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Abstract: We construct Birkhoff cones for dispersing billiards, which are contracted
by the action of the transfer operator. This construction permits the study of statistical
properties not only of regular dispersing billiards but also of sequential billiards (the
billiard changes at each collision in a prescribed manner), open billiards (the dynamics
exits some region or dies when hitting some obstacle) and many other examples. In
particular, we include applications to chaotic scattering and the random Lorentz gas.

1. Introduction

Billiards are a ubiquitous source of models in physics, in particular in Statistical Me-
chanics. The study of the ergodic properties of billiards is of paramount importance for
such applications and also a source of innovative ideas in Ergodic Theory. In particular,
starting with at least [Kry], it has become clear that a quantitive estimate of the speed of
convergence to equilibrium is pivotal for this research program. The first strong result
of this type dates back to Bunimovich et al. [BSC] in 1990, but it relies on a Markov-
partition-like technology that is not very well suited to producing optimal results. The
next breakthrough is due to Young [Y98,Y99] who put forward two techniques, towers
and coupling, well suited to study the decay of correlations for a large class of sys-
tems, billiards included. The idea of coupling was subsequently refined by Dolgopyat
[Do04a,Do04b,Do05] who introduced the notion of standard pairs, which have proved
a formidable tool to study the statistical properties of dynamical systems in general and
billiards in particular [C1,C2,CD,CZ]. See [CM, Chapter 7] for a detailed exposition of
these ideas and related references.
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In the meantime another powerful idea has appeared, following the seminal work
of Ruelle [RS,Ru76] and Lasota–Yorke [LY], to study the spectral properties of the
associated transfer operator acting on spaces of functions adapted to the dynamics. After
some preliminary attempts [Fr86,Ru96,Ki99], the functional approach for hyperbolic
systems was launched by the seminal paper [BKL], which was quickly followed and
refined by a series of authors, including [B1,GL,BT,GL2]. Such an approach, when
applicable, has provided the strongest results so far, see [B2] for a recent review. In
particular, building on a preliminary result by Demers and Liverani [DL], it has been
applied to billiards by Demers and collaborators [DZ1,DZ2,DZ3,D2,BD1,BD2]. This
has led to manifold results, notably the proof of exponential decay of correlations for
certain billiard flows [BDL].

Yet, lately there has been a growing interest in non-stationary systems, when the dy-
namical system changes with time. Since most systems of interest are not isolated, not
even in first approximation, the possibility of a change to the system due to external fac-
tors clearly has physical relevance. Another important scenario in which non-stationarity
appears is in dynamical systems in randommedia, e.g. [AL]. The functional approach as
such seems not to be well suited to treat these situations since it is based on the study of
an operator via spectral theory. In the non-stationary case a single operator is substituted
by a product of different operators and spectral theory does not apply.

There exist several approaches that can be used to overcome this problem, notably:

1. Consider random systems; in this case, especially in the annealed case, it is possible
to recover an averaged transfer operator to which the theory applies. More recently,
the idea has emerged to study quenched systems via infinite dimensional Oseledets
theory, see e.g. [DFGV1,DFGV2] and references therein;

2. Consider only slowly changing systems that can be treated using the perturbation
theory in [KL99,GL]. For example, see [DS], and references therein, for some recent
work in this direction;

3. Use the technology of standard pairs, which has the advantage of being very flexible
and applicable to the non-stationary case [SYZ]. Note that the standard pair tech-
nology and the above perturbation ideas can be profitably combined together, see
[DeL1,DeL2,DLPV];

4. Use the cone and Hilbert metric technology introduced in [Bir,L95a,L95b,LM],
which has also been extended to the random setting [AL,AFGV].

The first two approaches, although effective, impose severe limitations on the class of
nonstationary systems that can be studied. The second two approaches are more general
and seem more or less equivalent. However, coupling arguments are often cumbersome
to write in detail and usually provide weaker quantitative estimates compared to the cone
method.

Therefore, in the present article we develop the cone method and demonstrate that it
can be successfully applied to billiards. Indeed, we introduce a relatively simple cone
that is contracted by a large class of billiards. This implies that one can easily prove a
loss of memory result for sequences of billiard maps. To show that the previous results
have concrete applications we devote one third of this paper to developing applications
to several physically relevant classes of models.

We emphasize that the present paper does not exhaust the possible applications of
the present ideas. To have a more complete theory one should consider, to mention just
a few, billiards with corner points, billiards with electric or magnetic fields, billiards
with more general reflection laws, measures different from the SRB measure (that is
transfer operators with generalized potentials as in [BD1,BD2]), etc. We believe that
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most of these cases can be treated by small modifications of the present theory; however,
the precise implementation does require a non-negligible amount of work and hence
exceeds the scope of this presentation, which aims only at introducing the basic ideas
and producing a viable cone for dispersing billiards.

The plan of the paper is as follows. In Sect. 2 we introduce the class of billiards from
which we will draw our sequential dynamics and summarize our main analytical results
regarding cone contraction. In Sect. 3 we present the uniform properties of hyperbolicity
and singularity sets enjoyed by our class of maps, listed as (H1)–(H5); we also prove
a Growth Lemma for our sequences of maps and introduce one of our main characters,
the transfer operator. In Sect. 4 we introduce our protagonist, the cone (see Sect. 4.3).
Section 5 is devoted to showing that the cone so defined is invariant under the action of
the transfer operators of the billiards in question. In Sect. 6 we show that in fact the cone
is eventually strictly invariant (the image has finite diameter in the associated Hilbert
metric) thanks to some mixing properties of the dynamics on a finite scale. The strict
cone contraction implies exponential mixing for a very large class of observables and
densities as is explained in Sect. 7. Finally, Sect. 8 contains the announced applications,
first to sequential systems with holes (open systems), then to chaotic scattering and
finally to the random Lorentz gas.

2. Setting and Summary of Main Results

Since we are interested in studying sequential billiards, below we define a set of billiard
tables that will have uniform hyperbolicity constants, following [DZ2]. Other classes
of billiards are also studied in [DZ2], such as infinite horizon billiards, billiards under
small external forces and some types of nonelastic reflections. While such classes of
billiards are amenable to the present technique, we do not treat the most general case
here since the greater number of technicalities would obscure the main ideas we are
trying to present.

2.1. Families of billiard tables with uniform properties. We first choose K ∈ N and
numbers �i > 0, i = 1, . . . K . Let M = ∪K

i=1 Ii × [−π
2 ,

π
2 ], where for each i , Ii =

[0, �i ]/ ∼ is an interval of length �i with endpoints identified. M will be the phase space
common to our collection of billiard maps.

Given K and {�i }Ki=1, we use the notation Q = Q({Bi }Ki=1) to denote the billiard
tableT2 \(∪K

i=1Bi ), where each Bi is a closed, convex set whose boundary has arclength
�i . We assume that the scatterers Bi are pairwise disjoint and that each ∂Bi is a C3 curve
with strictly positive curvature.

The billiard flow is defined by the motion of a point particle traveling at unit speed
in Q := T

2 \ (∪i Bi ) and reflecting elastically at collisions. The associated billiard map
T is the discrete-time collision map which maps a point on ∂Q to its next collision.
Parameterizing ∂Q according to an arclength parameter r (oriented clockwise on each
obstacle Bi ) and denoting by ϕ the angle made by the post-collision velocity vector
and the outward pointing normal to the boundary yields the canonical coordinates for
the phase space M of the billiard map. In these coordinates, M = ∪i Ii × [−π

2 ,
π
2 ], as

defined previously.
For x = (r, ϕ) ∈ M , let τ(x) denote the time until the next collision for x under

the flow. We assume that τ is bounded on M , i.e. the billiard has finite horizon. Thus
since the scatterers are disjoint, there exist constants τmin(Q), τmax(Q) > 0 depending
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on the configuration Q such that τmin(Q) ≤ τ(x) ≤ τmax(Q) < ∞ for all x ∈ M .
Moreover, by assumption there existsKmin(Q),Kmax(Q) > 0 such that ifK(r) denotes
the curvature of the boundary at coordinate r , then Kmin(Q) ≤ K(r) ≤ Kmax(Q).
Finally, let Emax(Q) denote themaximum value of theC3 norm of the curves comprising
∂Q when parametrized according to arclength.

Now fix τ∗,K∗, E∗ ∈ R
+, and let Q(τ∗,K∗, E∗) denote the collection of all billiard

tables Q({Bi }Ki=1) such that

τ∗ ≤ τmin(Q) ≤ τmax(Q) ≤ τ−1∗ , K∗ ≤ Kmin(Q) ≤ Kmax(Q) ≤ K−1∗ , and K∗ ≤ Emax(Q) ≤ E∗.

To each table in Q ∈ Q(τ∗,K∗, E∗) corresponds a billiard flow and hence a billiard map
T = T (Q) and associated collision times. Let F(τ∗,K∗, E∗) denote the collection of
billiard maps induced by configurations in Q(τ∗,K∗, E∗), i.e.,

F(τ∗,K∗, E∗) = {T = T (Q) : Q ∈ Q(τ∗,K∗, E∗)}, .
Thus each T ∈ F(τ∗,K∗, E∗) is identified with1 a table Q ∈ Q(τ∗,K∗, E∗), which we
denote by Q(T ). Note that all T ∈ F(τ∗,K∗, E∗) have the same phase space M since
we have fixed K and the arclengths {�i }Ki=1.

It is a standard fact that all T ∈ F(τ∗,K∗, E∗) preserve the same smooth invariant
probability measure, dμSRB = c cosϕ dr dϕ, where c = 1

2|∂Q| = 1
2
∑K

i=1 �i
is the normal-

izing constant [CM]. In addition, all T ∈ F(τ∗,K∗, E∗) are mixing with respect to μSRB

and so are topologically mixing [S] (see also, [CM, Section 6.7]).
It is proved2 in [DZ2, Theorem 2.7] that all T ∈ F(τ∗,K∗, E∗) satisfy properties

(H1)–(H5) of that paper with uniform constants depending only on τ∗,K∗ and E∗. We
recall the relevant properties in Sect. 3 that we shall use throughout the paper and label
them (H1)–(H5).

Remark 2.1. The assumption that all scatterers have the same arclength is made for
convenience so that there is a single cone C on which all our operators LT , T ∈ F ,
act. This can be relaxed slightly once the hyperbolicity constant � := 1 + 2K∗τ∗ has
been introduced in (H1) by allowing the arclength of the boundary of each scatterer
to change by no more than ε1, where ε1 < �−1

�+1 , since then rescaling the arclength
parametrization of ∂Bi to be again [0, �i ] yields a map with similar properties (H1)–
(H5), but with slightly weakened hyperbolicity constant �̃ = � 1−ε1

1+ε1
> 1 (and θ0 from

(H3) is weakened accordingly.)
To change the arclengths drastically would force us to consider a sequence of cones

Cn on a sequence of phase spaces Mn . This would require further suitable assumptions
on the maps Tn : Mn → Mn+1 in order to ensure hyperbolicity, and such assumptions
could be tailored to specific applications. We do not pursue this generality here, but
remark that for example, it would be possible to formulate such a generalization for the
random Lorentz gas with gates described in Sect. 8.5, in which the central scatterer in
each cell is allowed to change arclength and the resulting billiard map between cells
would still satisfy (H1)–(H5) (albeit the normalization in (H5) would vary).

1 We do not claim that each such T is unique. It may be that T (Q) = T (Q′) pointwise (consider a
90◦ rotation of a given configuration Q), yet for our purposes they will be considered distinct elements of
F(τ∗,K∗, E∗).

2 The abstract set-up in [DZ2] also allows billiard tables with infinite horizon and those subjected to external
forces, but we are not concerned with the most general case here.
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Next, we define a notion of distance in Q(τ∗,K∗, E∗) as follows. Each table Q
comprises K obstacles Bi . Each ∂Bi can be parametrized according to arclength by a
function ui : Ii → R

2 (unfolding T
2). Since two arclength parametrizations of ∂Bi

can differ only in their starting point, the collection ui,θ , θ ∈ [0, �i ), denotes the set
of parametrizations associated with ∂Bi . Similarly, for a configuration Q̃, denote the
parametrizations of obstacles by ũi,θ , θ ∈ [0, �̃i ). Let
K denote the set of permutations
π on {1, . . . K } which satisfy �̃π(i) = �i . Then define

d(Q, Q̃) = min
π∈
K

min
θ∈[0,�i )

K∑

i=1
|ui,0 − ũπ(i),θ |C2(Ii ,R2) . (2.1)

Fix Q0 ∈ Q(τ∗,K∗, E∗) and choose κ ≤ 1
2 min{τ∗,K∗}. Let Q(Q0, E∗; κ) denote

the set of billiard tables Q with3 d(Q, Q0) < κ and Emax(Q) ≤ E∗, τmax ≤ 2/τ∗.
Let F(Q0, E∗; κ) denote the corresponding set of billiard maps. The following result is
[DZ2, Theorem 2.8 and Section 6.2].

Proposition 2.2. Let Q0 ∈ Q(τ∗,K∗, E∗). For all κ ≤ 1
2 min{τ∗,K∗}, we have Q(Q0,

E∗; κ) ⊂ Q( τ∗2 ,
K∗
2 , E∗). Moreover, there exists C > 0 such that for any T1, T2 ∈

F(Q0, E∗; κ),
(a) dH (ST1−1,ST1−1) ≤ Cκ1/2, where dH is the Hausdorff metric and ST−1 is the singularity

set for T−1 defined in (H1);
(b) for x /∈ NCκ1/2(S

T1−1,ST2−1), d(T
−1
1 (x), T−12 (y)) ≤ Cκ1/2, where Nε(·) denotes the

ε-neighborhood of a set in M in the Euclidean metric.

We use an (uncountable) index set I(τ∗,K∗, E∗), identifying ι ∈ I(τ∗,K∗, E∗)with
a map Tι ∈ F(τ∗,K∗, E∗). Choosing a sequence (ι j ) j∈N ⊂ I(τ∗,K∗, E∗), we will be
interested in the dynamics of

Tn := Tιn ◦ · · · ◦ Tι2 ◦ Tι1 , n ∈ N . (2.2)

If we choose ι j = ι for each j , then Tn = T n
ι , the iterates of a single map. For conve-

nience, denote T0 = Id.

2.2. Main analytical results: Cone contraction and loss of memory. As announced in
the introduction, the main analytical tool developed in this paper is the construction of
a convex cone of functions Cc,A,L(δ), depending on parameters δ > 0, c, A, L > 1, as
defined in Sect. 4.3, that is contracted under the sequential action of the transfer operators
L f = f ◦ T−1, defined in Sect. 3.3 for T ∈ F(τ∗,K∗, E∗). For a sequence of maps Tn
as in (2.2), define Ln f = f ◦ T−1n .

In order to state our main result on cone contraction, we define open neighbor-
hoods in F(τ∗,K∗, E∗) using the distance d between tables defined in (2.1). Let T ∈
F(τ∗,K∗, E∗), and for 0 < κ < 1

2 min{τ∗,K∗}, define
F(T, κ) = {T̃ ∈ F(τ∗,K∗, E∗) : d(Q(T̃ ), Q(T )) < κ} . (2.3)

Remark that sinceF(T, κ) ⊂ F(Q(T ), E∗; κ), the conclusions of Proposition 2.2 apply
as well to maps in F(T, κ). We will denote the index set corresponding to F(T, κ) by
I(T, κ) ⊂ I(τ∗,K∗, E∗). Thus ι ∈ I(T, κ) if and only if Tι ∈ F(T, κ).

3 Indeed, the distance d allows configurations to move from finite to infinite horizon (see [DZ2, Sec-
tion 6.2]), but we will not need that here as we will restrict ourselves to finite horizon configurations.
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Theorem 2.3. Suppose c, A and L satisfy the conditions of Sect. 5.3, and that δ > 0
satisfies (6.7) and (6.18). Let NF := N (δ)− + k∗n∗ be from Theorem 6.12 and let κ > 0
be from Lemma 6.6(b).

(a) There exists χ ∈ (0, 1) such that if n ≥ NF , T ∈ F(τ∗,K∗, E∗) and {ι j }nj=1 ⊂
I(T, κ), then LnCc,A,L(δ) ⊂ Cχc,χ A,χL(δ).

(b) For any χ ∈
(
max{ 12 , 1

L ,
1√
A−1 }, 1

)
, the cone Cχc,χ A,χL(δ) has diameter at most

log

(
(1 + χ)2

(1− χ)2
χL

)

<∞

in the Hilbert metric associated to Cc,A,L(δ) (see (4.1) for a precise definition),
provided δ > 0 is chosen sufficiently small to satisfy (6.21).

The first statement of this theorem is proved in two steps: first, Proposition 5.1 shows
that the parameters c and A contract due to the uniform hyperbolicity properties (H1)–
(H5) of the maps inF(τ∗,K∗, E∗), subject to the constraints listed in Sect. 5.3 (all that is
needed is {ι j }nj=1 ⊂ I(τ∗,K∗, E∗), and not the stronger assumption {ι j }nj=1 ⊂ I(T, κ));
second, Theorem 6.12 proves the contraction of L using the uniform mixing property of
maps T̃ ∈ F(T, κ) as expressed by Lemma 6.6. The second statement of Theorem 2.3
is proved by Proposition 6.13.

From this theorem follow our results on exponential loss of memory for sequential
systems of billiard maps. In the case that Tι j = T for each j , these results read as
exponential decay of correlations and convergence to equilibrium. Since our maps T ∈
F(τ∗,K∗, E∗) all preserve the measure μSRB, we also obtain a type of convergence to
equilibrium in the sequential case (see Theorem 2.8).

In order to state our result for the sequential system, we define the notion of an admis-
sible sequence ofmaps fromF(τ∗,K∗, E∗). As before, let κ > 0 be fromLemma 6.6(b).

Definition 2.4. For N ∈ N,we call a sequence (ι j ) j≥1, ι j ∈ I(τ∗,K∗, E∗), N-admissible
if there exist sequences (Tk)k≥1 ⊂ F(τ∗,K∗, E∗) and (Nk)k≥1 with Nk ≥ N , such that
Tι j ∈ F(Tk, κ) for all k ≥ 1 and j ∈ [1 +∑k−1

i=1 Ni ,
∑k

i=1 Ni ].
Thus an N -admissible sequence is a sequence which remains in a κ neighborhood of
a fixed map Tk for Nk ≥ N iterates at a time, but which may undergo a large change
between such blocks.

Remark 2.5. One can generalize the definition of N -admissible sequence to include short
blocks where maps are not required to be close to a fixed map. As long as these short
blocks can be grouped to contain at least n0 iterates, where n0 is from Proposition 5.1,
and they are interspersed regularly with long blocks of length at least N = NF then one
can still set up a regular contraction using Theorem 6.12 on the long blocks.

We first state our results regarding loss of memory, both with respect to μSRB and
leafwise: the difference of integrals along individual stable curves converge to 0 expo-
nentially fast along any NF -admissible sequence. LetWs(δ) denote the set of homoge-
neous cone stable curves Ws defined in Sect. 3.1, having length between δ and 2δ. We
denote by μSRB( f ) =

´
M f dμSRB and by |W | the (Euclidean) length of a stable curveW

in M .
Also, we denote the average value of ψ on W by

ffl
W ψ dmW = 1

|W |
´
W ψ dmW ,

where mW denotes the arclength measure on W induced by the Euclidean metric in M .
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In Lemma 7.6, we prove that our cone Cc,A,L(δ) contains translations of piecewise
Hölder continuous functions, as long as the discontinuities are transverse to the stable
cone defined in (H1). We make this precise as follows.

Definition 2.6. We call a countable (mod 0) partition P = {Pi }i of M regular if each
Pi is an open, simply connected set, and there exist constants K ,CP > 0 such that for
all W ∈ Ws , W \ ∂P comprises at most K connected components and for any ε > 0,
mW (Nε(∂P)) ≤ KCPε, where Nε(A) denotes the ε-neighborhood of a set A in M .

For t > 0, denote by Ct (P) the set of functions on M that are Hölder continuous on
each element of P and such that

| f |Ct (P) = sup
P∈P

| f |Ct (P) <∞ .

We recall again NF = N (δ)− + k∗n∗ from Theorem 6.12.

Theorem 2.7. Let P be a regular partition of M and let4 t ≥ γ . There exist C > 0 and
ϑ < 1 such that for all NF -admissible sequences (ι j ) j , all n ≥ 0, and all f, g ∈ Ct (P)

with μSRB( f ) = μSRB(g):

(a) For all W ∈Ws(δ) and all ψ ∈ C1(W ), we have
∣
∣
∣
∣

 

W
Ln f ψ dmW −

 

W
Lngψ dmW

∣
∣
∣
∣ ≤ Cϑn |ψ |C1(W ) max{‖ f ‖Ct (P), ‖g‖Ct (P)} ;

(b) For all ψ ∈ C1(M),
∣
∣
∣
∣

ˆ

M
Ln f ψ dμSRB −

ˆ

M
Lngψ dμSRB

∣
∣
∣
∣ ≤ Cϑn|ψ |C1(M) max{‖ f ‖Ct (P), ‖g‖Ct (P)} .

We remark that the regularity of ψ ∈ C1(M) can be relaxed to ψ ∈ Cς (M) for any
ς > 0 by a standard approximation argument, but at the expense of obtaining a weaker
rate ϑ .

Since all our maps preserve the same invariant measure μSRB, we obtain additionally
an equidistribution result for stable curves as well as convergence to equilibrium along
admissible sequences.

Theorem 2.8. Under the hypotheses of Theorem 2.7, there exists C > 0 such that for
all NF -admissible sequences (ι j ) j ⊂ I(τ∗,K∗, E∗), all f, g ∈ Ct (P) with μSRB( f ) =
μSRB(g), and all n ≥ 0,

(a) For all W1,W2 ∈Ws(δ) and all ψi ∈ C1(Wi ) with
ffl
W1

ψ1 =
ffl
W2

ψ2, we have
∣
∣
∣
∣

 

W1

Ln f ψ1 dmW1 −
 

W2

Lngψ2 dmW2

∣
∣
∣
∣

≤ Cϑn (|ψ1|C1(W1)
+ |ψ2|C1(W2)

)max{‖ f ‖Ct (P), ‖g‖Ct (P)} ;
in particular, for all W ∈Ws(δ) and ψ ∈ C1(W ),
∣
∣
∣
∣

 

W
Ln f ψ dmW − μSRB( f )

 

W
ψ dmW

∣
∣
∣
∣ ≤ Cϑn |ψ |C1(W )max{‖ f ‖Ct (P), ‖g‖Ct (P)} ;

4 The parameter γ ∈ (0, 1) is from the cone condition (4.8).



848 M. F. Demers, C. Liverani

(b) for all ψ ∈ C1(M),
∣
∣
∣
∣

ˆ

M
f ψ ◦ Tn dμSRB −

ˆ

M
f dμSRB

ˆ

M
ψ dμSRB

∣
∣
∣
∣ ≤ Cϑn |ψ |C1(M) max{‖ f ‖Ct (P), ‖g‖Ct (P)} .

Theorems 2.7 and 2.8 are proved in Sect. 7, specifically in Theorems 7.3 and 7.4 and
Corollary 7.5.

Remark 2.9. Theorem 2.7 has some overlap with [SYZ], which also considers sequential
billiards in which scatterers shift slightly between collisions. Note, however, that our
definition of admissible sequence allows abrupt and large changes in the configuration
of scatterers within the familyF(τ∗,K∗, E∗) every NF iterates, compared to the slowly
changing requirement throughout [SYZ]. This may seem like merely a technical differ-
ence due to the cone technique, yet it is precisely this ability to introduce occasional
large changes in the dynamics that allows us to apply our results to the chaotic scattering
problem and random Lorentz gas described in Sect. 8.

With these convergence results in hand, we are able to provide three applications to
concrete problems of physical interest: sequential open systems in Sect. 8.3, a chaotic
scattering problem without assuming a no-eclipse condition in Sect. 8.4, and a variant
of the random Lorentz gas in Sect. 8.5.

3. Uniform Hyperbolicity, Singularities and Transfer Operators

3.1. Uniform properties for T ∈ F(τ∗,K∗, E∗). Fixing K and {�i }Ki=1, we recall some
fundamental properties of billiard maps T ∈ F(τ∗,K∗, E∗) that depend only on the
quantities τ∗,K∗ and E∗. Although many of these properties are well known, a proof of
their dependence on τ∗, K∗, E∗ can be found, for example, in [DZ2, Section 6.1].

In order to better align with the abstract framework in [DZ2], we also label our
properties (H1)–(H5), although our set-up here is simpler than in [DZ2]. We recall the
corresponding index set I(τ∗,K∗, E∗) from Sect. 2.1 and the notation Tn from (2.2).
(H1) Hyperbolicity and Singularities. The (constant) family of cones

Cs(x) = {(dr, dϕ) ∈ R
2 : −K−1∗ − τ−1∗ ≤ dϕ/dr ≤ −K∗}, for x ∈ M,

is strictly invariant, DT−1Cs(x) ⊂ Cs(T−1x), for all T ∈ F(τ∗,K∗, E∗). Moreover,
T−1 enjoys uniform expansion of vectors in the stable cone: set � = 1 + 2K∗τ∗ > 1;
then there exists C1 ∈ (0, 1] such that,

‖DT−1n (x)v‖ ≥ C1�
n‖v‖, for all v ∈ Cs(x), (3.1)

where ‖ ·‖ denotes the Euclidean norm given by dr2 +dϕ2. There is a family of unstable
cones Cu defined similarly, but with K∗ ≤ dϕ/dr ≤ K−1∗ + τ−1∗ , which is strictly
invariant under DT for all T ∈ F(τ∗,K∗, E∗).

Due to the unbounded expansion of DT near tangential collisions, we define the
standard homogeneity strips, following [BSC]. For some k0 ∈ N, to be chosen later in
(3.4), define

H±k = {(r, ϕ) ∈ M : (k + 1)−2 ≤ | ± π
2 − ϕ| ≤ k−2}, for all k ≥ k0. (3.2)

Set S0 = {(r, ϕ) ∈ M : ϕ = ±π
2 }. For n ≥ 1, the singularity set for Tn is denoted by

STn
n = ∪ni=0T−1i (S0), while the singularity set for T−1n is denoted bySTn−n = ∪ni=0Ti (S0).

On M \ STn
n , Tn is a C2 diffeomorphism onto its image.
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There exists a constant, which we still call C1 > 0, such that

C1

cosϕ(T x)
≤ ‖DT (x)v‖

‖v‖ ≤ 1

C1 cosϕ(T x)
, for x /∈ ST

1 .

In order to achieve bounded distortion, we will consider the boundaries of the
homogeneity strips as an extended singularity set for T . To this end, define SH

0 =
S0 ∪ (∪k≥k0(∂Hk ∪ ∂H−k)), and for n ≥ 1,

SH

n = ∪ni=0T−1i (SH

0 ), SH−n = ∪ni=0Ti (SH

0 ) . (3.3)

(H2) Families of Stable and Unstable Curves.We call a curve W ⊂ M a stable curve
if for each x ∈ W , the tangent vector to W at x belongs to Cs . A stable curve is called
homogeneous if it lies in one homogeneity strip or outside their union. Denote byWs the
set of homogeneous stable curves with length at most δ0 ∈ (0, 1/2) (defined by (3.4))
and with curvature at most B̄.

By [CM, Proposition 4.29], we may choose B̄ sufficiently large that T−1Ws ⊂Ws ,
up to subdividing the curves of length larger than δ0, for all T ∈ F(τ∗,K∗, E∗).

Similarly, we define an analogous set of homogeneous unstable curves byWu .
(H3) One-Step Expansion. Defining the adapted norm ‖v‖∗, v = (dr, dϕ) as in [CM,
Sect. 5.10], we have ‖DT−1(x)v‖∗ ≥ �‖v‖∗ for all v ∈ Cs(x), wherever DT−1 is
defined. For W ∈Ws , let Vi denote the maximal homogeneous components of T−1W .
Then by [CM, Lemma 5.56], there exists θ0 ∈ (�, 1), a choice of k0 for the homogeneity
strips and δ0 ∈ (0, 1/2) such that,

sup
T∈F(τ∗,K∗,E∗)

sup
W∈Ws

∑

i

|JVi T |∗ ≤ θ0 , (3.4)

where |JVi T |∗ denotes the supremumof the Jacobian of T along Vi in the adaptedmetric.
Since the stable/unstable cones are global and bounded away from one another, the

adaptedmetric can be extended so that it is uniformly equivalent to the Euclideanmetric:
There exists C0 ≥ 1 such that C−10 ‖v‖ ≤ ‖v‖∗ ≤ C0‖v‖ for all v ∈ R

2.
(H4) Distortion Bounds. Suppose W ∈ Ws and for n ≥ 1, {ι j }nj=1 ⊂ I(τ∗,K∗, E∗)
are such that TjW ∈ Ws for j = 0, . . . n. There exists Cd > 0, independent of W , n
and {ι j }nj=1, such that for all x, y ∈ W ,

| log JW Tn(x)− log JW Tn(y)| ≤ Cdd(x, y)
1/3, (3.5)

where JW Tn is the (stable) Jacobian of Tn along W and d(·, ·) denotes arclength on W
with respect to the metric dr2 + dϕ2.

Similar bounds hold for stable Jacobians lying on the same unstable curve. Suppose,
for n ≥ 1, that V1, V2 ∈ Ws are such that Tj V1, Tj V2 ∈ Ws for 0 ≤ j ≤ n, in
particular they are not cut by any singularity, and there exists a foliation of unstable
curves {�x }x∈V1 ⊂ Wu creating a one-to-one correspondence between V1 and V2 and
such that {Tn(�x )}x∈V1 ⊂ Wu creates a one-to-one correspondence between TnV1 and
TnV2. For x ∈ V1, define x̄ = �x ∩ V2. Then there exists Cd > 0, independent of n,
{ι j }nj=1, V1, V2, and x , such that,

| log JV1Tn(x)− log JV2Tn(x̄)| ≤ Cd(d(x, x̄)
1/3 + φ(x, x̄)), (3.6)

where φ(x, x̄) denotes the angle between the tangent vectors to V1 and V2 at x and
x̄ , respectively. For simplicity, we use the same symbol Cd to represent the distortion
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constants in (3.5) and (3.6). The proofs for these distortion bounds in this form for a single
map can be found in [DZ1, Appendix A] (see also [CM, Section 5.8]). The analogous
bounds for sequences of maps in F(τ∗,K∗, E∗) are proved in [DZ2, Lemma 3.3]. The
constant Cd depends only on the choice of k0 from (H3) and the hyperbolicity constants
C1 and � from (H1).
(H5) Invariant measure. All T ∈ F(τ∗,K∗, E∗) preserve the same invariant measure,
dμSRB = c cosϕ dr dϕ, where c = 1

2|∂Q| = 1
2
∑K

i=1 �i
is the normalizing constant [CM].

Remark 3.1. Property (H5) is enjoyed by the class of maps we have chosen, but it is not
necessary for this technique to work. Indeed, [DZ2] replaces this condition by: There
exists η > 0 so that 1 + η is sufficiently small compared to the hyperbolicity constant
� from (H1), such that (JμSRBT )

−1 ≤ 1 + η, where JμSRBT is the Jacobian of μSRB with
respect to T .

Thus T does not have to preserve μSRB, but in this sense must be close to a map
that does. This permits the application of the current technique to billiards under small
external forces and nonelastic reflections, as described in [DZ2, Section 2.4]. See also
[C2,Z]. Note however, that while Theorem 2.7 will continue to hold in this generalized
context, Theorem 2.8 will not hold once there is no common invariant measure.

3.2. Growth lemma. Although all maps in F(τ∗,K∗, E∗) enjoy the uniform properties
(H1)–(H5), in Sect. 6.1, we will find it convenient to increase the contraction provided
in (3.4) by replacing T with a higher iterate Tn and choosing δ0 sufficiently small so
that (3.4) holds for T∗ := Tn with constant θn0 . This is possible since if W is a stable
curve, then there exists C > 0, depending only on the family F(τ∗,K∗, E∗), such that,
for each T ∈ F(τ∗,K∗, E∗), |T−1W | ≤ C |W |1/2 [CM, Exercise 4.50]. Thus we may
redefine δ0 so small that no connected component of T−1k (W ) is longer than δ0, from
hypothesis (H1), for k = 0, . . . , n. Since no artificial subdivisions are necessary, we
apply (3.4) inductively in k to obtain the desired contraction.

Choose n̄ such that θ1 := θ n̄0 satisfies

3C0
θ1

1− θ1
≤ 1

4
, (3.7)

where C0 ≥ 1 is from (H3), and then fix δ0, as explained above, such that

sup
W∈Ws

|W |≤δ0

∑

Vi

|JVi Tn̄|∗ ≤ θ1, (3.8)

where Vi are the homogeneous components of T−1n̄ W . Note that if we shrink δ0 further,
then (3.8) will continue to hold for the same value of n̄.

We shall work with the map T∗ := Tn̄ throughout the following. To simplify notation
we will call T∗ again T as no confusion can arise. Note, however, that the definition of
N -admissible sequence must be modified since the length NF of the blocks comprising
the sequence, for example in Theorem 2.7, is computed for the map T∗. Thus a single
block in an N -admissible sequence should comprise at least n̄N billiard maps that are
close in the sense of Definition 2.4.

Definition 3.2. For W ∈Ws , for Tn as in (2.2) we denote by Gn(W ) the homogeneous
components of T−1n W , where we have subdivided the elements of T−1n W longer than
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δ0 into elements with length between δ0/2 and δ0 so that Gn(W ) ⊂Ws . We call Gn(W )

the nth generation of W .
Let In(W ) denote the set of curves Wi ∈ Gn(W ) such that Tj (Wi ) is not contained

in an element of Gn− j (W ) having length at least δ0/2 for all j = 0, . . . , n.

The following growth lemma is contained in [DZ2, Lemma 5.5], but we include the
proof of item (b) here for convenience and to draw out the explicit dependence on the
constants.

