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Abstract: We construct Birkhoff cones for dispersing billiards, which are contracted
by the action of the transfer operator. This construction permits the study of statistical
properties not only of regular dispersing billiards but also of sequential billiards (the
billiard changes at each collision in a prescribed manner), open billiards (the dynamics
exits some region or dies when hitting some obstacle) and many other examples. In
particular, we include applications to chaotic scattering and the random Lorentz gas.

1. Introduction

Billiards are a ubiquitous source of models in physics, in particular in Statistical Me-
chanics. The study of the ergodic properties of billiards is of paramount importance for
such applications and also a source of innovative ideas in Ergodic Theory. In particular,
starting with at least [Kry], it has become clear that a quantitive estimate of the speed of
convergence to equilibrium is pivotal for this research program. The first strong result
of this type dates back to Bunimovich et al. [BSC] in 1990, but it relies on a Markov-
partition-like technology that is not very well suited to producing optimal results. The
next breakthrough is due to Young [Y98,Y99] who put forward two techniques, towers
and coupling, well suited to study the decay of correlations for a large class of sys-
tems, billiards included. The idea of coupling was subsequently refined by Dolgopyat
[Do0O4a,Do04b,Do05] who introduced the notion of standard pairs, which have proved
a formidable tool to study the statistical properties of dynamical systems in general and
billiards in particular [C1,C2,CD,CZ]. See [CM, Chapter 7] for a detailed exposition of
these ideas and related references.
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In the meantime another powerful idea has appeared, following the seminal work
of Ruelle [RS,Ru76] and Lasota—Yorke [LY], to study the spectral properties of the
associated transfer operator acting on spaces of functions adapted to the dynamics. After
some preliminary attempts [Fr86,Ru96,Ki99], the functional approach for hyperbolic
systems was launched by the seminal paper [BKL], which was quickly followed and
refined by a series of authors, including [B1,GL,BT,GL2]. Such an approach, when
applicable, has provided the strongest results so far, see [B2] for a recent review. In
particular, building on a preliminary result by Demers and Liverani [DL], it has been
applied to billiards by Demers and collaborators [DZ1,DZ2,DZ3,D2,BD1,BD2]. This
has led to manifold results, notably the proof of exponential decay of correlations for
certain billiard flows [BDL].

Yet, lately there has been a growing interest in non-stationary systems, when the dy-
namical system changes with time. Since most systems of interest are not isolated, not
even in first approximation, the possibility of a change to the system due to external fac-
tors clearly has physical relevance. Another important scenario in which non-stationarity
appears is in dynamical systems in random media, e.g. [AL]. The functional approach as
such seems not to be well suited to treat these situations since it is based on the study of
an operator via spectral theory. In the non-stationary case a single operator is substituted
by a product of different operators and spectral theory does not apply.

There exist several approaches that can be used to overcome this problem, notably:

1. Consider random systems; in this case, especially in the annealed case, it is possible
to recover an averaged transfer operator to which the theory applies. More recently,
the idea has emerged to study quenched systems via infinite dimensional Oseledets
theory, see e.g. [DFGV1,DFGV2] and references therein;

2. Consider only slowly changing systems that can be treated using the perturbation
theory in [KL99, GL]. For example, see [DS], and references therein, for some recent
work in this direction;

3. Use the technology of standard pairs, which has the advantage of being very flexible
and applicable to the non-stationary case [SYZ]. Note that the standard pair tech-
nology and the above perturbation ideas can be profitably combined together, see
[DeL1,Del.2,DLPV];

4. Use the cone and Hilbert metric technology introduced in [Bir,[.95a,L.95b,LM],
which has also been extended to the random setting [AL, AFGV].

The first two approaches, although effective, impose severe limitations on the class of
nonstationary systems that can be studied. The second two approaches are more general
and seem more or less equivalent. However, coupling arguments are often cumbersome
to write in detail and usually provide weaker quantitative estimates compared to the cone
method.

Therefore, in the present article we develop the cone method and demonstrate that it
can be successfully applied to billiards. Indeed, we introduce a relatively simple cone
that is contracted by a large class of billiards. This implies that one can easily prove a
loss of memory result for sequences of billiard maps. To show that the previous results
have concrete applications we devote one third of this paper to developing applications
to several physically relevant classes of models.

We emphasize that the present paper does not exhaust the possible applications of
the present ideas. To have a more complete theory one should consider, to mention just
a few, billiards with corner points, billiards with electric or magnetic fields, billiards
with more general reflection laws, measures different from the SRB measure (that is
transfer operators with generalized potentials as in [BD1,BD2]), etc. We believe that
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most of these cases can be treated by small modifications of the present theory; however,
the precise implementation does require a non-negligible amount of work and hence
exceeds the scope of this presentation, which aims only at introducing the basic ideas
and producing a viable cone for dispersing billiards.

The plan of the paper is as follows. In Sect. 2 we introduce the class of billiards from
which we will draw our sequential dynamics and summarize our main analytical results
regarding cone contraction. In Sect. 3 we present the uniform properties of hyperbolicity
and singularity sets enjoyed by our class of maps, listed as (H1)—-(HS); we also prove
a Growth Lemma for our sequences of maps and introduce one of our main characters,
the transfer operator. In Sect. 4 we introduce our protagonist, the cone (see Sect. 4.3).
Section 5 is devoted to showing that the cone so defined is invariant under the action of
the transfer operators of the billiards in question. In Sect. 6 we show that in fact the cone
is eventually strictly invariant (the image has finite diameter in the associated Hilbert
metric) thanks to some mixing properties of the dynamics on a finite scale. The strict
cone contraction implies exponential mixing for a very large class of observables and
densities as is explained in Sect. 7. Finally, Sect. 8 contains the announced applications,
first to sequential systems with holes (open systems), then to chaotic scattering and
finally to the random Lorentz gas.

2. Setting and Summary of Main Results

Since we are interested in studying sequential billiards, below we define a set of billiard
tables that will have uniform hyperbolicity constants, following [DZ2]. Other classes
of billiards are also studied in [DZ2], such as infinite horizon billiards, billiards under
small external forces and some types of nonelastic reflections. While such classes of
billiards are amenable to the present technique, we do not treat the most general case
here since the greater number of technicalities would obscure the main ideas we are
trying to present.

2.1. Families of billiard tables with uniform properties. We first choose K € N and
numbers £; > 0,i = 1,... K. Let M = U,‘Kzlli x [=7%, %1, where for each i, I; =
[0, ¢;]/ ~ is an interval of length ¢; with endpoints identified. M will be the phase space
common to our collection of billiard maps.

Given K and {¢;}X |, we use the notation Q = Q({B;}X ) to denote the billiard
table T2 \ (UiK: 1 Bi), where each B; is a closed, convex set whose boundary has arclength
¢;. We assume that the scatterers B; are pairwise disjoint and that each 8 B; is a C3 curve
with strictly positive curvature.

The billiard flow is defined by the motion of a point particle traveling at unit speed
in Q := T2 \ (U; B;) and reflecting elastically at collisions. The associated billiard map
T is the discrete-time collision map which maps a point on dQ to its next collision.
Parameterizing d Q according to an arclength parameter r (oriented clockwise on each
obstacle B;) and denoting by ¢ the angle made by the post-collision velocity vector
and the outward pointing normal to the boundary yields the canonical coordinates for
the phase space M of the billiard map. In these coordinates, M = U; I; x [—%, %], as
defined previously.

For x = (r,¢) € M, let T(x) denote the time until the next collision for x under
the flow. We assume that 7 is bounded on M, i.e. the billiard has finite horizon. Thus
since the scatterers are disjoint, there exist constants Tmin(Q), Tmax(Q) > 0 depending
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on the configuration Q such that 7pin(Q) < T(x) < Tmax(Q) < oo forall x € M.
Moreover, by assumption there exists Kmin (Q), Kmax(Q) > 0 such that if C(r) denotes
the curvature of the boundary at coordinate r, then Kpin(Q) < K(r) < Knax(Q).
Finally, let Emax (Q) denote the maximum value of the C3 norm of the curves comprising
0 Q when parametrized according to arclength.

Now fix 7, K, Ex € RT, and let O(z,, Ky, Es) denote the collection of all billiard
tables Q({B;}X ) such that

Tx < Tmin(Q) < Tmax(Q) =< 7;17 Ky < Kmin(Q) < Kmax(Q) =< }C;l, and Ky < Enax(Q) < E,.

Toeachtablein Q € O(ty, Ky, E) corresponds a billiard flow and hence a billiard map
T = T(Q) and associated collision times. Let F(t4, K4, E) denote the collection of
billiard maps induced by configurations in Q(z, Ky, Ey), i.€.,

F(te, K, Ex) ={T =T(Q) : Q € Qs+, Ky, ES)}, .

Thus each T € F (1, Ky, E,) is identified with! a table 0 € Q(ty, Ky, E,), which we
denote by Q(T'). Note that all T € F(ty, Ky, E4) have the same phase space M since
we have fixed K and the arclengths {¢; }l.K= 1

It is a standard fact that all T € F(ty, K«, E;) preserve the same smooth invariant

probability measure, d Lz = ¢ cos ¢ dr dg, where ¢ = % = 2Z+l is the normal-
i=1 i

izing constant [CM]. In addition, all T € F(t4, Ky, E,) are mixing with respect to figs
and so are topologically mixing [S] (see also, [CM, Section 6.7]).

It is proved2 in [DZ2, Theorem 2.7] that all T € F(ty, Ky, E) satisfy properties
(H1)—(H5) of that paper with uniform constants depending only on 74, I, and E,. We
recall the relevant properties in Sect. 3 that we shall use throughout the paper and label
them (H1)-(HS5).

Remark 2.1. The assumption that all scatterers have the same arclength is made for
convenience so that there is a single cone C on which all our operators L7, T € F,
act. This can be relaxed slightly once the hyperbolicity constant A := 1 + 2/C, 7, has
been introduced in (H1) by allowing the arclength of the boundary of each scatterer
to change by no more than &1, where &1 < % since then rescaling the arclength
parametrization of dB; to be again [0, ¢;] yields a map with similar properties (H1)-
(H5), but with slightly weakened hyperbolicity constant A = A 11:;1 > 1 (and 6y from
(H3) is weakened accordingly.)

To change the arclengths drastically would force us to consider a sequence of cones
Cn on a sequence of phase spaces M,. This would require further suitable assumptions
on the maps 7, : M,, — M4 in order to ensure hyperbolicity, and such assumptions
could be tailored to specific applications. We do not pursue this generality here, but
remark that for example, it would be possible to formulate such a generalization for the
random Lorentz gas with gates described in Sect. 8.5, in which the central scatterer in
each cell is allowed to change arclength and the resulting billiard map between cells
would still satisfy (H1)—(HS) (albeit the normalization in (H5) would vary).

1 We do not claim that each such T is unique. It may be that T(Q) = T(Q’) pointwise (consider a
90° rotation of a given configuration Q), yet for our purposes they will be considered distinct elements of
F (s, Ksy Ex).

2 The abstract set-up in [DZ2] also allows billiard tables with infinite horizon and those subjected to external
forces, but we are not concerned with the most general case here.
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Next, we define a notion of distance in Q(t4, Ky, E4) as follows. Each table Q
comprises K obstacles B;. Each dB; can be parametrized according to arclength by a
function u; : I; — R? (unfolding T?). Since two arclength parametrizations of 9 B;
can differ only in their starting point, the collection u; g, 6 € [0, ¢;), denotes the set
of parametrizations associated with d B;. Similarly, for a configuration Q, denote the
parametrizations of obstacles by it; ¢, 0 € [0, Zi). Let [Tk denote the set of permutations
m on {1, ... K} which satisfy Eﬂ(i) = ¢;. Then define

K

(0. 0) = min min_ le 3.0 =t 61c2(1, 1) - @1

Fix Qg € Q(ty, K4, E) and choose k < %min{t*, K.} Let Q(Qo, Ey4; k) denote

the set of billiard tables Q with3 d(Q, Qo) < k and Enax(Q) < Ei, Tmax < 2/T«.

Let 7(Qo, E; k) denote the corresponding set of billiard maps. The following result is
[DZ2, Theorem 2.8 and Section 6.2].

Proposition 2.2. Let Qy € Q(ty, Ky, Ey). For all k < § min{z,, K.}, we have Q(Qo,

E. k) C Q(%*, %, E.). Moreover, there exists C > 0 such that for any T\, T» €

F(Qo, Ey; k),

(a) dy (Sfl1 , Sfll) < Ck'72, where dy is the Hausdorff metric and SZI is the singularity
set for T~ defined in (H1);

(b) for x ¢ N2 (ST, 8™, d(T7 ' (x), Ty, 1 (v)) < Ckc'/2, where Ne(-) denotes the
e-neighborhood of a set in M in the Euclidean metric.

We use an (uncountable) index set Z (., Ky, Ey), identifying ¢ € Z(z, i, E,) with
amap T, € F (14, K4, E,). Choosing a sequence (¢) jen C Z(Tx, Ky, Ex), we will be
interested in the dynamics of

T, =T,0---0T,0T,, neN, (2.2)

tn

If we choose ¢; = ¢ for each j, then 7, = T}", the iterates of a single map. For conve-
nience, denote Ty = Id.

2.2. Main analytical results: Cone contraction and loss of memory. As announced in
the introduction, the main analytical tool developed in this paper is the construction of
a convex cone of functions C. 4.1 (8), depending on parameters § > 0, ¢, A, L > 1, as
defined in Sect. 4.3, that is contracted under the sequential action of the transfer operators
Lf=fo T-!, defined in Sect. 3.3 for T € F(zy, Ky, Es). Fora sequence of maps T,
asin (2.2), define £, f = fo T\

In order to state our main result on cone contraction, we define open neighbor-
hoods in F(z4, Ky, E,) using the distance d between tables defined in (2.1). Let T €
F(ts, Ky, Ey), and for 0 < x < %min{t*, K.}, define

F(T, k) ={T € F(ts, K, Ex) : A(Q(T), Q(T)) < «}. (2.3)

Remark that since (T, k) C F(Q(T), E; k), the conclusions of Proposition 2.2 apply
as well to maps in F (T, ). We will denote the index set corresponding to F (7, k) by
I(T,k) C I(t4, Ky, Ex). Thus t € Z(T, k) if and only if 7, € F(T, k).

3 Indeed, the distance d allows configurations to move from finite to infinite horizon (see [DZ2, Sec-
tion 6.2]), but we will not need that here as we will restrict ourselves to finite horizon configurations.
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Theorem 2.3. Suppose c, A and L satisfy the conditions of Sect. 5.3, and that 6 > 0
satisfies (6.7) and (6.18). Let Ny := N (8)™ + kyny be from Theorem 6.12 and let k > 0
be from Lemma 6.6(b).

(a) There exists x € (0, 1) such that ifn > Nr, T € F(t4, Ky, Ey) and {Lj}’}:l -
I(T, k), then L,Cc 4.1(8) C CXC,XA,XL(S)'

(b) Forany x € (max{%, %, \/%}, 1), the cone Cy ¢ y A, 1 (8) has diameter at most

(1+x)?
log (—(1 — X)ZXL> < 00

in the Hilbert metric associated to Cq a.1.(8) (see (4.1) for a precise definition),
provided § > 0 is chosen sufficiently small to satisfy (6.21).

The first statement of this theorem is proved in two steps: first, Proposition 5.1 shows
that the parameters ¢ and A contract due to the uniform hyperbolicity properties (H1)—
(HS5) of the maps in F (ty, Ky, E.), subject to the constraints listed in Sect. 5.3 (all that is
needed is {Lj};le C I(t4, Ky, E,), and not the stronger assumption {tj}’j’.:1 C I(T, k));
second, Theorem 6.12 proves the contraction of L using the uniform mixing property of
maps T € F(T, k) as expressed by Lemma 6.6. The second statement of Theorem 2.3
is proved by Proposition 6.13.

From this theorem follow our results on exponential loss of memory for sequential
systems of billiard maps. In the case that 7,; = T for each j, these results read as
exponential decay of correlations and convergence to equilibrium. Since our maps 7' €
F (T4, Ky, Ey) all preserve the measure fig;, we also obtain a type of convergence to
equilibrium in the sequential case (see Theorem 2.8).

In order to state our result for the sequential system, we define the notion of an admis-
sible sequence of maps from F (., Ky, E). As before, let k > 0be from Lemma 6.6(b).

Definition 2.4. For N € N, wecallasequence (t;) j>1,tj € Z(t«, Ky, Ey), N-admissible
if there exist sequences (Ty)k>1 C F (T, K, Ex) and (Ng)i>1 with Ny > N, such that

T, € F(Tr. k) forallk > Land j € [1+ Y52} Ni, Yr; Nil.

Thus an N-admissible sequence is a sequence which remains in a « neighborhood of
a fixed map Ty for Ny > N iterates at a time, but which may undergo a large change
between such blocks.

Remark 2.5. One can generalize the definition of N-admissible sequence to include short
blocks where maps are not required to be close to a fixed map. As long as these short
blocks can be grouped to contain at least n iterates, where ng is from Proposition 5.1,
and they are interspersed regularly with long blocks of length at least N = N then one
can still set up a regular contraction using Theorem 6.12 on the long blocks.

We first state our results regarding loss of memory, both with respect to g and
leafwise: the difference of integrals along individual stable curves converge to 0 expo-
nentially fast along any N.r-admissible sequence. Let YW*(§) denote the set of homoge-
neous cone stable curves W* defined in Sect. 3.1, having length between & and 25. We
denote by pgs(f) = f [ ditss and by |W] the (Euclidean) length of a stable curve W
in M.

Also, we denote the average value of ¥ on W by fW Ydmy = ﬁ fW Ydmyy,
where mw denotes the arclength measure on W induced by the Euclidean metric in M.
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In Lemma 7.6, we prove that our cone C, 4,7 () contains translations of piecewise
Holder continuous functions, as long as the discontinuities are transverse to the stable
cone defined in (H1). We make this precise as follows.

Definition 2.6. We call a countable (mod 0) partition P = {P;}; of M regular if each
P; is an open, simply connected set, and there exist constants K, Cp > 0 such that for
all W e W%, W \ 0P comprises at most K connected components and for any & > 0,
mwy (Ng(0P)) < KCpe, where N.(A) denotes the e-neighborhood of a set A in M.

For t > 0, denote by C!(P) the set of functions on M that are Holder continuous on
each element of P and such that

[flctepy = sup | flcrpy < 0.
PeP

We recall again Nr = N(§)~ + kyn, from Theorem 6.12.

Theorem 2.7. Let P be a regular partition of M and let* t > y. There exist C > 0 and
¥ < 1 such that for all N z-admissible sequences (1) j, alln > 0, and all f, g € C'(P)

with MSRB(f) = lu’SRB(g)'.
(a) For all W € W*(8) and all € CY(W), we have

‘f Lof ¥ dmy —][ Log v dmy
w w

< CO" ¥ lcrowy max{l| flicepy, lgllcr Py} s
(b) Forall y € C'(M),

< CO" Yoy max{l| fllcrpy, llglcr )} -

‘/ ['nfwdﬂsmf _/ ﬁnglﬁdﬂsm
M M

We remark that the regularity of ¥ € C'(M) can be relaxed to ¥ € CS (M) for any
¢ > 0 by a standard approximation argument, but at the expense of obtaining a weaker
rate 9.

Since all our maps preserve the same invariant measure [iss, we obtain additionally
an equidistribution result for stable curves as well as convergence to equilibrium along
admissible sequences.

Theorem 2.8. Under the hypotheses of Theorem 2.7, there exists C > 0 such that for
all Nr-admissible sequences (tj)j C L(ty, KCx, Ey), all f, g € C'(P) with prg(f) =
Usrs(g), and all n > 0,

(a) For all Wy, Wa € W*(8) and all ; € CY(W;) with le Y = sz Yo, we have

' Cnf WI de] - Lng Wz de2
Wi Wy

< CO" (Y1l owy) + [W2lerwyy) max{|| flictpys gller )} s

in particular, for all W € W*(8) and € CY(W),

‘][W Laf ¥ dmy — fte(f) fw dew‘ < CO" [l 1wy max{|| ey gl )

4 The parameter y € (0, 1) is from the cone condition (4.8).
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(b) for all y € CY(M),

‘/ f¢°Tndl/«SRB_/ fdMSRB/ Y d srs
M M M

Theorems 2.7 and 2.8 are proved in Sect. 7, specifically in Theorems 7.3 and 7.4 and
Corollary 7.5.

< CO" Yl ppy max{ll fllce(pys gl emyl -

Remark 2.9. Theorem 2.7 has some overlap with [SYZ], which also considers sequential
billiards in which scatterers shift slightly between collisions. Note, however, that our
definition of admissible sequence allows abrupt and large changes in the configuration
of scatterers within the family F (7, Ky, E,) every N iterates, compared to the slowly
changing requirement throughout [SYZ]. This may seem like merely a technical differ-
ence due to the cone technique, yet it is precisely this ability to introduce occasional
large changes in the dynamics that allows us to apply our results to the chaotic scattering
problem and random Lorentz gas described in Sect. 8.

With these convergence results in hand, we are able to provide three applications to
concrete problems of physical interest: sequential open systems in Sect. 8.3, a chaotic
scattering problem without assuming a no-eclipse condition in Sect. 8.4, and a variant
of the random Lorentz gas in Sect. 8.5.

3. Uniform Hyperbolicity, Singularities and Transfer Operators

3.1. Uniform properties for T € F(t4, Ky, E4). Fixing K and {E,-}IKZI, we recall some
fundamental properties of billiard maps T € F(t4, K4, E) that depend only on the
quantities 74, KCx and E.. Although many of these properties are well known, a proof of
their dependence on t,, K, E, can be found, for example, in [DZ2, Section 6.1].

In order to better align with the abstract framework in [DZ2], we also label our
properties (H1)—(HS), although our set-up here is simpler than in [DZ2]. We recall the
corresponding index set Z(t,, Cx, E,) from Sect. 2.1 and the notation 7}, from (2.2).
(H1) Hyperbolicity and Singularities. The (constant) family of cones

CS(x) = {(dr,dp) e R? : =K' — 1]

*

V' <dyjdr < —K,}, forx e M,

is strictly invariant, DT~'C*(x) € C*(T~'x), for all T € F(z, K., Es). Moreover,
T-! enjoys uniform expansion of vectors in the stable cone: set A = 1 + 2K, 7, > 1;
then there exists C1 € (0, 1] such that,

IDT ' (x)v|| = C1A"||v]l,  forallv € C*(x), 3.1)

where || - || denotes the Euclidean norm given by dr*+dg?. Thereis a family of unstable
cones C* defined similarly, but with KC,, < de/dr < K;' + t!, which is strictly
invariant under DT for all T € F (1, Ky, Ey).

Due to the unbounded expansion of DT near tangential collisions, we define the
standard homogeneity strips, following [BSC]. For some ko € N, to be chosen later in
(3.4), define

He ={(rn¢) e M: (k+ )2 <|£% —¢p| <k ?), forallk >ko. (3.2)

Set So = {(r,9) € M : ¢ = £7}. For n > 1, the singularity set for 7, is denoted by
SnT” =V, Ti_1 (So), while the singularity set for Tn_l is denoted by Si",, = U'_(Ti (So).
On M\ SnT", T, is a C? diffeomorphism onto its image.
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There exists a constant, which we still call C; > 0, such that
Ci - IDT (x)v| - 1 ’
cosp(Tx) — vl ~ Cicosop(Tx)

forx ¢ ST

In order to achieve bounded distortion, we will consider the boundaries of the
homogeneity strips as an extended singularity set for 7. To this end, define Sgﬂ =
So U (Ugsko (0H U 0H_4)), and forn > 1,

St =u TS, SE, =UL TSP (3.3)

(H2) Families of Stable and Unstable Curves. We call a curve W C M a stable curve
if for each x € W, the tangent vector to W at x belongs to C*. A stable curve is called
homogeneous if it lies in one homogeneity strip or outside their union. Denote by WW* the
set of homogeneous stable curves with length at most 8o € (0, 1/2) (defined by (3.4))
and with curvature at most B.

By [CM, Proposition 4.29], we may choose B sufficiently large that T~1W* ¢ W,
up to subdividing the curves of length larger than 8¢, for all T € F(ty, Ks, Ey).

Similarly, we define an analogous set of homogeneous unstable curves by W*.
(H3) One-Step Expansion. Defining the adapted norm ||v||., v = (dr, d¢) as in [CM,
Sect. 5.10], we have [|[DT ' (x)v]+ > A|v||s for all v € C*(x), wherever DT ! is
defined. For W € W*, let V; denote the maximal homogeneous components of 7' W.
Then by [CM, Lemma 5.56], there exists 6y € (A, 1), a choice of kg for the homogeneity
strips and &g € (0, 1/2) such that,

sup sup Y [Tl <. (3.4)
TeF (1, i, Ex) WeWS ™

where | Jy, T | denotes the supremum of the Jacobian of T" along V; in the adapted metric.

Since the stable/unstable cones are global and bounded away from one another, the
adapted metric can be extended so that it is uniformly equivalent to the Euclidean metric:
There exists Cp > 1 such that Cal lvll < [[vllx < Collv|| for all v € R2.

(H4) Distortion Bounds. Suppose W € W* and forn > 1, {tj};le C I(t4, Ky, E)

are such that T;W € W* for j = 0, ...n. There exists C; > 0, independent of W, n
and {tj}sle, such that for all x, y € W,

| log Jw Ty (x) — log Jw T, ()| < Cad(x, y)'/3, 3.5)

where Jw T, is the (stable) Jacobian of 7,, along W and d (-, -) denotes arclength on W
with respect to the metric dr? + dg?.

