O(δ1(t)) imply that for

δ2(t) =
∥∥∥−−→g(t)

∥∥∥ v2ε
1
2 sech (

√
2vt + c)

2
+
∥∥∥−−→g(t)

∥∥∥ ε2
(
ln

1

ε

)9

exp
(Ctε

1
2

ln 1
ε

)

+ ε
3
2 e− 9

√
2z(t)
20

∥∥∥−−→g(t)
∥∥∥ + max

j∈{1,2}

∣∣ẋ j (t)∣∣
z(t)

∥∥∥−−→g(t)
∥∥∥2 +

∥∥∥−−→g(t)
∥∥∥4 ,

∣∣L̇1(t)
∣∣ = O(δ2(t)) if 0 ≤ t ≤

(
ln ln 1

ε

)
ln 1

ε

ε
1
2

.

Now, similarly to the proof of Theorem 15, we denote G(s) = max
(∥∥∥−−→g(s)

∥∥∥ , ε
)

.

From Theorem 14 and Remark 12, we have that there are positive constants K , k > 0
independent of ε such that

k
∥∥∥−−→g(t)

∥∥∥2 ≤ L1(t) + K ε2.
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We recall that Theorem 11 implies that

ln
(1

ε

)
� z(t), e−√

2z(t) + max
j∈{1,2}

∣∣ẋ j (t)∣∣2 + max
j∈{1, 2}

∣∣ẍ j (t)∣∣ = O(ε),

from which with the definition of G(s) and estimates (206) and (207) we deduce that

δ2(t) � G(t)v2 sech (
√
2vt + c)

2
ε

1
2 + G(t)ε

39
20 + G(t)2

ε
1
2

ln 1
ε

,

while 0 ≤ t ≤
(
ln ln 1

ε

)
ln 1

ε

ε
1
2

.

In conclusion, the Fundamental Theorem of Calculus implies that ∃K > 0 indepen-
dent of ε such that

G(t)2 ≤ K

(
G(0)2 +

∫ t

0
G(s)v2 sech (

√
2vs + c)

2
ε

1
2 + G(s)ε

39
20 + G(s)2

ε
1
2

ln 1
ε

ds

)
,

(208)

while 0 ≤ t ≤
(
ln ln 1

ε

)
ln 1

ε

ε
1
2

.

Since d
dt [tanh (

√
2vt + c)] = √

2v sech (
√
2vt + c)

2
, we verify that while the term

G(s)v2 sech (
√
2vt + c)

2
ε

1
2 is dominant in the integral of the estimate (208), thenG(t) �

G(0). The remaining case corresponds when G(s)2 ε
1
2

ln ( 1
ε
)
is the dominant term in the

integral of (208) from an instant 0 ≤ t0 ≤
(
ln ln 1

ε

)
ln 1

ε

ε
1
2

. Similarly to the proof of 15, we

have for t0 ≤ t ≤
(
ln ln 1

ε

)
ln 1

ε

ε
1
2

that G(t) � G(t0) exp
(
C (t−t0)ε

1
2

ln 1
ε

)
.

In conclusion, in any case we have for 0 ≤ t ≤
(
ln ln 1

ε

)
ln 1

ε

ε
1
2

that

G(t) � G(0) exp
(
C
tε

1
2

ln 1
ε

)
. (209)

But, for T ≥
(
ln ln 1

ε

)
ln 1

ε

ε
1
2

and K > 2 we have that

ε

(
ln

1

ε

)
exp

(
K

ε
1
2 T

ln 1
ε

)
≤ ε exp

(
2K ε

1
2 T

ln 1
ε

)
.

In conclusion, from the result of Theorem 15, we can exchange the constant C > 0 by
a larger constant such that estimate (209) is true for all t ≥ 0.
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Appendix A Auxiliary Results

We start the Appendix Section by presenting the following lemma:

Lemma 19. With the same hypothesis as in Theorem 4 and using its notation, we have

while max j∈{1,2}
∣∣d j (t) − x j (t)

∣∣ < 1 that max j∈{1, 2}
∣∣d̈ j (t) − ẍ j (t)

∣∣ = O
(
max j∈{1, 2}∣∣d j (t) − x j (t)

∣∣ ε + εz(t)e−√
2z(t) +

∥∥∥−−→g(t)
∥∥∥ ε

1
2

)
.

Lemma 20. For U (φ) = φ2(1 − φ2)2, we have that

U̇
(
Hx1(t)−1,0 (x) + Hx2(t)

0,1 (x)
)

− U̇
(
Hx1(t)−1,0 (x)

)
− U̇

(
Hx2(t)
0,1 (x)

)

= 24e−√
2z(t)

(
Hx1(t)−1,0 (x)

(1 + e−2
√
2(x−x1(t)))

1
2

+
Hx2(t)
0,1 (x)

(1 + e2
√
2(x−x2(t)))

1
2

)

−30e−√
2z(t)

(
Hx1(t)−1,0 (x)3

(1 + e−2
√
2(x−x1(t)))

1
2

+
Hx2(t)
0,1 (x)3

(1 + e2
√
2(x−x2(t)))

1
2

)
+ r(t, x),

such that ‖r(t)‖L2
x (R) = O(e−2

√
2z(t)).

Proof. By direct computations, we verify that

U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
− U̇

(
Hx1(t)−1,0

)
− U̇

(
Hx2(t)
0,1

)

= −24Hx1(t)−1,0 H
x2(t)
0,1

(
Hx1(t)−1,0 + Hx2(t)

0,1

)

+ 30Hx1(t)−1,0 H
x2(t)
0,1

[(
Hx1(t)−1,0

)3
+
(
Hx2(t)
0,1

)3]

+ 60
(
Hx1(t)−1,0 H

x2(t)
0,1

)2 [
Hx1(t)−1,0 + Hx2(t)

0,1

]
.
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First, from the definition of H0,1(x), we verify that

60
(
Hx1(t)−1,0 H

x2(t)
0,1

)2 [
Hx1(t)−1,0 + Hx2(t)

0,1

]
= 60e−2

√
2z(t)Hx2(t)

0,1

(1 + e2
√
2(x−x2(t)))(1 + e−2

√
2(x−x1(t)))

+
60e−2

√
2z(t)Hx1(t)−1,0

(1 + e−2
√
2(x−x1(t)))(1 + e2

√
2(x−x2(t)))

.

