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Abstract: Weintroduce a family of stochasticmodelsmotivatedby the studyof nonequi-
librium steady states of fluid equations. These models decompose the deterministic dy-
namics of interest into fundamental building blocks, i.e.,minimal vector fields preserving
some fundamental aspects of the original dynamics. Randomness is injected by sequen-
tially following each vector field for a random amount of time. We show under general
conditions that these random dynamics possess a unique, ergodic invariant measure and
converge almost surely to the original, deterministic model in the small noise limit.
We apply our construction to the Lorenz-96 equations, often used in studies of chaos
and data assimilation, and Galerkin approximations of the 2D Euler and Navier–Stokes
equations. An interesting feature of the models developed is that they apply directly to
the conservative dynamics and not just those with excitation and dissipation.

1. Introduction

This paper studies the long time dynamics of fluid-like equations that are kept out of
equilibrium. Among the simplest examples of fluid models displaying interesting out-
of-equilibrium behavior (such as fluxes across scales) are the two-dimensional Euler
and incompressible Navier–Stokes equations. On the 2-dimensional torus T, i.e., T :=
[0, 2π ]2 with periodic boundary conditions, the Navier–Stokes equations, which model
the flow of an incompressible fluid, are{

∂t u + (u · ∇)u = −∇ p + F + ν�u ,

div(u) := ∇ · u = 0 ,
(1.1)

where u : T× R→ R
2 is the fluid velocity, p : T× R→ R the fluid pressure,

(u · ∇)u = (u1∂1u1 + u2∂2u1, u1∂1u2 + u2∂2u2), and �u = ∂21u1 + ∂22u2 .
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Here u = (u1, u2) and ∂ j := ∂x j . The viscosity ν > 0 measures the strength of the
dissipation introduced by the Laplacian�, and F(x, t) is an external driving forcewhose
role is to keep the system from relaxing to the trivial state u ≡ 0.

By balancing the dissipative effect of �u, the forcing term allows the system to
establish an out-of-equilibrium steady state. Such statistical equilibria often develop
fluxes across scales, a phenomenon whose study is an active area of research. Often F
is taken to live on only a few scales so that the flux out of those scales can be studied
[18,24,29,40]. In practice, the forcing F(x, t) is usually taken to be stochastic in space
and time for some stationary distribution which is typically white in time [14,18,20,24].
A common choice in the literature is F(x, t) = ∑

ψk(x)Ẇk(t) where each ψk(x) is a
fixed spatial forcing and {Ẇk(t)} are a collection of mutually independent white in time
noise termswritten here as the formal derivative of aBrownianmotion. Stochastic forcing
servesmultiple purposes in these settings. On one hand, as alreadymentioned, it provides
the energetic excitation which keeps the system out of equilibrium and allows for the
establishment of a nontrivial statistical steady state. On the other hand, it provides local
agitation which, modulo certain constraints, ensures the existence of a unique statistical
steady state to which the system converges for most initial conditions. In other words,
it guarantees the forcing is sufficiently varied and generic to ensure convergence to a
single long time statistical behavior of the system, largely independent of the system’s
initial configuration.

This paper studies a class of processes, introduced in the next section, injecting
randomness into the fluid models of interest while separating in a simple way the various
roles served by noise in previous works. In particular, the randomness is used primarily
to ensure that when the dynamics is sufficiently generic, unique ergodicity1 holds for a
broad class of initial conditions. This will free one to use a much less disruptive class
of forcing to keep the system out of equilibrium. More specifically, the class of models
introduced below have a number of desirable properties:

(1) They allow one to separate the effect of forcing, which keeps the system out of
equilibrium, and stochastic agitation, which ensures the system has a unique long
time statistical behavior.

(2) The stochastic agitation is strongly non-reversible since it is constructed from dy-
namics which only flow in the directions the original dynamics could already move.

(3) The stochastic agitation preserves the conserved quantities of the original dynamics.
This allows the properties of the (stochastic) conservative dynamics to be studied
directly rather than only as a limit of the forced-dissipated dynamics.

(4) The model dynamics will be constructed as the composition of simple dynamics,
isolating particular nonlinear interactions which are relatively intuitive and can be
explicitly analyzed.

By balancing between preservation of fundamental macroscopic properties of the orig-
inal dynamics as in (3) and simplicity of the fundamental building blocks in our model
dynamics as in (4), we expect the stochastic models introduced in this paper will provide
meaningful physical and dynamical insight into nonequilibrium steady states of models
such as (1.1).

Our decomposition into fundamental building blocks is partially motivated by the
classical stylized models of dynamics studied in depth at the dawn of the theory of
dynamical systems. Examples include the doubling map, quadratic maps, the Henon
map, the Smale horseshoe, and extended systems like coupled map lattices (see [16,27]

1 See Definition 1.1.
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and references therein). The form of the decomposition is also motivated by the recent
progress in proving ergodic properties of piecewise deterministic Markov processes
(PDMPs) and their success as modeling and sampling tools. See for example [2–4,6,7,
9,13,15,17,33–35,38,44].

1.1. A class of stochastic models. We now introduce the general idea underlying the
class of stochastic models, called random splitting, that we study in this paper. A more
systematic definition of these models is deferred to Sect. 2. Consider an ordinary differ-
ential equation (ODE)

ẋ = V (x) =
n∑

k=1
Vk(x) , (1.2)

where n ∈ N and V and {Vk}nk=1 are vector fields onRd . In what follows, we choose the
Vk so that the dynamics

ẋ = Vk(x) (1.3)

are in some sense simpler than the dynamics corresponding to (1.2). We then approx-
imate the solution �t : x(0) �→ x(t) of (1.2) with compositions of the solution maps
ϕ

(k)
t : x(0) �→ x(t) of (1.3). This procedure is known as operator splitting in the numer-

ical analysis literature and is often used in numerical simulations of various ordinary,
partial, and stochastic differential equations [1,8,10,11,22,32,39,46,47]. Typically, the
goal is to leverage the fact that each of the dynamics in (1.3) is more computationally
tractable than (1.2) to construct an efficient and accurate numerical method. A variant
of these models was also explored in the thesis [51].

Here our goal is related but slightly different. Specifically, instead of evolving each
ϕ(k) for a fixed time h as in traditional operator splitting methods, we evolve each of the
ϕ(k) for a random time with mean h. Repeated composition then produces dynamics on
O(1) times. The evolution times for each ϕ(k), and over each cycle, will be identically
distributed and mutually independent, which implies our models are Markovian. As in
the numerical analysis context, we hope to leverage the simplified nature of each ϕ(k),
obtained from (1.3), to gain insight into the complex dynamics of the composition of
maps. We will also see that as the mean evolution time h → 0, the random splitting
associated to (1.2) will almost surely converge to the deterministic dynamics�t on finite
time intervals. However, we are most interested in studying the random splitting in its
own right and not strictly as a approximation of (1.2). We will be particularly interested
in its long time behavior and qualitative understanding of the stationary dynamics the
random splitting produces when h > 0. More specifically, the property of the system we
aim to establish is codified in the following standard definition from the theory ofMarkov
processes; the supporting definition of invariant measure is given in the first paragraph
of Sect. 3 after the transition kernel of random splitting is explicitly introduced.

Definition 1.1. A Markov process on a manifold X is uniquely ergodic on X if its
transition kernel admits exactly one invariant probability measure on X .

We note that the definition of the set X where the above property holds can be quite
delicate. While in general there might not exist a d-dimensional manifold X in R

d on
which the random splitting is uniquely ergodic (see for example Remark 1.6), in the
examples below we will identify a family of manifolds of lowest co-dimension where
the above definition applies.
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Remark 1.2. The set of invariant probability measures for a Markov transition kernel is
convex, and the extremal points of this set are precisely the ergodic invariant measures
[12,23]. In particular, if the transition kernel admits exactly one invariant measure, then
it is necessarily extremal and therefore ergodic. This explains the use of the term ergodic
in Definition 1.1.

1.2. Two motivating examples. In this paper, we consider two motivating examples:
A conservative version of the Lorenz-96 model and Galerkin approximations of the
vorticity formulation of the 2D Euler equations. We then use these analyses to study the
full Lorenz-96 model and Galerkin approximations of the vorticity formulation of 2D
Navier–Stokes.

Lorenz-96. Fix n ≥ 4 and let {ek}nk=1 denote the standard basis of Rn . The Lorenz-96
model is

ẋ =
n∑

k=1

(
(xk+1 − xk−2)xk−1 − νxk + Fk

)
ek (1.4)

for x ∈ R
n , ν > 0, and nonnegative constants Fk , where the indices are periodized via

the identities x−1 := xn−1, x0 := xn , and xn+1 := x1. The−νxk term in (1.4) represents
dissipation in the kth coordinate and Fk is a forcing constant. Initially, we study a variant
of Lorenz-96, called conservative Lorenz-96, obtained by removing the dissipation and
forcing terms from Lorenz-96. That is,

ẋ = V (x) :=
n∑

k=1
(xk+1 − xk−2)xk−1ek . (1.5)

We sometimes refer to the original Lorenz-96 model as the forced Lorenz-96 model to
emphasize the forcing (though the dissipation is equally important). For conservative
Lorenz-96, we will decompose V into a collection of simple rotations by observing that

V (x) =
n∑

k=1
Vk(x) (1.6)

where Vk(x) := (xk+1ek − xkek+1)xk−1. The dynamics given by ẋ = Vk(x) are easy to
understand on their own; any complex behavior comes from interactions of the rotations.
Importantly, each Vk is chosen to conserve, like V , the system’s energy, which for
Lorenz-96 is defined to be the square of the usual Euclidean norm, ‖x‖2 :=∑n

k=1 x2k .

2D Euler. Returning to (1.1), we begin by defining the scalar vorticity q(x, t) =
curl u(x, t) of the velocity field u(x, t). Initially, we will consider the Euler equations
which are obtained from (1.1) by taking ν = F = 0. Writing the equation for the j th
Fourier mode q j ∈ C, defined by q(x, t) = ∑

j q j (t)e j (x) for e j (x) := eix · j , and
j ∈ { j ∈ Z

2 : | j | < N , j 	= 0}, we have
q̇ j = −

∑
j+k+	=0

Ck	q̄k q̄	 (1.7)
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for a constant Ck	 defined in Sect. 6.1. We will see that this system has two conserved
quantities, the enstrophy,

∑
j |q j |2, and the energy,∑ j | j |−2|q j |2. Notice that the def-

inition of energy differs between this equation and the Lorenz-96 model.
As in the Lorenz-96 model, we introduce the simpler dynamics q̇ = Vjk	(q) where

Vjk	(q) = −Ck	q̄k q̄	e j − C j	q̄ j q̄	ek − C jkq̄ j q̄ke	 and observe that

V (q) =
∑

j+k+	=0
Vjk	(q) .

We will see in Sect. 6 that with this choice of splitting the dynamics q̇ = Vjk	(q), like
the original system V (q), preserves the important physical quantities of enstrophy and
energy.

Remark 1.3. InSect. 6,we further simplify these complex-valueddynamics byprojecting
onto a real basis. The current choice is sufficient for an introductory discussion.

Remark 1.4. Our results do not focus on establishing minimal hypoellipticity assump-
tions for our models of Lorenz-96, 2D Euler and 2D Navier–Stokes; the stochastic
agitation we use is more global than the minimal hypoellipticity forcing considered in
[18,24]. We hope this will allow us to progress further than with previous models while
preserving much of the physically interesting dynamics.

Remark 1.5. It is important to emphasize that, with regard to unique ergodicity, the main
role of the forcing, when included, is only to destroy the fixed points and other low-
dimensional invariant structures of the original flows and not to provide the stochastic
mixing which ensures the existence of a unique, ergodic measure to which the system’s
statistics converge. The stochastic mixing is largely provided by the random splitting
and is in contrast to the results in [5,18,19,24,29–31].

Remark 1.6. When considering conservative versions of our split dynamics (those with-
out any explicit dissipation or body forcing), we cannot expect there to be a unique
invariant measure for the system. In particular, since the dynamics will be constrained
to level sets of the conserved quantities, there will be at least one invariant measure per
level set. Furthermore, we will see that even on such constraint level sets there can be
multiple ergodic invariant measures. Most will correspond to fixed points of the original
dynamics and other lower-dimensional invariant structures. However we will see, in the
two examples considered, that when our family of switched vector fields is sufficiently
rich, there will be a unique ergodic invariant measure which is absolutely continuous
with respect to the volume measure on the level set. This implies that in these examples,
there is a unique ergodic invariant measure concentrated on a set of full measure inside
each constraint level set. In this sense, we will demonstrate a form of uniqueness which
aligns with the form of unique ergodicity often proven in the smooth deterministic dy-
namics setting, i.e., that there is only one invariant measure absolutely continuous with
respect to the setting’s natural Lebesgue measure.

Organization of paper. In Sect. 2, we introduce random splitting and its state spaces,
calledV-orbits. In Sect. 3, we give conditions for random splitting to be uniquely ergodic
on aV-orbit. In Sect. 4,we showunder general conditions that randomsplitting converges
to its deterministic counterpart (1.2) on finite time intervals both in terms of its transition
kernel and almost surely as the average time step h goes to zero. In Sects. 5 and 6, we
construct random splittings of conservative Lorenz-96 and Galerkin approximations of
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2D Euler and apply the preceding results to show these splittings are uniquely ergodic
and converge on finite time intervals as h → 0. In doing so we show each system has
a unique invariant measure that is absolutely continuous (with respect to the volume
measure) on the set defined by a given choice of the conserved quantities. In Sect. 7,
we consider the Lorenz-96 and Euler models when fixed forcing and dissipation are
added.When appropriate dissipation is chosen, the latter model corresponds to a random
splitting of Galerkin approximations of 2D Navier–Stokes. We again construct random
splittings of these models, prove convergence, and show that if the forcing is not aligned
with the equations’ invariant structures (such as fixed points) then both randomly split
Lorenz-96 and Galerkin approximations of 2D Navier–Stokes have a unique invariant
measure and the distribution starting from any initial condition converges exponentially
to this measure.

2. Random Splitting in a General Setting

Let V :={Vk}nk=1 be a family of complete2, C2 vector fields3 on R
d and set

V :=
n∑

k=1
Vk . (2.1)

Denote the flow of ẋ = V (x) by � and the flow of ẋ = Vk(x) by ϕ(k). � is the true
dynamics. To construct a random dynamics approximating�, fix h > 0, let τ = (τk)

∞
k=1

be a sequence of independent exponential random variables with mean 1, and set hτ :=
(hτk)

∞
k=1. The approximating dynamics, henceforth referred to as the random splitting

associated to V or just random splitting for short, is theMarkov chain {�m
hτ }∞m=0 defined

by �0
hτ := I and, for m > 0,

�m
hτ := ϕ

(n)
hτmn

◦ · · · ◦ ϕ
(1)
hτ(m−1)n+1(�

m−1
hτ ), (2.2)

where I is the identity on Rd , � := ϕ(n) ◦ · · · ◦ ϕ(1), and �m is the m-fold composition

of �. Note that hτk
iid∼ Exp(1/h). Therefore, starting from the current step, the next step

of the chain is obtained by following each Vk for Exp(1/h) time in order from k = 1
to n. The chain is Markovian because the random times are independent. Its transition
kernel Ph acts on measurable functions f : Rd → R via

Ph f (x) = E
(
f (�hτ (x))

) = ∫
R
n
+

f (�ht (x))e
−∑n

k=1 tk dt (2.3)

where R+ := (0,∞), t = (t1, . . . , tn), and dt = dt1 · · · dtn .
Remark 2.1. Throughout this paper the superscripts k in ϕ(k) and subscripts k in Vk are
understood to be taken modulo n if k mod n 	= 0 and to be n otherwise. For example, if
n = 3,

ϕ(6) ◦ ϕ(5) ◦ ϕ(4) ◦ ϕ(3) ◦ ϕ(2) ◦ ϕ(1) = ϕ(3) ◦ ϕ(2) ◦ ϕ(1) ◦ ϕ(3) ◦ ϕ(2) ◦ ϕ(1).

2 A vector field is complete if its flow curve starting from any point exists for all time.

3 We use calligraphic Ck for k-times continuously differentiable maps throughout to avoid confusion with
constants which are often denoted by normal script C (for example, the constants C jk in 2D Euler).
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Also, the t in�m
t is always a sequence t = (t1, . . . , tmn) or, more generally, t = (tk)∞k=1,

so that

�m
t (x) = ϕ

(n)
tmn
◦ · · · ◦ ϕ

(1)
t1 (x) .

Note that the above is a composition of mn flows, as in (2.2).

Remark 2.2. All results in this paper remain true if at each step we randomly permute
indices in the composition�. That is, given a current state x , the next step is ϕ

(σ(n))
hτn

◦· · ·◦
ϕ

(σ(1))
hτ1

(x) where σ is a random permutation of {1, . . . , n}. This yields both additional
randomness and an avenue to higher order approximations of the true dynamics [10,
11,32,46,47]. We forgo this more general setting however to keep exposition more
approachable and notationally light.

Remark 2.3. The times are assumed exponentially distributed for convenience. All re-
sults extend to any distribution on [0,∞) with positive density on (0, ε) for some ε > 0
and exponential tails. The second condition, which is not sharp, guarantees sufficient
concentration of averages of random flow times τi in Lemmas A.3 and A.4 and is re-
quired for the convergence results as h → 0 in Sect. 4. The first condition is used in
Sects. 5 and 6 to guarantee sufficient flexibility in the trajectories of the split systems of
interest to establish the global irreducibility needed for ergodicity.

2.1. V-Orbits. Throughout this paper we often restrict attention to certain subsets of
R
d affiliated with the family of vector fields V . Specifically, for each x in Rd define the

V-orbit of x by

X (x) := {�m
t (x) : m ≥ 0, t ∈ R

mn}. (2.4)

This is the set of points in R
d that can be reached by the split dynamics starting from

x in any finite number of steps and over arbitrary positive and negative times. X (x) is
well-defined since the Vk are complete. Furthermore, since the time vectors t in (2.4)
admit coordinates that are 0,

X (x) = {ϕ(im )
tim

◦ · · · ◦ ϕ
(i1)
ti1

(x) : m ∈ N, 1 ≤ i j ≤ n, ti j ∈ R
}
.

Hence (2.4) agrees with the definition of V-orbits from control theory [26,50]. The
collection {X (x) : x ∈ R

d} partitions Rd and if the random splitting {�m
hτ } associated

to V starts in X (x) then it stays in X (x) for all time. Therefore the {�m
hτ } previously

defined on R
d also defines a Markov chain on X (x) whenever it starts in X (x), and its

transition kernel Ph acts on measurable functions f : X (x)→ R as in (2.3). When x is
arbitrary or clear from context, we denote X (x) by X . A classic result from geometric
control theory, sometimes called the orbit theorem, says if every Vk in V is Cr for some
1 ≤ r ≤ ∞ (respectively, analytic4), then every X is an immersed Cr (respectively,
analytic) submanifold of Rd [26]. In particular, each X has a Riemannian structure
induced by the Euclidean structure on R

d and an associated volume form, henceforth
denoted λ, sometimes calledHausdorff or Lebesgue measure onX , which serves as our
reference measure on X .