Lemma 3.3. There exists C̄0 > 0 such that for all W ∈Ws and n ≥ 0 and {ι j }nj=1,
(a)

∑

Wi∈In(W )

|JWi Tn|C0(Wi )
≤ C0θ

n
1 ;

(b)
∑

Wi∈Gn(W )

|JWi Tn|C0(Wi )
≤ C̄0δ

−1
0 |W | + C0θ

n
1 .

Proof. Item (a) follows by induction on n from (3.8) and the constant C0 from (H3)
comes from translating from the adapted metric to the Euclidean metric at the last step.
We focus on proving item (b).

For W ∈ Ws , let Lk(W ) ⊂ Gk(W ) denote those elements of Gk(W ) having length
at least δ0/2. For k ≤ n and Wi ∈ Gn(W ), we say that Vj ∈ Lk(W ) is the most recent
long ancestor of Wi if k ≤ n is the largest time that Tn−kWi is contained in an element
of Lk(W ). Then by definition, Wi ∈ In−k(Vj ). Note that if Wi ∈ Ln(W ), then k = n
and Wi = Vj . Now we estimate,

∑

Wi∈Gn(W )

|JWi Tn|C0(Wi )
≤

n∑

k=1

∑

Vj∈Lk (W )

∑

Wi∈In−k (Vj )

|JWi Tn−k |C0(Wi )
|JVj Tk |C0(Vj )

+
∑

Wi∈In(W )

|JWi Tn|C0(Wi )

≤
n∑

k=1

∑

Vj∈Lk (W )

C0θ
n−k
1 eCdδ

1/3
0
|TkVj |
|Vj | + C0θ

n
1 ,

where we have used item (a) of the lemma to sum over Wi ∈ In−k(W ) and (3.5) to
replace |JVj Tk |C0(Vj )

with
|TkVj |
|Vj | . Now since ∪Vj∈Lk (W )TkVj ⊂ W , and |Vj | ≥ δ0/2,

we have

∑

Wi∈Gn(W )

|JWi Tn|C0(Wi )
≤

n∑

k=1
C0θ

n−k
1 2δ−10 |W |eCdδ

1/3
0 + C0θ

n
1 ,

which proves the lemma with C̄0 := 2C0
1−θ1 e

Cdδ
1/3
0 . ��

Remark 3.4. It is not necessary to work with T = Tn̄ in Lemma 3.3. It follows equally
well from (3.4) with θ1 replaced by θ0. However, the stronger contraction provided by
(3.8) is useful for Lemma 6.1 and the arguments following it.

Observe that if |W | ≥ δ0/2, then all pieces Wi ∈ Gn(W ) have a long ancestor and
can be included in the sum over k; in this case, the second term on the right side of item
(b) is not needed, and the value of C̄0 remains unchanged.
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3.3. Transfer operator. We define the transfer operator L associated with T acting on
scales of spaces of distributions as in [DZ1]. For {ι j }nj=1 ⊂ I(τ∗,K∗, E∗), we denote
by T−1n Ws the set of curves W ∈ Ws such that TjW ∈ Ws for all j = 0, . . . n. For
α ≤ 1/3, let Cα(T−1n Ws) denote the set of complex valued functions on M that are
Hölder continuous on elements of T−1n Ws . Then for ψ ∈ Cα(Ws), we have ψ ◦ Tn ∈
Cα(T−1n Ws) (see Lemma 5.2(a)). Define

Lnμ(ψ) = μ(ψ ◦ Tn), for μ ∈ (Cα(T−1n Ws))∗.

This defines LTιn : (Cα(T−1n Ws))∗ → (Cα(T−1n−1Ws))∗ for any n ≥ 1. See [DZ1] for
details.

Recall that by (H5), all our maps T preserve the smooth invariant measure dμSRB =
c cosϕdrdϕ, where c is the normalizing constant. When dμ = f dμSRB is a measure
absolutely continuous with respect to μSRB, we identify μ with its density f . With this
identification, the transfer operator acting on densities has the following familiar expres-
sion,

LT f = f ◦ T−1,
and so Ln f = LTιn · · ·LTι1

f , pointwise. We choose this identification of functions in
order to simplify our later work: using the reference measure μSRB, the Jacobian of the
transformation is 1, making L simpler to work with.

4. Cones and Projective Metrics

Given a closed,5 convex cone C satisfying C ∩ −C = ∅, we define an order relation by
f � g if and only if g − f ∈ C ∪ {0}. We can then define a projective metric by

ᾱ( f, g) = sup{λ ∈ R
+ : λ f � g}

β̄( f, g) = inf{μ ∈ R
+ : g � μ f }

ρ( f, g) = log

(
β̄( f, g)

ᾱ( f, g)

)

.

(4.1)

4.1. A cone of test functions. For W ∈Ws , α ∈ (0, 1] and a ≥ 1, define a cone of test
functions by

Da,α(W ) =
{

ψ ∈ C0(W ) : ψ > 0,
ψ(x)

ψ(y)
≤ ead(x,y)

α ∀x, y ∈ W

}

,

where d(·, ·) is the arclength distance along W .
The Hilbert metric associated with this cone and defined by (4.1) depends on the

constant a and the exponent α determining the regularity of the functions. For each such
choice, the Hilbert metric has the following convenient representation.

5 Closed here means that for all f, g ∈ C and sequence {αn} ⊂ R such that limn→∞ αn = α and
g + αn f ∈ C for all n ∈ N we have g + α f ∈ C ∪ {0}.
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Lemma 4.1 ([L95a, Lemma 2.2]). Choose α ∈ (0, 1]. For ψ1, ψ2 ∈ Da,α(W ), the
corresponding metric ρW,a,α(·, ·) is given by

ρW,a,α(ψ1, ψ2) = log

[

sup
x,y,u,v∈W

ead(x,y)
α
ψ1(x)− ψ1(y)

ead(x,y)αψ2(x)− ψ2(y)
· e

ad(u,v)αψ2(u)− ψ2(v)

ead(u,v)αψ1(u)− ψ1(v)

]

.

A corollary of this lemma is that Da,α(W ) has finite diameter in Da,β(W ) if β < α

and |W | < 1 (the proof is similar to [L95a, Lemma 2.3] noting that d(x, y)α ≤
|W |α−βd(x, y)β ).

The next two lemmas are simple consequences of the regularity of functions in
Da,α(W ) for W ∈Ws . We denote by mW the measure induced by arclength along W .

Lemma 4.2. For any α ∈ (0, 1] and W ∈ Ws with |W | ∈ [δ, 2δ], any ψ ∈ Da,α(W )

and x ∈ W, we have

δψ(x)
´
W ψ dmW

≤ |W |ψ(x)
´
W ψdmW

≤ ea|W |α .

Proof. The estimate is immediate since inf y∈W ψ(y) ≥ ψ(x)e−a|W |α . ��
Lemma 4.3. Given α ∈ (0, 1], W ∈Ws , ψ1, ψ2 ∈ Da,α(W ) and x, y ∈ W,

e−ρW,a,α(ψ1,ψ2) ≤ ψ1(x)ψ2(y)

ψ2(x)ψ1(y)
≤ eρW,a,α(ψ1,ψ2)

Proof. According to (4.1), we must have,

ψ2(x)− ᾱψ1(x) ≥ 0 ∀x ∈ W and ψ2(y)− β̄ψ1(y) ≤ 0 ∀y ∈ W.

This in turn implies that

ρW,a,α(ψ1, ψ2) = log
β̄(ψ1, ψ2)

ᾱ(ψ1, ψ2)
≥ log

[
ψ1(x)ψ2(y)

ψ2(x)ψ1(y)

]

∀x, y ∈ W.

��

4.2. Distances between curves and functions. Due to the global stable conesCs defined
in (H1), we may consider stable curves W ∈ Ws as graphs of C2 functions over an
interval IW in the r -coordinate:

W = {GW (r) = (r, ϕW (r)) : r ∈ IW }.
Using this representation, we define a notion of distance between W 1,W 2 ∈Ws by

dWs (W 1,W 2) = |ϕW 1 − ϕW 2 |C1(IW1∩IW2 )
+ |IW 1 � IW 2 |, (4.2)

if W 1 and W 2 lie in the same homogeneity strip and |IW 1 ∩ IW 2 | > 0; otherwise, we
set dWs (W 1,W 2) = ∞. Note that dWs is not a metric, but this is irrelevant for our
purposes.

We will also find it necessary to compare between test functions on two different
stable curves. Given W 1,W 2 ∈ Ws with dWs (W 1,W 2) < ∞, and ψi ∈ Da,β(Wi ),
define
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d∗(ψ1, ψ2) = |ψ1 ◦ GW 1‖G ′W 1‖ − ψ2 ◦ GW 2‖G ′W 2‖ |Cβ (IW1∩IW2 )
, (4.3)

to be the (Hölder) distance betweenψ1 andψ2, where ‖G ′W‖ =
√
1 + (dϕW /dr)2. Note

that d∗ depends on β.
Also, by the bound B̄ on the curvature of elements of Ws , there exists B∗ > 0 such

that

B∗ = sup
W∈Ws

|ϕ′′W |C0(W ) <∞ . (4.4)

Remark 4.4. Note that if d∗(ψ1, ψ2) = 0, then
ˆ

W
1
ψ1 dmW 1 =

ˆ

W
2
ψ2 dmW 2 ,

where W
k = GWk (IW 1 ∩ IW 2), k = 1, 2.

4.3. Definition of the cone. In order to define a cone of functions adapted to our dy-
namics, we will fix the following exponents, α, β, γ, q > 0 and constant a > 1 large
enough. Choose q ∈ (0, 1/2), β < α ≤ 1/3 and finally γ ≤ min{α − β, q}.

For a length scale δ ≤ δ0/3, define

Ws−(δ) = {W ∈Ws : |W | ≤ 2δ} and Ws(δ) = {W ∈Ws : |W | ∈ [δ, 2δ]} .
Let A∗ denote the set of functions on M whose restriction to each W ∈ Ws is

integrable with respect to the arclength measure dmW . For f ∈ A∗ define,

||| f |||∼+ = sup
W∈Ws−(δ)
ψ∈Da,β (W )

∣
∣
´
W fψ dmW

∣
∣

´
W ψ dmW

.

SettingA0 = { f ∈ A∗ : ||| f |||∼+ <∞}, we have that ||| · |||∼+ is a seminorm on the vector
space A0.

Definition 4.5. As usual, we consider the vector space of the classes of equivalence
determined by the semi-norm ( f ∼ g iff ||| f − g|||∼+ = 0) and call A the resulting
normed vector space. Remark that if f ∼ g, then f and g are equal almost everywhere
both with respect to Lebesgue and to SRB measure μSRB. In the following, we can then
safely ignore the issue of equivalence classes and we will not mention it explicitly.

We will find it convenient to measure the average of functions in our cone on long
stable curves, i.e. elements ofWs(δ). To this end, define for f ∈ A,

||| f |||+ = sup
W∈Ws (δ)
ψ∈Da,β (W )

∣
∣
´
W fψ dmW

∣
∣

´
W ψ dmW

, ||| f |||− = inf
W∈Ws (δ)
ψ∈Da,β (W )

´
W fψ dmW´
W ψ dmW

.

(4.5)

Recall that we denote the average value ofψ onW by
ffl
W ψ dmW = 1

|W |
´
W ψ dmW .

Since all of our integrals in this section and the next will be taken with respect to the
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arclength dmW , to keep our notation concise, we will drop the measure from our integral
notation in what follows.

Now for a, c, A, L > 1, and δ ∈ (0, δ0/3], define the cone
Cc,A,L(δ) =

{
f ∈ A \ {0} : ||| f |||+ ≤ L||| f |||−; (4.6)

sup
W∈Ws−(δ)

sup
ψ∈Da,β (W )

|W |−q |
´
W fψ |
ffl
W ψ

≤ Aδ1−q ||| f |||−; (4.7)

∀W 1,W 2 ∈Ws−(δ) : dWs (W 1,W 2) ≤ δ,

∀ψi ∈ Da,α(W
i ) : d∗(ψ1, ψ2) = 0,

∣
∣
∣
∣

´
W 1 fψ1ffl
W 1 ψ1

−
´
W 2 fψ2ffl
W 2 ψ2

∣
∣
∣
∣ ≤ dWs (W 1,W 2)γ δ1−γ cA||| f |||−

}

. (4.8)

We write the constants c, A, L explicitly as subscripts in our notation for the cone since
these will be the parameters which are contracted by the dynamics. By contrast, the
exponents α, β, γ, q are fixed and will not be altered by the dynamics, while the constant
a, whichwill be chosen in Lemma 5.2, will not appear directly in the contraction constant
of the cone.

Intuitively, (4.6) requires that the ‘mass’ of functions in the cone be evenly distributed
throughout the phase space, while (4.7) implies that, even though the functions in the
cone are not necessarily bounded, their average on a short stable curve W cannot be
larger than some constant times |W |q−1. Condition (4.8) says that, once you integrate
along stable curves, you get an object which is morally γ -Hölder on the space of curves
with the ‘metric’ dWs . That is, (4.8) implies some form of weak Hölder regularity for
f transverse to the stable cone.

Remark 4.6. The above cone is a considerable simplification of the one introduced in
[L95a, Section 4.1]. The parameter ζ in [L95a, Section 4.1] plays the role of the param-
eter q here: it allows one to control the integral of an element of the cone on short stable
curves. By contrast, the introduction of the new Hölder exponents α, β, γ is necessary,
as already evident in [DZ1] and [DZ2], to allow for the wilder singularities present in
billiard maps with respect to the ones treated in [L95a, Section 4]. In particular, the
requirement α ≤ 1/3 is forced by the distortion bound (H4), which in turn depends on
the choice of homogeneity strips. The relation between the above cone and the norms in
[DZ1] and [DZ2] is very close: the cone has a natural norm associated to it (see [DKL1,
Appendix D.2 and, in particular, equation (D.2.1)]) which is very similar to the norms
in [DZ1] and [DZ2].

For convenience, we require δ0 to be sufficiently small so that

e2aδ
β
0 ≤ 2 . (4.9)

This will imply similar bounds in terms of δ since δ ≤ δ0/3.

Remark 4.7. Note that, by definition, ||| · |||+ decreases when δ decreases, while ||| · |||−
increases. Thus if (4.6) holds for some δ > 0, it will hold automatically for all smaller
δ. We will see that cone invariance has the same property. In fact, as will become clear
from our estimates in Sects. 5 and 6, in order to prove that the parameters contract, we
will need to choose A large compared to L , and c large compared to A. This yields the
compatible set of restrictions, 1 < L < A < c.
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By contrast, the exponents are fixed by the regularity properties of the maps in
question: α ≤ 1/3 due to (3.5), and β < α so that Da,β(W ) has finite diameter in
Da,α(W ), while γ ≤ α−β is convenient to obtain the required contraction inLemma5.5.
See Sect. 5.3 for all the conditions the constants must satisfy for Proposition 5.1. Several
further conditions are specified in Theorem 6.12 to prove the strict contraction of the
cone.

Remark 4.8. Note that, since 0 /∈ Cc,A,L(δ), condition (4.6) implies ||| f |||− > 0, hence
for all W ∈Ws(δ), ψ ∈ Da,β(W ),

ˆ

W
fψ dmW ≥ ||| f |||−

ˆ

W
ψ dmW > 0. (4.10)

In particular, this implies

||| f |||+ = sup
W∈Ws (δ)
ψ∈Da,β (W )

´
W fψ dmW´
W ψ dmW

for f ∈ Cc,A,L(δ).

In addition, condition (4.7) implies

A||| f |||− ≥ sup
W∈Ws−(δ)

sup
ψ∈Da,β (W )

δq−1|W |1−q |
´
W fψ |
´
W ψ

≥ ||| f |||+.

However condition (4.6) is not vacuous since we assume A > L .

Remark 4.9. To have an idea of which functions can belong to the cone note that a
function that is strictly negative on a ball of size 2δ cannot satisfy (4.6) and hence does
not belong to the cone. On the other hand each f ∈ C1 such that inf f ≥ L‖ f ‖∞ and
‖ f ‖C1 ≤ c inf f belongs to the cone. See also Lemma 7.6 for amore detailed description
of functions that belong to the cone.

We will need the following lemma in Sect. 6.2.

Lemma 4.10. For all f ∈ Cc,A,L(δ), W ∈Ws(δ) and all ψ1, ψ2 ∈ Da,β(W ),
∣
∣
∣
∣

´
W fψ1ffl
W ψ1

−
´
W fψ2ffl
W ψ2

∣
∣
∣
∣ ≤ 2δLρW,a,β(ψ1, ψ2)||| f |||− .

Proof. Let f ∈ Cc,A,L(δ),W ∈Ws(δ) andψ1, ψ2 ∈ Da,β(W ). For each λ,μ > 0 such
that λψ1 � ψ2 � μψ1, hence also λψ1 ≤ ψ2 ≤ μψ1, we have

´
W fψ2ffl
W ψ2

= λ
´
W fψ1 +

´
W f (ψ2 − λψ1)ffl
W ψ2

≥ λ
´
W fψ1

μ
ffl
W ψ1

,

where we have dropped the second term above due to (4.10) sinceψ2−λψ1 ∈ Da,β(W ).
Taking the sup on λ and the inf on μ, and recalling (4.1), yields
´
W fψ1ffl
W ψ1

−
´
W fψ2ffl
W ψ2

≤
´
W fψ1ffl
W ψ1

(1− e−ρW,a,β (ψ1,ψ2)) ≤ ρW,a,β(ψ1, ψ2)

´
W fψ1ffl
W ψ1

.

Then, since |W | ≥ δ, we use (4.6) to estimate,
´
W fψ1ffl
W ψ1

≤ |W |||| f |||+ ≤ 2δL||| f |||− .

Reversing the roles of ψ1 and ψ2 completes the proof of the lemma. ��
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5. Cone Estimates: Contraction of c and A

In this section, fixingF(τ∗,K∗, E∗), wewill prove the following proposition. Let n0 ≥ 1
be such that AC0θ

n0
1 ≤ 1/16.

Proposition 5.1. If the conditions on δ, n0, a, c, A, L specified in Sect. 5.3 are satisfied,
then there exists χ < 1, independent of the cone parameters,6 such that for all n ≥ n0
and {ι j }nj=1 ⊂ I(τ∗,K∗, E∗),

LnCc,A,L(δ) ⊆ Cχc,χ A,3L(δ) .

Note that the parameter L is not contracted, although it cannot grow too much. To
have a contraction of L we need to use the global properties of the map (some kind of
topological mixing, see Sect. 6 for details), while the proof of Proposition 5.1 is based
only on local arguments.

Before proving Proposition 5.1 we need some facts concerning the behaviour of the
test functions under the dynamics.

5.1. Contraction of test functions. For {ι j }nj=1 ⊂ I(τ∗,K∗, E∗), W ∈ Ws , ψ ∈
Da,β(W ), and Wi ∈ Gn(W ), define

T̂n,Wiψ = T̂n,iψ := ψ ◦ Tn · JWi Tn,

where JWi Tn denotes the Jacobian of Tn along Wi with respect to arclength.
The following lemma is a consequence of (H1).

Lemma 5.2. Let n ≥ 0 be such that C−β1 �−βn < 1, where C1 ≤ 1 is from (3.1), and fix

a > (1−C−β1 �−βn)−1Cdδ
1/3−β
0 . For each β ∈ (0, 1/3], there exist σ, ξ̄ < 1 such that

for all W ∈Ws and Wi ∈ Gn(W ),

(a) T̂n,i (Da,β(W )) ⊂ Dσa,β(Wi );
(b) ρWi ,a,β(T̂n,iψ1, T̂n,iψ2) ≤ ξ̄ρW,a,β(ψ1, ψ2) for all ψ1, ψ2 ∈ Da,β(W ).

Proof. (a) We need to measure the log-Hölder norm of T̂n,iψ for ψ ∈ Da,β(W ). For
x, y ∈ Wi , recalling (3.1), we estimate,

T̂n,iψ(x)

T̂n,iψ(y)
= ψ(Tnx)JWi Tn(x)

ψ(Tn y)JWi Tn(y)
≤ ead(Tnx,Tn y)

β+Cdd(x,y)1/3

≤ e(aC
−β
1 �−βn+Cdδ

1/3−β
0 )d(x,y)β ,

where we have used (3.1) and (3.5) as well as the fact that β ≤ 1/3. This proves the first
statement of the lemma with σ = C−β1 �−βn + a−1Cdδ

1/3−β
0 .

6 By independent of the cone parameters, we mean that we may first fix χ < 1, and then choose c, A, L , δ
satisfying the conditions of Sect. 5.3 so that the contraction by χ is obtained for all choices of c′ > c, A′ > A,
L ′ > L and δ′ < δ that satisfy those conditions. Note, however, that larger A′ > A requires n0 to increase in
size.
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(b) Using Lemma 4.1, if ψ1, ψ2 ∈ Dσa,β(Wi ), then,

ρWi ,a,β(ψ1, ψ2)

= log

[

sup
x,y,u,v∈Wi

ead(x,y)
β · ψ1(x)− ψ1(y)

ead(x,y)β · ψ2(x)− ψ2(y)
· e

ad(u,v)β · ψ2(u)− ψ2(v)

ead(u,v)β · ψ1(u)− ψ1(v)

]

≤ log

[

sup
x,y,u,v∈W

e(a+σa)d(x,y)
β − 1

e(a−σa)d(x,y)β − 1
· e

(a+σa)d(u,v)β − 1

e(a−σa)d(u,v)β − 1
· ψ1(y) · ψ2(v)

ψ2(y) · ψ1(u)

]

≤ log

[
(a + σa)2

(a − σa)2
· e2a(1+σ)δβ0 · e2aδβ0

]

=: K .

(5.1)

Thus the diameter ofDσa,β(Wi ) is finite inDa,β(Wi ). Part (b) of the lemma then follows
from [L95a, Theorem 1.1], with ξ̄ = tanh(K/4) < 1. ��
Corollary 5.3. Let n1 denote the least positive integer satisfying C−β1 �−βn1 < 1 and

aC−β1 �−βn1 + Cdδ
1/3−β
0 < a. Define ξ = ξ̄

1
2n1 < 1. Then for W ∈ Ws , n ≥ n1 and

Wi ∈ Gn(W ),

ρWi ,a,β(T̂n,iψ1, T̂n,iψ2) ≤ ξnρW,a,β(ψ1, ψ2) for all ψ1, ψ2 ∈ Da,β(W ).

Proof. The proof follows immediately fromLemma5.2 oncewe decompose n = kn1+r ,
where r ∈ [0, n1) and write

T̂n,Wiψ = T̂n1+r,Wi ◦ T̂n1,Tn1+r (Wi ) ◦ T̂n1,T2n1+r (Wi ) ◦ · · · ◦ T̂n1,T(k−1)n1+r (Wi )ψ.

Each of the operators T̂n1,Tjn1+r (Wi ) satisfies Lemma 5.2 with the same σ and ξ̄ . The

corollary then follows using the observation that ξ̄ �n/n1� ≤ ξn , ∀n ≥ n1. ��
It is important for what follows that the contractive factor ξ̄ < 1 is explicitly given

in terms of the diameter K , which depends only on a, σ , δ0 and β, but not on δ. While
n1 depends on the parameter choice β, it also is independent of δ.

In what follows, we require n0 ≥ n1 by definition, so that Lemma 5.2 and Corol-
lary 5.3 will hold for all n ≥ n0.

5.2. Proof of Proposition 5.1. This section is devoted to the proof of Proposition 5.1.

5.2.1. Preliminary estimate on L For W ∈ Ws , recalling Defintion 3.2, we denote by
Shn(W ; δ) the elements of Gn(W ) of length less than δ and by Lon(W ; δ) the elements
of Gn(W ) of length at least δ.

Lemma 5.4. Fix δ ∈ (0, δ0/3) so that 4Aδδ−10 C̄0 ≤ 1/4, then, for all f ∈ Cc,A,L(δ)
and n ≥ n0,

|||Ln f |||+ ≤ 3
2 ||| f |||+ and |||Ln f |||− ≥ 1

2 ||| f |||−.
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Proof. Let W ∈Ws(δ), ψ ∈ Da,β(W ). Then,
ˆ

W
Ln f ψ =

∑

Wi∈Lon(W ;δ)

ˆ

Wi

f ψ ◦ Tn JWi Tn +
∑

Wi∈Shn(W ;δ)

ˆ

Wi

f ψ ◦ Tn JWi Tn .

(5.2)

Now since ψ ◦ Tn JWi Tn ∈ Da,β(Wi ) by Lemma 5.2, we subdivide elements Wi ∈
Lon(W ; δ) into curves Ui

� having length between δ and 2δ and use the definition of
||| f |||+ on each such curve to estimate,

ˆ

Wi

f ψ ◦ Tn JWi Tn ≤
∑

�

||| f |||+
ˆ

Ui
�

ψ ◦ Tn JWi Tn = ||| f |||+
ˆ

TnWi

ψ .

To estimate the short pieces, we apply (4.7), change variables again and use ψ ∈
Da,β(W ), and finally apply Lemma 3.3(b) since Shn(W ; δ) ⊂ Gn(W ), to estimate

∑

Wi∈Shn(W ;δ)

ˆ

Wi

f ψ ◦ Tn JWi Tn ≤
∑

Wi∈Shn(W ;δ)
||| f |||−A|Wi |qδ1−q

 

Wi

ψ ◦ Tn JWi Tn

≤ δA||| f |||−ea(2δ)β
 

W
ψ (C̄0δ

−1
0 |W | + C0θ

n
1 ).

Putting these estimates together in (5.2) and since |W | ≥ δ implies δ
ffl
W ψ ≤ ´

W ψ , we
obtain,
ˆ

W
Ln f ψ ≤

∑

Wi∈Lon(W ;δ)
||| f |||+

ˆ

TnWi

ψ + A||| f |||−ea(2δ)β
ˆ

W
ψ (C̄0δδ

−1
0 + C0θ

n
1 )

≤ ||| f |||+
ˆ

W
ψ
(
1 + Aea(2δ)

β

(δδ−10 C̄0 + C0θ
n
1 )
)
.

Now (4.9) implies ea(2δ)
β ≤ 2, and our choices of n0 and δ imply 2Amax{C̄0δδ

−1
0 ,

C0θ
n0
1 } ≤ 1/4, which yields the required estimate on |||Ln f |||+ for all n ≥ n0.
For the bound on |||Ln f |||−, we perform a similar estimate, except noting that for

Wi ∈ Lon(W ; δ),
ˆ

Wi

f ψ ◦ Tn JWi Tn ≥ ||| f |||−
ˆ

TnWi

ψ,

we follow (5.2) to estimate,
ˆ

W
Ln f ψ ≥

∑

Wi∈Lon(W ;δ)
||| f |||−

ˆ

TnWi

ψ − A||| f |||−ea(2δ)β
ˆ

W
ψ (C̄0δδ

−1
0 + C0θ

n
1 )

≥ ||| f |||−
ˆ

W
ψ
(
1− 2Aea(2δ)

β

(δδ−10 C̄0 + C0θ
n
1 )
)
.

Again using our choice of n0 and δ, we have 4AC0θ
n
1 ≤ 1/4 and 4Aδδ−10 C̄0 ≤ 1/4,

which yields |||Ln f |||− ≥ 1
2 ||| f |||−. ��

In particular the above implies the estimate: for all n ≥ n0,

|||Ln f |||+
|||Ln f |||−

≤ 3
||| f |||+
||| f |||−

≤ 3L . (5.3)
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5.2.2. Contraction of the parameter A. Weprove that the parameter A contracts in (4.7).
Choose f ∈ Cc,A,L(δ). Let W ∈ Ws with |W | ≤ 2δ, ψ ∈ Da,β(W ) and x ∈ W . From
now on, we will refer to Lon(W ; δ) and Shn(W ; δ) as simply Lon(W ) and Shn(W ). We
follow (5.2) to write
∣
∣
∣
∣

ˆ

W
Ln f ψ

∣
∣
∣
∣ ≤

∑

Wi∈Lon(W )

ˆ

Wi

f ψ ◦ Tn JWi Tn +
∑

Wi∈Shn(W )

∣
∣
∣
∣

ˆ

Wi

f ψ ◦ Tn JWi Tn

∣
∣
∣
∣

≤
∑

Wi∈Lon(W )

||| f |||+
ˆ

Wi

ψ ◦ Tn JWi Tn

+
∑

Wi∈Shn(W )

Aδ1−q |Wi |q ||| f |||−
 

Wi

ψ ◦ Tn JWi Tn

≤
∑

Wi∈Lon(W )

||| f |||−L
ˆ

TnWi

ψ + Aδ1−q |W |q ||| f |||−|ψ |C0

×
∑

Wi∈Shn(W )

|Wi |q
|W |q

|TnWi |
|Wi | ,

where in the second line we have used (4.7) for the sum on short pieces. Since |W | ≤ 2δ,
the first sum above is bounded by

||| f |||−L|W |
 

W
ψ ≤ ||| f |||−2Lδ1−q |W |q

 

W
ψ .

For the sum on short pieces, we use Lemma 3.3(b) and theHölder inequality to estimate7

∑

Wi∈Shn(W )

|Wi |q
|W |q

|TnWi |
|Wi | ≤

⎛

⎝
∑

Wi∈Shn(W )

|TnWi |
|W |

⎞

⎠

q ⎛

⎝
∑

Wi∈Shn(W )

|JWi Tn|C0(Wi )

⎞

⎠

1−q

≤ (C̄0δ
−1
0 |W | + C0θ

n
1 )

1−q .

Combining these two estimates with Lemma 4.2 yields,

| ´W Ln f ψ |ffl
W ψ

≤ Aδ1−q |W |q ||| f |||−
(
2L A−1 + ea(2δ)

β

(C̄0δ
−1
0 |W | + C0θ

n
1 )

1−q) .

(5.4)

This contracts the parameter A if 2L A−1 + ea(2δ)β (2C̄0δδ
−1
0 +C0θ

n
1 )

1−q < 1, which we

can achieve if ea(2δ)
β ≤ 2,

A > 4L , and (2C̄0δδ
−1
0 + C0θ

n0
1 )1−q < 1/4 . (5.5)

Remark that since L ≥ 1, we have A > 4, and so according to the assumption of
Lemma 5.4, 2C̄0δδ

−1
0 ≤ 1/32. Moreover, C0θ

n0
1 ≤ 1/64 by choice of n0, and since

1 − q ≥ 1/2, the second condition in (5.5) is always satisfied under the assumption of
Lemma 5.4.

7 Note that
∑

i |TnWi | ≤ |W | and |TnWi ||Wi | ≤ |JWi Tn |C0(Wi )
.



Projective Cones for Sequential Dispersing Billiards 861

5.2.3. Contraction of the parameter c Finally, we verify the contraction of c via (4.8).
Let f ∈ Cc,A,L(δ) and W 1,W 2 ∈ Ws with |Wk | ≤ 2δ and dWs (W 1,W 2) ≤ δ. Take
ψk ∈ Da,α(Wk) with d∗(ψ1, ψ2) = 0.

Without loss of generality we can assume |W 2| ≥ |W 1| and fflW1
ψ1 = 1. Next, note

that cone condition (4.7) implies (see Lemma 5.4)

∣
∣
∣
∣

´
W 1 Ln f ψ1ffl

W 1 ψ1
−

´
W 2 Ln f ψ2ffl

W 2 ψ2

∣
∣
∣
∣ ≤ 4Aδ1−q |W 2|q |||Ln f |||−

It follows that the contractionof theparameter c is trivial for |W 2|q ≤ δq−γ dWs (W 1,W 2)γ c
8 .

Thus it suffices to consider the case

|W 2|q ≥ δq−γ dW
s (W 1,W 2)γ c

8
. (5.6)

Remark that by definition, dWs (W 1,W 2) ≤ δ implies IW1 ∩ IW2 �= ∅. To proceed,

define Cs :=
√

1 + (K−1∗ + τ−1∗ )2, which depends on the maximum absolute value of
the slopes of curves in the stable cone defined in (3.1). We assume,

q ≥ γ , and c ≥ 16Cq
s . (5.7)

Next, for any twomanifoldsUi ∈Ws−(δ) defined on the intervals Ii with J = I1∩ I2,
by the distance Definition (4.2) we have,

| |U 1| − |U 2| | ≤
ˆ

J
| ‖G ′1‖ − ‖G ′2‖ | dr +

2∑

i=1

ˆ

Ii\J
‖G ′i‖dr

≤
ˆ

J
‖G ′2 − G ′1‖dr + Cs |I1 � I2| ≤ (|U 1| + Cs)dWs (U 1,U 2).

(5.8)

Since
ffl
W1

ψ1 = 1, we have |ψ1|∞ ≤ ea(2δ)
α
. On the other hand, since IW 1∩ IW 2 �= ∅

and d∗(ψ1, ψ2) = 0, there must exist r ∈ IW 1 ∩ IW 2 such thatψ1 ◦GW 1(r)‖G ′W 1(r)‖ =
ψ2 ◦ GW 2(r)‖G ′W 2(r)‖. Thus since,

‖G ′
W 1(r)‖

‖G ′
W 2(r)‖ =

√
√
√
√

1 + (ϕ′
W 1(r))2

1 + (ϕ′
W 2(r))2

=
√

1 +
(ϕ′

W 1(r)− ϕ′
W 2(r))(2ϕ

′
W 2(r) + (ϕ′

W 1(r)− ϕ′
W 2(r)))

1 + (ϕ′
W 2(r))2

≤
√
1 + dWs (W 1,W 2)(2 + dWs (W 1,W 2)) ≤ √1 + 3δ ≤ 2 ,

where we use δ < 1, we estimate,

|ψ2|∞ ≤ 2ea(2δ)
α |ψ1|∞ ≤ 2e2a(2δ)

α

. (5.9)
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Then recalling Remarks 4.4 and (4.9), it follows that
∣
∣
∣
∣

ˆ

W 1
ψ1 −

ˆ

W 2
ψ2

∣
∣
∣
∣ ≤ ea(2δ)

α

Cs |IW 1 \ IW 2 | + e2a(2δ)
α

2Cs |IW 2 \ IW 1 |
≤ 2Cse

2a(2δ)αdWs (W 1,W 2) ≤ 4.8 CsdWs (W 1,W 2).