Using (4), we can verify using by induction for any k ∈ N that

∣∣∣∣ d
k

dxk

[
1

(1 + e2
√
2x )

]∣∣∣∣ =
∣∣∣∣∣
dk

dxk

[
1 − e2

√
2x

(1 + e2
√
2x )

]∣∣∣∣∣ =
∣∣∣∣ d

k

dxk

[
H0,1(x)

2
]∣∣∣∣ = O(1),

(A1)

and since H0,1(x)

(1+e2
√
2x )

= e
√
2x

(1+e2
√
2x )

3
2
is a Schwartz function, we deduce using Lemma 6

that 60(Hx1(t)−1,0 H
x2(t)
0,1 )2(Hx1(t)−1,0 + Hx2(t)

0,1 ) is in Hk
x (R) and it satisfies for all k > 0 the

following estimate

∥∥∥∥ ∂k

∂xk

[
(Hx1(t)−1,0 H

x2(t)
0,1 )2(Hx1(t)−1,0 + Hx2(t)

0,1 )
]∥∥∥∥

L2
= O

(
e−2

√
2z(t)

)
. (A2)

Next, using the identity

Hx1(t)−1,0 (x)Hx2(t)
0,1 (x) = − e−√

2z(t)

(1 + e2
√
2(x−x2(t)))

1
2 (1 + e−2

√
2(x−x1(t)))

1
2

, (A3)

the identity

1 − 1

(1 + e2
√
2x )

1
2

= e2
√
2x

(1 + e2
√
2x )

1
2 + (1 + e2

√
2x )

,

and Lemma 6, we deduce that

∥∥∥∥∥24(H
x1(t)−1,0 )2Hx2(t)

0,1 + 24e−√
2z(t)

Hx1(t)−1,0 (x)

(1 + e−2
√
2(x−x1(t)))

1
2

∥∥∥∥∥
L2

= O
(
e−2

√
2z(t)

)
,

(A4)∥∥∥∥∥30(H
x1(t)−1,0 )4Hx2(t)

0,1 + 30e−√
2z(t)

(
(Hx1(t)−1,0 (x))3

(1 + e−2
√
2(x−x1(t)))

1
2

)∥∥∥∥∥
L2

= O
(
e−3

√
2z(t)

)
.

(A5)

The estimate of the remaining terms −24Hx1(t)−1,0

(
Hx2(t)
0,1

)2
, 30Hx1(t)−1,0

(
Hx2(t)
0,1

)4
is

completely analogous to (A4) and (A5) respectively. In conclusion, all of the estimates
above imply the estimate stated in the Lemma 20. ��
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Proof of Lemma 19. First, we recall the global estimate e−√
2z(t) � ε. We also recall

the identity (33)
∫
R

(
8(H0,1(x))

3 − 6(H0,1(x))
5)e−√

2x dx = 2
√
2,

which, by integration by parts, implies that

∫
R

24
H0,1(x)∂x H0,1(x)

(1 + e2
√
2(x))

1
2

− 30
(H0,1(x))3∂x H0,1(x)

(1 + e2
√
2(x))

1
2

dx = 4. (A6)

We recall d1(t), d2(t) defined in (8) and (9) respectively and d(t) = d2(t) − d1(t).

Since d̈ j (t) = (−1) j8
√
2e−√

2d(t) for j ∈ {1, 2}, we have d̈(t) = 16
√
2e−√

2d(t),

which implies clearly with the identities

∥∥∂x H0,1
∥∥2
L2 =

∥∥∥∂2x H0,1

∥∥∥2
L2

= 1

2
√
2

that d̈ j (t)
∥∥∂x H0,1

∥∥2
L2 = (−1) j4e−√

2d(t).We also recall the partial differential equation
satisfied by the remainder g(t, x) (II), which can be rewritten as

U̇
(
Hx2(t)
0,1 (x) + Hx1(t)−1,0 (x)

)
− U̇

(
Hx1(t)−1,0 (x)

)
− U̇

(
Hx2(t)
0,1 (x)

)
− ẍ2(t)∂x H

x2(t)
0,1 (x)

= −
(
∂2t g(t, x) − ∂2x g(t, x) + Ü

(
Hx2(t)
0,1 (x) + Hx1(t)−1,0 (x)

)
g(t, x)

)

+
6∑

k=3

U (k)
(
Hx1(t)−1,0 + Hx2(t)

0,1

) g(t)k−1

(k − 1)! − ẋ1(t)
2∂2x H

x1(t)−1,0 (x)

− ẋ2(t)
2∂2x H

x2(t)
0,1 (x) + ẍ1(t)∂x H

x1(t)−1,0 (x). (A7)

Furthermore, from the estimate (A6), Lemma 20 and Lemma 6, we obtain that
〈
U̇
(
Hx1(t)−1,0 + Hx2(t)

0,1

)
− U̇

(
Hx1(t)−1,0

)
− U̇

(
Hx2(t)
0,1

)
, ∂x H

x2(t)
0,1

〉
L2

= ẍ2(t)
∥∥∂x H0,1

∥∥2
L2 − (ẍ2(t) − d̈2(t))

∥∥∂x H0,1
∥∥2
L2

+ O
(

|ẍ1(t)| z(t)e−√
2z(t)

)

+ O
(
e−√

2z(t) max
j∈{1, 2}

∣∣x j (t) − d j (t)
∣∣ + e−2

√
2z(t)z(t)

)
. (A8)

We recall from the proof of Theorem 14 the following estimate
∣∣∣∣
∫
R

[
Ü
(
Hx2(t)
0,1 (x)

)
− Ü

(
Hx2(t)
0,1 (x) + Hx1(t)−1,0 (x)

)]
∂x H

x2(t)
0,1 (x)g(t, x) dx

∣∣∣∣
= O

( ∥∥∥−−→g(t)
∥∥∥ e−√

2z(t)
)
.

