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Abstract: Wereformulate entanglementwedge reconstruction in the languageof operator-
algebra quantum error correction with infinite-dimensional physical and code Hilbert
spaces. VonNeumann algebras are used to characterize observables in a boundary subre-
gion and its entanglement wedge. Assuming that the infinite-dimensional von Neumann
algebras associated with an entanglement wedge and its complement may both be recon-
structed in their corresponding boundary subregions, we prove that the relative entropies
measured with respect to the bulk and boundary observables are equal. We also prove
the converse: when the relative entropies measured in an entanglement wedge and its
complement equal the relative entropies measured in their respective boundary subre-
gions, entanglement wedge reconstruction is possible. Along the way, we show that
the bulk and boundary modular operators act on the code subspace in the same way.
For holographic theories with a well-defined entanglement wedge, this result provides
a well-defined notion of holographic relative entropy.
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1. Introduction

Entanglement entropy has many applications in quantum field theory, ranging from the
study of renormalization group flows [1,2] to confinement [3] to topological orders [4,5].
With the discovery of the Ryu–Takayangi formula [6], entanglement entropy has been
especially useful in studying holographic quantum field theories. For holographic theo-
ries, it is important to understand the emergent low-energy bulk physics in d-dimensions
from the conformal field theory in (d−1)-dimensions. Since local bulk operators can be
expressed as boundary operators smeared over either the entire spatial slice or compact
spatial subregions [7,8], a single bulk operator can be reconstructed in different subre-
gions [9]. Quantum error correction provides a convenient setup where bulk operators
are defined only on a code subspace of the physical Hilbert space of the conformal field
theory. In order to resolve apparent inconsistencies with space-like commutativity of
local operators in quantum field theory, bulk reconstruction was studied in the context
of quantum error correcting codes [9]. Using the Ryu–Takayangi formula, [10] showed
that the relative entropy of nearby states computed in a boundary subregion is equivalent
to the relative entropy computed in the dual entanglement wedge [11], up to corrections
on the order of Newton’s constant GN . These results were used in [12,13] to argue that
CFT operators in a boundary subregion can be used to reconstruct bulk operators in the
entanglement wedge.

Much of the literature on entanglement entropy contains assumptions that are only
true for quantum mechanical systems with finite-dimensional Hilbert spaces. For in-
stance, entanglement entropy has often been defined by assuming that the Hilbert space
H can be written as H = HA ⊗ HAc , where A refers to a subregion of space and Ac

refers to the complement of A. The entanglement entropy is the von Neumann entropy
of the reduced density matrix one obtains after performing a partial trace on the Hilbert
spaceHAc . However, the infinite-dimensional Hilbert spaceH does not factorize in this
way because the entanglement entropy contains a universal area-law divergence [14].

Von Neumann algebras are a mathematical structure that arise naturally in quantum
field theory. Instead of assuming that the Hilbert space factorizes, we should characterize
a causally complete region of spacetime1 by an associated von Neumann algebra [15].
Formulating quantum field theory with von Neumann algebras is powerful because it
allows one to make use of the mathematical machinery of Tomita–Takesaki theory to
study entanglement. The modular operator is an important object in Tomita–Takesaki
theory, and Araki [16] has used it to define relative entropy in quantum field theory. The-
orem 3.8, a central result of Tomita–Takesaki theory, formalizes the notion of modular
flow. A demonstration of how von Neumann algebras are associated with the left and
right Rindler wedges of Minkowski space was provided by Bisognano and Wichmann
in [17]. More recently, an explicit computation of mutual information for free fermions
in 1+1 dimensions was performed in [18].

1 The causal complement of a region R, denoted by R′, is defined to be all of the points in spacetime which
are spacelike separated from every point in R. A region R is causally complete if R′′ = R. Note that any von
Neumann algebra M satisfies M = M ′′, where the ′ denotes the commutant.
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Given the role that entanglement entropy plays in our understanding of holography
and the role that von Neumann algebras play in our understanding of entanglement
entropy, it is natural to ask whether statements in the bulk reconstruction literature can
be recast in a way that dispenses with the fiction that the boundary Hilbert space can
be written as H = HA ⊗ HAc for an arbitrary subregion A. In the context of quantum
error correction with finite dimensional Hilbert spaces [13], formulates and completes
the equivalence of the Ryu–Takayangi formula, entanglement wedge reconstruction,
and the equality of bulk and boundary relative entropies. With the exception of the
Ryu–Takayangi formula, there are natural ways to generalize these statements to the
case where the Hilbert space is infinite-dimensional. The Ryu–Takayangi formula, on
the other hand, computes the entanglement entropy of an arbitrary subregion in the
boundary field theory, which is infinite.

In this paper, we prove that in the context of quantum error correction with infinite-
dimensional Hilbert spaces, the equivalence of bulk and boundary relative entropies
is a necessary and sufficient condition for entanglement wedge reconstruction. This is
presented more precisely in Theorem 1.1. We define cyclic and separating states in
Definitions 3.1 and 3.2, and relative entropy in Definition 3.6.