Similar bounds hold for stable Jacobians lying on the same unstable curve. Suppose,
for n > 1, that Vi, Vo € W?* are such that T;V, T;V, € W' for 0 < j < n,in
particular they are not cut by any singularity, and there exists a foliation of unstable
curves {{y}rey, C W" creating a one-to-one correspondence between Vi and V, and
such that {T,,(€x)}rev, C W" creates a one-to-one correspondence between 7, Vi and
T,V2. For x € Vi, define x = €, N V5. Then there exists C4 > 0, independent of n,
{Lj};le, V1, Vo, and x, such that,

[log Jv, Ty (x) — log Jy, T, (X)| < Ca(d(x, %) + ¢ (x, %)), (3.6)

where ¢ (x, x) denotes the angle between the tangent vectors to V| and V; at x and
X, respectively. For simplicity, we use the same symbol C,; to represent the distortion
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constants in (3.5) and (3.6). The proofs for these distortion bounds in this form for a single
map can be found in [DZ1, Appendix A] (see also [CM, Section 5.8]). The analogous
bounds for sequences of maps in F(ty, Ky, E4) are proved in [DZ2, Lemma 3.3]. The
constant C,; depends only on the choice of ko from (H3) and the hyperbolicity constants
C and A from (H1).

(H5) Invariant measure. All 7 € F(t,, K, E,) preserve the same invariant measure,
diss = ccos @ dr do, where ¢ = @ = m is the normalizing constant [CM].
Remark 3.1. Property (HS) is enjoyed by the class of maps we have chosen, but it is not
necessary for this technique to work. Indeed, [DZ2] replaces this condition by: There
exists n > 0 so that 1 + n is sufficiently small compared to the hyperbolicity constant
A from (H1), such that (Jy,, T) ™' < 1 +1, where J,, T is the Jacobian of jig, with
respect to 7.

Thus 7 does not have to preserve [igs, but in this sense must be close to a map
that does. This permits the application of the current technique to billiards under small
external forces and nonelastic reflections, as described in [DZ2, Section 2.4]. See also
[C2,Z]. Note however, that while Theorem 2.7 will continue to hold in this generalized
context, Theorem 2.8 will not hold once there is no common invariant measure.

3.2. Growth lemma. Although all maps in F(z4, Ky, E,) enjoy the uniform properties
(H1)—-(HS), in Sect. 6.1, we will find it convenient to increase the contraction provided
in (3.4) by replacing T with a higher iterate 7,, and choosing &y sufficiently small so
that (3.4) holds for T} := T, with constant ;. This is possible since if W is a stable
curve, then there exists C > 0, depending only on the family F(z,, s, E), such that,
for each T € F(ty, Ky, Es), [T"'W| < C|W|'/? [CM, Exercise 4.50]. Thus we may
redefine §p so small that no connected component of Tk_1 (W) is longer than §¢, from
hypothesis (H1), for k = 0, ..., n. Since no artificial subdivisions are necessary, we
apply (3.4) inductively in k to obtain the desired contraction.
Choose 7 such that 0 := 93 satisfies

3C o1 < ! (3.7)
U o =7 .
where Co > 1 is from (H3), and then fix §y, as explained above, such that
sup Y |y, Tils < 01, (3.8)

wWew )
(Wi<ép Vi

where V; are the homogeneous components of Tﬁ_l W. Note that if we shrink §¢ further,
then (3.8) will continue to hold for the same value of 7.

We shall work with the map 7 := T throughout the following. To simplify notation
we will call T, again T as no confusion can arise. Note, however, that the definition of
N-admissible sequence must be modified since the length Nz of the blocks comprising
the sequence, for example in Theorem 2.7, is computed for the map 7. Thus a single
block in an N-admissible sequence should comprise at least 7N billiard maps that are
close in the sense of Definition 2.4.

Definition 3.2. For W € W*, for T}, as in (2.2) we denote by G, (W) the homogeneous
components of 7, W, where we have subdivided the elements of 7' W longer than
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8o into elements with length between 8y/2 and 8y so that G, (W) C W*. We call G,,(W)
the nth generation of W.

Let Z,,(W) denote the set of curves W; € G, (W) such that T;(W;) is not contained
in an element of G,_ ; (W) having length at least §o/2 forall j =0, ..., n.

The following growth lemma is contained in [DZ2, Lemma 5.5], but we include the
proof of item (b) here for convenience and to draw out the explicit dependence on the
constants.

Lemma 3.3. There exists Co > 0 such that for all W € W* and n > 0 and {tj}'j’-zl,
(@ > wTulcogw,) < Cobis

W; €Z, (W)
(b) > 1w Tulcogw) < Cody ' W]+ Coby.

Wi€Gn(W)

Proof. Item (a) follows by induction on n from (3.8) and the constant Cy from (H3)
comes from translating from the adapted metric to the Euclidean metric at the last step.
We focus on proving item (b).

For W € W*, let Ly (W) C Gr(W) denote those elements of G (W) having length
at least 8p/2. For k < n and W; € G, (W), we say that V; € Li(W) is the most recent
long ancestor of W; if k < n is the largest time that 7,,_; W; is contained in an element
of Ly(W). Then by definition, W; € Z,,_(V;). Note that if W; € L,(W), thenk = n
and W; = V;. Now we estimate,

n
Yo WUwhileowy =Y. D Y W Taklcogw v, Telcow,)

Wi eGn(W) k=1VjeLy(W) W;eZ, (V)
+ Z [Jw; Tnlcoow,)
WieZ, (W)

n
_ 13 [T Vil
=Y Y comteln T cupy
k=1V;eLy(W) J

where we have used item (a) of the lemma to sum over W; € Z,,_,(W) and (3.5) to

M. Now since vaeLk(W)Tij C W, and |V;| > d0/2,

replace |Jy; Ti|cocy,) with v,

we have

n
1/3
2. MwTaleogw) = D Cobf =255 WIeCh + Coby

WieG, (W) k=1
2Co ,Cy8\3
=g ¢ "0 -

which proves the lemma with C¢ := O

Remark 3.4. Tt is not necessary to work with 7 = Tj; in Lemma 3.3. It follows equally
well from (3.4) with 0 replaced by 6y. However, the stronger contraction provided by
(3.8) is useful for Lemma 6.1 and the arguments following it.

Observe that if |W| > §p/2, then all pieces W; € G, (W) have a long ancestor and
can be included in the sum over k; in this case, the second term on the right side of item
(b) is not needed, and the value of Cy remains unchanged.
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3.3. Transfer operator. We define the transfer operator £ associated with T acting on
scales of spaces of distributions as in [DZ1]. For {: j}l}=] C I(1y, Ky, Ey), we denote
by T, "W the set of curves W € W* such that 7;W € W* forall j = 0, ...n. For
o < 1/3,let C "‘(Tn’IWS) denote the set of complex valued functions on M that are
Holder continuous on elements of Tn’IWS. Then for v € C*(W?®), we have Y o T, €
C*(T,7'W?) (see Lemma 5.2(a)). Define

Lop(Y) = p(p o Ty), for e (C*(T, ' WH)*.

This defines L7, : (C“(Tn_IWS))* — (C“(Tn__IIWS))* for any n > 1. See [DZ1] for
details.

Recall that by (H5), all our maps T preserve the smooth invariant measure d 4z =
ccospdrdg, where c is the normalizing constant. When du = fd g, is a measure
absolutely continuous with respect to gy, we identify p with its density f. With this
identification, the transfer operator acting on densities has the following familiar expres-
sion,

Lrf=foT,

and so L, f = L, -+ L, f, pointwise. We choose this identification of functions in
order to simplify our later work: using the reference measure [ig;, the Jacobian of the
transformation is 1, making £ simpler to work with.

4. Cones and Projective Metrics

Given a closed,® convex cone C satisfying C N —C = ¢, we define an order relation by
f X gifandonly if g — f € C U {0}. We can then define a projective metric by
a(f.g) =sup{r e R": 1f < g}
B(f.g) =inf{n e RY : g < uf}

p(f. g) =log (fﬁ; g) :

4.1)

4.1. A cone of test functions. For W € W*, a € (0, 1] and @ > 1, define a cone of test
functions by

Dyo(W) = {w e CO(W): vy >0, v <™ vy y e W},
¥(y)

where d (-, -) is the arclength distance along W.

The Hilbert metric associated with this cone and defined by (4.1) depends on the
constant a and the exponent o determining the regularity of the functions. For each such
choice, the Hilbert metric has the following convenient representation.

5 Closed here means that for all f, g € C and sequence {«;} C R such that lim,—~ @y, = « and
g+ayf eCforalln € Nwehave g +af € CU{0}.
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Lemma 4.1 ([L95a, Lemma 2.2]). Choose a € (0, 1]. For ¥, Y2 € Dy o(W), the
corresponding metric pw .o (-, -) is given by

owaar =log| sp G ) —$10) N Yo (w) — )
o e ST Y1) = () IO @) — g1 (o) |

A corollary of this lemma is that D, (W) has finite diameter in D, g(W) if B < «
and |W| < 1 (the proof is similar to [L95a, Lemma 2.3] noting that d(x, y)* <
(WP (x, y)P).

The next two lemmas are simple consequences of the regularity of functions in
Dy« (W) for W € W*. We denote by my the measure induced by arclength along W.

Lemma 4.2. For any o € (0, 1] and W € W* with |W| € [§,268], any ¥ € Dy o(W)
and x € W, we have

W W) gwe

Proof. The estimate is immediate since infyew ¥ (y) > U (x)e @I, m|
Lemma 4.3. Given o € (0, 1], W e W’, ¥y, Y2 € Dy oqw) and x,y € W,
o Pwaatny) o VIOV20) oy
T Yy (y) T

Proof. According to (4.1), we must have,

Yo(x) —ayi(x) >0 YxeW and  yo(y) —BYi(y) <0 Vye W.

This in turn implies that

Vx,ye W.

pW,a,ot(llflv Y2) = log M > lo [M]

a(Yi, ¥2) V2 () Y1(y)

4.2. Distances between curves and functions. Due to the global stable cones C* defined
in (H1), we may consider stable curves W € W* as graphs of C? functions over an
interval Iy in the r-coordinate:

W={Gw(r) =@ ow)) :rely}

Using this representation, we define a notion of distance between W', W? € W* by
dWs(Wl, Wz) = |(pwl — 90W2|C'(1W1NW2) + |1wl A Iw2 |, (42)

if W! and W? lie in the same homogeneity strip and |Iy;1 N Iyy2| > 0; otherwise, we
set dyys (W', W?) = oo. Note that dyys is not a metric, but this is irrelevant for our
purposes.

We will also find it necessary to compare between test functions on two different
stable curves. Given W', W2 € W* with dyys (W', W?) < oo, and ¢; € D, (W),
define
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di(Yr1,¥2) = Y1 0 GW1 ||G/W| | — Y20 GW2||G/W2|| |Cﬁ(lW1m]W2)7 4.3)

to be the (Holder) distance between 1 and ¥, where || G’W | = +/1+ (dew/dr)?. Note
that d, depends on .

Also, by the bound B on the curvature of elements of WW*, there exists B, > 0 such
that

By, = sup |§0;//V|CO(W) < 0. 4.4)
wews

Remark 4.4. Note that if d, (1, ¥2) = 0, then

ﬁl wldmwl :/72$2de2,
w w

where W' = Gyx (Iy1 N Iy2), k = 1,2

4.3. Definition of the cone. In order to define a cone of functions adapted to our dy-
namics, we will fix the following exponents, «, B, ¥, ¢ > 0 and constant a > 1 large
enough. Choose g € (0, 1/2), 8 < o < 1/3 and finally y < min{«e — 8, ¢}.

For a length scale § < /3, define

WE(8) = {W e W' : [W| <28} and W'(8) = (W e W* : |W]| €[5, 251} .

Let A, denote the set of functions on M whose restriction to each W € W* is
integrable with respect to the arclength measure dmy . For f € A, define,

~ |fW f de|
U7 = sup SRS
WeW? (5) fWW mw
VY €Dq,p(W)
Setting Ag = {f € Ay : | fIl7 < oo}, we have that || - || is a seminorm on the vector

space Ay.

Definition 4.5. As usual, we consider the vector space of the classes of equivalence
determined by the semi-norm (f ~ g iff ||f — gll’ = 0) and call A the resulting
normed vector space. Remark that if f ~ g, then f and g are equal almost everywhere
both with respect to Lebesgue and to SRB measure (4. In the following, we can then
safely ignore the issue of equivalence classes and we will not mention it explicitly.

We will find it convenient to measure the average of functions in our cone on long
stable curves, i.e. elements of YW (8). To this end, define for f € A,

fydmy . fodmy

Iflle = sup M I/l = inf fW—
wewse) Jw ¥ dmw wew' o) Jy ¥ dmw
WEDa,ﬁ(W) ‘pe,Da.ﬁ(W)

4.5)

Recall that we denote the average value of 1 on W by fW Ydmy = I1WI f w ¥ dmy.
Since all of our integrals in this section and the next will be taken with respect to the
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arclength dmy, to keep our notation concise, we will drop the measure from our integral
notation in what follows.
Now fora,c, A, L > 1,and § € (0, §¢/3], define the cone

CeoaL(8) = {f e A\ {0}: s 2y (4.6)
sup sup |W|_qM < AT £ 4.7
WeW? (8) €Dy (W) w¥

VW W2 e WS (6) : dyys (W, W?) <8,

Vi € Dao (W' 1 du(Yr1, ¥r2) = 0,

le fv . fWZ S
fwl Y sz )

We write the constants ¢, A, L explicitly as subscripts in our notation for the cone since
these will be the parameters which are contracted by the dynamics. By contrast, the
exponents «, B, y, q are fixed and will not be altered by the dynamics, while the constant
a, which will be chosen in Lemma 5.2, will not appear directly in the contraction constant
of the cone.

Intuitively, (4.6) requires that the ‘mass’ of functions in the cone be evenly distributed
throughout the phase space, while (4.7) implies that, even though the functions in the
cone are not necessarily bounded, their average on a short stable curve W cannot be
larger than some constant times |W|?~!. Condition (4.8) says that, once you integrate
along stable curves, you get an object which is morally y-Holder on the space of curves
with the ‘metric’ dyys. That is, (4.8) implies some form of weak Holder regularity for
f transverse to the stable cone.

< dys(W', Wy sl—VcAmfm_} . 48)

Remark 4.6. The above cone is a considerable simplification of the one introduced in
[L95a, Section 4.1]. The parameter ¢ in [L95a, Section 4.1] plays the role of the param-
eter g here: it allows one to control the integral of an element of the cone on short stable
curves. By contrast, the introduction of the new Holder exponents «, B, y is necessary,
as already evident in [DZ1] and [DZ2], to allow for the wilder singularities present in
billiard maps with respect to the ones treated in [L95a, Section 4]. In particular, the
requirement o < 1/3 is forced by the distortion bound (H4), which in turn depends on
the choice of homogeneity strips. The relation between the above cone and the norms in
[DZ1] and [DZ2] is very close: the cone has a natural norm associated to it (see [DKL1,
Appendix D.2 and, in particular, equation (D.2.1)]) which is very similar to the norms
in [DZ1] and [DZ2].

For convenience, we require &g to be sufficiently small so that

B
2% < 2. (4.9)

This will imply similar bounds in terms of § since § < §p/3.

Remark 4.7. Note that, by definition, || - ||, decreases when § decreases, while || - ||_
increases. Thus if (4.6) holds for some § > 0, it will hold automatically for all smaller
6. We will see that cone invariance has the same property. In fact, as will become clear
from our estimates in Sects. 5 and 6, in order to prove that the parameters contract, we
will need to choose A large compared to L, and ¢ large compared to A. This yields the
compatible set of restrictions, 1 < L < A < c.
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By contrast, the exponents are fixed by the regularity properties of the maps in
question: @ < 1/3 due to (3.5), and 8 < « so that D, g(W) has finite diameter in
Dy« (W), while y < a—f isconvenient to obtain the required contractionin Lemma 5.5.
See Sect. 5.3 for all the conditions the constants must satisfy for Proposition 5.1. Several
further conditions are specified in Theorem 6.12 to prove the strict contraction of the
cone.

Remark 4.8. Note that, since 0 ¢ C. 4.1(8), condition (4.6) implies || f]|— > 0, hence
forall W e W¥(8), ¥ € Dy, g(W),

[ rvamyzusi [ wamy o (4.10)
w w
In particular, this implies

d
Il = s JwSVemw

WeWs (8) fw v dmy
YeD, g(W)

for f € Cca,1(5).

In addition, condition (4.7) implies

Allfll- = sup sup aq—‘|W|l—qumﬂn+.
WEWS (8) €Dy s (W) Jw ¥

However condition (4.6) is not vacuous since we assume A > L.

Remark 4.9. To have an idea of which functions can belong to the cone note that a
function that is strictly negative on a ball of size 2§ cannot satisfy (4.6) and hence does
not belong to the cone. On the other hand each f € C! such that inf f > L|| f|ls and
I fllct < cinf f belongs to the cone. See also Lemma 7.6 for a more detailed description
of functions that belong to the cone.

We will need the following lemma in Sect. 6.2.
Lemma 4.10. For all f € C. a,1(8), W € W*(8) and all 1, Yr» € Dy g(W),

Jw fvn 3 Jw [

fW ¥ fW U2
Proof. Let f € Ce a,0.(8), W € W¥(8) and Y1, Yrp € Dy g(W). Foreach A, u > 0 such
that Ayr; < Yp < urg, hence also Ay < Y < ur1, we have

Jw Fv2 & [y fo+ [y £ = 2y) - Ay fU
fwir fw V2 T onfy
where we have dropped the second term above due to (4.10) since Y2 — Ay € Dy g(W).
Taking the sup on A and the inf on w, and recalling (4.1), yields
Jw i Jw [ _ Jw [
fwwl JCWW2 a fWWI

Then, since |W| > §, we use (4.6) to estimate,

% < WIS, < 25LIFI- .
w

Reversing the roles of vr; and v, completes the proof of the lemma. O

<28Lpw.a,p(1, YIS - .

fwf‘/fll

(1 — e~ PWapy2)y < ow.a.p(W1, ¥2)
fw ¥
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5. Cone Estimates: Contraction of ¢ and A

In this section, fixing F (t4, K4, E4), we will prove the following proposition. Letng > 1
be such that ACof;° < 1/16.

Proposition 5.1. Ifthe conditions on 8, ng, a, c, A, L specified in Sect. 5.3 are satisfied,
then there exists x < 1, independent of the cone parameters,® such that for all n > nq
and {Lj }’}»:1 C I(t4, Ky, Ey),

Encc,A,L(‘S) - CXC,)(A,3L (5) .

Note that the parameter L is not contracted, although it cannot grow too much. To
have a contraction of L we need to use the global properties of the map (some kind of
topological mixing, see Sect. 6 for details), while the proof of Proposition 5.1 is based
only on local arguments.

Before proving Proposition 5.1 we need some facts concerning the behaviour of the
test functions under the dynamics.

5.1. Contraction of test functions. For {Lj}zle C I(t4, Ky, Ex), W € WS, ¥ €
Dy,p(W), and W; € G, (W), define

Tow ¥ = Toi¥ ==V o Ty - Jw, Ty,

where Jw, T,, denotes the Jacobian of T, along W; with respect to arclength.
The following lemma is a consequence of (H1).

Lemma 5.2. Let n > 0 be such that C;ﬁA_ﬁ" < 1, where C1 < 1 isfrom (3.1), and fix
a>1—C;PAPy"1Cy8)°7P. Foreach B € (0, 1/3), there exist o, & < 1 such that
forall W € W* and W; € G, (W),

(a) Tn I(Da ﬁ(W)) C Dsa ﬁ(W)

(b) pw;.a ﬁ(Tn V1, TuiVn) < Epw.a, g1, ¥) for all Yy, Yo € Dy p(W).

Proof. (a) We need to measure the log-Holder norm of Tn’ilﬁ for Y € Dy g(W). For

x,y € Wj, recalling (3.1), we estimate,

Tn,il[’(x) Y (T, x)]W T, (x) eud(Tnx,Tny)ﬂ+Cdd(x,y)l/3
iy (y) 1/f(TnY)JW,T O~
< Qlacy BA=Fnicysy* Prax, y)ﬁ

where we have used (3.1) and (3.5) as well as the fact that 8 < 1/3. This proves the first
statement of the lemma with o = Cl_ﬂA_/s” + a_lCd8é/3_’3.

6 By independent of the cone parameters, we mean that we may first fix x < 1, and then choose ¢, A, L, §
satisfying the conditions of Sect. 5.3 so that the contraction by y is obtained for all choices of ¢/ > ¢, A’ > A,
L’ > L and §' < § that satisfy those conditions. Note, however, that larger A’ > A requires n to increase in
size.
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(b) Using Lemma 4.1, if vr1, ¥2 € Dsq,(W;), then,

PWia,p(W1, ¥2)

_1 e (@) — i) e yrw) — Yo v)
=08 sup ad(x,y)P _ ' ad(u,v)p _
e, €400 g () —9a(y) ey @) — Y (v)

| [ elarod ) _ 1 plaroad@ ) _ 1y (y) Ly v) | GD
< . .
=8| ey elamoad G 1 g — 1 ay) - i ()

r 2
a+oa B B
( ) _6,21/1(1+<7)8O . 62a60i| - K.

<1
=108 | (@ —0a)?

Thus the diameter of Dy, g(W;) is finite in D, g(W;). Part (b) of the lemma then follows
from [L95a, Theorem 1.1], with £ = tanh(K /4) < 1. o

Corollary 5.3. Let n| denote the least positive integer satisfying C; PA=Pr1 < 1 and
-1
aCl_ﬁA_ﬂ"l + Cd85/3_‘3 < a. Define € = € < 1. Then for W € W*, n > ny and
Wi € Go(W),
pwiapToi¥t, Toi¥a) < & pw.ap Wi, ¥2)  forall Y1, 92 € Dy p(W).

Proof. The proof follows immediately from Lemma 5.2 once we decompose n = kn+r,
where r € [0, ny) and write

Tow; ¥ = Toyr,w; © Toy Ty e (Wi) © Ty Ty e (W) © ==+ © T Ty sp Wi V-

Each of the operators /]:nl»Tjnlw(Wi) satisfies Lemma 5.2 with the same o and &. The
corollary then follows using the observation that §L"/ ml < &N, Vn > nj. O

It is important for what follows that the contractive factor £ < 1 is explicitly given
in terms of the diameter K, which depends only on a, o, §¢p and $, but not on §. While
n1 depends on the parameter choice g, it also is independent of §.

In what follows, we require ng > n; by definition, so that Lemma 5.2 and Corol-
lary 5.3 will hold for all n > ny.

5.2. Proof of Proposition 5.1. This section is devoted to the proof of Proposition 5.1.

5.2.1. Preliminary estimate on L For W € W?*, recalling Defintion 3.2, we denote by
Shy(W; §) the elements of G, (W) of length less than § and by Lo, (W; §) the elements
of G, (W) of length at least §.

Lemma 5.4. Fix § € (0, 89/3) so that 4A880_16_‘0 < 1/4, then, for all f € C. a.1(8)
and n > no,

ICaflle < 307N and WL fll= = 31 Fl—.
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Proof. Let W e W¥(8), ¥ € Dy g(W). Then,

Lofy= )Y, fUoT, JwTi+ > foTy Jw,T,.
w w; Wi

WieLo,(W;d) W;eSh, (W;8)
(5.2)

Now since ¥ o T,,Jw; T, € D, g(W;) by Lemma 5.2, we subdivide elements W; e

Lo, (W; §) into curves Ué having length between § and 28 and use the definition of
Il £l on each such curve to estimate,

/ fY ol Jw Ty < Z|||f|||+/_ Vol Jw,Th = |||f|||+/ V.
Wi 7 Ui T, Wi

To estimate the short pieces, we apply (4.7), change variables again and use ¢ €
D, p(W), and finally apply Lemma 3.3(b) since Sh,(W; §) C G,(W), to estimate

> /fonnJWiTns > |||f|||_A|W,-|’151“f][ ¥ o T Jw, T,
Wi Wi

W;eSh, (W;6) W;eSh, (W;8)
< SA|lfll_e*®" ][ ¥ (Cody W]+ Cob)).
w

Putting these estimates together in (5.2) and since |W| > § implies & fW ¥ < [ w ¥, we
obtain,

[esvs X usn [ weansie® |y oyt oo
w T, Wi %

WieLo,(W;6)

A

IA

ﬁ 1 =
AL [ (1 4@ 07 Co v conp).
w

Now (4.9) implies e“(z‘s)ﬁ < 2, and our choices of ng and § imply 2A max{C_‘ocS(SO_ 1,

C()Qf"} < 1/4, which yields the required estimate on ||, f||.. for all n > ng.
For the bound on ||£, f||_, we perform a similar estimate, except noting that for

Wi € Lon(W: ),
/ FUoTydwTy = |||fIII_/ v,
Wi T, Wi

we follow (5.2) to estimate,

[erv= X [ v ane® [y oy’ + o)
w T, W; w

W;€Lo, (W:5)

11 [ (1240 65510+ CoD)
w

v

v

Again using our choice of np and §, we have 4AC09f’ < 1/4 and 4A860_16_‘0 < 1/4,
which yields [|C, fll- > 3 £l . O

In particular the above implies the estimate: for all n > ng,

DL SUe _ S 0S _
Y T

3L. (5.3)
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5.2.2. Contraction of the parameter A. We prove that the parameter A contracts in (4.7).
Choose f € C¢,a,1(8). Let W € W* with |W| < 26, ¥ € Dy g(W) and x € W. From
now on, we will refer to Lo, (W; 8) and Sh,(W; §) as simply Lo, (W) and Sh, (W). We
follow (5.2) to write

‘/ ACan‘S Z / fonnJWiTn'*' Z '/ fonnJW,-Tn
w W;eLoy (W) * Wi WieShy(w) '/ Wi
< Y |||f|||+/ Vo T Jw, T,
Wi€Loy (W) Wi
+ Y Asl—‘f|w,-|‘f|||f|||_][ Yo Ty Jw, Ty
Wi €Shy (W) Wi
< > |||f|||7L/ Y+ AS W FI || co
WieLon(W) Wi
3 |Wil? T, Wi
q |
sy 1L Wil

where in the second line we have used (4.7) for the sum on short pieces. Since |W| < 26,
the first sum above is bounded by

IIIflllfLIWl][ ¥ < |||f|||72L51_q|qu][ V.
w w

For the sum on short pieces, we use Lemma 3.3(b) and the Holder inequality to estimate’

q l—g

Wi | |T, Wi | T, Wi
Z |Wl|q |’{}V |l = Z |’;)V|l Z [Iw; Tnlcoqwy)
Wi €Shy (W) ! Wi eShy, (W) Wi eShy, (W)

IA

(Cody W]+ CootH)! 1.
Combining these two estimates with Lemma 4.2 yields,

Ly -
W £V gst-aywpon g (2LA7"+ e (Cosy W+ Cop)! 7).
fw ¥
(5.4)

This contracts the parameter A if 2LA~! + a20)F (26_‘0880_ Ly Coef)]’q < 1, which we
can achieve if (2"(2‘3)"j <2,

A>4L, and (2C885" +Cob°)! 1 < 1/4. (5.5)

Remark that since L > 1, we have A > 4, and so according to the assumption of
Lemma 5.4, 26_’0880_1 < 1/32. Moreover, C()QI"O < 1/64 by choice of ng, and since
1 — g > 1/2, the second condition in (5.5) is always satisfied under the assumption of
Lemma 5.4.