4 Throughout this paper analytic means real-analytic.
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Remark 2.4. The orbit theorem says every V-orbit X is an immersed but not necessarily
embedded submanifold of Rd . For example, X can be a “figure-eight" curve in R

2

[37, Example 5.19]. Nevertheless, every X is a manifold with a volume form induced
by the ambient Euclidean structure, and every vector field in V restricts to a vector
field on X by construction. In particular, {Vi (x) : Vi ∈ V} is a set of vectors in the
tangent space TxX for every x in X . Throughout this paper submanifold will mean
immersed submanifold without further qualification. See [36,37] for more on immersed
and embedded submanifolds in general, and [26] for more on V-orbits in particular.

3. Ergodicity

Let V := {Vk}nk=1 be a family of complete, C2 vector fields on R
d as before and fix

a p-dimensional V-orbit X . Also fix h > 0 and let Ph be the transition kernel of the
associated random splitting onX . A measure μ onX is Ph-invariant if μPh = μwhere
μPh is defined by

μPh f :=
∫
X

Ph f (x)μ(dx) (3.1)

for all bounded, measurable functions f : X → R. The main result of this section is

Theorem 3.1. If there exists x∗ in X such that for all x in X there is an m in N and t
in R

mn
+ with �m(x, t) = x∗ and Dt�

m(x, t) : TtRmn
+ → Tx∗X surjective, then Ph has

at most one invariant measure on X . Moreover, if such a measure exists, it is absolutely
continuous with respect to the volume form on X .

Here Tx∗X is the tangent space of X at x∗. The proof of Theorem 3.1 follows from
the classical minorization condition [25,41,43,48] given by the following result, which
appears in [6, Lemma 6.3].

Lemma 3.2. Let p ≤ m and let F : X ×U → X be C1, where U is an open subset of
R
m. Suppose τ is a U-valued random variable with continuous density ρ. If for some

(x, t) in X ×U the map Dt F(x, t) is surjective and ρ is bounded below by c0 > 0 on
a neighborhood of t , then there exists a constant c > 0 and neighborhoods Ux of x and
U∗ of x∗ := F(x, t) such that

P
(
F(y, τ ) ∈ B

) ≥ cλ(B ∩U∗) (3.2)

for all y in Ux and B in the Borel σ -algebra B(X ) of X (recall λ is the volume form on
X ).

Remark 3.3. In our setting,U = R
mn
+ , F = �m : X×Rmn

+ → X , and τ = (τ1, . . . , τmn)

with the τk independent exponential random variables with mean h. In this case, if
x∗ = �m(x, t) for some t with Dt�

m(x, t) surjective, then Lemma 3.2 guarantees the
existence of a constant c > 0 and neighborhoods Ux of x and U∗ of x∗ such that, for all
y in Ux and B in B(X ),

Pm(y, B) ≥ cλ(B ∩U∗) . (3.3)
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Proof of Theorem 3.1. The proof is by contradiction. Suppose μ1 and μ2 are distinct
Ph-invariant probabilitymeasures. Assumewithout loss of generality bothμi are ergodic
and therefore mutually singular [12,28]. Then there exist disjoint measurable sets A1
and A2 partitioning X such that μi (B) = μi (B ∩ Ai ) for all B in B(X ). Fix xi in the
support of μi so, by definition, μi gives positive measure to every neighborhood of xi .
By hypothesis and Remark 3.3 there exist ci > 0, mi ∈ N, and neighborhoods Ui of xi
and U∗ of x∗ such that Pmi

h (x, ·) ≥ ciλ(· ∩U∗) for all x in Ui . So,

μi (B) = μi P
mi
h (B) ≥

∫
Ui

Pmi
h (x, B)μi (dx) ≥ ciλ(B ∩U∗)μi (Ui ) (3.4)

for all B in B(X ). In particular, μi (B) = 0 implies λ(B ∩U∗) = 0 since ci and μi (Ui )

are strictly positive. But μ1(A2 ∩U∗) = μ2(A1 ∩U∗) = 0 and hence

0 < λ(U∗) = λ(A1 ∩U∗) + λ(A2 ∩U∗) = 0,

which is a contradiction. Absolute continuity of the Ph-invariant measure μ, provided
it exists, follows from uniqueness together with the fact that the absolutely continuous
part,μac, and singular part,μs , ofμ are Ph-invariant wheneverμ is [6, Proposition 2.7].
Specifically, sinceμac andμs are Ph-invariant and there can be at most one Ph-invariant
probability measure, either μac or μs is identically zero. Since μac is nonzero by (3.4),
it follows that μs = 0 and therefore μ = μac. ��
Remark 3.4. The invariant measure μ, which we defined as a fixed point of the left
action of the Markov semigroup P , is often called a stationary measure. This is since the
sequence of random variables generated by the Markov process starting from an initial
condition distributed according to μ will be stationary. This helps distinguish from the
invariant measure of the skew flow (x, τ ) �→ (�hτ (x), ϑτ) where the shift ϑ is defined
by ϑτ : τ = (τ1, τ2, · · · ) �→ (τn+1, τn+2, · · · ). The skew perspective captures more
information about the dynamics and is preferred for many questions. However, we will
not pursue it here as it complicates the simple picture we explore in this note.

3.1. The Lie bracket condition. Let X(X ) be the Lie algebra of smooth vector fields on
X and assume throughout this subsection the vector fields in V are smooth. Then the
smallest subalgebra Lie(V) of X(X ) containing V is well-defined, and for each x in X
the collection Liex (V) := {V (x) : V ∈ Lie(V)} is a subspace of the tangent space TxX
at x .

Definition 3.5. The Lie bracket condition holds at x in X if Liex (V) = TxX .

The Lie bracket condition is called the weak bracket condition in [6] and Condition B
in [2]. Both papers also consider a strong bracket condition (Condition A) which is used
for results about continuous time Markov processes and is therefore not needed here.
The Lie bracket condition has the following important consequence. NoteR+ := (0,∞)

throughout this paper.

Theorem 3.6. If the Lie bracket condition holds at a point x∗ in X then for every
neighborhood U of x∗ in X and every T > 0 there exists an x in U, an m, and a t
in R

mn
+ such that

∑mn
k=1 tk ≤ T and t �→ �m(x∗, t) = x is a submersion at t , i.e.

Dt�
m(x∗, t) : TtRmn → TxX is surjective.
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A version of Theorem 3.6 appears as Theorem 3.1 in [26]; the equivalent version
given here is better suited to random splitting and other classes of piecewise deterministic
Markov processes. See Theorem 5 in [2] and Theorem 4.4 in [6] and their corresponding
discussions for details. Intuitively, Theorem 3.6 says that if the Lie bracket condition
holds at x∗ then, as a consequence of surjectivity, the random splitting can move in any
infinitesimal direction from x∗ in arbitrarily small positive times. The next result is an
immediate consequence of Theorems 3.1 and 3.6.

Corollary 3.7. Suppose there is an x∗ inX at which the Lie bracket condition holds and
such that for every x in X there is an m ∈ N and a t ∈ R

mn
+ satisfying �m(x, t) = x∗.

Then Ph has at most one invariant measure onX . Furthermore, if such a measure exists,
it is absolutely continuous with respect to the volume form λ.

One benefit of Corollary 3.7 is that it replaces the need to check the surjectivity
assumption of Theorem 3.1, which can be challenging in practice, with the verification
of theLie bracket condition. The next result provides a further convenience in the analytic
setting which will be used in the specific examples considered below. See [26,45] for
further discussion and proof.

Theorem 3.8 [Nagano]. Suppose the vector fields in V are analytic. If the Lie bracket
condition holds at any point in X , then it holds at every point in X .

Corollary 3.9. Suppose the vector fields in V are analytic and there is a point x∗ in X
such that for every x in X there is an m ∈ N and a t ∈ R

mn
+ satisfying �m(x, t) = x∗.

If the Lie bracket condition holds at any point in X , then Ph has at most one invariant
measure on X . Furthermore, if such a measure exists, it is absolutely continuous with
respect to the volume form λ.

Proof. Since the Lie bracket condition holds at one point in X , it also holds at x∗ by
Nagano’s theorem. The result follows by Corollary 3.7. ��

4. Convergence as Mean Time Step Goes to Zero

A well-known result in the operator splitting literature is that the error incurred in ap-
proximating� by the deterministic splitting scheme�h = ϕ

(n)
h ◦ · · · ◦ϕ

(1)
h isO(h) [39].

That is,�h converges to the true dynamics� at worst linearly in h as h → 0. In this sec-
tion we give analogous results for random splitting; the pluralized “results" reflects that
with randomness comes several different notions of convergence. Specifically, we give
two main results. First, as in the deterministic case, the transition kernel Ph of random
splitting converges to the true dynamics linearly in h as h → 0. Second, random splitting
converges almost-surely to the true dynamics as h → 0. Each case requires a slightly
different notion of O(h). These statements are made precise in Theorems 4.1 and 4.5,
respectively, but to make sense of them we first introduce the appropriate setting.

The following assumption on V-orbits is used throughout this section.

Assumption 1. X (x) is bounded for each x in Rd .

Since the vector fields Vk are assumed C2, Assumption 1 implies the Vk are bounded
with bounded first and second derivatives on every X . In particular,

C∗(x0) := sup
x∈X (x0)

{
‖Vk(x)‖, ‖DVk(x)‖, ‖D2Vk(x)‖ : 1 ≤ k ≤ n

}
<∞ , (4.1)



Random Splitting of Fluid Models 507

where ‖Vk(x)‖ is the usual Euclidean norm, ‖DVk(x)‖ is the operator norm of the
linear map DVk(x) : Rd → R

d , and ‖D2Vk(x)‖ is the operator norm of the bilinear
map D2Vk(x) : Rd × R

d → R
d .

For a positive integer k let Ck(X ) be the space of k-times continuously differentiable
functions f : X → R. For f in Ck(X ) and 	 ≤ k, the 	th derivative D	 f (x) of f at x
is a multilinear operator from ⊗	

1TxX to R. The operator norm of D	 f (x) is then

‖D	 f (x)‖ := sup
‖η‖=1

{
|D	 f (x)η|

}
,

where η ∈ ⊗	
1TxX . Defining D0 f (x) := f (x), this in turn induces a norm on Ck(X )

given by

‖ f ‖k := sup
x∈X

{
‖D	 f (x)‖ : 0 ≤ 	 ≤ k

}
.

The corresponding operator norm is denoted ‖·‖k→k . More generally, for any k and 	

define a norm ‖·‖k→	 on the space of linear operators L : Ck(X )→ C	(X ) by

‖L‖k→	 := sup
‖ f ‖k=1

‖L f ‖	 .

Wemake frequent use of the submultiplicity of ‖·‖k→	. Namely, if A and B are bounded
linear operators from C j (X ) to Ck(X ) and from Ck(X ) to C	(X ), respectively, then

‖BA‖ j→	 ≤ ‖B‖k→	‖A‖ j→k .

The results below are stated in terms of semigroups of the flows � and ϕ( j), which
are C2 by assumption. Hence for all k ≤ 2 the semigroup {St }t≥0 corresponding to �

acts on f ∈ Ck(X ) via

St f (x) = etV f (x) = f (�t (x)) (4.2)

and, similarly, the semigroup {S̃( j)
t }t≥0 corresponding to ϕ( j) is given by

S̃( j)
t f (x) = etVj f (x) = f (ϕ( j)

t (x)) . (4.3)

In particular, m steps of random splitting corresponds to S̃mhτ := S̃(1)
hτ1
· · · S̃(mn)

hτmn
with su-

perscripts taken as in Remark 2.2. The transition kernel Pm
h and semigroup composition

S̃mhτ are related via

Pm
h f = E( f (�m

hτ )) = E(S̃mhτ f ) . (4.4)

With the above notation we now present the two main results of this section, Theorems
4.1 and 4.5, which follow from Lemmas 4.2 and 4.6, respectively. The full proofs of
both lemmas are given in the Appendix, but we discuss the general idea behind each at
the end of this section.

Theorem 4.1. Suppose Assumption 1 holds and fix t > 0. For all h sufficiently small
and satisfying mh = t for some m ∈ N, there exists a constant C(t) depending on t but
not on h such that

‖Pm
h − St‖2→0 ≤ C(t)h. (4.5)
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Lemma 4.2. If Assumption 1 holds then there exists a constant C such that

‖Ph − Sh‖2→0 ≤ Ch2 (4.6)

for all h sufficiently small.

Recalling from (4.4) that Ph = E(S̃1hτ ), informally Lemma 4.2 states that the average
difference between one step of random splitting and the true dynamics is O(h2) for
sufficiently small h. For any finite time interval [0, t] we can leverage this result to
approximate St by successive steps of Ph . Specifically, choose h sufficiently small so
that (4.6) holds and there exists an integer m with mh = t . Then the composition Pm

h
corresponds toO(1/h) steps of Ph . Consequently, since the difference between Ph and
Sh is O(h2), the difference between Pm

h and St is O(h).
A possible interpretation ofO(h p) is given in Theorem 4.1 and Equation (4.5). This

choice matched the particular results being proved. In Theorem 4.5 and Lemma 4.6
below, we chose to quantify the error in another fashion, though the same order of
magnitude statements hold true. The same basic reasoning can be used to prove the
following.

Remark 4.3. As we have made minimal assumptions on the splitting, we will only be
able to deduce that Ph − Sh = O(h2). In specific examples, it is often possible to
arrange the splitting so that Ph − Sh = O(h p) with p > 2. An example of a higher
order splitting is Strang splitting [39]. Alternatively, higher order can also be obtained
by fully randomizing the order [10] or randomly choosing between one ordering and its
reverse [32,46,47].

Proof of Theorem 4.1. Let h be sufficiently small that (4.6) holds and such that mh = t
for some m ∈ N. The quantity of interest can be written as the following telescoping
sum:

Pm
h − St =

m∑
k=1

Pk−1
h (Ph − Sh)Sh(m−k) . (4.7)

For any k and continuous function f with ‖ f ‖0 = 1,

‖Pk
h f ‖0 ≤ E

(∥∥ f (�k
hτ

)∥∥
0

)
= 1 .

Hence ‖Pk
h ‖0→0 = 1. Similarly, since mh = t implies h(m − k) ≤ t for k ≥ 0 and X

is bounded by Assumption 1 (so � and its first and second derivatives are bounded on
X , uniformly on [0, t]),

‖Sh(m−k)‖2→2 ≤ K (t)

for some K (t) depending on t but not h. Hence, by submultiplicity, (4.7), and Lemma
4.2, we have

‖Pm
h − St‖2→0 ≤

m∑
k=1
‖Pk−1

h ‖0→0‖Ph − Sh‖2→0‖Sh(m−k)‖2→2 ≤ K (t)
m∑

k=1
Ch2 = C(t)h ,

where C(t) := K (t)C , with C the constant from (4.6) in Lemma 4.2. ��



Random Splitting of Fluid Models 509

Remark 4.4. Theorem 4.1 had the relation h = t/m, while in the almost-sure results
below we will take h = t/m2 (note we explicitly write t/m2, making no reference to the
variable h). The reason, loosely speaking, is that the transition kernel depends only on
the expectation of the randomness, while the almost-sure results additionally depend on
fluctuations of the randomness about its mean. For example, Lemma 4.6 prepares for an
application of the Borel-Cantelli lemma by establishing the summability of probabilities
of “large” fluctuations over sets ofO(m) = O(1/

√
h) cycles. This is discussed in more

detail at the end of this section and worked out in full in the Appendix.

Theorem 4.5. Suppose Assumption 1 holds and fix t > 0. Then for any ε > 0,

P

(
lim sup
m→∞

‖S̃m2

tτ/m2 − St‖2→0 > ε

)
= 0 . (4.8)

Lemma 4.6. Suppose Assumption 1 holds and fix t > 0. Then for any ε > 0,

∞∑
m=1

P

(
‖S̃mtτ/m2 − St/m‖2→0 > ε

m

)
<∞ . (4.9)

Remark 4.7. There is a relationship between Theorems 4.1 and 4.5 and the averaging
results from Wentzell-Freidlin theory, e.g., [21, Theorem 2.1, Chapter 7]. This theorem
builds on local results like Lemmas 4.2 and 4.6. Since our averaging is that of a deter-
ministic, cyclic process, the calculations can be more explicit and more precise. We are
able to prove using simple calculations that the local error isO(h2) which leads toO(h)

error over order one times. Typical soft averaging results prove a local error of o(h) 5

and then simply conclude that the order one error goes to 0. Of course, more careful
calculations are possible in the averaging setting. However, the simple structure of our
problems, where the only randomness is in the switching times and not the orderings,
allows for the direct, straightforward proofs we have presented.

Proof of Theorem 4.5. By the Borel-Cantelli Lemma it suffices to show

∞∑
m=1

P

(
‖S̃m2

tτ/m2 − St‖2→0 > ε
)

<∞ .

Consider the telescoping sum

S̃m
2

tτ/m2 − St =
m∑

k=1
S̃(k−1)
tτ/m2

(
S̃mtτ/m2 − St/m

)
S(m−k)t/m . (4.10)

For any k and continuous function f with ‖ f ‖0 = 1,∥∥S̃ktτ/m2 f
∥∥
0 =

∥∥ f (�k
hτ

)∥∥
0 = 1 .

Hence ‖S̃(k−1)
tτ/m2‖0→0 = 1. Similarly, since (m − k)t/m ≤ t for k ≥ 0 and X is bounded

by Assumption 1 (so� and its first and second derivatives are bounded onX , uniformly
on [0, t]),

‖S(m−k)t/m‖2→2 ≤ K (t)

5 f (h) is o(g(h)) when h → 0 if lim f (h)/g(h) = 0 as h → 0. f (h) is O(g(h)) when h → 0 if
lim | f (h)/g(h)| ∈ (0,∞).
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for some K (t) depending on t but not h. Hence, by submultiplicity, (4.10), and Lemma
4.6, we have

∥∥S̃m2

tτ/m2 − St
∥∥
2→0 ≤ K (t)

m∑
k=1

∥∥S̃mtτ/m2 − St/m
∥∥
2→0 = K (t)m

∥∥S̃mtτ/m2 − St/m
∥∥
2→0 ,

and hence by Lemma 4.6,

∞∑
m=1

P

(∥∥S̃m2

tτ/m2 − St
∥∥
2→0 > ε

)
≤

∞∑
m=1

P

(∥∥S̃mtτ/m2 − St/m
∥∥
2→0 > ε

K (t)m

)
<∞.

��
We conclude this section by sketching the proofs of Lemmas 4.2 and 4.6, which

are inspired by ideas from [10,11] and given in full detail in the Appendix. In what
follows we set S̃hτ := S̃1hτ and define S̃(i, j)

hτ := S̃(i)
hτ · · · S̃( j)

hτ . Consider first Lemma 4.2.
Differentiating S̃hτ in h gives

∂h S̃hτ =
n∑

k=1
τke

hτ1 · · · ehτk−1Vke
hτk · · · ehτn =

n∑
k=1

τk S̃
(1,k−1)
hτ Vk S̃

(k,n)
hτ .