Theorem 1.1. Let u : Hcode → Hphys be an isometry2 between two Hilbert spaces.
Let Mcode and Mphys be von Neumann algebras on Hcode and Hphys respectively. Let
M ′

code and M ′
phys respectively be the commutants of Mcode and Mphys . Suppose that

the set of cyclic and separating vectors with respect to Mcode is dense in Hcode. Also
suppose that if |�〉 ∈ Hcode is cyclic and separating with respect to Mcode, then u |�〉
is cyclic and separating with respect to Mphys . Then the following two statements are
equivalent:

1. Bulk reconstruction

∀O ∈ Mcode ∀O′ ∈ M ′
code, ∃Õ ∈ Mphys ∃Õ′ ∈ M ′

phys such that

∀ |�〉 ∈ Hcode

{
uO |�〉 = Õu |�〉 , uO′ |�〉 = Õ′u |�〉 ,

uO† |�〉 = Õ†u |�〉 , uO′† |�〉 = Õ′†u |�〉 .

2. Boundary relative entropy equals bulk relative entropy

For any |�〉 , |�〉 ∈ Hcode with |�〉 cyclic and separating with respect toMcode,

S�|�(Mcode) = Su�|u�(Mphys), and S�|�(M ′
code) = Su�|u�(M ′

phys),

where S�|�(M) is the relative entropy.

Theorem 1.1 has two separate statements regarding bulk reconstruction and relative
entropy. Early attempts to express bulk operators as nonlocal operators on the boundary
were made in [7,8], and [9] made the connection between bulk reconstruction and quan-
tum error correction. The statement that relative entropy equals bulk relative entropy is
due to [10].

Given the assumptions of Theorem 1.1, Mcode may be viewed as a von Neumann
subalgebra of Mphys . For a specific setting when the relative entropy of two states
defined with respect to Mcode is identical to the relative entropy defined with respect
to Mphys , Mcode is called a weakly sufficient subalgebra with respect to the two states.

2 This means that u is a norm-preserving map. The map u need not be a bijection. In general, u†u is the
identity onHcode and uu

† is a projection on Hphys .
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This particular case is studied in [19]. However, Theorem 1.1 is concerned with the case
when the relative entropies agree for all states in the code subspace.

Theorem 1.1 contains an assumption that the set of cyclic and separating vectors
with respect to Mcode is dense in Hcode. This assumption can be relaxed to the weaker
assumption that there exists in Hcode a cyclic and separating vector with respect to
Mcode. The existence of this vector is guaranteed by the Reeh–Schlieder Theorem [20].
If Mcode and M ′

code are of type III1, then this conclusion also follows from a result of
Connes–Størmer [21]. See Sect. 6.4 for further discussion.

The proof of Theorem 1.1 requires two parts: statement 1 implies statement 2, and
statement 2 implies statement 1 as well. Unlike the other direction, our proof that state-
ment 1 implies statement 2 does not require all of the assumptions of the theorem. We
highlight this by presenting Theorem 1.2:

Theorem 1.2. Let u : Hcode → Hphys be an isometry between two Hilbert spaces.
Let Mcode and Mphys be von Neumann algebras on Hcode and Hphys respectively. Let
M ′

code and M ′
phys respectively be the commutants of Mcode and Mphys .

Suppose that

• There exists some state |�〉 ∈ Hcode such that u |�〉 ∈ Hphys is cyclic and
separating with respect to Mphys .
• ∀O ∈ Mcode ∀O′ ∈ M ′

code, ∃Õ ∈ Mphys ∃Õ′ ∈ M ′
phys such that

∀ |�〉 ∈ Hcode

{
uO |�〉 = Õu |�〉 , uO′ |�〉 = Õ′u |�〉 ,

uO† |�〉 = Õ†u |�〉 , uO′† |�〉 = Õ′†u |�〉 .

Then, for any |�〉, |�〉 ∈ Hcode with |�〉 cyclic and separating with respect to Mcode,

• u |�〉 is cyclic and separating with respect to Mphys and M ′
phys ,

• S�|�(Mcode) = Su�|u�(Mphys), S�|�(M ′
code) = Su�|u�(M ′

phys),

where S�|�(M) is the relative entropy.

Theorem 1.1, our main result, has a natural interpretation in the context of AdS/CFT.
As the notation suggests, Hcode may be interpreted as a code subspace of the physical
Hilbert space Hphys that consists of states with semi-classical bulk duals. The von
Neumann algebra Mphys denotes an algebra of boundary operators associated with a
subregion on the boundary, and Mcode denotes an algebra of bulk operators associated
with the dual entanglement wedge. The commutant algebra M ′

phys is associated with
the complementary boundary subregion, and M ′

code is associated with the complement
of the entanglement wedge of Mcode.