1T Wil

7 Note that Y; |T, W;| < |W| and it
1

= |JWI- T"‘CO(W,')'



Projective Cones for Sequential Dispersing Billiards 861

5.2.3. Contraction of the parameter ¢ Finally, we verify the contraction of ¢ via (4.8).
Let f € Cea.r(8) and W', W2 € W* with |[WX| < 268 and dyys (W', W?) < §. Take

Vi € Do (WH) with du(¥1, ¥2) = 0.
Without loss of generality we can assume [W2| > |W!| and le Y1 = 1. Next, note

that cone condition (4.7) implies (see Lemma 5.4)

fwl Lnf ¥ _ fWZ Lnf ¥

< 4A8"N WL, £l
fwr ¥ fw2 V2

. . .. s 1 2\y -
It follows that the contraction of the parameter c is trivial for | W24 < 8977 w

Thus it suffices to consider the case

dys (W, W2)re

W27 = 6977
8

(5.6)

Remark that by definition, dyys (W', W?) < § implies Iy, N Iy, # @. To proceed,

define Cy := /1 + (K, L Ty 1)2, which depends on the maximum absolute value of
the slopes of curves in the stable cone defined in (3.1). We assume,

g >y ,and ¢ > 16C{. (5.7

Next, for any two manifolds U I € W5 (8) defined on the intervals I; with J = I} NIy,
by the distance Definition (4.2) we have,

2
||U‘|—|U2||s/|||G&||—||G’2|||dr+2/ G} lidr
J P AV

s/||G’2— ldr+CylI A L] < (U] + Codys (U, U).
J
(5.8)

Since le Y1 = 1,wehave [{]|e < e92D% On the other hand, since Iy N Iy2 # @
and d. (Y1, ¥2) = 0, there must existr € Iy1 N Iy such that ¢j o Gyn (r)||G’W1 "=
Y20 Gy (r) ||G/W2 (r)||. Thus since,

1G 1

IG ()

1+ ((p;,w (r))2
1+ (‘p;,vz (r)?

_ [y W ) = 0y ) Qe () + 031 () = 942 ()
B 1+ (¢}0 (r)?

< \/1 +dyys (WL, W22 +dyys (WL, W2)) < V/1+35 <2,
where we use § < 1, we estimate,

[¥2loo < 267" iy |0 < 262930" (5.9)
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Then recalling Remarks 4.4 and (4.9), it follows that
‘ / Y1 — / )
Wl WZ

Putting this together with (5.8) and using f W, Y1 = |Wq|, we estimate,

‘|W2|—/ ¥
W2

< "B Iy \ Ty | + 2D 2C | Iy \ Iy |

< 2C;e® @ gy (W, W?) < 4.8 Codyys (WL, W2).

IA

w2 — 1w +

Y1 — V)
w! w2

(W' +5.8 Co)dyys (W', W2) < 6Cydyys (W', W?),
(5.10)

IA

where we have used (4.9),36 <89 <1/2 < Cs/2and o > B.
Hence, recalling Lemmas 5.4 and (5.4), dyys (W', W?) < 8 and using (5.6), (5.7) and

(5.10), we have
<\[ eafwi [ Larvs
Wl W2

le »Cnfl”l _ fWZ »CanZ
W2 ‘
s 17,
] - fov

fw1 V1 fw2 V2
fw2 W2
+237143CTAS Y dyys (WL, WYL £

/Ef%
<[ etin= [ gurin

5/ ﬁnm—/ Lofi
wl w2
(5.11)

To conclude it suffices then to compare le L, f ¥ and [, w2 Ln f Y2 To this end,
define Q,f (Wk) as the nth generation of pieces in Tn_1 W* as in Definition 3.2, but with
pieces subdivided between length § and 26 rather than & /2 and 6. We create partitions of
Q,f(Wk) into ‘matched’ and ‘unmatched’ pieces as follows (see Fig. 1). For each curve

Wil € Q,f(Wl), we construct a foliation of vertical line segments {€,},.y1 centered

20Ln £

at x and having length at most 3C{A™ "”dw (W', W?) such that their images under
T, either end on a singularity curve in S™. ., or, if not cut by a singularity, have length
3dyys (W', w?), with length at least dyys (Wl, W?2) on each side of T, (x).

In the latter case, this implies that £, intersects a unique homogeneous element of
Tn’1 W?2. Let the subcurve U i{ + C Wi1 be the union of the points x for which this happens

and let Ul.2Jr ={t,NT, 'W? }xeu;, be the corresponding subcurve in 7, W23 Since
Ul.k , haslength atmost 24, then U 1.2 L can intersect at most 3 elements of gg (Wz), due to the

possible different ways in which long pieces have been splitin G> (W) and G° (W?). We
call U2 the elements of{U n Wl }ergs(Wz) and set U1 {x e U1 N U]? # 0}

8 Note that, by [CM, Proposition 4.47], given two maximal homogeneous subcurves of T,fl W that are
connected by a vertical segment disjoint from SE'H, there must exist two piecewise smooth curves in Sgﬂ that
connect the boundaries of such two subcurves forming a rectangle that does not contain any element of S,HL'H
in its interior. Thus Ui% , must be a connected subcurve.
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Hoy2 2 2
Sn Uiy Vig T,y 00T,

leaf 1 172
b W "
vk , ] /\ -

Fig. 1. The Decomposition U}‘, V/]f

We call the subcurves U f , k = 1,2 ‘matched’, while we call the remaining subcurves
V;‘ ‘unmatched’. Note that, by construction, each Wik € gﬁ(Wk) can contain at most
two unmatched elements and at most 3 matched elements. In addition, forx € V jl , either
T, (£,) intersects Sﬂjln or T, (x) is near an end point of W'. In either case, due to the
uniform transversality of stable and unstable cones, |Tn(Vj1)| is short in a sense we will

make precise below.
Thus we have defined a decomposition of GS (W) = U;U f Uy V}‘ , such that U}

and Ulz are defined as the graphs of functions G« over the same r-interval /; for each
J
J- R
Using this decomposition, writing 7, j«¥x = ¥k o T, Jyx T, and similarly for
T J

T, vk Yy, we have

/Wk Lof i = 2/:/sz fiz,U;.‘wk'i';/V;{ fil,vjklﬁk- (5.12)

We estimate the contribution from unmatched pieces first. To do so, we group the V;‘
as follows. We say V;‘ is ‘created” at time O < i < n — 1 if i is the smallest ¢ such

that either an endpoint of Tn_,(V;‘) intersects T,,,, (Sgﬂ), or Tn_,(V;‘) is contained in
a larger unmatched piece with this property (this second case can happen when both
endpoints of V}‘ do not belong to S;IZE ). Due to the uniform transversality of the stable
cone with curves in T, ,, (Sgﬂ) as well as the uniform transversality of the stable and
unstable cones, we have |T,_; V;‘I < C_'3A_idWs(W1, W?2), for some constant C3 > 0.
Define P(i) = {j : le created at time i}.

For ease of notation, when we change variables, we will adopt the following notation
forn>1,k>0,

Ton-k=1T,0---0T,

tn ln—k+1 *

(5.13)

In this notation, 7,0 = T, and T, = T y—k © Tp—k-.

Although we would like to change variables to estimate the contribution on the curves
Tn_,-(le) for j € P(i), this is one time step before such cuts would be introduced
according to our definition of g,f (W), so Lemma 3.3 would not apply since there may be
many such 7,_; (Vl.l) for each Wel € gf (W1). However, there can be at most two curves
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,,1(V ), j € P(i), per element of Wl € QHI(WI), so we will change variables

to estimate the contribution from curves of the form 7,,_; (le) instead. We have two
cases.
Case 1. The curve in T,,,, (Sgﬂ) that creates le at time i is the preimage of the bound-

ary of a homogeneity strip. Then T,,_,-_le] still enjoys uniform transversality with
the boundary of the homogeneity strip and the unstable cone, and so |7,,_;_| lel <
C3A™ Vs (W, W?) as before.
Case 2. The curve in T,,, (Sgﬂ) that creates le at time i is not the preimage of the
boundary of a homogeneity strip. Then le undergoes bounded expansion from time
n—itotimen —i — 1. Thus ITn_i_1(Vj1)| < CC3A dyys (W', W?), where C > 0
depends only on our choice of kg, the minimum index of homogeneity strips.

In either case, we conclude that |7}, _; | (le) | < C3A i dyys (W1, W2), for a uniform
constant C3 > 0. Also, since T,,_,~_1(V}‘) is contained in an element of g;j_l._l (W), it
follows that all such curves have length at most 2§, thus we may apply (4.7),

55

i=0

> / Ly—i—1f - ¥10Tyn—i-1 JTnil.il(le)Tn.nfifl

l
JEP(i) Ty—i— 1(

'Z/ 17,10

<Z > AT (VDI La—ic FI- Wl cowny) Vg, oty Tan—i—tlcor, . vl
i=0 jeP(i) / /

n—1

< D ASTTICT AT s (W WAL, i1 fll- 2Co + Cobi ™Dt cogyy
ot

where we have used Lemma 3.3-(b) for the sum over j € P(i) since there are at most
two curves T, ;1 (le) for each element We1 € gfﬂ w).?

Since n > 2ng, we have either thati + 1 > ng orn — (i + 1) > ng. In the former case,
NLn—i—1fll— <2|IL, fll— by Lemma 5.4. In the latter case,

Cn—i-t Fll= < WCn-ima flle < 30N < 3 LUSI- <3LUL.fIl=,  (5.14)

where we have used Lemma 5.4 twice, once on || £,—;—1 f ||, and once on || f||_. Since
the latter estimate (5.14) is the larger of the two, we may use it for all 7.
Also, using the assumption that dyys (W1, W2) < § and (5.7) yields,

81y (W WHT < 81V dyys (W, W27

Collecting these estimates and summing over the exponential factors yields (since the
estimate for ij is the same),

> /V I Tys k| < CaALS Y dyys W WYL, FIl- (5.15)
J

for some uniform constant C4 depending only on F(ty, K4, E4) and not on the param-
eters of the cone.

9 Notice that since we subdivide curves in g,‘?(W) according to length § and not §(, the estimate of
Lemma 3.3(b) becomes Co8 ™ |W| + Coft < 2Co + CofY, since |W| < 26.
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Next, we estimate the contribution on matched pieces U jk To do this, we will need
to change test functions on the relevant curves. Define the following functions on U,

~ NS 1
1/f2=1/f2°Tn°GUj?°GU! ; JUng,L:JU]gT,,oGUJgoGU!,
j j

~ _lGle Gy, (5.16)
T 2(W) =Y JoT,——-L.
nUj UG e G

J J

Note that d*(?n vz (¥2), 7~“n y2(¥2)) = 0 by construction. Also we define
T T

vy =min{T, 1), T, 12 (V)
U =T =0y s =T, e — v
We will need the following lemma to proceed.

Lemma 5.5. If ¢ > 4(1 + My)4, My is defined in (5.28), then there exists C5 > 1,
independent of n, W' and W? satisfying (5.6), such that for each j,

(@) dys (U}, U7) < CsA " dyys (W', W?)
Tn,U} Y1(x)
T, 20 (x)
a—p _
(c) setting B = 8[Csa™"']"® dyys (W', WH*~F we have I/Ii’Aj +BY; € Da,ﬂ(U}),
i=1,2
Moreover, 7~"n p2 W2 and ;" belong to D,,,a(U}).
T

(5.17)

(b) o~ Csdyys WL WA

1 2\
< eC5dws(W ,W*) Vx € U]l ;

We postpone the proof of the lemma and use it to conclude the estimates of this
section.
For future use note that Lemma 5.5(b) implies

0 < Wi (x) = 2Csdyys (W, WH Y7 (x). (5.18)

Observe that since ¥, + BY, ¥ € Dy g(U}), k = 1,2, recalling (4.10) we may
estimate, '

/U!fw,f,-

=‘/{/}f(wﬁj+8w;>—/(]}f3w;

< AS'|U7 £1l_ max {]{N(wﬁj +BY;), ]i Bw;}

< AU f I ﬁj(wﬁj +BY;). (5.19)

Since d*(T"n vz ¥, Tn y2¥2) = 0 by construction, and recalling Remark 4.4, Lemma
T T
5.5(c), condition (4.7), and (5.17), (5.18),

’/lan,Ulwl _/szn,Uzl/fz
U; / U; J

=

/1 an’Ullpl _/1 an,Uzl/IZ
Y ! Y !
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Jor FLa¥e Ju2 £ T 0302 f .
= =~ Y2
for vz fpTsve |Ju

Jor £ T, 0292 | 02| = (U R
o : I ’ f T, p2¥2
fU_} Tn,UJ;I»l’2 |Uj| U]Z i
A - A B
=AYl 7 T, 2l £l
fuf Tn’U];I,bz U2 J

J
+dys (U}, UDY 877 cA ][ Tl £l
U~
J
2 1
|Uj| - |Uj|

+As! Uty -

][ T, el fIl (5.20)
U7 Y

where for the first term, we have used that |T“,LU} Y — TH’U} Y| = W]A,j + lﬁzA,j in order

to apply (5.19), and for the second and third terms we used that fn,U/z Yo € Dy o(U })

by Lemma 5.5 to apply cone conditions (4.8) and (4.7), respectively. Then, recalling
Lemma 3.3(b), (5.9) and (4.9), and using that by construction, there are at most 3 curves
U} in each element of g;j (W2), we can estimate

Z]f] T,p292 < Z]f] 7y Taloor2 0 T,
J J J J

< 3(Cod ™" |W2| + Cob7)2**D” < 36C, . (5.21)
Next, recalling (5.8), we have!?
U7 < U1 +dws (U}, UD) <2|U]]|
provided we impose
CsA™"6 < 1 (5.22)

where C5 is from Lemma 5.5-(a) and A is defined in (3.1). Moreover, remembering the
definition of B in Lemma 5.5-(c) and Eq. (5.18),

L84 Bu7) = . 10CST, i (W' w2y
Uj U! T

J

|U]2| a 1 2
< 10Cs = f T, o (U (W', WYY
IUj| U]Z T
<20Cs f T, gz s W W27, (5.23)
U T

J

10" Since the U f are vertically matched, the term on the right hand side of (5.8) proportional to Cy is absent
here. '
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where we have used the assumptions — 8 > y anda > 1.
Again using (5.8) and Lemma 5.5-(a) we have

2 1
w3 - U}

T <dyws (U7, UDIU|* < 28)1CsA " dyys (W2, W), (5.24)
j

Inserting (5.21), (5.23) and (5.24) in (5.20) and recalling Lemmas 5.4 and 5.5-(a) yields,

3 /lfT,,,U;wl —/szn,Uzwz
PR ! Uj !

< 72CoA8" Y dyys (W', WY 1L, fll- (2940Cs8” +cCsA™" +29CsA™"8)

(5.25)
Then using this estimate in (5.11), and recalling (5.12) and (5.15) yields
fwl [/nf 1/’1 _ sz £nf 1»//2 < {23_1/q3C;1 +C4L
fW1 (4 JCWZ V2 (5.26)

+72C0 (2740C58” +cCsA™"" +29CsA™"9) }A(Sl_”dwx WL WYL, Il
which yields the wanted estimate, provided

2714¢] + C4L +72C) (2740C587 +cCsA™" +21CsA™"8) <c.  (5.27)

5.2.4. Proof of Lemma 5.5

Proof. (a) This is [DZ2, Lemma 3.3].
(b) Recall that U ;‘ is defined as the graph of a function G« (r) = (r, ¢k (r)), forr € I J’.‘,
J J

k = 1, 2. Due to the vertical matching, we have jl = I]Z.
Now for x € U}, letr € I} be such that G;1 (r) = x. Set x = G;2(r) and note that
J J

x and x lie on the same vertical line in M since U jl and UJZ are matched. Thus by (3.6),

J T (x J Ty (x

Uj n) _ "(_) < (Ca@Tx D) Pro(00) < (CaModyys WLWH' 5 50y

JpTh(x)  JpeT(X) ~ B
J J

where M is a constant depending only on the maximum and minimum slopes in C* and
c“.
Next, forx € U ]1 consider
G (oG 1(x
vfl o Tn(.x) ” U} || © Ujl( )
U20)  IGsll0 Gyi(x)
Uj j

U
Let T,(x) = (r, Gy (r)) and T,,(x) = (7, G2 (7)), then

Ir — 7| < Modyys (W', W?).



868 M. F. Demers, C. Liverani

If r € Iy, then since dy (Y1, ¥2) = 0,

Y10Gwi(r) _ Y10Gwi(r) Y20 Gya(r) _ ”G/wz(’")“ead(Gw. (1),G 2 (M)
V20Gy2(7) Yoo Gya(r) Yo Gy (7)) ~ G, (M)l '

Next, since [|G\,,; — G2 |l = 19}, — ¢, | and ||G/Wk|| > 1, we have

/
G2l < GGl _ s (W)

G
16! 1 1oG 1 () -
Similarly, ,—’ < e WiUp), Hence, using part (a) of the lemma and assum-
G 2HoGU1 )
ing
CsngA ™08 < 1, (5.29)
yields

¥ o Ty(x) G, 1|| OGUl(X)

U2 (%) “G/U_,zl' ° Gyl o

o @MG+2)dyys Wi, W2)°‘

The same estimate holds if 7 € Iy1. Otherwise it must be that
Iy N Iy | < Modyys (W, W?2)

but then, since [y 1 Aly2| < dyys (W1, W2) we would have |[W?2| < (1 +M())dWr(W
W?), which violates (5.6) together with the assumption, provided

c > 4(1+ My)?. (5.30)
The estimates with the opposite sign follow similarly. Putting together these estimates

yields part (b) of the lemma with C5 = MoCy8'/3 + aMg +2.
(c) As noted in (5.18), by (b) it immediately follows that

nU”/fl(x) " Uzlﬂz(X) < 2Csdyys (W', Wz)“l/f (x).

A

i) =

Next, for x,y € Ul let ¥ = G2 0 G (x), § = G2 0 G1 (), and note these are
J j J j
well-defined due to the vertical matching between U ,1 and U /2 Letr = G;}(x) and
. ‘ !

s = G;%(y). Recalling (4.4), we have

J

G’ 1(i’)|| ||G/ =G’ ()]
U < U/! r U} S < eB*|r—s| < eB*d(x,y) ,
||G (S)||
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and similarly for || G/U2 |I. Using this estimate together with the proof of Lemma 5.2(a),
j

Tn’Ugl/fz(x) i:n’U;Iﬁz(f) ”G/Uz(r)” ”G/U! (O]

109200~ T, 02920 G, DTG 6)] (5.31)

< @CT AT+ Cy20)! AR5 +2Bud (x.y) < pad (x,3)
since d(x, y) < Mod(x, y) and provided
(@Cy AT 4 Cy(28) 3 M + B (28)' % < a. (5.32)

To abbreviate what follows, let us denote g1 = 7":, yi¥1 and go = fn y2¥2. Then,
T T

given x,y € U}, we have I/f;(x) = 8k(x)> w; () = gr(y)- If k(x) = k(y), then, by
Lemma 5.2(a) and (5.31),

Vi akp®) _ REIERI
Vi) sk;mO) T

If k(x) # k(y), then without loss of generality, we can take k(x) = 1 and k(y) = 2. By
definition, g (x) < g2(x) and g2(y) < g1(y). Hence,

e—ad(x,y)a < gl ('x) < 1'0]_()(') — g] ('x) < g2(x) < ead(x’y)a
Ty Ty 200 T &) T ‘

It follows that ;€ Dy o(U;), and by (5.31), Tn,Ujng € Duu(U)).
Then, for each 1 > B > 2Csdyys (W', W2 and x, y € U,
Vi 00+ BYj () (B+2Csdys (WL W)y (x)
YO+ BYT () T (B —=2Csdyys (W WH Y (y)
< ) +4BT Csdyys WHLWAHE - ad(x,y)P

provided 8 B~ Csdyys (W', W) < ad(x, y)? and
1
28)*F < 5 (5.33)

It remains to consider the case 8 B~} Csdyys (W1 , W2)°‘ > ad(x, y)ﬂ. Again we must
split into two cases. If k(x) = k(y) = k, then, setting {£} = {1, 2} \ {k},
Vi G+ BY; () ge(0) +(B — D)
Ve D+ BYT () T ge(y) + (B = Dgi(y)
_ Y g0 + e (B — g ()
ge(y) + (B — Dgr(y)

o
< ) [1 N zad(;’ Y) } < Al P (14287 1d (x.y)?

< o540y’

(5.34)
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provided that
a—p
d(x,y)* P +2B7Yy <4B7# [8C5dws(Wl, Wz)aa—1] P

N =

That is,
a=p

o

B>8 [CSa*I] dyys (W', W2ye=F,

The second case is k = k(x) # k(y) = £. In this case, there must exist x € [x, y] such
that ¥ (x) = g1(x) = g2(x). Then,

Vi () + By (x) _ &)+ (B = Dgr(x) ge(0) + (B — Dgr(¥) _ e,y
Ve )+ BYT () Bge(x) ge(x) + (B — Dgr(x) ~

by the estimate (5.34). A similar estimate holds for 1/ka, Iz It follows that we can choose

a=—p
B = 8[C5a_1] s (W, w2yah (5.35)

and have wiéj+3¢; € Da,,g(U}). O

5.3. Conditions on parameters. In this section, we collect the conditions imposed on
the cone parameters during the proof of Proposition 5.1. Recall the conditions on the
exponents stated before the definition of C. 4 1.(8): @ € (0,1/3],9 € (0,1/2), B < «
and y < min{x — B, gq}.
From (4.9) and Lemma 5.4 we require,
B _
@ < 2% <2 and 4ACess;" < 1/4.
From the proof of Lemma 5.4 and Lemma 5.2, we require the following conditions on
nO?
ACo0]® < 1/16 and C;'A™Fro < 1.
From Lemma 5.2, Corollary 5.3 and the proof of Lemma 5.5, we require
a>aCy AP0 +C8) 7P and a > (@Cy AT + Cy(28) P~ ME +B.(28)

(recall that we have chosen ng > n after Corollary 5.3).
From the bound on (4.7), we require in (5.5),

A >4L.
For the contraction of ¢, we require (see (5.7), the proof of Lemmas 5.5 and (5.27))

¢ >max {16CY, 4(1+ Mo)?} ; CsA™™8'"* <1; (28)*F <3;

227143C] + C4L +72C (2940Cs8” +cCsA™"0Y +21CsA™"08) < c.
Finally, in anticipation of (6.21), we require,
cA > 2C;. (5.36)

These are all the conditions we shall place on the parameters for the cone, except for
8, which we will take as small as required for the mixing arguments of Sect. 6. Indeed,
note that if the above conditions are satisfied for some § = &, then they are satisfied
also for all § € (0, §,).
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6. Contraction of L and Finite Diameter

Proposition 5.1 proves that the parameters ¢ and A of the cone C, 4,1 (§) contract simply
as aconsequence of the uniform properties (H1)-(HS) for any sequence of maps (7,;) ; C
F (T4, Ky, Ex). Inthis section, however, we will restrict our sequence of maps to be drawn
from a sufficiently small neighborhood of a single map Ty € F(ty, Ky, E) in order to
use the uniform mixing properties of maps 7 close to Ty to prove that the parameter L
also contracts under the sequential dynamics. This is done in two steps. First, in Sect. 6.1,
we use a length scale 89 > /8 and compare averages on the two length scales, § and
80, culminating in Proposition 6.3. This step does not yet require us to restrict our class
of maps. Second, in Sect. 6.2, restricting our sequential system to a neighborhood of
a fixed map Ty, we obtain a bound on averages in the length scale §p as expressed in
Lemma 6.8. This leads to the strict contraction of L established in Theorem 6.12, which
proves Theorem 2.3(a). We prove Theorem 2.3(b) in Sect. 6.3, showing that the cone
Cye,xA,xL(8) has finite diameter in the cone C, 4,7 (8) (Proposition 6.13).

6.1. Comparing averages on different length scales. Recall thelengthscale §y € (0, 1/2)
from (3.8) and that § < 8g/2. Also, recall that W*(89/2) denotes those curves in W*
with length between §y/2 and §p. We choose § < 8(2) and define

T TA L Ry Ju SV dmy
wews o2 Jw ¥ dmw WeW' (/2 [y ¥ dmw
wEDa,ﬂ(W) wEDa B(W)

By subdividing curves of with length in [§¢/2, §] into curves with length in [§, 28], we
immediately deduce the relations,

A= < WAS < WAL < 0Ny (6.1)

Lemma 6.1. Assume e“‘;g <2, from (4.9), and AS§ < 60/4, from Lemma 5.4.
Foralln e N, {Lj}’;zl C I(v4, Ky, Ey) and f € Cye ya,xL(8) we have,!!

n ) 1
IC UL < WS +3C0 Y6 Ny < SUY+ SIS (6.2)

i=l1
3
NC, 10 > mem(i. (6.3)

Proof. We prove (6.2) by induction on n. It holds trivially for n = 0. We assume the
inequality holds for 0 < k < n — 1 and prove the statement for 7.