Also, from the Modulation Lemma, we have that

〈∂2t g(t), ∂x Hx2(t)
0,1 〉L2 = d

dt

[
〈∂t g(t), ∂x Hx2(t)

0,1 〉L2

]
+ ẋ2(t)〈∂t g(t), ∂x Hx2(t)

0,1 〉L2
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= d

dt

[
ẋ2(t)〈g(t), ∂2x Hx2(t)

0,1 〉L2

]
+ ẋ2(t)〈∂t g(t), ∂x Hx2(t)

0,1 〉L2

= ẍ2(t)〈g(t), ∂2x Hx2(t)
0,1 〉L2 + 2ẋ2(t)〈∂t g(t), ∂x Hx2(t)

0,1 〉L2

− ẋ2(t)
2〈g(t), ∂3x Hx2(t)

0,1 〉L2 .

In conclusion, since ∂x H
x2(t)
0,1 ∈ ker D2Epot

(
Hx2(t)
0,1

)
and e−√

2z(t) = O
(
ε

1
2

)
, we

obtain from (A8) and (A7) that
∣∣ẍ2(t) − d̈2(t)

∣∣ = O
(

max
j∈{1, 2}

∣∣d j (t) − x j (t)
∣∣ ε + εz(t)e−√

2z(t) +
∥∥∥−−→g(t)

∥∥∥ ε
1
2

)
,

the estimate of
∣∣ẍ1(t) − d̈1(t)

∣∣ is completely analogous, which finishes the proof of
Lemma 19. ��
Lemma 21. For any δ > 0 there is a ε(δ) > 0 such that if∥∥φ(x) − H0,1(x)

∥∥
H1 < +∞, 0 < Epot (φ(x)) − Epot (H0,1) < ε(δ), (A9)

then there is a real number y such that∥∥φ(x) − H0,1(x − y)
∥∥
H1 ≤ δ.

Proof of Lemma 21. The proof of Lemma 21 will follow by a contradiction argument.
We assume the existence of a sequence of real functions (φn(x))n satisfying

lim
n→+∞ Epot (φn) = Epot (H0,1), (A10)

∥∥φn(x) − H0,1(x)
∥∥
H1 <+∞, (A11)

such that

lim
n→+∞ inf

y∈R
∥∥φn(x) − H0,1(x + y)

∥∥
H1 > 0. (A12)

First, the condition (A10) and the fact that limφ→+∞ U (φ) = +∞ imply the existence
of a positive constant c, which satisfies ‖φn‖L∞ < c if n � 1.
Next, since U (φ) = φ2(1 − φ2)2 and

∣∣Epot (φn) − Epot (H0,1)
∣∣ 
 1 for 1 
 n, it is

not difficult to verify from the definition of the potential energy functional Epot that if
1 
 n, then

‖φn(x) − 1‖2L2({x |φn(x)>1}) +
∥∥∥∥dφn(x)

dx

∥∥∥∥
2

L2({x |φn(x)>1})
�
∣∣Epot (φn) − Epot (H0,1)

∣∣ .
By an analogous argument, we can verify that

‖φn(x)‖2L2({x |− 1
2<φn(x)<0}) +

∥∥∥∥dφn(x)

dx

∥∥∥∥
2

L2({x |− 1
2<φn(x)<0})

�
∣∣Epot (φn) − Epot (H0,1)

∣∣ ,
and if there is x0 ∈ R such that φn(x0) ≤ − 1

2 , we would obtain that

∫ +∞

x0

1

2

dφn(x)

dx

2

+U (φn(x)) dx
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=
∫ +∞

x0

√
2U (φn(x))

∣∣∣∣dφn(x)

dx

∣∣∣∣ dx +
1

2

∫ +∞

x0

(∣∣∣∣dφn(x)

dx

∣∣∣∣−
√
2U (φn(x))

)2

dx

≥
∫ 1

− 1
2

√
2U (φ) dφ = Epot (H0,1) +

∫ 0

− 1
2

√
2U (φ) dφ > Epot (H0,1),

which contradicts (A10) if n � 1. Thus, if we consider the following function

ϕn(x) = min (max (φn(x), 0) , 1) ,

which satisfies Epot (ϕn) ≥ Epot
(
H0,1

)
and

dϕn(x)

dx
=
{

dφn(x)
dx , if 0 < φn(x) < 1,

0, for almost every x ∈ R satisfying either φn(x) ≤ 0 or φn(x) ≥ 1,

we can deduce with the estimates above and inequality lim supn→+∞ ‖φn‖L∞ < c that
if n � 1, then

‖φn(x) − ϕn(x)‖2L2 +

∥∥∥∥dφn(x)

dx
− dϕn(x)

dx

∥∥∥∥
2

L2
�
∣∣Epot (φn) − Epot

(
H0,1

)∣∣ ,
∣∣Epot (φn) − Epot (ϕn)

∣∣ �
∣∣Epot (φn) − Epot

(
H0,1

)∣∣ .
Consequently, using triangle inequality and conditions (A10), (A12), we would obtain
that

lim
n→+∞ inf

y∈R
∥∥ϕn(x) − H0,1(x + y)

∥∥
H1 > 0.