Putting this together with (5.8) and using
´
W1

ψ1 = |W1|, we estimate,
∣
∣
∣
∣|W 2| −

ˆ

W 2
ψ2

∣
∣
∣
∣ ≤

∣
∣
∣|W 2| − |W 1|

∣
∣
∣ +

∣
∣
∣
∣

ˆ

W 1
ψ1 −

ˆ

W 2
ψ2

∣
∣
∣
∣

≤ (|W 1| + 5.8 Cs)dWs (W 1,W 2) ≤ 6CsdWs (W 1,W 2) ,

(5.10)

where we have used (4.9), 3δ ≤ δ0 ≤ 1/2 ≤ Cs/2 and α > β.
Hence, recalling Lemmas 5.4 and (5.4), dWs (W 1,W 2) ≤ δ and using (5.6), (5.7) and
(5.10), we have
∣
∣
∣
∣

´
W 1 Ln fψ1ffl

W 1 ψ1
−

´
W 2 Ln fψ2ffl

W 2 ψ2

∣
∣
∣
∣ ≤

∣
∣
∣
∣

ˆ

W 1
Ln fψ1 −

ˆ

W 2
Ln fψ2

∣
∣
∣
∣

+

∣
∣
∣
∣

ˆ

W 2
Ln fψ2

∣
∣
∣
∣

∣
∣
∣
∣
|W 2|
´
W 2 ψ2

− 1

∣
∣
∣
∣

≤
∣
∣
∣
∣

ˆ

W 1
Ln fψ1 −

ˆ

W 2
Ln fψ2

∣
∣
∣
∣ + A

[
δ

|W 2|
]1−q ∣∣

∣
∣|W 2| −

ˆ

W 2
ψ2

∣
∣
∣
∣ 2|||Ln f |||−

≤
∣
∣
∣
∣

ˆ

W 1
Ln fψ1 −

ˆ

W 2
Ln fψ2

∣
∣
∣
∣ + 23−1/q3Cq

s Aδ
1−γ dWs (W 1,W 2)γ |||Ln f |||− .

(5.11)

To conclude it suffices then to compare
´
W 1 Ln f ψ1 and

´
W 2 Ln f ψ2. To this end,

define Gδ
n(W

k) as the nth generation of pieces in T−1n Wk as in Definition 3.2, but with
pieces subdivided between length δ and 2δ rather than δ0/2 and δ0.We create partitions of
Gδ
n(W

k) into ‘matched’ and ‘unmatched’ pieces as follows (see Fig. 1). For each curve
W 1

i ∈ Gδ
n(W

1), we construct a foliation of vertical line segments {�x }x∈W 1
i
centered

at x and having length at most 3C1�
−n+1dWs (W 1,W 2) such that their images under

Tn either end on a singularity curve in SH−n or, if not cut by a singularity, have length
3dWs (W 1,W 2), with length at least dWs (W 1,W 2) on each side of Tn(x).

In the latter case, this implies that �x intersects a unique homogeneous element of
T−1n W 2. Let the subcurveU 1

i,+ ⊂ W 1
i be the union of the points x for which this happens

and let U 2
i,+ = {�x ∩ T−1n W 2}x∈Ui,+ be the corresponding subcurve in T−1n W 2.8 Since

Uk
i,+ has length atmost 2δ, thenU 2

i,+ can intersect atmost 3 elements ofGδ
n(W

2), due to the

possible different ways in which long pieces have been split in Gδ
n(W

1) and Gδ
n(W

2). We
callU 2

j the elements of {U 2
i,+∩W 2

l }W 2
l ∈Gδ

n(W
2) and setU

1
j = {x ∈ U 1

i,+ : �x ∩U 2
j �= ∅}.

8 Note that, by [CM, Proposition 4.47], given two maximal homogeneous subcurves of T−1n Wk that are
connected by a vertical segment disjoint from SH

n , there must exist two piecewise smooth curves in SH
n that

connect the boundaries of such two subcurves forming a rectangle that does not contain any element of SH
n

in its interior. Thus U2
i,+ must be a connected subcurve.



Projective Cones for Sequential Dispersing Billiards 863

W 1
j2

W 1

W 2

T −1
ι1

◦···◦T −1
ιn

Tιn◦···◦Tι1
V 2

i2
U2

i1
V 2

i1

U1
i1V 1

i1

U1
i2

V 1
i2

U2
i2

V 2
i3

U2
i3

W2
j1

=V 2
i3

∪U2
i3

W2
j2

=U2
i4

W2
j3

U2
i5

U2
i6

V 2
i4

U1
i3 U1

i4 U1
i5

U2
i6

=W1
j3

SH
n

SH
n

one leaf
of { x}

Fig. 1. The Decomposition Uk
j , V

k
j

We call the subcurves Uk
j , k = 1, 2 ‘matched’, while we call the remaining subcurves

V k
j ‘unmatched’. Note that, by construction, each Wk

i ∈ Gδ
n(W

k) can contain at most

two unmatched elements and at most 3 matched elements. In addition, for x ∈ V 1
j , either

Tn(�x ) intersects SH−n or Tn(x) is near an end point of W 1. In either case, due to the
uniform transversality of stable and unstable cones, |Tn(V 1

j )| is short in a sense we will
make precise below.

Thus we have defined a decomposition of Gδ
n(W

k) = ∪ jUk
j ∪ ∪ j V k

j , such that U 1
j

and U 2
j are defined as the graphs of functions GUk

j
over the same r -interval I j for each

j .
Using this decomposition, writing T̂n,Uk

j
ψk = ψk ◦ Tn JUk

j
Tn and similarly for

T̂n,V k
j
ψk , we have

ˆ

Wk
Ln f ψk =

∑

j

ˆ

Uk
j

f T̂n,Uk
j
ψk +

∑

j

ˆ

V k
j

f T̂n,V k
j
ψk . (5.12)

We estimate the contribution from unmatched pieces first. To do so, we group the V k
j

as follows. We say V k
j is ‘created’ at time 0 ≤ i ≤ n − 1 if i is the smallest t such

that either an endpoint of Tn−t (V k
j ) intersects Tιt+1(SH

0 ), or Tn−t (V k
j ) is contained in

a larger unmatched piece with this property (this second case can happen when both
endpoints of V k

j do not belong to SH

Tn
). Due to the uniform transversality of the stable

cone with curves in Tιi+1(SH

0 ) as well as the uniform transversality of the stable and
unstable cones, we have |Tn−i V k

j | ≤ C̄3�
−i dWs (W 1,W 2), for some constant C̄3 > 0.

Define P(i) = { j : V 1
j created at time i}.

For ease of notation, when we change variables, we will adopt the following notation
for n ≥ 1, k ≥ 0,

Tn,n−k = Tιn ◦ · · · ◦ Tιn−k+1 . (5.13)

In this notation, Tn,0 = Tn and Tn = Tn,n−k ◦ Tn−k .
Althoughwewould like to change variables to estimate the contribution on the curves

Tn−i (V 1
j ) for j ∈ P(i), this is one time step before such cuts would be introduced

according to our definition of Gδ
n(W ), so Lemma 3.3 would not apply since there may be

many such Tn−i (V 1
j ) for eachW

1
� ∈ Gδ

i (W
1). However, there can be at most two curves
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Tn−i−1(V 1
j ), j ∈ P(i), per element of W 1

� ∈ Gδ
i+1(W

1), so we will change variables

to estimate the contribution from curves of the form Tn−i−1(V 1
j ) instead. We have two

cases.
Case 1. The curve in Tιi+1(SH

0 ) that creates V 1
j at time i is the preimage of the bound-

ary of a homogeneity strip. Then Tn−i−1V 1
j still enjoys uniform transversality with

the boundary of the homogeneity strip and the unstable cone, and so |Tn−i−1V 1
j | ≤

C̄3�
−i−1dWs (W 1,W 2) as before.

Case 2. The curve in Tιi+1(SH

0 ) that creates V 1
j at time i is not the preimage of the

boundary of a homogeneity strip. Then V 1
j undergoes bounded expansion from time

n − i to time n − i − 1. Thus |Tn−i−1(V 1
j )| ≤ CC̄3�

−i dWs (W 1,W 2), where C > 0
depends only on our choice of k0, the minimum index of homogeneity strips.

In either case, we conclude that |Tn−i−1(V 1
j )| ≤ C3�

−i dWs (W 1,W 2), for a uniform

constant C3 > 0. Also, since Tn−i−1(V k
j ) is contained in an element of Gδ

n−i−1(W ), it
follows that all such curves have length at most 2δ, thus we may apply (4.7),
∣
∣
∣
∣
∣
∣

∑

j

ˆ

V 1
j

f T̂n,V 1
j
ψ1

∣
∣
∣
∣
∣
∣
≤

n−1∑

i=0

∣
∣
∣
∣
∣
∣

∑

j∈P(i)

ˆ

Tn−i−1(V 1
j )

Ln−i−1 f · ψ1 ◦ Tn,n−i−1 JTn−i−1(V 1
j )
Tn,n−i−1

∣
∣
∣
∣
∣
∣

≤
n−1∑

i=0

∑

j∈P(i)
Aδ1−q |Tn−i−1(V 1

j )|q |||Ln−i−1 f |||−|ψ1|C0(W1)|JTn−i−1(V 1
j )
Tn,n−i−1|C0(Tn−i−1(V 1

j ))

≤
n−1∑

i=0
Aδ1−qCq

3�
−iq dWs (W 1,W 2)q |||Ln−i−1 f |||− (2C̄0 + C0θ

i+1
1 )|ψ1|C0(W1),

where we have used Lemma 3.3-(b) for the sum over j ∈ P(i) since there are at most
two curves Tn−i−1(V 1

j ) for each element W 1
� ∈ Gδ

i+1(W ).9

Since n ≥ 2n0, we have either that i +1 ≥ n0 or n− (i +1) ≥ n0. In the former case,
|||Ln−i−1 f |||− ≤ 2|||Ln f |||− by Lemma 5.4. In the latter case,

|||Ln−i−1 f |||− ≤ |||Ln−i−1 f |||+ ≤ 3
2 ||| f |||+ ≤ 3

2 L||| f |||− ≤ 3L|||Ln f |||−, (5.14)

where we have used Lemma 5.4 twice, once on |||Ln−i−1 f |||+ and once on ||| f |||−. Since
the latter estimate (5.14) is the larger of the two, we may use it for all i .

Also, using the assumption that dWs (W 1,W 2) ≤ δ and (5.7) yields,

δ1−qdWs (W 1,W 2)q ≤ δ1−γ dWs (W 1,W 2)γ .

Collecting these estimates and summing over the exponential factors yields (since the
estimate for V 2

j is the same),

∑

j,k

∣
∣
∣
∣
∣

ˆ

V k
j

f T̂n,V k
j
ψk

∣
∣
∣
∣
∣
≤ C4ALδ

1−γ dWs (W 1,W 2)γ |||Ln f |||−, (5.15)

for some uniform constant C4 depending only on F(τ∗,K∗, E∗) and not on the param-
eters of the cone.

9 Notice that since we subdivide curves in Gδ
n(W ) according to length δ and not δ0, the estimate of

Lemma 3.3(b) becomes C̄0δ
−1|W | + C0θ

n
1 ≤ 2C̄0 + C0θ

n
1 , since |W | ≤ 2δ.
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Next, we estimate the contribution on matched pieces Uk
j . To do this, we will need

to change test functions on the relevant curves. Define the following functions on U 1
j ,

ψ̃2 = ψ2 ◦ Tn ◦ GU2
j
◦ G−1

U1
j
; J̃U2

j
Tn = JU2

j
Tn ◦ GU2

j
◦ G−1

U1
j
,

T̃n,U2
j
(ψ2) = ψ̃2 · J̃U2

j
Tn

‖G ′
U2

j
‖ ◦ G−1

U1
j

‖G ′
U1

j
‖ ◦ G−1

U1
j

.
(5.16)

Note that d∗(T̂n,U2
j
(ψ2), T̃n,U2

j
(ψ2)) = 0 by construction. Also we define

ψ−j = min
{
T̂n,U1

j
(ψ1), T̃n,U2

j
(ψ2)

}

ψ�
1, j = T̂n,U1

j
(ψ1)− ψ−j ; ψ�

2, j = T̃n,U2
j
(ψ2)− ψ−j .

(5.17)

We will need the following lemma to proceed.

Lemma 5.5. If c > 4(1 + M0)
q , M0 is defined in (5.28), then there exists C5 ≥ 1,

independent of n, W 1 and W 2 satisfying (5.6), such that for each j ,

(a) dWs (U 1
j ,U

2
j ) ≤ C5�

−ndWs (W 1,W 2) ;

(b) e−C5dWs (W 1,W 2)α ≤
T̂n,U1

j
ψ1(x)

T̃n,U2
j
ψ2(x)

≤ eC5dWs (W 1,W 2)α ∀x ∈ U 1
j ;

(c) setting B = 8
[
C5a−1

] α−β
α dWs (W 1,W 2)α−β we have ψ�

i, j + Bψ−j ∈ Da,β(U 1
j ),

i = 1, 2.

Moreover, T̃n,U2
j
ψ2 and ψ−j belong to Da,α(U 1

j ).

We postpone the proof of the lemma and use it to conclude the estimates of this
section.

For future use note that Lemma 5.5(b) implies

0 ≤ ψ�
k, j (x) ≤ 2C5dWs (W 1,W 2)αψ−j (x). (5.18)

Observe that since ψ�
k, j + Bψ−j , ψ

−
j ∈ Da,β(U 1

j ), k = 1, 2, recalling (4.10) we may
estimate,

∣
∣
∣
∣
∣

ˆ

U1
j

f ψ�
k, j

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

ˆ

U1
j

f (ψ�
k, j + Bψ−j )−

ˆ

U1
j

f Bψ−j

∣
∣
∣
∣
∣

≤ Aδ1−q |U 1
j |q ||| f |||−max

{ 

U j
(ψ�

k, j + Bψ−j ),
 

U1
j

Bψ−j

}

≤ Aδ1−q |U 1
j |q ||| f |||−

 

U j
(ψ�

k, j + Bψ−j ) . (5.19)

Since d∗(T̂n,U2
j
ψ2, T̃n,U2

j
ψ2) = 0 by construction, and recalling Remark 4.4, Lemma

5.5(c), condition (4.7), and (5.17), (5.18),
∣
∣
∣
∣
∣

ˆ

U1
j

f T̂n,U1
j
ψ1 −

ˆ

U2
j

f T̂n,U2
j
ψ2

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

ˆ

U1
j

f T̂n,U1
j
ψ1 −

ˆ

U1
j

f T̃n,U2
j
ψ2

∣
∣
∣
∣
∣
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+

∣
∣
∣
∣
∣
∣

´
U1

j
f T̃n,U2

j
ψ2

ffl
U1

j
T̃n,U2

j
ψ2

−
´
U2

j
f T̂n,U2

j
ψ2

ffl
U2

j
T̂n,U2

j
ψ2

∣
∣
∣
∣
∣
∣

 

U2
j

T̂n,U2
j
ψ2

+

∣
∣
∣
∣
∣
∣

´
U1

j
f T̃n,U2

j
ψ2

ffl
U1

j
T̃n,U2

j
ψ2

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

|U 2
j | − |U 1

j |
|U 1

j |

∣
∣
∣
∣
∣

 

U2
j

T̂n,U2
j
ψ2

≤ Aδ1−q |U 1
j |q
[ffl

U1
j
(ψ�

1, j + Bψ−j ) +
ffl
U1

j
(ψ�

2, j + Bψ−j )
]

ffl
U2

j
T̂n,U2

j
ψ2

 

U2
j

T̂n,U2
j
ψ2||| f |||−

+dWs (U 1
j ,U

2
j )

γ δ1−γ cA
 

U2
j

T̂n,U2
j
ψ2||| f |||−

+Aδ1−q |U 1
j |q
∣
∣
∣
∣
∣

|U 2
j | − |U 1

j |
|U 1

j |

∣
∣
∣
∣
∣

 

U2
j

T̂n,U2
j
ψ2||| f |||− , (5.20)

where for the first term, we have used that |T̂n,U1
j
ψ1 − T̃n,U2

j
ψ2| = ψ�

1, j +ψ�
2, j in order

to apply (5.19), and for the second and third terms we used that T̃n,U2
j
ψ2 ∈ Da,α(U 1

j )

by Lemma 5.5 to apply cone conditions (4.8) and (4.7), respectively. Then, recalling
Lemma 3.3(b), (5.9) and (4.9), and using that by construction, there are at most 3 curves
U 2

j in each element of Gδ
n(W

2), we can estimate

∑

j

 

U2
j

T̂n,U2
j
ψ2 ≤

∑

j

 

U2
j

|J
U j
2
Tn|∞ψ2 ◦ Tn

≤ 3(C̄0δ
−1|W 2| + C0θ

n
1 )2e

2a(2δ)α ≤ 36C̄0 . (5.21)

Next, recalling (5.8), we have10

|U 2
j | ≤ |U 1

j |(1 + dWs (U 1
j ,U

2
j )) ≤ 2|U 1

j |
provided we impose

C5�
−n0δ ≤ 1 (5.22)

where C5 is from Lemma 5.5-(a) and� is defined in (3.1). Moreover, remembering the
definition of B in Lemma 5.5-(c) and Eq. (5.18),

 

U1
j

(ψ�
k, j + Bψ−j ) ≤

 

U1
j

10C5T̃n,U2
j
(ψ2)dWs (W 1,W 2)γ

≤ 10C5
|U 2

j |
|U 1

j |
 

U2
j

T̂n,U2
j
(ψ2)dWs (W 1,W 2)γ

≤ 20C5

 

U2
j

T̂n,U2
j
(ψ2)dWs (W 1,W 2)γ , (5.23)

10 Since theUk
j are vertically matched, the term on the right hand side of (5.8) proportional to Cs is absent

here.
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where we have used the assumptions α − β ≥ γ and a > 1.
Again using (5.8) and Lemma 5.5-(a) we have

∣
∣
∣
∣
∣

|U 2
j | − |U 1

j |
|U 1

j |1−q
∣
∣
∣
∣
∣
≤ dWs (U 2

j ,U
1
j )|U 1

j |q ≤ (2δ)qC5�
−ndWs (W 2,W 1). (5.24)

Inserting (5.21), (5.23) and (5.24) in (5.20) and recalling Lemmas 5.4 and 5.5-(a) yields,

∑

j

∣
∣
∣
∣
∣

ˆ

U1
j

f T̂n,U1
j
ψ1 −

ˆ

U2
j

f T̂n,U2
j
ψ2

∣
∣
∣
∣
∣

≤ 72C̄0Aδ
1−γ dWs (W 1,W 2)γ |||Ln f |||−

(
2q40C5δ

γ + cC5�
−nγ + 2qC5�

−nδ
)

(5.25)

Then using this estimate in (5.11), and recalling (5.12) and (5.15) yields
∣
∣
∣
∣

´
W 1 Ln f ψ1ffl

W 1 ψ1
−

´
W 2 Ln f ψ2ffl

W 2 ψ2

∣
∣
∣
∣ ≤

{
23−1/q3Cq

s + C4L

+ 72C̄0
(
2q40C5δ

γ + cC5�
−nγ + 2qC5�

−nδ
) }

Aδ1−γ dWs (W 1,W 2)γ |||Ln f |||−
(5.26)

which yields the wanted estimate, provided

23−1/qCq
s + C4L + 72C̄0

(
2q40C5δ

γ + cC5�
−nγ + 2qC5�

−nδ
)
< c. (5.27)

5.2.4. Proof of Lemma 5.5

Proof. (a) This is [DZ2, Lemma 3.3].
(b) Recall thatUk

j is defined as the graph of a functionGUk
j
(r) = (r, ϕUk

j
(r)), for r ∈ I kj ,

k = 1, 2. Due to the vertical matching, we have I 1j = I 2j .

Now for x ∈ U 1
j , let r ∈ I 1j be such that GU1

j
(r) = x . Set x̄ = GU2

j
(r) and note that

x and x̄ lie on the same vertical line in M sinceU 1
j andU

2
j are matched. Thus by (3.6),

JU1
j
Tn(x)

J̃U2
j
Tn(x)

=
JU1

j
Tn(x)

JU2
j
Tn(x̄)

≤ eCd (d(Tnx,Tn x̄)1/3+φ(x,x̄)) ≤ eCdM0dWs (W 1,W 2)1/3 , (5.28)

where M0 is a constant depending only on the maximum and minimum slopes inCs and
Cu .

Next, for x ∈ U 1
j consider

ψ1 ◦ Tn(x)
ψ̃2(x)

‖G ′
U1

j
‖ ◦ G−1

U1
j
(x)

‖G ′
U2

j
‖ ◦ G−1

U1
j
(x)

.

Let Tn(x) = (r,GW 1(r)) and Tn(x̄) = (r̄ ,GW 2(r̄)), then

|r − r̄ | ≤ M0dWs (W 1,W 2) .
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If r ∈ IW 2 , then since d∗(ψ1, ψ2) = 0,

ψ1 ◦ GW 1(r)

ψ2 ◦ GW 2(r̄)
= ψ1 ◦ GW 1(r)

ψ2 ◦ GW 2(r)

ψ2 ◦ GW 2(r)

ψ2 ◦ GW 2(r̄)
≤ ‖G

′
W 2(r)‖

‖G ′
W 1(r)‖e

ad(GW1 (r),GW2 (r̄))α .

Next, since ‖G ′
W 1 − G ′

W 2‖ = |ϕ′W 1 − ϕ′
W 2 | and ‖G ′Wk‖ ≥ 1, we have

‖G ′
W 2(r)‖

‖G ′
W 1(r)‖ ≤ e

‖G ′
W1−G ′W2‖ ≤ edWs (W 1,W 2) .

Similarly,
‖G ′

U1
j
‖◦G−1

U1
j
(x)

‖G ′
U2
j
‖◦G−1

U1
j
(x)
≤ edWs (U1

j ,U
2
j ). Hence, using part (a) of the lemma and assum-

ing

C5n0�
−n0δ1−α ≤ 1, (5.29)

yields

ψ1 ◦ Tn(x)
ψ̃2(x)

‖G ′
U1

j
‖ ◦ G−1

U1
j
(x)

‖G ′
U2

j
‖ ◦ G−1

U1
j
(x)

≤ e(aM
α
0 +2)dWs (W 1,W 2)α .

The same estimate holds if r̄ ∈ IW 1 . Otherwise it must be that

|IW 1 ∩ IW 2 | ≤ M0dWs (W 1,W 2)

but then, since |IW 1�IW 2 | ≤ dWs (W 1,W 2) we would have |W 2| ≤ (1 +M0)dWs (W 1,

W 2), which violates (5.6) together with the assumption, provided

c > 4(1 + M0)
q . (5.30)

The estimates with the opposite sign follow similarly. Putting together these estimates
yields part (b) of the lemma with C5 = M0Cdδ

1/3−α + aMα
0 + 2.

(c) As noted in (5.18), by (b) it immediately follows that

∣
∣
∣ψ�

i, j (x)
∣
∣
∣ ≤

∣
∣
∣T̂n,U1

j
ψ1(x)− T̃n,U2

j
ψ2(x)

∣
∣
∣ ≤ 2C5dWs (W 1,W 2)αψ−j (x).

Next, for x, y ∈ U 1
j , let x̄ = GU2

j
◦ G−1

U1
j
(x), ȳ = GU2

j
◦ G−1

U1
j
(y), and note these are

well-defined due to the vertical matching between U 1
j and U 2

j . Let r = G−1
U1

j
(x) and

s = G−1
U1

j
(y). Recalling (4.4), we have

‖G ′
U1

j
(r)‖

‖G ′
U1

j
(s)‖ ≤ e

‖G ′
U1
j
(r)−G ′

U1
j
(s)‖

≤ eB∗|r−s| ≤ eB∗d(x,y) ,
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and similarly for ‖G ′
U2

j
‖. Using this estimate together with the proof of Lemma 5.2(a),

T̃n,U2
j
ψ2(x)

T̃n,U2
j
ψ2(y)

=
T̂n,U2

j
ψ2(x̄)

T̂n,U2
j
ψ2(ȳ)

‖G ′
U2

j
(r)‖

‖G ′
U1

j
(r)‖

‖G ′
U1

j
(s)‖

‖G ′
U2

j
(s)‖

≤ e(aC
−1
1 �−αn+Cd (2δ)1/3−α)d(x̄,ȳ)α+2B∗d(x,y) ≤ ead(x,y)

α

,

(5.31)

since d(x̄, ȳ) ≤ M0d(x, y) and provided

(aC−11 �−αn0 + Cd(2δ)
1/3−α)Mα

0 + B∗(2δ)1−α < a. (5.32)

To abbreviate what follows, let us denote g1 = T̂n,U1
j
ψ1 and g2 = T̃n,U2

j
ψ2. Then,

given x, y ∈ U 1
j , we have ψ−j (x) = gk(x), ψ

−
j (y) = gk(y). If k(x) = k(y), then, by

Lemma 5.2(a) and (5.31),

ψ−j (x)
ψ−j (y)

= gk(y)(x)

gk(y)(y)
≤ ead(x,y)

α

.

If k(x) �= k(y), then without loss of generality, we can take k(x) = 1 and k(y) = 2. By
definition, g1(x) ≤ g2(x) and g2(y) ≤ g1(y). Hence,

e−ad(x,y)α ≤ g1(x)

g1(y)
≤ ψ−j (x)

ψ−j (y)
= g1(x)

g2(y)
≤ g2(x)

g2(y)
≤ ead(x,y)

α

.

It follows that ψ−j ∈ Da,α(U 1
j ), and by (5.31), T̃n,U2

j
ψ2 ∈ Da,α(U 1

j ).

Then, for each 1 > B ≥ 2C5dWs (W 1,W 2)α and x, y ∈ U 1
j ,

ψ�
i, j (x) + Bψ−j (x)

ψ�
i, j (y) + Bψ−j (y)

≤ (B + 2C5dWs (W 1,W 2)α)ψ−j (x)
(B − 2C5dWs (W 1,W 2)α)ψ−j (y)

≤ ead(x,y)
α+4B−1C5dWs (W 1,W 2)α ≤ ead(x,y)

β

provided 8B−1C5dWs (W 1,W 2)α ≤ ad(x, y)β and

(2δ)α−β ≤ 1

2
. (5.33)

It remains to consider the case 8B−1C5dWs (W 1,W 2)α ≥ ad(x, y)β . Again wemust
split into two cases. If k(x) = k(y) = k, then, setting {�} = {1, 2} \ {k},

ψ�
�, j (x) + Bψ−j (x)

ψ�
�, j (y) + Bψ−j (y)

≤ g�(x) + (B − 1)gk(x)

g�(y) + (B − 1)gk(y)

≤ ead(x,y)
α
g�(y) + e−ad(x,y)α (B − 1)gk(y)

g�(y) + (B − 1)gk(y)

≤ ead(x,y)
α

[

1 +
2ad(x, y)α

B

]

≤ ea[d(x,y)α−β(1+2B−1)]d(x,y)β

≤ e
a
2 d(x,y)

β

(5.34)
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provided that

d(x, y)α−β(1 + 2B−1) ≤ 4B−
α
β

[
8C5dWs (W 1,W 2)αa−1

] α−β
β ≤ 1

2
.

That is,

B ≥ 8
[
C5a

−1]
α−β
α

dWs (W 1,W 2)α−β.

The second case is k = k(x) �= k(y) = �. In this case, there must exist x̄ ∈ [x, y] such
that ψ−j (x̄) = g1(x̄) = g2(x̄). Then,

ψ�
�, j (x) + Bψ−j (x)

ψ�
�, j (y) + Bψ−j (y)

= g�(x) + (B − 1)gk(x)

Bg�(x̄)

g�(x̄) + (B − 1)gk(x̄)

g�(x̄) + (B − 1)gk(x̄)
≤ ead(x,y)

β

by the estimate (5.34). A similar estimate holds for ψ�
k, j . It follows that we can choose

B = 8
[
C5a

−1]
α−β
α

dWs (W 1,W 2)α−β (5.35)

and have ψ�
i, j + Bψ−j ∈ Da,β(U 1

j ). ��

5.3. Conditions on parameters. In this section, we collect the conditions imposed on
the cone parameters during the proof of Proposition 5.1. Recall the conditions on the
exponents stated before the definition of Cc,A,L(δ): α ∈ (0, 1/3], q ∈ (0, 1/2), β < α

and γ ≤ min{α − β, q}.
From (4.9) and Lemma 5.4 we require,

ea(2δ)
β

< e2aδ
β
0 ≤ 2 and 4AC̄0δδ

−1
0 ≤ 1/4 .

From the proof of Lemma 5.4 and Lemma 5.2, we require the following conditions on
n0,

AC0θ
n0
1 ≤ 1/16 and C−11 �−βn0 < 1 .

From Lemma 5.2, Corollary 5.3 and the proof of Lemma 5.5, we require

a > aC−11 �−βn0 + Cdδ
1/3−β
0 and a > (aC−11 �−αn0 + Cd(2δ)

1/3−α)Mα
0 +B∗(2δ)1−α

(recall that we have chosen n0 ≥ n1 after Corollary 5.3).
From the bound on (4.7), we require in (5.5),

A > 4L .

For the contraction of c, we require (see (5.7), the proof of Lemmas 5.5 and (5.27))

c > max
{
16Cq

s , 4(1 + M0)
q} ; C5�

−n0δ1−α ≤ 1 ; (2δ)α−β ≤ 1
2 ;

23−1/q3Cq
s + C4L + 72C̄0

(
2q40C5δ

γ + cC5�
−n0γ + 2qC5�

−n0δ
)
< c.

Finally, in anticipation of (6.21), we require,

cA > 2Cs . (5.36)

These are all the conditions we shall place on the parameters for the cone, except for
δ, which we will take as small as required for the mixing arguments of Sect. 6. Indeed,
note that if the above conditions are satisfied for some δ = δ∗, then they are satisfied
also for all δ ∈ (0, δ∗).
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6. Contraction of L and Finite Diameter

Proposition 5.1 proves that the parameters c and A of the cone Cc,A,L(δ) contract simply
as a consequence of the uniformproperties (H1)–(H5) for any sequence ofmaps (Tι j ) j ⊂F(τ∗,K∗, E∗). In this section, however,wewill restrict our sequence ofmaps to be drawn
from a sufficiently small neighborhood of a single map T0 ∈ F(τ∗,K∗, E∗) in order to
use the uniform mixing properties of maps T close to T0 to prove that the parameter L
also contracts under the sequential dynamics. This is done in two steps. First, in Sect. 6.1,
we use a length scale δ0 ≥

√
δ and compare averages on the two length scales, δ and

δ0, culminating in Proposition 6.3. This step does not yet require us to restrict our class
of maps. Second, in Sect. 6.2, restricting our sequential system to a neighborhood of
a fixed map T0, we obtain a bound on averages in the length scale δ0 as expressed in
Lemma 6.8. This leads to the strict contraction of L established in Theorem 6.12, which
proves Theorem 2.3(a). We prove Theorem 2.3(b) in Sect. 6.3, showing that the cone
Cχc,χ A,χL(δ) has finite diameter in the cone Cc,A,L(δ) (Proposition 6.13).

6.1. Comparingaverages ondifferent length scales. Recall the length scale δ0 ∈ (0, 1/2)
from (3.8) and that δ < δ0/2. Also, recall that Ws(δ0/2) denotes those curves in Ws

with length between δ0/2 and δ0. We choose δ ≤ δ20 and define

||| f |||0+ = sup
W∈Ws (δ0/2)
ψ∈Da,β (W )

´
W f ψ dmW´
W ψ dmW

, ||| f |||0− = inf
W∈Ws (δ0/2)
ψ∈Da,β (W )

´
W f ψ dmW´
W ψ dmW

.

By subdividing curves of with length in [δ0/2, δ0] into curves with length in [δ, 2δ], we
immediately deduce the relations,

||| f |||− ≤ ||| f |||0− ≤ ||| f |||0+ ≤ ||| f |||+ . (6.1)

Lemma 6.1. Assume eaδ
β
0 ≤ 2, from (4.9), and Aδ ≤ δ0/4, from Lemma 5.4.

For all n ∈ N, {ι j }nj=1 ⊂ I(τ∗,K∗, E∗) and f ∈ Cχc,χ A,χL(δ) we have,11

|||Ln f |||0+ ≤ ||| f |||0+ + 3C0

n∑

i=1
θ i1||| f |||+ ≤ ||| f |||0+ +

1

4
||| f |||+ , (6.2)

|||Ln f |||0− ≥
3

4
||| f |||0− . (6.3)

Proof. We prove (6.2) by induction on n. It holds trivially for n = 0. We assume the
inequality holds for 0 ≤ k ≤ n − 1 and prove the statement for n.

Let W ∈ Ws(δ0/2). Define L̂1(W ) to be those elements of G1(W ) having length at
least δ0/2. For k > 1, let L̂k(W ) denote those curves of length at least δ0/2 in Gk(W )

whose images are not already contained in an element of L̂i (W ) for any i = 1, . . . , k−1.
For Vj ∈ L̂k(W ), let Pk( j) be the collection of indices i such thatWi ∈ Gn(W ) satisfies
Tn−kWi ⊂ Vj . Denote by I0

n (W ) those indices i for which Tn−kWi is never contained
in an element of Gk(W ) of length at least δ0/2, 1 ≤ k ≤ n, and δ ≤ |Wi | < δ0/2. Let

11 The second inequality in (6.2) follows from (3.7).
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In(W ) denote the remainder of the indices i for curves in Gn(W ), i.e. those curvesWi of
length shorter than δ and for which Tn−kWi is not contained in an element of Gk(W ) of
length at least δ0/2. By construction, each Wi ∈ Gn(W ) belongs to precisely one Pk( j)
or I0

n (W ) or In(W ).
Now, for ψ ∈ Da,β(W ), recalling (5.13), we have,

∑

i∈Pk ( j)

ˆ

Wi

f ψ ◦ Tn JWi Tn =
ˆ

Vj

Ln−k f ψ ◦ Tn,n−k JVj Tn,n−k .