Next, commute S̃(1,k−1)
hτ and Vk via the Lie bracket [S̃(1,k−1)

hτ , Vk] := S̃(1,k−1)
hτ Vk −

Vk S̃
(1,k−1)
hτ to get

∂h S̃hτ =
n∑

k=1
τkVk S̃hτ +

n∑
k=1

τk[S̃(1,k−1)
hτ , Vk]S̃(k,n)

hτ = V S̃hτ + (Vτ − V )S̃hτ + Ehτ

where Vτ := ∑n
k=1 τkVk and Ehτ := ∑n

k=1 τk[S̃(1,k−1)
hτ , Vk]S̃(k,n)

hτ . So, by variation of
constants,

S̃hτ − Sh =
∫ h

0
Sh−r (Vτ − V )S̃rτdr +

∫ h

0
Sh−r Erτdr. (4.11)

Loosely speaking, the first integrand is O(h) because

E(Vτ − V ) =
n∑

k=1
E(τk − 1)Vk = 0 (4.12)

cancels first order terms from the full expression, Sh−r (Vτ − V )S̃rτ . On the other hand
the second integrand is O(h) because the bracket terms in Ehτ also cancel first order
terms (most of the work of the proof in the Appendix is making these two statements
precise). Thus, integrating these O(h) terms over the interval (0, h), the difference on
the right side of (4.11) is O(h2) as claimed.

The proof of Lemma 4.6 is structurally similar to the one sketched above in that it
again begins with an application of variation of constants. However, in this case our
analysis aims to establish a concentration estimate and can therefore not rely solely on
the vanishing first moment in as in (4.12). Instead, morally speaking, we expect the
desired estimate to hold because of the averaging of iid flow times τi in the homologue
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of (4.12). In order to capture such averaging, we cannot limit our analysis to one cycle,
but have to consider a variation of constants estimate on m � 1 such cycles:

S̃mhτ − Smh =
∫ h

0
Sm(h−r)(Vτ − V )S̃mrτdr +

∫ h

0
Smm(h−r)E

(m)
rτ dr (4.13)

where now E (m)
rτ := ∑mn

k=1 τk[S̃(1,k−1)
hτ , Vk]S̃(k,n)

hτ . Note that the second term contains
O(m2) commutators, each contributing O(h2) as in the previous analysis. On the other
hand, once integrated, the difference in the first integral,

∑mn
k=1(τk − 1)Vk , scales as

O(
√
mh)by the central limit theorem for iid randomvariables. In order to haveboth terms

decay faster than O(1/m) we choose m ∼ O(1/
√
h), whence the relation h = t/m2.

5. Conservative Lorenz-96

In this section, we apply results of the previous sections to the conservative Lorenz-96
model introduced in Sect. 1.2. There we noted the vector field V in (1.5) splits as (1.6)
where the flow of each Vk is a rotation. Specifically, each flow ϕ(k) of the splitting vector
fields

Vk(x) = (xk+1ek − xkek+1)xk−1 (5.1)

is a rotation in the (xk, xk+1)-plane with angular velocity xk−1 and therefore preserves
Euclidean norm, which we refer to as the energy of the system. Throughout this section
V denotes the family of splitting vector fields corresponding to (5.1). By the preceding
remarks every V-orbit lies on a sphere centered at the origin inRn . In particular, we have

Proposition 5.1. All the finite time convergence results of Sect. 4 apply to the random
splitting (1.6) of conservative Lorenz-96 starting from any initial condition.

Proof. The splitting vector fields are smooth and Assumption 1 is satisfied since every
V-orbit lies on a sphere, so the conclusions of Theorems 4.1 and 4.5 both hold. ��

5.1. Ergodicity. A complicating feature of the conservative Lorenz-96 dynamics is that
it has fixed points. Specifically, a point x in R

n is a fixed point of (1.5) if and only if∑n
k=1(x2k +x2k+1)x2k−1 = 0. For a 2-sphere embedded inR3 these are precisely the 6 points

of intersection of the sphere with the standard coordinate axes. In higher dimensions,
these fixed points lie on submanifolds that in general have dimension greater than 0 and
in particular are no longer isolated. Nevertheless, nonfixed points cannot reach fixed
points in finite time; in fact, the following result shows there is precisely one V-orbit on
each sphere that contains all the nonfixed points on that sphere.

Proposition 5.2. If x is a nonfixed point of the conservative Lorenz-96 equations, then

X (x) = X :=
{
y ∈ R

n : ‖y‖ = R and
n∑

k=1
(y2k + y2k+1)y

2
k−1 	= 0

}
, (5.2)

where R = ‖x‖. Furthermore the random splitting of conservative Lorenz-96 is uniquely
ergodic on X : for all h > 0 the volume form λ is the unique Ph-invariant probability
measure on X .
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Corollary 5.3. For all h > 0 the volume form λ on Sn−1(R) := {x ∈ R
n : ‖x‖ = R}

is the unique ergodic Ph-invariant probability measure on Sn−1(R) that is absolutely
continuous with respect to λ.

Proof. X in (5.2) is the complement of a closed, measure zero subset of Sn−1(R). Thus
λ on X agrees with the volume form, also denoted λ, on Sn−1(R). In particular, λ is
an ergodic invariant measure on Sn−1(R) by Proposition 5.2. Since ergodic invariant
measures are mutually singular, see e.g. [23], any other ergodic invariant measure on
Sn−1(R) must be singular with respect to λ. ��
Proof of Proposition 5.2. Let x be a nonfixed point with ‖x‖ = R. We first prove x can
be mapped via the split dynamics to x∗ := (R/

√
n, . . . , R/

√
n). Since x is a nonfixed

point, i.e.
∑n

k=1(x2k + x2k+1)x
2
k−1 	= 0, there exists k such that xk−1 	= 0 and xk or xk+1

is nonzero. Now, since ϕ(k) is a rotation in the (xk, xk+1)-plane with angular velocity
xk−1, there is a tk such that both k and k + 1 coordinates of ϕ(k)(x, tk) are nonzero.
By the same argument there is a tk+1 such that the k, k + 1, and k + 2 coordinates of
x (k+1) = ϕ(k+1)(ϕ(k)(x, tk), tk+1) are nonzero. Continuing this way, we see x can be
made to have nonzero coordinates in a finite number of steps.

Now since ‖x‖ = R, there exists an index k such that |xk | ≥ R/
√
n. If k = n, rotate

in the (n − 1, n)-plane so that the nth coordinate of x becomes R/
√
n. If k < n, rotate

in the (k, k + 1)-plane so that the k + 1 coordinate of x becomes R/
√
n, then rotate in

the (k + 1, k + 2)-plane so that the k + 2 coordinate of x becomes R/
√
n, and so on until

the nth-coordinate of x becomes R/
√
n. Such rotations are always possible because

all coordinates of x are nonzero by the preceding argument. Thus, whether k = n or
k < n we can evolve x via the split dynamics so that its last coordinate, xn , is R/

√
n.

In particular, there now must exist an index k < n such that |xk | ≥ R/
√
n. By the same

procedure, and without disturbing the last coordinate, we can use rotations to make the
n−1 coordinate of x equal R/

√
n. Iterating this process maps x to x∗ in a finite number

of steps. Since x was arbitrary it follows that every nonfixed point with norm R belongs
to the same orbit, which is precisely the set X defined in (5.2).

Next we prove there is at most one Ph-invariant measure on X . First note that since
the split dynamics are all rotations, the above procedure mapping any arbitrary x in X
to x∗ can be done using strictly positive times. Furthermore, by direct observation, the
matrix of splitting vector fields

⎛
⎝V1(x) V2(x) · · · Vn−1(x)

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎝

x2xn 0 . . . 0
−x1xn x3x1 . . . 0

0 −x2x1 · · · ...
...

...
. . . xnxn−2

0 0 −xn−1xn−2

⎞
⎟⎟⎟⎟⎟⎠

has rank n − 1 whenever all xk are nonzero. In particular, since X is an open subset of
the sphere of radius R and therefore itself an n − 1-dimensional manifold, the splitting
vector fields Vk span Tx∗X . Hence Liex∗(V) = Tx∗X . By Corollary 3.7, Ph has at most
one invariant measure on X .

We next show Lebesgue measure, Leb, in R
n is Ph-invariant. Let Sn−1(R) denote

the sphere of radius R in R
n and let Leb(k)

t := (ϕ
(k)
t )# Leb be the pushforward of Leb

by ϕ
(k)
t . Since the Vk in (5.1) are divergence free, the continuity equation, intended in
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the weak sense,6 becomes

0 = ∂t Leb
(k)
t + div

(
Vk Leb

(k)
t

)
= ∂t Leb

(k)
t +∇ Leb(k)

t ·Vk . (5.3)

The latter is a transport equation with constant initial condition Leb(k)
0 ≡ 1 and hence

Leb(k)
t = Leb for all t . Because the trajectories of all Vk conserve the energy ‖x‖, we

fiber Rn using spherical coordinates (r, ϑ) ∈ R+ × Sn−1(R). In these coordinates, we
have that Vk(r, ϑ) = 0 ∂r + rvk(ϑ)∇ϑ and by a change of coordinates of the divergence
operator the stationarity equation becomes

0 = div (Vk(x)λ(x)) = u(r)w(ϑ) divϑ(λ(r, ϑ)vk(ϑ)) , (5.4)

where divϑ denotes the angular terms of the divergence in spherical coordinates, and
u(r), w(ϑ) result from the change of variables. Hence, we can factor the solution
λ(r, ϑ) = λ̄(ϑ |r) · μR(dr) = λ̄(ϑ) · μR(dr), where λ̄(ϑ |r) is the conditional den-
sity of Lebesgue measure on a fiber. The measure λ̄ solves w(ϑ) divϑ(λ̄(ϑ)vk(ϑ)) = 0
and is therefore invariant under the flows ϕ

(k)
t . By rotational symmetry of Leb, we must

have that λ̄(ϑ) is the volume form on Sn−1(R). And since X is a full-measure open
subset of Sn−1(R), the volume form λ on X is just the restriction of λ̄ to X . Thus λ

is also invariant under the flows and is therefore the unique Ph-invariant measure on
X . ��

6. Galerkin Approximations of 2D Euler

The 2D Euler equations on the torus T are obtained from the 2D Navier–Stokes equa-
tions (1.1) by dropping the dissipative and forcing terms:

{
∂t u + (u · ∇)u = −∇ p
div(u) := ∇ · u = 0

(6.1)

where, as before, u : T × R → R
2 is the fluid velocity, p : T × R → R the fluid

pressure, and

(u · ∇)u = (u1∂1u1 + u2∂2u1, u1∂1u2 + u2∂2u2) .

In this section we construct a convenient random splitting of (6.1). To do so we first
write (6.1) in vorticity form and apply the Fourier transform. This yields an infinite sys-
tem of ODEs which we truncate to systems of arbitrary finite size, referred to throughout
as Galerkin approximations. Finally, we split these Galerkin approximations and apply
the results of Sects. 3 and 4 to the associated random splitting.

6 This equation should be interpreted as an equation on measures or, equivalently, as holding in the weak
sense. In other words, the left and right side are equal when integrated against any compactly supported,
smooth test function.
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6.1. Constructing the splitting. The vorticity formulation of (6.1) is obtained by taking
the curl of velocity. Specifically, setting q := curl(u) := ∂2u1 − ∂1u2, equation (6.1)
becomes {

∂t q + (Kq · ∇)q = 0 ,

div(q) = 0 ,
(6.2)

where K := ∇⊥(−�)−1 with ∇⊥ := (∂2,−∂1). To express (6.2) in Fourier space, set
Z
2∞ := Z

2 \ {(0, 0)} and let {e j } j∈Z2∞ be the orthonormal basis of L2(T,R) given by

e j (x) := (2π)−1 exp(i x · j). Then q(x, t) =∑ j∈Z2∞ q j (t)e j (x) where

q j (t) := 〈q, e j 〉L2 =
∫
T

q(x, t)e j (x)dx

is the j th Fourier mode of q. Here 〈·, ·〉L2 is the standard inner product on L2(T,R)

with e j denoting the complex conjugate of e j . The j th Fourier mode of (Kq · ∇)q is

〈(Kq · ∇)q, e j 〉L2 =
∑
k+	= j

Ck	qkq	

where

Ck	 := 〈k, 	⊥〉
4π

(
1

|k|2 −
1

|	|2
)

(6.3)

with 〈·, ·〉 the standard inner product in R
2, 	⊥ := (	2,−	1), and |	|2 := 	21 + 	22.

Therefore

∑
j

q̇ j e j = ∂t q = −(Kq · ∇)q = −
∑
j

( ∑
k+	= j

Ck	qkq	

)
e j

and hence q̇ j = −∑k+	= j Ck	qkq	. Moreover, since q is real-valued,

∑
j

q j e j = q = q =
∑
j

q j e− j

which gives q j = q− j . In particular,

q̇ j = q̇− j = −
∑

j+k+	=0
Ck	qkq	 .

Writing each Fourier mode q j = a j + ib j in terms of real and imaginary parts then gives

ȧ j + i ḃ j = q̇ j = −
∑

j+k+	=0
Ck	(ak − ibk)(a	 − ib	)

=
∑

j+k+	=0
Ck	(bkb	 − aka	) + i

∑
j+k+	=0

Ck	(akb	 + a	bk) .
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Thus the Fourier modes of solutions to the Euler equation in vorticity form satisfy⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ȧ j =

∑
j+k+	=0

Ck	(bkb	 − aka	)

ḃ j =
∑

j+k+	=0
Ck	(akb	 + a	bk)

(6.4)

for all j ∈ Z
2∞. While (6.4) could be studied as is, notice the constraint q− j = q j

implies a− j = a j and b− j = −b j , which introduces redundancy in (6.4). Therefore we
restrict to the subset

Z
2
+ := { j ∈ Z

2 : j2 > 0} ∪ { j ∈ Z
2 : j2 = 0 and j1 > 0} .

Specifically, by straightforward computation together with the identities a− j = a j ,
b− j = −b j , and Ck	 = C−k,−	 = −C−k,	 = −Ck,−	, the system (6.4) can be re-
expressed as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ȧ j =

∑
j+k−	=0

Ck	(aka	 + bkb	) +
∑

j−k−	=0
Ck	(bkb	 − aka	)

ḃ j =
∑

j+k−	=0
Ck	(akb	 − bka	)−

∑
j−k−	=0

Ck	(akb	 + bka	)
(6.5)

for all j ∈ Z
2
+ with each sum running over all pairs k, 	 ∈ Z

2
+ satisfying the specified

identity. To split (6.5) note that for any j, k, 	 ∈ Z
2
+ satisfying j + k − 	 = 0 (and hence

	− j − k = 0) we can isolate from the above sums exactly 6 equations involving only
these indices:

ȧ j = Ck	(aka	 + bkb	) , ȧk = C j	(a ja	 + b jb	) , ȧ	 = C jk(b jbk − a jak) ,

ḃ j = Ck	(akb	 − bka	) , ḃk = C j	(a jb	 − b ja	) , ḃ	 = −C jk(a jbk + b jak) .

(6.6)

For reasons to be made clear shortly, we recombine (6.6) into 4 groups of 3 equations:⎧⎪⎨
⎪⎩
ȧ j = Ck	aka	

ȧk = C j	a ja	

ȧ	 = −C jka jak

⎧⎪⎨
⎪⎩
ȧ j = Ck	bkb	

ḃk = C j	a jb	

ḃ	 = −C jka j bk

⎧⎪⎨
⎪⎩
ḃ j = Ck	akb	

ȧk = C j	b jb	

ḃ	 = −C jkb jak

⎧⎪⎨
⎪⎩
ḃ j = −Ck	bka	

ḃk = −C j	b ja	

ȧ	 = C jkb j bk

.

(6.7)

Let Va jaka	
, Va j bkb	

, Vbjakb	
, and Vbj bka	

be the vector fields associated to the equations
of (6.7) from left to right. For example, Va jaka	

is the vector field on R
∞ mapping

the a j coordinate to −Ck	aka	, the ak coordinate to −C j	a ja	, the a	 coordinate to
−C jka jak , and all other coordinates to 0. These are the splitting vector fields. Our
sought-after splitting is

V =
∑

j+k−	=0
Va jaka	

+ Va j bkb	
+ Vbjakb	

+ Vbj bka	
, (6.8)

where V is the vector field associated to (6.5). As noted earlier, our focus will be on
finite truncations of the infinite-dimensional system (6.5). Thus we fix an integer N ≥ 2
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and define the Nth Galerkin approximation of (6.5) to be (6.5) with indices restricted
to the set

Z
2
N :=

{
j ∈ Z

2
+ : max{| j1|, | j2|} ≤ N

}
.

The splitting (6.8) remains valid in this finite-dimensional setting, bearing in mind that
now all indices lie inZ2

N . By a slight abuse of notation, we denote the finite-dimensional
counterpart of V by V and similarly for the splitting vector fields. Thus our family of
splitting vector fields is

V =
{
Va jaka	

, Va j bkb	
, Vbj akb	

, Vbj bka	
: j, k, 	 ∈ Z

2
N and j + k − 	 = 0

}
. (6.9)

Since Z2
N has cardinality 2N (N + 1) and each index j ∈ Z

2
N has an associated a j and

b j coordinate, these are all vector fields on R
n , where throughout this section we set

n := 4N (N + 1). We also abuse notation by conflating elements j in Z2
N with elements

j in {1, . . . , n/2}, which can be formalized via any bijection between the two sets.
Moreover, we denote elements of Rn by q = (a j , b j )

n/2
j=1. This reflects that the a j and

b j coordinates of q in Rn are in one-to-one correspondence with the real and imaginary
parts of the j th mode of q.

Remark 6.1. There are many possible splittings of a given equation. For the Euler equa-
tions, we made the particular choice we have so that both energy and enstrophy are
conserved but the dynamics of each splitting are still relatively easily understood. We
could have further decomposed the three-dimensional dynamics in the above splitting
into a number of two-dimensional dynamics, similar in spirit to the decomposition into
rotations used in Lorenz-96. However, that would have necessitated only conserving
either the energy or the enstrophy.