In conclusion, we can restrict the proof to the case where 0 ≤ φn(x) ≤ 1 and n � 1.
Now, from the density of H2(R) in H1(R), we can also restrict the contradiction

hypotheses to the situation where dφn
dx (x) is a continuous function for all n ∈ N. Also,

we have that if
∥∥φ(x) − H0,1(x)

∥∥
H1 < +∞, then Epot (φ(x)) ≥ Epot (H0,1(x)). In

conclusion, there is a sequence of positive numbers (εn)n such that

Epot (φn) = Epot (H0,1) + εn, lim
n→+∞ εn = 0.

Also, τyφ(x) = φ(x − y) satisfies Epot (φ(x)) = Epot (τyφ(x)) for any y ∈ R. In
conclusion, since for all n ∈ N, limx→+∞ φn(x) = 1 and limx→−∞ φn(x) = 0, we can
restrict to the case where

φn(0) = 1√
2
,

for all n ∈ N.

Next, we consider the notations (v)+ = max(v, 0) and (v)− = − (v − (v)+) . Since
dφn(x)
dx is a continuous function on x, we deduce that

(
dφn(x)
dx

)
+
and

(
dφn(x)
dx

)
− are also

continuous functions on x for all n ∈ N. In conclusion, for any n ∈ N, we have that the
set

U =
{
x ∈ R| dφn(x)

dx
< 0

}
(A13)
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is an enumerable union of disjoint open intervals (ak,n, bk,n)k∈N, which are bounded,
since limx→+∞ φn(x) = 1, limx→−∞ φn(x) = 0 and 0 ≤ φn(x) ≤ 1.
Now, let E be a set of disjoint open bounded intervals (hi,n, li,n) ⊂ R satisfying the

conditions

φn(hi,n) = φn(li,n), (A14)

and {i | (hi,n, li,n) ∈ E} = I ⊂ Z. For any i ∈ I, the following function

fi,n(x) =
{

φn(x) if x ≤ hi,n,
φn(x + li,n − hi,n) if x > hi,n,

satisfies Epot (H0,1) ≤ Epot ( fi,n) ≤ Epot (φn) = Epot (H0,1) + εn, which implies that

∫ li,n

hi,n

1

2

dφn(x)

dx

2

+U (φn(x)) ≤ εn .

Furthermore, we can deduce from Lebesgue’s dominated convergence theorem that

∑
i∈I

∫ li,n

hi,n

1

2

dφn(x)

dx

2

+U (φn(x)) ≤ εn, (A15)

for everyfinite or enumerable collection E of disjoint openbounded intervals (hi,n, li,n) ⊂
R, i ∈ I ⊂ Z such that φn(hi,n) = φn(li,n). In conclusion, we can deduce from (A15)
that

∫
R

(
dφn(x)

dx

)2

−
dx ≤ 2εn, (A16)

and so for 1 
 n we have that
∥∥∥∥dφn(x)

dx
−
∣∣∣∣dφn(x)

dx

∣∣∣∣
∥∥∥∥
2

L2
≤ 8εn, φn(0) = 1√

2
. (A17)

Moreover, we can verify that

Epot (φn) = 1

2

[∫
R

(∣∣∣∣dφn(x)

dx

∣∣∣∣−
√
2U (φn(x))

)2

dx

]
+
∫
R

√
2U (φn(x))

∣∣∣∣dφn(x)

dx

∣∣∣∣ dx,

from which we deduce with limx→−∞ φn(x) = 0 and limx→+∞ φn(x) = 1 that

Epot (H0,1) + εn ≥1

2

[∫
R

(∣∣∣∣dφn(x)

dx

∣∣∣∣−
√
2U (φn(x))

)2

dx

]
+
∫ 1

0

√
2U (φ) dφ

= 1

2

[∫
R

(∣∣∣∣dφn(x)

dx

∣∣∣∣−
√
2U (φn(x))

)2

dx

]
+ Epot (H0,1).

Then, from estimate (A17), we have that

dφn(x)

dx
= √

2U (φn(x)) + rn(x), φn(0) = 1√
2
, (A18)
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with ‖rn‖2L2 � εn for all 1 
 n.

We recall that U (φ) = φ2(1 − φ2)2 is a Lipschitz function in the set {φ| 0 ≤ φ ≤
1}. Then, because H0,1(x) is the unique solution of the following ordinary differential
equation

⎧⎪⎪⎨
⎪⎪⎩

dφ(x)

dx
=√2U (φ(x)),

φ(0) = 1√
2
,

we deduce from Gronwall Lemma that for any K > 0 we have

lim
n→+∞

∥∥φn(x) − H0,1(x)
∥∥
L∞[−K ,K ] = 0, lim

n→+∞

∥∥∥∥dφn(x)

dx
− Ḣ0,1(x)

∥∥∥∥
L2[−K ,K ]

= 0.

(A19)

Also, if 1 
 n, then
∥∥∥ dφn(x)

dx

∥∥∥2
L2

< 2Epot (H0,1) + 1, and so we obtain from Cauchy–

Schwarz inequality that

|φn(x) − φn(y)| ≤ |x − y| 12
∥∥∥∥dφn

dx

∥∥∥∥
2

L2
< M |x − y| 12 , (A20)

for a constant M > 0. The inequality (A20) implies that for any 1 > ω > 0 there is a
number h(ω) ∈ N such that if n ≥ h(ω) then

∥∥φn(x) − H0,1(x)
∥∥
L∞{x | 1

ω
<|x |} < ω, (A21)

otherwise we would obtain that there are 0 < θ < 1
4 , a subsequence (mn)n∈N and a

sequence of real numbers (xn)n∈N with limn→+∞ mn = +∞, |xn| > n + 1 such that
∣∣φmn (xn) − 1

∣∣ > θ if xn > 0, (A22)∣∣φmn (xn)
∣∣ > θ if xn < 0. (A23)