Using this equality, we estimate,

ˆ

W
Ln f ψ =

n∑

k=1

∑

Vj∈L̂k (W )

ˆ

Vj

Ln−k f ψ ◦ Tn,n−k JVj Tn,n−k

+
∑

i∈I0
n (W )

ˆ

Wi

f ψ ◦ Tn JWi Tn +
∑

i∈In (W )

ˆ

Wi

f ψ ◦ Tn JWi Tn

≤
n∑

k=1

∑

Vj∈L̂k (W )

|||Ln−k f |||0+
ˆ

Vj

ψ ◦ Tn,n−k JVj Tn,n−k

+
∑

i∈I0
n (W )

||| f |||+
ˆ

Wi

ψ ◦ Tn JWi Tn +
∑

i∈In (W )

Aδ1−q |Wi |q ||| f |||−|ψ |C0(W )|JWi Tn |C0(Wi )

≤
n∑

k=1

∑

Vj∈L̂k (W )

(
||| f |||0+ + 3

n−k∑

i=1
C0θ

i
1||| f |||+

)ˆ

Tn,n−k Vj

ψ

+
∑

i∈I0
n (W )

||| f |||+
δ0

2
|ψ |C0(W )|JWi Tn |C0(Wi )

+ A
δ

δ0
δ0|ψ |C0(W )||| f |||+C0θ

n
1

≤
ˆ

W
ψ
(
||| f |||0+ + 3

n−1∑

i=1
C0θ

i
1||| f |||+

)
+
(
1 + 2A

δ

δ0

)
eaδ

β
0

ˆ

W
ψ ||| f |||+C0θ

n
1 ,

where for the second inequalitywe have used the inductive hypothesis, and for the second
and third we have used Lemmas 3.3(a) and 4.2. This proves the required inequality if

δ0 is small enough that eaδ
β
0 ≤ 2 and δ is small enough that Aδ ≤ δ0/4, both of which

we have assumed.
We prove (6.3) similarly, although now the inductive hypothesis is |||Lk f |||0− ≥ (1−

3
∑k

i=1 C0θ
i
1) for each k = 0, . . . , n − 1. We begin with the same decompostion of

Gn(W ), although we simply drop the terms in I0
n (W ) since they are all positive (see

Remark 4.8).

ˆ

W
Ln f ψ =

n∑

k=1

∑

Vj∈L̂k (W )

ˆ

V j
Ln−k f ψ ◦ Tn,n−k JVj Tn,n−k

+
∑

i∈I0
n (W )

ˆ

Wi

f ψ ◦ Tn JWi Tn +
∑

i∈In(W )

ˆ

Wi

f ψ ◦ Tn JWi Tn

≥
n∑

k=1

∑

Vj∈L̂k (W )

|||Ln−k f |||0−
ˆ

V j
ψ ◦ Tn,n−k JVj Tn,n−k
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−
∑

i∈In(W )

Aδ1−q |Wi |q ||| f |||−|ψ |C0(W )|JWi Tn|C0(Wi )

≥
n∑

k=1

∑

Vj∈L̂k (W )

ˆ

Tn,n−kVj

ψ ||| f |||0−
(
1− 3

n−k∑

i=1
C0θ

i
0

)

−A
δ

δ0
δ0|ψ |C0(W )||| f |||−C0θ

n
1

≥
ˆ

W
ψ ||| f |||0−

(
1− 3

n−1∑

i=1
C0θ

i
1

)
− 2A

δ

δ0
eaδ

β
0

ˆ

W
ψ ||| f |||0−C0θ

n
1

−||| f |||0−
(
1− 3

n−1∑

i=1
C0θ

i
1

) ∑

i∈In(W )∪I0
n (W )

|Wi ||ψ |C0(W )|JWi Tn|C0(Wi )

≥
ˆ

W
ψ ||| f |||0−

(
1− 3

n−1∑

i=1
C0θ

i
1 − 2A

δ

δ0
eaδ

β
0 C0θ

n
1 − eaδ

β
0 C0θ

n
1

)
,

where again we have used Lemmas 3.3(a) and 4.2 as well as the bound ||| f |||− ≤ ||| f |||0−.
This proves the inductive claim, and from this, (6.3) follows from (3.8). ��
To continue it is useful to set

N (δ)− = log(8C0(Lδ0δ−1 + 2A))

| log θ1| . (6.4)

Next, we have a partial converse of Lemma 6.1.

Lemma 6.2. For all n ≥ N (δ)− and {ι j }nj=1 ⊂ I(τ∗,K∗, E∗), we have

|||Ln f |||+ ≤ max
k=0,...n−1 |||Lk f |||0+ +

1

8
||| f |||−

|||Ln f |||− ≥
3

4
min

k=0,...n−1 |||Lk f |||0− −
1

8
||| f |||−

Proof. The proof follows along the lines of the proof of Lemma 6.1, using the same
decomposition into L̂k(W ), I0

n (W ) and In(W ), except that now we begin with W ∈
Ws(δ) and ψ ∈ Da,β(W ). We have,
ˆ

W
Ln f ψ ≤

n∑

k=1

∑

Vj∈L̂k (W )

|||Ln−k f |||0+
ˆ

V j
ψ ◦ Tn,n−k JVj Tn,n−k

+
∑

i∈I0
n (W )

||| f |||+
ˆ

Wi

ψ ◦ Tn JWi Tn

+
∑

i∈In(W )

Aδ1−q |Wi |q ||| f |||−|ψ |C0(W )|JWi Tn|C0(Wi )

≤
ˆ

W
ψ max

k=0,...n−1 |||Lk f |||0+ + ||| f |||+C0θ
n
1
δ0

δ

ˆ

W
ψ + 2A||| f |||−C0θ

n
1

ˆ

W
ψ

≤
ˆ

W
ψ
(

max
k=0,...n−1 |||Lk f |||0+ + ||| f |||−C0θ

n
1 (Lδ0δ

−1 + 2A)
)
,
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which proves the first inequality, given our assumed bound on n. Note that the ratio δ0/δ
appears in the second term since |Wi | ≤ δ0/2, while |W | ≥ δ.

The second inequality follows similarly, again along the lines of Lemma 6.1.

ˆ

W
Ln f ψ ≥

n∑

k=1

∑

Vj∈L̂k (W )

|||Ln−k f |||0−
ˆ

V j
ψ ◦ Tn,n−k JVj Tn,n−k

−
∑

i∈In(W )

Aδ1−q |Wi |q ||| f |||−|ψ |C0(W )|JWi Tn |C0(Wi )

≥ min
k=0,...n−1 |||Lk f |||0−

⎛

⎜
⎝

ˆ

W
ψ −

∑

i∈In(W )∪I0
n (W )

|Wi ||ψ |C0(W )|JWi Tn |C0(Wi )

⎞

⎟
⎠

− 2A
ˆ

W
ψ ||| f |||−C0θ

n
1

≥
ˆ

W
ψ

(

min
k=0,...n−1 |||Lk f |||0−(1− δ0δ

−1C0θ
n
1 )− 2AC0θ

n
1 ||| f |||−

)

,

and our bound on n suffices to complete the proof of the lemma. ��
Proposition 6.3. For all n ≥ N (δ)− and {ι j }nj=1 ⊂ I(τ∗,K∗, E∗), either,

|||Ln f |||+
|||Ln f |||−

≤ 8

9

||| f |||+
||| f |||−

,

or

|||Ln f |||+ ≤ 8||| f |||0+ and |||Ln f |||− ≥
9

20
||| f |||0− .

Proof. Since n ≥ N (δ)− ≥ n0, we may apply both Lemmas 5.4 and 6.2. Now, by
Lemma 6.2,

|||Ln f |||− ≥
3

4
min

k=0,...n−1 |||Lk f |||0− −
1

8
||| f |||− ≥

9

16
||| f |||0− −

1

4
|||Ln f |||− ,

applying Lemma 6.1 to the first term and Lemma 5.4 to the second. This yields im-
mediately, |||Ln f |||− ≥ 9

20 ||| f |||0−, which is the final inequality in the statement of the
lemma.

Now consider the following alternatives. If |||Ln f |||+ ≤ 2
5 ||| f |||+, then

|||Ln f |||+
|||Ln f |||−

≤
2
5 ||| f |||+
9
20 ||| f |||0−

≤ 8

9

||| f |||+
||| f |||−

proving the first alternative. On the other hand, if |||Ln f |||+ ≥ 2
5 ||| f |||+, then using Lem-

mas 6.2, 6.1 and 5.4,

|||Ln f |||+ ≤ max
k=0,...n−1 |||Lk f |||0+ +

1

8
||| f |||− ≤ ||| f |||0+ +

1

4
||| f |||+ +

1

4
|||Ln f |||−

≤ ||| f |||0+ +
7

8
|||Ln f |||+ ,

which yields the second alternative. ��
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6.2. Mixing implies contraction of L. The importance of Proposition 6.3 is that either
L contracts within N (δ)− iterates or we can compare ratios of integrals on the length
scale δ0 (which is fixed independently of δ). In the latter case we will use the uniform
mixing property of maps T ∈ F(τ∗,K∗, E∗) in order to compare the value of

´
W Ln fψ

for different W of length approximately δ0. To this end, we will define a Cantor set R∗
comprised of local stable and unstable manifolds of a certain length in order to make
our comparison when curves cross this set.

We begin by recalling the open neighborhoods in F(τ∗,K∗, E∗) defined by (2.3).
Let T ∈ F(τ∗,K∗, E∗), and for 0 < κ < 1

2 min{τ∗,K∗}, define
F(T, κ) = {T̃ ∈ F(τ∗,K∗, E∗) : d(Q(T̃ ), Q(T )) < κ} . (6.5)

Recall the index set corresponding to F(T, κ) is I(T, κ) ⊂ I(τ∗,K∗, E∗). Thus ι ∈
I(T, κ) if and only if Tι ∈ F(T, κ).

Lemma 6.4. Foranyκ ∈ (0, 1
2 {τ∗,K∗}

)
, the setF(τ∗,K∗, E∗) canbe covered by finitely

many sets F(T, κ), T ∈ F(τ∗,K∗, E∗).
Proof. Each T ∈ F(τ∗,K∗, E∗) is associated with a billiard table Q ∈ Q(τ∗,K∗, E∗).
Such billiard tables have exactly K boundary curves with C3 norm uniformly bounded
by E∗. Since the torus is compact and the distanced(Q, Q̃) defined in Sect. 2.1measures
distance only in the C2 norm, the set Q(τ∗,K∗, E∗) is compact in the distance d. Thus
for each κ > 0, there exists Nκ ∈ N and a set {Qι j }Nκ

j=1 ⊂ Q(τ∗,K∗, E∗) such that12

∪ jQ(Qι j , E∗; κ) ⊃ Q(τ∗,K∗, E∗). SinceF(Qι j , E∗; κ)∩F(τ∗,K∗, E∗) = F(Tι j , κ),
this yields the required covering. ��
Remark 6.5. The primary reasonwe restrict to T̃ ∈ F(T, κ) is to concludeLemma6.6(b)
for a fixed time n∗ and rectangle R∗. This will enable us to make a type of ‘matching’ ar-
gument for our sequential system, the main comparison being established in Lemma 6.8.

The reader familiar with the subject will notice that the matching described here
requires weaker properties than the usual arguments used in coupling. After stable curves
are forced to cross a fixed rectangle by Lemma 6.6, the ‘matched’ pieces are not Cantor
sets, but rather full curves. The cone technique thus enables us to bypass the use of real
stable/unstable manifolds used in classical coupling arguments for billiards (see [CM,
Section 7]), and even the modified coupling developed for sequential systems which
only couples for a finite time along approximate invariant manifolds, as in [SYZ], both
of which require a more delicate use of the structure of invariant manifolds, in particular
control of the gaps in the Cantor sets used for coupling.

For a fixed T ∈ F(τ∗,K∗, E∗), we construct an approximate rectangle D in M ,
contained in a single homogeneity strip, whose boundaries are comprised of two local
stable and two local unstable manifolds for T as follows. Choose δ̄0 > 0 and x ∈ M
such that dist(T−nx,SH

1 ) ≥ δ̄0�
−|n| for all n ∈ Z. This implies that the homogenous

local stable and unstable manifolds13 of x , Ws
H
(x) and Wu

H
(x), have length at least δ̄0

on either side of x . By the Sinai Theorem applied to homogeneous unstable manifolds
(see, for example, [CM, Theorem 5.70]), we may choose δ0 < δ̄0 such that more than
0.99 of the measure of points in Wu

H
(x) ∩ B2.1δ0(x) have homogeneous local stable

12 Recall from Sect. 2.1 that by Proposition 2.2,Q(Qι j , E∗; κ) = {Q ∈ Q( 12 τ∗, 1
2K∗, E∗) : d(Q, Qι j ) <

κ}.
13 Although the stable/unstable directions in M vary, they always belong to the global stable/unstable cones

defined in (H1) and so are uniformly transverse.
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•
x W s

H
(x)

W u
H
(x)

D2δ0 Dδ0

D2δ0

stable curves
properly crossing R

2δ0∗

Fig. 2. The boxes D′2δ0 and D2δ0

manifolds having length at least 2.1δ0 on both sides of Wu
H
(x), and analogously for

the points in Ws
H
(x) ∩ B2.1δ0(x). Since these subsets of W

s/u
H

(x) are closed, there exist
two extreme points on each manifold whose unstable/stable manifolds define a solid
rectangle, which we will denote by D′2δ0 . By choice of δ0, the stable and unstable
manifolds comprising ∂D′2δ0 have length at least 4δ0. There must exist a rectangle D2δ0
fully crossing D′2δ0 in the stable direction and with boundary comprising two stable

and two unstable manifolds, such that the unstable diameter of D2δ0 is between δ40 and
2δ40,

14 and the set of local homogeneous stable and unstable manifolds fully crossing
D2δ0 comprise at least 9/10 of the measure of D2δ0 with respect to μSRB; otherwise, at
most 9/10 of the measure of Wu

H
(x) ∩ B2.1δ0(x) would have long stable manifolds on

either side of Wu
H
(x), contradicting our choice of δ0. Similarly, define Dδ0 ⊂ D2δ0 to

have precisely the same stable boundaries, but stable diameter between 1.8δ0 and 2δ0
rather than 4δ0, still centered atWu

H
(x). See Fig. 2 for a pictorial illustration of the above

construction.
Let Ss/u(Dδ0) denote the maximal set of stable/unstable manifolds that fully cross

Dδ0 , including its boundary curves. Define Rδ0∗ = Ss(Dδ0)∩Su(Dδ0) to be the Cantor
rectangle defined by the intersection of thosemaximal families. Define R2δ0∗ analogously
with respect to Ss/u(D2δ0).

By construction, μSRB(R
δ0∗ ) > (0.9)2μSRB(Dδ0) ≈ δ50. Below, we denote Dδ0 by

D(Rδ0∗ ) since it is the minimal solid rectangle that defines Rδ0∗ .
We say that a stable curve W ∈ Ws properly crosses a Cantor rectangle R (in the

stable direction) if W intersects the interior of the solid rectangle D(R), but does not
terminate in D(R), and does not intersect the two stable manifolds contained in ∂D(R).

Lemma 6.6. For T ∈ F(τ∗,K∗, E∗), let Rδ0∗ = Rδ0∗ (T ) be the Cantor rectangle con-
structed above.

14 The choice of δ40 will be needed in Lemma 6.7.
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(a) There exists n∗ ∈ N, depending only on δ0 and F(τ∗,K∗, E∗), such that for all
T ∈ F(τ∗,K∗, E∗) and all W ∈Ws with15 |W | ≥ δ0/(6C̄0), and all n ≥ n∗, T−nW
contains a connected, homogeneous component that properly crosses Rδ0∗ (T ).

(b) There exists κ > 0 such that for all T ∈ F(τ∗,K∗, E∗) and all {ι j }n∗j=1 ⊂ I(T, κ),
T−1n∗ W contains a connected, homogeneous component that properly crosses Rδ0∗ (T ).

Proof. First we fix T ∈ F(τ∗,K∗, E∗) and prove items (a) and (b) of the lemma for this
T , i.e. we demonstrate that such an n∗ and κ exist depending on T . Then we show how
Lemma 6.4 implies that n∗ and κ can be chosen uniformly for T ∈ F(τ∗,K∗, E∗).
a) Fix T ∈ F(τ∗,K∗, E∗). By [CM, Lemma 7.87], there exist finitely many Cantor
rectangles16 R(δ0) = {R1, . . . , Rk}, with μSRB(Ri ) > 0 for each i , such that any stable
curve W ∈ Ws with |W | ≥ δ0/(6C̄0) properly crosses at least one of them. Let εR be
the minimum length of an unstable manifold in Ri , for any Ri ∈ R(δ0).

Consider the solid rectangle D̄(R2δ0∗ ) ⊂ D(R2δ0∗ ) which crosses D(R2δ0∗ ) fully in
the stable direction, but comprises the approximate middle 2/3 of D(R2δ0∗ ) in the
unstable direction, with approximately 1/3 of the unstable diameter of D(R2δ0∗ ) on
each side of D̄(R2δ0∗ ). Similarly, let D̃(R2δ0∗ ) ⊂ D̄(R2δ0∗ ) denote the approximate mid-
dle 1/3 of D(R2δ0∗ ) in the unstable direction. Let R̄2δ0∗ := R2δ0∗ ∩ D̄(R2δ0∗ ) and let
R̃2δ0∗ := R2δ0∗ ∩ D̃(R2δ0∗ ). Note that μSRB(R̄

2δ0∗ ) > μSRB(R̃
2δ0∗ ) > 0 since μSRB(R

2δ0∗ ) >

(0.9)2μSRB(D(R2δ0∗ )) by construction.
Now given W ∈ Ws with |W | ≥ δ0/(6C̄0), let Ri ∈ R(δ0) denote the Cantor

rectangle which W crosses properly. By the mixing property of T , there exists n∗i > 0

such that for all n ≥ n∗i , T n(R̃2δ0∗ ) ∩ Ri �= ∅. We may increase n∗i if necessary so

that C1�
n∗i δ40/12 ≥ εR. We claim that T n(R̄2δ0∗ ) properly crosses Ri in the unstable

direction for all n ≥ n∗i . If not, then the unstable manifolds comprising R̄2δ0∗ must be cut
by a singularity curve in SH

1 before time n∗i (since otherwise they would be longer than
2εR by choice of n∗i ), and the images of those unstable manifolds must terminate on the
unstable manifolds in Ri . But this implies that some unstable manifolds in Ri will be
cut under T−n , a contradiction.

Since T n(R̄2δ0∗ ) properly crosses Ri in the unstable direction, it follows that T n(D
(R̄2δ0∗ )) contains a solid rectangle D∗ that fully crosses D(Ri ) in the unstable direction
(here we use the fact that the stable manifolds of R̄2δ0∗ cannot be cut under T n , as well
as that the singularity curves of T n can only terminate on other elements of SH

n [CM,
Proposition 4.47]). Define V = W ∩ D∗ and note that V fully crosses D∗ in the stable
direction. In particular, V lies between two stable manifolds in Ri and thus between two
stable manifolds in T n(R̄2δ0∗ ). Thus T−nV properly crosses R̄2δ0∗ , and also R2δ0∗ , in the
stable direction. Since Rδ0∗ has the same stable boundaries as R2δ0∗ , but half the stable
diameter, then T−nV also properly crosses Rδ0∗ , as required. SinceR(δ0) is finite, setting
n∗ = max1≤i≤k{n∗i } < ∞ completes the proof of part (a) with n∗ = n∗(T ) depending
on T .
(b) In the proof of part (a), for T ∈ F(τ∗,K∗, E∗)we constructed a rectangle R̄2δ0∗ and a
time n∗ so that for anyW ∈Ws and n ≥ n∗, there exists V ⊂ W such that T−n is smooth
on V and T−nV properly crosses R̄2δ0∗ . Now for {ι j }n∗j=1 ∈ I(T, κ), Proposition 2.2(b)

15 Recall that C̄0 is from Lemma 3.3.
16 These Cantor rectangles Ri are maximal in the sense that they are the intersection of the maximal families

of local invariant manifolds Ss/u(D(Ri )) that fully cross the solid rectangle D(Ri ).
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Ū1

D(R∗)

U2

an unmatched part of Ū2

Fig. 3. Crossing D(R∗)

guarantees that T−1n∗ V is close to T−n∗V for κ sufficiently small, except possibly when

iterates land in a neighborhood NCκ1/2(ST−1 ∪ STι j
−1 ). But in this case, Proposition 2.2(a)

implies that for Tι ∈ F(T, κ), the singularity sets ST−1 and STι−1 either differ by at most
Cκ1/2 or new components are formed in a Cκ1/2 neighborhood of S0. By construction,
since R̄2δ0∗ has 2/3 the unstable diameter and twice the stable diameter asRδ0∗ , then there
exists κ , depending only on δ0 and n∗, such that T−1n∗ V properly crossesRδ0∗ , as required.

Finally, we show how n∗ and κ can be chosen uniformly in F(τ∗,K∗, E∗). For
each T ∈ F(τ∗,K∗, E∗), parts (a) and (b) yield n∗(T ) and κ(T ) with the stated
properties. Then the set of open neighborhoods {Q(Q(T ), E∗; κ(T )/2)}T∈F(τ∗,K∗,E∗)
forms an open cover of Q(τ∗,K∗, E∗), where Q(T ) is the billiard table associated
with T . By compactness (see the proof of Lemma 6.4) there exists a finite subcover
{Q(Q(Tι j ), E∗; κ(Tι j )/2)}Nε

j=1. For anyT ∈ F(Tι j , κ(Tι j )/2),wehaveF(T, κ(Tι j )/2) ⊂
F(Tι j , κ(Tι j )). Thus n∗(Tι j ) and 1

2κ(Tι j ) have the desired properties for this T . Setting

n∗ = max j n∗(Tι j ) proves part (a) and κ = 1
2 min j κ(Tι j ) proves part (b) of the lemma.

��
From this point forward, we fix T0 ∈ F(τ∗,K∗, E∗) and let R∗ = Rδ0∗ (T0) as

constructed above. We will consider sequences {ι j } j ⊂ I(T0, κ), where κ is from
Lemma 6.6(b), i.e. we will draw from maps T ∈ F(T0, κ).

Lemma 6.7. Let W 1,W 2 ∈Ws , n ≥ 0 and {ι j }nj=1 ⊂ I(T0, κ). Suppose U1 ∈ Gn(W 1)

and U2 ∈ Gn(W 2) properly cross R∗ and define Ūi = Ui ∩ D(R∗), i = 1, 2. Then there
exists C7 > 0, depending only on the maximum slope and maximum curvature B̄ of
curves inWs , such that dWs (Ū1, Ū2) ≤ C7δ

2
0 .

Proof. Define a foliation of vertical line segments covering D(R∗). Due to the uniform
transversality of the stable cone with the vertical direction, it is clear that the length of
the segments connecting Ū1 and Ū2 have length at most C3δ

4
0, where C3 > 0 depends

only on the maximum slope in Cs(x). Moreover, the unmatched parts of Ū1 and Ū2 near
the boundary of D(R∗) also have length at most C3δ

4
0. See Fig. 3 for an illustration.

Recalling the definition of dWs (·, ·), it remains to estimate the C1 distance between
the graphs of Ū1 and Ū2. Denote by ϕ1(r) and ϕ2(r) the functions defining Ū1 and Ū2

on a common interval I = IŪ1
∩ IŪ2

. Let ϕ′i = dϕi
dr . For x ∈ Ū1 over I , let x̄ ∈ Ū2

denote the point on the same vertical line segment as x .
Suppose there exists x ∈ Ū1 over I such that |ϕ′1(r(x))− ϕ′2(r(x̄))| > Cδ20 for some

C > 0, where r(x) denotes the r -coordinate of x = (r, ϕ). Since the curvature of each
Ui is bounded by B̄ by definition, we have |ϕ′′i | ≤ B̄(1 + (Kmax + τ−1min)

2)3/2 =: C̄7.



Projective Cones for Sequential Dispersing Billiards 879

Now consider an interval J ⊂ I of radius δ20 centered at r(x). Then |ϕ′1(r) −
ϕ′1(r(x))| ≤ C̄7|r − r(x)| for all r ∈ J , and similarly for ϕ′2. Thus,

|ϕ′1(r)− ϕ′2(r)| ≥ Cδ20 − 2C̄7δ
2
0 = (C − 2C̄7)δ

2
0 for all r ∈ J.

This in turn implies that there exists r ∈ J such that |ϕ1(r)−ϕ2(r)| ≥ (C−2C̄7)δ
4
0,which

is a contradiction if C − 2C̄7 > C3. This proves the lemma with C7 = 2C̄7 + C3. ��
Recall that by Lemma 4.1, for W ∈ Ws the cone Da,α(W ) has finite diameter in

Da,β(W ) for α > β, so that

ρW,a,β(g1, g2) ≤ D0 for all g1, g2 ∈ Da,α(W ) (6.6)

for some constant D0 > 0 depending only on a, α and β. Without loss of generality, we
take D0 ≥ 1.

Lemma 6.8. SupposeW 1,W 2 ∈Ws with |W 1|, |W 2| ∈ [δ0/2, δ0]anddWs (W 1,W 2) ≤
C7δ

2
0 . Assume ψ� ∈ Da,α(W �) with

´
W 1 ψ1 =

´
W 2 ψ2 = 1.

Recall that δ ≤ δ20 and let κ > 0 be from Lemma 6.6. Let C > 0 be such that if
n ≥ C log(δ0/δ) then C5�

−n ≤ δ/δ20 , where C5 is from Lemma 5.5. For all n such that
n ≥ C log(δ0/δ) ≥ 2n0 and all {ι j }nj=1 ⊂ I(T0, κ), we have

´
W 1 Ln f ψ1´
W 2 Ln f ψ2

≤ 2

for all f ∈ Cc,A,L(δ), provided
[
2C̄0C3C7(3L Aδ1−qδ2q0 + 3Lδ20)

1−�−q
+ 2C̄0Aδ

1−q(2δq + cδγ+q + D0δ
q + 2δq0 )

]

6e2aδ
α
0

≤ δ0.

Remark 6.9. Since δ ≤ δ20, the condition of Lemma 6.8 will be satisfied if

[
2C̄0C3C7(3L Aδ0 + 3Lδ0)

1−�−q
+ 2C̄0Aδ

1−q
0 (2δq0 + cδ2γ+q0 + D0δ

q
0 + 2)

]

6e2aδ
α
0 ≤ 1.

(6.7)

This will determine our choice of δ0.

Proof. We will change variables to integrate on T−1n W �, � = 1, 2. As in Sect. 5.2.3, we
split Gn(W �) into matched pieces {U �

j } j and unmatched pieces {V �
j } j . Corresponding

matched pieces U 1
j and U 2

j are defined as graphs GU �
j
over the same r -interval I j and

are connected by a foliation of vertical line segments. Following (5.12), we write,
ˆ

W �

Ln f ψ� =
∑

j

ˆ

U �
j

f T̂n,U �
j
ψ� +

∑

j

ˆ

V �
j

f T̂n,V �
j
ψ�,

where T̂n,U �
j
ψ� := ψ� ◦ Tn JU �

j
Tn , and similarly for T̂n,V �

j
ψ�, � = 1, 2.
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We perform the estimate over unmatched pieces first, following the same argument
as in Sect. 5.2.3 to conclude that |Tn−i−1V 1

j | ≤ C3�
−i dWs (W 1,W 2) ≤ C3C7�

−iδ20,
for any curve V 1

j created at time i , 0 ≤ i ≤ n − 1.
Recalling the sets P(i) from Sect. 5.2.3 of unmatched pieces created at time i ,

we split the estimate into curves P(i; S) if |Tn−i−1V 1
j | < δ and curves P(i; L) if

|Tn−i−1V 1
j | ≥ δ.

The estimate over short unmatched pieces is given by (recalling the notation from
(5.13)),

n−1∑

i=0

∑

j∈P(i;S)

∣
∣
∣
∣
∣

ˆ

V 1
j

f T̂n,V 1
j
ψ1

∣
∣
∣
∣
∣

=
n−1∑

i=0

∑

j∈P(i;S)

∣
∣
∣
∣
∣

ˆ

Tn−i−1V 1
j

Ln−i−1 f · ψ1 ◦ Tn,n−i−1 JTn−i−1V 1
j
Tn,n−i−1

∣
∣
∣
∣
∣

≤
n−1∑

i=0

∑

j∈P(i;S)
Aδ1−qCq

3�
−iqdWs (W 1,W 2)q |||Ln−i−1 f |||−|ψ1|C0 |JTn−i−1V 1

j
Tn,n−i−1|C0

≤ C̄0A

1−�−q
Cq
3C

q
7 δ

2q
0 3L|||Ln f |||−δ1−q |ψ1|C0 , (6.8)

where we have used Lemma 3.3-(b), |W 1| ∈ [δ0/2, δ0], and Remark 3.4 to estimate the
sum over the Jacobians, as well as (5.14) to estimate |||Ln−i−1 f |||− ≤ 3L|||Ln f |||−.

For the estimate over long pieces, we subdivide them into curves of length between
δ and 2δ and estimate them by |||Ln−i−1 f |||+, then we recombine them to obtain,

n−1∑

i=0

∑

j∈P(i;L)

∣
∣
∣
∣
∣

ˆ

V 1
j

f T̂n,V 1
j
ψ1

∣
∣
∣
∣
∣

=
n−1∑

i=0

∑

j∈P(i;L)

∣
∣
∣
∣
∣

ˆ

Tn−i−1V 1
j

Ln−i−1 f · ψ1 ◦ Tn,n−i−1 JTn−i−1V 1
j
Tn,n−i−1

∣
∣
∣
∣
∣

≤
n−1∑

i=0

∑

j∈P(i;L)
|||Ln−i−1 f |||+

ˆ

Tn−i−1V 1
j

ψ1 ◦ Tn,n−i−1 JTn−i−1V 1
j
Tn,n−i−1

≤ 3L|||Ln f |||−
n−1∑

i=0

∑

j∈P(i;L)
|Tn−i−1V 1

j ||ψ1|C0 |JTn−i−1V 1
j
Tn,n−i−1|C0

≤ C3C7C̄0

1−�−1
δ203L|||Ln f |||−|ψ1|C0 , (6.9)

where, in third line we used (5.14), and in the fourth line, since |W 1| ≥ δ0/2, we used
Remark 3.4 to drop the second term in Lemma 3.3(b).

Next, we estimate the integrals over thematched piecesU 1
j .We argue as in Sect. 5.2.3,

but our estimates here are somewhat simpler sincewedo not need to show that parameters
contract.

We first treat the matched short pieces with |U 1
j | < δ much as we did the unmatched

ones. By Lemma 5.5, dWs (U 1
j ,U

2
j ) ≤ C5�

−ndWs (W 1,W 2) ≤ δ, sincewe have chosen
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n ≥ C log(δ0/δ). Thus if |U 1
j | < δ then |U 2

j | < 2δ, and the analogous fact holds for

short curves |U 2
j | < δ. With this perspective, we call U �

j short if either |U 1
j | < δ or

|U 2
j | < δ. On short pieces, we apply (4.7)

∑

j, short

∣
∣
∣
∣
∣

ˆ

U1
j

f T̂n,U1
j
ψ1

∣
∣
∣
∣
∣
≤

∑

j, short

2Aδ||| f |||−|ψ1|C0 |JU1
j
Tn|C0

≤ 4Aδ|||Ln f |||−C̄0|ψ1|C0 , (6.10)

where we have again used Lemmas 3.3(b) and 5.4 for the second inequality. Remark
that the same argument holds for U 2

j with test function ψ2.

Finally, to estimate the integrals over matched curves with |U 1
j |, |U 2

j | ≥ δ we follow
equation (5.20), recalling (5.16), although we no longer have Lemma 5.5(c) at our
disposal,

∣
∣
∣
∣
∣

ˆ

U1
j

f T̂n,U1
j
ψ1 −

ˆ

U2
j

f T̂n,U2
j
ψ2

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

ˆ

U1
j

f T̂n,U1
j
ψ1 −

ˆ

U1
j

f T̃n,U2
j
ψ2

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

´
U1

j
f T̃n,U2

j
ψ2

ffl
U1

j
T̃n,U2

j
ψ2

−
´
U2

j
f T̂n,U2

j
ψ2

ffl
U2

j
T̂n,U2

j
ψ2

∣
∣
∣
∣
∣
∣

 

U2
j

T̂n,U2
j
ψ2

+

∣
∣
∣
∣
∣
∣

´
U1

j
f T̃n,U2

j
ψ2

ffl
U1

j
T̃n,U2

j
ψ2

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

|U 2
j | − |U 1

j |
|U 1

j |

∣
∣
∣
∣
∣

 

U2
j

T̂n,U2
j
ψ2

≤
∣
∣
∣
∣
∣

ˆ

U1
j

f T̂n,U1
j
ψ1 −

ˆ

U1
j

f T̃n,U2
j
ψ2

∣
∣
∣
∣
∣

+dWs (U 1
j ,U

2
j )

γ δ1−γ cA||| f |||−|JU2
j
Tn|C0 |ψ2|C0

+AδdWs (U 1
j ,U

2
j )||| f |||−|JU2

j
Tn|C0 |ψ2|C0 , (6.11)

where we have used (5.24) to estimate

∣
∣
∣
∣
|U2

j |−|U1
j |

|U1
j |

∣
∣
∣
∣.