Theorem 1.1 provides a necessary and sufficient criterion for a subalgebra of bulk op-
erators and its commutant to respectively be reconstructed in a subregion in the boundary
and its complement.We need the results of [10] to argue thatMcode andM ′

code are associ-
atedwith entanglementwedges.WhileTheorem1.1maynot comeas a surprise to readers
familiar with [12,13], we emphasize that studying the infinite-dimensional case can po-
tentially yield new physical insights in AdS/CFT. As an example in quantum field theory,
the Reeh–Schlieder Theorem [20] cannot be anticipated by studying a finite-dimensional
spin–lattice model where the Hilbert space factorizes as H = H1 ⊗ H2 ⊗ · · · ⊗ HN
where Hi denotes the finite-dimensional Hilbert space at each site.

While proving Theorem 1.2, we show in Eq. (4.35) that the modular operators asso-
ciated with the bulk and boundary subregions act the same way onHcode. Furthermore,
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while proving bulk reconstruction in Theorem 1.1, we explicitly show how to define
a boundary operator that represents a given bulk operator on the code subspace. In
Sect. 6, we discuss the implications of the Reeh–Schlieder Theorem for infinite- and
finite-dimensional quantum error correction and make contact with the results of [13].

An outline of our proof of Theorem 1.2 is the following.

• We prove that for any |�〉 ∈ Hcode which is cyclic and separating with respect
to Mcode, u |�〉 is cyclic and separating with respect to Mphys .3 If this were not
true, then the relative entropy between u |�〉 and u |�〉 could not be defined, as the
relative modular operator requires that u |�〉 is cyclic and separating with respect
to Mphys .

• Using the fact that Mphys and M ′
phys are commutants of each other, we show that

for any P ∈ Mphys , u†Pu ∈ Mcode.
• Let Sc�|� and S p

u�|u� denote relative Tomita operators defined with respect to

Mcode and Mphys respectively. We relate Sc�|� and S p
u�|u� and derive uSc�|� =

S p
u�|u�u for generically unbounded operators. In particular, we show that their

domains are equal and S p
u�|u� restricted to the vector space (Im u)⊥ has a range

contained within (Im u)⊥.
• We derive a relation for the relative modular operators associated with Sc�|� and

S p
u�|u�.

4 This is related to the physical notion that bulk modular flow is dual to

boundary modular flow. Likewise, we show that �
p
u�|u� restricted to the vector

space (Im u)⊥ has a range contained within (Im u)⊥.
• Using the spectral theorem, we show that the spectral projections commute with
the projector uu†.5 We derive that the spectral projections of �c

�|� are given by

u†P p
�u, where P p

� denotes the spectral projections of �
p
u�|u�.

6

• Any function of�p
u�|u� or�c

�|� can be constructed once the spectral projections

are known. It follows that 〈�| log�c
�|�|�〉 = 〈u�| log�

p
u�|u�|u�〉, and thus the

relative entropies are equal.

We note that Theorem 1.2 dictates that statement 1 of Theorem 1.1 implies statement
2 of Theorem 1.1. A sketch of our proof of the converse is the following. This completes
the proof of Theorem 1.1.

• For any |�〉 ∈ Hcode that is cyclic and separating with respect to Mcode, and for
any unitary U ′ ∈ M ′

code, the properties of relative entropy and the assumptions of
the theorem imply that 0 = S�|U ′�(Mcode) = Su�|uU ′�(Mphys).

• Following the logic of [14], one may show that 〈uU ′�|PuU ′�〉 = 〈u�|P|u�〉
for all P ∈ Mphys . Using the assumption that cyclic and separating states with
respect to Mcode are dense inHcode, it follows that u†PuU ′ = U ′u†Pu. The same
logic also implies that for P ′ ∈ M ′

phys and any unitary U ∈ Mcode, u†P ′uU =
Uu†P ′u.

3 This is because we may act with an operator in Mcode to send |�〉 to a vector arbitrarily close to |�〉, and
we may act with an operator in Mphys to send u |�〉 arbitrarily close to any vector inHphys .

4 With the relation for the Tomita operators we derived above, we obtain a relation for the relative modular
operators �c

�|� and �
p
u�|u�

to be u�c
�|� = �

p
u�|u�

u.
5 We apply the spectral theorem separately for the restriction of �

p
u�|u�

to Im u and (Im u)⊥.
6 We use the relation �c

�|� = u†�p
u�|u�

u. For the projections, � denotes a measurable subset of R
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• Wedefine a linearmap X ′�U ′ : Hphys → Hphys by X ′�U ′Pu |�〉 := PuU ′ |�〉
∀P ∈ Mphys , and we show that X ′�U ′

is unitary and that X ′�U ′ ∈ M ′
phys .

• Since u†X ′�U ′
uU = Uu†X ′�U ′

u and any operator in Mcode may be writ-
ten as a linear combination of four unitary operators in Mcode, we show that
u†X ′�U ′

u = U ′. We also show that X ′�U ′
maps the vector space Im u → Im u.

Hence, X ′�U ′
u = uU ′

• Using similarmethods,we then show that (X ′�U ′
)†u = u(U ′)†. Thus, the unitary

operator U ′ ∈ Mcode may be reconstructed as X ′�U ′
for some choice of |�〉 ∈

Hcode that is cyclic and separating with respect to Mcode.
• Since any operator in Mcode may be written as a linear combination of four
unitary operators in Mcode, we have a way to represent any operator in Mcode as
an operator in Mphys . The same logic applies to show that any operator in M ′

code
may be represented as an operator in M ′

phys .