Let W € W*(80/2). Define L1(W) to be those elements of G (W) having length at
least §o/2. For k > 1, let Lk(W) denote those curves of length at least 89/2 in Gi (W)
whose images are not already contained in an element of L (W)foranyi =1,...,k—1.
For V; € Ly (W), let Pi(j) be the collection of indices i such that W; € G, (W) satisﬁes
T,—«W; C V;. Denote by I,(l) (W) those indices i for which T,_; W; is never contained
in an element of G (W) of length at least 80/2, 1 < k < n,and § < |W;| < §p/2. Let

11 The second inequality in (6.2) follows from (3.7).
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T, (W) denote the remainder of the indices i for curves in G,, (W), i.e. those curves W; of
length shorter than § and for which 7, _ W; is not contained in an element of G (W) of
length at least §9/2. By construction, each W; € G, (W) belongs to precisely one Py ()
or (W) or Z,(W).

Now, for ¢ € Dy (W), recalling (5.13), we have,

§ / fYoT, JW,- T, = / Lo f¥o Tyn—k ij Thn—k-
=~ Jw, V;
i€P(j) J

Using this equality, we estimate,

/. Cnf W = Z Z / [/nfkf ‘/’ o Tn,nfk ij Tn.nfk

w = Vi
k=lv;eLy(w)" "/

+ 0y Y oTy Jw T+ >  fye T, dw T

iezow)’ Wi ieZ, W)’ Wi
n n
DB D Ve / ¥ 0 Tunk Jv; Tnnk
k=1v;eLy(W) Vi
+ oy HIfHI+/ YoTydwTu+ Y AS" Wil FI_1¥|coaw)  Iw, Tulcogw
ieZQ(W) Wi i€, (W)
n n—k
=3 X (g3 cosius.) / v
k=1 Vj EE]((W) i=1 Thn—k V/

80 8 n
+ Y 115 1 leow w Talcowy + A 5=80l leoqw £ 1, Cob]
ie€ZO(W)

n—1

: 8 3
0 i 2\ a8, n
<[ v (|||f|||++3i§:lCo91|||f\||+)+<1+2A S)et [ v sicon.

where for the second inequality we have used the inductive hypothesis, and for the second
and third we have used Lemmas 3.3(a) and 4.2. This proves the required inequality if

8o is small enough that e“‘sg < 2 and § is small enough that A§ < §p/4, both of which
we have assumed.
We prove (6.3) similarly, although now the inductive hypothesis is || £¢ f[|° > (1 —

3 Zf.‘zl Coéf) foreach k = 0,...,n — 1. We begin with the same decompostion of

G, (W), although we simply drop the terms in I,?(W) since they are all positive (see
Remark 4.8).

/W Lofvr=Y > /V Lok f 0 Tant Jv Tons

k=1v;eLy(W)

+ 0y /W_flpoTnJW,.T,ﬁ > /W‘flpoTnJW,.Tn

ieZ0(W) i€, (W)

n
= DN DN romyy ) /V 0 Tt 1 T

k=1v;eLy(W)
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— Y ASTWH L= 1 coqwy | Iw; Tl cocwy

n—k
= Y [ vt (1-3) )

i=1
_A;_an|¢|co(w)|||f|||_c(>e?

n—1
i Y
VAL (1-33 Cooi) — 242 / ¥ IFIC.Cob!
/W ( ; 1) 5o w 1

v

n—1
SIS (1=30608) D Wil leom o Talcow,

i€y (W)ULZQ(W)
! 5 B p
> / 4 |||f|||9(1 -3 Z Cobl — 2420 Copt — % C09f') ,
W i=1 %

where again we have used Lemmas 3.3(a) and 4.2 as well as the bound || f]|_ < || f e
This proves the inductive claim, and from this, (6.3) follows from (3.8). |
To continue it is useful to set

log(8Co(L8ps ™! +2A))

N@©) ™ = . 6.4
@ [log 61 4

Next, we have a partial converse of Lemma 6.1.
Lemma 6.2. Foralln > N(8)~ and {Lj}?zl C I(t4, Ky, Ey), we have

ILn fll = _max |||£kf|||+ —|||f|||7

3
Ienfll- = 7 k_mln ICe £ — —|||f|||7

Proof. The proof follows along the lines of the proof of Lemma 6.1, using the same

decomposition into ik(W), I,? (W) and Z,, (W), except that now we begin with W €
W?*(8) and ¥ € D, g(W). We have,

/cfw<2 I Vo kf|||+/ ¥ 0 Tunic Jv, Tnnk

k=1v;eLi(W)
+ 0y |||f|||+/ Yo T, Jw,Ty
ieTO(W) Wi

+ Y ASTAWIL -1 coqwy | Iws Tl cowy
i€, (W)

S/vvl/fk:(r)l}ﬁx Lk IS+ F I Cob — /¢+2A|||flll C091/¢

0 —
< /W v (_max_ LIS+ U= Cobf (Lapd ™ +24))
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which proves the first inequality, given our assumed bound on 7. Note that the ratio 6o/
appears in the second term since |W;| < §p/2, while |W| > §.
The second inequality follows similarly, again along the lines of Lemma 6.1.

n
/W Lofv =Y Y Mewi I /V V0 Tk v, Tansk

k=1v;eLi(W)
— > AW =1 Loy | ws Tl co sy
i€eZ,(W)
> k:(gT.I::—l Lk FIIZ -/W ¥ — Z |Wl||‘/f|C0(W)|JWi Tﬂ'C°(W,v)

i€L, (W)ULY(W)

—ZA/ v ILfIl-Cobf
w

> / v ( min L I (1 =808~ Cob7) — 2AC09f’|||f|||_) ,
W k=0,..n—1
and our bound on r suffices to complete the proof of the lemma. O
Proposition 6.3. For alln > N(8)™ and {t; };f:l C I(ty, Ky, Ey), either,

WEn flle _ 8 AN
WL fll- =~ 9NfI-"

or

9
NCafll <8ISS and WL fIl- = Elllflllg-
Proof. Since n > N(8)~ > ng, we may apply both Lemmas 5.4 and 6.2. Now, by
Lemma 6.2,

9

3 o 1 o 1
NLn fll- = 3mn WLk FIZ — gIIIfIII_ > 1—6|||f|||_ - lelﬁnflll_,

applying Lemma 6.1 to the first term and Lemma 5.4 to the second. This yields im-
mediately, ||, fll- > % Il £11%, which is the final inequality in the statement of the
lemma.

Now consider the following alternatives. If ||£, fl, < %||| fll4, then

ICaflle _ 300 _ 8 1IfI
WL fl= = HUANS ~ 9 NSfI-

proving the first alternative. On the other hand, if || £, |, > %||| £, then using Lem-
mas 6.2, 6.1 and 5.4,

1 1 1
NLn Il = pax_ ICk FIS + gl = I+ 2l 2 0L fll-

7
<Irnd+ e sl

which yields the second alternative. O
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6.2. Mixing implies contraction of L. The importance of Proposition 6.3 is that either
L contracts within N (§)™ iterates or we can compare ratios of integrals on the length
scale §p (which is fixed independently of §). In the latter case we will use the uniform
mixing property of maps T € F(t,, K4, E,) in order to compare the value of f w Laofv
for different W of length approximately 8¢. To this end, we will define a Cantor set R
comprised of local stable and unstable manifolds of a certain length in order to make
our comparison when curves cross this set.
We begin by recalling the open neighborhoods in F(,, Ky, E,) defined by (2.3).

Let T € F(ts, Ks, E4), and for 0 < k < 1 min{z,, K.}, define

F(T, k) ={T € F(t, Ky, Ex) : d(Q(T), O(T)) < k}. (6.5)

Recall the index set corresponding to F (T, «) is Z(T, k) C Z(t4, Ky, E4). Thus ¢ €
I(T,k)ifandonly if 7, € F(T, k).

Lemma 6.4. Foranyk € (0, %{r*, IC*}), the set F (ty, Ky, E4) canbe covered by finitely
many sets F(T, k), T € F(ty, Ky, Ey).

Proof. Each T € F(t,, Ky, E,) is associated with a billiard table Q € Q(t4, Ky, Ey).
Such billiard tables have exactly K boundary curves with C3 norm uniformly bounded
by E.. Since the torus is compact and the distance d(Q, Q) defined in Sect. 2.1 measures
distance only in the C 2 norm, the set Q(ty, Ky, Ey) is compact in the distance d. Thus

for each k > 0, there exists N, € N and a set {Q,; }j'v;1 C O(ts, K+, E,) such that!?
UjQ(QLjv E.; k) D Qty, Ky, E*).Since]-'(Q[j, E; K)NF (T, Ky, Ey) = F(th, K),
this yields the required covering. O
Remark 6.5. The primary reason we restrict to T € F(T, k) isto conclude Lemma 6.6(b)
for a fixed time n, and rectangle R.. This will enable us to make a type of ‘matching’ ar-
gument for our sequential system, the main comparison being established in Lemma 6.8.

The reader familiar with the subject will notice that the matching described here
requires weaker properties than the usual arguments used in coupling. After stable curves
are forced to cross a fixed rectangle by Lemma 6.6, the ‘matched’ pieces are not Cantor
sets, but rather full curves. The cone technique thus enables us to bypass the use of real
stable/unstable manifolds used in classical coupling arguments for billiards (see [CM,
Section 7]), and even the modified coupling developed for sequential systems which
only couples for a finite time along approximate invariant manifolds, as in [SYZ], both
of which require a more delicate use of the structure of invariant manifolds, in particular
control of the gaps in the Cantor sets used for coupling.

For a fixed T € F(zy, Ky, Ex), We construct an approximate rectangle D in M,
contained in a single homogeneity strip, whose boundaries are comprised of two local
stable and two local unstable manifolds for 7' as follows. Choose 8y > 0 and x € M
such that dist(7 "x, SIH) > §oA~!"l for all n € Z. This implies that the homogenous
local stable and unstable manifolds!3 of x, Wiy (x) and Wyg(x), have length at least 8o
on either side of x. By the Sinai Theorem applied to homogeneous unstable manifolds
(see, for example, [CM, Theorem 5.70]), we may choose §y < &g such that more than
0.99 of the measure of points in Wﬁ(x) N B.15,(x) have homogeneous local stable

12 Recall from Sect. 2.1 that by Proposition 2.2, Q(Qti, E« k) ={0 € Q(%r*, %K*, Ey) - d(Q, QL/.) <
K}.

13 Although the stable/unstable directions in M vary, they always belong to the global stable/unstable cones
defined in (H1) and so are uniformly transverse.
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D D stable curves 26
2(50 60 '/ properly crossing Ry 0

T Wi ()

/
D26o

Fig. 2. The boxes Dé&g and Dys,,

manifolds having length at least 2.1 on both sides of W (x), and analogously for

the points in Wﬁfﬂ (x) N Ba.15,(x). Since these subsets of Wﬂsﬂ/ “(x) are closed, there exist
two extreme points on each manifold whose unstable/stable manifolds define a solid
rectangle, which we will denote by Déao' By choice of §p, the stable and unstable

manifolds comprising 3D/, 5, have length at least 489. There must exist a rectangle D,
fully crossing Déao in the stable direction and with boundary comprising two stable
and two unstable manifolds, such that the unstable diameter of D, is between 83 and
288,14 and the set of local homogeneous stable and unstable manifolds fully crossing
D5, comprise at least 9/10 of the measure of Dys, with respect to igy; otherwise, at
most 9/10 of the measure of Wyg(x) N By 15,(x) would have long stable manifolds on
either side of WHE‘H (x), contradicting our choice of §y. Similarly, define D5, C Das, to
have precisely the same stable boundaries, but stable diameter between 1.85p and 24
rather than 44, still centered at Wy (x). See Fig. 2 for a pictorial illustration of the above
construction.

Let &%/ “(Ds,) denote the maximal set of stable/unstable manifolds that fully cross
Ds,, including its boundary curves. Define Rio = &% (Ds,) N &*(Ds,) to be the Cantor

rectangle defined by the intersection of those maximal families. Define Ria" analogously
with respect to &*/4 (D2s)-

By construction, MSRB(RQE“) > (0.9)2MSRB(D50) ~ 8(5). Below, we denote Ds, by
D(Ri") since it is the minimal solid rectangle that defines Rio.

We say that a stable curve W € W? properly crosses a Cantor rectangle R (in the
stable direction) if W intersects the interior of the solid rectangle D(R), but does not
terminate in D (R), and does not intersect the two stable manifolds contained in d D(R).

Lemma 6.6. For T € F(ty, Ky, Ey), let Ri" = RiO(T) be the Cantor rectangle con-
structed above.

14" The choice of 88 will be needed in Lemma 6.7.
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(a) There exists n, € N, depending only on 8y and F(t«, K4, Ey), such that for all
T € F(ty, Ky, Ex) and all W € W* with'> |W| > 80/(6Co), and alln > n,, T™"W
contains a connected, homogeneous component that properly crosses Rﬁo (T).

(b) There exists k > 0 such that for all T € F(ty, Ky, Ex) and all {tj}';*:l C I(T, k),

Tn:l W contains a connected, homogeneous component that properly crosses Rﬁo (7).

Proof. Firstwe fix T € F(t4, Ky, E,) and prove items (a) and (b) of the lemma for this
T,i.e. we demonstrate that such an n, and k exist depending on 7. Then we show how
Lemma 6.4 implies that n, and « can be chosen uniformly for 7' € F(z,, Ky, Ex).

a) Fix T € F(t4, Ky, Ey). By [CM, Lemma 7.87], there exist finitely many Cantor
rectangles16 R(80) = {R1, ..., R}, with pges (R;) > O for each 7, such that any stable
curve W € W* with |[W| > §y9/(6Cp) properly crosses at least one of them. Let e be
the minimum length of an unstable manifold in R;, for any R; € R(d¢).

Consider the solid rectangle [)(Rf‘s‘)) C D(Rf‘so) which crosses D(Rf‘so) fully in
the stable direction, but comprises the approximate middle 2/3 of D(R?O) in the
unstable direction, with approximately 1/3 of the unstable diameter of D(Rigo) on
each side of D(R2%). Similarly, let D(R?) ¢ D(R*®) denote the approximate mid-
dle 1/3 of D(R>™) in the unstable direction. Let R2% := R2% N D(R2%) and let
ﬁiﬁo = R?O N 5(R£50). Note that /,LSRB(R?O) > /,LSRB(I??O) > 0 since ,uSRB(Rf‘SO) >
(0.9)2 i (D(Rfa")) by construction. .

Now given W € W' with |W| > §p/(6Cp), let R; € R(8p) denote the Cantor
rectangle which W crosses properly. By the mixing property of T, there exists n} > 0

such that for all n > n}k, T”(ﬁf‘so) N R; # (). We may increase n;k if necessary so
that C; A" 86‘ /12 > er. We claim that 7" (1@%50) properly crosses R; in the unstable

direction for all n > n;" If not, then the unstable manifolds comprising Efao must be cut

by a singularity curve in SIH before time n (since otherwise they would be longer than

2eR by choice of n}), and the images of those unstable manifolds must terminate on the
unstable manifolds in R;. But this implies that some unstable manifolds in R; will be
cut under 7", a contradiction.

Since T”(Iéf‘so) properly crosses R; in the unstable direction, it follows that 7" (D
(R?O)) contains a solid rectangle D, that fully crosses D(R;) in the unstable direction
(here we use the fact that the stable manifolds of Riso cannot be cut under 7", as well
as that the singularity curves of 7" can only terminate on other elements of S,]EI [CM,
Proposition 4.47]). Define V. = W N D, and note that V fully crosses D, in the stable
direction. In particular, V lies between two stable manifolds in R; and thus between two
stable manifolds in 7" (R2®). Thus T "V properly crosses R2"°, and also R, in the
stable direction. Since Rio has the same stable boundaries as R?O, but half the stable
diameter, then 7"V also properly crosses Rio, as required. Since R(Jp) is finite, setting
Ny = max|<;j<x{n’} < oo completes the proof of part (a) with n, = n,(T) depending
onT.

(b) In the proof of part (a), for T € F (4, K, E4) we constructed a rectangle 7??0 and a
time n, so that forany W € W* andn > n,, thereexists V. C W such that 7" is smooth
on V and T~"V properly crosses 7_3350. Now for {t j}'}*:l € I(T, k), Proposition 2.2(b)

15 Recall that Cy is from Lemma 3.3.
16" These Cantor rectangles R; are maximal in the sense that they are the intersection of the maximal families
of local invariant manifolds GJ/M(D(R,-)) that fully cross the solid rectangle D(R;).
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an unmatched part of Uy

Fig. 3. Crossing D(Ry)

guarantees that Tn_*1 V is close to T~V for « sufficiently small, except possibly when

iterates land in a neighborhood N,1/2 (SZ1 U SZ’ ). But in this case, Proposition 2.2(a)
implies that for 7, € F (T, «), the singularity sets SZI and SZ’I either differ by at most
Cx'/? or new components are formed in a C« '/? neighborhood of Sy. By construction,
since 7@?0 has 2/3 the unstable diameter and twice the stable diameter as Rio, then there
exists k, depending only on &g and n., such that Tn’*l V properly crosses Ri‘), as required.
Finally, we show how n, and « can be chosen uniformly in F(t,, K, E4). For
each T € F(ty, Ky, Ey), parts (a) and (b) yield n,(T) and «(T') with the stated
properties. Then the set of open neighborhoods {Q(Q(T), Ey; k(T)/2)}reF(r,.C,.EL)
forms an open cover of Q(ty, Ky, Ex), where Q(T) is the billiard table associated
with 7. By compactness (see the proof of Lemma 6.4) there exists a finite subcover
{Q(O(T,)), Ex; k(T )/2)}] 1 ForanyT € F(T,;, k(T,;)/2), wehave F (T, k (T,;)/2) C
F(T,;, k(T,;)). Thus n.(T,;) and 1 5k (T;;) have the desired properties for this 7'. Setting

n, = max; n.(7,;) proves part (a) and k = % min; k (7;) proves part (b) of the lemma.
O

From this point forward, we fix Ty € F(t4, Ky, E4) and let R, = Ri"(To) as
constructed above. We will consider sequences {t;}; C Z(Tp, k), where « is from
Lemma 6.6(b), i.e. we will draw from maps T € F (T, k).

Lemma 6.7. Let W', W2 ¢ WS, n > 0 and {tjYi_y C I(To, «). Suppose Uy € Gu(Wh)

and Uy € Q,,(Wz) properly cross R, and define U =UNDRy), i =1,2. Then there
exists C7 > 0, depending only on the maximum slope and maximum curvature B of
curves in W9, such that dyys (Uy, Up) < C788.

Proof. Define a foliation of vertical line segments covering D(R,). Due to the uniform
transversality of the stable cone with the vertical direction, it is clear that the length of
the segments connecting U; and U have length at most C380, where C3 > 0 depends
only on the maximum slope in C* (x). Moreover, the unmatched parts of U; and U, near
the boundary of D(R,) also have length at most C384 See Fig. 3 for an illustration.

Recalling the definition of dyys (-, -), it remains to estimate the C'! distance between
the graphs of U, and U,. Denote by ¢1(r) and ¢ (r) the functions defining U, and U,
on a common interval I = I N I . Let gol d . Forx € U1 over I, let x € U2
denote the point on the same vertlcal fine segment as X.

Suppose there exists x € U, over I such that |<p1 (r(x)) — (pz(r(x))| > C62 for some
C > 0, where r(x) denotes the r-coordinate of x = (7, ). Since the curvature of each
U; is bounded by B by definition, we have |¢| < B(1 + (Kmax + T,)°)>/% =: C7.

mm)
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Now consider an interval J C [ of radius 8(2) centered at r(x). Then |<p; (r) —
P (r(x)| < C7|r — r(x)| for all r € J, and similarly for @5. Thus,

g} (r) — @5 (r)| = C83 — 2C785 = (C —2C7)8% forall r € J.
This in turn implies that there exists r € J suchthat ) (r)—¢2(r)| > (C—2C7)8g, which
is a contradiction if C — 2C7 > Cj3. This proves the lemma with C7 = 2C7 + C3. |

Recall that by Lemma 4.1, for W € W the cone D, (W) has finite diameter in
Dy,p(W) for o > B, so that

Pw.a,p(81,82) < Dy forall g1, g2 € Dy o(W) (6.6)

for some constant Dy > 0 depending only on a, « and 8. Without loss of generality, we
take Do > 1.

Lemma 6.8. Suppose W', W2 € WS with|W'|, |W?| € [80/2, 8ol and dyys (W', W?) <
C783. Assume Yy € Dg o (W) with [y Y1 = [z 92 = L.
Recall that § < 83 and let k > 0 be from Lemma 6.6. Let C > 0 be such that if

n > Clog(8o/8) then CsA™" < 8/5%, where Cs is from Lemma 5.5. For all n such that
n > Clog(8o/8) > 2ng and all {L(,'}’}=1 C Z(Top, k), we have

fwl ‘Cnfwl
wiznl Py
o2 Lnf U2~

forall f € Ce a,1(8), provided

2CoC3C7(3LAS 15,7 +3L82)
1— A4

+2CA8' 9287 + c8Y* + Dos? + 28 )] 6¢24%
<.

Remark 6.9. Since § < 88, the condition of Lemma 6.8 will be satisfied if

[260c3c7(3LA50 +3L8)

- +2Co A8, 1 (250 + ¢85 + Dosd + 2)} 6e24% < 1.

(6.7)
This will determine our choice of .

Proof. We will change variables to integrate on Tn_1 Wt ¢ =1,2. Asin Sect. 5.2.3, we

split G, (W) into matched pieces {U f} ;j and unmatched pieces {Vf} j- Corresponding

matched pieces U ]1 and U]? are defined as graphs G ;¢ over the same r-interval /; and
J

are connected by a foliation of vertical line segments. Following (5.12), we write,
[CERZED Y BN ATRTES DY B AT
JoTT i 7

where T:zuf Yo :=YpoTy JU_/K' T,,, and similarly for Twn,Vf Yo, £ =1,2.
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We perform the estimate over unmatched pieces first, following the same argument
as in Sect. 5.2.3 to conclude that |7;,—;_1 lel < C3A Hdyys (W, W?) < C3C7A_’6§,
for any curve V! created at time i,0 <i <n — 1.

Recalling the sets P (i) from Sect. 5.2.3 of unmatched pieces created at time i,
we split the estimate into curves P(i; S) if |T,,_i_1Vj.1| < & and curves P(i; L) if
| T—i-1V}| = 8.

The estimate over short unmatched pieces is given by (recalling the notation from
(5.13)),

n—1

> 3 |f Ty
i=0 jEP(l S) ’
= Z Z / 1 Lo—i—1f -Y10Thn—i—1 JT,,,[,IV/.‘ Twn—i—1
i=0 jep@i;s) IV itV -

<D D ATICIAT s (WL WAL fll-[Wileolg, v Tanmiztlco
i=0 jeP(i;S)
CoA

= ﬁcs CI8 3LIL FII-8" 11| co (6.8)

where we have used Lemma 3.3-(b), |W1 | € [60/2, d0], and Remark 3.4 to estimate the
sum over the Jacobians, as well as (5.14) to estimate || L,—;—1 fll—- < 3LIL,fIl_—.

For the estimate over long pieces, we subdivide them into curves of length between
8 and 24 and estimate them by || £,—;_1 f|l, then we recombine them to obtain,

S 3 [ rTgn
i= OJEP(I L) :
- Z Z / Lon—i-1f-¥10Thn-i-1 JTnﬂ-f]V.' Thn—i—1
i=0 j ;- Ty—i 1V-l J
=0 jeP(i;L)
T % b, / V1o oo ) T
i=0 jeP(i;L) Th—i—1

n—1

<3LIL A=Y Do 1 TiaVillleol g, vt Tonicilco
i=0 jeP(i;L)

- GG

< T AT O03LUL fll- ¥l o, (6.9)

where, in third line we used (5.14), and in the fourth line, since |W1| > 80/2, we used
Remark 3.4 to drop the second term in Lemma 3.3(b).

Next, we estimate the integrals over the matched pieces U ]1 . We argue asin Sect. 5.2.3,
but our estimates here are somewhat simpler since we do not need to show that parameters
contract.

We first treat the matched short pieces with |U jl | < § much as we did the unmatched

ones. By Lemma S.S,dws(U}, UJZ) < C5A*”dWS(W1, Wz) < §, since we have chosen
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n > Clog(8p/8). Thus if |U}| < & then |U]2| < 24, and the analogous fact holds for
short curves |U]2| < §. With this perspective, we call U f short if either |U }l < §or
|U]2| < 8. On short pieces, we apply (4.7)

) / f1, o] = > 2ASNFN-1¥rtlcol gt Talco
J, short U J» short
< 4ASIL fll-Col¥rilco (6.10)

where we have again used Lemmas 3.3(b) and 5.4 for the second inequality. Remark
that the same argument holds for U; 2 with test function ;.

Finally, to estimate the integrals over matched curves with |U! ; [, |U/2| > § we follow
equation (5.20), recalling (5.16), although we no longer have Lemma 5.5(c) at our

disposal,
=< / fﬁ,ull/fl_/ ffnUﬂ/Q
1 i U} i

‘/1an,U1w1 _/Zan,UZ‘(//2
U! J J

fUl f U2¢2 fUZfT U2W2 ][

+ 21//2
fUl UZWZ JCUZ U“W vz ™Y
Jor f Tz | 02— 0| .