6.2. Conservation and convergence. The conservative Lorenz-96 dynamics discussed
in Sect. 5 conserves Euclidean norm (energy in that case) and therefore remains on
whichever sphere it starts on. So too do the flows of each of the splitting vector fields
(5.1). We now show a similar thing is true for Galerkin approximations of 2D Euler.
Define the energy and enstrophy of q = (a j , b j )

n/2
j=1 by

E(q) :=
∑
j∈Z2

N

a2j + b2j
| j |2 and E(q) :=

∑
j∈Z2

N

a2j + b2j , (6.10)

respectively (note the aforementioned conflation of j in Z
2
N and j ∈ {1, . . . , n/2} in

the summations). Straightforward computation shows that for all j, k, 	 ∈ Z
2
N with

j + k − 	 = 0,

Ck	 + C j	 − C jk = Ck	

| j |2 +
C j	

|k|2 −
C jk

|	|2 = 0 ,

which in turn implies that under the dynamics (6.5),

∂t E(q) = ∂tE(q) = 0
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for all q ∈ R
n . That is, both energy and enstrophy are conserved by the true dynamics

and the set

Q0(E, E) := {q ∈ R
n : E(q) = E, E(q) = E} . (6.11)

is invariant under (6.5). This is a well-established property of the 2D Euler equations.
Moreover, if we flow by Va jaka	

starting from q for any j, k, 	 ∈ Z
2
N with j + k− 	 = 0,

then

1
2∂t E(q) = a j ȧ j

| j |2 +
akȧk
|k|2 +

a	ȧ	

|	|2 =
(
Ck	

| j |2 +
C j	

|k|2 −
C jk

|	|2
)
a jaka	 = 0 ,

and similarly ∂tE(q) = 0. The same computation shows energy and enstrophy are
conserved by all of the splitting vector fields in V , which provides the motivation for
recombining (6.6) as (6.7) in the first place. In particular, we have

Proposition 6.2. All of the finite time convergence results of Sect. 4 apply to the random
splitting (6.8) of every Galerkin approximation of 2D Euler starting from any initial
condition.

Proof. The splitting vector fields are smooth and Assumption 1 is satisfied since every
V-orbit lies on a sphere, so the conclusions of Theorems 4.1 and 4.5 both hold. ��

6.3. Ergodicity. Fix energy and enstrophy values E and E and setQ0 := Q0(E, E).Q0
is an n − 2-dimensional submanifold of Rn where, recall, n := 4N (N + 1); denote its
volume form by λ. As with conservative Lorenz-96, the Nth Galerkin approximation of
2D Euler has points q inQ0 whoseV-orbits are not dense inQ0. For example, any q with
exactly one nonzero coordinate is a fixed point of (6.5) and of all the equations (6.7).
In this subsection we characterize these points and prove there is exactly one V-orbitQ
on Q0 such that λ(Q) = 1. By a slight abuse of notation we denote the restriction of λ

toQ by λ as well. We then show there exists a unique Ph-invariant measure onQ – and
hence on Q0 – that is absolutely continuous with respect to λ on Q0.

To make the above statements precise, we begin by enumerating the coordinates of
q ∈ R

n by extending the indices j ∈ Z
2
N with an element χ ∈ {+,−} which denotes

the real (+) or imaginary (−) part of the corresponding mode. Then, for j = ( j, χ) ∈
Z
2
N × {+,−}, we define the type of such coordinates via the function T(j) = χ so that

qj is identified with a j if T(j) = + and with b j if T(j) = −. For q ∈ R
n , denote by

A(q) := {j ∈ Z
2
N × {+,−} : qj 	= 0

}
the set of “active” coordinates. To streamline our analysis, we define the following
operation to expand the set A:

A⊕ � :=
{
A ∪ {�} if 	 ∈ { j + k, j − k} ∩ Z

2
N for j,k ∈ A,C jk 	= 0,T(j) · T(k) = T(�) ,

A else ,

(6.12)

where T(j) ·T(k) is + if T(j) = T(k) and− if T(j) 	= T(k). This operation corresponds
to extending the nonzero coordinates of q from j , k to � by letting a triple ι = j k�
interact.

We assume that the initial condition is sufficiently nondegenerate, as stated in the
following assumption similar to the one made in [24, Thm. 2.1].
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Definition 6.3 [Nondegenerate point]. A point q in Q0 is nondegenerate if there exists
M ∈ N, j∗ ∈ Z

2
N with | j∗|2 > 1, and an ordered set of indices (�i )

M
i=1 in Z

2
N × {+,−}

such that {
(1, 0,+), (0, 1,+), ( j∗,−)

} ⊆ ((A(q)⊕ �1)⊕ �2
) · · · ⊕ �M . (6.13)

Definition 6.4 [Generic point]. A point in R
n is generic if all of its coordinates are

nonzero.

Remark 6.5. Every point with all coordinates nonzero is a nonfixed point of conservative
Lorenz-96; similarly, every generic point in Q0 is nondegenerate. However, compar-
ing (6.13) with (5.2), we see the conditions defining nondegenerate points in Q0 are
more complicated than the easily characterized nonfixed points of conservative Lorenz-
96. The difference is that, unlike spheres in conservative Lorenz-96, there are proper
subspaces of Q0 which are invariant for our splitting of the Euler dynamics but are not
fixed points. One such subspace is the collection of purely real points; another is the
purely imaginary points.

The following analogs of Proposition 5.2 and Corollary 5.3 are the main results of
this subsection.

Proposition 6.6. Every nondegenerate point inQ0 belongs to the same V-orbit,Q, and
for all h > 0 there exists a unique Ph-invariant probability measure onQ. Furthermore,
this unique invariant measure is absolutely continuous with respect to the volume form
on Q.

Proof. By Proposition 6.9 there is a q∗ in Q0 such that every nondegenerate point in
Q0 belongs to the V-orbit Q := Q(q∗), and for every q in Q there is an m ∈ N and a
t ∈ R

mn
+ satisfying �m(q, t) = q∗. By Lemma 6.15 the splitting vector fields span the

tangent space of Q at generic points; in particular, the Lie bracket condition holds at
every generic point. Thus, since the vector fields in V are analytic, Corollary 3.9 implies
Ph has at most one invariant probability measure on Q, which is necessarily the one
identified by Lemma 6.14. ��
Corollary 6.7. For all h > 0 themeasure fromProposition 6.6 is the unique Ph-invariant
ergodic probability measure on Q0 that is absolutely continuous with respect to the
volume form on Q0.

Proof. Let λ denote volume form onQ0. SinceQ contains all generic points inQ0, it is
an open subset ofQ0 satisfying λ(Q) = 1. In particular, the unique invariant measure on
Q from Proposition 6.6 is an ergodic invariant measure on Q0. Since ergodic invariant
measures are mutually singular, see e.g. [23], any other ergodic invariant measure on
Q0 must be singular with respect to λ. ��
Remark 6.8. Continuing in the spirit of Remark 6.1, we observe the splitting in (6.7)
splits q j into its real and imaginary parts. We could have chosen another basis of C and
even randomized over this choice for each evolution of an interacting triple ( j, k, 	).
More explicitly, if we define e(ϑ) = cos(ϑ) + i sin(ϑ) then e(ϑ) and e(ϑ + π

2 ) form
an orthonormal basis of C for any ϑ . Then we can drive a system analogous to (6.7) by
setting q	 = aϑ

	 e(ϑ)+bϑ
	 e(ϑ + π

2 ). As the form is similar to (6.7), the results of the paper
extend to this system. In particular, by randomizing the choice of ϑ for each such triple
( j, k, 	), we can relax the characterization of nondegenerate points in Definition 6.3
by destroying some of the invariant structures discussed in Remark 6.5 which obstruct
controllability starting from some initial conditions.
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6.3.1. Controllability. In this section, we prove controllability of the dynamics (6.7).
By conservation of energy and enstrophy, the V-orbit of an initial condition q(0) in Q0
is contained in Q0. Recalling the definition of extended indices in Sect. 6.3, we define
the set of interacting coordinate triples

I := {
(j,k, �) ∈ (Z2

N × {+,−})3 : j + k = 	, (C jk,C j	,Ck	)

	= (0, 0, 0), T(j) · T(k) = T(�)
}
.

Then, for any such triple of interacting indices ι ∈ I we denote by ϕι
t : Q0 → Q0

the flow of the ODEs (6.7) evolving the corresponding coordinates. The dynamics we
consider is then obtained by cycling through the set I in a fixed or random order. For
any ι ∈ I we denote by �ι

t : Q0 → Q0 the flow of (6.7) after one such full cycle
where the flow times are chosen as

τ ξ =
{
t if ξ = ι ,

0 else ,
(6.14)

so that for any q ∈ Q0, �ι
t (q) = ϕι

t (q).

Let q∗ = (a∗j , b∗j )
n/2
j=1 be the point in Q0 defined as follows:

q∗(1,0) = q∗(0,1) = (a∗, 0) , q∗(N ,N ) = (0, b∗) , (6.15)

for a∗, b∗ ≥ 0 and q∗j = (0, 0) for all other j ∈ Z
2
N . We show below that for any

nondegenerate initial condition q(0) ∈ Q0 the system can be driven to this unique point
q∗ .

Proposition 6.9. For any nondegenerate point q(0) = (a(0)
j , b(0)

j )
n/2
j=1 in Q0 there exists

M ∈ N and a joint sequence of transition times and coordinate triples {(ι(m), τ (m))}Mm=1
such that

�
ι(M)
τ (M) ◦ · · · ◦�

ι(1)
τ (1)(q

(0)) = q∗ . (6.16)

Thus every nondegenerate point belongs to the same orbit, Q := Q(q∗). Furthermore,
for every q in Q there is an m ∈ N and a t ∈ R

mn
+ such that �m(q, t) = q∗.

Recall from Remark 2.3 that the only property of the exponential distribution used in
this proof is the fact that it has a density around 0, allowing to choose the flow of some
of the split vector fields to be the identity as, e.g., in (6.14). This comment also applies
to the proof of Proposition 5.2 in the previous section. We further note that, since the
trajectories of each of the ϕι(m) in the above theorem are periodic (see Lemmas 6.11
and 6.12), each of these transformations can be inverted by choosing complementary
transition times to τ(m). Inverting the order of the transformations yields the converse
statement:

Corollary 6.10. For any nondegenerate point q(0) = (a(0)
j , b(0)

j )
n/2
j=1 in Q0 there exists

M ∈ Nanda joint sequenceof transition times andcoordinate triples {(ι̃(m), τ̃0(m))}Mm=1
such that

�
ι̃(M)

τ̃ (M)
◦ · · · ◦�

ι̃(1)
τ̃ (1)(q

∗) = q(0) .
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While the Corollary 6.10 will not be used in the remainder of the paper, it offers an
alternative to Theorem 3.8 in proving that, when applying Corollary 3.7, it is sufficient
to verify that Lie bracket condition holds at any point in Q, not necessarily at q∗.

Proof of Proposition 6.9. We prove the first statement by first evolving the initial condi-
tion q(0) into a sufficiently nondegenerate state q(1), and then by sequentially shrinking
the set of active components of the coordinate vector q to the ones listed in (6.15).
We realize this program by following, in order, the sequence of steps described below,
represented schematically in Fig. 1:

(0) If it is not the case at initialization, Lemma B.1 shows that we can “prepare” our
state by evolving q(0) into q(1) such that

a(1)
(1,0), b

(1)
(1,0), a

(1)
(0,1), b

(1)
(0,1), a

(1)
(1,1), b

(1)
(1,1) 	= 0 , (6.17)

as represented in Fig. 1a.
(1) As shown in Lemma B.2, we can then transform q(1) into q(2) with the property

q(2)
j = (0, 0) for all j ∈ Z

2
N \ {(0, 1), (1, 0), (1, 1), (N , N ), (−N , N )} ,

(6.18)

as represented in Fig. 1b, and

a(2)
(1,0), b

(2)
(1,0), a

(2)
(0,1), b

(2)
(0,1), a

(2)
(1,1), b

(2)
(1,1) 	= 0 . (6.19)

(2) Lemma B.3 shows that we can then “transfer” the amplitude from modes a(−N ,N ),
b(−N ,N ), a(N ,N ) to mode b(N ,N ) i.e., we can reach a state q(3) that satisfies

q(3)
j = (0, 0) for all j ∈ Z

2
N \ {(0, 1), (1, 0), (1, 1), (N , N )} , (6.20)

q(3)
(N ,N ) = (0, b(3)

(N ,N )) with b(3)
(N ,N ) ≥ 0 . (6.21)

This state is represented in Fig. 1c.
(3) Finally, Lemma B.5 shows that we can “transfer” the amplitude from modes a(1,1),

b(1,1), b(0,1) and b(1,0) to modes a(0,1), a(1,0), b(N ,N ) so that, after the transfer,
a(0,1) = a(1,0) and a(0,1), a(1,0), b(N ,N ) > 0 i.e., we reach the unique state q∗ from
(6.15) (represented in Fig. 1d).

This proves the first part of Proposition 6.9, which immediately implies nondegenerate
points inQ0 belong toQ = Q(q∗). Let q be any point inQ. By definition there exist m
and t in Rmn such that

�m(q, t) = ϕ
(n)
tmn
◦ · · ·ϕ(1)

t1 (q) = q∗.

Note that the times ti may be negative; however, by Lemma 6.11 each ϕ(i) is periodic.
Thus for every ti ≤0 there exists a t ′i > 0 such that ϕ(i)

ti (q ′)=ϕ
(i)
t ′i

(q ′) for all q ′ inQ. Let

t ′ be t with all ti ≤ 0 replaced by t ′i . Then t ′ is in R
mn
+ and �m(q, t ′)=�m(q, t)= q∗.

��
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Fig. 1. Representation of the state of the network in a generic initial state (a), after step 1 of the procedure in
the proof of Proposition 6.9 (b), and after step 2 (c) and after step 3 (d) of the same procedure. In the above
pictures, each point corresponds to a mode, i.e., an element of Z2

N while the color of each circle represents
the real/complex value of the corresponding mode: zero (white, no circle), purely imaginary (red), purely real
(blue) or having both nonvanishing real and imaginary parts (green)

Defining similarly to (6.22) the operation of removing a coordinate from the set A

A� � =
{
A\{�} if 	 ∈ { j + k, j − k} ∩ Z

2
N for j,k ∈ A,C jk 	= 0,T(j) · T(k) = T(�),

A else,

(6.22)

we now proceed to construct (sequences of) times τ and interacting triples ι such that the
transformations �

(ι)
τ of q implement the operations ⊕,� from (6.22), (6.22) through

the flow of (6.7), i.e., such that A(q) ⊕ � = A(�ι
τ (q)) or A(q) � � = A(�ι

τ (q))

respectively. To do so we separate the possible interactions between the modes in two
types:

a) ι = j k� ∈ I : | j | 	= |k| 	= |	| ,
b) ι = j k� ∈ I : | j | = |k| 	= |	| . (6.23)

Note that these two types of interactions are exhaustive, since if | j | = |k| = |	|,
C j	 = C jk = Ck	 = 0.

The following preparatory lemmas describe the properties of these two types of
interactions that we will leverage throughout our proof. The first one shows that for
interactions of type a), ordering the indices so that | j | < |k| < |	|, it is always possible
to activate all modes j , k, � or to distribute the amplitude of the k-mode to the j and
	-modes reaching, in finite time, a state with qk = 0. As we show in the proof below,
while such a point with qk = 0 always exists on the orbits of (6.7), this point is reachable
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Fig. 2. Orbits Qι of (6.7) (in red) corresponding in (A) to various values of the energy Eι(q) on the sphere
of constant enstrophy Eι(q) and in (B) to various values of the enstrophy Eι(q) on the ellipsoid of constant
energy Eι(q). The axes are, sequentially, qk, q j , q�. The orbit with a degenerate point at the pole of the sphere
or ellipsoid corresponds to values of Eι,Eι violating (6.24)

in finite time for ι = j k� ∈ I with | j | < |k| < |	| only if
Eι(q) 	= |k|2Eι(q) , (6.24)

where Eι(q) and Eι(q) denote the energy and enstrophy of the coordinates in ι ∈ I:

Eι(q) :=
∑
�∈ι

|q�|2 , Eι(q) :=
∑
�∈ι

|q�|2
|	|2 . (6.25)

In the following lemma and throughout the section, we abuse notation slightly by
defining sign(x) = +1 for x ∈ [0,∞) and −1 otherwise.

Lemma 6.11. Fix ι = j k� ∈ I with | j | < |k| < |	|. Let q be a nondegenerate point in
Q0 satisfying (6.24) and let ql = 0 for at most an index l ∈ { j , k, �}. Then the orbit of
Vι is periodic and there exist τ ι−, τ ι

+ ≥ 0 such that

(a) ϕι
τ ι−

(q) = q ′ with q ′k = 0, sign(q j ) = sign(q ′j ) and sign(q�) = sign(q ′�),
(b) ϕι

τ ι
+
(q) = q ′′ with q ′′j , q

′′
k , q

′′
� 	= 0, sign(q j ) = sign(q ′′j ) and sign(q�) = sign(q ′′� ).

Furthermore, if | j |2Eι(q) < Eι(q) < |k|2Eι(q), there exists τ ι= ≥ 0 such that

(c) ϕι
τ ι=(q) = q ′′′ with q ′′′� = 0, sign(q j ) = sign(q ′′′j ) and sign(qk) = sign(q ′′′k ).

Proof. We consider the intersection between the sphere and the ellipse corresponding
to the enstrophy and the energy in the coordinates ι = j k� ∈ I of interest, resulting in
the set

Qι :=
{

(q ′j , q ′k, q ′�) ∈ R
3 : |q ′j |2 + |q ′k|2 + |q ′�|2 = Eι(q),

|q ′j |2
| j |2 +

|q ′k|2
|k|2 +

|q ′�|2
|	|2 = Eι(q)

}
.

(6.26)

This set is represented in Fig. 2. We observe that this set has exactly 2 disjoint simply
connected components when | j |2Eι(q) < Eι(q) < |k|2Eι(q) and |k|2Eι(q) < Eι(q) <

|	|2Eι(q). These components are diffeomorphic to S1. By continuity the dynamics are
limited to one such component ofQι. Furthermore, |q̇|2 is uniformly bounded away from
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0 on each such component: the fixed points of (6.7) must have at least two coordinates
vanishing, which cannot be realized on the curves of interest. Therefore the dynamics
on these sets are periodic.

We start by proving part (b) of the lemma. If q j , qk, q� 	= 0 the result follows by
choosing τ ι

+ = 0. Else, if ql = 0 for l ∈ ι the result follows immediately choosing
τ ι
+ small enough by combining the continuity of the flow �ι

t and the fact that q̇l =
Cl ′l ′′ql ′ql ′′ 	= 0 for {l ′, l ′′} = ι \ {l}.

To prove part (a) we consider the cases where | j |2Eι(q) < Eι(q) < |k|2Eι(q) and
|k|2Eι(q) < Eι(q) < |	|2Eι(q) separately. In the first case, we see that there is no point
q ∈ Qι with q j = 0: if that were the case we would have

Eι(q) = q2k + q2� = |k|2
(

q2k
|k|2 +

q2�
|k|2

)
> |k|2Eι(q) , (6.27)

contradicting our assumption. Consequently the points (p j , 0, p�), (p j , 0,−p�) with
p� > 0, sign(p j ) = sign(q j ) and

p2j + p2� = Eι(q) ,
p2j
| j |2 +

p2�
|	|2 = Eι(q) , (6.28)

belong to the same connected component as q and by the lower bound on the velocity
on this connected component both these points are reachable in finite time from q. This
also proves part (c) by continuity of the dynamics. The second case where |k|2Eι(q) <

Eι(q) < |	|2Eι(q) can be handled analogously: in this case we haveQι ∩ {q� = 0} = ∅
and we can reach (p j , 0, p�), (−p j , 0, p�) with p j > 0, sign(p�) = sign(q�) in finite
time. ��

The following lemma considers interactions of type b) in (6.23). Recalling the defi-
nition j⊥ := ( j2,− j1) we show that interactions with | j | = |k| 	= |	| leave component
� fixed and move j , k in a circle at constant angular speed.