However, since we are considering φn(x) ∈ C1(R) and 0 ≤ φn ≤ 1, we would obtain
from the intermediate value theorem that there would exist a sequence (yn)n with yn >

xn > n + 1 or yn < xn < −n − 1 such that

1 − θ ≤ φmn (yn) ≤ 1 + θ, if yn > 0, (A24)

φmn (yn) = θ otherwise. (A25)

But, estimates (A20), (A24), (A25) and identityU (φ) = φ2(1−φ2)2 would imply that

1 �
∫

|x |≥n−2
U (φmn (x)) dx for all n � 1, (A26)

and because of estimate (A19) and the following identity

lim
K→+∞

∫ K

−K

1

2
Ḣ0,1(x)

2 +U (H0,1(x)) = Epot (H0,1(x)), (A27)
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estimate (A26) would imply that limn→+∞ Epot (φmn ) > Epot (H0,1) which contradicts
our hypotheses.
In conclusion, for any 1 > ω > 0 there is a number h(ω) such that if n ≥ h(ω) then

(A21) holds. So we deduce for any 0 < ω < 1 that there is a number h1(ω) such that

if n ≥ h1(ω), then
∣∣φn(x) − H0,1(x)

∣∣ ≤ ω for all x ∈ R. (A28)

Then, if ω ≤ 1
100 , n ≥ h(ω) and K ≥ 200, estimates (A28) and (A19) imply that

∫ +∞

K
U (φn(x)) +

1

2

dφn(x)

dx

2

dx ≥ 1

2

∫ +∞

K
(1 − φn(x))

2 +
dφn(x)

dx

2

dx, (A29)

∫ −K

−∞
U (φn(x)) +

1

2

dφn(x)

dx

2

dx ≥ 1

2

∫ −K

−∞
φn(x)

2 +
dφn(x)

dx

2

dx . (A30)

In conclusion, from estimates (A28), (A29), (A30) and

lim
K→+∞

∫
|x |≥K

1

2
Ḣ0,1(x)

2 +U (H0,1(x)) dx = 0,

we obtain that limn→+∞
∥∥φn(x) − H0,1(x)

∥∥
L2 = 0 and, from the initial value problem

(A18) satisfied for each φn, we conclude that limn→+∞
∥∥∥ dφn

dx (x) − Ḣ0,1(x)
∥∥∥
L2

= 0. In

conclusion, inequality (A12) is false. ��
From Lemma 21, we obtain the following corollary:

Corollary 22. For any δ > 0 there exists ε0 > 0 such that if 0 < ε ≤ ε0,∥∥φ(x) − H0,1(x) − H−1,0(x)
∥∥
H1 < +∞ and Epot (φ) = 2Epot (H0,1) + ε, then there

exist x2, x1 ∈ R such that

x2 − x1 ≥ 1

δ
,
∥∥φ(x) − H0,1(x − x2) + H−1,0(x − x1)

∥∥
H1 ≤ δ. (A31)

Proof of Corollary 22. First, from a similar reasoning to the proof of Lemma 21 we can
assume by density that dφ(x)

dx ∈ H1
x (R). Next, from hypothesis∥∥φ(x) − H0,1(x) − H−1,0(x)

∥∥
H1(R)

< +∞, we deduce using the intermediate value
theorem that there is a y ∈ R such that φ(y) = 0. Now, we consider the functions

φ−(x) =
{

φ(x) if x ≤ y,
0 otherwise,

and

φ+(x) =
{
0 if x ≤ y,
φ(x) otherwise.

Clearly,φ(x) = φ−(x) for x < y andφ(x) = φ+(x) for x > y.From identityU (0) = 0,
we deduce that

Epot (φ) = Epot (φ−) + Epot (φ+),
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also, we have that

Epot (H−1,0) < Epot (φ−), Epot (H0,1) < Epot (φ+).

In conclusion, since Epot (φ) = 2Epot (H0,1)+ε, Lemma 21 implies that if ε < ε0 
 1,
then there exist x2, x1 ∈ R such that∥∥φ(x) − H0,1(x − x2) − H−1,0(x − x1)

∥∥
H1

≤ ∥∥φ+ − H0,1(x − x2)
∥∥
H1 +

∥∥φ− − H−1,0(x − x1)
∥∥
H1 ≤ e− 4

δ 
 δ. (A32)

So, to finish the proof of Corollary 22, we need only to verify that we have x2− x1 ≥ 1
δ

if 0 < ε0 
 1. But, we recall that H0,1(0) = 1√
2
, from which with estimate (A32) we

deduce that ∣∣∣∣φ+(x2) − 1√
2

∣∣∣∣ � δ,

∣∣∣∣φ−(x1) +
1√
2

∣∣∣∣ � δ, (A33)

so if ε0 
 1, then x1 < y < x2. Using the fact that U is a smooth function, Lemma
10 and identity (35), we can verify the existence of a constant C > 0 satisfying the
following inequality∣∣DEpot

(
H0,1(x − x2) + H−1,0(x − x1) + u

)
(v)
∣∣ ≤ C ‖v‖H1 .

for any u, v ∈ H1(R) such that ‖u‖H1 ≤ 1. Therefore, using estimate (A32) and the
Fundamental Theorem of Calculus, we deduce that if 0 < ε0 
 1, then∣∣Epot (φ) − Epot

(
H0,1(x − x2) + H−1,0(x − x1)

)∣∣ < e−2
√
2 1

δ . (A34)

Furthermore, since the function A(z) = Epot

(
Hz
0,1(x) + H−1,0(x)

)
is a continuous

function on R≥0 and A(z) > 2Epot
(
H0,1

)
for any z ≥ 0, we have for any k > 0 that

there exists δk > 0 satisfying

sup
{z∈[0,k]}

A(z) > 2Epot
(
H0,1

)
+ δk .

In conclusion, we obtain from Lemma 7 and the estimate (A34) that x2 − x1 ≥ 1
δ
if

0 < ε0 
 1 and ε < ε0. ��
Now, we complement our manuscript by presenting the proof of identity (33).