To estimate the first term on the right side above, we use (4.7) and Lemma 4.10,

∣
∣
∣
∣
∣

ˆ

U1
j

f T̂n,U1
j
ψ1 −

ˆ

U1
j

f T̃n,U2
j
ψ2

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

´
U1

j
f T̂n,U1

j
ψ1

ffl
U1

j
T̂n,U1

j
ψ1

−
´
U1

j
f T̃n,U2

j
ψ2

ffl
U1

j
T̃n,U2

j
ψ2

∣
∣
∣
∣
∣
∣

 

U1
j

T̂n,U1
j
ψ1

+

´
U1

j
f T̃n,U2

j
ψ2

ffl
U1

j
T̃n,U2

j
ψ2

∣
∣
∣
∣
∣

 

U1
j

T̂n,U1
j
ψ1 −

 

U1
j

T̃n,U2
j
ψ2

∣
∣
∣
∣
∣

≤ 2δLρ(T̂n,U1
j
ψ1, T̃n,U2

j
ψ2)||| f |||−|JU1

j
Tn |C0 |ψ1|C0

+Aδ1−qδq0 ||| f |||−
(|JU1

j
Tn |C0 |ψ1|C0 + 2|JU2

j
Tn |C0 |ψ2|C0

)
,
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where we have used |U 1
j | ≤ δ0 in the last line. We may apply (6.6) since T̂n,U1

j
ψ1,

T̃n,U2
j
ψ2 ∈ Da,α(U 1

j ) by Lemma 5.5. Now putting the above estimate together with

(6.11), recalling dWs (U 1
j ,U

2
j ) ≤ δ, and using Lemma 3.3-(b) and Remark 3.4 as well

as Lemma 5.4, we sum over j to obtain,

∑

j long

∣
∣
∣
∣
∣

ˆ

U1
j

f T̂n,U1
j
ψ1 −

ˆ

U2
j

f T̂n,U2
j
ψ2

∣
∣
∣
∣
∣

≤ 2Aδ1−q |||Ln f |||−C̄0

(

cδγ+q + δ1+q +
2LD0δ

q

A
+ 2δq0

)

×(|ψ1|C0 + |ψ2|C0). (6.12)

Collecting (6.8), (6.9), (6.10) and (6.12), and recalling D0 ≥ 1 and A > 4L , yields

ˆ

W 1
Ln f ψ1

≤ C̄0C3C7(3L Aδ1−qδ2q0 + 3Lδ20)

1−�−q
|||Ln f |||−|ψ1|C0

+ 4C̄0Aδ|||Ln f |||−|ψ1|C0

+
∑

j

ˆ

U2
j

f T̂U2
j
ψ2 + 2Aδ1−q |||Ln f |||−C̄0(cδ

γ+q + D0δ
q + 2δq0 )(|ψ1|C0 + |ψ2|C0)

≤
{

1 +
[2C̄0C3C7(3L Aδ1−qδ2q0 + 3Lδ20)

1−�−q

+ 2C̄0Aδ
1−q(2δq + cδγ+q + D0δ

q + 2δq0 )
] |ψ1|C0 + |ψ2|C0

´
W 2 ψ2

}ˆ

W 2
Ln f ψ2 .

Now since
´
Wi ψi = 1, we have e−aδα0 ≤ |Wi |ψi ≤ eaδ

α
0 . Thus since |Wi | ≥ δ0/3,

|ψ1|C0 + |ψ2|C0
´
W 2 ψ2

≤ 6

δ0
e2aδ

α
0 ,

which proves the lemma. ��
Our strategy will be the following. For W 1, W 2 ∈ Ws(δ0/2), n sufficiently large

and {ι j }nj=1 ⊂ I(T0, κ), we wish to compare
´
W 1 Ln f ψ1 with

´
W 2 Ln f ψ2, where we

normalize
´
W 1 ψ1 =

´
W 2 ψ2 = 1. By Lemmas 6.6 and 6.7, we find U �

i ∈ Gn∗(W �),
� = 1, 2, such that U �

i properly crosses R∗, and dWs (Ū 1
i , Ū

2
i ) ≤ C7δ

2
0, where Ū

�
i =

U �
i ∩ D(R∗).
Next, for each i ,wewish to compare

´
Ū1
i
Ln−n∗ f T̂n∗,U1

i
ψ1 with

´
Ū2
i
Ln−n∗ f T̂n∗,U2

i
ψ2,

where, to abbreviate notation, T̂n∗,U �
i
ψ� = ψ� ◦ Tn,n−n∗ JU �

i
Tn,n−n∗ . However, the

weights
´
Ū �
i
T̂n∗,U �

i
ψ� may be very different for � = 1, 2 since the stable Jacobians

along the respective orbits before time n∗ may not be comparable. To remedy this, we
adopt the following strategy for matching integrals on curves.
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For each curve U �
i ∈ Gn∗(W ) which properly crosses R∗, we redefine Ū �

i to denote
the middle third of U �

i ∩ D(R∗) (and so having length at least 2δ0/3). Let M� denote
the index set of such i .

Let p(�)i = ´
Ū �
i
T̂n∗,U �

i
ψ�, and let m� = ∑

i∈M� p
(�)
i . Without loss of generality,

assume m2 ≥ m1.
We will match the integrals

∑
i∈M1

´
Ū1
i
Ln−n∗ f T̂n∗,U1

i
ψ1 with

∑
j∈M2

m1
m2

´
Ū2

j

Ln−n∗ f T̂n∗,U2
j
ψ2. The remainder of the integrals

∑
j∈M2

m2−m1
m2

´
Ū2

j
Ln−n∗ f T̂n∗,U2

j
ψ2

as well as any unmatched pieces (including the outer two-thirds of each U �
i ) we con-

tinue to iterate until such time as they can be matched as the middle third of a curve that
properly crosses R∗.

Set T̂n∗,U2
j
ψ̃2 = m1

m2
T̂n∗,U2

j
ψ2, and consider the following decomposition of the inte-

grals we want to match,

∑

i∈M1

j∈M2

ˆ

Ū1
i

Ln−n∗ f T̂n∗,U1
i
ψ1

p(2)j

m2
and

∑

i∈M1

j∈M2

ˆ

Ū2
j

Ln−n∗ f T̂n∗,U2
j
ψ̃2

p(1)i

m1

For each pair i, j in the first sum, the test function has integral weight
p(1)i p(2)j
m2

, and
the same is true for the corresponding pair in the second sum. Thus these integrals are
paired precisely according to the assumptions of Lemma 6.8. It follows that if n− n∗ ≥
C log(δ0/δ), then

∑

i∈M1

ˆ

Ū1
i

Ln−n∗ f T̂n∗,U1
i
ψ1 =

∑

i∈M1

j∈M2

ˆ

Ū1
i

Ln−n∗ f T̂n∗,U1
i
ψ1

p(2)j

m2

≤ 2
∑

i∈M1

j∈M2

ˆ

Ū2
j

Ln−n∗ f T̂n∗,U2
j
ψ̃2

p(1)i

m1

= 2
∑

j∈M2

ˆ

Ū2
j

Ln−n∗ f T̂n∗,U2
j
ψ̃2 . (6.13)

We want to repeat the above construction until most of the mass has been compared.
To this end we set up an inductive scheme. Consider the family of curvesW �

i ∈ Gn∗(W �)

that have not been matched. Each carries a test function ψ�,i := T̂n∗,W �
i
ψ̃�, where to

keep our notation uniform, we set ψ̃1 = ψ1. Renormalizing by a factor r�,1 < 1, we
have

∑
i

´
W �

i
ψ�,i = 1.

Definition 6.10. Given a countable collectionof curves and test functions,F = {Wi , ψi }i ,
with Wi ∈Ws , |Wi | ≤ δ0, ψi ∈ Da,α(Wi ) and

∑
i

´
Wi

ψi = 1, we call F an admissible
family if

∑

i

 

Wi

ψi ≤ C∗ , where C∗ := 3C̄0δ
−1
0 . (6.14)
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Notice that any stable curveW ∈Ws(δ0/2) togetherwith test functionψ ∈ Da,α(W )

normalized so that
´
W ψ = 1 forms an admissible family since |W | ≥ δ0/2. The content

of the following lemma is that an admissible family canbe iterated and remain admissible;
moreover, a family with larger average integral in (6.14) can be made admissible under
iteration.

Lemma 6.11. Let {Wi , ψi }i be a countable collection of curves Wi ∈ Ws , |Wi | ≤ δ0,
with functions ψi ∈ Da,α(Wi ), normalized so that

∑
i pi = 1, where pi =

´
Wi

ψi .

Suppose that
∑

i |Wi |−1 pi = C�.

Choose n� ∈ N so that C0θ
n�
1

C�

C∗ ≤ 1/6. Then for all n ≥ n�, and all {ιk}nk=1 ⊂
I(T0, κ), the dynamically iterated family {V i

j ∈ Gn(Wi ), T̂n,V i
j
ψi }i, j is admissible.

Proof. Setting p(i)j =
´
V i
j
T̂n,V i

j
ψi=

´
V i
j
ψi ◦ Tn JV i

j
Tn , it is immediate that

∑
i, j p

(i)
j =1.

Now fixWi and consider V i
j ∈ Gn(Wi ). Then using Lemmas 3.3 and 4.2 we estimate,

∑

j

|V i
j |−1 p(i)j =

∑

j

 

V i
j

ψi ◦ Tn JV i
j
Tn ≤

∑

j

|ψi |C0(Wi )
|JV i

j
Tn|C0(V i

j )

≤ |ψi |C0(C̄0δ
−1
0 |Wi | + C0θ

n
1 ) ≤ C̄0δ

−1
0 eaδ

α
0 pi + C0θ

n
1 e

aδα0 |Wi |−1 pi .
Using that eaδ

α
0 ≤ 2, we sum over i and use the assumption on the family {Wi , ψi }i to

obtain,
∑

i, j

∑

j

|V i
j |−1 p(i)j ≤

∑

i

(
2C̄0δ

−1
0 pi + 2C0θ

n
1 |Wi |−1 pi

) ≤ 2C̄0δ
−1
0 + 2C0θ

n
1C� .

(6.15)

Thus if n ≥ n�, the above expression is bounded by C∗, as required. ��
Theorem 6.12. Let L ≥ 60. Suppose a, c, A and L satisfy the conditions of Sect. 5.3, and
that in addition, δ ≤ δ20 satisfy (6.7) and (6.18). Then there exists χ < 1, independent
of the cone parameters, 17 and k∗ ∈ N such that if n ∈ N satisfies n ≥ NF :=
N (δ)−+k∗n∗,18with k∗ dependingonly on δ0, L and n∗ (seeEq. (6.17)), and if {ι j }nj=1 ⊂
I(T0, κ), where κ > 0 is from Lemma 6.6(b), then LnCc,A,L(δ) ⊂ Cχc,χ A,χL(δ).

Proof. As before, we take f ∈ Cc,A,L(δ), W 1, W 2 ∈ Ws(δ0/2) and test functions
ψ� ∈ Da,β(W �) such that

´
W 1 ψ1 =

´
W 2 ψ2 = 1. In order to iterate the matching

argument described above, we need upper and lower bounds on the amount of mass
matched via the process described by (6.13).

Upper Bound on Matching. By definition of Ū �
i , for each curve U �

i that properly
crosses R∗ at time n∗, at least 2/3 of the length of that curve remains not matched. Thus
if pi =

´
U �
i
T̂n,U �

i
ψ̃�, then at least (1− eaδ

α
0 /3)pi remains unmatched. Using eaδ

α
0 ≤ 2,

we conclude that at least (1/3)pi of the mass remains unmatched. Thus if r denotes the
total mass remaining after matching at time n∗, we have r ≥ 1/3. Renormalizing the
family by r, we have

∑
i |Wi |−1 pi

r ≤ 3C∗.

17 Indeed, using Proposition 5.1 and choosing L ≥ 60, we can always choose χ = 8
9 , although this will

affect the choice of NF .
18 Recall that n∗ is defined in Lemma 6.6 while N (δ)− is defined in Eq. (6.4).
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By the proof of Lemma 6.11 with C� = 3C∗, we see that choosing n� such that
6C0θ

n�
1 ≤ 1/3, then the bound in (6.15) is less than C∗, and the family recovers its

regularity in the sense of Lemma 6.11 after this number of iterates.
Lower Bound on Matching. By definition of admissible family, for each ε > 0,∑
|Wi |<ε pi ≤ C∗ε. So choosing ε = δ0/(6C̄0), we have that

∑

|Wi |≥δ0/(6C̄0)

pi ≥ 1

2
.

On each Wi with |Wi | ≥ δ0/(6C̄0), we have at least one Ui
j ∈ Gn∗(Wi ) that properly

crosses R∗ by Lemma 6.6. Then denoting by Ū i
j the matched part (middle third) of Ui

j
and setting

εn∗ =
Cn∗δ(5/3)

n∗
0

12 δ0

we have

ˆ

Ū i
j

T̂n∗,Ui
j
ψ̃i =

ˆ

Ū i
j

ψ̃i ◦ Tn,n−n∗ JUi
j
Tn,n−n∗ ≥ δ0

3 inf ψ̃i inf JUi
j
Tn,n−n∗

≥ 1
3e
−aδα0 pi e−Cdδ

1/3
0
|Tn,n−n∗Ui

j |
|Ui

j |
≥ εn∗ pi ,

where we have used the fact that ifW ∈Ws and T−1ι j
W is a homogeneous stable curve,

then |T−1ι j
W | ≤ C−1|W |3/5 for some constant C > 0 by (H1) (see, for example [DZ3,

eq. (6.9)]).
Thus a lower bound on the amount of mass coupled at time n∗ is εn∗

2 > 0.
We are finally ready to put these elements together. For k∗ ∈ N and k = 1, . . . k∗, let

M�(k) denote the index set of curves in Gkn∗(W �) which are matched at time kn∗. By
choosing δ0 small, we can ensure that n� ≤ n∗, where n� from Lemma 6.11 corresponds
to C� = 3C∗. Thus the family of remaining curves is always admissible at time kn∗. Let
M�(∼) denote the index set of curves that are not matched by time k∗n∗. We estimate
using (6.13) at each time n = kn∗,

ˆ

W 1
Ln f ψ1 =

k∗∑

k=1

∑

i∈M1(k)

ˆ

Ū1
i

Ln−kn∗ f T̂kn∗,U1
i
ψ̃1 +

∑

i∈M1(∼)

ˆ

V 1
i

Ln−k∗n∗ f T̂k∗n∗,V 1
i
ψ̃1

≤
k∗∑

k=1

∑

i∈M2(k)

2
ˆ

Ū2
i

Ln−kn∗ f T̂kn∗,U2
i
ψ̃2

+
∑

i∈M1(∼)

ˆ

V 1
i

Ln−k∗n∗ f T̂k∗n∗,V 1
i
ψ̃1 (6.16)
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We estimate the sum over unmatched pieices M�(∼) by splitting the estimate in curves
longer than δ, M�(∼; Lo), and curves shorter than δ, M�(∼; Sh).

∑

i∈M�(∼)

ˆ

V �
i

Ln−k∗n∗ f T̂k∗n∗,V �
i
ψ̃�

=
∑

i∈M�(∼;Lo)

ˆ

V �
i

Ln−k∗n∗ f T̂k∗n∗,V �
i
ψ̃�

+
∑

i∈M�(∼;Sh)

ˆ

V �
i

Ln−k∗n∗ f T̂k∗n∗,V �
i
ψ̃�

≤
∑

i∈M�(∼;Lo)
|||Ln−k∗n∗ f |||+

ˆ

V �
i

T̂k∗n∗,V �
i
ψ̃�

+
∑

i∈M�(∼;Sh)
A|||Ln−k∗n∗ f |||−δ|ψ�|C0 |JV �

i
Tn,n−k∗n∗ |C0

≤ (1− εn∗
2 )k∗3L|||Ln f |||− + 2A|||Ln f |||−δ|ψ�|C0 C̄0 .

where we have used (5.14) and the fact that k∗n∗ ≥ n0. For the sum over long pieces,
we used that the total mass of unmatched pieces decays exponentially in k, while for the
sum over short pieces, we used Lemma 3.3 and Remark 3.4 to sum over the Jacobians
since |W 1| ≥ δ0/2. Finally, since |ψ1|C0 ≤ eaδ

α
0
ffl
W 1 ψ1 ≤ 4

δ0
, we conclude,

∑

i∈M1(∼)

∣
∣
∣
∣
∣

ˆ

V 1
i

Ln−k∗n∗ f T̂k∗n∗,V 1
i
ψ̃1

∣
∣
∣
∣
∣
≤
(
3L(1− εn∗

2 )k∗ + 8AC̄0
δ
δ0

)
|||Ln f |||−

≤
(
3L(1− εn∗

2 )k∗ + 8AC̄0
δ
δ0

) ˆ

W 2
Ln f ψ2 ,

using the fact that
´
W 2 ψ2 = 1. A similar estimate holds for the sum over curves in

M2(∼). Finally, we put together this estimate with (6.16) to obtain,

ˆ

W 1
Ln f ψ1 ≤

k∗∑

k=1

∑

i∈M2(k)

2
ˆ

Ū2
i

Ln−kn∗ f T̂kn∗,U2
i
ψ̃2 +

∑

i∈M1(∼)

ˆ

V 1
i

Ln−k∗n∗ f T̂k∗n∗,V 1
i
ψ̃1

≤ 2
ˆ

W 2
Ln f ψ2 + 2

∑

j∈M2(∼)

∣
∣
∣
∣
∣

ˆ

V 2
j

Ln−k∗n∗ f T̂k∗n∗,V 2
j
ψ̃2

∣
∣
∣
∣
∣

+
∑

i∈M1(∼)

∣
∣
∣
∣
∣

ˆ

V 1
i

Ln−k∗n∗ f T̂k∗n∗,V 1
i
ψ̃1

∣
∣
∣
∣
∣

≤
ˆ

W 2
Ln f ψ2

(
2 + 3

(
3L(1− εn∗

2 )k∗ + 8AC̄0
δ
δ0

))
.

We choose k∗ such that

3L(1− εn∗
2

)k∗ <
1

6
. (6.17)
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Note that this choice of k∗ depends only on δ0 via εn∗ , and not on δ. Next, choose δ > 0
sufficiently small that

8AC̄0δ/δ0 <
1

6
. (6.18)

These choices imply that
ˆ

W 1
Ln f ψ1 ≤ 3

ˆ

W 2
Ln f ψ2 . (6.19)

Finally, we prove that L must contract by at least 8
9 . This is implied directly by

the first alternative of Proposition 6.3. So suppose instead that the second alternative
holds. Since (6.19) holds for all W 1,W 2 ∈ Ws(δ0/2) and test functions ψ1, ψ2 with´
W 1 ψ1 =

´
W 2 ψ2 = 1, we conclude that, for k ≥ k∗ and m ≥ N (δ)−,

|||Lkn∗+m f |||+
|||Lkn∗+m f |||−

≤ 160

9

|||Lkn∗ f |||0+
|||Lkn∗ f |||0−

≤ 160

3
≤ 8

9
L ,

if we choose L ≥ 60. ��

6.3. Finite diameter. In this section we prove the following proposition, which com-
pletes the proof of Theorem 2.3.

Proposition 6.13. For any χ ∈
(
max{ 12 , 1

L ,
1√
A−1 }, 1

)
, the cone Cχc,χ A,χL(δ) has di-

ameter less than� := log
(

(1+χ)2

(1−χ)2χL
)
<∞ in Cc,A,L(δ), assuming δ > 0 is sufficiently

small to satisfy (6.21).

Proof. For brevity, we will denote C = Cc,A,L(δ) and Cχ = Cχc,χ A,χL(δ). For f ∈ Cχ ,
we will show that ρ( f, 1) < ∞, where ρ denotes distance in the cone C. Fix f ∈ Cχ
throughout.

According to (4.1) if we find λ > 0 such that f − λ � 0, then ᾱ(1, f ) ≥ λ.
Notice that ||| f − λ|||± = ||| f |||± − λ. Hence f − λ satisfies (4.6) if

||| f |||+ − λ ≤ L(||| f |||− − λ) ⇐ λ ≤ L(1− χ)

L − 1
||| f |||− =: ᾱ1 ,

where we have used that f ∈ Cχ .
Similarly, f − λ satisfies (4.7) if, for all W ∈Ws−(δ) and ψ ∈ Da,β(W ),

|W |−q
∣
∣
´
W fψ − λ

´
W ψ

∣
∣

ffl
W ψ

≤ Aδ1−q (||| f |||− − λ) ⇐ λ ≤ (1− χ)A||| f |||−
A + 1

=: ᾱ2 .

Next, notice that for any λ ≥ 0, W 1,W 2 ∈Ws−(δ) and ψ� ∈ Da,α(W �),

∣
∣
∣
∣

´
W 1( f − λ)ψ1ffl

W 1 ψ1
−
´
W 2( f − λ)ψ2ffl

W 2 ψ2

∣
∣
∣
∣

=
∣
∣
∣
∣

´
W 1 f ψ1ffl
W 1 ψ1

−
´
W 2 f ψ2ffl
W 2 ψ2

− λ(|W 1| − |W 2|)
∣
∣
∣
∣



888 M. F. Demers, C. Liverani

≤ χ2dWs (W 1,W 2)γ δ1−γ cA||| f |||− + λ(δ + Cs)dWs (W 1,W 2) , (6.20)

where we have used (5.8), so that f − λ satisfies (4.8) if

χ2dWs (W 1,W 2)γ δ1−γ cA||| f |||− + λ(δ + Cs)δ
1−γ dWs (W 1,W 2)γ

≤ dWs (W 1,W 2)γ δ1−γ cA(||| f |||− − λ) .

This occurs whenever

λ ≤ cA||| f |||−(1− χ2)

δ + Cs + cA
⇐ λ ≤ (1− χ)||| f |||− =: ᾱ3 ,

provided that δ is chosen sufficiently small that

δ + Cs ≤ χcA , (6.21)

which is possible since cA > 2Cs by (5.36) and χ > 1/2.
Note that ᾱ2 ≤ ᾱ3 ≤ ᾱ1, so that ᾱ2 = mini {ᾱi }. Thus if λ ≤ ᾱ2, then f − λ ∈ C, i.e.

ᾱ(1, f ) ≥ ᾱ2.
Next, we proceed to estimate β̄(1, f ) for f ∈ Cχ . If we find μ > 0 such that

μ− f ∈ C, this will imply that β̄(1, f ) ≤ μ. Remarking that |||μ− f |||± = μ− ||| f |||∓,
we have that μ− f satisfies (4.6) if

μ ≥ L||| f |||+ − ||| f |||−
L − 1

⇐ μ ≥ L

L − 1
||| f |||+ =: β̄1 ,

while μ− f satisfies (4.7) if for all W ∈Ws−(δ), ψ ∈ Da,β(W ),

|W |−q |μ
´
W ψ − ´

W f ψ |
ffl
W ψ

≤ Aδ1−q(μ− ||| f |||+) ⇐ μ ≥ (1 + χ)A

A − 21−q
||| f |||+ =: β̄2 .

Finally, recalling (6.20) and again (5.8), we have that μ− f satisfies (4.8) whenever

χ2dWs (W 1,W 2)γ δ1−γ cA||| f |||− + μ(δ + Cs)δ
1−γ dWs (W 1,W 2)γ ≤ dWs (W 1,W 2)γ δ1−γ cA(μ− ||| f |||+) .

This is implied by,

μ ≥ cA(1 + χ2)

cA − (δ + Cs)
||| f |||+ ⇐ μ ≥ 1 + χ2

1− χ
||| f |||+ =: β̄3 ,

where again we have assumed (6.21).
Defining β̄ = maxi {β̄i }, it follows that ifμ ≥ β̄, thenμ− f ∈ C. Thus β̄ ≥ β̄(1, f ).

Since χ > 1/L and χ2 > 1/(A − 1), it holds that β̄3 ≥ β̄2 ≥ β̄1. Thus β̄ = β̄3. Our
assumption also implies χ > 1/A, so that ᾱ2 ≥ 1−χ

1+χ ||| f |||−.
Finally, recalling (4.1), we have

ρ(1, f ) = log

(
β̄(1, f )

ᾱ(1, f )

)

≤ log

(
β̄3

ᾱ2

)

≤ log

⎛

⎝
1+χ2

1−χ
1−χ
1+χ

||| f |||+
||| f |||−

⎞

⎠ ≤ log

(
(1 + χ)2

(1− χ)2
χL

)

,

for all f ∈ Cχ , completing the proof of the proposition. ��
Remark 6.14. Note that, setting χ∗ = max{ 12 , 1

L ,
1√
A−1 }, for χ ≤ χ∗ Proposition 6.13

implies only that the diameter of Cχc,χ A,χL(δ) ⊂ Cχ∗c,χ∗A,χ∗L(δ), in Cc,A,L(δ), is
bounded by log

(
(1+χ∗)2
(1−χ∗)2χ∗L

)
. If needed, a more accurate formula can be easily ob-

tained, but it would be more cumbersome.
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7. Loss of Memory and Convergence to Equilibrium

In this section we show how Theorem 2.3 (i.e. Theorem 6.12 and Proposition 6.13)
imply the loss of memory and convergence to equilibrium stated in Theorems 2.7 and
2.8. For a single map, the loss of memory is simply decay of correlations and the
results are comparable to the ones obtained in [DZ1] since they apply to a similar
(very) large class of observables (and possibly even distributions). Our loss of memory
result is new for our class of billiards, although see Remark 2.9 and [SYZ] for loss
of memory in a related billiards model. Before proving the main results of this section
(Theorem 7.3 and Corollary 7.5 prove Theorem 2.7while Theorem 7.4 and Corollary 7.5
prove Theorem 2.8), we establish a key lemma that integration with respect to μSRB

against suitable test functions respects the ordering in our cone. Recall the vector space
of functions A defined in Sect. 4.3.

The parameters a, q, α, β, γ, c, A, L , δ0 are fixed as to satisfy the relations described
in Sect. 5.3, hence Theorem 2.3 holds true. With Proposition 5.1 in mind, we prove our
next lemma with respect to the slightly larger cone Cc,A,3L(δ) ⊃ Cc,A,L(δ).
Lemma 7.1. Let δ > 0 be small enough that 2C�Ch(1 + A)(δ4/3 + δ1/3+βa�max) < 1,
where C�,Ch > 0 are from (7.4) and �max is the maximum diameter of the connected
components of M.

Suppose ψ ∈ C1(M) satisfies 2(2δ)1−β |ψ ′|C0(M) ≤ aminM ψ . If f, g ∈ A with
g − f ∈ Cc,A,3L(δ), then

´
f ψ dμSRB ≤

´
gψ dμSRB.

Proof. Let ψmin = minM ψ . The assumption on ψ implies that ψ ∈ D a
2 ,β

(W ) for each
W ∈Ws−(δ) since,
∣
∣
∣
∣log

ψ(x)

ψ(y)

∣
∣
∣
∣ ≤

1

ψmin
|ψ(x)− ψ(y)| ≤ |ψ

′|C0(M)

ψmin
d(x, y) ≤ |ψ

′|C0(M)

ψmin
(2δ)1−βd(x, y)β .

Suppose f, g ∈ A satisfy g− f ∈ Cc,A,3L(δ). Then according to (4.5) and (4.7), for
all ψ ∈ Da,β(W ),

|||g − f |||−
ˆ

W
ψ ≤

ˆ

W
(g − f )ψ dmW ≤ |||g − f |||+

ˆ

W
ψ ∀W ∈Ws(δ)

(7.1)
∣
∣
∣
∣

ˆ

W
(g − f )ψ dmW

∣
∣
∣
∣ ≤ |||g − f |||−Aδ1−q |W |q

 

W
ψ ∀W ∈Ws−(δ). (7.2)

Next, we disintegrateμSRB according to a smooth foliation of stable curves as follows.
Since the stable cones defined in (H1) are globally constant and uniform in the family
F(τ∗,K∗, E∗), we fix a direction in the stable cone and consider stable curves in the
form of line segments with this slope. Let kδ ≥ k0 denote the minimal index k of a
homogeneity strip Hk such that the stable line segments in Hk have length less than δ.
Due to the fact that the minimum slope in the stable cone is Kmin > 0, we have

kδ = Chδ
−1/3, (7.3)

for some constant Ch > 0 independent of δ.
Now for k < kδ , we decompose Hk into horizontal bands Bk,i such that every

maximal line segment of the chosen slope in Bk,i has equal length between δ and 2δ.
We do the same on H0 := M \ (∪k≥k0Hk). On each Bk,i , define a foliation of such
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parallel line segments {Wξ }ξ∈�k,i ⊂Ws(δ). Using the smoothness of this foliation, we
disintegrateμSRB into conditional measures cosϕ(x)dmWξ onWξ and a factor measure μ̂
on the index set�k,i . Note that our conditional measures are not normalized - we include
this factor in μ̂. Finally, on each homogeneity strip Hk , k ≥ kδ , we carry out a similar
decomposition, but using homogeneous parallel line segments of maximal length inHk
(which are necessarily shorter than length δ). We use the notation {Wξ }ξ∈�k,1 ⊂Ws−(δ)
for the foliations in these homogeneity strips since there is only one band in each of these
Hk . Note that for all k and i , we have μ̂(�k,i ) ≤ C�, for some constant C� depending
only on the chosen slope and spacing of homogeneity strips.

Also, it follows as in (3.5), that for x, y ∈ W ∈Ws−(δ),

log
cosϕ(x)

cosϕ(y)
≤ Cd(2δ)

1/3−βd(x, y)β ,

so that cosϕ ∈ D a
2 ,β

(W ) by the assumption of Lemma 5.2. Thus ψ cosϕ ∈ Da,β(W )

for all W ∈Ws−(δ).
Using this fact and our disintegration of μSRB, we estimate the integral applying (7.1)

on �k,i for k < kδ and (7.2) on �k,1 for k ≥ kδ ,
ˆ

M
(g − f )ψ dμSRB =

∑

i,k<kδ

ˆ

�k,i

ˆ

Wξ

(g − f )ψ cosϕ dmWξ dμ̂(ξ) +
∑

k≥kδ

ˆ

�k,1

ˆ

Wξ

(g − f )ψ cosϕ dmWξ dμ̂(ξ)

≥ |||g − f |||−
⎛

⎝
∑

i,k<kδ

ˆ

�k,i

ˆ

Wξ

ψ cosϕ dmWξ dμ̂(ξ) −Aδ
∑

k≥kδ

ˆ

�k,1

 

Wξ

ψ cosϕ dmWξ dμ̂(ξ)

⎞

⎠

≥ |||g − f |||−
⎛

⎝ψminμSRB(M \ (∪k≥kδHk ))− AδC�|ψ |C0

∑

k≥kδ
k−2

⎞

⎠

≥ |||g − f |||−
(
ψmin(1− 2C�Chδ

4/3)− |ψ |C0 AC�Ch2δ
4/3) , (7.4)

where we have estimated
∑

k≥kδ k
−2 ≤ 2k−1δ ≤ 2Chδ

1/3 and μSRB(∪k≥kδHk)

≤ 2C�Chδ
4/3.

Now |ψ |C0 ≤ ψmin + �max|ψ ′|C0 , where �max is the maximum diameter of the
connected components of M . Then by the assumption on ψ , we have

2C�Ch(1 + A)δ4/3|ψ |C0 ≤ 2C�Ch(1 + A)δ4/3ψmin(1 + �max
a
2 (2δ)

β−1)
≤ ψmin2C�Ch(1 + A)(δ4/3 + a�maxδ

1/3+β) ≤ ψmin ,

where for the last inequality we have used the assumption on δ in the statement of the
lemma. We conclude that the lower bound in (7.4) cannot be less than 0. ��
Remark 7.2. Since Remark 4.8 applies equally well to Cc,A,3L(δ), Lemma 7.1 implies
there exists C̄ ≥ 1 such that

´
M f dμSRB ≥ C̄−1||| f |||− > 0 for all f ∈ Cc,A,L(δ).

Using instead the upper bound in (7.1) and following the estimate of (7.4) yields,

0 <

ˆ

M
fψ dμSRB ≤ ||| f |||+C |ψ |C0 ,

for all f ∈ Cc,A,L(δ) andψ as in the statement of Lemma 7.1. Since anyψ ∈ C1(M) can
be made to satisfy the condition of Lemma 7.1 by adding a constant (see the definition
of Cψ in (7.8) below), the estimate can be extended to all ψ ∈ C1(M) to obtain,

ˆ

M
fψ dμSRB ≤ ||| f |||+C |ψ |C1 .
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Loss of memory and convergence to equilibrium, including equidistribution, readily
follow from the contraction in the projective metric ρC(·, ·) of the cone Cc,A,L(δ). Set
μSRB( f ) =

´
M f dμSRB.

Recall NF := N (δ)− + k∗n∗ from Theorem 6.12 and the definition of an NF -
admissible sequence from Sect. 2.2: A sequence (ι j ) j , ι j ∈ I(τ∗,K∗, E∗), is NF -
admissible if there exist sequences (Tk)k≥1 ⊂ F(τ∗,K∗, E∗) and (Nk)k≥1 with Nk ≥
NF , such that Tι j ∈ F(Tk, κ) for all k ≥ 1 and j ∈ [1 +∑k−1

i=1 Ni ,
∑k

i=1 Ni ].
That is, an admissible sequence remains in a κ neighborhood of Tk for Nk ≥ NF

iterates at a time, but may undergo large changes between such blocks.
Our first theorem concerns loss of memory for functions in our cone, both with

respect to μSRB and with respect to the iteration of individual stable curves. It does not
use property (H5), although it does use that μSRB is a conformal measure for Ln , i.e.
μSRB(Ln f ) = μSRB( f ).

Theorem 7.3. Let δ > 0 satisfy the assumption of Lemma 7.1. There exists C > 0 and
ϑ < 1 such that for all admissible sequences (ι j ) j , all n ≥ 0, and all f, g ∈ Cc,A,L(δ)
with

´
M f dμSRB =

´
M g dμSRB:

(a) For all all W ∈Ws(δ) and all ψ ∈ C1(W ), we have
∣
∣
∣
∣

 

W
Ln f ψ dmW −

 

W
Lngψ dmW

∣
∣
∣
∣ ≤ Cϑn |ψ |C1 min{||| f |||+, |||g|||+} ;

(b) For all ψ ∈ C1(M),
∣
∣
∣
∣

ˆ

M
Ln f ψ dμSRB −

ˆ

M
Lngψ dμSRB

∣
∣
∣
∣ ≤ Cϑn|ψ |C1(M) min{||| f |||+, |||g|||+} .