Lemma 6.12. Fix an unordered interacting triple ι = j k� with |k| = | j | and q� 	=
0. For all ϑ in [0, 2π) there exists t ≥ 0 such that ϕι

t (q) = q ′ with (q ′j , q
′
k) =√

q2j + q2k(cos(ϑ), sin(ϑ)) and q ′� = q� .

Corollary 6.13. Fix an (unordered) interacting triple ι = j k� ∈ I with |k| = | j | and
let q�, qk 	= 0. Then there exist τ ι

+, τ
ι− ≥ 0 such that (ϕι

τ ι
+
(q))j > 0 and (ϕι

τ ι−
(q))j = 0 .

Proof of Lemma 6.12. Recall from (6.3) that if | j | = |k| 	= |	| we have C jk = 0. This
implies that, by our choice of |k| = | j |, q̇� = 0 and q ′� = q�. Again by (6.3) and since
to have an interacting triple 	 = j + k we must have

〈k⊥, 	〉 = 〈k⊥, k + j〉 = 〈k⊥, j〉 = 〈(k + j)⊥ − j⊥, j〉 = 〈	⊥, j〉 = −〈 j⊥, 	〉 ,
(6.29)

so that

Ck	 = 〈k, 	⊥〉
4π

(
1

|k|2 −
1

|	|2
)
= −〈 j, 	

⊥〉
4π

(
1

| j |2 −
1

|	|2
)
= −C j	 . (6.30)

This implies that the dynamics of the vector q̃ := (q j , qk) can be written as ˙̃q = C̃q̃⊥
for C̃ := C j	q� 	= 0, proving the claim. ��
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6.3.2. Existence of invariantmeasure. Aswith conservativeLorenz-96, each vector field
of the 2D Euler splitting is divergence free and so Lebesgue measure in Rn is invariant.
Consequently, we have

Lemma 6.14. Let λ denote the Lebesgue measure on R
n. The measure obtained by

conditioning λ to lie onQ ⊂ Q0(E, E), (or equivalently conditioned to lie on Q0(E, E))
is Ph-invariant.

Proof. As in the proof of Proposition 5.2 we have that Lebesgue measure in R
n is Ph-

invariant. Since the vector fields Vk defined in (6.9) are divergence free, the continuity
equation7 reads

∂tλ + div (Vkλ) = ∂tλ + ∇λ · Vk = 0 . (6.31)

Because each flow ϕ(k) conserves energy E and enstrophy E , we locally fiber Rn using
coordinates (E, E, ϑ) ∈ R+×R+×R

n−2. In these coordinates, we have Vk(E, E, ϑ) =
0 ∂E + 0 ∂E + vk(E, E, ϑ)∇ϑ so by a change of coordinates of the divergence operator
the stationary equation becomes

0 = div (Vk(x)λ(x)) = u(E, E, ϑ) divϑ(λ(E, E, ϑ)vk(E, E, ϑ)) , (6.32)

where divϑ denotes the “angular” terms of the divergence in (E, E, ϑ)-coordinates,
and u(E, E, ϑ) result from the change of variables. Hence, we can factor the solution
λ(E, E, ϑ) = λ̄(ϑ |E, E) · λ⊥(E, E), where λ̄(ϑ |E, E) is the conditional density of
Lebesgue measure on a fiber, solving u(E, E, ϑ) divϑ(λ̄(ϑ |E, E)vk(E, E, ϑ)) = 0 for
any choice of E/(2N 2) < E < E . This proves the invariance of λ̄(ϑ |E, E) under the
flow map for any value of the flow times τ . The stationarity of λ̄(ϑ) under Ph follows
immediately as in Proposition 5.2 ��

6.3.3. Spanning. For j, k, 	 ∈ Z
2
N with j + k − 	 = 0 define Mjk	 to be the matrix

Mjk	 :=
⎛
⎝Va jaka	

Va j bkb	
Vbjakb	

Vbj bka	

⎞
⎠

=

⎛
⎜⎜⎝

Ck	aka	 Ck	bkb	 0 0
0 0 Ck	akb	 −Ck	bka	

C j	a j a	 0 C j	b j b	 0
0 C j	a j b	 0 −C j	b j a	

−C jka j ak 0 0 C jkb j bk
0 −C jka j bk −C jkb j ak 0

⎞
⎟⎟⎠ (6.33)

and let M ′
jk	 and M ′′

jk	 be the 4-by-4 and 2-by-4 matrices consisting of the bottom four
and bottom two rows ofMjk	, respectively. Straightforward Gaussian elimination shows
that M , M ′, and M ′′ have ranks 4, 3, and 2 whenever C jk , C j	, Ck	, a j , b j , ak , bk , a	,
and b	 are nonzero.

Recalling that a point q ∈ R
n is generic if all its coordinates are nonzero, we have

Lemma 6.15. The family of vector fields

V := {Va jaka	
, Va j bkb	

, Vbj akb	
, Vbj bka	

: j, k, 	 ∈ Z
2
N and j + k − 	 = 0

}
span TqQ at every generic point q in Q.

7 As in the proof of Proposition 5.2, the continuity equation is intended here in the weak sense.
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Proof. Fix a generic point q inQ. Themain idea of the proof is to choose an enumeration
of Z2

N and a subset of vector fields from V so that the matrix made up of these vector
fields evaluated at q is in a convenient form whose rank is readily deduced. Formally,
the enumeration is the bijection F : Z2

N → {1, . . . , 2N (N + 1)} given by

F( j) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 j = (1, 0) ,

5 + N j = (2, 0) ,

j1 + N (2N + 1) j = ( j1, 0) with j1 > 2 ,

j1 + 2 + N j = ( j1, 1) with j1 < 3 ,

j1 + 3 + N j = ( j1, 1) with j1 ≥ 3 ,

j1 + 2− N + (2N + 1) j2 j = ( j1, j2) with j2 > 1 .

Figure 2 gives this enumeration in the case N = 4. Informally, F starts at (1, 0), then
counts lattice points from left to right along the horizontal line y = 1 until the point
(2, 1), which corresponds to 4+N . It then assigns 5+N to (2, 0) and continues counting
along the line y = 1. From there it moves up to the lines y = 2, y = 3, and so on,
counting from left to right along each. Finally, it goes back down to the line y = 0 and
counts the remaining indices from left to right.

The motivation for F is that all horizontally-adjacent indices ( j1, j2) and ( j1 + 1, j2)
form an interacting triple together with (1, 0). Fix for the moment an integer y > 1
and consider the yth horizontal line of Z2

N ; that is, the points with second coordinate y.
These are outlined by red blocks in Fig. 3. By the preceding remarks we can choose the
vector fields corresponding to the horizontally-adjacent indices and concatenate them
column-wise to get the block matrix

By :=

⎛
⎜⎜⎜⎝

M̃y ∗ ∗ ∗
0 M ′′

y,−N+2 ∗ ∗
0 0

. . . ∗
0 0 0 M ′′

y,N

⎞
⎟⎟⎟⎠ .

Here, slightly abusing notation, each M ′′
y,i is the 2-by-4 matrix consisting of the bottom

two rows of (6.33) for the indices j = (1, 0), k = (i − 1, y), 	 = ( j, y) and

M̃y :=

⎛
⎜⎜⎝

C j	a j a	 0 C j	b j b	 0 0 0
0 C j	a j b	 0 −C j	b j a	 0 0

−C jka j ak 0 0 C jkb j bk −C j ′k′a j ′ak′
0 −C jka j bk −C jkb j ak 0 0 −C j ′k′a j ′bk′

⎞
⎟⎟⎠

where j = (1, 0), k = (−N , y), 	 = (−N + 1, y) and j ′ = (0, 1) and k′ = (−N +
1, y − 1). This is M ′ with two columns from the interacting triple (0, 1), (−N + 1, y −
1), (−N +1, y) adjoined to the end. Note that these adjoined columns contribute entries
in the coordinates corresponding to (0, 1) and (−N + 1, y − 1), but these come before
all indices in the yth row for our ordering. By adding the latter two columns, M̃y has
rank 4 at any generic point. Further, since each M ′′

y, j has rank 2, each By has rank
4 + 2(2N − 1) = 4N + 2. This establishes spanning of the red blocks in Fig. 3.
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For the blue block we perform a similar procedure to the one above to get

B1 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

M123 ∗ ∗ ∗ ∗ ∗
0 M ′′

1,−N+2 ∗ ∗ ∗ ∗
0 0

. . . ∗ ∗ ∗
0 0 0 M̂ ∗ ∗
0 0 0 0

. . . ∗
0 0 0 0 0 M ′′

1,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where M123 is the matrix from (6.33) for the interacting triple (1, 0), (−N , 1), (−N +
1, 1), each M ′′ is as before, and M̂ is the 6-by-8 matrix

M̂ :=

⎛
⎜⎜⎜⎜⎜⎜⎝

M ′
1,N+3,N+4

0 0 0 0
0 0 0 0
−−− −−− −−− −−−

−−− −−− −−− −−−
0 0 0 0
0 0 0 0

M ′
N+2,N+4,N+5

⎞
⎟⎟⎟⎟⎟⎟⎠

located at the rows corresponding to N + 3, N + 4, and N + 5. The reason for M̂ ,
and for considering the blue block separately, is that C jk = 0 when j = (1, 0) and
k = (0, 1). The matrix M has rank 6 at a generic point. Since M123 has rank 4, M̂ has
rank 6, and each of the 2N − 3 remaining M ′′ blocks has rank 2, the matrix By has rank
4 + 6 + 2(2N − 3) = 4N + 4.

Finally, none of the indices of the green block interact with (1, 0) since the C jk are
all 0 in this case. However, by an entirely similar procedure to above, we can use the
interactions between (0, 1), (x, 0), and (x, 1) for x > 1 to get a rank 2(N − 2) block
matrix for the last N − 2 coordinates of the form

BN+1 :=

⎛
⎜⎜⎜⎜⎝

M̃ ′′
0,2 ∗ ∗ ∗
0 M̃ ′′

0,3 ∗ ∗
0 0

. . . ∗
0 0 0 M̃ ′′

0,N

⎞
⎟⎟⎟⎟⎠

where M̃ ′′
0,x = M ′′

(0,1),(x,0),(x,1) for M
′′
jk	 consisting of the two bottom rows of (6.33).

Combining the above results we observe that there is an ordering of indices and vector
fields such that the matrix whose columns consist of these vector fields has the form

B :=

⎛
⎜⎜⎜⎝

B1 ∗ ∗ ∗
0 B2 ∗ ∗
0 0

. . . ∗
0 0 0 BN+1

⎞
⎟⎟⎟⎠ .

Moreover, B has rank

rank(B) = rank(B1) + rank(BN+1) +
N∑

y=2
rank(By) = 4N (N + 1)− 2 = n − 2
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Fig. 3. Ordering of Z2
N when N = 4

at every generic point in Q. Now since the dynamics conserve energy and enstrophy,
every tangent vector toQ is perpendicular to the normal vectors for these two quantities
which are linearly independent at everygeneric point. Therefore themaximumdimension
of TqQ is n − 2, and by the above argument we have shown the vector fields V span
TqQ at q. ��

7. Adding Forcing and Dissipation: Lorenz-96 and 2D Navier–Stokes

In this section we add dissipation and fixed body forcing to both conservative Lorenz-96
and Galerkin approximations of 2D Euler by introducing a new vector field

V0(x) = −ν�x + F (7.1)

to the splittings constructed in Sects. 5 and 6, where ν > 0 is an arbitrary constant, F a
fixed nonzero vector with nonnegative entries, and � a linear operator satisfying

�x · x ≥ α‖x‖2 (7.2)

for some α > 0. For the remainder of this section we consider random splittings asso-
ciated to families of complete, smooth vector fields V = {Vk}nk=0 on R

d satisfying.

Assumption 2. V0 is as in (7.1) and the flows of the other Vk conserve Euclidean norm.

Fix h > 0 and let Ph be the transition kernel of a random splitting satisfying Assump-
tion 2. When � is the identity matrix, the addition of V0 to the splitting of conservative
Lorenz-96 gives a splitting of the full Lorenz-96 model, (1.4), while for 2D Euler the
resulting V0 corresponds to a friction or drag term sometimes called Ekman damping.
When� is diagonal with diagonal entry |k|2 in the spots associated to8 ak and bk , which
corresponds to a Laplacian written in Fourier space, the addition of V0 to the splitting
of 2D Euler gives a splitting of 2D Navier–Stokes, (1.1).

Note that the dissipative part of V0 in (7.1) depends linearly on x whereas the forcing
is constant. Thus dissipation dominates forcing for sufficiently large x and, since the

8 Recall that for each index k ∈ Z
2
N , we have two real coordinates ak and bk .
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remaining vector fields are conservative, the splitting dynamics cannot grow too large.
Specifically, letting �hτ be as in (2.2) but with the solution ϕ(0) of ẋ = V0(x) appended
to the beginning of each cycle, we have

Lemma 7.1. Under Assumption 2 for any initial x and m > 0,

‖�m
hτ (x)‖2 ≤ ‖x‖2e−ναh

∑m
k=0 τk(n+1) +

1

ν2α2 ‖F‖2
(
1− e−ναh

∑m
k=0 τk(n+1)

)
. (7.3)

Proof. Letting ϕ = ϕ(0), we have

∂t‖ϕt‖2 = 2〈F, ϕt 〉 − 2ν〈�ϕt , ϕt 〉
≤ 1

να
‖F‖2 + να‖ϕt‖2 − 2να‖ϕt‖2 = 1

να
‖F‖2 − να‖ϕt‖2,

where the inequality follows from (7.2) and 2〈F, ϕt 〉 ≤ (να)−1‖F‖2+να‖ϕt‖2. Solving
ẏ = 1

να
‖F‖2 − ναy

from y(0) = ‖x‖ together with the comparison theorem for ODEs [42] then gives

‖ϕt (x)‖2 ≤ ‖x‖2e−ναt +
1

ν2α2 ‖F‖2
(
1− e−ναt)

for all time. Furthermore, since ϕ(k) conserves norm for 1 ≤ k ≤ n, the above implies

‖�hτ (x)‖2 = ‖ϕ(n)
hτn
◦ · · · ◦ ϕ

(0)
hτ0

(x)‖2

= ‖ϕ(0)
hτ0

(x)‖2 ≤ ‖x‖2e−νατ0 +
1

ν2α2 ‖F‖2
(
1− e−νατ0

)
.

The result then follows by straightforward induction on the number of cycles, namely
m. ��
Remark 7.2. The convergence results of Sect. 4 do not directly apply to Lorenz-96 and
Galerkin approximations of 2D Navier–Stokes since V-orbits are generally unbounded
in both models. However, Lemma 7.1 implies that any splitting starting from x whose
vector fields satisfy Assumption 2 will lie inside the ball of radius ‖x‖2 + (να)−2‖F‖2
centered at the origin for all nonnegative times. In particular, since the splitting vector
fields are smooth, a bound analogous to (4.1) holds for all x in the ball Br (0) of radius
r centered at the origin in the ambient Euclidean space. Thus all convergence results of
Sect. 4 hold for these random splittings when Ck(X ) is replaced by Ckr (X ), the space
of k-times continuously differentiable functions that vanish outside Br (0). Intuitively,
this says that for any initial condition x , the trajectories of a random splitting satisfying
Assumption 2 will converge on average and almost surely as h → 0 to the trajectory of
the true dynamics starting from x .

Corollary 7.3. The Euclidean norm is a Lyapunov function for Ph. That is, there exist
constants K ≥ 0 and γ ∈ (0, 1) such that for all x ∈ R

d ,

(Ph‖·‖) (x) ≤ γ ‖x‖ + K .

Proof. By Lemma 7.1, specifically ‖�ht (x)‖ ≤ ‖x‖e− 1
2 ναt0 + (να)−1‖F‖, we have

(Ph‖·‖) (x) =
∫
R
n+1
+

‖�ht (x)‖e−
∑

tk dt ≤ 1

1 + 1
2ναh

‖x‖ + 1

να
‖F‖

for any x . The result follows with K = (να)−1‖F‖ and γ = (1 + 1
2ναh)−1. ��
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7.1. Ergodicity. Wenowpresent a variationofTheorem3.1, namelyTheorem7.4,which
simplifies verification of ergodicity in the present setting. Recall from Sects. 5 and 6
that one of the difficulties in verifying Theorem 3.1 was proving controllability, i.e., the
existence of a distinguished point x∗ that could be reached by the splitting dynamics
in finite time from any other point. With the addition of dissipation, the fixed point
ν−1�−1F of ẋ = V0(x) is a natural candidate for x∗ and, as we will see, the fact that
it is globally attracting obviates several technicalities associated with controllability in
the conservative cases discussed above.

Theorem 7.4. Suppose Assumption 2 holds and set x∗ = ν−1�−1F. If there exist m ≥ 0
and t in R

mn
+ such that the Lie bracket condition holds at x̃ := �m

ht (x∗), then Ph has
a unique invariant measure μ for all h > 0. Furthermore, there exist C > 0 and γ in
(0, 1) such that for all x in R

d ,

‖Pm
h (x, ·)− μ‖ ≤ Cγm (7.4)

where ‖·‖ is the norm on probability measures induced by the weighted supremum norm
‖ f ‖ := supx | f (x)|/(1 + ‖x‖) on bounded measurable functions f : Rd → R.

The proof of Theorem 7.4 uses the following lemmas. The first, due to Krylov-
Bogolubov, is a standard result from the theory of Markov processes [23]. The second,
which follows from Lemma 3.2 and Theorem 3.6, is from [6, Theorem 4.4]. For the
statement of Lemma 7.5, recall a transition kernel P onRd is Feller if P f is continuous
whenever f : Rd → R is continuous and bounded. Also, a sequence of probability
measures {μm} on R

d is tight if for every ε > 0 there exists a compact subset K of Rd

such that μm(K ) ≥ 1− ε for all m.

Lemma 7.5. Let P be a Feller probability transition kernel on R
d . If there exists x in

R
d such that {Pm(x, ·)}∞m=0 is tight, then P has an invariant probability measure.

Lemma 7.6. Suppose �m
ht (x) = x̃ and the Lie bracket condition holds at x̃ . Then there

exists a c > 0, an m̃, and neighborhoods Ux of x and Ũ of x̃ such that for all y in Ux
and B in B(X ),

Pm̃
h (y, B) ≥ cλ

(
B ∩ Ũ

)
.