Proof of Identity (33). From the definition of the function H0,1(x), we have
∫
R

(
8(H0,1(x))

3 − 6(H0,1(x))
5)e−√

2x dx =
∫
R

8e2
√
2x + 2e4

√
2x

(1 + e2
√
2x )

5
2

dx,

by the change of variable y(x) = (1 + e2
√
2x ), we obtain∫

R

(
8(H0,1(x))

3 − 6(H0,1(x))
5)e−√

2x dx

= 1

2
√
2

∫ ∞

1

8

y
5
2

+
2(y − 1)

y
5
2

dy

= 1

2
√
2

∫ ∞

1

6

y
5
2

+
2

y
3
2

dy,= 1

2
√
2
(−4y− 3

2 − 4y− 1
2 )

∣∣∣∞
1

= 2
√
2.

��
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Appendix B Proof of Theorem 3

Proof of Theorem 3. We use the notations of Theorems 2 and 4. Clearly, if the result of
Theorem 3 is false, then by contradiction for any N � 1 the inequality∥∥∥−−→g(t)

∥∥∥ ≤ ε

N
(B35)

could be possible for all 0 ≤ t ≤ N
ln 1

ε

ε
1
2

= T if ε 
 1 enough.

From Modulation Lemma, we can denote the solution φ(t, x) as

φ(t, x) = Hx1(t)−1,0 (x) + Hx2(t)
0,1 (x) + g(t, x),

such that

〈g(t, x), ∂x H
x1(t)−1,0 (x)〉L2 = 0, 〈g(t, x), ∂x H

x2(t)
0,1 (x)〉L2 = 0.

Also, for all t ≥ 0, we have that g(t, x) has a unique representation as

g(t, x) = P1(t)∂
2
x H

x1(t)−1,0 (x) + P2(t)∂
2
x H

x2(t)
0,1 (x) + r(t, x), (B36)

such that r(t) satisfies the following new orthogonality conditions〈
r(t), ∂2x H

x1(t)−1,0

〉
L2

= 0,
〈
r(t), ∂2x H

x2(t)
0,1

〉
L2

= 0. (B37)

In conclusion, we deduce that

‖g(t)‖2L2 =
∥∥∥∂2x H0,1

∥∥∥2
L2

(P2
1 + P2

2 ) + ‖r(t)‖2L2 + 2P1P2
〈
∂2x H

z(t)
0,1 , ∂2x H−1,0

〉
L2

.

(B38)

We recall from Theorem 11 that 1√
2
ln 1

ε
< z(t) for all t ≥ 0. Since, from Lemma

6, we have that
〈
∂2x H

x1(t)−1,0 , ∂2x H
x2(t)
0,1

〉
L2

� z(t)e−√
2z(t) and z(t)e−√

2z(t) � ε ln 1
ε
if

0 < ε 
 1, we deduce from the Eq. (B38) that there is a uniform constant K > 1 such
that for all t ≥ 0 we have the following estimate

‖g(t)‖L2

K
≤ |P1(t)| + |P2(t)| + ‖r(t)‖L2 ≤ K

∥∥∥−−→g(t)
∥∥∥ . (B39)

From Theorem 11 and the orthogonality conditions (B37), we deduce that〈
∂t r(t), ∂2x H

x2(t)
0,1

〉
L2

= ẋ2(t)
〈
r(t), ∂3x H

x2(t)
0,1

〉
L2

= O
(

‖r(t)‖L2 ε
1
2

)
,

〈
∂t r(t), ∂2x H

x1(t)−1,0

〉
L2

= ẋ2(t)
〈
r(t), ∂3x H

x1(t)−1,0

〉
L2

= O
(

‖r(t)‖L2 ε
1
2

)
.

In conclusion, estimate (B39) and Lemma 6 imply that there is a K > 1 such that
∣∣Ṗ1(t)∣∣ + ∣∣Ṗ2(t)∣∣ + ‖∂t r(t)‖L2 ≤ K

∥∥∥−−→g(t)
∥∥∥ (B40)

for all t ≥ 0. Finally, Minkowski inequality and estimate (B39) imply that there is a
uniform constant K > 1 such that

‖∂xr(t, x)‖L2 ≤ K
∥∥∥−−→g(t)

∥∥∥ . (B41)
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We recall from Theorem 12 the following estimate

ε

K
≤
∥∥∥−−→g(t)

∥∥∥2 + ẋ1(t)
2 + ẋ2(t)

2 + e−√
2z(t) ≤ K ε (B42)

for someuniformconstant K > 1.Now, fromhypothesis (B35),weobtain fromTheorem
4 and Corollary 5 that there are constants M ∈ N and C > 0 such that for all t ≥ 0 the
following inequalities are true

max
j∈{1, 2}

∣∣x j (t) − d j (t)
∣∣ ≤ ε

(
ln

1

ε

)M+1

exp
(10Cε

1
2 t

ln 1
ε

)
, (B43)

max
j∈{1, 2}

∣∣ẋ j (t) − ḋ j (t)
∣∣ ≤ ε

3
2

(
ln

1

ε

)M

exp
(10Cε

1
2 t

ln 1
ε

)
, (B44)

max
j∈{1, 2}

∣∣ẍ j (t) − d̈ j (t)
∣∣ ≤ ε

3
2

(
ln

1

ε

)
exp

(10Cε
1
2 t

ln ( 1
ε
)

)
, (B45)

for a uniform constant C > 0.
From the partial differential equation (1) satisfied by φ(t, x) and the representation

(B36) of g(t, x), we deduce in the distributional sense that for any h(x) ∈ H1(R) that
〈
h(x), (P̈1(t) + ẋ1(t)

2)∂2x H
x1(t)−1,0 + (P̈2(t) + ẋ2(t)

2)∂2x H
x2(t)
0,1

〉
L2

= −
〈
h(x), P1(t)