The rest of this paper is summarized as follows. In Sect. 2, we define von Neumann
algebras and functions of operators, and we review the spectral theorem (for unbounded
operators). In Sect. 3, we review the relative modular operator from Tomita–Takesaki
theory, and define the relative entropy. In Sect. 4, we prove that when the bulk recon-
struction is satisfied, the relative entropy is equivalent between the boundary and the bulk
(Theorem 1.2). In Sect. 5, we prove the converse, completing the proof of Theorem 1.1.
In Sect. 6, we physically interpret Theorem 1.1 and relate our work to previous work on
finite-dimensional quantum error correction and holography.

2. Bounded and Unbounded Operators

In this section, we review some results in functional analysis that are used in the proofs
of Theorems 1.2 and 1.1. In particular, we explain how to define a function of a bounded
self-adjoint operator and we review the spectral theorem (for unbounded operators). We
mostly follow reference [22].

Definition 2.1. An operator on a Hilbert space H is a linear map from its domain, a
linear subspace of H, intoH.

Definition 2.2. A bounded operator is an operatorO that satisfies ||O |ψ〉 || ≤ K || |ψ〉 ||
∀ |ψ〉 ∈ H for some K ∈ R. We let B(H) denote the algebra of bounded operators on
H.

Definition 2.3. The commutant of a subset S ⊂ B(H) is the set S′ of bounded operators
that commute with all operators in S, i.e. S′ = {O ∈ B(H) : OP = PO ∀P ∈ S}. The
double commutant of S is the commutant of S′.
Definition 2.4. A von Neumann algebra is an algebra of bounded operators that contains
the identity operator, is closed under hermitian conjugation, and is equal to its double
commutant.

Theorem 2.5. Let O ∈ B(H). Let {|�n〉} ∈ H be a sequence of vectors such that its
limit vanishes, i.e. limn→∞ |�n〉 = 0. Then, limn→∞ O |�n〉 = 0.

Theorem 2.5 implies that bounded operators define a continuous linear map on the
Hilbert space. Any bounded operator that annihilates a dense subspace of the Hilbert
space is identically zero.

Definition 2.6. A densely defined operator on a Hilbert space H is an operator whose
domain is a dense subspace of H.
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2.1. Functions of bounded operators. In this section, we will explain how to understand
functions of bounded operators.

Definition 2.7. The spectrum of O ∈ B(H) is defined as

σ(O) := {λ ∈ C : O − λI is not invertible},
where I denotes the identity operator.

We will make use of the mathematical facts that σ(O) is a nonempty closed bounded
subset of C and that when O is self-adjoint, σ(O) ⊂ R and ||O|| = supλ∈σ(O) |λ| [23]
[22].

Definition 2.8. LetO ∈ B(H) be a self-adjoint operator.We denote the set of continuous
R-valued functions defined on σ(O) by C(σ (O)).

Definition 2.9. For every self-adjoint operator O ∈ B(H), we define the L∞ norm
(denoted by || · ||∞) of f ∈ C(σ (O)) by

|| f ||∞ = sup
x∈σ(O)

| f (x)|.

Theorem 2.10 ([22], page 121). Given a self-adjoint operator O ∈ B(H), the set of
polynomials (with R-valued coefficients) is dense in C(σ (O)) in the L∞ norm.

Definition 2.11. For any polynomial p(x) = ∑N
n=0 anx

n with an ∈ R, we define
p(O) := ∑N

n=0 anOn for O ∈ B(H).

Theorem 2.12 ([22], page 223). Let p(x) = ∑N
n=0 anx

n with an ∈ R. Let O ∈ B(H).7

Then

σ(p(O)) = {p(λ)|λ ∈ σ(O)}.
Theorem 2.13 ([22], page 223). For any self-adjoint operator O ∈ B(H) and any
polynomial p ∈ C(σ (O)),

||p(O)|| = ||p||∞.

Proof. ||p(O)|| = supλ∈σ(p(O)) |λ| = supλ∈σ(O) |p(λ)| = ||p||∞. ��
Let O ∈ B(H) be self-adjoint. Let P denote the space of polynomials defined on

R with R-valued coefficients. Define a map φ̃O : P → B(H) such that φ̃O(p) =
p(O) for any polynomial p ∈ P . The map φ̃O is a bounded linear operator because
||φ̃O(p)|| = ||p||∞. Hence, φ̃O may be uniquely extended to a bounded linear operator
φO : C(σ (O)) → B(H). For f ∈ C(σ (O)), we define f (O) := φO( f ). If {pn} ∈ P
denotes a sequence of polynomials such that limn→∞ pn = f (where the limit converges
in the L∞ norm), then we may also write

f (O) = lim
n→∞ pn(O), (2.1)

where the limit converges in the norm topology. If f, g ∈ C(σ (O)), then one may show
[22] that f (O)g(O) = ( f g)(O) and that ( f ∗)(O) = f (O)†.