+ : 1 : Tn U21/[2
JCU1 U2¢2 |Uj| 2

< / fT,,,Uum—/ £ T gt
U} J U} J

+dyys (U], UDYST Y AL fll- | g2 Tulcol¥aleo

+A8dyys (U, UDILAI-1 2 Tal ol V2o (6.11)

U7 |-1U]|
il
To estimate the first term on the right s1de above, we use (4.7) and Lemma 4.10,

where we have used (5.24) to estimate

’/U! fT,,,U}IPl —/U! an,UJzI/fz
j j
fU} an,U} V1 ijl an,U]zw2 PN
= - ~ f Tn U!llfl

fUl T, Ul‘/fl JCUJ' Tn,U}W2 Juj T
fUl an Uzlﬁz 7[ - .
X ~ ., 1y — 7l 292
fUl UZwZ Ul n, U 1 n, U
< 25LP(T,,,U]1_ Vi1, ,,,szlﬁz)IIIfIILIJU]! Tnlcol¥ilc

+AS' I (1 Tal ol + 22 Talo W21y

<
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where we have used |U }| < §p in the last line. We may apply (6.6) since T"m u! v,
T, y2¥2 € Daa(U }) by Lemma 5.5. Now putting the above estimate together with
T

(6.11), recalling dyys (U}, U}) < §, and using Lemma 3.3-(b) and Remark 3.4 as well
as Lemma 5.4, we sum over j to obtain,

2

/1 an,UJ“//l _/Zan'Ungz
J

J long J U
- 2L D84
<2487 L, fll_Co (cam +81%a 4 AO + 233)
x([¥1lco + [¥2]co). (6.12)
Collecting (6.8), (6.9), (6.10) and (6.12), and recalling Dy > 1 and A > 4L, yields
/ £nf wl

Wl

~ —q529 2

CoC3C7(3LAS' 4559 + 3L8%)
< e O L fll— 191l o

+4CoASIILa fll- 111 co

+ Z/Uz F Ty2 2 + 248 4Ly fll-Co(e8”™ + Dod? +250) (111 co + [¥2]co)
J J

2CoC3C7(3LAS' 45 +3L52)
=+ 1— A4

- +
+2CoA8 9287 + 87 + Dos? + 253)]M} / Louf .
fw2 ¢2 w2

Now since [ ¥ = 1, we have e =% < |[W'|y); < ¢*%. Thus since |[W'| > 8o/3,

+
|‘ﬁ1|c0 |‘ﬁ2|c0<£(32a§g’

f w2 Wz N 80
which proves the lemma. O

Our strategy will be the following. For W', W2 € W*(80/2), n sufficiently large
and {Lj};?zl C Z(Ty, k), we wish to compare [,1 Ly, f 1 with [;,5 £, f 2, where we
normalize [;1 Y1 = [y2 Y2 = 1. By Lemmas 6.6 and 6.7, we find U/ € G, (W),
¢ = 1,2, such that Uf properly crosses R., and dws(l_]il, l_]l.z) < C782, where Uf =
Uf N D(R,).

Next, foreachi, we wish to compare f[jil Lo, f fn*’Uil Yr; with f[/[_z Lon, f j:n*,U} Y,
where, to abbreviate notation, YA"n*’ ut Ye = Yoo Tynn, JUf Ty.n—n,. However, the
weights |, ot T},*,Ul_@ Y¢ may be very different for £ = 1, 2 since the stable Jacobians

along the respective orbits before time n, may not be comparable. To remedy this, we
adopt the following strategy for matching integrals on curves.
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For each curve Uie € Gy, (W) which properly crosses R,, we redefine l_]f to denote
the middle third of Uf N D(R,) (and so having length at least 28q/3). Let M*¢ denote
the index set of such i.

Let p = | U‘f UE Ve, and let me = D ;e pfz). Without loss of generality,
assume mp > mj. R

We will match the integrals 3 eyt [g1 Lnnf T, gt with 3202 50 fU]z
Ln-n,f T;z*UJZ Yry. The remainder of the integrals Zj€M2 mzm;zml ijz Ln-n, [ /T;*sz )

as well as any unmatched pieces (including the outer two-thirds of each Uf) we con-

tinue to iterate until such time as they can be matched as the middle third of a curve that

properly crosses R*
Set T U2 U = m

grals we Want to match,

f y2¥2, and consider the following decomposition of the inte-
o

> M
S [ w2 and Z / Lumno Ty, i 2
ieM! o
jem? ]6M2
pHp®
For each pair i, j in the first sum, the test function has integral weight 2’ , and
the same is true for the corresponding pair in the second sum. Thus these 1ntegra1s are

paired precisely according to the assumptions of Lemma 6.8. It follows thatif n — n, >
Clog(do/$8), then

(2)

Z/ Lot T = ¥ [ Laenf Ty o

ieM! ieM! Ui
./EMZ

W
ﬁnfn*an*,U/?‘/mel_l

1%

=2 /_zlsnfn*f /T\n*,yjzlﬁz. (6.13)

jeM? Uj

We want to repeat the above construction until most of the mass has been compared.
To this end we set up an inductive scheme. Consider the family of curves Wf € Gu, (WH

that have not been matched. Each carries a test function v ; = i‘\n* wt Ih, where to
LA
keep our notation uniform, we set ¥; = 1. Renormalizing by a factor t,,; < 1, we

have ), le_e Ve = 1.

Definition 6.10. Given a countable collection of curves and test functions, § = {W;, ¥;};,
with W; € W, |W;| < 80, ¥i € Dyg,o(W;) and ), fW,- v = 1, we call § an admissible
family if

Z ¥ < Ci, where Cy :=3Co8; . (6.14)
~ Jw,
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Notice that any stable curve W € W?*(8¢/2) together with test function v € D, o (W)
normalized so that f w ¥ = 1 forms an admissible family since |W| > o/2. The content
of the following lemma is that an admissible family can be iterated and remain admissible;
moreover, a family with larger average integral in (6.14) can be made admissible under
iteration.

Lemma 6.11. Let {W;, ¥;}; be a countable collection of curves W; € WS, |W;| < o,
with functions W; € Dq o(W;), normalized so that ); p; = 1, where p; = fW,' Wi
Suppose that y_; |W;|~!p; = C..

Choose ny € N so that Coé’fﬁg—i < 1/6. Then for all n > ns, and all {};_, C
Z(Ty, «), the dynamically iterated family {V; € Gu(W)), ivj Vi}i,j is admissible.

Proof. Setting p fv’ 0,V V= fV’ Vo Tan Ty, itis immediate that 3, ; pﬁl) 1.

Now fix W; and cons1der V]l € Gy (W, ). Then using Lemmas 3.3 and 4.2 we estimate,

Sy Z][ ¥ Ty T < 3 Wleo iy Ty

< [Wileo(Cody ! IWi|+C091) < Cody "% p; + Cofl ™ |W; |~ i .

Using that 9% < 2, we sum over i and use the assumption on the family {W;, ¥;}; to
obtain,

Y S < Z 2Co85 " pi +2Co07 Wi | ™' pi) < 2Co8y ! +2Co07C; .
Lj

(6.15)
Thus if n > ny, the above expression is bounded by C,., as required. m|

Theorem 6.12. Let L > 60. Suppose a, ¢, A and L satisfy the conditions of Sect. 5.3, and
that in addition, § < 83 satisfy (6.7) and (6.18). Then there exists x < 1, independent
of the cone parameters, \" and k, € N such that if n € N satisfies n > Nr :=
N (8) ™ +kyny, 'S with ky, depending only on 8y, L and n, (see Eq. (6.17)), and if{e; };’-:1 C
I(To, k), where k > 0 is from Lemma 6.6(b), then L,Cc A, 1(8) C Cye,xa,xL(5).

Proof. As before, we take f € C. a.1(5), W1, W2 e W5 (80/2) and test functions
V¢ € Dap(Wh) such that [i Y1 = [y2¥2 = 1. In order to iterate the matching
argument described above, we need upper and lower bounds on the amount of mass
matched via the process described by (6.13). B

Upper Bound on Matching. By definition of Uf, for each curve Uf that properly
crosses R, at time n,, at least 2/3 of the length of that curve remains not matched. Thus
if p; = er Tn,U? V¢, then at least (1 — ¢“% /3) p; remains unmatched. Using e <2,
we conclude that at least (1/3) p; of the mass remains unmatched. Thus if t denotes the
total mass remaining after matching at time n,, we have v > 1/3. Renormalizing the
family by t, we have ), [W;| 7' &£ < 3C,.

7" Indeed, using Proposition 5.1 and choosing L > 60, we can always choose x = %, although this will
affect the choice of N.r.

18 Recall that ny is defined in Lemma 6.6 while N (8)~ is defined in Eq. (6.4).
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By the proof of Lemma 6.11 with C; = 3C,, we see that choosing n such that
6C09f: < 1/3, then the bound in (6.15) is less than C,, and the family recovers its
regularity in the sense of Lemma 6.11 after this number of iterates.

Lower Bound on Matching. By definition of admissible family, for each ¢ > 0,
Z|W,-|<£ pi < Ce. So choosing ¢ = §p/(6Cp), we have that

Z pi =

[W;i|>80/(6Co)

N =

On each W; with |W;| > &/ (6C_‘0), we have at least one U} € Gy, (W;) that properly
crosses R, by Lemma 6.6. Then denoting by U j the matched part (middle third) of U ;
and setting

e

o= T 05,

we have

= = = 80 cp T -
/_l T, vivi= /_i Vi o Tyn—n, J, ;Tn,n_n* > Finf v; inf J, ;Tn,n_n*
Ut

—Cdé(l)/3 |Tn,n7n*U;'|
i
U]

v

1
ze 0 pje > &, Di s

where we have used the fact that if W € W* and T[j_1 W is a homogeneous stable curve,
then |lef1 W| < ¢~ W 3/5 for some constant C > 0 by (H1) (see, for example [DZ3,
eq. (6.9)]).

Thus a lower bound on the amount of mass coupled at time 7, is ‘9”7* > 0.

We are finally ready to put these elements together. For k., € Nand k = 1, ...k, let
M (k) denote the index set of curves in Gkn, (W*) which are matched at time kn. By
choosing 8o small, we can ensure that ny < n,, where n; from Lemma 6.11 corresponds
to Cy = 3C,. Thus the family of remaining curves is always admissible at time kn,.. Let
M*(~) denote the index set of curves that are not matched by time k7. We estimate
using (6.13) at each time n = kn,,

ks
/Wl Lpfyr = Z Z /l_/il Ln—kn*kan*’Uil Y1+ Z /Vl-l En—k*n*ka*n*’Vil Y1

=i ieM!(~)
ke
< Z Z 2/[72 En—kn*kan*,Uizl/lz
k=lieM2(k)y "
LY /v.l Lot f T, 1 ¥ (6.16)

ieM!(~)
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We estimate the sum over unmatched pieices M*(~) by splitting the estimate in curves
longer than 4§, M*(~; Lo), and curves shorter than 8, M¢(~; Sh).

Z / En k*n*f Tk N V“ﬂf

ieMt(~)

= Z /[Enfk*n*f T}{*n*,\/if&l

ieM!(~:Loy” Vi

. /.cn oS T i

ieMt(~;Sh)

< Y Wk Sl / Tin,ve Ve
vt

ieMt(~;Lo) i

) AlLu—kan, fI-81Yel ol ye Tun—tn ] co
ieMt(~;Sh)
< (1= 2 3LIL, fll- +2A0Ln -8l 0 Co.

where we have used (5.14) and the fact that k.n, > ng. For the sum over long pieces,
we used that the total mass of unmatched pieces decays exponentially in k, while for the
sum over short pieces, we used Lemma 3.3 and Remark 3.4 to sum over the Jacobians

since |W]| > §o/2. Finally, since [{1]c0 < "% fwl Y < %, we conclude,

/ Latonef Ty, 1| = (3O = 505 +8ACo 2 ) UL 11

tEMl(N)
Enyg \ky ~ i
= (320 -%) +8AC050)/Wzﬁnf1/f2,

using the fact that fWZ Yo = 1. A similar estimate holds for the sum over curves in
M2(~). Finally, we put together this estimate with (6.16) to obtain,

/ L f Y1 <Z Z / Ly kn*fT]m U2W2+ Z / Ly— k*n*kan V”ﬁl

k=1ieM? (k) ieM!(~)

sszzﬁ"fx/wz )

5 [:nfk*n*f Tk*n*yvj?‘//Z
jeM2(~)

>

ieM!(~)

nx \Ks ~
§/W2 Lnf ¥ (2+3(3L(1—87) +8AC0%)).

Ly k*n*f "*’Vil 14

We choose &y such that

Eny k 1
3L(1 — ) < —. 6.17
( > )< ; (6.17)
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Note that this choice of k. depends only on §¢ via &,,, and not on 8. Next, choose § > 0
sufficiently small that

_ 1
8A4C03/%0 < <. (6.18)

These choices imply that
/ Lof v 53/ Lof . 6.19)
wl w2

Finally, we prove that L must contract by at least g. This is implied directly by
the first alternative of Proposition 6.3. So suppose instead that the second alternative
holds. Since (6.19) holds for all W!, W? € W9 (8/2) and test functions /1, ¥» with
Jw1 V1 = [y2 2 = 1, we conclude that, for k > k, and m > N(8)~,

Wi flls _ 160 Wi, FU _ 160 _8 -
|||£kn*+mf|”— 9 |||»Ckn*f”|(l 3 9
if we choose L > 60. O

6.3. Finite diameter. In this section we prove the following proposition, which com-
pletes the proof of Theorem 2.3.

Proposition 6.13. For any x € (max{%, %, \/ﬁ}, l), the cone Cyc ya,,1(8) has di-
(1+x)?

ameter less than A = log (WXL < 00inCe a.1(8), assuming 8 > O is sufficiently
small to satisfy (6.21).

Proof. For brevity, we will denote C = Cc 4.1(8) and Cy = Cyc ya,,1(8). For f € Cy,
we will show that p(f, 1) < oo, where p denotes distance in the cone C. Fix f € C,
throughout.

According to (4.1) if we find A > O such that f — X > 0, then a(1, f) > A.

Notice that || f — Al = |l fll.- — *. Hence f — A satisfies (4.6) if

L —x) o
Wy =2 <LAIfI-—2) <« A= ﬁlllflll_ =:an,

where we have used that f € C,.

Similarly, f — X satisfies (4.7) if, for all W € W (8) and € D, g(W),

|Jw IV =2 Jw ¥
fw v

Next, notice that for any A > 0, wh w2 ews (8) and Yy € Da,a(WZ),

<ASTTU(IfI =2 = 15%:&2-

(w4
A+1

Jwr (f =y _fwz(f—l)lﬁz
fw V1 fw2 V2

_ Jwi [ B Jw2 [

B fwr V1 fw2 V2

—A<|W1|—|W2|)‘
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< XCdws (WL WHY STV AN fIl - + 28 + Codys WL W), (620)
where we have used (5.8), so that f — A satisfies (4.8) if
X 2dys WL WY STV A FIIZ + A8 + Cs)8' Y dyys (W, W2
< dws (WL W8 Al fll- = 1) -
This occurs whenever
_cAllfn-a - x%)
- §+Cs+cA
provided that § is chosen sufficiently small that

§+Cy < ycA, 6.21)

which is possible since cA > 2C; by (5.36) and x > 1/2.

Note that &y < &3 < &1, so that @p = min;{¢;}. Thusif A < &y, then f — 1 € C, i.e.
a(l, f) = a.

Next, we proceed to estimate B(1, f) for f € Cy. If we find 1 > O such that
w— f € C, this will imply that A(1, f) < u. Remarking that || — fle=pw =101z
we have that p — f satisfies (4.6) if

= A==l - =:as,

LIy —NFl- 3
= - -1 =: b1,
while u — f satisfies (4.7) if for all W € W2.(8), ¥ € Dy g(W),
i fw o = [y fol (1+x)A

Wi <A =Sl = n= T gl = :Ba.

fwv
Finally, recalling (6.20) and again (5.8), we have that © — f satisfies (4.8) whenever
K Cdyys (W, W2 817V CAN £l + (8 + Cs)8 Y dypys (W', WY < dypys (W, WHY STV cA(u — 1 £1I) -
This is implied by,
cA(l + X 1
> — < >
nz T C)|||f|||+ mZ

where again we have assumed (6.21).
Deﬁnmg,B max; {;‘3,} it follows that if © > /3 thenu— f € C. Thusﬁ > ,3(1 ).
Since x > 1/L and x> > 1/(A — 1), it holds that ﬂ3 > B > B1. Thus B = B3. Our

assumption also implies y > 1/A, so that oy > 1 Ty A A -
Finally, recalling (4.1), we have

_ 1+)(2 2
ﬂ(l,f)) <ﬁ3) T 170, (1+%)
1, =1 — <1 1 <1 L],
P D) °g<a(1,f) =085, ) = lx T A

for all f € C,, completing the proof of the proposition. O

2
+x -

il =: B3,
— X

Remark 6.14. Note that, setting x, = max{%, %, \/%}, for x < xs Proposition 6.13

implies only that the diameter of Cyc ya,52(8) C Cyc a3l (8), in Ce a,1(8), is

(1+X*))2 A ) If needed, a more accurate formula can be easily ob-

bounded by log (
tained, but it would be more cumbersome.
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7. Loss of Memory and Convergence to Equilibrium

In this section we show how Theorem 2.3 (i.e. Theorem 6.12 and Proposition 6.13)
imply the loss of memory and convergence to equilibrium stated in Theorems 2.7 and
2.8. For a single map, the loss of memory is simply decay of correlations and the
results are comparable to the ones obtained in [DZ1] since they apply to a similar
(very) large class of observables (and possibly even distributions). Our loss of memory
result is new for our class of billiards, although see Remark 2.9 and [SYZ] for loss
of memory in a related billiards model. Before proving the main results of this section
(Theorem 7.3 and Corollary 7.5 prove Theorem 2.7 while Theorem 7.4 and Corollary 7.5
prove Theorem 2.8), we establish a key lemma that integration with respect to figg
against suitable test functions respects the ordering in our cone. Recall the vector space
of functions A defined in Sect. 4.3.

The parameters a, q, o, B, y, ¢, A, L, 8o are fixed as to satisfy the relations described
in Sect. 5.3, hence Theorem 2.3 holds true. With Proposition 5.1 in mind, we prove our
next lemma with respect to the slightly larger cone Cc 4 31,(8) D Cc.a,1(8).

Lemma 7.1. Let 8 > 0 be small enough that 2C,C,(1 + A)(8*3 + 8'/3*Bat ) < 1,
where Cy, C, > 0 are from (7.4) and {max is the maximum diameter of the connected
components of M.

Suppose ¥ € C'(M) satisfies 2(28)' P || copyy < aminy ¥ If f. g € A with

g—f¢€ CC,A,3L(8): then fflﬂdum < fg'ﬁdlisms-

Proof. Let Yrpin = minyy . The assumption on ¢ implies that ¢ € D%) g (W) for each
W € W* (§) since,

1 / /
VO Ly -y < e gy o Weon

Y ()|~ Ymin Ymin Ymin

Suppose f, g € Asatisty g — f € C..4.31(8). Then according to (4.5) and (4.7), for
all y € D, g(W),

28)'Pd(x, y)P.

’10g

IIIg—fIII_/ v < /(g—demw < IIIg—fIII+/ bYW e W' ®)
w w w

(7.1)
'/W(g—f)llfdMW’ < |||g—f|||_A81—q|W|4]€Vw YW € WE @), (1.2)

Next, we disintegrate /g according to a smooth foliation of stable curves as follows.
Since the stable cones defined in (H1) are globally constant and uniform in the family
F (s, Ky, Ey), we fix a direction in the stable cone and consider stable curves in the
form of line segments with this slope. Let ks > ko denote the minimal index k of a
homogeneity strip Hj such that the stable line segments in H have length less than §.
Due to the fact that the minimum slope in the stable cone is [Cpyiy > 0, we have

ks = Cpo~ 113, (7.3)

for some constant Cj, > 0 independent of §.

Now for k < ks, we decompose H into horizontal bands By ; such that every
maximal line segment of the chosen slope in By ; has equal length between 6 and 28.
We do the same on Hy := M \ (Ug>,Hyx). On each By ;, define a foliation of such
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parallel line segments {We}eeg, ; C VW (8). Using the smoothness of this foliation, we
disintegrate i, into conditional measures cos ¢ (x)dmyw, on W and a factor measure m
on the index set &y ;. Note that our conditional measures are not normalized - we include
this factor in /. Finally, on each homogeneity strip Hy, k > ks, we carry out a similar
decomposition, but using homogeneous parallel line segments of maximal length in Hy
(which are necessarily shorter than length §). We use the notation {We}seg, | C WS (8)
for the foliations in these homogeneity strips since there is only one band in each of these
Hy. Note that for all k and i, we have 1(Ef ;) < Cy, for some constant C,; depending
only on the chosen slope and spacing of homogeneity strips.
Also, it follows as in (3.5), that for x, y € W € W (§),
0g 2PN _ ¢, 2) 3P x, )P
cos ¢(y)

so that cos ¢ € D%,ﬂ(W) by the assumption of Lemma 5.2. Thus v cos ¢ € D, g(W)
for all W € W5 (§).

Using this fact and our disintegration of jisg, we estimate the integral applying (7.1)
on By ; for k < ks and (7.2) on By 1 for k > ks,

./M(gff)‘/fdlism= > /

(g*f)wcoswdmwgdﬂ(éHZ/ /W<g—f>wcowdmw5dﬁ<s>
v W

ik<ks ? Ski T We k>ky Bkl
Shg— - | % / ¥ cos g dmw, dL(€) —A Z/ ¥ cos g dmw, dL(€)
ik<ks ! Bhi e k>ks Y Bk1  We
> llg = Fll— | Yminisre (M \ (Ui, H)) — ASCelrlco Y k2
k=ks
> llg = Fll- (Wmin(1 = 2CcC8*3) — 1¥rlco AC C126*3) (7.4)

where we have estimated ) ., k2 < Zk(s_1 < 2Cp8'3 and puggs (Ugsgs Hy)
<2Cy Ch54/3.
Now [0 < Ymin + €max|¥|co, where £mqx is the maximum diameter of the
connected components of M. Then by the assumption on ¥, we have
2CeCr(1+ A8 || co < 2C,Ch(1 + AV Yrmin (1 + imax 3 (28)P 1)
< Ymin2CeCp(1 + A)(54/3 + aemax81/3+ﬂ) =< Ymin »

where for the last inequality we have used the assumption on ¢ in the statement of the
lemma. We conclude that the lower bound in (7.4) cannot be less than 0. |

Remark 7.2. Since Remark 4.8 applies equally well to Cc, 4,31.(6), Lemma 7.1 implies
there exists C > 1 such that fM fdigs = C7 Y fll_ >0forall fe Ce.a.L(5).
Using instead the upper bound in (7.1) and following the estimate of (7.4) yields,

0< / fYduss < NfICl¥lco,
M
forall f € C¢ 4,1 (8) and ¢ as in the statement of Lemma 7.1. Since any ¢ € CY(M) can

be made to satisfy the condition of Lemma 7.1 by adding a constant (see the definition
of Cy in (7.8) below), the estimate can be extended to all y € C (M) to obtain,

/ £ dpise < 1 1.CI I -
M
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Loss of memory and convergence to equilibrium, including equidistribution, readily
follow from the contraction in the projective metric p¢ (-, -) of the cone C. 4 1(5). Set
Wses () = fM S ditses.

Recall N := N(§)” + kyn, from Theorem 6.12 and the definition of an Nf-
admissible sequence from Sect. 2.2: A sequence (t});, t; € Z(ty, Ky, Ey), is Ng-
admissible if there exist sequences (Ti)x>1 C F(T«, Ky, Ex) and (Ny)k>1 with Ny >
N, such that 7;, € F(Ty, k) forallk > 1and j € [1+ Y 02 Ni, Yr_; Nil.

That is, an admissible sequence remains in a k neighborhood of Ty for Ny > Nr
iterates at a time, but may undergo large changes between such blocks.

Our first theorem concerns loss of memory for functions in our cone, both with
respect to g and with respect to the iteration of individual stable curves. It does not
use property (HS5), although it does use that (g is a conformal measure for £, i.e.
tses (Lo [) = tses(f).

Theorem 7.3. Let § > 0 satisfy the assumption of Lemma 7.1. There exists C > 0 and
¥ < 1 such that for all admissible sequences (1), alln > 0, and all f, g € Cc a,1(5)

with fM fduss = fM 8 d sy’
(a) For all all W € W*(8) and all € C' (W), we have

’j;ﬁmfwdmw-f;ﬁﬁwdmw < CO" [¢r|cr min{lIf 1. gl )

(b) Forall y € C' (M),

’/M Lnf ¥ ditses — /M Lng ¥ diises| < CO" Y] c1apy min{|l £l Nglly} -

(7.5)

Proof. (a) Recall the definition of || - || . for elements of .A from Definition 4.5 and (4.5),

fodmy
Al = sup Mﬂ—y—l
weowse Jw ¥ dmw
Y €Dy, (W)
and note that by (4.10), || - ||, is an order-preserving semi-norm in A." One can check

directly that A is an integrally closed vector lattice. AlSo pgs(f) = f u J Al 18
homogeneous and order preserving in C 4,31 (§) by Lemma 7.1 applied to ¢ = 1.

We would like to apply Theorem 6.12 to each block of N r iterates in the admissible
sequence; however, at time n, the sequence may have completed fewer than N iterates
in its current block so it may be that £, f, £,8 ¢ Cc a,1.(8). But since n > Nx > ny,
it follows from Proposition 5.1 that £, f, £,g € C. 4.31(5). Then denoting by p¢r the
metric in the larger cone C. 4 31(8), [LSV, Lemma 2.2] implies that, for all f, g €
CC,A,L(S) with fters (f) = Uses(8)s 20

ICaf = Laglly < (7 EnFE® — 1) min{IL, fll,, WLagls).  (76)

19 A semi-norm Il - || is order preserving if —g < f < g implies || f]| < || g]l-
20 [LSV, Lemma 2.2] is stated for order preserving norms but its proof holds verbatim for order preserving
semi-norms, see [DKL1, Lemma D.4].
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Using the definition of admissible sequence, we may peel off the most recent j iterates,
where j < no+ Ng, such that £, f, L, jg € C¢a,0(8) and n — j is chosen so
that we have undergone at least N r iterates in the current block at time n — j. Then
applying Theorem 6.12 to each block of Nj iterates, and using Proposition 6.13 and
[L95a, Theorem 1.1 and Remark 1.2], for alln > Nr,

pcr (L fr Lng) < oL j fr Ln—jg) < 9" *pe(Lif, Lig),

where ¥ = [tanh(A/4)]1/(2Nf), and k € [Nr,2Nr — 1] is the least integer > N so
that £,,_ j_x ends in a contracting block.