[(
− ∂2x + Ü (Hx1(t)−1,0 )

)
∂2x H

x1(t)−1,0

]〉
L2

−
〈
h(x), P2(t)

[(
− ∂2x + Ü (Hx2(t)

0,1 )
)
∂2x H

x2(t)
0,1

]〉
L2

−
〈
h(x),

[
∂2t r(t) − ∂2x r(t) + Ü (Hx2(t)

0,1 + Hx1(t)−1,0 )r(t)
]〉

L2

−
〈
h(x),

[
U̇ (Hx2(t)

0,1 + Hx1(t)−1,0 ) + U̇ (Hx2(t)
0,1 ) − U̇ (Hx1(t)−1,0 )

]〉
L2

+
〈
h(x), ẍ1(t)∂x H

x1(t)−1,0 (x) + ẍ2(t)∂x H
x2(t)
0,1 (x)

〉
L2

−
〈
h(x), P1(t)

[(
Ü (Hx2(t)

0,1 + Hx1(t)−1,0 ) − Ü (Hx1(t)−1,0 )
)
∂2x H

x1(t)−1,0

]〉
L2

−
〈
h(x), P2(t)

[(
Ü (Hx2(t)

0,1 + Hx1(t)−1,0 ) − Ü (Hx2(t)
0,1 )

)
∂2x H

x2(t)
0,1

]〉
L2

+ O

(
‖h‖L2

[
‖g(t)‖2H1 + max

j∈{1, 2}
∣∣ẍ j (t)∣∣

])

+ O

(
‖h‖L2

[
max
j∈{1, 2}

∣∣Ṗj (t)ẋ j (t)
∣∣ + max

j∈{1, 2}
∣∣Pj (t)

∣∣ e−√
2z(t)

])

+ O
(∣∣Pj (t)ẍ j (t)

∣∣ +
∣∣∣Pj (t)ẋ j (t)

2
∣∣∣
)

. (B46)

From Lemma 20 and estimates (B43) and (B45), we obtain from (B46) that
〈
h(x), (P̈1(t) + ẋ1(t)

2)∂2x H
x1(t)−1,0 + (P̈2(t) + ẋ2(t)

2)∂2x H
x2(t)
0,1

〉
L2

= −
〈
h(x), P1(t)

[(
− ∂2x + Ü (Hx1(t)−1,0 )

)
∂2x H

x1(t)−1,0

]〉
L2
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−
〈
h(x), P2(t)

[(
− ∂2x + Ü (Hx2(t)

0,1 )
)
∂2x H

x2(t)
0,1

]〉
L2

−
〈
h(x),

[
∂2t r(t) − ∂2x r(t) + Ü (Hx2(t)

0,1 + Hx1(t)−1,0 )r(t)
]〉

L2

+ O

(
‖h‖L2

[
max
j∈{1, 2}

∣∣ẍ j (t) − d̈ j (t)
∣∣ + e−√

2d(t)
])

+ O
(
‖h‖L2

[
|z(t) − d(t)| e−√

2z(t) + e−2
√
2z(t)

])

+ O

(
‖h‖L2

[
‖g(t)‖2H1 + max

j∈{1, 2}
∣∣ẍ j (t)∣∣

])

+ O

(
‖h‖L2

[
max
j∈{1, 2}

∣∣Ṗj (t)ẋ j (t)
∣∣ + max

j∈{1, 2}
∣∣Pj (t)

∣∣ e−√
2z(t) +

∣∣Pj (t)ẍ j (t)
∣∣
])

+ O
(
‖h‖L2

∣∣∣Pj (t)ẋ j (t)
2
∣∣∣
)

. (B47)

From the condition (B37), we deduce that〈
∂2t r(t), ∂2x H

x2(t)
0,1

〉
L2

= d

dt

[
ẋ2(t)

〈
r(t), ∂3x H

x2(t)
0,1

〉]
+ ẋ2(t)

〈
∂t r(t), ∂3x H

x2(t)
0,1

〉
L2

,

〈
∂2t r(t), ∂2x H

x1(t)−1,0

〉
L2

= d

dt

[
ẋ1(t)

〈
r(t), ∂3x H

x1(t)−1,0

〉
L2

]
+ ẋ1(t)

〈
∂t r(t), ∂3x H

x1(t)−1,0

〉
L2

,

which imply with Theorem 11 the existence of a uniform constant C > 0 such that∣∣∣
〈
∂2t r(t), ∂2x H

x2(t)
0,1

〉
L2

∣∣∣ ≤ Cε
1
2

∥∥∥−→r(t)
∥∥∥ ,

∣∣∣
〈
∂2t r(t), ∂2x H

x1(t)−1,0

〉
L2

∣∣∣ ≤ Cε
1
2

∥∥∥−→r(t)
∥∥∥ .

(B48)

From (B39), (B40) and (B41), we obtain that
∥∥∥−→r(t)

∥∥∥ �
∥∥∥−−→g(t)

∥∥∥ .

In conclusion, after we apply the partial differential equation (B47) in the distributional
sense to ∂2x H

x2(t)
0,1 , ∂2x H

x1(t)−1,0 , the estimates (B39), (B40), (B41), (B43), (B45) and (B48)
imply that there is a uniform constant K1 > 0 such that if ε 
 1 enough, then for

j ∈ {1, 2} we have that for 0 ≤ t ≤ N ln 1
ε

ε
1
2

∣∣∣P̈j (t) + ẋ j (t)
2
∣∣∣ ≤ K1

(
e−√

2d(t) + ε
3
2

(
ln

1

ε

)M+1

exp
(10Cε

1
2 t

ln 1
ε

)
+

ε

N

)
,

from which we deduce for all 0 ≤ t ≤ N
ln 1

ε

ε
1
2
that

∣∣∣∣∣∣
2∑
j=1

P̈j (t) + ẋ j (t)
2

∣∣∣∣∣∣ ≤ 2K1

(
e−√

2d(t) + ε
3
2

(
ln

1

ε

)M+1

exp
(10Cε

1
2 t

ln 1
ε

)
+

ε

N

)
.