The following proof is another instance of the rather classical idea, dating at least back
to the split chains of Nummelin [49] and work of Meyn and Tweedie [43], that the
existence of a globally accessible point at which the dynamics is continuous in the right
sense implies the transition densities converge to a unique equilibrium measure. If the
return to the globally accessible point has finite expectation, then mixing is exponential.
The same basic structure of the SDE version of our systemwas leveraged in [18] to prove
exponentialmixing (see also [41]). In the closely related PDMPsetting, analogous results
are found in [38] in a specific example and [7] in a more general context.

Proof of Theorem 7.4. We first prove existence. Continuity of �ht immediately implies
Ph is Feller. Furthermore, Lemma 7.1 implies that random splitting starting from any
x is constrained to lie in a compact subset of Rd , namely the closed ball of radius
‖x‖2 + (να)−2‖F‖2 centered at the origin. Thus, for any x , the sequence {Pm

h (x, ·)}∞m=0
is tight and existence follows from Lemma 7.5.

Next we prove uniqueness. The hypothesis and Lemma 7.6 together imply the exis-
tence of c > 0, m̃, and neighborhoods U∗ of x∗ and Ũ of x̃ such that

Pm̃
h (x, B) ≥ cλ

(
B ∩ Ũ

)
(7.5)
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for all x ∈ U∗ and Borel sets B. Also, positive-definiteness of � implies

‖ϕ(0)
t (x)− x∗‖ ≤ e−αt‖x − x∗‖

for any x ∈ R
d and t ≥ 0. In particular, for any open ball Br of radius r centered at

the origin, there exists T0 > 0 such that ϕ(0)
ht (Br ) is properly contained in U∗ whenever

ht > T0. And since ϕ
(0)
ht (Br ) is properly contained in U∗ and the ϕ(k) are continuous,

there exist Tk > 0 such that �ht = ϕ
(n)
htn
◦ · · · ◦ ϕ

(0)
ht0

(x) ∈ U∗ for all x ∈ Br and
htk ∈ (0, Tk). So, for any x ∈ Br ,

Ph(x,U∗) ≥
∫ Tn

0
· · ·
∫ T1

0

∫ ∞

T0
1U∗ (�ht (x)) e

−∑ tk dt = 1

T0

n∏
k=1

(
1− e−Tk

)
> 0

and hence infx∈Br Ph(x,U∗) > 0.
As in the proof of Theorem 3.1, suppose toward a contradiction that μ1 and μ2 are

distinct Ph-ergodic probability measures and that A1 and A2 are disjoint measurable
sets partitioning Rd with μi (B) = μi (B ∩ Ai ) for all Borel sets B. Fix xi in the support
of μi , let r be sufficiently large that x1, x2 ∈ Br , and set κ := infx∈Br Ph(x,U∗) > 0.
Then by (7.5) for any Borel set B,

μi (B) = μi P
m̃+1
h (B) =

∫
Rd

∫
Rd

Pm̃
h (y, B)Ph(x, dy)μi (dx)

≥
∫
Br

∫
U∗

Pm̃
h (y, B)Ph(x, dy)μi (dx) ≥ κcλ

(
B ∩ Ũ

)
μi (Br ) . (7.6)

In particular, μi (B) = 0 implies λ(B ∩ Ũ ) = 0 since c, κ , and μi (Br ) are all strictly
positive (the latter because Br is an open set containing both x1 and x2 whichwere chosen
to be in the supports of μ1 and μ2, respectively). But μ1(A2 ∩ Ũ ) = μ2(A1 ∩ Ũ ) = 0
and so we obtain the contradiction

0 < λ
(
Ũ
) = λ

(
A1 ∩ Ũ

)
+ λ

(
A2 ∩ Ũ

) = 0,

which concludes the proof of uniqueness.
Finally, for the exponential convergence statement (7.4), we have from (7.6) that for

any r > 0,

inf
x∈Br

Pm̃+1
h (x, B) ≥ κcλ

(
B ∩ Ũ

)
for all Borel sets B. That is, the transition probabilities Pm̃+1

h (x, ·) are minorized uni-
formly over Br by the probability measure λ̃ := λ(Ũ )−1λ(· ∩ Ũ ). Exponential conver-
gence then follows from Corollary 7.3 upon taking r > 2K/(1 − γ ). See for example
Theorem 1.2 in [25]. ��
Corollary 7.7. Consider the random splitting of Lorenz-96 associated to the vector
fields {Vk}nk=0, where V0(x) = −νx + F and {Vk}nk=1 are the splitting vector fields of
conservative Lorenz-96 from Sect. 5. If x∗ := −νF is not a fixed point of conservative
Lorenz-96, i.e., ν2

∑n
k=1(F2

k + F2
k+1)F

2
k−1 	= 0, then the random splitting has a unique,

and hence ergodic, invariant measure onRn and the dynamics converge to this measure
at an exponential rate in the sense of (7.4).
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Proof. The determinant of the n-by-n matrix

⎛
⎝V0(x) V1(x) · · · Vn−1(x)

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−νx1 + F1 x2xn 0 . . . 0
−νx2 + F2 −x1xn x3x1 . . . 0

−νx3 + F3 0 −x2x1 · · · ...

...
...

...
. . . xnxn−2

−νxn + Fn 0 0 −xn−1xn−2

⎞
⎟⎟⎟⎟⎟⎟⎠

is

x1xn−1xn

(
n−2∏
x=2

x2k

)(
ν2‖x‖2 − 〈F, x〉

)
.

So the {Vk}nk=0 span R
n at every x with nonzero coordinates and satisfying ν2‖x‖2 	=

〈F, x〉. In particular, since x∗ is not a fixed point of conservative Lorenz-96, we showed
in the proof of Proposition 5.2 that x∗ can be moved via the splitting dynamics to some x̃
with nonzero coordinates. Finally, by rotating slightly more on the last step if necessary,
we can also guarantee ν2‖x̃‖2 	= 〈F, x̃〉. Thus the Lie bracket condition holds at x̃ and
the result follows by Theorem 7.4. ��
Corollary 7.8. Fix N ≥ 2 and set n = 4N (N + 1). Consider the random splitting
of the Nth Galerkin approximation of 2D Navier–Stokes associated to {Vk}nk=0, where
V0(x) = −ν�x + F with � the n-by-n diagonal matrix corresponding to the Laplacian
discussed at the beginning of this section, and {Vk}nk=1 the splitting vector fields of 2D
Euler from Sect. 6. If F is nondegenerate in the sense of Definition 6.3, then the random
splitting has a unique, and hence ergodic, invariant measure and the dynamics converge
to this measure at an exponential rate in the sense of (7.4).

Proof. Recall in this case V0(x) = −ν�x + F where � is the diagonal matrix with
diagonal entry |k|2 in the slots corresponding to the coordinates ak and bk . Fix j, k, 	 ∈
Z
2
N with j + k − 	 = 0 and let W be one of the vector fields Va jaka	

, Va j bkb	
, Vbjakb	

, or
Vbj bka	

. Letting e.g. (x j , xk, x	) = (a j , ak, a	) when W = Va jaka	
and similarly for the

other cases, direct computation yields

[V0,W ] j (x) = Ck	

(
Fkx	 + F	xk + ν(| j |2 − |k|2 − |	|2)xkx	

)
,

[V0,W ]k(x) = C j	

(
Fj x	 + F	x j + ν(|k|2 − | j |2 − |	|2)x j x	

)
,

[V0,W ]	(x) = −C jk

(
Fj xk + Fkx j + ν(|	|2 − | j |2 − |k|2)x j xk

)
, (7.7)

where [V0,W ] j (x) is the component of [V0,W ] corresponding to the component x j of x ,
and similarly for [V0,W ]k and [V0,W ]	. As in the 2D Euler case, Gaussian elimination
shows that the 6-by-6 matrix (see (6.33) for an explicit form of the middle 4 columns)⎛

⎝V0 Va jaka	
Va j bkb	

Vbjakb	
Vbj bka	

[V0,W ]
⎞
⎠ (7.8)

is rank 6 at every generic9 point q inRn . Thus V0 and [V0,W ] add two new directions to
the splitting vector fields of 2D Euler and by an entirely similar argument to the spanning

9 Recall a generic point is one with all coordinates nonzero; see Definition 6.4.
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argument in Sect. 6.3.3 we have that the Lie bracket condition holds at every such q.
Furthermore, since F is nondegenerate the controllability argument of Sect. 6.3.1 implies
x∗ can be evolved via the split dynamics to a generic point. The result then follows by
Theorem 7.4. ��
Remark 7.9. A very similar argument to the one above proves unique ergodicity for
Ekman damping as well, i.e., when � is the identity matrix on R

n . In this case (7.1)
becomes

[V0,W ] j (x) = Ck	 (Fkx	 + F	xk − νxkx	) ,

[V0,W ]k(x) = C j	
(
Fj x	 + F	x j − νx j x	

)
,

[V0,W ]	(x) = −C jk
(
Fj xk + Fkx j − νx j xk

)
,

and the rest of the argument goes through unchanged.
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Appendix A. Convergence Lemmas

A.1. Semigroups, norms, and bounds. In this subsection we elaborate on the semigroup
framework of Sect. 4. The notation and results are used extensively in the proofs of
Lemmas 4.2 and 4.6, which are given in Sects. A.2 and A.4, respectively.

Fix a V-orbit X . The C2 assumption implies the Vk , which act on functions f via
Vk f (x) = Df (x)Vk(x), are linear operators from C2(X ) to C1(X ) and from C1(X ) to
C(X ). It also implies the semigroups {St }t≥0 and {S̃(k)

t }t≥0 defined in (4.2) and (4.3)
are linear operators on Ck(X ) for k ≤ 2. Our aim now is to obtain bounds on norms of
compositions of these random semigroups. For i ≤ j define �

(i, j)
hτ := ϕ

( j)
hτ j
◦ · · · ◦ ϕ

(i)
hτi

and S̃(i, j)
hτ := S̃(i)

hτ · · · S̃( j)
hτ . Note S̃

(i, j)
hτ acts on functions f via

S̃(i, j)
hτ f (x) = f

(
�

(i, j)
hτ (x)

)
= f

(
ϕ

( j)
hτ j
◦ · · · ◦ ϕ

(i)
hτi

(x)
)

.

So for any f ∈ C(X ) with ‖ f ‖∞ = 1, we have

‖S̃(i, j)
hτ f ‖∞ = ‖ f (�(i, j)

hτ )‖∞ = 1
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and hence ‖S̃mhτ‖0→0 = 1. Next, let ϕ = ϕ(k) for arbitrary k. Then

ϕt (x) = x +
∫ t

0
V (ϕs(x))ds

and so

Dϕt (x) = I +
∫ t

0
DV (ϕs(x))Dϕs(x)ds

and

D2ϕt (x) =
∫ t

0
D2V (ϕs(x)) (Dϕs(x), Dϕs(x)) + DV (ϕs(x))D

2ϕs(x)ds.

In particular, ‖Dϕt (x)‖ ≤ 1+C∗
∫ t
0‖Dϕs(x)‖ds for all x inX andGrönwall’s inequality

implies

sup
x∈X

‖Dϕt (x)‖ ≤ eC∗t , (A.1)

where here and throughout C∗ is the constant from (4.1) corresponding to X . Similarly,
since ‖D2V (Dϕ, Dϕ)‖ ≤ ‖D2V ‖‖Dϕ‖2 ≤ C∗‖Dϕ‖2,

‖D2ϕt (x)‖ ≤ C∗
∫ t

0
‖Dϕs(x)‖2 + ‖D2ϕs(x)‖ds ≤ C∗te2C∗t + C∗

∫ t

0
‖D2ϕs(x)‖ds

and Grönwall implies

sup
x∈X

‖D2ϕt (x)‖ ≤ C∗te3C∗t . (A.2)

Note (A.1) and (A.2) hold uniformly over all ϕ(k). Thus, for f ∈ C1(X )with ‖ f ‖1 = 1,

∥∥∥D (S̃(i, j)
hτ f

)∥∥∥ = ∥∥∥Df
(
�

(i, j)
hτ

)
D�

(i, j)
hτ

∥∥∥ ≤ j∏
k=i
‖Dϕ

(k)
hτk
‖ ≤ eC∗h

∑ j
k=i τk ,

where the first inequality follows from submultiplicity and the second from (A.1). Sim-
ilarly,

D2�
(i, j)
hτ =

j∑
k=i

Dϕ
( j)
hτ j
· · · Dϕ

(k+1)
hτk+1

D2ϕ
(k)
hτk

(
D�

(i,k−1)
hτ , D�

(i,k−1)
hτ

)

together with (A.1) and (A.2) gives

∥∥∥D2�
(i, j)
hτ

∥∥∥ ≤ j∑
k=i

∥∥∥Dϕ
( j)
hτ j

∥∥∥ · · · ∥∥∥Dϕ
(k+1)
hτk+1

∥∥∥ ∥∥∥D2ϕ(k)
∥∥∥ ∥∥∥D�

(i,k−1)
hτ

∥∥∥2

≤ C∗
j∑

k=i
hτke

C∗h
∑ j

k+1 τ	e3C∗hτk e2C∗h
∑k−1

1 τ	 ≤ C∗he3C∗h
∑ j

k=i τk

j∑
k=i

τk .
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Therefore∥∥∥D2
(
S̃(i, j)
hτ f

)∥∥∥ = ∥∥∥D2 f
(
�

(i, j)
hτ

) (
D�

(i, j)
hτ , D�

(i, j)
hτ

)
+ Df

(
�

(i, j)
hτ

)
D2�

(i, j)
hτ

∥∥∥
≤
∥∥∥D�

(i, j)
hτ

∥∥∥2 + ∥∥∥D2�
(i, j)
hτ

∥∥∥ ≤ e2C∗h
∑ j

k=i τk +
∥∥∥D2�

(i, j)
hτ

∥∥∥
≤ e2C∗h

∑ j
k=i τk + C∗he3C∗h

∑ j
k=i τk

j∑
k=i

τk

≤
⎛
⎝1 + C∗h

j∑
k=i

τk

⎞
⎠ e3C∗h

∑ j
k=i τk .

The above computations prove

Lemma A.1. For any h > 0 and i ≤ j , we have ‖S̃(i, j)
hτ ‖0→0 = 1 as well as

∥∥∥S̃(i, j)
hτ

∥∥∥
1→1

≤ eC∗h
∑ j

k=i τk and
∥∥∥S̃(i, j)

hτ

∥∥∥
2→2

≤
⎛
⎝1 + C∗h

j∑
k=i

τk

⎞
⎠ e3C∗h

∑ j
k=i τk .

In particular,
∥∥∥S̃(i, j)

hτ

∥∥∥
	→	

≤
(
1 + C∗h

∑ j
k=i τk

)
e3C∗h

∑ j
k=i τk for all 	 ≤ 2.

Note that under the C2 assumption S̃(i, j)
hτ can also be regarded as a linear operator from

C2(X ) to C1(X ). So since { f ∈ C2(X ) : ‖ f ‖2 = 1} is a subset of { f ∈ C1(X ) : ‖ f ‖1 =
1}, we have∥∥∥S̃(i, j)

hτ

∥∥∥
2→1

= sup
‖ f ‖2=1

∥∥∥S̃(i, j)
hτ f

∥∥∥
1
≤ sup
‖ f ‖1=1

∥∥∥S̃(i, j)
hτ f

∥∥∥
1
=
∥∥∥S̃(i, j)

hτ

∥∥∥
1→1

≤ eC∗h
∑ j

k=i τk .

(A.3)

We also have the following corollary of Lemma A.1.

Corollary A.2. Fix i ≤ j and set m := j − i + 1. For all 	 ≤ 2 and polynomial
p : Rm

+ → R there exists h∗ > 0 such that for all h < h∗,

E‖p(τi , . . . , τ j )S̃(i, j)
hτ ‖k→k <∞. (A.4)

Proof. Writing t = (ti , . . . , t j ) and dt = dti · · · dt j , we have

E‖p(τi , . . . , τ j )S̃(i, j)
hτ ‖	→	 =

∫
R
m
+

|p(t)|
∥∥∥S̃(i, j)

ht

∥∥∥
	→	

e−
∑

tk dt

≤
∫
R
m
+

|p(t)|
⎛
⎝1 + C∗h

j∑
k=i

tk

⎞
⎠ e(3C∗h−1)∑ j

k=i tk dt

which is finite for all h < h∗ := (3C∗)−1. ��
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A.2. Proof of Lemma 4.2. We highlight the steps of the proof with italicized font.
Variation of constants. We begin by differentiating S̃hτ in h:

∂h S̃hτ =
n∑

k=1
τke

hτ1 · · · ehτk−1Vke
hτk · · · ehτn =

n∑
k=1

τk S̃
(1,k−1)
hτ Vk S̃

(k,n)
hτ .

Next, commute S̃(1,k−1)
hτ and Vk via [S̃(1,k−1)

hτ , Vk] := S̃(1,k−1)
hτ Vk − Vk S̃

(1,k−1)
hτ to get

∂h S̃hτ =
n∑

k=1
τkVk S̃hτ +

n∑
k=1

τk[S̃(1,k−1)
hτ , Vk]S̃(k,n)

hτ = V S̃hτ + (Vτ − V )S̃hτ + Ehτ

where Vτ := ∑n
k=1 τkVk and Ehτ := ∑n

k=1 τk[S̃(1,k−1)
hτ , Vk]S̃(k,n)

hτ . So, by variation of
constants,

S̃hτ − Sh =
∫ h

0
Sh−r (Vτ − V )S̃rτdr +

∫ h

0
Sh−r Erτdr. (A.5)

Call Sh−r (Vτ−V )S̃rτ error term 1 and Sh−r Erτ error term 2. These termswill be treated
separately in what follows. First however, we invoke variation of constants again to get
an expression for [S̃(1,k−1)

rτ , Vk] that will be used to control error term 2. Differentiating
in r gives

∂r [S̃(1,k−1)
rτ , Vk] =

k−1∑
j=1

τ j [S̃(1, j−1)
rτ Vj S̃

( j,k−1)
rτ , Vk]

=
k−1∑
j=1

τ j

(
[Vj S̃

(1,k−1)
rτ , Vk] +

[[S̃(1, j−1)
rτ , Vj ]S̃( j,k−1)

rτ , Vk
])

=
k−1∑
j=1

τ j V j [S̃(1,k−1)
rτ , Vk]

+
k−1∑
j=1

τ j

(
[Vj , Vk]S̃(1,k−1)

rτ +
[[S̃(1, j−1)

rτ , Vj ]S̃( j,k−1)
rτ , Vk

])
.