7 Note thatO need not be self-adjoint.
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Theorem 2.14 ([23], page 19). Let M be a von Neumann algebra. Any operator in M
is a linear combination of four unitary operators in M.

Proof. Let O ∈ M . We may write

O = 1

2
(O +O†) − i

2
(i(O − O†)).

This shows that O may be written as a linear combination of two self-adjoint operators
in M . Next, let Q ∈ M be a self-adjoint operator that satisfies ||Q|| < 1. The condition
||Q|| < 1 is important because the function f (x) = √

1 − x2 isR-valued and continuous
only for |x | < 1.DefineU := Q+i

√
1 − Q2. ThenU is unitary,U ∈ M , andQ = U+U†

2 .

��

2.2. Unbounded operators. Unbounded operators are generically not defined on the
entire Hilbert space. The domain of an operator O is denoted by D(O). The definition
of O† is subtle when O is unbounded, as O† may not be defined on the entire Hilbert
space.

Definition 2.15. A densely defined operator O is closed when O(limn→∞ |ψn〉) =
limn→∞ O |ψn〉 whenever both limits exist.

Definition 2.16. Let O be a densely defined operator on H. The domain of the adjoint
O† is defined by

D(O†) = {|φ〉 : ∃ |η〉 ∈ H such that 〈φ|O|ψ〉 = 〈η|ψ〉 ∀ |ψ〉 ∈ D(O)}.

For |φ〉 ∈ D(O†) there is precisely one |η〉 that satisfies the above criteron. We define

O† |φ〉 := |η〉 .

Theorem 2.17 ([22], page 252). If O is a densely defined operator on H, then O† is
closed. If O is closed, D(O†) is dense inH.

Definition 2.18. A densely defined operator O is self-adjoint when O = O†. In partic-
ular, D(O) = D(O†).

Definition 2.19. A densely defined operator is positive when 〈ψ |O|ψ〉 ≥ 0 ∀ |ψ〉 ∈
D(O).

Definition 2.20. Let O be a closed operator on a Hilbert space H. λ ∈ C is in the
resolvent set ofO if λI −O is a bijection of D(O) ontoH. The spectrum ofO, denoted
σ(O), is defined to be the set of all complex numbers that are not in the resolvent set of
O.

Theorem 2.21. Let O be a self-adjoint positive operator. Then the spectrum of O is a
subset of [0,∞).
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Proof. For any |χ〉 ∈ D(O) and any λ = λ1 + iλ2 for λ1, λ2 ∈ R, note that8

||(O − λI ) |χ〉 ||2 = λ22|| |χ〉 ||2 + ||(O − λ1) |χ〉 ||2 ≥ λ22|| |χ〉 ||2. (2.2)

Let us consider the case when λ2 �= 0. Then ker(O − λI ) = {0} so that O − λI is an
injection. Using the fact that D(O) is dense inH, one may show that the orthocomple-
ment of the range of (O − λI ) is trivial, implying that the range of (O − λI ) is dense
in H. Then, the previous equation implies that if {|χn〉} ∈ D(O) is a sequence such
that limn→∞(O − λI ) |χn〉 exists, then limn→∞ |χn〉 also exists. Since O is a closed
operator, the range of (O−λI ) is also closed. Thus, (O−λI ) is a bijection from D(O)

onto H, demonstrating that λ is in the resolvent set of O.
Now, consider the case when λ ∈ R, λ < 0. For any |χ〉 ∈ D(O),

||(O − λI ) |χ〉 ||2 = |λ|2|| |χ〉 ||2 − 2 〈χ |O|χ〉 λ + ||O |χ〉 ||2. (2.3)

As O is a positive operator,

||(O − λI ) |χ〉 ||2 ≥ |λ|2|| |χ〉 ||2. (2.4)

The same logic used in the previous case establishes that λ is in the resolvent set of O.
Hence, the spectrum of O must be a subset of [0,∞). ��
Theorem 2.22 ([22], page 316). Let O be a closed operator. Then D(O†O) = {|ψ〉 :
|ψ〉 ∈ D(O), O |ψ〉 ∈ D(O†)} is dense in the Hilbert space and O†O is self-adjoint
and positive.

2.3. The spectral theorem for unbounded operators. In this section, we closely follow
[22] (pages 262–263), to which we refer the reader for more details on the spectral
theorem. Note that a projection P ∈ B(H) is idempotent and hermitian i.e. P = P2 =
P†.

Definition 2.23. A projection valued measure assigns a projection P� to every Borel set
� ⊂ R such that

• P∅ = 0, P(−∞,∞) = I
• P�1 P�2 = P�1∩�2

• If� = ∪∞
n=1�n with�n∩�m = ∅ if n �= m, then P� is a strong limit of

∑N
n=1 P�n .

Given any vector |ψ〉 ∈ H, 〈ψ |P�|ψ〉 defines an integration measure for Borel
functions, which we will use in Definition 2.25.