(B49)

Since
∣∣∣∑2

j=1 P̈j (t)
∣∣∣ ≥ −

∣∣∣∑2
j=1 P̈j (t) + ẋ j (t)2

∣∣∣ +∑2
j=1 ẋ j (t)

2, we deduce from the

estimates (B49) and (B42) that∣∣∣∣∣∣
2∑
j=1

P̈j (t)

∣∣∣∣∣∣ ≥ ε

K
−
[
e−√

2z(t) +
∥∥∥−−→g(t)

∥∥∥2
]
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− 2K1

[
e−√

2d(t) + ε
3
2

(
ln

1

ε

)M+1

exp
(10Cε

1
2 t

ln 1
ε

)]
− 2K1ε

N
.

(B50)

We recall that from the statement of Theorem 4 that e−√
2d(t) = v2

8 sech (
√
2vt + c)

2
,

withv =
(
ż(0)2

4 +8e−√
2z(0)

) 1
2
,which implies thatv � ε

1
2 .Sincewehaveverified inThe-

orem 11 that e−√
2z(t) � ε, themean value theorem implies that

∣∣∣e−√
2z(t) − e−√

2d(t)
∣∣∣ =

O(ε |z(t) − d(t)|), from which we deduce from (B43) that

∣∣∣e−√
2z(t) − e−√

2d(t)
∣∣∣ = O

(
ε2
(
ln

1

ε

)M+1

exp
(10Cε

1
2 t

ln 1
ε

))
.

In conclusion, if ε 
 1 enough, we obtain for 0 ≤ t ≤ N ln ( 1
ε
)

ε
1
2

from (B50) that

∣∣∣∣∣∣
2∑
j=1

P̈j (t)

∣∣∣∣∣∣ ≥ ε

K
−
[
e−√

2d(t) +
∥∥∥−−→g(t)

∥∥∥2
]

− 4K1

[
e−√

2d(t) + ε
3
2

(
ln

1

ε

)M+1

exp
(10Cε

1
2 t

ln 1
ε

)]
− 2K1ε

N
.

(B51)

The conclusion of the demonstration will follow from studying separate cases in the
choice of v > 0, c. We also observe that K , K1 are uniform constants and the value of
N ∈ N>0 can be chosen at the beginning of the proof to be as much large as we need.

Case 1. (v2 ≤ 8ε
(1+4K1)2K

.) From inequality (B51), we deduce that

∣∣∣∣∣∣
2∑
j=1

P̈j (t)

∣∣∣∣∣∣ ≥ ε

2K
−
∥∥∥−−→g(t)

∥∥∥2 − 4K1

(
ε

3
2

(
ln

1

ε

)M+1

exp
(10Cε

1
2 t

ln 1
ε

))
− 2K1ε

N
,

then, from (B35) we deduce for 0 ≤ t ≤ ln 1
ε

ε
1
2
that if ε is small enough and N > 10KK1,

then
∣∣∣∑2

j=1 P̈j (t)
∣∣∣ ≥ ε

4K , and so,

∣∣∣∣∣∣
2∑
j=1

Ṗj (t)

∣∣∣∣∣∣ ≥ εt

4K
−
∣∣∣∣∣∣

2∑
j=1

Ṗj (0)

∣∣∣∣∣∣ ,

which contradicts the fact that (B40) and (B35) should be true for ε 
 1.
Case 2. (v2 ≥ 8ε

(1+4K1)2K
, |c| > 2 ln ( 1

ε
).) It is not difficult to verify that for 0 ≤

t ≤ min( |c|
2
√
2v

, N
ln 1

ε

ε
1
2

), we have that e−√
2d(t) ≤ v2

8 sech ( c2 )
2 � ε3. Therefore, if N >
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10KK1 and ε > 0 is small enough, estimate (B51)would imply that
∣∣∣∑2

j=1 P̈j (t)
∣∣∣ ≥ ε

4K

is true in this time interval. Also, since now v ∼= ε
1
2 , we have that

ln 1
ε

ε
1
2

� |c|
2
√
2v

,

so we obtain a contradiction by a similar argument to the Case 1.

Case 3. (v2 ≥ 8ε
(1+4K1)2K

and |c| ≤ 2 ln 1
ε
.) For N � 1 and t0 = (1+4K1)

1
2 K

1
2
√
2 ln 1

ε

ε
1
2

, we

have during the time interval

{
t0 ≤ t ≤ 2

(1+4K1)
1
2 K

1
2
√
2 ln 1

ε

ε
1
2

}
that e−√

2d(t) ≤ v2

8 sech

(
2 ln 1

ε

)2
� ε5 and ε

N < ε
20K . In conclusion, estimate (B50) implies that

∣∣∣∑2
j=1 P̈j (t)

∣∣∣ ≥
ε
4K is true in this time interval. From the Fundamental Calculus Theorem, we have that

∣∣∣∣∣∣
2∑
j=1

Ṗj (t)

∣∣∣∣∣∣ ≥ ε(t − t0)

4K
−
∣∣∣∣∣∣

2∑
j=1

Ṗj (t0)

∣∣∣∣∣∣ .

In conclusion, hypothesis (B35) and estimate (B40) imply for T = 2
(1+2K1)

1
2 K

1
2
√
2 ln 1

ε

ε
1
2

and N � 1 that ∣∣∣∣∣∣
2∑
j=1

Ṗj (T )

∣∣∣∣∣∣ ≥ ε
1
2 (1 + 2K1)

1
2
√
2 ln 1

ε

8K
1
2

,

which contradicts the fact that (B35) and (B40) should be true, which finishes our
proof. ��
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