Finally, we use the fact that Ly f, L& € Cyc, A, (8) together with Proposition 6.13
to conclude pe (Ly f, Lrg) < A. Combining these estimates with Lemma 5.4 yields,

WLnf = Lnglly = CO" min{ll £l llgll}, (7.7)

where C = 3 Ae9~3N7 =" This proves (a) for any W € W*(8) and ¢ € Dy g(W).
To extend this estimate to more general i € C'(W), define V=v+C v, Where

Cy = [Yminl + 2[¥/|c0(28) 7. (7.8)

Then ¥/ = ¢ and miny ¥ > 2[§//|0(28)! 7, so that ¢ € Dg 5(W) by the proof of
Lemma 7.1. Then since also Cy € D, g(W), the required estimate follows by writing
v =9—-C v and using the triangle inequality.

(b) Following the same strategy as above, given ¥ € C!(M) satisfying the assumption
of Lemma 7.1, we define a pseudo-norm for f € A by

/fwd/"sms .
M

By Lemma 7.1, || - || is an order-preserving semi-norm, and as in (7.6), invoking again
[LSV, Lemma 2.2], Theorem 6.12, Proposition 6.13 and [L95a, Theorem 1.1], we have
for f, 8 € CC,A,L(S) with MSRB(f) = Use(g) and n > Ng,

ILnf = Laglly < CO" min{l| Ly flly, 1£nglly} < CO" W[ comin{ll £l g},

where we applied Remark 7.2. This proves (b) for i satisfying the assumption of
Lemma 7.1. We extend to more general ¥ € C!(M) by defining ¥ = v + Cy, where
Cy is given by (7.8), and arguing as in the proof of part (a). O

(7.9)

1Ay =

Since our maps all preserve g, the loss of memory also implies equidistribution of
measures supported on stable curves and convergence to equilibrium, both of which are
summarized in the following theorem.

Theorem 7.4. Let § > 0 satisfy the assumption of Lemma 7.1. There exists C > 0 such
that for all n > 0 and admissible sequences (1) ; C L(t«, Ky, Ey), ¥ as in Theorem
7.3, and all f, g € CC,A,L(a): With s (f) = Msrs(8):

(a) For all Wy, Wo € W*(8) and all y; € CY(W;) with le Y = sz Y, we have

L fyrdmy, — 7{4/ Lng Yodmy,| = CO" (Yriler + W2l en) s () ;
2

‘ Wi
in particular, for all W € W*(8) and € CY(W),

=< cv" |1//|C1/'LSRB(f) ) (710)

]l ﬁ,,fwdmw—umm][ v dmy
w w



Projective Cones for Sequential Dispersing Billiards 893
(b) for all y € CY(M),

'/ f¢OTndMSRB_/ fdMSRB/ Y d e
M M M

Proof. (a) Since £,1 = 1 and || ptses () s = pses(f), applying (7.7) with g = pses(f)
implies,

< Cﬂn'w'cl(M),uSRB(f)~

fW£ fxlfdmw fwﬁn(ﬂsRB(f))I//
Jwv

(7.11)

‘][ Cof v dmy — umm][ w‘

= Cﬁn |w|C0l’LSRB(f) s

which proves (7.10) for v € D, g(W). We extend this estimate to more general
¥ € CY(W) by defining ¥ = ¢ + Cy as in (7.8) and arguing as in the proof of
Theorem 7.3(a). Finally, the first inequality of part (a) follows from an application of
the triangle inequality.
(b) Since pp is conformal with respect to L7 for each T € F(zy, Ky, E), and using
that £, 1 = 1, we have

/ f¥oT, dMSRB_/ fdMSRB/ 'ﬁdl/«sms:/ Ly(f — tsrs () ¥ dhsgs -
M M M M

Thus applying (7.5) to g = pusea(f) proves part (b) since [|tses ()l = s (f). O

We may extend Theorems 7.3 and 7.4 to piecewise Holder continuous functions, as
long as the discontinuities are transverse to the stable cone. Recall the definition of a
regular partition P from Definition 2.6 and the set C* (P) of functions which are t-Holder
continuous on each element of P, i.e. which satisfy

| flerepy = sup | flerpy < 00.
PeP

Corollary 7.5. Let P be a regular partition of M and lett > y. Then the convergence in
Theorems 1.3 and 1.4 extend to all f, g € C'(P), withmax{| f|c:(py, Iglc:(p)} in place
of min{[| fll;, llgll;} on the right hand side in Theorem 7.3 and in place of pgs(f) on
the right hand side in Theorem 7.4.

The proof of this corollary relies on the following lemma.

Lemma 7.6. If P is a regular partition of M and f € C'(P) witht > y, then A+ f €
Ce,a,L(8) for any

A+21-4 cA+ (28" +8KCpCy + 6Cy)

A—zl—q|f|°°’ cA —2C;

a=max { 2L g 171

ma s t .
Proof of Corollary 7.5. Let f, g € C'(P) with s (f) = tsra(g) and let ¥ € cl(m).
Let A s, A be the constants from Lemma 7.6 corresponding to f and g, respectively,
and set A = max{Ay, Ao}. Then f+A, g+A € Cc a,1(8) and s (f +1) = [hsra(g + 1),
so that by Theorem 7.3(b), for all n > 0,

’/ ‘cn(f_g)wdﬂsma
M

:’/M.cn<f+x—<g+x)>wdum

< C'0" Yl c1any max{| flcrpys 1&lerpy)
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since || f + Ally < A+ |floo, and by Lemma 7.6, Ay > C”| f|ct(p), with analogous
estimates for g. This proves the analog of part (b) Theorem 7.3 and the proof of part (a)
follows similarly, replacing the integral over M by the integral over W € W*.

The extension of Theorem 7.4 to f, g € C(P) follows analogously, replacing f and
g in (7.11) with f + X and g + A, respectively to prove the analogue of (7.10), and then
using the triangle inequality to deduce the first inequality of part (a). Finally, part (b)
follows immediately once f is replaced by f + A since f uVoTdiss = f ¥ d s
due to (HS). O

Proof of Lemma 7.6. We must show that A + f satisfies conditions (4.6)—(4.8) in the
definition of C. 4,1 (8). Since

I+ flly =A+1floo, and A+ fll- =2 —|floo, (7.12)

to guarantee (4.6), we need

Ao _p e s et

A= 1floo L—1
Next, to guarantee (4.7), for W € W2 (8), ¥ € D, g(W), we need,
_ A+ O _
|W| oJw G+ DV < A8~ | floo)

fw v

= WO+ floo) =AY — | floo)
e A+21-4

= A=l

Lastly, we need to show that (4.8) is satisfied. For this, we prove the claim:

Jwr fin B Jw2 [

< (28" + 8K CpCy + 6C5)81 Y dys (WL, WA | Fletpy »
le " sz ™ PLs s C'(P)

(7.13)

for Wi, w2, Y1, Yo as in (4.8). As in Sect. 5.2.3, we partition W* into matched pieces
U ;‘ and unmatched pieces Vik such that U }, sz belong to the same element P € P and

are defined over the same r-interval /; for each j. By assumption on P, #{U ]k }i <K,
#{(Vilk,; < 2K, and |Vf| < C;Cpdyys(W!, W?).

Recalling the notation from Sect. 4.2, we express the matched pieces as graphs over
their common r-interval, U;.‘ = {GU/k_ (r) = (r, ‘/’U]k, (r):relj},fork=1,2.

Asin Sect. 5.2.3, we assume without loss of generality that | W;| > |W{|and le Y =
1. Also, we may assume |Ws| > 2C;8' 77 dyys (W1, Wa)Y; otherwise, (7.13) is trivially
bounded by 2|Wa|| floo < 4Cs8' 77 dyys (Wi, Wa)? | f oo

Next,
Jwr fU1 e f2 ‘ 1
_ _ 1~
e e Y A /W f +/Wz|fwfz o

5

/ Fon - / fr
U} U}
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/v.kfwk

i

(7.14)

+)
ki

To estimate the first term on the right hand side, recalling (4.3) and d. (1, ¥2) = 0, we
have for r € I},

[(fY1) o Gy (r)IIG/U} M= (fy2) o Gsz(r)IIG/U]g(r)III
=v10Gy (V)IIG/U} DL 0 Gy1(r) = fo G2l

< V10 Gy OIG, (I Hp(Ndys (W W,

+|f|w‘/ Yo — W]
WZ

where H5 (f) denotes the Holder constant of f on P € P. Integrating over /; yields,

Z/U] fin —/Uz f¥2| <X Hp(fdws (W, W2 Jurn
J J J

< \WHHL(f)dyys (W', W) (7.15)

For the second term on the right side of (7.14), |Vl.k| < CsCpdyys Wl w2 plus (5.9)

implies
Iz
\%

1

< 2K | f002eX @ CsCpdyys (Wi, Wa) (7.16)

2

ki

while for the third term, (5.10) implies

/ v — W2
W2

Collecting this estimate together with (7.15) and (7.16) in (7.14), and recalling (4.9), we
obtain

| oo < | floo6Csdyys (W', W?).

Jwi FY1 - Jw2 fin
fw1 ¥ fw2 ¥2

< 28HL(f)dyys (W, W)

+ floo (8K Cp + 6)Cydyys (W', W?),

proving the bound in (7.13) since dyys (W1, W2) < dandt > y.
With the claim proved, we proceed to verify (4.8). Using (5.8) we estimate,

Jwi(F 091 [y (f+ D9 _ Jwi fY Jw2 fin
fwl ¥ JCWQ ¥2 B fwl ¥ fWZ ¥
< (28" + 8K CpCs +6C5)8' ™7 dyys (Wi, Wa)? | fl et py + 22Csdyys (W, W?) .

Thus (4.8) will be verified if
(28" + 8K CpCy +6C5)8" ™V dyys (Wi, Wa)” | flcrpy + 22Csdyys (W', W)
< A"V dyys (Wi, W)Y (A — | floo) -

+ AW — w2

which is implied by the final condition on A in the statement of the lemma since
dyys (W1, W) < §and cA > 2C; by (5.36). |
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8. Applications

Suppose that we have a billiard table Q = T? \ U; B; and that the particle can escape
from the table by entering certain sets G C Q, which we call gates or holes, but only
at times kN for some N € N. One could easily consider also the case of G € Q x S!
(i.e. some velocity directions are forbidden, as studied in [D2]), but we prefer to keep
things simple. In the literature, one often takes N = 1, i.e. the particle can escape at
each iterate of the map, but then the holes are required to be very small, see for example
[DWY,D1,D2]. By contrast, in this paper we will be interested in relatively large holes
and so we will replace the assumption of smallness with an assumption of occasional
escape through possibly large sets. This will facilitate the application of this method to
two situations we have in mind: chaotic scattering (Sect. 8.4) and a random Lorentz gas
(Sect. 8.5).

We begin with the same setup as in Sect. 2.1, fixing K numbers ¢y, ..., g > 0 and
identifying them as the arclengths of scatterers belonging to Q(t,, Ky, E,) for some
fixed choice of ., Ky, Ex € R*. As in Sect. 3.1, we fix an index set Z(ty, Ky, Es),
identifying ¢« € Z(ty, Ky, Ex) with a map 7, € F(zy, K4, E,) induced by the table
Q. € Q(ty, Ky, Ey).

A hole G, C Q, induces a hole H, C M in the phase space of the billiard map 7,.
We formulate here two abstract conditions on the set H,, and then provide examples of
concrete, physically relevant situations which induce holes satisfying our conditions in
Sect. 8.3.

(O1) (Complexity) There exists Py > 0 such that any stable curve of length at most §
can be cut into at most Py pieces by d H,, where § is the length scale of the cone
Ce,a,1L(8).

(O2) (Uniform transversality) There exists C; > 0 such that, for any stable curve
WeW'ande > 0, my(N:.(0H,)) < C;¢e, where N.(A) is the e-neighborhood
of Ain M.

Remark 8.1. Assumption (O2) can be weakened to, e.g., my (N (0 H,)) < C,el/2 but
this would then require dyys wl,w? < 82 in our definition of cone condition 4.8).
Similar modifications are made to weaken the transversality assumption in the Banach
space setting, see for example [DZ3,D2].

For H C M satisfying (O1) and (O2), we let diam® (H) denote the maximal length
of a stable curve in H, which we call the stable diameter.

As in Sect. 6.2, we fix Ty € F(z4, Ky, 74) and consider sequences {¢;}; C Z(Tp, «),
where k > 01is from Lemma 6.6(b). Recalling (6.5), this means we will initially consider
sequential open systems comprised of maps T € F (., Ky, Ex) withd(Q(T), O(Tp)) <
k. We will then extend this to n,-admissible sequences for appropriate n, depending on
H.

Denote by 1 4 the characteristic function of the set A. The relevant transfer operator for
the open sequential system (opening once every n, iterates) is givenby Ly ,, = L, 1 e,
where H¢ denotes the complement of H in M, and £, = L7, ---Lr, is the usual
transfer operator for the n,-step sequential dynamics. The main objective is to control
the action of the multiplication operator 1 ¢ on the cone C, 4,1 ().

Remark 8.2. From now on we will consider parameters c, A, L fixed so that all the
conditions of Sect. 5.3 apply for all § smaller that some fixed §.
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8.1. Relatively small holes. First we consider holes H whose stable diameter is short
compared to the length scale §.

1
Lemma 8.3. If H C M satisfies (O1) and (02), and if diam* (H) < 8 [ﬁ] ! then

Lye[Ce,a,L(8)] C Cer ar, 1/ (9),
where
L'=2P) 1e“®@ A A =2p) 1@ 4,
¢ = Pl 12 (295 + 3c) + 4Py +2)PI T Y
Proof. Letting f € C. ,1.(8), we must control the cone conditions one by one. We

begin with (4.6). Given W € W?*(8), let Go denote the collection of connected curves in
W\ H. Then applying (4.7) to each W’ € Gy, for ¥ € D, g(W), we estimate

/W<1Hcf>wdmw= S [ fwdmy

W’Ego w
= Y o wdmpwiast gy

W/Gg() w
E Z |W/|qea(28)/3][ IﬂdeA3l_q|||f|||_

W’Ego w

- s
< Py AIIIfIII_/ ¥ dmy. 8.1)
w

where, in the last line, we have used the Holder inequality to estimate the sum on W',
recalling that, by (O1), the sum has, at most, Py elements. On the other hand, if the
collection of disjoint curves {W;} is such that U;W; = W N H,

/Walmf)wdmw=/wadmw—/w<ﬂﬂf>wdmw

= AL [ = W48 AL b dm

> {1 - e“@‘SV’APoa—qdiamf(H)q} Ihri- / v dmyy .
w
Hence, for diam® (H) small enough,

1
ILae fll- = S U (8.2)

Accordingly, taking the supremum over W, v in (8.1),

1— B
Ilge fll, < 2Py 7e*® AllLye fll- =: L' Lge £l
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Next, to verify (4.7), if W € W (8), then estimating as in (8.1),
| cuwrwami= 3 [ fyamy
w W’'eGy W

B _
> O Wi As! ‘f|||f|||_]€vwdmw

W’eGo

1— B _
P W(e4CD” a5 qum_][ ¥ dmyy
w

IA

IA

1— B _
< 2P, W14 As! qanefuL][Wwdmw
= A |W|98" 9 T ye £ ][ ¥ dmyy, (8.3)
w

where we have used (8.2) for the third inequality.

We are left with the last cone condition, (4.8). We take W', W2 e W* (§) with
dyys (W', W?) < 5, and ¥; € Dy o (W;) with di (Y1, 2) = 0.

As in Sect. 5.2.3, we may assume without loss of generality that |W2| > |W!| and
le Y1 = 1. First of all note that, by condition (4.7) and our estimate above,

_ 1 _
< A\WKIS ) T ge FIZ < Edws(wl, WHY I e Al ye fII_,

Sk Lae
fwk Yk
for k = 1,2, provided |W?|¢ < 8977 %dws(Wl, W?2)?. Accordingly, it suffices to
consider the case |W2|4 > §977 %dws(Wl, w2)r.
It follows from (5.8) that [W!|9 > 16977 Sdyys (W', W2)Y, recalling that dyys (W',

W?) < 8 and (5.7). By (02), we may decompose WX N H€ into at most Py ‘matched’
pieces W]].‘ such that dWs(W}, W]Z) < dWS(Wl, Wz) and Iy;1 = Iy, and at most?!
J J

Py + 2 ‘unmatched’ pieces Wf which satisfy,
—k
(Wil < Crdyys (W', W?).
Then, using condition (4.7) and noticing that d (Y1 |1, ¥2|y2) =0,
J J

Jwi e fyn fye Lue fin
fwl wl fw2 I//2

Jwi Y1 fy2 fY2
< J e
B fw1 V1 fw2 V2

—k _ o
+) (W98 A f) e
ik

ch! Y1
I dws(WH WHYSIY Al £l
< ;fwl 7 W ( ) cAllfIl

21 According to (O1), Wk is divided into at most Py pieces, and wkn HE comprises at most % + 1 of
them. Each such piece can give rise to at most 2 unmatched pieces.
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fW}fWZ | fwjl U1 fy2 2
7 fw2 V2 _fWJZWZfWI (1

+8(Py +2)Cldyys (W, WHY 81V AllLye £,
(8.4)

+

using (8.2). Next, since Iy,1 = Iy2, recalling Remark 4.4 and (5.8) we have [}, ¥ =
J J J
fW? V5 and?? ||le| — |W]2|| < |W; |dyys (W', W?2). Then applying (4.7) and recalling
J
.le wl = l’

fw,.Z f fw/; V1 fy2 V2 fw} v W2
- || s Al W T 1 - o
fw2 ¥ JCW/?‘/fZJCWI ¥ fwavr Wil Jw2
“ W
< Al fll_e®@" [ jw2jast—a |1 — —L
< AllfI W3] W
WHe s N\ W
NTTZTA ST WS = W) =5
(w2 \ w2 we 2wl
< ALFI-2 (W] ~dyye (W', W)
JWHT 8 N e
+ — - .
|W2|q<|W2|> v /Wz‘”2
(8.5)

1
Next, recalling |W2| > 617%[c/2]5dws(W1, Wz)% and using (5.10) yields,
s \'"1| ,
— W2 —
<|W2|> W= e

where we have again used (5.7) and dyys (W', W?) < §. Using this estimate and the fact
that ¢ < 1/2 in (8.5) and summing over j yields,

1
< 6C,[2/c]1 1755 dyy (W, WG

_Leest-=v
<4 q6c§

dyys (W, W,

[ £ fwi v fw2 2 5 (W2
: J— < 248"\ fll—dyys W, w2y S sl w2 4 2oL
; w2 ¥2 ijz Vo fyr v || T 7 l—dyys ( ) Xj: 51T+ 4C|W2|q

= 248"V I fll—dyys W' WRY Py (295 + ).
Finally, using this estimate in (8.4) concludes the proof of the lemma,

1ge 1pe -
Jwi Laefon Jye Lue fn < dyys (W', WY 817 A2P Ly £

JCWI ¥ JCW2 ¥2
x (Pge“@‘”“ +2(295 + 3¢) +4(Py + 2)Pg“c§’) ,
where we have again used (8.2). O

wl = I w2s the term on the right side of (5.8) proportional to C; is absent in this case.
J J



900 M. F. Demers, C. Liverani

Remark that, by Theorem 6.12, we know that there exists Nr € N, Nr < kyn, +
C,|1In 8| where n,, defined in Lemma 6.6, and k, from Theorem 6.12, are uniform in
F (14, Ky, Ey), while C, depends only onc, A, L, suchthat Ly-Ce a,1.(8) C Cye A %L
(8), for all {1;}1% € Z(Tp, ).

To state the next result we need to make explicit the coice of the cone parameters.
Letc/, A’, L’ be given by Lemma 8.3. Choose (minimal) ¢ > ¢/, A” > A’and L” > L’
satisfying the conditions in Sect. 5.3, and §” < § satisfying (6.7) and (6.18) with respect
to A” and L.

Define N}_- = kyny + C,|In§"|, where C,, k, and n, are from Theorem 6.12 applied
to the cone C.» 47 17(8"). Since, as remarked in Proposition 5.1 and Theorem 6.12, x is
independent of the cone parameters, we have £,Cer a7 17(8") C Cyer yar 17 (8”) for
alln > N }_-

Recall that « > 0 from Lemma 6.6 depends only on the family F(z, ICy, Ey).

Proposition 8.4. Let n, = N}_-. There exists J € N, depending only onc, A, L, Py, C,
' 1/q
such that if assumptions (01) and (02) are satisfied and diam* (H) < 8" [ﬁ] ,

then there exists x' € (0, 1) such that for all n > Jn,, and all n-admissible sequences
() j=1, [LalHelCen,L(8") C Cyreyra,yn.(8").

Proof. Forn =mN }_-, we may apply both Lemma 8.3 and Theorem 6.12 to obtain,

[EnﬂHf]Cc,A,L((s//) - EmN%Cc”,A”,L”(fS//) < mec”,xmA”,XmL”(S//) 5

for as long as x™c” > ¢, x"A” > Aor x™L" > L. Letting m; denote the greatest m

such that x"c¢” > cor x™A” > Aor x™L" > L, and setting J = m + 1 produces the

required contraction. O

Remark 8.5. Taking k = 0 we can also consider the case of a single map, 7,;, = Tp
for each j. Then once we know the transfer operator for the open system acts as a
strict contraction on the cone, it is straightforward to recover the usual full set of results
for open systems with exponential escape, including a unique escape rate and limiting
conditional invariant measure for all elements of the cone. See Theorem 8.16 for an
example.

8.2. Large holes. The preceding pertains to relatively small holes. For many applica-
tions, large holes must be considered. To do so requires either a much closer look at
the combinatorics of the trajectories or requiring the holes to open at even longer time
intervals than what was needed before. We will pursue the second, much easier, option
with the intent to show that large holes are not out of reach. To work with large holes it
is convenient to strengthen hypothesis (O1):

(O1’) (Complexity) There exists Py > 0 such that any stable curve of length at most &
can be cut into at most Py pieces by d H.

The main difference between small and large holes is that, according to Lemma 8.3,
for holes with sufficiently small stable diameter, multiplication by 1 gc maps C, 4,1.(8)
into a cone with larger parameters; by contrast, for large holes, multiplying by the
indicator function may produce functions that do not belong to any cone and we must
use mixing to recover this property, as detailed in Lemma 8.8. To avoid trivialities, we
only consider holes with pgs(H) < 1.
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When iterating Tn_l W for W € W*, we will need to distinguish between elements
of G, (W) which intersect H and those that do not. Recall that G, (W) subdivides long
homogeneous connected components of Tn_1 W into curves of length between &g and
80/3. We let g,f’ (W) denote the connected components of W; N H€, for W; € G, (W),
where H° = M \ H. Following the notation of Sect. 5.2, let Lof (W; 8) denote those
elements of gf (W) having length at least  and let Sh ’111 (W, 8) denote those elements
having length at most 8.

Without the small hole condition, hypotheses (O1") and (02) are insufficient to
prove Lemma 8.3; however, one can recover the results of Proposition 8.4 and its
consequences provided one is willing to wait for a longer time. To prove the fol-
lowing result, we recall again Definition 2.4 of admissible sequence. We call a se-
quence (t;)j>1,t; € I(ts, Ky, Ex), N-admissible if there exist sequences (Ty)k>1 C
F (T4, Ky, Ex) and (Ng)k>1 with Ny > N, such that T, € F(Ty, k) forall k > 1 and

J e N+ X0 N Yy Nl
Lemma 8.6. If(O1') and (02) are satisfied, then for each§ > 0 small enough (depending

on s (H)) there exists ng € N, ng < ClIné -1 for some constant C > 0, such that for
all ng-admissible sequences (1) j, all W € W* (8) and n > ny,

1
> |W|*‘/ Iw Ty 2 5 (1= s (HD)
W/

W'eLol (W; 5)

Proof. Arguing exactly as in Lemma 8.3 it follows that if (O1’) and (O2) are satisfied,
then there exists ¢ > ¢, A" > A, L’ > L such that 1gc +1 € Cy 4, 1/(8) and we
may choose ¢/, A’, L' and § > 0 such that the conditions of Theorem 6.12 are satisfied.
Setting ng := N ’}- from Theorem 6.12 for these cone parameters, we apply Eq. (7.10)
of Theorem 7.4 to this larger cone,

‘][ Ly(Lge)—(1— MSRB(H))‘ = ‘f Ly(lyge+1) — 2+MSRB(H)’ < Cyo".
w w

On the other hand, recalling Lemma 3.3,

Ly(Lye) — |W|—1/ Jw Ty |W|—1/ Jw Ty
][W Z w’ Z w’

W/eLoH (W §) W’ eShi (W )
Po(Cody '8 + Coblh),

IA

IA

which implies the lemma. O

We are now able to state the analogue of Proposition 8.4 without the small hole
condition. Note, however, that now n, has a worse dependence on § that we refrain from
making explicit. We recall from Remark 8.2 that we have fixed the parameters c, A, L
of the cone, but we may choose § smaller as needed.