The second equality follows from commuting S̃(1, j−1)
hτ and Vj as before, and the third

follows from the identity [XY, Z ] = X [Y, Z ] + [X, Z ]Y . So, by variation of constants,

[S̃(1,k−1)
rτ , Vk] =

k−1∑
j=1

∫ r

0
τ j e

(r−s)∑k−1
j=1 τ j V j [Vj , Vk]S̃(1,k−1)

sτ ds

+
k−1∑
j=1

∫ r

0
τ j e

(r−s)∑k−1
j=1 τ j V j

[[S̃(1, j−1)
sτ , Vj ]S̃( j,k−1)

sτ , Vk
]
ds. (A.6)

Note ‖e(r−s)∑k−1
j=1 τ j V j ‖0→0 = 1. So, by Corollary A.2 the integrands above satisfy

E‖τ j e(r−s)∑k−1
j=1 τ j V j [Vj , Vk]S̃(1,k−1)

sτ ‖2→0
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≤ ‖[Vj , Vk]‖2→0E‖τ j S̃(1,k−1)
sτ ‖2→2 < C

and

E
∥∥τ j e(r−s)∑k−1

j=1 τ j V j
[[S̃(1, j−1)

sτ , Vj ]S̃( j,k−1)
sτ , Vk

]∥∥
2→0

≤ E
∥∥τ j [[S̃(1, j−1)

sτ , Vj ]S̃( j,k−1)
sτ , Vk

]∥∥
2→0 < C

for some C . Therefore

E‖[S̃(1,k−1)
rτ , Vk]‖2→0 ≤ 2

k−1∑
j=1

∫ r

0
Cds ≤ Cr (A.7)

for some new constant C (we will often absorb arbitrary constants into existing ones).

Error term 1. Rewrite error term 1 as

Sh−r (Vτ − V )S̃rτ =
n∑

k=1
(τk − 1)Sh−r Vk S̃rτ

=
n∑

k=1
(τk − 1)Sh−r Vk S̃(1,k−1)

rτ S̃(k+1,n)
rτ

+
n∑

k=1
(τk − 1)Sh−r Vk S̃(1,k−1)

rτ (erτkVk − I )S̃(k+1,n)
rτ

=: A1 +A2 (A.8)

whereA1 andA2 are the first and second sums in the preceding expression. The second
equality is obtained by adding and subtracting the identity I as follows:

S̃rτ = S̃(1,k−1)
rτ

(
erτkVk − I + I

)
S̃(k+1,n)
rτ

= S̃(1,k−1)
rτ S̃(k+1,n)

rτ + S̃(1,k−1)
rτ (erτkVk − I )S̃(k+1,n)

rτ .

Notice S̃(1,k−1)
rτ S̃(k+1,n)

rτ does not depend on τk . So, since the τi are independent with
mean 1,

E(A1) =
n∑

k=1
St−r VkE(τk − 1)E

(
S̃(1,k−1)
rτ S̃(k+1,n)

rτ

) = 0. (A.9)

For the second sum, Taylor expanding r �→ erτkVk about r = 0 with remainder gives

erτkVk − I = rτkVke
r∗τkVk

for some r∗ ∈ [0, r ]. Therefore

A2 = r
n∑

k=1
τk(τk − 1)Sh−r Vk S̃(1,k−1)

rτ Vke
r∗τkVk S̃(k+1,n)

rτ
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and by Lemma A.1 and Corollary A.2,

‖E(A2)‖2→0 ≤ Cr
n∑

k=1
E‖S̃(1,k−1)

rτ ‖1→1E‖τk(τk − 1)S̃(k,n)
rτ ‖2→2 ≤ Cr (A.10)

for some C > 0. Combining Equations (A.8), (A.9), and (A.10) gives

‖E(Sh−r (Vτ − V )S̃rτ )‖2→0 ≤ Cr. (A.11)

Error term 2. Recall error term 2 is Sh−r Erτ := ∑n
k=1 τk Sh−r [S̃(1,k−1)

rτ , Vk]S̃(k,n)
rτ . So,

we have that

‖Sh−r Erτ‖2→0 ≤
n∑

k=1
τk‖Sh−r‖0→0‖[S̃(1,k−1)

rτ , Vk]‖2→0‖τk S̃(k,n)
rτ ‖2→2 .

Note [S̃(1,k−1)
rτ , Vk] is independent of τk . So, by (A.7) Corollary A.2,

‖E(Sh−r Erτ )‖2→0 ≤ Cr (A.12)

for some C > 0.

Final step. Combining (A.5), (A.11), and (A.12) and absorbing constants into C , we
have

‖Ph − Sh‖2→0 = ‖E(S̃hτ − Sh)‖2→0

≤
∫ h

0
‖E(Sh−r (Vτ − V )S̃rτ )‖2→0dr +

∫ h

0
‖E(Sh−r Erτ )‖2→0dr

≤ C
∫ h

0
rdr = 1

2Ch2.

��

A.3.Concentration of the sumof exponential randomvariables. The proof of Lemma4.6
will itself use two lemmas.

Lemma A.3. Let {τk}∞k=1 be iid exponential with mean 1. For any m ∈ N, K > 0 and
β > 1,

P

(
m∑

k=1
τk > Kmβ

)
≤ 2me−

1
2 Kmβ

. (A.13)

Proof. Note if τ ∼ Exp(1) then E(eτ/2) = 2. So, by Markov’s inequality and indepen-
dence,

P

(
m∑

k=1
τk > Kmβ

)
= P

(
e
1
2

∑m
k=1 τk > e

1
2 Kmβ

)

≤ e−
1
2 Kmβ

(
E

[
e
1
2 τ
])m = 2me−

1
2 Kmβ

.

��
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Lemma A.4. Let {τk}∞k=1 be iid exponential withmean 1. For anym ∈ N and K ∈ (0, 1),

P

(∣∣∣∣
m∑

k=1
τk − 1

∣∣∣∣ > Km

)
< 2e−

1
2 K

2m . (A.14)

Proof. Fix m. For any γ ∈ (0, 1),

P

(∣∣∣∣
m∑

k=1
τk − 1

∣∣∣∣ > Km

)
= P

(
m∑

k=1
τk > (1 + K )m

)
+ P

(
−

m∑
k=1

τk > −(1− K )m

)

= P

(
eγ

∑m
k=1 τk > e(1+K )γm

)
+ P

(
e−γ

∑m
k=1 τk > e−(1−K )γm

)
≤ e−(1+K )γm (

E
[
eγ τ

])m + e(1−K )γm (
E
[
e−γ τ

])m
= e−(1+K )γm (1− γ )−m + e(1−K )γm (1 + γ )−m

= exp

(
−γm

[
1 + K +

log(1− γ )

γ

])

+ exp

(
γm

[
1− K − log(1 + γ )

γ

])
.

The inequality is Markov’s inequality and the equality immediately after the inequality
follows from independence together with E[exp(ατ)] = (1−α)−1 for any α ∈ (−1, 1).
The other steps are all algebraic manipulations. By Taylor’s theorem with remainder
there exists γ1 ∈ (−γ, 0) such that

1

γ
log(1− γ ) = −1− γ

2(1− γ1)2
> −1− γ

2
,

where the inequality follows since γ1 < 0. Therefore

exp

(
−γm

[
1 + K +

log(1− γ )

γ

])
≤ exp

(
−γm

[
K − γ

2

])
.

Similarly,

exp

(
γm

[
1− K − log(1 + γ )

γ

])
≤ exp

(
−γm

[
K − γ

2

])
.

So combining with the first computation of this proof and taking γ = K gives

P

(∣∣∣∣
m∑

k=1
τk − 1

∣∣∣∣ > Km

)
≤ 2 exp

(
−γm

[
K − γ

2

])
= 2e−

1
2 K

2m .

��
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A.4. Proof of Lemma 4.6. Fix t > 0. The argument is similar to that of Lemma 4.2.
Variation of constants. Fix m ∈ N. Since S̃mhτ = exp(hτ1V1) · · · exp(hτmnVmn),

∂h S̃
m
hτ =

mn∑
k=1

τk S̃
(1,k−1)
hτ Vk S̃

(k,mn)
hτ =

mn∑
k=1

τkVk S̃
m
hτ + τk[S̃(1,k−1)hτ , Vk]S̃(k,mn)

hτ

= mV S̃mhτ +
mn∑
k=1

(τk − 1)Vk S̃
m
hτ +

mn∑
k=1

τk[S̃(1,k−1)
hτ , Vk]S̃(k,mn)

hτ ,

where the second equality is obtained by commuting S̃(1,k−1)
hτ and Vk , and the third by

replacing τk with τk−1+1. So, setting E (m)
hτ :=∑mn

k=1 τk[S̃(1,k−1)
hτ , Vk]S̃(k,mn)

hτ , variation
of constants implies

S̃mhτ − Shm =
∫ h

0
Sm(h−r)

(
mn∑
k=1

(τk − 1)Vk

)
S̃mrτdr +

∫ h

0
Sm(h−r)E (m)

rτ dr.

Therefore, since ‖Sm(h−r)‖0→0 = 1,

‖S̃mhτ − Shm‖2→0 ≤
∫ h

0

∥∥∥∥
mn∑
k=1

(τk − 1)Vk

∥∥∥∥
1→0

∥∥S̃mrτ∥∥2→1 dr +
∫ h

0
‖E (m)

rτ ‖2→0dr.

Let I1(h) and I2(h) denote the first and second integrals, respectively. Then for any
ε > 0,

P

(
‖S̃mhτ − Shm‖2→0 >

ε

m

)
≤ P

(
I1(h) >

ε

2m

)
+ P

(
I2(h) >

ε

2m

)
. (A.15)

We consider the two probabilities on the right, called the first and second probabilities,
separately.

First probability. Note
∑mn

k=1(τk − 1)Vk = ∑n
k=1

∑m
j=1(τ

(k)
j − 1)Vk where τ

(k)
j :=

τ( j−1)n+k . So ∥∥∥∥
mn∑
k=1

(τk − 1)Vk

∥∥∥∥
1→0

≤ C∗
n∑

k=1

∣∣∣∣
m∑
j=1

τ
(k)
j − 1

∣∣∣∣,
and together with Lemma A.1 and Equation (A.3),

I1(h) ≤ C∗
n∑

k=1

∣∣∣∣
m∑
j=1

τ
(k)
j − 1

∣∣∣∣
∫ h

0

n∏
k=1

eC∗r
∑m

j=1 τ
(k)
j dr .

Therefore

P

(
I1(h) >

ε

2m

)
≤ P

⎛
⎝C∗ n∑

k=1

∣∣∣∣
m∑
j=1

τ
(k)
j − 1

∣∣∣∣
∫ h

0

n∏
k=1

eC∗r
∑m

j=1 τ
(k)
j dr >

ε

2m

⎞
⎠

≤
n∑

k=1
P

⎛
⎝∣∣∣∣

m∑
j=1

τ
(k)
j − 1

∣∣∣∣
∫ h

0

n∏
k=1

eC∗r
∑m

j=1 τ
(k)
j dr >

ε

2C∗mn

⎞
⎠ .
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The second inequality follows from a union bound together with the fact that for any
nonnegative random variables Xk and constant c, {∑n

k=1 Xk > c} ⊆ ∪nk=1{Xk > c/n}.
Set

A(h) :=
n⋂

k=1

⎧⎨
⎩h

m∑
j=1

τ
(k)
j ≤ α

⎫⎬
⎭ and

Bk(h) :=
⎧⎨
⎩
∣∣∣∣

m∑
j=1

τ
(k)
j − 1

∣∣∣∣
∫ h

0

n∏
k=1

eC∗r
∑m

j=1 τ
(k)
j dr >

ε

2C∗mn

⎫⎬
⎭

for arbitrary α > 0 and note that

A(h) ∩ Bk(h) ⊆
⎧⎨
⎩
∣∣∣∣

m∑
j=1

τ
(k)
j − 1

∣∣∣∣heC∗nα >
ε

2C∗mn

⎫⎬
⎭ =: B(h).

Therefore

P

(
I1(h) >

ε

m

)
≤

n∑
k=1

P (Bk(h) ∩ A(h)) + P
(
Bk(h) ∩ A(h)c

) ≤ n
[
P (B(h)) + P

(
A(h)c

) ]
.

Set h = t/m2. By Lemma A.4 for all ε > 0 such that K := ε(2C∗tn)−1e−C∗nα < 1,

P (B(h)) = P

⎛
⎝∣∣∣∣

m∑
j=1

τ
(k)
j − 1

∣∣∣∣ >
εm

2C∗tneC∗nα

⎞
⎠ ≤ 2e−

1
2 K

2m .

And by Lemma A.3,

P
(
A(h)c

) = P

⎛
⎝ n⋃

k=1

⎧⎨
⎩

m∑
j=1

τ
(k)
j >

α

h

⎫⎬
⎭
⎞
⎠ ≤ nP

⎛
⎝ m∑

j=1
τ j >

αm2

t

⎞
⎠ ≤ n2me−

1
2 K

′m2

where K ′ := α/t . Therefore

P

(
I1(h) >

ε

2m

)
≤ 2e−

1
2 K

2m + 2mne−
1
2 K

′m2 ≤ 2mCe−
1
2Cm2

(A.16)

for some positive constant C independent of m.

Second probability. Recall E (m)
rτ := ∑mn

k=1 τk[S̃(1,k−1)
rτ , Vk]S̃(k,mn)

rτ . Also, from Equa-
tion (A.6),

[S̃(1,k−1)
rτ , Vk ]S̃(k,mn)

rτ =
k−1∑
j=1

∫ r

0
τ j e

(r−s)∑k−1
j=1 τ j V j [Vj , Vk ]S̃(1,k−1)

sτ S̃(k,mn)
rτ ds

+
k−1∑
j=1

∫ r

0
τ j e

(r−s)∑k−1
j=1 τ j V j

[[S̃(1, j−1)
sτ , Vj ]S̃( j,k−1)

sτ , Vk
]
S̃(k,mn)
rτ ds.
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Lemma A.1 together with ‖[Vj , Vk]‖2→0 ≤ ‖Vj‖1→0‖Vk‖2→1 + ‖Vk‖1→0‖Vj‖2→1 ≤
2C2∗ give

∥∥∥[Vj , Vk]S̃(1,k−1)
sτ S̃(k,mn)

rτ

∥∥∥
2→0

≤ 2C2∗

⎛
⎝1 + C∗r

mn∑
j=1

τ j

⎞
⎠ e3C∗r

∑mn
1 τ j .

Also,

[[S̃(1, j−1)
sτ , Vj ]S̃( j,k−1)

sτ , Vk
] = S̃(1, j−1)

sτ Vj S̃
( j,k−1)
sτ Vk − Vk S̃

(1, j−1)
sτ Vj S̃

( j,k−1)
sτ

−Vj S̃
(1,k−1)
sτ Vk + VkVj S̃

(1,k−1)
sτ

together with Lemma A.1 gives

∥∥∥[[S̃(1, j−1)
sτ , Vj ]S̃( j,k−1)

sτ , Vk
]
S̃(k,mn)
rτ

∥∥∥
2→0

≤ 4C2∗

⎛
⎝1 + C∗r

mn∑
j=1

τ j

⎞
⎠ e3C∗r

∑mn
1 τ j .

Therefore for any 0 ≤ r ≤ h,

∥∥∥E (m)
rτ

∥∥∥
2→0

≤
mn∑
k=1

k−1∑
j=1

τkτ j

∫ r

0

∥∥∥[Vj , Vk]S̃(1,k−1)
sτ S̃(k,mn)

rτ

∥∥∥
2→0

+
∥∥∥[[S̃(1, j−1)

sτ , Vj ]S̃( j,k−1)
sτ , Vk

]
S̃(k,mn)
rτ

∥∥∥
2→0

ds

≤ 6C2∗r
(
1 + C∗r

mn∑
	=1

τ	

)
e3C∗r

∑mn
1 τ	

mn∑
k=1

k−1∑
j=1

τkτ j

≤ Ch

(
1 + Ch

mn∑
	=1

τ	

)
eCh

∑mn
1 τ	

( mn∑
k=1

τk

)2

for some C > 0. So, we have that

I2(h) =
∫ h

0
‖E (m)

rτ ‖2→0dr ≤ Ch2
(
1 + Ch

mn∑
	=1

τ	

)
eCh

∑mn
1 τ	

( mn∑
k=1

τk

)2

.

For arbitrary α > 0, set

A(h) :=
{
h

mn∑
k=1

τk ≤ α

}
and

B(h) :=
{
Ch2

(
1 + Ch

mn∑
	=1

τ	

)
eCh

∑mn
1 τ	

( mn∑
k=1

τk

)2

>
ε

2m

}
.
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Then taking h = t/m2 as before,

P

(
I2(h) >

ε

2m

)
= P (A(h) ∩ B(h)) + P

(
A(h)c ∩ B(h)

)
≤ P

(
Ch2 (1 + Cα) eCα

( mn∑
k=1

τk

)2

>
ε

2m

)
+ P

(
h

mn∑
k=1

τk > α

)

= P

(
mn∑
k=1

τk > Km
3
2

)
+ P

(
mn∑
k=1

τk >
αm2

t

)

≤ n

[
P

(
m∑

k=1
τk > K ′m

3
2

)
+ P

(
m∑

k=1
τk >

αm2

nt

)]

≤ n
(
2me−

1
2 K

′m3/2
+ 2me−

1
2 K

′′m2
)
≤ 2mC ′e−

1
2C

′m3/2

(A.17)

for some C ′ > 0 where K = (ε(2t2C(1 + Cα)eCα)−1)1/2, K ′ = Kn−1, K ′′ =
α(nt)−1, and the second-to-last last inequality follows from Lemma A.3. Combin-
ing (A.15), (A.16), and (A.17) and taking h = t/m2 we therefore have that for all
ε sufficiently small,

P

(
‖S̃mtτ/m2 − St/m‖2→0 > ε

m

)
≤ 2mC ′′e−

1
2C

′′m3/2

for some constant C ′′ > 0 independent of m. So, we have that

∞∑
m=1

P

(
‖S̃mtτ/m2 − St/m‖2→0 > ε

m

)
≤

∞∑
m=1

2mC ′′e−
1
2C

′′m3/2
<∞.

��

Appendix B. Controllability Lemmas

Combining the partial results obtained above we show the existence of transformations
implementing the steps listed at the beginning of the section:

Lemma B.1. If q(0) inQ0 is nondegenerate, then there exists M1 and a sequence of tran-
sition times and interaction triples {ι(m), τ (m)}M1

m=1 such that�
ι(M1)
τ (M1)

◦· · ·◦�ι(1)
τ (1)(q

(0)) =
q(1) as in (6.17).

Proof. If (6.17) is satisfied by q(0) we simply set M1 = 0, q(1) = q(0). If not, by
nondegeneracy there exists a sequence of triples {ι(m)}Mm=1 with ι(m) = j(m)k(m)�(m)

such thatA0 := A(q(0)) andAm = Am−1⊕ �(m) with {(0, 1,+), (1, 0,+), ( j∗,−)} ⊂
AM . We notice that all steps of this procedure satisfy, upon possibly reordering the
indices within each triple, either the conditions of Lemma 6.11 (b) or of Lemma 6.12,
so we sequentially choose τ(m) = τ

ι(m)
+ from those lemmas.