(7.5)

Proof. (a) Recall the definition of ||| · |||+ for elements ofA fromDefinition 4.5 and (4.5),

||| f |||+ = sup
W∈Ws (δ)
ψ∈Da,β (W )

∣
∣
´
W fψ dmW

∣
∣

´
W ψ dmW

,

and note that by (4.10), ||| · |||+ is an order-preserving semi-norm in A.19 One can check
directly that A is an integrally closed vector lattice. Also μSRB( f ) :=

´
M f dμSRB is

homogeneous and order preserving in Cc,A,3L(δ) by Lemma 7.1 applied to ψ ≡ 1.
We would like to apply Theorem 6.12 to each block of NF iterates in the admissible

sequence; however, at time n, the sequence may have completed fewer than NF iterates
in its current block so it may be that Ln f,Lng /∈ Cc,A,L(δ). But since n ≥ NF > n0,
it follows from Proposition 5.1 that Ln f,Lng ∈ Cc,A,3L(δ). Then denoting by ρC′ the
metric in the larger cone Cc,A,3L(δ), [LSV, Lemma 2.2] implies that, for all f, g ∈
Cc,A,L(δ) with μSRB( f ) = μSRB(g), 20

|||Ln f − Lng|||+ ≤
(
eρC′ (Ln f,Lng) − 1

)
min{|||Ln f |||+, |||Lng|||+}. (7.6)

19 A semi-norm ‖ · ‖ is order preserving if −g � f � g implies ‖ f ‖ ≤ ‖g‖.
20 [LSV, Lemma 2.2] is stated for order preserving norms but its proof holds verbatim for order preserving

semi-norms, see [DKL1, Lemma D.4].



892 M. F. Demers, C. Liverani

Using the definition of admissible sequence, we may peel off the most recent j iterates,
where j < n0 + NF , such that Ln− j f,Ln− j g ∈ Cc,A,L(δ) and n − j is chosen so
that we have undergone at least NF iterates in the current block at time n − j . Then
applying Theorem 6.12 to each block of Nk iterates, and using Proposition 6.13 and
[L95a, Theorem 1.1 and Remark 1.2], for all n ≥ NF ,

ρC′(Ln f,Lng) ≤ ρC(Ln− j f,Ln− j g) ≤ ϑn− j−kρC(Lk f,Lkg) ,

where ϑ = [tanh(�/4)]1/(2NF ), and k ∈ [NF , 2NF − 1] is the least integer ≥ NF so
that Ln− j−k ends in a contracting block.

Finally, we use the fact thatLk f,Lkg ∈ Cχc,χ A,χL(δ) together with Proposition 6.13
to conclude ρC(Lk f,Lkg) ≤ �. Combining these estimates with Lemma 5.4 yields,

|||Ln f − Lng|||+ ≤ Cϑn min{||| f |||+, |||g|||+}, (7.7)

where C = 3
2�e�ϑ−3NF−n0 . This proves (a) for any W ∈Ws(δ) and ψ ∈ Da,β(W ).

To extend this estimate to more general ψ ∈ C1(W ), define ψ̃ = ψ + Cψ , where

Cψ = |ψmin| + 2
a |ψ ′|C0(2δ)1−β . (7.8)

Then ψ̃ ′ = ψ ′ and minW ψ̃ ≥ 2
a |ψ̃ ′|C0(2δ)1−β , so that ψ̃ ∈ D a

2 ,β
(W ) by the proof of

Lemma 7.1. Then since also Cψ ∈ Da,β(W ), the required estimate follows by writing
ψ = ψ̃ − Cψ and using the triangle inequality.
(b) Following the same strategy as above, given ψ ∈ C1(M) satisfying the assumption
of Lemma 7.1, we define a pseudo-norm for f ∈ A by

‖ f ‖ψ =
∣
∣
∣
∣

ˆ

M
f ψ dμSRB

∣
∣
∣
∣ . (7.9)

By Lemma 7.1, ‖ · ‖ψ is an order-preserving semi-norm, and as in (7.6), invoking again
[LSV, Lemma 2.2], Theorem 6.12, Proposition 6.13 and [L95a, Theorem 1.1], we have
for f, g ∈ Cc,A,L(δ) with μSRB( f ) = μSRB(g) and n ≥ NF ,

‖Ln f − Lng‖ψ ≤ Cϑn min{‖Ln f ‖ψ, ‖Lng‖ψ } ≤ Cϑn|ψ |C0 min{||| f |||+, |||g|||+} ,
where we applied Remark 7.2. This proves (b) for ψ satisfying the assumption of
Lemma 7.1. We extend to more general ψ ∈ C1(M) by defining ψ̃ = ψ + Cψ , where
Cψ is given by (7.8), and arguing as in the proof of part (a). ��

Since our maps all preserve μSRB, the loss of memory also implies equidistribution of
measures supported on stable curves and convergence to equilibrium, both of which are
summarized in the following theorem.

Theorem 7.4. Let δ > 0 satisfy the assumption of Lemma 7.1. There exists C > 0 such
that for all n ≥ 0 and admissible sequences (ι j ) j ⊂ I(τ∗,K∗, E∗), ϑ as in Theorem
7.3, and all f, g ∈ Cc,A,L(δ), with μSRB( f ) = μSRB(g):

(a) For all W1,W2 ∈Ws(δ) and all ψi ∈ C1(Wi ) with
ffl
W1

ψ1 =
ffl
W2

ψ2, we have
∣
∣
∣
∣

 

W1

Ln f ψ1 dmW1 −
 

W2

Lngψ2 dmW2

∣
∣
∣
∣ ≤ Cϑn (|ψ1|C1 + |ψ2|C1)μSRB( f ) ;

in particular, for all W ∈Ws(δ) and ψ ∈ C1(W ),
∣
∣
∣
∣

 

W
Ln f ψ dmW − μSRB( f )

 

W
ψ dmW

∣
∣
∣
∣ ≤ Cϑn |ψ |C1μSRB( f ) ; (7.10)
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(b) for all ψ ∈ C1(M),
∣
∣
∣
∣

ˆ

M
f ψ ◦ Tn dμSRB −

ˆ

M
f dμSRB

ˆ

M
ψ dμSRB

∣
∣
∣
∣ ≤ Cϑn|ψ |C1(M)μSRB( f ) .

Proof. (a) Since Ln1 = 1 and |||μSRB( f )|||+ = μSRB( f ), applying (7.7) with g = μSRB( f )
implies,
∣
∣
∣
∣

 

W
Ln f ψ dmW − μSRB( f )

 

W
ψ

∣
∣
∣
∣ =

 

W
ψ

∣
∣
∣
∣

´
W Ln f ψ dmW´

W ψ
−

´
W Ln(μSRB( f )) ψ´

W ψ

∣
∣
∣
∣

≤ Cϑn |ψ |C0μSRB( f ) ,

(7.11)

which proves (7.10) for ψ ∈ Da,β(W ). We extend this estimate to more general
ψ ∈ C1(W ) by defining ψ̃ = ψ + Cψ as in (7.8) and arguing as in the proof of
Theorem 7.3(a). Finally, the first inequality of part (a) follows from an application of
the triangle inequality.
(b) Since μSRB is conformal with respect to LT for each T ∈ F(τ∗,K∗, E∗), and using
that Ln1 = 1, we have
ˆ

M
f ψ ◦ Tn dμSRB −

ˆ

M
f dμSRB

ˆ

M
ψ dμSRB =

ˆ

M
Ln( f − μSRB( f )) ψ dμSRB .

Thus applying (7.5) to g = μSRB( f ) proves part (b) since |||μSRB( f )|||+ = μSRB( f ). ��
We may extend Theorems 7.3 and 7.4 to piecewise Hölder continuous functions, as

long as the discontinuities are transverse to the stable cone. Recall the definition of a
regular partitionP fromDefinition 2.6 and the setCt (P) of functions which are t-Hölder
continuous on each element of P , i.e. which satisfy

| f |Ct (P) = sup
P∈P

| f |Ct (P) <∞ .

Corollary 7.5. LetP be a regular partition of M and let t ≥ γ . Then the convergence in
Theorems 7.3 and 7.4 extend to all f, g ∈ Ct (P), withmax{| f |Ct (P), |g|Ct (P)} in place
of min{||| f |||+, |||g|||+} on the right hand side in Theorem 7.3 and in place of μSRB( f ) on
the right hand side in Theorem 7.4.

The proof of this corollary relies on the following lemma.

Lemma 7.6. If P is a regular partition of M and f ∈ Ct (P) with t ≥ γ , then λ + f ∈
Cc,A,L(δ) for any

λ ≥ max

{
L + 1

L − 1
| f |∞,

A + 21−q

A − 21−q
| f |∞,

cA + (2δt + 8KCPCs + 6Cs)

cA − 2Cs
| f |Ct (P)

}

.

Proof of Corollary 7.5. Let f, g ∈ Ct (P) with μSRB( f ) = μSRB(g) and let ψ ∈ C1(M).
Let λ f , λg be the constants from Lemma 7.6 corresponding to f and g, respectively,
and set λ = max{λ f , λg}. Then f +λ, g +λ ∈ Cc,A,L(δ) and μSRB( f +λ) = μSRB(g +λ),
so that by Theorem 7.3(b), for all n ≥ 0,

∣
∣
∣
∣

ˆ

M
Ln( f − g) ψ dμSRB

∣
∣
∣
∣ =

∣
∣
∣
∣

ˆ

M
Ln( f + λ− (g + λ))ψ dμSRB

∣
∣
∣
∣

≤ C ′ϑn|ψ |C1(M) max{| f |Ct (P), |g|Ct (P)} ,
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since ||| f + λ|||+ ≤ λ + | f |∞, and by Lemma 7.6, λ f ≥ C ′′| f |Ct (P), with analogous
estimates for g. This proves the analog of part (b) Theorem 7.3 and the proof of part (a)
follows similarly, replacing the integral over M by the integral over W ∈Ws .

The extension of Theorem 7.4 to f, g ∈ Ct (P) follows analogously, replacing f and
g in (7.11) with f + λ and g + λ, respectively to prove the analogue of (7.10), and then
using the triangle inequality to deduce the first inequality of part (a). Finally, part (b)
follows immediately once f is replaced by f + λ since

´
M ψ ◦ Tn dμSRB =

´
M ψ dμSRB

due to (H5). ��
Proof of Lemma 7.6. We must show that λ + f satisfies conditions (4.6)–(4.8) in the
definition of Cc,A,L(δ). Since

|||λ + f |||+ ≤ λ + | f |∞, and |||λ + f |||− ≥ λ− | f |∞ , (7.12)

to guarantee (4.6), we need

λ + | f |∞
λ− | f |∞ ≤ L ⇐ λ ≥ | f |∞ L + 1

L − 1
.

Next, to guarantee (4.7), for W ∈Ws−(δ), ψ ∈ Da,β(W ), we need,

|W |−q
´
W (λ + f )ψ
ffl
W ψ

≤ Aδ1−q(λ− | f |∞)

⇐ |W |1−q(λ + | f |∞) ≤ Aδ1−q(λ− | f |∞)

⇐ λ ≥ | f |∞ A + 21−q

A − 21−q
.

Lastly, we need to show that (4.8) is satisfied. For this, we prove the claim:
∣
∣
∣
∣

´
W 1 fψ1ffl
W 1 ψ1

−
´
W 2 fψ2ffl
W 2 ψ2

∣
∣
∣
∣ ≤ (2δt + 8KCPCs + 6Cs)δ

1−γ dWs (W 1,W 2)γ | f |Ct (P) ,

(7.13)

for W 1,W 2, ψ1, ψ2 as in (4.8). As in Sect. 5.2.3, we partition Wk into matched pieces
Uk

j and unmatched pieces V k
i such that U 1

j , U
2
j belong to the same element P ∈ P and

are defined over the same r -interval I j for each j . By assumption on P , #{Uk
j } j ≤ K ,

#{V k
j }k, j ≤ 2K , and |V k

j | ≤ CsCPdWs (W 1,W 2).
Recalling the notation from Sect. 4.2, we express the matched pieces as graphs over

their common r -interval, Uk
j = {GUk

j
(r) = (r, ϕUk

j
(r)) : r ∈ I j }, for k = 1, 2.

As inSect. 5.2.3,we assumewithout loss of generality that |W2| ≥ |W1| and
ffl
W1

ψ1 =
1. Also, we may assume |W2| ≥ 2Csδ

1−γ dWs (W1,W2)
γ ; otherwise, (7.13) is trivially

bounded by 2|W2|| f |∞ ≤ 4Csδ
1−γ dWs (W1,W2)

γ | f |∞.
Next,
∣
∣
∣
∣

´
W 1 fψ1ffl
W 1 ψ1

−
´
W 2 fψ2ffl
W 2 ψ2

∣
∣
∣
∣ ≤

∣
∣
∣
∣

ˆ

W 1
fψ1 −

ˆ

W 2
fψ2

∣
∣
∣
∣ +

ˆ

W 2
| f |ψ2

∣
∣
∣
∣1−

1
ffl
W 2 fψ2

∣
∣
∣
∣

≤
∑

j

∣
∣
∣
∣
∣

ˆ

U1
j

fψ1 −
ˆ

U2
j

fψ2

∣
∣
∣
∣
∣
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+
∑

k,i

∣
∣
∣
∣
∣

ˆ

V k
i

fψk

∣
∣
∣
∣
∣
+ | f |∞

∣
∣
∣
∣

ˆ

W 2
ψ2 − |W 2|

∣
∣
∣
∣ (7.14)

To estimate the first term on the right hand side, recalling (4.3) and d∗(ψ1, ψ2) = 0, we
have for r ∈ I j ,

|( fψ1) ◦ GU1
j
(r)‖G ′

U1
j
(r)‖ − ( fψ2) ◦ GU2

j
(r)‖G ′

U2
j
(r)‖|

= ψ1 ◦ GU1
j
(r)‖G ′

U1
j
(r)‖| f ◦ GU1

j
(r)− f ◦ GU2

j
(r)|

≤ ψ1 ◦ GU1
j
(r)‖G ′

U1
j
(r)‖Ht

P ( f )dWs (W 1,W 2)t ,

where Ht
P ( f ) denotes the Hölder constant of f on P ∈ P . Integrating over I j yields,
∣
∣
∣
∣
∣
∣

∑

j

ˆ

U1
j

fψ1 −
ˆ

U2
j

fψ2

∣
∣
∣
∣
∣
∣
≤∑ j H

t
P ( f )dWs (W 1,W 2)t

´
U1

j
ψ1

≤ |W 1|Ht
P ( f )dWs (W 1,W 2)t . (7.15)

For the second term on the right side of (7.14), |V k
i | ≤ CsCPdWs (W 1,W 2) plus (5.9)

implies

∑

k,i

∣
∣
∣
∣
∣

ˆ

V k
i

fψk

∣
∣
∣
∣
∣
≤ 2K | f |∞2e2a(2δ)

α

CsCPdWs (W1,W2) , (7.16)

while for the third term, (5.10) implies

| f |∞
∣
∣
∣
∣

ˆ

W 2
ψ2 − |W 2|

∣
∣
∣
∣ ≤ | f |∞6CsdWs (W 1,W 2) .

Collecting this estimate together with (7.15) and (7.16) in (7.14), and recalling (4.9), we
obtain

∣
∣
∣
∣

´
W 1 fψ1ffl
W 1 ψ1

−
´
W 2 fψ2ffl
W 2 ψ2

∣
∣
∣
∣ ≤ 2δHt

P ( f )dWs (W 1,W 2)t

+| f |∞(8KCP + 6)CsdWs (W 1,W 2) ,

proving the bound in (7.13) since dWs (W1,W2) ≤ δ and t ≥ γ .
With the claim proved, we proceed to verify (4.8). Using (5.8) we estimate,
∣
∣
∣
∣

´
W 1( f + λ)ψ1ffl

W 1 ψ1
−

´
W 2( f + λ)ψ2ffl

W 2 ψ2

∣
∣
∣
∣ ≤

∣
∣
∣
∣

´
W 1 fψ1ffl
W 1 ψ1

−
´
W 2 fψ2ffl
W 2 ψ2

∣
∣
∣
∣ + λ||W 1| − |W 2||

≤ (2δt + 8KCPCs + 6Cs)δ
1−γ dWs (W1,W2)

γ | f |Ct (P) + λ2CsdWs (W 1,W 2) .

Thus (4.8) will be verified if

(2δt + 8KCPCs + 6Cs)δ
1−γ dWs (W1,W2)

γ | f |Ct (P) + λ2CsdWs (W 1,W 2)

≤ cAδ1−γ dWs (W1,W2)
γ (λ− | f |∞) ,

which is implied by the final condition on λ in the statement of the lemma since
dWs (W1,W2) ≤ δ and cA > 2Cs by (5.36). ��
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8. Applications

Suppose that we have a billiard table Q = T
2 \ ∪i Bi and that the particle can escape

from the table by entering certain sets G ⊂ Q, which we call gates or holes, but only
at times kN for some N ∈ N. One could easily consider also the case of G ⊂ Q × S1

(i.e. some velocity directions are forbidden, as studied in [D2]), but we prefer to keep
things simple. In the literature, one often takes N = 1, i.e. the particle can escape at
each iterate of the map, but then the holes are required to be very small, see for example
[DWY,D1,D2]. By contrast, in this paper we will be interested in relatively large holes
and so we will replace the assumption of smallness with an assumption of occasional
escape through possibly large sets. This will facilitate the application of this method to
two situations we have in mind: chaotic scattering (Sect. 8.4) and a random Lorentz gas
(Sect. 8.5).

We begin with the same setup as in Sect. 2.1, fixing K numbers �1, . . . , �K > 0 and
identifying them as the arclengths of scatterers belonging to Q(τ∗,K∗, E∗) for some
fixed choice of τ∗,K∗, E∗ ∈ R

+. As in Sect. 3.1, we fix an index set I(τ∗,K∗, E∗),
identifying ι ∈ I(τ∗,K∗, E∗) with a map Tι ∈ F(τ∗,K∗, E∗) induced by the table
Qι ∈ Q(τ∗,K∗, E∗).

A hole Gι ⊂ Qι induces a hole Hι ⊂ M in the phase space of the billiard map Tι.
We formulate here two abstract conditions on the set Hι, and then provide examples of
concrete, physically relevant situations which induce holes satisfying our conditions in
Sect. 8.3.

(O1) (Complexity) There exists P0 > 0 such that any stable curve of length at most δ
can be cut into at most P0 pieces by ∂Hι, where δ is the length scale of the cone
Cc,A,L(δ).

(O2) (Uniform transversality) There exists Ct > 0 such that, for any stable curve
W ∈ Ws and ε > 0, mW (Nε(∂Hι)) ≤ Ctε, where Nε(A) is the ε-neighborhood
of A in M .

Remark 8.1. Assumption (O2) can be weakened to, e.g., mW (Nε(∂Hι)) ≤ Ctε
1/2, but

this would then require dWs (W 1,W 2) ≤ δ2 in our definition of cone condition (4.8).
Similar modifications are made to weaken the transversality assumption in the Banach
space setting, see for example [DZ3,D2].

For H ⊂ M satisfying (O1) and (O2), we let diams(H) denote the maximal length
of a stable curve in H , which we call the stable diameter.

As in Sect. 6.2, we fix T0 ∈ F(τ∗,K∗, τ∗) and consider sequences {ι j } j ⊂ I(T0, κ),
where κ > 0 is fromLemma 6.6(b). Recalling (6.5), this means wewill initially consider
sequential open systems comprisedofmapsT ∈ F(τ∗,K∗, E∗)withd(Q(T ), Q(T0)) <
κ . We will then extend this to n�-admissible sequences for appropriate n� depending on
H .

Denote by1A the characteristic functionof the set A. The relevant transfer operator for
the open sequential system (opening once every n� iterates) is given byLH,n� = Ln�1Hc ,
where Hc denotes the complement of H in M , and Ln� = LTιn�

· · ·LTι1
is the usual

transfer operator for the n�-step sequential dynamics. The main objective is to control
the action of the multiplication operator 1Hc on the cone Cc,A,L(δ).
Remark 8.2. From now on we will consider parameters c, A, L fixed so that all the
conditions of Sect. 5.3 apply for all δ smaller that some fixed δ∗.
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8.1. Relatively small holes. First we consider holes H whose stable diameter is short
compared to the length scale δ.

Lemma 8.3. If H ⊂ M satisfies (O1) and (O2), and if diams(H) ≤ δ
[

1
4P0A

]1/q
, then

1Hc [Cc,A,L(δ)] ⊂ Cc′,A′,L ′(δ),

where

L ′ = 2P1−q
0 ea(2δ)

β

A , A′ = 2P1−q
0 ea(2δ)

β

A ,

c′ = Pq
0 e

a(2δ)α + 2
(
2qδ + 3

4c
)
+ 4(P0 + 2)Pq−1

0 Cq
t .

Proof. Letting f ∈ Cc,A,L(δ), we must control the cone conditions one by one. We
begin with (4.6). Given W ∈Ws(δ), let G0 denote the collection of connected curves in
W \ H . Then applying (4.7) to each W ′ ∈ G0, for ψ ∈ Da,β(W ), we estimate

ˆ

W
(1Hc f )ψ dmW =

∑

W ′∈G0

ˆ

W ′
fψ dmW ′

≤
∑

W ′∈G0

 

W ′
ψdmW ′ |W ′|q Aδ1−q ||| f |||−

≤
∑

W ′∈G0

|W ′|qea(2δ)β
 

W
ψdmW Aδ1−q ||| f |||−

≤ P1−q
0 ea(2δ)

β

A||| f |||−
ˆ

W
ψ dmW , (8.1)

where, in the last line, we have used the Hölder inequality to estimate the sum on W ′,
recalling that, by (O1), the sum has, at most, P0 elements. On the other hand, if the
collection of disjoint curves {Wi } is such that ∪iWi = W ∩ H ,

ˆ

W
(1Hc f )ψ dmW =

ˆ

W
fψ dmW −

ˆ

W
(1H f )ψ dmW

≥ ||| f |||−
ˆ

W
ψ dmW −

∑

i

|Wi |q Aδ1−q ||| f |||−
 

Wi

ψ dmWi

≥
{
1− ea(2δ)

β

AP0δ
−qdiams(H)q

}
||| f |||−

ˆ

W
ψ dmW .

Hence, for diams(H) small enough,

|||1Hc f |||− ≥
1

2
||| f |||−. (8.2)

Accordingly, taking the supremum over W, ψ in (8.1),

|||1Hc f |||+ ≤ 2P1−q
0 ea(2δ)

β

A|||1Hc f |||− =: L ′|||1Hc f |||−
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Next, to verify (4.7), if W ∈Ws−(δ), then estimating as in (8.1),

ˆ

W
(1Hc f )ψ dmW =

∑

W ′∈G0

ˆ

W ′
fψ dmW ′

≤
∑

W ′∈G0

ea(2δ)
β |W ′|q Aδ1−q ||| f |||−

 

W
ψ dmW

≤ P1−q
0 |W |qea(2δ)β Aδ1−q ||| f |||−

 

W
ψ dmW

≤ 2P1−q
0 |W |qea(2δ)β Aδ1−q |||1Hc f |||−

 

W
ψ dmW

=: A′|W |qδ1−q |||1Hc f |||−
 

W
ψ dmW , (8.3)

where we have used (8.2) for the third inequality.
We are left with the last cone condition, (4.8). We take W 1,W 2 ∈ Ws−(δ) with

dWs (W 1,W 2) ≤ δ, and ψi ∈ Da,α(Wi ) with d∗(ψ1, ψ2) = 0.
As in Sect. 5.2.3, we may assume without loss of generality that |W 2| ≥ |W 1| andffl

W 1 ψ1 = 1. First of all note that, by condition (4.7) and our estimate above,

´
Wk 1Hc fψkffl

Wk ψk
≤ A′|Wk |qδ1−q |||1Hc f |||− ≤

1

2
dWs (W 1,W 2)γ δ1−γ cA′|||1Hc f |||−,

for k = 1, 2, provided |W 2|q ≤ δq−γ c
2dWs (W 1,W 2)γ . Accordingly, it suffices to

consider the case |W 2|q ≥ δq−γ c
2dWs (W 1,W 2)γ .

It follows from (5.8) that |W 1|q ≥ 1
2δ

q−γ c
2dWs (W 1,W 2)γ , recalling that dWs (W 1,

W 2) ≤ δ and (5.7). By (O2), we may decompose Wk ∩ Hc into at most P0 ‘matched’
pieces Wk

j such that dWs (W 1
j ,W

2
j ) ≤ dWs (W 1,W 2) and IW 1

j
= IW 2

j
, and at most21

P0 + 2 ‘unmatched’ pieces W
k
i , which satisfy,

|Wk
i | ≤ CtdWs (W 1,W 2).

Then, using condition (4.7) and noticing that d∗(ψ1|W 1
j
, ψ2|W 2

j
) = 0,

∣
∣
∣
∣

´
W 1 1Hc fψ1ffl

W 1 ψ1
−

´
W 2 1Hc fψ2ffl

W 2 ψ2

∣
∣
∣
∣ ≤

∑

j

∣
∣
∣
∣
∣
∣

´
W 1

j
fψ1

ffl
W 1 ψ1

−
´
W 2

j
fψ2

ffl
W 2 ψ2

∣
∣
∣
∣
∣
∣

+
∑

i,k

|Wk
i |qδ1−q A||| f |||−ea(2δ)

α

≤
∑

j

ffl
W 1

j
ψ1

ffl
W 1 ψ1

dWs (W 1,W 2)γ δ1−γ cA||| f |||−

21 According to (O1), Wk is divided into at most P0 pieces, and Wk ∩ Hc comprises at most P0
2 + 1 of

them. Each such piece can give rise to at most 2 unmatched pieces.
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+
∑

j

∣
∣
∣
∣
∣
∣

´
W 2

j
fψ2

ffl
W 2 ψ2

⎡

⎣1−
ffl
W 1

j
ψ1

ffl
W 2 ψ2

ffl
W 2

j
ψ2

ffl
W 1 ψ1

⎤

⎦

∣
∣
∣
∣
∣
∣

+ 8(P0 + 2)Cq
t dWs (W 1,W 2)γ δ1−γ A|||1Hc f |||−,

(8.4)

using (8.2). Next, since IW 1
j
= IW 2

j
, recalling Remark 4.4 and (5.8) we have

´
W 1

j
ψ1 =

´
W 2

j
ψ2 and22 ||W 1

j | − |W 2
j || ≤ |W 1

j |dWs (W 1,W 2). Then applying (4.7) and recalling
ffl
W1

ψ1 = 1,
∣
∣
∣
∣
∣
∣

´
W 2

j
fψ2

ffl
W 2 ψ2

⎡

⎣1−
ffl
W 1

j
ψ1

ffl
W 2 ψ2

ffl
W 2

j
ψ2

ffl
W 1 ψ1

⎤

⎦

∣
∣
∣
∣
∣
∣
≤ A||| f |||−

ffl
W 2

j
ψ2

ffl
W 2 ψ2

|W 2
j |qδ1−q

∣
∣
∣
∣
∣
1− |W

2
j |

|W 1
j |
 

W 2
ψ2

∣
∣
∣
∣
∣

≤ A||| f |||−ea(2δ)α
(

|W 2
j |qδ1−q

∣
∣
∣
∣
∣
1− |W

2
j |

|W 1
j |

∣
∣
∣
∣
∣

+
|W 2

j |q
|W 2|q

(
δ

|W 2|
)1−q ∣∣

∣
∣|W 2| −

ˆ

W 2
ψ2

∣
∣
∣
∣
|W 2

j |
|W 1

j |

)

≤ A||| f |||−2
(
|W 2

j |qδ1−qdWs (W 1,W 2)

+2
|W 2

j |q
|W 2|q

(
δ

|W 2|
)1−q ∣∣

∣
∣|W 2| −

ˆ

W 2
ψ2

∣
∣
∣
∣

)

.

(8.5)

Next, recalling |W 2| ≥ δ
1− γ

q [c/2] 1q dWs (W 1,W 2)
γ
q and using (5.10) yields,

(
δ

|W 2|
)1−q ∣∣

∣
∣|W 2| −

ˆ

W 2
ψ2

∣
∣
∣
∣ ≤ 6Cs[2/c]

1
q (1−q)δ

γ
q −γ dWs (W 1,W 2)

1+γ− γ
q

≤ 4−
1
q 6cδ

1−γ
dWs (W 1,W 2)γ ,

where we have again used (5.7) and dWs (W 1,W 2) ≤ δ. Using this estimate and the fact
that q ≤ 1/2 in (8.5) and summing over j yields,

∑

j

∣
∣
∣
∣
∣
∣

´

W
2 j fψ2

ffl
W2 ψ2

⎡

⎣1−
ffl
W1

j
ψ1

ffl
W2 ψ2

ffl
Wj2

ψ2
ffl
W1 ψ1

⎤

⎦

∣
∣
∣
∣
∣
∣
≤ 2Aδ1−γ ||| f |||−dWs (W 1,W 2)γ

∑

j

δ1−q |W 2
j |q +

3

4
c
|W 2

j |q
|W 2|q

≤ 2Aδ1−γ ||| f |||−dWs (W 1,W 2)γ P1−q
0

(
2qδ + 3

4 c
)
.

Finally, using this estimate in (8.4) concludes the proof of the lemma,
∣
∣
∣
∣

´
W 1 1Hc fψ1ffl

W 1 ψ1
−

´
W 2 1Hc fψ2ffl

W 2 ψ2

∣
∣
∣
∣ ≤ dWs (W 1,W 2)γ δ1−γ A2P1−q

0 |||1Hc f |||−

×
(
Pq
0 e

a(2δ)α + 2
(
2qδ + 3

4c
)
+ 4(P0 + 2)Pq−1

0 Cq
t

)
,

where we have again used (8.2). ��
22 Since IW1

j
= IW2

j
, the term on the right side of (5.8) proportional to Cs is absent in this case.
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Remark that, by Theorem 6.12, we know that there exists NF ∈ N, NF ≤ k∗n∗ +
C�| ln δ| where n∗, defined in Lemma 6.6, and k∗ from Theorem 6.12, are uniform in
F(τ∗,K∗, E∗), whileC� depends only on c, A, L , such thatLNF Cc,A,L(δ) ⊂ Cχc,χ A,χL

(δ), for all {ι j }NF
j=1 ⊂ I(T0, κ).

To state the next result we need to make explicit the coice of the cone parameters.
Let c′, A′, L ′ be given by Lemma 8.3. Choose (minimal) c′′ ≥ c′, A′′ ≥ A′ and L ′′ ≥ L ′
satisfying the conditions in Sect. 5.3, and δ′′ ≤ δ satisfying (6.7) and (6.18) with respect
to A′′ and L ′′.

Define N ′F = k∗n∗ +C ′�| ln δ′′|, where C ′�, k∗ and n∗ are from Theorem 6.12 applied
to the cone Cc′′,A′′,L ′′(δ′′). Since, as remarked in Proposition 5.1 and Theorem 6.12, χ is
independent of the cone parameters, we have LnCc′′,A′′,L ′′(δ′′) ⊂ Cχc′′,χ A′′,χL ′′(δ′′) for
all n ≥ N ′F .

Recall that κ > 0 from Lemma 6.6 depends only on the family F(τ∗,K∗, E∗).
Proposition 8.4. Let n� = N ′F . There exists J ∈ N, depending only on c, A, L , P0,Ct ,

such that if assumptions (O1) and (O2) are satisfied and diams(H) ≤ δ′′
[

1
4P0A

]1/q
,

then there exists χ ′ ∈ (0, 1) such that for all n ≥ Jn�, and all n�-admissible sequences
(ι j ) j≥1, [Ln1Hc ]Cc,A,L(δ′′) ⊂ Cχ ′c,χ ′A,χ ′L(δ′′).
Proof. For n = mN ′F , we may apply both Lemma 8.3 and Theorem 6.12 to obtain,

[Ln1Hc ]Cc,A,L(δ′′) ⊂ LmN ′F Cc′′,A′′,L ′′(δ
′′) ≤ Cχmc′′,χm A′′,χmL ′′(δ

′′) ,

for as long as χmc′′ > c, χm A′′ > A or χmL ′′ > L . Letting m1 denote the greatest m
such that χmc′′ > c or χm A′′ > A or χmL ′′ > L , and setting J = m1 + 1 produces the
required contraction. ��
Remark 8.5. Taking κ = 0 we can also consider the case of a single map, Tι j = T0
for each j . Then once we know the transfer operator for the open system acts as a
strict contraction on the cone, it is straightforward to recover the usual full set of results
for open systems with exponential escape, including a unique escape rate and limiting
conditional invariant measure for all elements of the cone. See Theorem 8.16 for an
example.

8.2. Large holes. The preceding pertains to relatively small holes. For many applica-
tions, large holes must be considered. To do so requires either a much closer look at
the combinatorics of the trajectories or requiring the holes to open at even longer time
intervals than what was needed before. We will pursue the second, much easier, option
with the intent to show that large holes are not out of reach. To work with large holes it
is convenient to strengthen hypothesis (O1):

(O1′) (Complexity) There exists P0 > 0 such that any stable curve of length at most δ0
can be cut into at most P0 pieces by ∂H .