Proposition 8.7. Under assumptions (01') and (02), for each § > 0 small enough
there exist x' € (0, 1) and J, n, € N depending on (01'), (02), wss(H) and 8, such
that, for all n.-admissible sequences (1;); and for all n > Jny, [L,1pc]Ce a,1(8) C
CX/C,X’A,X’L(‘S)~

Before proving Proposition 8.7, we state an auxiliary lemma, similar to Lemma 8.3.
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Lemma 8.8. If H satisfies (O1') and (02), there exists®3 is > ng such that forn > ng
and all ns-admissible sequences (1) j, we have [L,1gc]Ce A, (8) C Co ar,1/(8), where

/ / 6 / 9
c=cPy, A=A———, and L' =L——.
1 — peges(H) 1 — pges(H)

Proof of Proposition 8.7. As in Sect. 8.1, we may choose minimal ¢’ > ¢/, A” > A’
and L” > L’ and § > O sufficiently small to satisfy the hypotheses of Theorem 6.12.
Then letting n, = max{N}L—, fis}, with?* N’}- = C/|In§| + kyn, as before, we may apply
both Lemma 8.8 and Theorem 6.12 to obtain,

[Ln1pelCea,L(8) C Lyn,Cor ar,17(8) < Cymen ympn ympr(8),

foraslong as x"c¢” > cor x™A” > Aor x™L" > L. Letting m; denote the greatest m
such that x"c¢” > ¢, x™A” > Aor x™L" > L, and setting J = m| + 1 produces the
required contraction. O

Proof of Lemma 8.8. Letn > ng (from Lemma 8.6) and f € C. 4,1 (). Foreach W e
W?(8) and y € Dy g(W), we have

[veawn= ¥ [ Tare ¥ [ Tuvs 6o
W W;eLoH (W;8) Wi W; eShH (W;5) Wi

where we are using the notation of Sect. 5.1 for the test functions. Since any element of
G, (W) may produce up to Py elements of Shf (W; 8) according to assumption (O1"),
we estimate

Ly(1gef) < .
/Ww Awen= S ISl /aniw

WieLoll (W)
+ APl fl_e*®” / ¥ (Codsy "+ Cob})
w
<0/l / y(1+ AR @ (Cossyt + Cot)) .
w

where we have used |W| > § and cone condition (4.7), as well as Lemma 3.3(b) to sum
over elements of Sh,ll{ (W;6).
Analogously, using Lemma 8.6,

/ I/f‘cn(]lH"f)
w

v

B = _
> s / ¥ — APl fl| e / W (Co88y "+ Cob)
TnWi w

WieLol (W;9)

v

ol 288, A 1
e / v (S5 (1 ) — AR (Copsy ! + oo )
w

23 Since we have fixed the cone constants ¢, A, L, the number ng depends on the constants appearing in
(0O1”) and (02) as well as jigrs (H) and the choice of 8, from Lemma 8.6.

24 N’ is number from Theorem 6.12 applied to the cone with larger constants ¢, A”, L".
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Let n, be such that 2A Poc()e;” < 2]—4(1 — uses (H)), then for n > n5 and § small enough
we have

1
NLn(Lge Oll= = NFI- 8(1 — Msrs(H)). (8.7)
Accordingly, for n > max{n;, ns} =: ng and § small enough, we obtain

ILn(Lae Ul _ S0 o
NLn e I 7 NFI- G — poee (D) ~ 1= B (H)

L (8.8)

The contraction of A follows step-by-step from our estimates in Sect. 5.2.2. Taking
W € W? (§) and grouping terms as in (8.6) we treat both long and short pieces precisely
as in Sect. 5.2.2 with the additional observation that each element of G, (W) produces
at most Py elements of Sh,lf (W; 8) by assumption (O1”). Thus (5.4) becomes,

|y ¥ £aClize )
fw¥
= A8 I WIT Il (2LA7" + Poe @ (Cosg W+ Coo)!' )
- 6 g
= A TN WL, (Upe - e =t A8 WL, (Lae DI
1 — pors(H)

(8.9)

where we have applied (8.7) and assumed n > max{ny, ns}.

Finally, we show how the parameter c contracts from cone condition (4.8). Following
Sect. 5.2.3, we take W', W2 € W* (8) with dyys (W', W?) < 8, and ¥ € D, o(WK)
with d, (Y1, ¥») = 0. As before, we assume without loss of generality that |W2| > |W1 |

and fW VY = 1.
We begin by recording that, by (8.9),
S ¥ La(Lpe f)

< A'\WH98T L, (L pe )l
fwk l/jk f f

1
< Edws(wl, W8V e ALy fIl,

for k = 1,2, provided |W2|‘7 < §17v %dWx(Wl, WZ)V. Accordingly, it suffices to
consider the case |W2| > SV’quws(Wl, w2yr.

It follows from (5.8) that [W!|4 > 18977 Sdyys (W', W2)7, recalling that dyys (W',
W?) < §and (5.7).

Next, following (5.11), we decompose elements of g,{{ (Wk) into matched and un-
matched pieces, as in (5.12). We estimate the unmatched pieces precisely as in (5.15),
noting that by (O1”) and the transversality condition (O2), each previously unmatched
element of G, (W¥) may be subdivided into at most Py additional unmatched pieces VJ{‘,
while each matched element may produce up to Py additional unmatched pieces each
having length at most,

VI < CiCsA " dyys (W, W?),
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by Lemma 5.5(a). Thus,

~ 9P _
> / FT, ] < —————C4AL8' ™ dyys (W, W2 1Ly (Lpge I .
I V;‘ J I — psrs (H)
(8.10)
where we have used (8.7) in (5.14) to estimate
WL fll < NLaflls < 3NF0s < 3LIFI- < %Illﬁn(ﬂflff)lll_-
(8.11)

The estimate on matched pieces proceeds precisely as in (5.20), and with an additional
factor of Py in (5.21), we arrive at (5.25), again applying (8.7),

Z /lffn,ullm _/Zf?n,uﬂh
f Uj J Uj J

< 125 24CoCs A8 Y dyys (W, WA 1L, (Lae )l

(2740C58777 + cCsA™"" +291C5A™"8) .

Combining this estimate together with (8.10) in (5.11) (with A’ in place of A in (5.11)),
and recalling (5.12), yields by (5.26),

Ly L, P,
Jwt £uf i Jwe baf V2| OR_ysicy g WA L (L P

fwr V1 fur 2 |7 1—u(H)
where we have applied (5.27) to simplify the expression. Setting ¢’ = Pyc and recalling
the definition of A’ from (8.9) completes the proof of the lemma. O

8.3. Loss of memory for sequential open billiards. We conclude the section by illustrat-
ing several physically relevant models to which our results apply. Admittedly, we cannot
treat the most general cases, yet we believe the following shows convincingly that the
techniques developed here can be the basis of a general theory.

Dispersing billiards with small holes have been studied in [DWY,D1,D2], and results
obtained regarding the existence and uniqueness of limiting distributions in the form of
SRB-like conditionally invariant measures, and singular invariant measures supported
on the survivor set. In the present context, we are interested in generalizing these results
to the non-stationary setting. Analogous results for sequences of expanding maps with
holes have been proved in [MO, GO].

For concreteness, we give two example of physical holes that satisfy our hypotheses,

following [DWY,D2].
Holes of Type I. Let G C 9Q be an arc in the boundary of one of the scatterers.
Trajectories of the billiard flow are absorbed when they collide with G. This induces
a hole H in the phase space M of the billiard map of the form (a, b) x [—7/2, 7/2].
Note that d H consists of two vertical lines, so that H satisfies assumption (O2) since
the vertical direction is uniformly transverse to the stable cone, as well as assumptions
(O1) and (O1") with Py = 3.
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Holes of Type I1. Let G C Q be an open convex set bounded away from d Q and having
a C3 boundary. Such a hole induces a hole H in M via its ‘forward shadow.’

We define H to be the set of (r, ¢) € M whose backward trajectory under the billiard
flow enters G before it collides with d Q. Thus points in M which are about to enter G
before their next collision under the forward billiard flow are considered still in the open
system, while those points in M which would have passed through G on the way to their
current collision are considered to have been absorbed by the hole.

With this definition, the geometry of H is simple to state: if we view G as an additional
scatterer in Q, then H is simply the image of G under the billiard map. Thus H will
have connected components on each scatterer that has a line of sight to G, and 0 H
will comprise curves of the form Sp U T (Sp), which are positively sloped curves, all
uniformly transverse to the stable cone. Thus holes of Type II satisfy (O2) as well as
(O1) and (O1") with Py = 3. (See the discussion in [D2, Section 2.2].)

Still other holes are presented in [D2] such as side pockets, or holes that depend on
both position and angle, which satisfy (O1), (O1’) and (O2), but for the sake of brevity,
we do not repeat those definitions here.

As noted, both holes of Type I and Type II satisfy (O1) and (O1’) with Py = 3.
Moreover, holes of Type I satisfy (O2) with C; depending only on the maximum slope
of curves in the stable cone, which is uniform in the family F(z,, I, E,) according to
(H1): this (negative) slope is bounded below by —Kpax — 780 choosing C; > K.+t !
suffices. Since d H for holes of Type II have positive slope, the same choice of C; will
suffice for such holes to satisfy (02).

Fix F (14, K4, E4) and define H(Py, C;) to be the collection of holes H C M with
wszs(H) < 1/2 and satisfying (O1) or (O1") and (O2) with the given constants Py and C;.
We define a non-stationary open billiard by fixing a sequence of holes Hy € H(Py, C;),
k € Z*, satisfying either (O1) and (O2) or (O1”) and (O2). In the first case, let n, be from
Proposition 8.4, while in the second, let n, be from Proposition 8.7.%5 Next, choose an
n-admissible sequence (1;) ;, t; € Z(ty, Ky, Ey).

Recall (5.13): Foru,v e N,v > u,letT, , =T, 0---0T,,,. Foreach k > 1, the

open system relative to Hj is defined by Yo”k : (Tkn”(k_l)n*)_l(M \ Hy) — M\ Hg,
where
00Ty, (x) for x € (Tim, (k—1yn,)~ (M \ Hy).

To concatenate these open maps into a sequential system, define

Ti(x) =T,

knx

Tji(x)=Tjo---oTi(x) for x en]_ T o 0T /(M \ Hy,

thus we allow escaping once every n, iterates along the admissible sequence. The transfer
operator for the sequential open system is defined by

Liif = ET[(/H)M*ON.TLJ'VH Lhg - L1y, o Ty, L S - (8.12)

We will be interested in the evolution of probability densities under the sequential system,

- Loif . 3
given by m Note that if f € Cc a,(8) then [, Ly i f djises > O for each

n (thus the normalization is well defined). When f > 0, this normalization coincides
with the L!(j55) norm; however, we use the integral rather than the L' norm as the
normalization since the integral is order preserving with respect to our cone, while the

25 Requiring pusgp (H) < 1/2 enables a uniform choice of n, for all H € H(Py, Ct).
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L' norm is not. We conclude the section with a result regarding exponential loss of
memory for the sequence of open billiards.

Theorem 8.9. Fix t,, Ky, > 0 and E, < oo, and let a,c, A, L,§ and 8o satisfy the
conditions of Theorem 6.12 and Lemma 7.1. Let Py, C; > 0. There exist C > 0 and
¥ < 1 such that for all sequences (H;); C H(Py, C;) satisfying either (O1) and (02) or
(O1') and (02), all ny-admissible sequences (t;)j CI(ts, Ky, Ey), forallyp € cl(m),
all f,g € Cepa(8),alln > landalll <k <n,

o

£, £y
/ bl g - / e . S
M M

. - < CLY" Mylcioan -
MSRB(En,kf) :u’SRB(En,kg) oD

Proof. Remark that the constants appearing in Propositions 8.4 and 8.7 are uniform, de-
pending only on F (t«, Ky, Ex), Po and C,. Hence, if f, g € C. 4,1 (5), then foreach k <

q

A A : én kS Ly k8
neN, L L eC, 8). Since —= = —=ne d =
n,kf k& é’A’L( ) fM tsre (L k f) Hoes fM wsrs (L kg) Moo

1, the theorem follows arguing exactly as in the proof of Theorem 7.3(b), using again
the order preserving semi-norm || - ||, as well as the fact that by Remark 7.2,

! |||£n,kf|”+

1onif v _
MmNy o
ILak f1-

: < < CLI¥|c1 .
MSRB(En,kf)

Whe{l iHVOE(ng (76), it holds that )OC(EOn,kf//LSRB(LOn,kf)’ Acon,kg//LSRB(‘Con,kg)) =
pc(Lu.k fo Lnkg) due to the projective nature of the metric. O

Note that, by changing variables, f M Eo,,,k fYduss = f My fvo Ton,  d lsrs, Where

Zlodn,k =N, fk_l 0---0 Ti_l (M \ H;). Thus the conclusion of the theorem is equivalent
to the expression,

an’k F Yo Tyrditge - ‘an,k gV o i ditgs
an_k S ditswn an,k 8 d s

< CLY" MYl -

Next we show that sequential systems with holes allow us to begin investigating some
physical problems that have attracted much attention: chaotic scattering and random
Lorentz gasses.

8.4. Chaotic scattering (boxed). Consider a collection of strictly convex pairwise dis-
joint obstacles {B;} in R? for which the non-eclipsing condition may fail.*® Assume that
there exists a closed rectangular box R = [a, b] x [c, d] such that if an obstacle does not
intersect its boundary, then it is contained in the box. In addition, if an obstacle intersects
the boundary of R, then it is symmetrical with respect to a reflection across all the linear
pieces of the boundary which the obstacle intersects (see Fig. 4 for a picture). Finally,
we will assume a finite horizon condition on the cover Q defined after Remark 8.12.

26 Remember that the non-eclipsing condition is the requirement that the convex hull of any two obstacles
does not intersect any other obstacle.
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—

 —

Incoming particle beam

Fig. 4. Obstacle configuration for which the non-eclipse condition fails and the box R (dashed line)

Remark 8.10. The restriction regarding symmetrical reflections on the configuration of
obstacles is necessary only because we did not develop the theory in the case of billiards
in a polygonal box (see Remark 8.12 and the following text to see why this is relevant).
Such an extension is not particularly difficult and should eventually be done. Other
extensions that should be within reach of our technology are more general types of holes
and billiards with corner points. Here, however, we are interested in presenting the basic
ideas; addressing all possible situations would make our message harder to understand.

Lemma 8.11. If a particle exits R at time ty € R, then, in the time interval (ty, 00), it
will experience only a finite number of collisions and it will never enter R again.

Proof. Recall that R = [a, b] x [c, d]. Of course, the lemma is trivially true if, after
exiting R, the particle has no collisions. Let us imagine that the particle, after exiting
from the vertical side (b, ¢c) — (b, d), collides instead with the obstacle B; at the point
p = (p1, p2). Note that B; must then intersect the same boundary, otherwise it would be
situated to the left of the line x = b and the particle could not collide since necessarily
p1 > b. Our hypothesis that B; be symmetric with respect to reflection across x = b
implies that also (2b — pj, p2) € 9B;. Thus, by the convexity of B;, the horizontal
segment joining p and (2b — pj, p2) is contained in B;. This implies that, calling
n = (11, n2) thenormal to d B; in p,itmustbe n; > 0.Inaddition, if v = (v;, v2) denotes
the particle’s velocity just before collision, it must be that vy > 0 since the particle has
crossed a vertical line to exit R. Finally, (v, n) < 0, otherwise the particle would not
collide with B;. But since the velocity after collision is given by vt = v — (v, n)n,
it follows v{ = v; — (v, n)n1 > v;. That is, the particle cannot come back to the
box R. Since all the obstacles are contained in a larger box R; and since there is a
minimal distance between obstacles, the above also implies that the particle can have only
finitely many collisions in the future. The other cases can be treated exactly in the same
manner. O

Remark 8.12. We want to consider a scattering problem: the particles enter the box
coming from far away and with random position and/or velocity, interact and, eventually,
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leave the box. The basic question is how long they stay in the box or, better, what is the
probability that they stay in the box longer than some time #. This is nothing other than
an open billiard with holes. Unfortunately, the holes are large and our current theory
allows us to deal with large holes only if enough hyperbolicity is present. To extend the
result to systems with small hyperbolicity is a very important (and hard) problem as one
needs to understand the combinatorics of the trajectories for long times.

An alternative is to study the scattering problem under the non-eclipsing condition.
Such an assumption avoids the technicalities associated with billiards and results in
Axiom A dynamics with a natural finite Markov partition for the collision map on the
survivor set. This problem has been studied and strong results proving exponential escape
as well as exponential mixing on the survivor set have been obtained in both discrete
[Mo091,LoM,Mo07] as well as continuous [St] time. There are also recent results on the
rigidity problem for such open billiards [BDKL,DKL2]. Yet the condition is artificial
once there are more than 2 scatterers, hence the importance of developing an alternative
approach.

Given the above remark we modify the system in order to have the needed hyperbolicity.
This is not completely satisfactory, yet it shows that our machinery can deal with large
holes and illustrates exactly what further work is necessary to address the general case.
Fixing N sufficiently large, we suppose that when a particle enters the box, the
boundaries of the box become reflecting and are transparent again only between the
collisions kN and kN + 1, k € N, counting only collisions with the convex obstacles.
More precisely, consider the billiard in R with elastic reflection at d R. We call such
a billiard table Q. Let M = (U,- aB; N R) x [=%, %] be the Poincaré section,?’ and
consider the Poincaré map 7' : M — M describing the dynamics from one collision
with a convex body to the next. Unfortunately, this is not a type of billiard that fits our
assumptions since the table has corner points. Yet, when the particle collides with d R we
can reflect the box and imagine that the particle continues in a straight line. Note that, by
our hypothesis, the image of the obstacles that intersect the boundary are the obstacles
themselves; this is the reason why we restrict the obstacle configuration. We can then
reflect the box three times, say across its right and top sides and then once more to make
a full rectangle with twice the width and height of R, and identify the opposite sides
of this larger rectangle. In this way we obtain a torus T2 containing pairwise disjoint
convex obstacles. Such a torus is covered by four copies of R, let us call them {R; }4
We call such a billiard Q and we consider the Poincaré map T which maps from one
collision with a convex body to the next, and denote its phase space by M = U M

Our final assumption on the obstacle configuration is that Q is a Sinai bllllard with
finite horizon. Hence T : M O falls within the scope of our theory. By construction
there is a map 7w : M — M which sends the motion on the torus to the motion in the
box. Indeed, if ¥ € M and x = 7 (x), then T"(x) = n(T”(x)) foralln € N.

We then consider the maps S = T~ and § = TV, again n(S(x)) ST (x)).
Define also the projections 7y : M — Q and w1 : M — Q, which map a point in the
Poincaré section to its posmon on the billiard table. For X € M, let us call O(x) the
straight trajectory in T? between 7 (%) and m(T(x)) and setting x = 7 (x), O(x) the
trajectory between m1(x) and 71 (7 ((x)). Note that the latter trajectory can consist of
several straight segments joined at the boundary of R, where a reflection takes place. By
construction, if O (X) intersects m of the sets d R;, then the trajectory O (x) experiences

27 Recall that pe[- % %] is the angle made by the post-collision velocity vector and the outward pointing
normal to the boundary.
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m reflections with d R. Accordingly, we introduce, in our billiard system LM S) the
following holes : H= T{xeM : OxX)N(U;0R;) # ¥} and set H = w(H).

The above makes precise the previous informal statement: the system (M, S) with
hole H, describes the dynamics of the billiard (M, T') in which the particle can exit R
only at the times kN, k € Z. The transfer operator associated with the open system
(M, S; H)is LycLglge, yet since (LyeLslye)" = 1ge(Lslye)”, it is equivalent to
study the asymptotic properties of L= Ls1ye.

For a function f : M — C, we define its lift f : M — C by f = f om. The
pointwise identity then follows,

Lsf =Ls(Mgf)=Ls((Lpef)om) = (Lsf)om. (8.13)

While H is not exactly a hole of Type II, its boundary nevertheless comprises increasing
curves since it is a forward image under the flow of a wave front with zero curvature (a
segment of 9 R;). Hence condition (O1) of Sect. 8.2 holds with Py = 3 and condition
(02) holds with C; depending only on the uniform angle between the stable cone and

the vertical and horizontal directions in M. Thus Proposition 8.7 applies to E with
n, depending on C; and Py = 3. In fact, our next result shows that also ES contracts
CC’A,L(S) on M.

Proposition 8.13. Let n, € N be from Proposition 8.7 corresponding to Py = 3 and
C; > 0. Then for each small enough § > 0, there existc, A, L > 0, x € (0, 1) such that
choosing N > n,, Ls(Cc a,1.(8)) C Cyc,xa,x1(8), where S = TN,

Proof. As already noted above, Proposition 8.7 implies the existence of §, ¢, A, L and
x such that EGS(CZAN,L %)) C 5xc,xA,xL (8) if we choose N > n,. Note that the constant
C,; is the same on M and M. In fact the same choice of parameters for the cone works
for f,g.

For any stable curve W, 7 ~'W = U4 IW, where each Wl is a stable curve satisfying
n(W,) = W. Since 7 is invertible on each Ml, we may define the restriction m; = 7| ; i
such that nl_l (W) = W,. Conversely, the projection of any stable curve W in M is also
a stable curve in M.

Since each m; is an isometry, and recalling (8.13), for any stable curve W C M, each
fe€Cear(d),andalln >0,

/~1//orr/.’,°'sffdmv7,=/ W LEf dmy, V¥ e COW),
Ww; w

where f = f om. Moreover, if v € D, g(W), then yy o € Da,ﬂ(ﬁv/i), for each
i = 1,...,4. This implies in particular that || % f ||, = |||£°'§ flls forall n > 0, and that

f €Cear(®ifandonlyif f = for € C, a.1(8). Consequently, L5 f € Cyeya.xL(5)
if and only if L 3 f € Cy¢, A, xL(8), which proves the proposition. O

In contrast to the sequential systems studied in Sect. 8.3, the open billiard in this
section corresponds to a fixed billiard map 7' (and its lift T) Thus we can expect the
(normalized) iterates of L to converge to a type of equilibrium for the open system.
Such an equilibrium is termed a limiting or physical conditionally invariant measure in
the literature, and often corresponds to a maximal eigenvalue for L on a suitable func-
tion space. Unfortunately, conditionally invariant measures for open ergodic invertible
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systems are necessarily singular with respect to the invariant measure and so will not
be contained in our cone C,_4.1.(8), which is a set of functions. However, we will show
that for our open billiard, the limiting conditional invariant measure is contained in the
completion of C. 4,1, (§) with respect to the following norm.

Definition 8.14. Let V = Span(cc‘A,L(ts)). Forall f € V we define
Ifllk=inf{A >0: —A < f < A}.

Lemma 8.15. The function || - ||« has the following properties:

(a) The function || - ||« is an order-preserving norm, that is: —g < f =< g implies

I« < llglls
(b) There exists C > 0 such that for all f € Cc a.1.(8) and ¢ € C! (M),

‘/ fd/d,usmz
M

Proof. In this proof, for brevity we write C in place of C; 4.1, (5).

a) First, we show that || ||, < oo forany f € V,i.e. forany f € V wecanfind A > 0
such that A + f, A — f € C. By the proof of Proposition 6.13, we claim?® that for any
f €C, wecan find u > 0 such that u — f belongs to C. This follows since the second
part of the proof with x = 1 yields that u — f satisfies (4.6) if © > ﬁ Il £, it satisfies

@7 ifu > %mf"h, and it satisfies (4.8) if u > #fiqlllfllly Taking p large
enough to satisfy these 3 conditions proves the claim.

Next, consider f = ag + fh with g,h € Cand o, 8 € R. If o, B > 0, then since
C is closed under addition, the above claim yields u > O such that u — f and u + f
are in C and thus || f|l, < w. It remains to consider the case « < 0, 8 > 0 since the
remaining cases are similar. Let p, > O satisfy ;1o — g belongs to C. Set A = pg|a].
Then A+ f = |o|(g — g) + Bh is the sum of elements in C and thus is in C. Similarly, let
wp > 0 satisfy wj, — h belongs to C and set B = u;, 8. Then B — f = |a|g + B(up — h)
is again in C. Thus || f||« < max{A, B}.

Next, if || f|l» = 0, then there exists a sequence A, — 0 such that —A,, < f < A,,
and so A, + f, A, — f € C for each n. Since C is closed (see footnote 5), this yields
fs—f € CU{0}and so f = 0since C N —C = @ by construction.

Since f < g is equivalent to vf < vg for v € Ry, it follows immediately that
oflle = vl fll

To prove the triangle inequality, let f, g € V. For each ¢ > 0, there exists a, b,
a<e+|flls b <e+]gllssuchthat —a < f <aand —b < g < b. Then

= ClAN ¥ crany < CHFILE et ary -

—(fle+lglh+28) 2 —(a+b) = f+g Za+b=|fl+lgls+2e,

implies the triangle inequality by the arbitrariness of €. We have thus proven that || - ||«
is a norm.
Next, suppose that —g < f < g and let b be as above. Then

—llglhh—ex-b=x—g=xf=g=xb=x|gl+e¢

which implies || f|l«» < ||gll«, again by the arbitrariness of ¢. Hence, the norm is order
preserving.

28 This claim implies that the cone is Archimedean.
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(b) The first inequality is contained in Remark 7.2. For the second inequality, we will
prove that

IfNe < 1flle  forall feC. (8.14)

To see this, note that if —A < f < A, then ||A — f||_ > 0 by Remark 4.8. Thus for any
W eW?®and ¥ € D, g(W),

Jwt=Hv Jw fv
o<WV 77 <A,
Jw v Twv

and taking suprema over W and v yields || f ]|, < X, which implies (8.14). |

Define V, to be the completion of V in the || - ||« norm. V, is a Banach space. Let C,
be the closure of C. 4. 1,(8) in V.

We remark that by Lemma 8.15(b), C, embeds naturally into (C'(M))’, where
(CL(M)) is the closure of CO(M) with respectto the norm || f|| -1 = SUP|y . <1 fM fv

dss. We shall show that the conditionally invariant measure for the open system
(M, T; H) belongs to C,.

Theorem 8.16. Let (M, S; H) be as defined above, where S = TN. If N > n,, where
n, is from Proposition 8.7, then:

An
(a) h := lim ——— is an element of Cy. Moreover, h is a nonnegative probability
n—o0 Ln 1)
s ( S

measure satisfying Lsh =vh for some v € (0, 1) such that
1 .
logv = lim —log I'LSRB(H?:()S_I (M\ H)),
n—oo n

i.e. —logv is the escape rate of the open system.
(b) There exists C > 0 and v € (0, 1) such that for all f € Cq.a.1.(8) andn > 0,

_Lyr
Meses (L' f)

In addition, there exists a linear functional € : C. o,1.(8) — R such that for all
f€Cear®),t(f)>0and

—h| <Cv".