To activate coordinate (1, 1,−) – if this was not already done in the previous proce-
dure – we start with component b j∗ 	= 0 for | j∗| 	= 1 and consider a nearest neighbors
path {	(n)}M ′

n=1 in Z2
N connecting j∗ to (1, 1)without performing any step on the axes. It

is easy to see that such path can be realized through repeated application of Lemma 6.11
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(b) by choosing for the n-th step the triples ι(n) = (0, 1,+)(	(n),−)(	(n)±(0, 1),−) or
ι(n) = (1, 0,+)(	(n),−)(	(n)±(1, 0),−) for vertical and horizontal steps respectively.

Finally, coordinates (1, 0,−) and (0, 1,−) can be activated by applying Lemma 6.13
to the triples (1, 0,−)(0, 1,+)(1, 1,−) and (1, 0,+)(0, 1,−)(1, 1,−) respectively,while
(1, 1,+) is activated by (b) by interchanging the type of modes (1, 1,−) and (1, 0,+) (or
(0, 1,+)) in ι(M ′) from the previous paragraph to (1, 1,+) and (1, 0,−) (or (0, 1,−)).��
Lemma B.2. Let q(1) be a nondegenerate point inQ0 satisfying (6.17). Then there exists
M2 and a sequence of interacting triples and transition times {ι(m), τ (m)}M2

m=1 such that
�

ι(M2)
τ (M2)

◦ · · · ◦�
ι(1)
τ (1)(q

(1)) = q(2) is a nondegenerate point in Q0 satisfying (6.18) and
(6.19).

Proof. In this part of the proof, we only consider interactions involving triples ι(m) of
the form{

(0, 1)(l, h)(l, h ± 1) or (1, 0)(l, h)(l ± 1, h) : |l|, |h| ≤ N , |(l, h)| 	= 1
}

. (B.1)

ByLemma6.11 (a), if | j | < |k| < |	| and (0, 1), (l, h) ∈ A(q) there exists τ(m) = τ
ι(m)
−

such that defining Am = A(ϕ
ι(m)
τ (m)(q)) we have (l, h) 	∈ Am and (0, 1) ∈ Am (and

similarly for (1, 0)).10 Note that while a triple as above satisfies by assumption that
| j | < |k| < |	| and at least two of its coordinates are nonvanishing, it does not, in general,
satisfy (6.24). However, assuming that q does not satisfy (6.24), by Lemma 6.12 and
setting ι′ = (1, 0)(0, 1)(1, 1), there exists τ ι′ such that |q(1,0)| 	= |(�ι′

τ ι′ (q))(1,0)| > 0.

Since none of the coordinates in Z2
N \ {(1, 0)(0, 1)(1, 1)} are affected by this operation,

(�ι′
τ ι′ (q)) satisfies (6.24) and Lemma 6.11 can be applied to this state.
To conclude the proof we identify a sequence of triples ι(m) = ( j (m), k(m), 	(m)) ∈

I of the form (B.1) such that for A0 = A(q(1)) ⊆ Z
2
N × {+,−}

(((A0 � k(1))� k(2))� . . . )� k(M2)

= {(1, 0, χ), (0, 1, χ), (1, 1χ), (N , Nχ), (−N , Nχ) , χ ∈ {+,−}} .
A possible such sequence is given by triples of the form{

(1, 0,+)(l, h, χ)(l + 1, h, χ) : (l, h) ∈ {(0, 2), . . . , (0, N )} , χ ∈ {+,−}
}

to remove the vertical column of Z2
N (which cannot interact with (0, 1)), followed by{(

(0, 1,+)(l, h, χ)(l, h + 1, χ) : (l, h) ∈ {(l, 0), . . . , (l, N ) : |l| ∈ (1, . . . , N − 1)
} \ {(1, 1)}) , χ ∈ {+,−}

}
,

where importantly the set of transitions for each l is ordered. The above transformation
zeroes all coefficients except those in the set {(1, 1), (0, 1), (1, 0)} ∪ {(l, N ) : l ∈
(−N , . . . , N )}.We further remove the coefficients from {(l, N ) : l ∈ (−N+1, . . . , N−
1)} by sequentially applying Lemma 6.11 to the ordered sequence of interacting triples(

(1, 0,+)(l, h, χ)(l + 1, h, χ) : (l, h) ∈ {(0, N ), . . . , (N − 1, N ) , χ ∈ {+,−}}
)

,

10 Note that the same result can trivially be obtained if (l, h) 	∈ A(q) setting τ
ι(m)
− = 0.
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and then(
(1, 0,+)(l, h, χ)(l − 1, h, χ) : (l, h) ∈ {(−1, N ), . . . , (−N + 1, N )} , χ ∈ {+,−}

)
.

It is easy to check that each transition in the above construction sequentially satisfies the
assumptions of Lemma 6.11 (a), and that once a mode has been removed fromA it will
not interact again in this procedure. The fact that (6.19) holds follows from (6.17) and
that in an interacting triple ι = j k� with | j | < |k| < |l| both modes j and � are in A at
the end of the interaction by τ ι−. ��
Lemma B.3. Let q(2) be a nondegenerate point inQ0 satisfying (6.18) and (6.19). Then
there exists M3 anda sequenceof interacting triples and transition times {ι(m), τ (m)}M3

m=1
such that �

ι(M3)
τ (M3)

◦ · · · ◦ �
ι(1)
τ (1)(q

(2)) = q(3) is a nondegenerate point in Q0 satisfying
(6.20) and (6.21).

Since it may not be possible to “transfer” the content of e.g., mode (−N , N ) to
(−N + 1, N ) through one single interaction with mode (1, 0) – and therefore it won’t
be possible to transfer the amplitude of mode (−N , N ) to (N , N ) in one single “pass” –
we proceed to prove that, through a sequence of interactions, we can transfer a finite and
q(−N ,N )-independent amount of energy from mode (−N , N ) to (N , N ). Therefore, the
transfer of amplitude frommode (−N , N ) to (N , N )may be accomplished by repeating
this sequence of interactions sufficiently many times.

The following corollary ofLemma6.12will be instrumental for the proof ofLemmaB.3:

Corollary B.4. Let q(1,1), b(1,1) 	= 0 then for any q, q ′ with q j = q ′j for all | j | > 1

there exist a sequence {ι(m), τ (m)}4m=1 such that �ι(4)
τ (4) ◦ · · · ◦�

ι(1)
τ (1)(q) = q ′.

Proof of Lemma B.3. Thedesired result followsupon showing that for any i ∈ {−N , . . . ,

N }, setting � = (−i, N , χ), �′ = (i, N , χ ′) for χ, χ ′ ∈ {−,+} there exists M�,�′ and a

sequence of triples and interaction times {ι(m), τ(m)}M�,�′
m=1 such that for any q satisfying⋃

|i ′|<i {(i ′, N ,+), (i ′, N ,−)} ∩A(q) = ∅ and q ′ = �
ι(M�,�′ )
τ (M�,�′ )

◦ · · · ◦�
ι(1)
τ (1)(q) we have

q ′j =
{
q j for j ∈ Z

2
N \ {�, �′} ,

0 for j = � if � 	= �′ , (B.2)

and for k ∈ {�, �′}, sign(qk) = sign(q ′k) holds if q
′
k 	= 0 (recalling our choice of notation

sign(0) = +1). Indeed, if sign(b(N ,N )) ≥ 0 we sequentially apply the above result to the
pairs

(�, �′) = ((N , N ,+), (−N , N ,+)), ((−N , N ,+), (N , N ,−)), ((−N , N ,−), (N , N ,−)) .

Otherwise, when sign(b(N ,N )) = −1 we first apply the above result to � = (N , N ,−),
�′ = (−N , N ,−) and then proceed as in the previous case.

We prove the result above by induction on i ∈ {0, . . . , N }. The proof for i ≤ 0 is
analogous.

Base case (i = 0 : (0, N , χ) → (0, N , χ ′)): If � = �′ there is nothing to show.
We proceed to consider the case � = (0, N ,+), �′ = (0, N ,−), as the converse fol-
lows by analogous arguments. In this case, for a sufficiently small ε > 0 we consider
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the interactions ι = (1, 0,+)(0, N ,+)(1, N ,+) and ι′ = (1, 0,−)(0, N ,−)(1, N ,+),
running the corresponding flow maps by a small amount of time τ(ε), τ ′(ε) such that
(�ι′

τ ′(ε) ◦�ι
τ(ε)(q)(0,N ,−))

2 = b2(0,N ) + ε. We then apply Corollary B.4 to the coordinates
(1, 0,+), (1, 0,−) to return them in the initial configuration. Note that the existence of
a uniform ε > 0 such that the transitions above can be performed in a single pair of
interactions (and therefore the finiteness of the total number of interactions required to
perform the desired transformation) follows from the fact that b(0,N ) is nondecreasing
and the continuity of the dynamics together with Lemma 6.11.

Induction step (i > 0 : (−i, N , χ) → (i, N , χ ′)): We consider two possibilities
for q: a) there exists q ′′ with |a′′(1,0)| ∈ [|a(1,0)|/2, |a(1,0)|], q ′′(−i,N ,χ) = 0 and for
ι′′ = (1, 0,+)(−i + 1, N , χ)(−i, N , χ)

Eι′′(q) = Eι′′(q
′′), Eι′′(q) = Eι′′(q

′′) ,

or b) such q ′′ does not exist.
In case a) the state q ′′ can be reached by letting ι = (1, 0,+)(−i +1, N , χ)(−i, N , χ)

interact for a finite amount of time τ from Lemma 6.11 (c). Then, by the induction
assumption there is a sequence of triples and interaction times allowing to reach a
state q ′′′ with q ′′′(−i+1,N ,χ) = 0, q ′′′

(i−1,N ,χ ′) = q ′′(−i+1,N ,χ) and q ′′′j = q ′′j for all other
j ∈ Z

2
N . The desired state can then be reached by application of Lemma 6.11 (a)

to the triple ι = (1, 0,+)(i − 1, N , χ ′)(i, N , χ ′) . We proceed to check that the final
state satisfies (B.2). Because modes j 	∈ {(−i, N ), . . . , (i, N ), (1, 0)} did not interact
in the procedure above for such j we must have that q j = q ′j . The fact that for j ∈
{(−i, N ), . . . , (i − 1, N ) q ′j = 0 follows by construction and the induction assumption.

It remains to check that |a′(1,0)| = |a(1,0)|. Since the only modes affected by the above
transformation are (−i, N , χ), (i, Nχ ′), (1, 0,+), this follows directly by conservation
of energy and enstrophy:

(q(−i,N ,χ))
2 + (q(i,N ,χ ′))

2 + (q(1,0,+))
2 = (q ′(i,N ,χ ′))

2 + (q ′(1,0,+))
2 ,

(q(−i,N ,χ))
2

N 2 + i2
+

(q(i,N ,χ ′))2

N 2 + i2
+ (q(1,0,+))

2 = (q ′(−i,N ,χ))
2

N 2 + i2
+ (q ′(1,0,+))

2 .

In case b) we proceed to show that case a) can be reached with a finite number
of interactions. More specifically if condition a) is not satisfied we let the triple ι′′ =
(−i, N , χ)(−i+1, N , χ)(1, 0,+) forχ ∈ {+,−} interact as describedbyLemma6.11 for
a time τ ′′ to reach anondegenerate pointq ′′ inQ0 withq ′′j = q j for j 	∈ {(−i, N , χ), (−i+
1, N , χ), (1, 0,+)}, a′′(1,0) = a(1,0)/2 and q ′′(−i,N ,χ), q

′′
(−i+1,N ,χ) satisfying the conserva-

tion laws

(q(−i,N ,χ))
2 + (q(1,0,+))

2 = (q ′′(−i,N ,χ))
2 + (q ′′(−i+1,N ,χ))

2 + (q(1,0,+)/2)
2 ,

(q(−i,N ,χ))
2

N 2 + i2
+ (q(1,0,+))

2 = (q ′′(−i,N ,χ))
2

N 2 + i2
+

(q ′′(−i+1,N ,χ))
2

N 2 + (i − 1)2
+ (q(1,0,+)/2)

2 ,

so that (q ′′(−i,N ,χ))
2 = (q(−i,N ,χ))

2−CN ,i (q(1,0))
2 forCN ,i = 3

4
N2+i2

i2−(i−1)2 (N
2+(i−1)2−

1). We see that a positive, q(1,0,+)-dependent amplitude is removed from (q(−i,N ,χ))
2.

Again applying the induction step and Lemma 6.11 (a) to transfer, respectively, the
amplitude from (−i + 1, N , χ) to (i − 1, N , χ ′) and from (i − 1, N , χ ′) to (i, N , χ ′)
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we reach the state q ′ with q j = q ′j for modes j 	∈ {(−i, N ), . . . , (i, N ), (1, 0)} (since
these modes either vanish in both cases or they did not interact). Further, by conservation
of energy and enstrophy, we have that

(q(−i,N ,χ))
2 + (q(i,N ,χ ′))

2 + (q(1,0,+))
2 = (q ′′(−i,N ,χ))

2 + (q ′′(i,N ,χ ′))
2 + (q ′′(1,0,+))

2 ,

(q(−i,N ,χ))
2

N 2 + i2
+

(q(i,N ,χ ′))2

N 2 + i2
+ (q(1,0,+))

2 = (q ′′(−i,N ,χ))
2

N 2 + i2
+

(q ′′
(i,N ,χ ′))

2

N 2 + i2
+ (q ′′(1,0,+))

2 ,

so that |q ′′(1,0,+)| = |q(1,0,+)|. This shows that the amplitude CN ,i (q(1,0,+))
2 subtracted

to q(−i,N ,χ) is constant at each cycle, showing by boundedness of q(−i,N ,χ) that with a
finite number of iterations as the one described above we can reach state a), concluding
the proof. ��
Lemma B.5. Let q(3) be a nondegenerate point inQ0 satisfying (6.20) and (6.21). Then
there exists M4 anda sequenceof interacting triples and transition times {ι(m), τ (m)}M4

m=1
such that�ι(M4)

τ (M4)
◦· · ·◦�ι(1)

τ (1)(q
(3)) = q∗ is a nondegenerate point inQ0 satisfying (6.15).

Proof. We start the proof by applying Corollary B.4 to transform the state q(3) into
q = �τ(1)(q(3)) satisfying q(3)

j = q j for all | j | > 1 and a(0,1) = b(0,1) = b(1,0) =
a(1,0) > 0. Throughout this proof, we refer to states q such that q(i,i ′,χ) = q(i ′,i,χ) for
all i, i ′ ∈ (0, . . . , N ), χ ∈ {+,−} as symmetric.

We thenproceed to transfer the amplitude froma(1,1) tob(2,1), b(1,2) by transformingq
into another symmetric state q ′ with (2, 1,−), (1, 2,−) ∈ A(q ′) and (1, 1,+) 	∈ A(q ′).
This can be done by letting triples ι(2) = (1, 0,−)(1, 1,+)(2, 1,−) ∈ I and ι(3) =
(0, 1,−)(1, 1,+)(1, 2,−) ∈ I interact, and choosing the interaction times τ, τ ′(τ ) such
that �

ι(3)
τ ′(τ )

◦ �
ι(2)
τ (q)(1,1,+) = 0. Further, we note that the difference b′(1,2) − b′(2,1) is

negative for τ = 0, positive for τ ′(τ ) = 0 and is continuous in τ , so there must exist
τ ∗ such that b′(1,2) = b′(2,1). To show that q ′ is symmetric it only remains to show that
b′(1,0) = b′(0,1). This follows from the conservation laws:

B(1,0)(1,1)

(
(b′(1,0))2 − (b(1,0))

2
)
= B(2,1)(1,1)(b

′
(2,1))

2 = B(1,2)(1,1)(b
′
(1,2))

2

= B(0,1)(1,1)

(
(b′(0,1))2 − (b(0,1))

2
)

where

Bjk := 1

| j |2 −
1

|k|2 .

Next,we let the triples ι(4) = (1, 0,−)(0, 1,+)(1, 1,−) and ι(5) = (0, 1,−)(1, 0,+)

(1, 1,−) interact. By Lemma 6.12 there exists an interaction time such that the initial
state q ′ is mapped to q ′′ with b′′(1,0) = b′′(0,1) = 0 and a′′(1,0) = a′′(0,1) > 0, so that
(1, 0,−), (0, 1,−) 	∈ A(q ′′).

We then proceed to transfer the amplitude from modes (1, 2,−) and (2, 1,−) to
(2, 2,−). This is done letting triples ι(6) = (1, 0,+)(1, 2,−)(2, 2,−) and ι(7) =
(0, 1,+)(2, 1,−)(2, 2,−) interact until the modes (2, 1,−), (1, 2,−) are depleted, as
proved in Lemma 6.11. The symmetry of the final state q ′′′ is again a consequence of
the conservation laws:

B(1,0)(2,2)

(
(a′′′(1,0))

2 − (a′′(1,0))
2
)
= B(2,1)(2,2)(b

′′
(2,1))

2 = B(1,2)(2,2)(b
′′
(1,2))

2
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= B(0,1)(2,2)

(
(a′′′(0,1))

2 − (a′′(0,1))
2
)

.

Summarizing, we have reached a symmetric state q ′′′ = �
ι(7)
τ (7) ◦ · · · ◦�

ι(2)
τ (2)(q) with

A(q ′′′) = {(1, 0,+), (0, 1,+), (2, 2,−), (1, 1,−), (N , N ,−)} .
The desired result then follows immediately if we can show that we can transfer the

amplitude of mode (i − 1, i − 1,−) to (i, i,−) for i ∈ (2, . . . , N ) while preserving
the fact that a′(1,0) = a′(0,1). We show this by considering, sequentially, the interaction
triples

ι(4i) = (1, 0,+)(i − 1, i − 1,−)(i, i − 1,−) ,

ι(4i + 1) = (0, 1,+)(i − 1, i − 1,−)(i − 1, i,−) ,

ι(4i + 2) = (0, 1,+)(i, i − 1,−)(i, i,−) ,

ι(4i + 3) = (1, 0,+)(i − 1, i,−)(i, i,−) .

More specifically, we consider the family of endpoints

q ′′(t) = �
ι(4i+3)

τ
ι(4i+3)
−

◦�
ι(4i+2)

τ
ι(4i+2)
−

◦�
ι(4i+1)

τ
ι(4i+1)
−

◦�
ι(4i)
t (q ′) ,

where τ ι− is defined in Lemma 6.11 (a). By construction, this sequence implies that
a′′(i−1,i−1) = a′′(i−1,i) = a′′(i,i−1) = 0 and a′′(i,i) 	= 0. It remains to prove that a′′(1,0) =
a′′(0,1). As a composition of continuous functions, q ′′(t) is continuous in t and therefore
so is�q(t) = a′′(1,0)(t)−a′′(0,1)(t). Further, since by symmetry a′′(1,0)(0) = a′′(0,1)(τ

ι(4i)
− ),

we must have sign(�q(0)) = −sign(�q(τ
ι1− )). This implies the existence of τ(4i) ∈

[0, τ ι1− ] with �q(0) = 0, concluding the proof. ��
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