The main difference between small and large holes is that, according to Lemma 8.3,
for holes with sufficiently small stable diameter, multiplication by 1Hc maps Cc,A,L(δ)
into a cone with larger parameters; by contrast, for large holes, multiplying by the
indicator function may produce functions that do not belong to any cone and we must
use mixing to recover this property, as detailed in Lemma 8.8. To avoid trivialities, we
only consider holes with μSRB(H) < 1.
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When iterating T−1n W for W ∈ Ws , we will need to distinguish between elements
of Gn(W ) which intersect H and those that do not. Recall that Gn(W ) subdivides long
homogeneous connected components of T−1n W into curves of length between δ0 and
δ0/3. We let GH

n (W ) denote the connected components of Wi ∩ Hc, for Wi ∈ Gn(W ),
where Hc = M \ H . Following the notation of Sect. 5.2, let LoHn (W ; δ) denote those
elements of GH

n (W ) having length at least δ and let ShH
n (W ; δ) denote those elements

having length at most δ.
Without the small hole condition, hypotheses (O1′) and (O2) are insufficient to

prove Lemma 8.3; however, one can recover the results of Proposition 8.4 and its
consequences provided one is willing to wait for a longer time. To prove the fol-
lowing result, we recall again Definition 2.4 of admissible sequence. We call a se-
quence (ι j ) j≥1, ι j ∈ I(τ∗,K∗, E∗), N -admissible if there exist sequences (Tk)k≥1 ⊂
F(τ∗,K∗, E∗) and (Nk)k≥1 with Nk ≥ N , such that Tι j ∈ F(Tk, κ) for all k ≥ 1 and

j ∈ [1 +∑k−1
i=1 Ni ,

∑k
i=1 Ni ].

Lemma 8.6. If (O1′) and (O2) are satisfied, then for each δ > 0 small enough (depending
on μSRB(H)) there exists nδ ∈ N, nδ ≤ C ln δ−1 for some constant C > 0, such that for
all nδ-admissible sequences (ι j ) j , all W ∈Ws(δ) and n ≥ nδ ,

∑

W ′∈LoHn (W ; δ)
|W |−1

ˆ

W ′
JW ′Tn ≥ 1

2
(1− μSRB(H)) .

Proof. Arguing exactly as in Lemma 8.3 it follows that if (O1′) and (O2) are satisfied,
then there exists c′ ≥ c, A′ ≥ A, L ′ ≥ L such that 1Hc + 1 ∈ Cc′,A′,L ′(δ) and we
may choose c′, A′, L ′ and δ > 0 such that the conditions of Theorem 6.12 are satisfied.
Setting nδ := N ′F from Theorem 6.12 for these cone parameters, we apply Eq. (7.10)
of Theorem 7.4 to this larger cone,
∣
∣
∣
∣

 

W
Ln(1Hc )− (1− μSRB(H))

∣
∣
∣
∣ =

∣
∣
∣
∣

 

W
Ln(1Hc + 1)− 2 + μSRB(H)

∣
∣
∣
∣ ≤ CHϑ

n .

On the other hand, recalling Lemma 3.3,
∣
∣
∣
∣
∣
∣

 

W
Ln(1Hc )−

∑

W ′∈LoHn (W ; δ)
|W |−1

ˆ

W ′
JW ′Tn

∣
∣
∣
∣
∣
∣
≤

∑

W ′∈ShHn (W ; δ)
|W |−1

ˆ

W ′
JW ′Tn

≤ P0(C̄0δ
−1
0 δ + C0θ

n
1 ),

which implies the lemma. ��
We are now able to state the analogue of Proposition 8.4 without the small hole

condition. Note, however, that now n� has a worse dependence on δ that we refrain from
making explicit. We recall from Remark 8.2 that we have fixed the parameters c, A, L
of the cone, but we may choose δ smaller as needed.

Proposition 8.7. Under assumptions (O1′) and (O2), for each δ > 0 small enough
there exist χ ′ ∈ (0, 1) and J, n� ∈ N depending on (O1′), (O2), μSRB(H) and δ, such
that, for all n�-admissible sequences (ι j ) j and for all n ≥ Jn�, [Ln1Hc ]Cc,A,L(δ) ⊂
Cχ ′c,χ ′A,χ ′L(δ).

Before proving Proposition 8.7, we state an auxiliary lemma, similar to Lemma 8.3.
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Lemma 8.8. If H satisfies (O1′) and (O2), there exists23 n̄δ ≥ nδ such that for n ≥ n̄δ
and all nδ-admissible sequences (ι j ) j , we have [Ln1Hc ]Cc,A,L(δ) ⊂ Cc′,A′,L ′(δ), where

c′ = cP0, A′ = A
6

1− μSRB(H)
, and L ′ = L

9

1− μSRB(H)
.

Proof of Proposition 8.7. As in Sect. 8.1, we may choose minimal c′′ ≥ c′, A′′ ≥ A′
and L ′′ ≥ L ′ and δ > 0 sufficiently small to satisfy the hypotheses of Theorem 6.12.
Then letting n� = max{N ′F , n̄δ}, with24 N ′F = C ′�| ln δ|+ k∗n∗ as before, we may apply
both Lemma 8.8 and Theorem 6.12 to obtain,

[Ln1Hc ]Cc,A,L(δ) ⊂ Lmn�Cc′′,A′′,L ′′(δ) ≤ Cχmc′′,χm A′′,χmL ′′(δ) ,

for as long as χmc′′ > c or χm A′′ > A or χmL ′′ > L . Letting m1 denote the greatest m
such that χmc′′ > c, χm A′′ > A or χmL ′′ > L , and setting J = m1 + 1 produces the
required contraction. ��
Proof of Lemma 8.8. Let n ≥ nδ (from Lemma 8.6) and f ∈ Cc,A,L(δ). For each W ∈
Ws(δ) and ψ ∈ Da,β(W ), we have

ˆ

W
ψ Ln(1Hc f ) =

∑

Wi∈LoHn (W ;δ)

ˆ

Wi

T̂n,iψ f +
∑

Wi∈ShHn (W ;δ)

ˆ

Wi

T̂n,iψ f, (8.6)

where we are using the notation of Sect. 5.1 for the test functions. Since any element of
Gn(W ) may produce up to P0 elements of ShH

n (W ; δ) according to assumption (O1′),
we estimate

ˆ

W
ψ Ln(1Hc f ) ≤

∑

Wi∈LoHn (W ;δ)
||| f |||+

ˆ

TnWi

ψ

+ AP0||| f |||−ea(2δ)β
ˆ

W
ψ (C̄0δδ

−1
0 + C0θ

n
1 )

≤ ||| f |||+
ˆ

W
ψ
(
1 + AP0e

a(2δ)β (C̄0δδ
−1
0 + C0θ

n
1 )
)
,

where we have used |W | ≥ δ and cone condition (4.7), as well as Lemma 3.3(b) to sum
over elements of ShH

n (W ; δ).
Analogously, using Lemma 8.6,
ˆ

W
ψ Ln(1Hc f )

≥
∑

Wi∈LoHn (W ;δ)
||| f |||−

ˆ

TnWi

ψ − AP0||| f |||−ea(2δ)β
ˆ

W
ψ (C̄0δδ

−1
0 + C0θ

n
1 )

≥ ||| f |||−
ˆ

W
ψ

(
e−a(2δ)β

2
(1− μSRB(H))− AP0e

a(2δ)β (C̄0δδ
−1
0 + C0θ

n
1 )

)

.

23 Since we have fixed the cone constants c, A, L , the number n̄δ depends on the constants appearing in
(O1′) and (O2) as well as μSRB(H) and the choice of δ, from Lemma 8.6.
24 N ′F is number from Theorem 6.12 applied to the cone with larger constants c′′, A′′, L ′′.
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Let n2 be such that 2AP0C0θ
n2
1 ≤ 1

24 (1−μSRB(H)), then for n ≥ n2 and δ small enough
we have

|||Ln(1Hc f )|||− ≥ ||| f |||−
1

6
(1− μSRB(H)). (8.7)

Accordingly, for n ≥ max{n2, nδ} =: n̄δ and δ small enough, we obtain

|||Ln(1Hc f )|||+
|||Ln(1Hc f )|||−

≤
3
2 ||| f |||+

||| f |||−( 16 (1− μSRB(H))
≤ 9L

1− μSRB(H)
=: L ′ . (8.8)

The contraction of A follows step-by-step from our estimates in Sect. 5.2.2. Taking
W ∈Ws−(δ) and grouping terms as in (8.6) we treat both long and short pieces precisely
as in Sect. 5.2.2 with the additional observation that each element of Gn(W ) produces
at most P0 elements of ShH

n (W ; δ) by assumption (O1′). Thus (5.4) becomes,

| ´W ψ Ln(1Hc f )|
ffl
W ψ

≤ Aδ1−q |W |q ||| f |||−
(
2L A−1 + P0e

a(2δ)β (C̄0δ
−1
0 |W | + C0θ

n
1 )

1−q)

≤ Aδ1−q |W |q |||Ln(1Hc f )|||−
6

1− μSRB(H)
=: A′δ1−q |W |q |||Ln(1Hc f )|||− ,

(8.9)

where we have applied (8.7) and assumed n ≥ max{n2, nδ}.
Finally, we show how the parameter c contracts from cone condition (4.8). Following

Sect. 5.2.3, we take W 1,W 2 ∈ Ws−(δ) with dWs (W 1,W 2) ≤ δ, and ψk ∈ Da,α(Wk)

with d∗(ψ1, ψ2) = 0. As before, we assume without loss of generality that |W 2| ≥ |W 1|
and

ffl
W 1 ψ1 = 1.

We begin by recording that, by (8.9),
´
Wk ψk Ln(1Hc f )

ffl
Wk ψk

≤ A′|Wk |qδ1−q |||Ln(1Hc f )|||−

≤ 1

2
dWs (W 1,W 2)γ δ1−γ cA′|||1Hc f |||−,

for k = 1, 2, provided |W 2|q ≤ δq−γ c
2dWs (W 1,W 2)γ . Accordingly, it suffices to

consider the case |W 2|q ≥ δγ−q c
2dWs (W 1,W 2)γ .

It follows from (5.8) that |W 1|q ≥ 1
2δ

q−γ c
2dWs (W 1,W 2)γ , recalling that dWs (W 1,

W 2) ≤ δ and (5.7).
Next, following (5.11), we decompose elements of GH

n (Wk) into matched and un-
matched pieces, as in (5.12). We estimate the unmatched pieces precisely as in (5.15),
noting that by (O1′) and the transversality condition (O2), each previously unmatched
element of Gn(Wk)may be subdivided into at most P0 additional unmatched pieces V k

j ,
while each matched element may produce up to P0 additional unmatched pieces each
having length at most,

|V k
j | ≤ CtC5�

−ndWs (W 1,W 2) ,
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by Lemma 5.5(a). Thus,

∑

j,k

∣
∣
∣
∣
∣

ˆ

V k
j

f T̂n,V k
j
ψk

∣
∣
∣
∣
∣
≤ 9P0

1− μSRB(H)
C4ALδ

1−γ dWs (W 1,W 2)γ |||Ln(1Hc f )|||− ,

(8.10)

where we have used (8.7) in (5.14) to estimate

|||Ln f |||− ≤ |||Ln f |||+ ≤ 3
2 ||| f |||+ ≤ 3

2 L||| f |||− ≤ 9L
1−μSRB(H)

|||Ln(1Hc f )|||− .

(8.11)

The estimate onmatched pieces proceeds precisely as in (5.20), andwith an additional
factor of P0 in (5.21), we arrive at (5.25), again applying (8.7),

∑

j

∣
∣
∣
∣
∣

ˆ

U1
j

f T̂n,U1
j
ψ1 −

ˆ

U2
j

f T̂n,U2
j
ψ2

∣
∣
∣
∣
∣

≤ 6P0
1−μSRB(H)

24C̄0Cs Aδ
1−γ dWs (W 1,W 2)γ |||Ln(1Hc f )|||−

(
2q40C5δ

q−γ + cC5�
−nγ + 2qC5�

−nδ
)
.

Combining this estimate together with (8.10) in (5.11) (with A′ in place of A in (5.11)),
and recalling (5.12), yields by (5.26),

∣
∣
∣
∣

´
W 1 Ln f ψ1ffl

W 1 ψ1
−

´
W 2 Ln f ψ2ffl

W 2 ψ2

∣
∣
∣
∣ ≤

6P0
1− μ(H)

cAδ1−γ dWs (W 1,W 2)γ |||Ln(1Hc f )|||− ,

where we have applied (5.27) to simplify the expression. Setting c′ = P0c and recalling
the definition of A′ from (8.9) completes the proof of the lemma. ��

8.3. Loss of memory for sequential open billiards. We conclude the section by illustrat-
ing several physically relevant models to which our results apply. Admittedly, we cannot
treat the most general cases, yet we believe the following shows convincingly that the
techniques developed here can be the basis of a general theory.

Dispersing billiards with small holes have been studied in [DWY,D1,D2], and results
obtained regarding the existence and uniqueness of limiting distributions in the form of
SRB-like conditionally invariant measures, and singular invariant measures supported
on the survivor set. In the present context, we are interested in generalizing these results
to the non-stationary setting. Analogous results for sequences of expanding maps with
holes have been proved in [MO,GO].

For concreteness, we give two example of physical holes that satisfy our hypotheses,
following [DWY,D2].
Holes of Type I. Let G ⊂ ∂Q be an arc in the boundary of one of the scatterers.
Trajectories of the billiard flow are absorbed when they collide with G. This induces
a hole H in the phase space M of the billiard map of the form (a, b) × [−π/2, π/2].
Note that ∂H consists of two vertical lines, so that H satisfies assumption (O2) since
the vertical direction is uniformly transverse to the stable cone, as well as assumptions
(O1) and (O1′) with P0 = 3.
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Holes of Type II. Let G ⊂ Q be an open convex set bounded away from ∂Q and having
a C3 boundary. Such a hole induces a hole H in M via its ‘forward shadow.’

We define H to be the set of (r, ϕ) ∈ M whose backward trajectory under the billiard
flow enters G before it collides with ∂Q. Thus points in M which are about to enter G
before their next collision under the forward billiard flow are considered still in the open
system, while those points in M which would have passed throughG on the way to their
current collision are considered to have been absorbed by the hole.

With this definition, the geometry of H is simple to state: if we viewG as an additional
scatterer in Q, then H is simply the image of G under the billiard map. Thus H will
have connected components on each scatterer that has a line of sight to G, and ∂H
will comprise curves of the form S0 ∪ T (S0), which are positively sloped curves, all
uniformly transverse to the stable cone. Thus holes of Type II satisfy (O2) as well as
(O1) and (O1′) with P0 = 3. (See the discussion in [D2, Section 2.2].)

Still other holes are presented in [D2] such as side pockets, or holes that depend on
both position and angle, which satisfy (O1), (O1′) and (O2), but for the sake of brevity,
we do not repeat those definitions here.

As noted, both holes of Type I and Type II satisfy (O1) and (O1′) with P0 = 3.
Moreover, holes of Type I satisfy (O2) with Ct depending only on the maximum slope
of curves in the stable cone, which is uniform in the family F(τ∗,K∗, E∗) according to
(H1): this (negative) slope is bounded belowby−Kmax− 1

τmin
, so choosingCt ≥ K∗+τ−1∗

suffices. Since ∂H for holes of Type II have positive slope, the same choice of Ct will
suffice for such holes to satisfy (O2).

Fix F(τ∗,K∗, E∗) and define H(P0,Ct ) to be the collection of holes H ⊂ M with
μSRB(H) ≤ 1/2 and satisfying (O1) or (O1′) and (O2)with the given constants P0 andCt .
We define a non-stationary open billiard by fixing a sequence of holes Hk ∈ H(P0,Ct ),
k ∈ Z

+, satisfying either (O1) and (O2) or (O1′) and (O2). In the first case, let n� be from
Proposition 8.4, while in the second, let n� be from Proposition 8.7.25 Next, choose an
n�-admissible sequence (ι j ) j , ι j ∈ I(τ∗,K∗, E∗).

Recall (5.13): For u, v ∈ N, v > u, let Tv,u = Tιv ◦ · · · ◦ Tιu+1 . For each k ≥ 1, the
open system relative to Hk is defined by T̊k : (Tkn�,(k−1)n� )−1(M \ Hk) → M \ Hk ,
where

T̊k(x) = Tιkn� ◦ · · · ◦ Tι(k−1)n� (x) for x ∈ (Tkn�,(k−1)n� )−1(M \ Hk) .

To concatenate these open maps into a sequential system, define

T̊ j,i (x) = T̊ j ◦ · · · ◦ T̊i (x) for x ∈ ∩ j
l=1T̊

−1
i ◦ · · · ◦ T̊−1l (M \ Hl) ,

thuswe allow escaping once every n� iterates along the admissible sequence. The transfer
operator for the sequential open system is defined by

L̊ j,i f = LTι( j+1)n� ◦···Tι jn� 1Hc
j
· · ·LTι(i+1)n� ◦···Tιin� 1Hc

i
f . (8.12)

Wewill be interested in the evolution of probability densities under the sequential system,

given by L̊n,k f´
M L̊n,k f dμSRB

. Note that if f ∈ Cc,A,L(δ) then
´
M L̊n,k f dμSRB > 0 for each

n (thus the normalization is well defined). When f ≥ 0, this normalization coincides
with the L1(μSRB) norm; however, we use the integral rather than the L1 norm as the
normalization since the integral is order preserving with respect to our cone, while the

25 Requiring μSRB(H) ≤ 1/2 enables a uniform choice of n� for all H ∈ H(P0,Ct ).
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L1 norm is not. We conclude the section with a result regarding exponential loss of
memory for the sequence of open billiards.

Theorem 8.9. Fix τ∗,K∗ > 0 and E∗ < ∞, and let a, c, A, L , δ and δ0 satisfy the
conditions of Theorem 6.12 and Lemma 7.1. Let P0,Ct > 0. There exist C > 0 and
ϑ < 1 such that for all sequences (Hi )i ⊂ H(P0,Ct ) satisfying either (O1) and (O2) or
(O1′) and (O2), all n�-admissible sequences (ι j ) j ⊂ I(τ∗,K∗, E∗), for allψ ∈ C1(M),
all f, g ∈ Cc,A,L(δ), all n ≥ 1 and all 1 ≤ k ≤ n,

∣
∣
∣
∣
∣

ˆ

M

L̊n,k f

μSRB(L̊n,k f )
ψ dμSRB −

ˆ

M

L̊n,kg

μSRB(L̊n,kg)
ψ dμSRB

∣
∣
∣
∣
∣
≤ CLϑn−k |ψ |C1(M) .

Proof. Remark that the constants appearing in Propositions 8.4 and 8.7 are uniform, de-
pending only onF(τ∗,K∗, E∗), P0 andCt . Hence, if f, g ∈ Cc,A,L(δ), then for each k ≤
n ∈ N, L̊n,k f , L̊n,kg ∈ Cc,A,L(δ). Since

´
M

L̊n,k f

μSRB(L̊n,k f )
dμSRB =

´
M

L̊n,k g

μSRB(L̊n,k g)
dμSRB =

1, the theorem follows arguing exactly as in the proof of Theorem 7.3(b), using again
the order preserving semi-norm ‖ · ‖ψ , as well as the fact that by Remark 7.2,

‖L̊n,k f ‖ψ
μSRB(L̊n,k f )

≤ C̄ |ψ |C1
|||L̊n,k f |||+
|||L̊n,k f |||−

≤ C̄ L|ψ |C1 .

When invoking (7.6), it holds that ρC(L̊n,k f/μSRB(L̊n,k f ), L̊n,kg/μSRB(L̊n,kg)) =
ρC(L̊n,k f, L̊n,kg) due to the projective nature of the metric. ��

Note that, by changing variables,
´
M L̊n,k f ψ dμSRB =

´
M̊n,k

f ψ ◦ T̊n,k dμSRB, where

M̊n,k = ∩ni=k T̊−1k ◦ · · · ◦ T̊−1i (M \Hi ). Thus the conclusion of the theorem is equivalent
to the expression,

∣
∣
∣
∣
∣
∣

´
M̊n,k

f ψ ◦ T̊n,k dμSRB

´
M̊n,k

f dμSRB

−
´
M̊n,k

gψ ◦ T̊n,k dμSRB

´
M̊n,k

g dμSRB

∣
∣
∣
∣
∣
∣
≤ CLϑn−k |ψ |C1(M) .

Next we show that sequential systemswith holes allow us to begin investigating some
physical problems that have attracted much attention: chaotic scattering and random
Lorentz gasses.

8.4. Chaotic scattering (boxed). Consider a collection of strictly convex pairwise dis-
joint obstacles {Bi } inR2 for which the non-eclipsing condition may fail.26 Assume that
there exists a closed rectangular box R = [a, b]×[c, d] such that if an obstacle does not
intersect its boundary, then it is contained in the box. In addition, if an obstacle intersects
the boundary of R, then it is symmetrical with respect to a reflection across all the linear
pieces of the boundary which the obstacle intersects (see Fig. 4 for a picture). Finally,
we will assume a finite horizon condition on the cover Q̃ defined after Remark 8.12.

26 Remember that the non-eclipsing condition is the requirement that the convex hull of any two obstacles
does not intersect any other obstacle.
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Incoming particle beam

Fig. 4. Obstacle configuration for which the non-eclipse condition fails and the box R (dashed line)

Remark 8.10. The restriction regarding symmetrical reflections on the configuration of
obstacles is necessary only because we did not develop the theory in the case of billiards
in a polygonal box (see Remark 8.12 and the following text to see why this is relevant).
Such an extension is not particularly difficult and should eventually be done. Other
extensions that should be within reach of our technology are more general types of holes
and billiards with corner points. Here, however, we are interested in presenting the basic
ideas; addressing all possible situations would make our message harder to understand.

Lemma 8.11. If a particle exits R at time t0 ∈ R, then, in the time interval (t0,∞), it
will experience only a finite number of collisions and it will never enter R again.

Proof. Recall that R = [a, b] × [c, d]. Of course, the lemma is trivially true if, after
exiting R, the particle has no collisions. Let us imagine that the particle, after exiting
from the vertical side (b, c) − (b, d), collides instead with the obstacle Bi at the point
p = (p1, p2). Note that Bi must then intersect the same boundary, otherwise it would be
situated to the left of the line x = b and the particle could not collide since necessarily
p1 > b. Our hypothesis that Bi be symmetric with respect to reflection across x = b
implies that also (2b − p1, p2) ∈ ∂Bi . Thus, by the convexity of Bi , the horizontal
segment joining p and (2b − p1, p2) is contained in Bi . This implies that, calling
η = (η1, η2) the normal to ∂Bi in p, itmust beη1 ≥ 0. In addition, ifv = (v1, v2)denotes
the particle’s velocity just before collision, it must be that v1 > 0 since the particle has
crossed a vertical line to exit R. Finally, 〈v, η〉 ≤ 0, otherwise the particle would not
collide with Bi . But since the velocity after collision is given by v+ = v − 〈v, η〉η,
it follows v+1 = v1 − 〈v, η〉η1 ≥ v1. That is, the particle cannot come back to the
box R. Since all the obstacles are contained in a larger box R1 and since there is a
minimal distance between obstacles, the above also implies that the particle can have only
finitely many collisions in the future. The other cases can be treated exactly in the same
manner. ��
Remark 8.12. We want to consider a scattering problem: the particles enter the box
coming from far away andwith random position and/or velocity, interact and, eventually,
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leave the box. The basic question is how long they stay in the box or, better, what is the
probability that they stay in the box longer than some time t . This is nothing other than
an open billiard with holes. Unfortunately, the holes are large and our current theory
allows us to deal with large holes only if enough hyperbolicity is present. To extend the
result to systems with small hyperbolicity is a very important (and hard) problem as one
needs to understand the combinatorics of the trajectories for long times.

An alternative is to study the scattering problem under the non-eclipsing condition.
Such an assumption avoids the technicalities associated with billiards and results in
Axiom A dynamics with a natural finite Markov partition for the collision map on the
survivor set. This problemhas been studied and strong results proving exponential escape
as well as exponential mixing on the survivor set have been obtained in both discrete
[Mo91,LoM,Mo07] as well as continuous [St] time. There are also recent results on the
rigidity problem for such open billiards [BDKL,DKL2]. Yet the condition is artificial
once there are more than 2 scatterers, hence the importance of developing an alternative
approach.

Given the above remark we modify the system in order to have the needed hyperbolicity.
This is not completely satisfactory, yet it shows that our machinery can deal with large
holes and illustrates exactly what further work is necessary to address the general case.

Fixing N sufficiently large, we suppose that when a particle enters the box, the
boundaries of the box become reflecting and are transparent again only between the
collisions kN and kN + 1, k ∈ N, counting only collisions with the convex obstacles.

More precisely, consider the billiard in R with elastic reflection at ∂R. We call such
a billiard table Q. Let M = ( ∪i ∂Bi ∩ R

) × [−π
2 ,

π
2 ] be the Poincaré section,27 and

consider the Poincaré map T : M → M describing the dynamics from one collision
with a convex body to the next. Unfortunately, this is not a type of billiard that fits our
assumptions since the table has corner points. Yet, when the particle collides with ∂R we
can reflect the box and imagine that the particle continues in a straight line. Note that, by
our hypothesis, the image of the obstacles that intersect the boundary are the obstacles
themselves; this is the reason why we restrict the obstacle configuration. We can then
reflect the box three times, say across its right and top sides and then once more to make
a full rectangle with twice the width and height of R, and identify the opposite sides
of this larger rectangle. In this way we obtain a torus T2 containing pairwise disjoint
convex obstacles. Such a torus is covered by four copies of R, let us call them {Ri }4i=1.
We call such a billiard Q̃, and we consider the Poincaré map T̃ which maps from one
collision with a convex body to the next, and denote its phase space by M̃ = ∪4i=1M̃i .

Our final assumption on the obstacle configuration is that Q̃ is a Sinai billiard with
finite horizon. Hence T̃ : M̃ � falls within the scope of our theory. By construction
there is a map π : M̃ → M which sends the motion on the torus to the motion in the
box. Indeed, if x̃ ∈ M̃ and x = π(x̃), then T n(x) = π(T̃ n(x̃)), for all n ∈ N.

We then consider the maps S̃ = T̃ N and S = T N , again π(S̃(x̃)) = S(π(x̃)).
Define also the projections π̃1 : M̃ → Q̃ and π1 : M → Q, which map a point in the
Poincaré section to its position on the billiard table. For x̃ ∈ M̃ , let us call Õ(x̃) the
straight trajectory in T

2 between π̃1(x̃) and π̃1(T̃ (x̃)), and setting x = π(x̃), O(x) the
trajectory between π1(x) and π1(T ((x)). Note that the latter trajectory can consist of
several straight segments joined at the boundary of R, where a reflection takes place. By
construction, if Õ(x̃) intersects m of the sets ∂Ri , then the trajectory O(x) experiences

27 Recall that ϕ ∈ [−π
2 ,

π
2 ] is the angle made by the post-collision velocity vector and the outward pointing

normal to the boundary.
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m reflections with ∂R. Accordingly, we introduce, in our billiard system (M̃, S̃), the
following holes : H̃ = T̃ {x̃ ∈ M̃ : Õ(x̃) ∩ (∪i∂Ri ) �= ∅} and set H = π(H̃).

The above makes precise the previous informal statement: the system (M, S) with
hole H , describes the dynamics of the billiard (M, T ) in which the particle can exit R
only at the times kN , k ∈ Z. The transfer operator associated with the open system
(M, S; H) is 1HcLS1Hc , yet since (1HcLS1Hc )n = 1Hc (LS1Hc )n , it is equivalent to
study the asymptotic properties of L̊S := LS1Hc .

For a function f : M → C, we define its lift f̃ : M̃ → C by f̃ = f ◦ π . The
pointwise identity then follows,

L̊S̃ f̃ := LS̃(1H̃ c f̃ ) = LS̃((1Hc f ) ◦ π) = (L̊S f ) ◦ π . (8.13)

While H̃ is not exactly a hole of Type II, its boundary nevertheless comprises increasing
curves since it is a forward image under the flow of a wave front with zero curvature (a
segment of ∂Ri ). Hence condition (O1′) of Sect. 8.2 holds with P0 = 3 and condition
(O2) holds with Ct depending only on the uniform angle between the stable cone and
the vertical and horizontal directions in M̃ . Thus Proposition 8.7 applies to L̊S̃ with

n� depending on Ct and P0 = 3. In fact, our next result shows that also L̊S contracts
Cc,A,L(δ) on M .

Proposition 8.13. Let n� ∈ N be from Proposition 8.7 corresponding to P0 = 3 and
Ct > 0. Then for each small enough δ > 0, there exist c, A, L > 0, χ ∈ (0, 1) such that
choosing N ≥ n�, L̊S(Cc,A,L(δ)) ⊂ Cχc,χ A,χL(δ), where S = T N .

Proof. As already noted above, Proposition 8.7 implies the existence of δ, c, A, L and
χ such that L̊S̃(C̃c,A,L(δ)) ⊂ C̃χc,χ A,χL(δ) if we choose N ≥ n�. Note that the constant
Ct is the same on M̃ and M . In fact the same choice of parameters for the cone works
for L̊S .

For any stable curveW , π−1W = ∪4i=1W̃i where each W̃i is a stable curve satisfying
π(W̃i ) = W . Since π is invertible on each M̃i , we may define the restriction πi = π |M̃i

such that π−1i (W ) = W̃i . Conversely, the projection of any stable curve W̃ in M̃ is also
a stable curve in M .

Since each πi is an isometry, and recalling (8.13), for any stable curveW ⊂ M , each
f ∈ Cc,A,L(δ), and all n ≥ 0,

ˆ

W̃i

ψ ◦ π L̊n
S̃
f̃ dmW̃ =

ˆ

W
ψ L̊n

S f dmW , ∀ ψ ∈ C0(W̃ ),

where f̃ = f ◦ π . Moreover, if ψ ∈ Da,β(W ), then ψ ◦ π ∈ Da,β(W̃i ), for each
i = 1, . . . , 4. This implies in particular that |||L̊n

S f |||± = |||L̊n
S̃
f̃ |||± for all n ≥ 0, and that

f ∈ Cc,A,L(δ) if and only if f̃ = f ◦π ∈ C̃c,A,L(δ). Consequently, L̊S f ∈ Cχc,χ A,χL(δ)

if and only if L̊S̃ f̃ ∈ C̃χc,χ A,χL(δ), which proves the proposition. ��
In contrast to the sequential systems studied in Sect. 8.3, the open billiard in this

section corresponds to a fixed billiard map T (and its lift T̃ ). Thus we can expect the
(normalized) iterates of L̊S to converge to a type of equilibrium for the open system.
Such an equilibrium is termed a limiting or physical conditionally invariant measure in
the literature, and often corresponds to a maximal eigenvalue for L̊S on a suitable func-
tion space. Unfortunately, conditionally invariant measures for open ergodic invertible
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systems are necessarily singular with respect to the invariant measure and so will not
be contained in our cone Cc,A,L(δ), which is a set of functions. However, we will show
that for our open billiard, the limiting conditional invariant measure is contained in the
completion of Cc,A,L(δ) with respect to the following norm.

Definition 8.14. Let V = span
(Cc,A,L(δ)

)
. For all f ∈ V we define

‖ f ‖� = inf{λ ≥ 0 : −λ � f � λ} .
Lemma 8.15. The function ‖ · ‖� has the following properties:

(a) The function ‖ · ‖� is an order-preserving norm, that is: −g � f � g implies
‖ f ‖� ≤ ‖g‖�.

(b) There exists C > 0 such that for all f ∈ Cc,A,L(δ) and ψ ∈ C1(M),
∣
∣
∣
∣

ˆ

M
f ψ dμSRB

∣
∣
∣
∣ ≤ C ||| f |||+|ψ |C1(M) ≤ C‖ f ‖�|ψ |C1(M) .

Proof. In this proof, for brevity we write C in place of Cc,A,L(δ).
a) First, we show that ‖ f ‖� <∞ for any f ∈ V, i.e. for any f ∈ V we can find λ > 0
such that λ + f, λ − f ∈ C. By the proof of Proposition 6.13, we claim28 that for any
f ∈ C, we can find μ > 0 such that μ− f belongs to C. This follows since the second
part of the proof with χ = 1 yields thatμ− f satisfies (4.6) ifμ ≥ L

L−1 ||| f |||+, it satisfies
(4.7) if μ ≥ 2A

A−21−q ||| f |||+, and it satisfies (4.8) if μ ≥ 2cA
cA−δ−Cs

||| f |||+. Taking μ large
enough to satisfy these 3 conditions proves the claim.

Next, consider f = αg + βh with g, h ∈ C and α, β ∈ R. If α, β > 0, then since
C is closed under addition, the above claim yields μ > 0 such that μ − f and μ + f
are in C and thus ‖ f ‖� ≤ μ. It remains to consider the case α < 0, β > 0 since the
remaining cases are similar. Let μg > 0 satisfy μg − g belongs to C. Set A = μg|α|.
Then A+ f = |α|(μg−g)+βh is the sum of elements in C and thus is in C. Similarly, let
μh > 0 satisfy μh − h belongs to C and set B = μhβ. Then B − f = |α|g + β(μh − h)
is again in C. Thus ‖ f ‖� ≤ max{A, B}.

Next, if ‖ f ‖� = 0, then there exists a sequence λn → 0 such that −λn � f � λn ,
and so λn + f, λn − f ∈ C for each n. Since C is closed (see footnote 5), this yields
f,− f ∈ C ∪ {0} and so f = 0 since C ∩ −C = ∅ by construction.

Since f � g is equivalent to ν f � νg for ν ∈ R+, it follows immediately that
‖ν f ‖� = ν‖ f ‖�.

To prove the triangle inequality, let f, g ∈ V. For each ε > 0, there exists a, b,
a ≤ ε + ‖ f ‖�, b ≤ ε + ‖g‖� such that −a � f � a and −b � g � b. Then

−(‖ f ‖� + ‖g‖� + 2ε) � −(a + b) � f + g � a + b ≤ ‖ f ‖� + ‖g‖� + 2ε ,

implies the triangle inequality by the arbitrariness of ε. We have thus proven that ‖ · ‖�
is a norm.

Next, suppose that −g � f � g and let b be as above. Then

−‖g‖� − ε � −b � −g � f � g � b � ‖g‖� + ε

which implies ‖ f ‖� ≤ ‖g‖�, again by the arbitrariness of ε. Hence, the norm is order
preserving.