Theorem 2.24 (SpectralTheorem [22], page263). There is a one-to-one correspondence
between self-adjoint operators O and projection valued measures PO

� . The correspon-
dence is given by

O =
∫
R

λ d(PO
λ ).

8 To be explicit, we have that

〈(O − λI )χ |(O − λI )χ〉 = 〈(O − λ1 I )χ |(O − λ1 I )χ〉 + 〈λ2χ |λ2χ〉 + iλ2 〈χ |(O − λ1 I )χ〉 − iλ2 〈(O − λ1 I )χ |χ〉 .

The last two terms cancel because O is self-adjoint and λ1 is real.
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The notation means that we are integrating the function f (λ) = λ on R with the
projection-valued measure given by PO

� . The integral converges strongly.9

Intuitively, PO
� is the projection onto the “eigenspace” spanned by all “eigenvalues”

in �. We will need that PO
(−∞,∞) = PO

σ(O)
, where σ(O) denotes the spectrum ofO. For

the details on how the spectral projections associated with a self-adjoint operator O are
constructed, see Theorem VIII.4 and discussions afterwards in Section VIII.3 of [22].

Definition 2.25. Given a self-adjoint positive operator O, the diagonal matrix element
of logO is given by

〈ψ | logO|ψ〉 :=
∫ ∞

0
log λ d(〈ψ |PO

λ |ψ〉),

for all |ψ〉 ∈ H such that the above integral converges, where PO
� is the unique projection

valued measure associated with O by the spectral theorem.

Note that log x is continuous for x ∈ (0,∞). Thus, log x is a Borel function. One can
define a self-adjoint operator using any real-valued Borel function on R. See page 264
of [22].

Theorem 2.26. LetO be a self-adjoint positive operator. For all |ψ〉 ∈ D(O) such that
〈ψ | logO|ψ〉 is defined,

〈ψ | logO|ψ〉 ≤ 〈ψ |O|ψ〉 − 〈ψ |ψ〉 ,

and the inequality is saturated if and only if O |ψ〉 = |ψ〉.
Proof. Assume |ψ〉 �= 0. For x > 0, note that log x ≤ x − 1. It follows that

〈ψ | logO|ψ〉 =
∫ ∞

0
log λ d(〈ψ |PO

λ |ψ〉) ≤
∫ ∞

0
λ d(〈ψ |PO

λ |ψ〉)

−
∫ ∞

0
1 d(〈ψ |PO

λ |ψ〉). (2.5)

The first integral on the right hand side converges because |ψ〉 ∈ D(O). The second
integral converges to 〈ψ |ψ〉 because the spectrum of O is a subset of [0,∞), which
implies that PO

[0,∞) = PO
(−∞,∞) = I . Hence,

〈ψ | logO|ψ〉 ≤ 〈ψ |O|ψ〉 − 〈ψ |ψ〉 . (2.6)

As log x ≤ x −1 is only saturated for x = 1, the inequality in Eq. (2.5) is only saturated
when the measure 〈ψ |PO

� |ψ〉 is such that 〈ψ |PO
� |ψ〉 = 0 when 1 /∈ �. If 1 /∈ �, then

〈ψ |PO
� |ψ〉 = 〈PO

� ψ |PO
� ψ〉 implies that PO

� |ψ〉 = 0. If 1 ∈ �, then the fact that∫
R
1d(〈ψ |PO

λ |ψ〉) = 〈ψ |ψ〉 implies that 〈PO
� ψ |PO

� ψ〉 = 〈ψ |PO
� |ψ〉 = 〈ψ |ψ〉. For

1 ∈ �, note that the Cauchy-Schwartz inequality | 〈ψ |PO
� |ψ〉 | ≤ || |ψ〉 || · ||PO

� |ψ〉 ||
is saturated, which implies that PO

� |ψ〉 is a multiple of |ψ〉, and this multiple must be
1. Thus, for 1 ∈ �, PO

� |ψ〉 = |ψ〉. This implies that

O |ψ〉 =
∫
R

λ d(PO
λ |ψ〉) = |ψ〉 . (2.7)

��
9 For any |ψ〉 ∈ D(O), the integral

∫
R

λd(PO
λ |ψ〉) with vector-valued measure PO

� |ψ〉 converges in the
Hilbert space norm toO |ψ〉. The integral does not converge for |ψ〉 /∈ D(O).
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3. Review of Tomita–Takesaki theory

Previous works on entanglement entropy and AdS/CFT [10,12,24,25] have used the
definition for the relative entropy as S(ρ, σ ) = Tr (ρ log ρ − ρ log σ). Since S(ρ, σ )

does not increase upon performing a partial trace on ρ and σ , the relative entropy may
be intuitively thought of as a measure of distinguishability between two states. Araki’s
definition of the relative entropy [16] also has a monotonicity property, and it reduces
to S(ρ, σ ) when the Hilbert space is finite-dimensional [14]. Hence, we might expect
that statements about relative entropy in AdS/CFT can be reformulated for infinite-
dimensional Hilbert spaces.