*

W LY f — LRl < CO L) ]
The constant C depends on C._4.1.(5), but not on f.

Remark 8.17. (a) The conclusions of Theorem 8.16 apply equally well to the open system
(M, S; H).

(b) By Lemma 8.15(b), the convergence in the | - ||, norm given by Theorem 8.16(b)
implies convergence when integrated against smooth functions ¥ € C'(M). As usual,
by standard approximation arguments, the same holds for Holder functions.

(c) Also by Lemma 8.15(b), the above convergence in || - || implies leafwise convergence
as well. Firstnote thatfor W € W*(8),each f € C. 4,1 () induces aleafwise distribution
on W defined by fw (¥) = fW f¥dmw,fory € D, g(W). This extends by density to
f € C.. Since h € C, by Theorem 8.16(a), let 1y denote the leafwise measure induced
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by hon W € W?*(§). Then by Lemma 8.15(b) and Theorem 8.16(b), there exists C > 0
such that for all n > 0,

Jw ng ¥ dmy
[hses (L )

and also,

—hw()| < C87'O", Vf €Conr(8). V¥ € CP(W),

v_"/w CLf Y dmy — L(hw ()| < C8TI9"e(f) .

In particular, the escape rate with respect to fdmw on each W € W?*(§) equals the
escape rate with respect to fLggg.

Proof of Theorem 8.16. We argue as in the proof of Theorem 7.3. Recalling that || - ||
is an order-preserving norm, we can apply [LSV, Lemma 2.2], taking the homogeneous
function p to also be | - || and obtain that, as in (7.6), for all f, g € C¢ 4,1 (8),

£ £r
‘ F o B8 | oo, (8.15)
15 f1s 1L%eI ),
since ||£Sff|\* = 1 and similarly for g. This implies that (|L‘,S]{||*> is a Cauchy

sequence in the || ||« norm, and in addition, the limit is independent of f. Hence defining

ho = limy— 0o ” f 1‘” we have g € C, with || ho|l, = 1 such that® forall € C1 (M),

o 1 o
Lshoy = lim / L 1y
/M n=oo gy, Jia P
- ||£"+‘1||*/ hov
= m —— 0
n=>o0 1L

=||£sh0||*/ hoy =:v/ hov
M M

where all integrals are taken with respect to fg;. Thus, Losho = vhg. Moreover, the
definition of /¢ implies that,

s (L1
lho(¥)| < ¥l co ngw% = [Ylcoho(l), Yy eC'(M), (8.16)
S *

thus &g is a measure. In addition, by the positivity of Ls. hois a nonnegative measure
and since | k||« = 1, it must be that 2(1) # 0. Thus we may renormalize and define
1
= 0
ho(1)

Then h ( HC represents the limiting conditionally invariant probability measure for the
open system (M, S; H). However, we will work with /4 rather than its restriction to H¢

29 Note that £ s extends naturally to (C 1 (M))’ and therefore to Cy.
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because /& contains information about entry into H, which we will exploit in Proposi-
tion 8.18 below.
Due to the equality in (8.16), & has the alternative characterization,

£r1 L
h= lim —— = lim ———,
n—ee IU*SRB(EEI) "m0 Uses (M)

as required for item (a) of the theorem, where M" = N_oS ~i{(M \ H) and convergence
isin the || - ||, norm.

Remark that (8.15) implies ”ggf‘ | converges to hg at the exponential rate 9". In-
S *

tegrating this relation and using Lemma 8.15(b), we conclude that in addition the nor-

HMsrB (3§f )
L5 f N«

two estimates together and using the triangle inequality yields for all n > 0,

Lyf
s (L7 )

proving the first inequality of item (b).
Next, for each, f € C. 4.1(3) let

malization ratio converges to ho(1) at the same exponential rate. Putting these

—h|| <CO"ho()™', Y feCearLl®),

*

€(f) = limsup v ™" g (L1 f) . (8.17)
n—od
Note that £ is bounded, homogeneous of degree one and order preserving. By Lemma 8.15
(b), £ can be extended to C,. Since £(h) = 1, v™"Lh = h and L(v™" L% f) = €(f) we
can apply, again, [LSV, Lemma 2.2] as in (7.6) to f and £( f)h and obtain

W LEf — he(Plle = v ILEf — C(HLERN, < CO"E(H)IRll.,  (8.18)

proving the second inequality of item (b) of the theorem. Note that (8.18) also implies
(integrating and applying Lemma 8.15(b) ) that the limsup in (8.17) is, in fact, a limit,
and hence ¢ is linear. Remark that £ is also nonnegative for f € C. 4 1(8) by Remark 7.2.

By definition, if f € C. o £(8) and A > || fll« then A + f, A — f € C¢ 4.1(5), so that
using the linearity and nonnegativity of £ yields,

— M) =l(f) =rA), YV felear®), r>|flx. (3.19)
Thus either £(f) = Oforall f € Cc a,1.(8) or £(f) # O forall f € Cc AL (). Butif
the first alternative holds, then by the continuity of £ with respect to the || - ||, norm

(Lemma 8.15(b)), £ is identically 0 on C,, which is a contradiction since £(4) = 1. Thus
£(f) > O0forall f €Cca.1(5).

Finally, applying (8.18) to f = 1 integrated with respect to [is s and using again
Lemma 8.15(b), we obtain

V7" tsea (M) — £(1)] < CO (D) IR,

which in turn implies that logv = lim;,—, % log [,LSRB(M ) since £(1) # 0, as required
for the remaining item of part (a) of the theorem. Note that v # 0 by Remark 7.2 and
(8.7), while v # 1 by monotonicity since the escape rate for this class of billiards is
known to be exponential for arbitrarily small holes [DWY,D2]. O
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Fig. 5. a Sample rays with & = 01 and 6 = 0, striking the scatterer B;. The point p is the topmost point of
dB3. b Component of Hg on the scatterer By. In this configuration, Hp, intersects the singularity curve 7Sy
coming from B) while Hp, reaches Sy directly; however, the left boundary of Hg is an arc of H), and the
continuation of singularities properties fails for a hole of this type since 61 > 0

We can use Theorem 8.16 to obtain exit statistics from the open billiard in the plane.
As an example, for 6 € [0, 27) let us define Hy to be the set of x € H such that the first
intersection of O (T ~!x) with R has velocity making an angle of # with the positive
horizontal axis. Note that Hy is a finite union of increasing curves since it is the image
of a wave front with zero curvature moving with parallel velocities. The fact that Hy
comprises increasing curves is not altered by the fact that the flow in R may reflect off
of dR several times before arriving at a scatterer because such collisions are neutral;
also, since the corners of R are right angles, the flow remains continuous at these corner
points.

Suppose the incoming particles at time zero are distributed according to a probability
measure fd g, With density f € C. a,1(8). The probability that a particle leaves the
box at time nN with a direction in the interval ® = [0y, 0], call it P (x,, € [01, 02]),
can be expressed as

Py € (01, 62]) = / Lo 25 £ djige (8.20)
M

where Hg := Upece Hy. Although the boundary of Hg comprises increasing curves
as already mentioned, the restriction on the angle may prevent d Hg from enjoying
the property of continuation of singularities common to billiards. See Fig. 5 (see also
[D2, Sect. 8.2.2] for other examples of holes without the continuation of singularities
property).

Similarly, for p € dR, define H), to be the set of x € H such that the last intersection
of O(T~'x) with dR is p. Then for an interval P C 9R, we define Hp = Upcp H),, and

f w LHp ’§ f denotes the probability that a particle leaves the box at time nN through
the boundary interval P.

Proposition 8.18. For any intervals of the form ® = [0y, 60;], or P = [p1, p2], any
fe CI(M) with f > Oandf fdusgs =1, and alln > 0, we have3©

30 1f instead f€Cea,L(@), f>0and J fdusgs = 1, then [ fllc1 can be dropped from the right hand
side.
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4 pn

Pr(xn € ©) =V"h(Lp () + I fllcr O "9 "), and
Py(xy € P) = V"h(Lp)(f) + 1| 1 O 97")

Remark 8.19. If f € C..4.1(8),then£(f) > 0by Theorem 8.16(b), and Proposition 8.18
provides a precise asymptotic for the escape of particles through Hg and Hp. For more
general f € C!(M), it may be that £(f) = 0, in which case Proposition 8.18 merely
gives an upper bound on the exit statistic compared to the rate of escape given by v.

Proof. We prove the statement for 1g. The statement for 1 p is similar.

To start with we assume f € Ce 4,1(8), and f > 0 with [ f dugs = 1. As already
mentioned, d Hg comprises finitely many increasing curves in M and so Hg satisfies
(O1’) and (02) with Py = 3 and C; depending only on the uniform angle between the
stable cone and d Hg, which is strictly positive due to (H1). Since 1 g, is notin C LM,
we cannot apply Lemma 8.15(b) directly; we will use a mollification to bypass this
problem.

Let p : R2 — R? be a nonnegative, C* function supported in the unit disk with
f p = 1, and define p.(-) = 8_2,0(~ e~1). For ¢ > 0, define the mollification,

Ye(x) = /ﬂH@(y),Os(x —ydy xeM.

Wehave |y |c, < 1and|¢)|co < Ce~!.Notethat, = 1y, outside an e-neighborhood
of d Hg (including &p). Letting 1;5 denote a C! function with |/, |[co <1, whichis 1 on

N (3dHg) and 0 on M \ Ny (dHe), we have |15, — V| < ¥. Due to (02), for any
W € W? such that W N N (0 Hg) # ¥, using first the fact that f > 0 and then applying
cone condition (4.7),

/ |1hy — lﬂslﬁ fdmy </ lﬂsﬁsfdmw</ z'_éfdmw
WNN2: (0Hgp)
<2 aAst=acle ) LE Il (8.21)

where we have used the fact that W N N, (0 Hg) has at most 2 connected components
of length 2C;e. Then integrating over M and disintegrating jig; as in the proof of
Lemma 7.1, we obtain,

£yf Ly f 2% £l
|1 ¢ Vel — dlsgp < / I/fs ——— dlgs < Cel—=2———
/ o™ Msrp (E ) Msrp (L 5 MSRB(ESf)
(8.22)

By Remark 7.2, [igp (L f)>C~ l|||E fll—, so the bound is uniform in n. Since 1//5

C(M) the bound carries over to i (ws), and since & is anonnegative measure, to /(1 y, —
Ye). Thus foreachn > Oand ¢ > 0,

/ L L% f ditses = / (L — Ve) L% f ditsen + ( / Ve L f dpsen — v”e(fm(wa))

U)W — L) +V" (AL p,)
= O(eNV" () + O(1Wel 1V ")) +V" (A (L) |
(8.23)
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where we have applied (8.22) to the first and third terms and Theorem 8.16(b) and
Lemma 8.15(b) to the second term. Since |{g|c1 < e, choosing ¢ = pn/ @+l yields
the required estimate for f € C. a.1.(8).

To conclude, note that by Lemma 7.6, there exists C, > 0 such that, if f € C 1 (M),
then, for each A > Gy || fllc1, A + f € C¢ 4,1(8). Hence, by the linearity of the integral,
£(f) as defined in (8.17) can be extended to f € c! by £(f) = £(A+ f) —£(X), and the
limsup is in fact a limit since since the limit exists for A + f, A € C. 4.1(8) (see (8.18)
and following).

Now take f € C! with f fdpsgs = land A > G|l fllc1 as above. Then, necessarily
A+ f >0, and so recalling (8.20), we have

1+A

o A o 1 o
A
Pis (xy € ©) = /M 11,,(_)5’;(—1:{) =1 ), Lpo L1+ Ton /M Luo L5 f

A 1
= mpl(xn € 0)+ m]?/(xn € 0).

Hence by (8.23),
Pr(x, € ®) = (1 +X)P%{»(xn € @) — AP (x, € ©)

= V(L) (A1) + () — V" h(Lgg )LL) + 2O (v 9 71"
= v"h(La) () + 1 f ler O(" 9 #1").

8.5. Random Lorentz gas (lazy gates). Consider a Lorentz gas as described in [AL,
Section 2]. That is, we have a lattice of cells of size one with circular obstacles of fixed
radius r at their corners and a random obstacle B(z) of fixed radius p and center in a set
O at their interior.’! The central obstacle is small enough not to intersect with the other
obstacles but large enough to prevent trajectories from crossing the cell without colliding
with an obstacle. We call the openings between different cells gates, see Fig. 6b, and
require that no trajectory can cross two gates without making at least one collision with
the obstacles. Thus we fix r and p satisfying®? the following conditions:

§r<%, and 1—2r<p<‘/75—r. (8.24)

=

With r and p fixed, the set of possible configurations of the central obstacle are described
bywe Q= OZ . In order to ensure that particles cannot cross directly from Ry to R3
or from Iéz to I€’4 without colliding with an obstacle, and to ensure a minimum distance
between scatterers, we fix &, > 0 and require the center ¢ = (c1, ¢3) of the random
obstacle B,,, w € €2, (the central obstacle Cs in Figure 6b) to satisfy,

l—(r+p—ey) <cr,ca <r+p—=e. (8.25)

31 The assumption that all obstacles are circular is not essential and can be relaxed by requiring that the
obstacles at the corners are symmetric with respect to reflections as described in Sect. 8.4.
32 Finite horizon requires r > 1 yet our added condition that a particle cannot cross diagonally from,

1+v2°
1

say, l@l to 1%2 without making a collision requires further that r > 3.
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OS24
@Q@
QQQ

=(1,0)
(a) (b)

Fig. 6. a Configuration of random obstacles B, (z). b Poincaré section C; and gates 1%,-

Note that (8.24) and (8.25) imply that all possible positions of the central scatterer B,
result in a billiard table with Ty, > 74 := min{e,, 1 — 2r} > 0.

On 2 the space of translations &., z € 72, acts naturally as [£, ()], = @,+, see Fig.
6a. We assume that the obstacle configurations are described by a measure [P, which is
ergodic with respect to the translations.

Exactly as in the Sect. 8.4, we assume that the gates are reflecting and become
transparent only after N collisions with the obstacles. Thus when the particle enters a
cell it will stay in that cell for at least N collisions with the obstacles, hence the lazy
adjective.

As described in Sect. 8.4, when the particle reflects against a gate one can reflect
the table three times and see the flow (for the times at which the gates are closed)
as a flow in a finite horizon Sinai billiard on the two torus. Note that the Poincaré
section M = Uf: 1Ci X [—%, %] in each cell is exactly the same for each w and z since
the arclength of the boundary is always the same, while the Poincaré map 7 changes
depending on the position of the central obstacle, see Fig. 6b. Let us call F(z,) the
collection of the different resulting billiard maps corresponding to tables that maintain
a minimum distance t, > 0 between obstacles, as required by (8.24) and (8.25). (Note
that the parameters K, and E, of Sect. 8.3 are fixed in this class once r and p are fixed.)
The only difference with Sect. 8.4, as far as the dynamics in a cell is concerned, consists
in the fact that we have to be more specific about which cell the particle enters, as now
exiting from one cell means entering into another.

Recalling the notation of Sect. 8.4, if we call R(z) the cell at the position z € 72,
then the gates R are subsets of d R(z). We denote by R(z) the lifted cell (viewed as a
subset of T2) after reflecting R(z) three times, and by (M T. z) the corresponding billiard
map. As before, the projection 7 : M —> M satisfies o T = T o . Then the hole
H () can be written as H(z) = Ul 1H (z), where n(H (z)) =: H;(z) are the points

x € M such that O(T'x) N9R(z) € R 33 Due to our Assumption (8.24), this point
of intersection is unique for each x since consecutive collisions with d R cannot occur.
Then H(z) = n(H (2)) = Ul 1 Hi(2).

33 The hole depends on the trajectory of x, which is different in different cells and hence depends on z,
while the gates R; are independent of z.
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As discussed in Sect. 8.4, the holes are neither of Type I nor of Type II, yet they satisfy
(O1’) and (02) with Py = 3 and C; depending only on the uniform angle between the
stable cone for the induced billiard map and the horizontal and vertical directions.

Yet for our dynamics, when a particle changes cell at the N'th collision, it is because
after N — 1 collisions, that particle is in G;(z) := TZ_IHi (z), and in fact it will never
reach H;(z). Unfortunately, the geometry of G(z) := U?: 1Gi(z) is not convenient for
our machinery since d G(z) may contain stable curves, yet we will be able reconcile this
difficulty after defining the dynamics precisely as follows.

The phase space is Z> x M. For x € M, denote by p(x) the position of x in R(z)
and by 6 (x) the angle of its velocity with respect to the positive horizontal axis in R(z).
We define

0 =: wo ifx € G(z)
el =: Wi ifx € G1(2)
w(z,x) =13 e =: wy if x € Gy(2)

—e] =: W3 ifx € G3(Z)
—e) =: W4 if x € G4(2).

Alsowe set 2 = {wo, ..., wa}.Ifx € G;(z),thenwecallg(x) = (¢,0) € Ié,- x [0, 27)
the point g such thatg = O(x)N Iéi and 6 = 0(x), i.e. without reflection at I%,-. We then
consider g as a point in the cell z+ w(z, x) = z+w; and call T ; (x) the post-collisional
velocity at the next collision with an obstacle under the flow starting at g. Note that in
the cell R(z + w;), q € ﬁ;, where i = i + 2 (mod 4*%).3* Thus if @7 denotes the flow in
R(z), then with this notation, G;(z) is the projection on M of Iéi under the inverse flow

@, while H;(z + w(z, x)) is the projection on M of Ié; under the forward flow CI>f+wi.
Thus,

H;(z+wi) =T-Gi(2) = Lo, 0T, = Litcowy) - (8.26)

which is a relation we shall use to control the action of the relevant transfer operators
below.

Differing slightly from the previous section, here it is convenient to set S, = TZN -1
and define

Fle.x) = (z, 8z 0 Tz (x)) =: (2, Sz(x)) _ ifx ¢ G(2)

(Z+w(z, x), Sgrwzx) 0 I7,i(p) = (z+w(z,x), S (x))  ifx € G;(2).
We set (z,,, x,) = F"(z, x) and we call n the macroscopic time, which corresponds to
Nn collisions with the obstacles. The above corresponds to a dynamics in which when
the particle enters a cell, it is trapped in the cell for N collisions with the obstacles; then
the gates open and until the next collision the particle can change cells, after which it is
trapped again for N collisions and so on.

‘We want to compute the probability that a particle visits the sets G, (20), - - - Gk,_; (Zn—1),
in this order, where we have set Go(z) = M \ U?:] G (z). Similarly, we define Hy(z) =
M\ U?z  Hi(z). This itinerary corresponds to a particle that at time i changes its po-
sition in the lattice by wy,. Following the notation of [AL], we call P, the probability

34 By (mod 4*) we mean cyclic addition on 1, 2, 3, 4 rather than 0, 1, 2, 3.
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distribution in the path space 20" conditioned on the central obstacles being in the po-
sitions specified by w € Q. Hence, if the particle starts from the cell zp = (0, 0) with x
distributed according to a probability measure fd (s With density f € C. 4.1(8), then

we have?® n = ZZ;(]) wy; and, for each obstacle distribution @ € €2,

Folzo, 215+ 20) = /M JOOLGy @) X) Lgy, (11)(§0(X)) e
16, ) Sy © 0 0 S0 (X)) dtea(x)

= / in,,,l(anl) T EDGkO o) J d1hswn (8.27)
M

where /5(;,(]_ @) = Ey;ll ‘Csz-,kj L6y, ) and we have set T; o := T;. See [AL] for more
details. We will prove below that if N is sufficiently large, then Theorem 8.9 applies to
each operator L, . This suffices to obtain an exponential loss of memory property (the

analogue of the result obtained for piecewise expanding maps in [AL, Theorem 6.1]),
that is property Exp in [AL, Section 4.1]. This is the content of the following theorem.

Theorem 8.20. There exist C, > 0, v € (0, 1) and N € N such that for P-a.e. w € ,
if x is distributed according to f € Ce a.p(8), with f > 0 and fod/,LSRB =1,
z0 = (0, 0), and the gates open only once every N collisions, then for alln > m > 0
and all w € Y,

Po(wi, | ko - - wi,_ ) — Pe, (W, | Wy, -« Wi, )| < Co" ™. (8.28)

Proof. Note that for m > 0, &,  sends the cell at z,, to (0,0). Thus according to Eq.
(8.27), for x distributed according to f € C¢, 4,1, (8) with zg = (0, 0), we have

P&mw(wkm [ wk'l) = / ["'Gkn (zn) =" ["'ka (Zm)f d/“l’SRB .
M

Asremarked earlier, the sets G; (z) do not satisfy assumption (O2) so that Proposition 8.7
does not apply directly. Yet, it follows from (8.26) that for g € C. a,1(3),

A _ pN-1 _ paN—1
Loy eps =Ly L1 Loy e)8) = L, (L @ L14,8)
where, as before, k j = kj +2 (mod 4*). Then, just as in the proof of Proposition 8.7, it
may be the case that ETZJ-. 8 isnotin C. 4,1(8). Yet, it is immediate from our estimates

in Sect. 5 that erj'kjg € C 4 31(8) for any billiard map Tz x; € F(z,) for some

constants ¢’, A’ depending only on F(z,). As in the proof of Proposition 8.7, we may
choose constants ¢’ > ¢/, A” > A" and L” > 3L and § > 0 sufficiently small to
satisfy the hypotheses of Theorem 6.12. Then since the sets H;(z) do satisfy (O1")
and (02) with Pp = 3 and C; depending only on the angle between the stable cone
and the vertical and horizontal directions, which has a uniform minimum in the family
F(t4), there exists x < 1 and N sufficiently large as in Proposition 8.7 so that3®

35 Since zp = (0, 0), it is equivalent to specify z1, ... zp Or W, ... W
wkj =Zj+l —Z%j-

36 Here in fact our operators are of the form £" 1 g while in Proposition 8.7 they have the form £, 1 yc
for some set H. Yet, this is immaterial since the boundaries of H and H¢ in M are the same so that (O1’) and
(02), and in particular Lemma 8.6, apply equally well to both sets.

1 Since wy; can be recovered as
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[Eyfll Lp, (zj+1)]cc/,A/,3L(8) C Cyexa.xL(8), and both x and N are independent of
2jut Lk

Zj+1 and k ] This implies in particular that

EQG[,(Z)CC,A,L((S) C Cyexa,x(8) foreachiandall z € 77

Now the assumption that the gates only open every N collisions implies that for every
w € €2, every path is the result of an N-admissible sequence.
As in the proof of Theorem 7.3, using the fact that pts(-) is homogeneous and
order preserving on C. 4,1(8) and that pes(Ln f) = pae(f) = 1, where L., f =
éka—l(Zm—l)méGkO(ZO)f

T Lc o LG e f € C¢ 4,1(8), we estimate as in (7.6) and (7.7),
M km —1&m—1 ko 0

/M Lonn,l (Zn—1) "~ Eaka () (f — L f)disrs

= Cﬂ”_m min {/M ‘CDGknfl (zp—-1) """ ﬁonm (Zm)f’ /M ‘CGG/Cn,] (zZp—1) " ‘Conm (Zm)‘c_mf} ’
(8.29)

for some ¢ < 1 depending on the diameter of Cy¢ ya,,2(6) in Cc 4,1 (8).
Finally, the left hand side of (8.28) reads

JuLaoy e Loy S Loy e Loy enf ’
Ju L, s Loyen S  uLen e o Lopenf
Ju L, e Lowmenlnt = [y Loy, v La, <zm>f’
Jut £6x, 5 nn) L n f

JuL6i, @ Lomenf  JuLey @ Lo @ ‘

<

Ju £, G, ) Lo lnf  Jy Loy, e, ) Low @ f
< cynTm 4 Cﬁn—m—l ,

Ju L6y, o)Ly, @8

where we have applied (8.29) twice and used the fact that <1

fM E'Gkn72 (an72)mf'ka m)8
forany g € Cc a.1(9). |

In particular, Theorem 8.20, together with®” [AL, Theorem 6.4], implies that lim,,_, o
%Zn = 0 for P, almost all w, that is, the walker has, IP,-almost-surely, no drift. See [AL,
Section 6] for details.*® This latter fact could be deduced also from the ergodicity result
in [Le06, Theorem 5.4]; however, Theorem 8.20 is much stronger (indeed, by [AL,
Theorem 6.4], it implies [Le06, Theorem 5.4]) since it proves some form of memory
loss that is certainly not implied by ergodicity alone. It is therefore sensible to expect

37 Remark that [AL, Theorem 6.4] requires usrp (G;(2)) to be the same for each i and z, independently of
. This is precisely the case here since G;(z) is defined as the projection of R; under the inverse flow @,
and Leb(]i’i x [0, 27r)) in the phase space of the flow is independent of i, while psgp is the projection onto M
of Lebesgue measure, which is invariant under the flow.

38 The arguments in [AL, Section 6] are developed for expanding maps, but the relevant parts apply verbatim
to the present context.
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that more information on the random walk will follow from Theorem 8.20, although this
will require further work.

We conclude with a corollary of Theorem 8.20 which implies the same exponential
loss of memory for particles distributed according to two different initial distributions.
For f € C¢ 4,0.(8), let P, ¢(-) denote the probability in the path space 2N conditioned
on the central obstacles being in position w € 2 and with x initially distributed according

to fdtss-

Corollary 8.21. There exist C > 0 and v € (0, 1) such that for all f,g € Ce a,1(5)
with [\, f = [,,8 = 1 and P-a.e. w € Q, if zo0 = (0,0), then for all n > 0 and all
w e WY,

P, (W, | ko - - - Wi,_)) — Poo g (Wi, | Wi -+ Wk, )| < CO".

Proof. The proof is the same as that of Theorem 8.20 since (8.29) holds as well with
L, f replaced by g. O
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