28 This claim implies that the cone is Archimedean.
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(b) The first inequality is contained in Remark 7.2. For the second inequality, we will
prove that

||| f |||+ ≤ ‖ f ‖� for all f ∈ C. (8.14)

To see this, note that if −λ � f � λ, then |||λ− f |||− ≥ 0 by Remark 4.8. Thus for any
W̃ ∈ W̃s and ψ ∈ Da,β(W̃ ),

0 ≤
´
W (λ− f ) ψ

´
W ψ

 ⇒
´
W f ψ
´
W ψ

≤ λ ,

and taking suprema over W and ψ yields ||| f |||+ ≤ λ, which implies (8.14). ��
Define V� to be the completion of V in the ‖ · ‖� norm. V� is a Banach space. Let C�

be the closure of Cc,A,L(δ) in V.
We remark that by Lemma 8.15(b), C� embeds naturally into (C1(M))′, where

(C1(M))′ is the closure ofC0(M)with respect to the norm ‖ f ‖−1 = sup|ψ |C1≤1
´
M fψ

dμSRB. We shall show that the conditionally invariant measure for the open system
(M, T ; H) belongs to C�.
Theorem 8.16. Let (M, S; H) be as defined above, where S = T N . If N ≥ n�, where
n� is from Proposition 8.7, then:

(a) h := lim
n→∞

L̊n
S1

μSRB(L̊n
S1)

is an element of C�. Moreover, h is a nonnegative probability

measure satisfying L̊Sh = νh for some ν ∈ (0, 1) such that

log ν = lim
n→∞

1

n
logμSRB(∩ni=0S−i (M \ H)) ,

i.e. − log ν is the escape rate of the open system.
(b) There exists C > 0 and ϑ ∈ (0, 1) such that for all f ∈ Cc,A,L(δ) and n ≥ 0,

∥
∥
∥
∥
∥

L̊n
S f

μSRB(L̊n
S f )

− h

∥
∥
∥
∥
∥
�

≤ Cϑn .

In addition, there exists a linear functional � : Cc,A,L(δ) → R such that for all
f ∈ Cc,A,L(δ), �( f ) > 0 and

‖ν−nL̊n
S f − �( f )h‖� ≤ Cϑn�( f )‖h‖�.

The constant C depends on Cc,A,L(δ), but not on f .

Remark 8.17. (a) The conclusions of Theorem8.16 apply equallywell to the open system
(M̃, S̃; H̃).
(b) By Lemma 8.15(b), the convergence in the ‖ · ‖� norm given by Theorem 8.16(b)
implies convergence when integrated against smooth functions ψ ∈ C1(M). As usual,
by standard approximation arguments, the same holds for Hölder functions.
(c) Also by Lemma 8.15(b), the above convergence in ‖·‖� implies leafwise convergence
aswell. First note that forW ∈Ws(δ), each f ∈ Cc,A,L(δ) induces a leafwise distribution
onW defined by fW (ψ) = ´

W f ψ dmW , forψ ∈ Da,β(W ). This extends by density to
f ∈ C�. Since h ∈ C� by Theorem 8.16(a), let hW denote the leafwise measure induced
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by h on W ∈Ws(δ). Then by Lemma 8.15(b) and Theorem 8.16(b), there exists C > 0
such that for all n ≥ 0,

∣
∣
∣
∣
∣

´
W L̊n

S f ψ dmW

μSRB(L̊n
S f )

− hW (ψ)

∣
∣
∣
∣
∣
≤ Cδ−1ϑn , ∀ f ∈ Cc,A,L(δ),∀ψ ∈ Cβ(W ) ,

and also,
∣
∣
∣
∣ν
−n

ˆ

W
L̊n
S f ψ dmW − �( f )hW (ψ)

∣
∣
∣
∣ ≤ Cδ−1ϑn�( f ) .

In particular, the escape rate with respect to f dmW on each W ∈ Ws(δ) equals the
escape rate with respect to μSRB.

Proof of Theorem 8.16. We argue as in the proof of Theorem 7.3. Recalling that ‖ · ‖�
is an order-preserving norm, we can apply [LSV, Lemma 2.2], taking the homogeneous
function ρ to also be ‖ · ‖� and obtain that, as in (7.6), for all f, g ∈ Cc,A,L(δ),

∥
∥
∥
∥
∥

L̊n
S f

‖L̊n
S f ‖�

− L̊n
Sg

‖L̊n
Sg‖�

∥
∥
∥
∥
∥
�

≤ Cϑn , (8.15)

since

∥
∥
∥
∥

L̊n
S f

‖L̊n
S f ‖�

∥
∥
∥
∥∗
= 1 and similarly for g. This implies that

(
L̊n

S f

‖L̊n
S f ‖�

)

n≥0
is a Cauchy

sequence in the ‖·‖� norm, and in addition, the limit is independent of f . Hence, defining

h0 = limn→∞
L̊n

S1

‖L̊n
S1‖�

, we have h0 ∈ C� with ‖h0‖� = 1 such that29 for allψ ∈ C1(M),

ˆ

M
L̊Sh0ψ = lim

n→∞
1

‖L̊n
S1‖�

ˆ

M̃
L̊n+1
S 1ψ

= lim
n→∞

‖L̊n+1
S 1‖�

‖L̊n
S1‖�

ˆ

M
h0ψ

= ‖L̊Sh0‖�
ˆ

M
h0ψ =: ν

ˆ

M
h0ψ ,

where all integrals are taken with respect to μSRB. Thus, L̊Sh0 = νh0. Moreover, the
definition of h0 implies that,

|h0(ψ)| ≤ |ψ |C0 lim
n→∞

μSRB(L̊n
S1)

‖L̊n
S1‖�

= |ψ |C0h0(1) , ∀ψ ∈ C1(M) , (8.16)

thus h0 is a measure. In addition, by the positivity of L̊S , h0 is a nonnegative measure
and since ‖h0‖� = 1, it must be that h0(1) �= 0. Thus we may renormalize and define

h := 1

h0(1)
h0 .

Then 1Hc h
h(Hc)

represents the limiting conditionally invariant probability measure for the
open system (M, S; H). However, we will work with h rather than its restriction to Hc

29 Note that L̊S extends naturally to (C1(M))′ and therefore to C�.
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because h contains information about entry into H , which we will exploit in Proposi-
tion 8.18 below.

Due to the equality in (8.16), h has the alternative characterization,

h = lim
n→∞

L̊n
S1

μSRB(L̊n
S1)

= lim
n→∞

L̊n
S1

μSRB(M̊n)
,

as required for item (a) of the theorem, where M̊n = ∩ni=0S−i (M \ H) and convergence
is in the ‖ · ‖� norm.

Remark that (8.15) implies
L̊n

S f

‖L̊n
S f ‖�

converges to h0 at the exponential rate ϑn . In-

tegrating this relation and using Lemma 8.15(b), we conclude that in addition the nor-

malization ratio
μSRB(L̊n

S f )

‖L̊n
S f ‖�

converges to h0(1) at the same exponential rate. Putting these

two estimates together and using the triangle inequality yields for all n ≥ 0,
∥
∥
∥
∥
∥

L̊n
S f

μSRB(L̊n
S f )

− h

∥
∥
∥
∥
∥
�

≤ Cϑnh0(1)
−1 , ∀ f ∈ Cc,A,L(δ) ,

proving the first inequality of item (b).
Next, for each, f ∈ Cc,A,L(δ) let

�( f ) = lim sup
n→∞

ν−nμSRB(L̊n
S f ) . (8.17)

Note that � is bounded, homogeneousof degreeone andorder preserving.ByLemma8.15
(b), � can be extended to C�. Since �(h) = 1, ν−nL̊n

Sh = h and �(ν−nL̊n
S f ) = �( f ) we

can apply, again, [LSV, Lemma 2.2] as in (7.6) to f and �( f )h and obtain

‖ν−nL̊n
S f − h�( f )‖� = ν−n‖L̊n

S f − �( f )L̊n
Sh‖� ≤ Cϑn�( f )‖h‖� , (8.18)

proving the second inequality of item (b) of the theorem. Note that (8.18) also implies
(integrating and applying Lemma 8.15(b) ) that the limsup in (8.17) is, in fact, a limit,
and hence � is linear. Remark that � is also nonnegative for f ∈ Cc,A,L(δ) byRemark 7.2.

By definition, if f ∈ Cc,A,L(δ) and λ > ‖ f ‖� then λ + f, λ− f ∈ Cc,A,L(δ), so that
using the linearity and nonnegativity of � yields,

− λ�(1) ≤ �( f ) ≤ λ�(1) , ∀ f ∈ Cc,A,L(δ), λ > ‖ f ‖� . (8.19)

Thus either �( f ) = 0 for all f ∈ Cc,A,L(δ) or �( f ) �= 0 for all f ∈ Cc,AL(δ). But if
the first alternative holds, then by the continuity of � with respect to the ‖ · ‖� norm
(Lemma 8.15(b)), � is identically 0 on C�, which is a contradiction since �(h) = 1. Thus
�( f ) > 0 for all f ∈ Cc,A,L(δ).

Finally, applying (8.18) to f ≡ 1 integrated with respect to μSRB and using again
Lemma 8.15(b), we obtain

|ν−nμSRB(M̊
n)− �(1)| ≤ Cϑn�(1)‖h‖� ,

which in turn implies that log ν = limn→∞ 1
n logμSRB(M̊n) since �(1) �= 0, as required

for the remaining item of part (a) of the theorem. Note that ν �= 0 by Remark 7.2 and
(8.7), while ν �= 1 by monotonicity since the escape rate for this class of billiards is
known to be exponential for arbitrarily small holes [DWY,D2]. ��
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B1

B2

B3

∂R
p

(a)
ϕ = −π

2

ϕ = π
2

HΘ
TS0(B1)

Hθ2

Hθ1

Hp

(b)

Fig. 5. a Sample rays with θ = θ1 and θ = θ2 striking the scatterer B2. The point p is the topmost point of
∂B3. b Component of H! on the scatterer B2. In this configuration, Hθ1 intersects the singularity curve TS0
coming from B1 while Hθ2 reaches S0 directly; however, the left boundary of H! is an arc of Hp and the
continuation of singularities properties fails for a hole of this type since θ1 > 0

We can use Theorem 8.16 to obtain exit statistics from the open billiard in the plane.
As an example, for θ ∈ [0, 2π) let us define Hθ to be the set of x ∈ H such that the first
intersection of O(T−1x) with ∂R has velocity making an angle of θ with the positive
horizontal axis. Note that Hθ is a finite union of increasing curves since it is the image
of a wave front with zero curvature moving with parallel velocities. The fact that Hθ

comprises increasing curves is not altered by the fact that the flow in R may reflect off
of ∂R several times before arriving at a scatterer because such collisions are neutral;
also, since the corners of R are right angles, the flow remains continuous at these corner
points.

Suppose the incoming particles at time zero are distributed according to a probability
measure f dμSRB with density f ∈ Cc,A,L(δ). The probability that a particle leaves the
box at time nN with a direction in the interval ! = [θ1, θ2], call it P f (xn ∈ [θ1, θ2]),
can be expressed as

P f (xn ∈ [θ1, θ2]) =
ˆ

M
1H!L̊n

S f dμSRB , (8.20)

where H! := ∪θ∈!Hθ . Although the boundary of H! comprises increasing curves
as already mentioned, the restriction on the angle may prevent ∂H! from enjoying
the property of continuation of singularities common to billiards. See Fig. 5 (see also
[D2, Sect. 8.2.2] for other examples of holes without the continuation of singularities
property).

Similarly, for p ∈ ∂R, define Hp to be the set of x ∈ H such that the last intersection
of O(T−1x)with ∂R is p. Then for an interval P ⊂ ∂R, we define HP = ∪p∈P Hp, and´
M 1HP L̊n

S f denotes the probability that a particle leaves the box at time nN through
the boundary interval P .

Proposition 8.18. For any intervals of the form ! = [θ1, θ2], or P = [p1, p2], any
f ∈ C1(M) with f ≥ 0 and

´
f dμSRB = 1, and all n ≥ 0, we have30

30 If instead f ∈ Cc,A,L (δ), f ≥ 0 and
´

f dμSRB = 1, then ‖ f ‖C1 can be dropped from the right hand
side.
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P f (xn ∈ !) = νnh(1H!)�( f ) + ‖ f ‖C1O(νnϑ
q

q+1 n
)
, and

P f (xn ∈ P) = νnh(1HP )�( f ) + ‖ f ‖C1O(νnϑ
q

q+1 n
)
.

Remark 8.19. If f ∈ Cc,A,L(δ), then �( f ) > 0 byTheorem8.16(b), and Proposition 8.18
provides a precise asymptotic for the escape of particles through H! and HP . For more
general f ∈ C1(M), it may be that �( f ) = 0, in which case Proposition 8.18 merely
gives an upper bound on the exit statistic compared to the rate of escape given by ν.

Proof. We prove the statement for 1!. The statement for 1P is similar.
To start with we assume f ∈ Cc,A,L(δ), and f ≥ 0 with

´
f dμSRB = 1. As already

mentioned, ∂H! comprises finitely many increasing curves in M and so H! satisfies
(O1′) and (O2) with P0 = 3 and Ct depending only on the uniform angle between the
stable cone and ∂H!, which is strictly positive due to (H1). Since 1H! is not in C1(M),
we cannot apply Lemma 8.15(b) directly; we will use a mollification to bypass this
problem.

Let ρ : R2 → R
2 be a nonnegative, C∞ function supported in the unit disk with´

ρ = 1, and define ρε(·) = ε−2ρ(· ε−1). For ε > 0, define the mollification,

ψε(x) =
ˆ

1H!(y)ρε(x − y) dy x ∈ M .

Wehave |ψε|C0 ≤ 1and |ψ ′ε|C0 ≤ Cε−1.Note thatψε = 1H! outside an ε-neighborhood
of ∂Hθ (including S0). Letting ψ̃ε denote a C1 function with |ψ̃ε|C0 ≤ 1, which is 1 on
Nε(∂H!) and 0 on M \ N2ε(∂H!), we have |1H! − ψε| ≤ ψ̃ε. Due to (O2), for any
W ∈Ws such thatW ∩ Nε(∂H!) �= ∅, using first the fact that f ≥ 0 and then applying
cone condition (4.7),

ˆ

W
|1H! − ψε| L̊n

S f dmW ≤
ˆ

W
ψ̃ε L̊n

S f dmW ≤
ˆ

W∩N2ε(∂H!)

L̊n
S f dmW

≤ 21+q Aδ1−qCq
t ε

q |||L̊n
S f |||− , (8.21)

where we have used the fact that W ∩ N2ε(∂H!) has at most 2 connected components
of length 2Ctε. Then integrating over M and disintegrating μSRB as in the proof of
Lemma 7.1, we obtain,

ˆ

M
|1H! − ψε| L̊n

S f

μSRB(L̊n
S f )

dμSRB ≤
ˆ

M
ψ̃ε

L̊n
S f

μSRB(L̊n
S f )

dμSRB ≤ Cεq
|||L̊n

S f |||−
μSRB(L̊n

S f )
.

(8.22)

By Remark 7.2, μSRB(L̊n
S f ) ≥ C̄−1|||L̊n

S f |||−, so the bound is uniform in n. Since ψ̃ε ∈
C1(M) the bound carries over to h(ψ̃ε), and since h is a nonnegativemeasure, to h(1H!−
ψε). Thus for each n ≥ 0 and ε > 0,

ˆ
1H!

L̊n
S f dμSRB =

ˆ
(1H!

− ψε) L̊n
S f dμSRB +

(ˆ
ψε L̊n

S f dμSRB − νn�( f )h(ψε)

)

+νn�( f )h(ψε − 1H!
) + νn�( f )h(1Hθ

)

= O(εqνn�( f )) +O(|ψε|C1ν
nϑn�( f )

)
+ νn�( f )h(1H!

) ,

(8.23)
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where we have applied (8.22) to the first and third terms and Theorem 8.16(b) and
Lemma 8.15(b) to the second term. Since |ψε|C1 ≤ ε−1, choosing ε = ϑn/(q+1) yields
the required estimate for f ∈ Cc,A,L(δ).

To conclude, note that by Lemma 7.6, there exists C" > 0 such that, if f ∈ C1(M),
then, for each λ ≥ C"‖ f ‖C1 , λ + f ∈ Cc,A,L(δ). Hence, by the linearity of the integral,
�( f ) as defined in (8.17) can be extended to f ∈ C1 by �( f ) = �(λ+ f )− �(λ), and the
limsup is in fact a limit since since the limit exists for λ + f, λ ∈ Cc,A,L(δ) (see (8.18)
and following).

Now take f ∈ C1 with
´

f dμSRB = 1 and λ ≥ C"‖ f ‖C1 as above. Then, necessarily
λ + f ≥ 0, and so recalling (8.20), we have

P λ+ f
1+λ

(xn ∈ !) =
ˆ

M
1H!L̊n

S

(
λ+ f
1+λ

)
= λ

1 + λ

ˆ

M
1H!L̊n

S1 +
1

1 + λ

ˆ

M
1H!L̊n

S f

= λ

1 + λ
P1(xn ∈ !) +

1

1 + λ
P f (xn ∈ !).

Hence by (8.23),

P f (xn ∈ !) = (1 + λ)P λ+ f
1+λ

(xn ∈ !)− λP1(xn ∈ !)

= νnh(1H!)
(
λ�(1) + �( f )

)− νnh(1H!)λ�(1) + λO(νnϑ
q

q+1 n
)

= νnh(1H!)�( f ) + ‖ f ‖C1O(νnϑ
q

q+1 n
)
.

��

8.5. Random Lorentz gas (lazy gates). Consider a Lorentz gas as described in [AL,
Section 2]. That is, we have a lattice of cells of size one with circular obstacles of fixed
radius r at their corners and a random obstacle B(z) of fixed radius ρ and center in a set
O at their interior.31 The central obstacle is small enough not to intersect with the other
obstacles but large enough to prevent trajectories from crossing the cell without colliding
with an obstacle. We call the openings between different cells gates, see Fig. 6b, and
require that no trajectory can cross two gates without making at least one collision with
the obstacles. Thus we fix r and ρ satisfying32 the following conditions:

1
3 ≤ r < 1

2 , and 1− 2r < ρ <
√
2
2 − r . (8.24)

With r and ρ fixed, the set of possible configurations of the central obstacle are described
by ω ∈ $ = OZ

2
. In order to ensure that particles cannot cross directly from R̂1 to R̂3

or from R̂2 to R̂4 without colliding with an obstacle, and to ensure a minimum distance
between scatterers, we fix ε∗ > 0 and require the center c = (c1, c2) of the random
obstacle Bω, ω ∈ $, (the central obstacle C5 in Figure 6b) to satisfy,

1− (r + ρ − ε∗) ≤ c1, c2 ≤ r + ρ − ε∗ . (8.25)

31 The assumption that all obstacles are circular is not essential and can be relaxed by requiring that the
obstacles at the corners are symmetric with respect to reflections as described in Sect. 8.4.
32 Finite horizon requires r ≥ 1

1+
√
2
, yet our added condition that a particle cannot cross diagonally from,

say, R̂1 to R̂2 without making a collision requires further that r ≥ 1
3 .
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Bω(a) Bω(b)

Bω(0)
Bω(c)

a = (1, 0); b = (1, 1); c = (1, 0)

C2 C1

C3 C4

C5 R̂1R̂3

R̂2

R̂4

r

ρ

(a) (b)

Fig. 6. a Configuration of random obstacles Bω(z). b Poincaré section Ci and gates R̂i

Note that (8.24) and (8.25) imply that all possible positions of the central scatterer Bω

result in a billiard table with τmin ≥ τ∗ := min{ε∗, 1− 2r} > 0.
On$ the space of translations ξz , z ∈ Z

2, acts naturally as [ξz(ω)]x = ωz+x , see Fig.
6a. We assume that the obstacle configurations are described by a measure Pe which is
ergodic with respect to the translations.

Exactly as in the Sect. 8.4, we assume that the gates are reflecting and become
transparent only after N collisions with the obstacles. Thus when the particle enters a
cell it will stay in that cell for at least N collisions with the obstacles, hence the lazy
adjective.

As described in Sect. 8.4, when the particle reflects against a gate one can reflect
the table three times and see the flow (for the times at which the gates are closed)
as a flow in a finite horizon Sinai billiard on the two torus. Note that the Poincaré
section M = ∪5i=1Ci × [−π

2 ,
π
2 ] in each cell is exactly the same for each ω and z since

the arclength of the boundary is always the same, while the Poincaré map Tz changes
depending on the position of the central obstacle, see Fig. 6b. Let us call F(τ∗) the
collection of the different resulting billiard maps corresponding to tables that maintain
a minimum distance τ∗ > 0 between obstacles, as required by (8.24) and (8.25). (Note
that the parametersK∗ and E∗ of Sect. 8.3 are fixed in this class once r and ρ are fixed.)
The only difference with Sect. 8.4, as far as the dynamics in a cell is concerned, consists
in the fact that we have to be more specific about which cell the particle enters, as now
exiting from one cell means entering into another.

Recalling the notation of Sect. 8.4, if we call R(z) the cell at the position z ∈ Z
2,

then the gates R̂i are subsets of ∂R(z). We denote by R̃(z) the lifted cell (viewed as a
subset ofT2) after reflecting R(z) three times, and by (M̃, T̃z) the corresponding billiard
map. As before, the projection π : M̃ → M satisfies π ◦ T̃ = T ◦ π . Then the hole
H̃(z) can be written as H̃(z) = ∪4i=1 H̃i (z), where π(H̃i (z)) =: Hi (z) are the points
x ∈ M such that O(T−1x) ∩ ∂R(z) ∈ R̂i .33 Due to our Assumption (8.24), this point
of intersection is unique for each x since consecutive collisions with ∂R cannot occur.
Then H(z) = π(H̃(z)) = ∪4i=1Hi (z).

33 The hole depends on the trajectory of x , which is different in different cells and hence depends on z,
while the gates R̂i are independent of z.
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As discussed in Sect. 8.4, the holes are neither of Type I nor of Type II, yet they satisfy
(O1′) and (O2) with P0 = 3 and Ct depending only on the uniform angle between the
stable cone for the induced billiard map and the horizontal and vertical directions.

Yet for our dynamics, when a particle changes cell at the N th collision, it is because
after N − 1 collisions, that particle is in Gi (z) := T−1z Hi (z), and in fact it will never
reach Hi (z). Unfortunately, the geometry of G(z) := ∪4i=1Gi (z) is not convenient for
our machinery since ∂G(z)may contain stable curves, yet we will be able reconcile this
difficulty after defining the dynamics precisely as follows.

The phase space is Z2 × M . For x ∈ M , denote by p(x) the position of x in R(z)
and by θ(x) the angle of its velocity with respect to the positive horizontal axis in R(z).
We define

w(z, x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 =: w0 if x �∈ G(z)
e1 =: w1 if x ∈ G1(z)
e2 =: w2 if x ∈ G2(z)
−e1 =: w3 if x ∈ G3(z)
−e2 =: w4 if x ∈ G4(z).

Alsowe setW = {w0, . . . , w4}. If x ∈ Gi (z), thenwe call q̄(x) = (q, θ) ∈ R̂i×[0, 2π)
the point q̄ such that q = O(x)∩ R̂i and θ = θ(x), i.e. without reflection at R̂i . We then
consider q̄ as a point in the cell z +w(z, x) = z +wi and call Tz,i (x) the post-collisional
velocity at the next collision with an obstacle under the flow starting at q̄ . Note that in
the cell R(z + wi ), q̄ ∈ R̂ī , where ī = i + 2 (mod 4*).34 Thus if %z

t denotes the flow in
R(z), then with this notation, Gi (z) is the projection on M of R̂i under the inverse flow
%z−t while Hī (z + w(z, x)) is the projection on M of R̂ī under the forward flow %

z+wi
t .

Thus,

Hī (z + wi ) = Tz,i Gi (z)  ⇒ 1Gi (z) ◦ T−1z,i = 1Hī (z+wi ) , (8.26)

which is a relation we shall use to control the action of the relevant transfer operators
below.

Differing slightly from the previous section, here it is convenient to set Sz = T N−1
z ,

and define

F(z, x) =
{
(z, Sz ◦ Tz(x)) =: (z, Ŝz(x)) if x �∈ G(z)
(z + w(z, x), Sz+w(z,x) ◦ Tz,i (p)) =: (z + w(z, x), Ŝz(x)) if x ∈ Gi (z).

We set (zn, xn) = Fn(z, x) and we call n the macroscopic time, which corresponds to
Nn collisions with the obstacles. The above corresponds to a dynamics in which when
the particle enters a cell, it is trapped in the cell for N collisions with the obstacles; then
the gates open and until the next collision the particle can change cells, after which it is
trapped again for N collisions and so on.

Wewant to compute theprobability that a particle visits the setsGk0(z0), · · ·Gkn−1(zn−1),
in this order, where we have set G0(z) = M \∪4i=1Gi (z). Similarly, we define H0(z) =
M \ ∪4i=1Hi (z). This itinerary corresponds to a particle that at time i changes its po-
sition in the lattice by wki . Following the notation of [AL], we call Pω the probability

34 By (mod 4*) we mean cyclic addition on 1, 2, 3, 4 rather than 0, 1, 2, 3.
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distribution in the path space WN conditioned on the central obstacles being in the po-
sitions specified by ω ∈ $. Hence, if the particle starts from the cell z0 = (0, 0) with x
distributed according to a probability measure f dμSRB with density f ∈ Cc,A,L(δ), then
we have35 zn =∑n−1

k=0 wki and, for each obstacle distribution ω ∈ $,

Pω(z0, z1, . . . , zn) =
ˆ

M
f (x)1Gk0 (z0)

(x)1Gk1 (z1)
(Ŝ0(x)) · · ·

· · ·1Gkn−1 (zn−1)(Ŝzn−2 ◦ · · · ◦ Ŝ0(x)) dμSRB(x)

=
ˆ

M
L̊Gkn−1 (zn−1) · · · L̊Gk0 (z0)

f dμSRB (8.27)

where L̊Gk j (z j )
:= LN−1

Tz j+1
LTz j ,k j

1Gk j (z j )
, and we have set Tz,0 := Tz . See [AL] for more

details. We will prove below that if N is sufficiently large, then Theorem 8.9 applies to
each operator L̊Gk . This suffices to obtain an exponential loss of memory property (the
analogue of the result obtained for piecewise expanding maps in [AL, Theorem 6.1]),
that is property Exp in [AL, Section 4.1]. This is the content of the following theorem.

Theorem 8.20. There exist C∗ > 0, ϑ ∈ (0, 1) and N ∈ N such that for P-a.e. ω ∈ $,
if x is distributed according to f ∈ Cc,A,L(δ), with f ≥ 0 and

´
M f dμSRB = 1,

z0 = (0, 0), and the gates open only once every N collisions, then for all n > m ≥ 0
and all w ∈WN,

∣
∣Pω(wkn | wk0 . . . wkn−1)− Pξzmω(wkn | wkm . . . wkn−1)

∣
∣ ≤ C∗ϑn−m . (8.28)

Proof. Note that for m ≥ 0, ξzmω sends the cell at zm to (0,0). Thus according to Eq.
(8.27), for x distributed according to f ∈ Cc,A,L(δ) with z0 = (0, 0), we have

Pξzmω(wkm , . . . wkn ) =
ˆ

M
L̊Gkn (zn) · · · L̊Gkm (zm ) f dμSRB .

As remarked earlier, the setsGi (z) do not satisfy assumption (O2) so that Proposition 8.7
does not apply directly. Yet, it follows from (8.26) that for g ∈ Cc,A,L(δ),

L̊Gk j (z j )
g = LN−1

Tz j+1
LTz j ,k j

(1Gk j (z j )
g) = LN−1

Tz j+1

(
1Hk̄ j

(z j+1)LTz j ,k j
g
)
,

where, as before, k̄ j = k j + 2 (mod 4*). Then, just as in the proof of Proposition 8.7, it
may be the case that LTz j ,k j

g is not in Cc,A,L(δ). Yet, it is immediate from our estimates
in Sect. 5 that LTz j ,k j

g ∈ Cc′,A′,3L(δ) for any billiard map Tz j ,k j ∈ F(τ∗) for some

constants c′, A′ depending only on F(τ∗). As in the proof of Proposition 8.7, we may
choose constants c′′ ≥ c′, A′′ ≥ A′ and L ′′ ≥ 3L and δ > 0 sufficiently small to
satisfy the hypotheses of Theorem 6.12. Then since the sets Hi (z) do satisfy (O1′)
and (O2) with P0 = 3 and Ct depending only on the angle between the stable cone
and the vertical and horizontal directions, which has a uniform minimum in the family
F(τ∗), there exists χ < 1 and N sufficiently large as in Proposition 8.7 so that36

35 Since z0 = (0, 0), it is equivalent to specify z1, . . . zn or wk0 , . . . wkn−1 since wk j can be recovered as
wk j = z j+1 − z j .
36 Here in fact our operators are of the form Ln1H while in Proposition 8.7 they have the form Ln1Hc

for some set H . Yet, this is immaterial since the boundaries of H and Hc in M are the same so that (O1′) and
(O2), and in particular Lemma 8.6, apply equally well to both sets.
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[LN−1
Tz j+1

1Hk̄ j
(z j+1)

]Cc′,A′,3L(δ) ⊂ Cχc,χ A,χL(δ), and both χ and N are independent of

z j+1 and k j . This implies in particular that

L̊Gi (z)Cc,A,L(δ) ⊂ Cχc,χ A,χL(δ) for each i and all z ∈ Z
2.

Now the assumption that the gates only open every N collisions implies that for every
ω ∈ $, every path is the result of an N -admissible sequence.

As in the proof of Theorem 7.3, using the fact that μSRB(·) is homogeneous and
order preserving on Cc,A,L(δ) and that μSRB(L̄m f ) = μSRB( f ) = 1, where L̄m f =
L̊Gkm−1(zm−1)···L̊Gk0

(z0) f
´
M L̊Gkm−1(zm−1)···L̊Gk0

(z0) f
∈ Cc,A,L(δ), we estimate as in (7.6) and (7.7),

ˆ

M
L̊Gkn−1 (zn−1) · · · L̊Gkm (zm )( f − L̄m f ) dμSRB

≤ Cϑn−m min

{ˆ

M
L̊Gkn−1 (zn−1) · · · L̊Gkm (zm) f,

ˆ

M
L̊Gkn−1 (zn−1) · · · L̊Gkm (zm )L̄m f

}

,

(8.29)

for some ϑ < 1 depending on the diameter of Cχc,χ A,χL(δ) in Cc,A,L(δ).
Finally, the left hand side of (8.28) reads
∣
∣
∣
∣
∣

´
M L̊Gkn−1 (zn−1) · · · L̊Gk0 (z0)

f
´
M L̊Gkn−2 (zn−2) · · · L̊Gk0 (z0)

f
−

´
M L̊Gkn−1 (zn−1) · · · L̊Gkm (zm) f

´
M L̊Gkn−2 (zkn−2 ) · · · L̊Gkm (zm ) f

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

´
M L̊Gkn−1 (zn−1) · · · L̊Gkm (zm )L̄m f − ´

M L̊Gkn−1 (zn−1) · · · L̊Gkm (zm ) f
´
M L̊Gkn−2 (zn−2) · · · L̊Gkm (zm )L̄m f

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

´
M L̊Gkn−1 (zn−1) · · · L̊Gkm (zm ) f

´
M L̊Gkn−2 (zkn−2 ) · · · L̊Gkm (zm )L̄m f

−
´
M L̊Gkn−1 (zn−1) · · · L̊Gkm (zm ) f

´
M L̊Gkn−2 (zkn−2 ) · · · L̊Gkm (zm ) f

∣
∣
∣
∣
∣

≤ Cϑn−m + Cϑn−m−1 ,

where we have applied (8.29) twice and used the fact that

´
M L̊Gkn−1 (zn−1)···L̊Gkm (zm )g

´
M L̊Gkn−2 (zkn−2 )···L̊Gkm (zm )g

≤ 1

for any g ∈ Cc,A,L(δ). ��
In particular, Theorem 8.20, together with37 [AL, Theorem 6.4], implies that limn→∞

1
n zn = 0 for Pe almost all ω, that is, the walker has, Pe-almost-surely, no drift. See [AL,
Section 6] for details.38 This latter fact could be deduced also from the ergodicity result
in [Le06, Theorem 5.4]; however, Theorem 8.20 is much stronger (indeed, by [AL,
Theorem 6.4], it implies [Le06, Theorem 5.4]) since it proves some form of memory
loss that is certainly not implied by ergodicity alone. It is therefore sensible to expect

37 Remark that [AL, Theorem 6.4] requires μSRB(Gi (z)) to be the same for each i and z, independently of
ω. This is precisely the case here since Gi (z) is defined as the projection of R̂i under the inverse flow %z−t ,
and Leb(R̂i × [0, 2π)) in the phase space of the flow is independent of i , while μSRB is the projection onto M
of Lebesgue measure, which is invariant under the flow.
38 The arguments in [AL, Section 6] are developed for expandingmaps, but the relevant parts apply verbatim

to the present context.



Projective Cones for Sequential Dispersing Billiards 921

that more information on the randomwalk will follow from Theorem 8.20, although this
will require further work.

We conclude with a corollary of Theorem 8.20 which implies the same exponential
loss of memory for particles distributed according to two different initial distributions.
For f ∈ Cc,A,L(δ), let Pω, f (·) denote the probability in the path spaceWN conditioned
on the central obstacles being in positionω ∈ $ andwith x initially distributed according
to f dμSRB.

Corollary 8.21. There exist C > 0 and ϑ ∈ (0, 1) such that for all f, g ∈ Cc,A,L(δ)
with

´
M f = ´

M g = 1 and P-a.e. ω ∈ $, if z0 = (0, 0), then for all n ≥ 0 and all
w ∈WN,

∣
∣Pω, f (wkn | wk0 . . . wkn−1)− Pω,g(wkn | wk0 . . . wkn−1)

∣
∣ ≤ Cϑn .

Proof. The proof is the same as that of Theorem 8.20 since (8.29) holds as well with
L̄m f replaced by g. ��
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