We want to understand the connection between entanglement wedge reconstruction
and the equivalence of bulk and boundary relative entropies in infinite dimensional
Hilbert spaces, using Tomita–Takesaki theory. Tomita–Takesaki theory provides us with
the relative modular operator which is used to define the relative entropy. In this section,
we review properties of the relative modular operator and the definition of the relative
entropy, following [14,16,23].

Definition 3.1. A vector |�〉 ∈ H is said to be cyclic with respect to a von Neumann
algebra M when the set of vectors O |�〉 for O ∈ M is dense inH.

Definition 3.2. A vector |�〉 ∈ H is separating with respect to a von Neumann algebra
M when zero is the only operator in M that annihilates |�〉. That is, O |�〉 = 0 �⇒
O = 0 for O ∈ M .

Given a von Neumann algebra M ⊂ B(H) and a vector |�〉 ∈ H, we may define a
map e� : M → H : O �→ O |�〉. H is the closure of the image of e� iff |�〉 is cyclic
with respect to M . Also, ker e� = {0}10 iff |�〉 is separating with respect to M .

Definition 3.3. Let |�〉 , |�〉 ∈ H andM be a vonNeumann algebra. The relative Tomita
operator is the operator S�|� that acts as

S�|� |x〉 := |y〉
for any sequence {On} ∈ M such that the limits |x〉 = limn→∞ On |�〉 and |y〉 =
limn→∞ O†

n |�〉 both exist.

The relative Tomita operator S�|� is well-defined on a dense subset of the Hilbert
space if and only if |�〉 is cyclic and separating with respect to M .11 Note that S�|� is
a closed operator.

Theorem 3.4 ([23], page 94). Let |�〉 , |�〉 ∈ H both be cyclic and separating with
respect to a vonNeumann algebra M. Let S�|� and S′

�|� be the relative Tomita operators
defined with respect to M and its commutant M ′ respectively. Then

S†�|� = S′
�|�, S′ †

�|� = S�|�. (3.1)

Definition 3.5. Let S�|� be a relative Tomita operator and |�〉 ∈ H be cyclic and
separating with respect to a von Neumann algebra M . The relative modular operator is

��|� := S†�|�S�|�.

10 In other words, e� is an injective map.
11 S�|� is well-defined if and only if limn→∞ On |�〉 = 0 �⇒ limn→∞ O†

n |�〉 = 0. See footnote 14
of [14] for a proof of why this is true. S�|� is densely defined because |�〉 is cyclic with respect to M .
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If |�〉 is replaced with O′ |�〉, where O′ ∈ M ′ is unitary, then the relative modular
operator remains unchanged [14]:

��|� = ��|O′�. (3.2)

Definition 3.6 ([16]). Let |�〉 , |�〉 ∈ H and |�〉 be cyclic and separating with respect
to a von Neumann algebra M . Let ��|� be a relative modular operator. The relative
entropy with respect to M of |�〉 is

S�|�(M) = −〈�| log��|�|�〉 .

Note that the relative entropy S�|�(M) is nonnegative and it vanishes precisely when
|�〉 = O′ |�〉 for a unitary O′ ∈ M ′.
Definition 3.7. LetM be a vonNeumann algebra onH and |�〉 be a cyclic and separating
vector for M . The Tomita operator S� is

S� := S�|�,

where S�|� is the relative modular operator defined with respect to M . The modular

operator �� = S†� S� and the antiunitary operator J� are the operators that appear in
the polar decomposition of S� such that

S� = J��
1/2
� .

Theorem 3.8 (Tomita–Takesaki [26]). Let M be a von Neumann algebra onH and let
|�〉 be a cyclic and separating vector for M. Then

• J�MJ� = M ′.
• �i t

�M�−i t
� = M ∀t ∈ R.

Theorem 3.8 is important because it allows us to interpret �� as the operator that
generates a modular flow on M . Suppose that the Hilbert space H factorizes as H =
H� ⊗ Hr . For concreteness, we may intuitively think of H� as a Hilbert space that
corresponds to the left Rindler wedge of Minkowski space, whileHr corresponds to the
right Rindler wedge.

For a given state |�〉 ∈ H, if we define

ρ := |�〉 〈�| , ρ� := Trr ρ, ρr := Tr� ρ, (3.3)

then the reduced density matrices ρ� and ρr generate a modular flow on operators that
act on H� and Hr , respectively. The modular operator �� corresponding to the von
Neumann algebra that acts nontrivially on H� is then given by

�� = ρ� ⊗ ρ−1
r . (3.4)

When |�〉 is the vacuum and H� and Hr correspond to Rindler wedges, we have that

ρ� = e−2πK� , ρr = e−2πKr , (3.5)

where K� and Kr are the boost generators that act respectively on the left and right
wedges (see Fig. 1). The modular operator �� is then given by

�� = e−2π(K�−Kr ). (3.6)
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KrK

Fig. 1. Two Rindler wedges in Minkowski space. The generators Kr and K� correspond to boosts, as shown

In this context, Theorem 3.8 states that the modular flow maps operators in a Rindler
wedge to operators in the same Rindler wedge. Thus, the algebraically defined modu-
lar flow in Theorem 3.8 has a geometric interpretation. This is an example of modular
covariance, which is the property that the modular flow is a spacetime symmetry. The
unitary group generated by the modular operator associated with the vacuum state im-
plements the Lorentz boosts that leave the Rindler wedges invariant. The antiunitary
operator J corresponds to the operator CRT , where C denotes charge conjugation, R
is a reflection that maps one wedge into the other, and T is time reversal [27].

One of the findings of [10] is that bulkmodular flow is dual to boundarymodular flow.
As an intermediate step in proving the equivalence of bulk and boundary entropies, we
will also show that the bulk and boundary modular operators act on the code subspace
in the same way. This is further evidence that the definitions and theorems of Tomita–
Takesaki theory are relevant for understanding bulk reconstruction.

4. Proof of Theorem 1.2

This section contains the proof of Theorem 1.2. In Lemma 4.1, we show that cyclic
and separating states in Hcode are mapped to cyclic and separating states in Hphys .
In Lemma 4.2, we relate operators in Mphys to operators in Mcode. In Sect. 4.1, we
consider Theorem 1.2 in a special case where the relative Tomita operators are bounded.
In Sect. 4.2, we prove Theorem 1.2 in full generality.

Lemma 4.1. Under the assumptions of Theorem 1.2, for every |�〉 ∈ Hcode that is
cyclic and separating with respect to Mcode, u |�〉 is cyclic and separating with respect
to Mphys .
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Proof. Let |�〉 be defined as in Theorem 1.2. We will first show that u |�〉 is cyclic with
respect to Mphys . That is, we can act on u |�〉 with an operator in Mphys to get a state
arbitrarily close to any state in Hphys . Given any |�〉 ∈ Hphys and ε > 0, we need
to choose P ∈ Mphys such that || |�〉 − Pu |�〉 || < ε. Choose P̂ ∈ Mphys such that
||P̂u |�〉 − |�〉 || < ε

2 and P̂ �= 0. Since |�〉 is cyclic with respect to Mcode, choose

O ∈ Mcode such that ||O |�〉 − |�〉 || < ε

2||P̂ || . Let Õ ∈ Mphys be an operator that

satisfies Õu |�〉 = uO |�〉 ∀ |�〉 ∈ Hcode. Then, note that

|�〉 − P̂Õu |�〉 = |�〉 − P̂uO |�〉 = |�〉 − P̂u |�〉 − P̂u(O |�〉 − |�〉). (4.1)

By the triangle inequality,

|| |�〉 − P̂Õu |�〉 || ≤ || |�〉 − P̂u |�〉 || + ||P̂|| · ||O |�〉 − |�〉 ||. (4.2)

By choosingP = P̂Õ, we see that u |�〉 is cyclic with respect to Mphys . The same logic
shows that u |�〉 is cyclic with respect to M ′

phys and hence separating for Mphys . ��
Lemma 4.2. Under the assumptions of Theorem 1.2, for any P ∈ Mphys , u†Pu ∈
Mcode.

Proof. Choose any O′ ∈ M ′
code. For any |�〉 , |�〉 ∈ Hcode, we have that

〈�|u†PuO′|�〉 = 〈�|u†PÕ′u|�〉 = 〈�|u†Õ′Pu|�〉 = 〈Õ′ †u�|Pu|�〉
= 〈uO′ †�|Pu|�〉 = 〈�|O′u†Pu|�〉 .

(4.3)

Hence, u†Pu ∈ M ′′
code = Mcode. ��

4.1. Special case of bounded relative Tomita operator. We will first prove Theorem 1.2
in the special case where the relative Tomita operators with respect to Mcode and Mphys ,
denoted respectively by Sc�|� and S p

�|�, are bounded operators. In this special case, we
do not have to keep track of their domains. The proof of the general case is similar, but
technically more complicated.

For any O ∈ Mcode,

uSc�|�O |�〉 = uO† |�〉 = Õ†u |�〉 = S p
u�|u�Õu |�〉 = S p

u�|u�uO |�〉 , (4.4)

Hence (
uSc�|� − S p

u�|u�u
)
O |�〉 = 0. (4.5)

(
uSc�|� − S p

u�|u�u
)
is a bounded operator that annihilates a dense subspace of Hcode,

since |�〉 is cyclic with respect to Mcode. It follows from the fact that the kernel of(
uSc�|� − S p

u�|u�u
)
is closed that

uSc�|� = S p
u�|u�u. (4.6)
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Likewise, for any P ∈ Mphys ,

u†S p
u�|u�P |u�〉 = u†P†u |�〉 = Sc�|�u†P |u�〉 , (4.7)(

u†S p
u�|u� − Sc�|�u†

)
P |u�〉 = 0. (4.8)

As u |�〉 is cyclic with respect to Mphys by assumption, we have that

u†S p
u�|u� = Sc�|�u†, S p †

u�|u�u = uSc †�|�. (4.9)

Equations (4.6) and (4.9) imply that the subspace Im u is mapped to itself under S p
u�|u�

and S p †
u�|u�. Thus, the subspace Im u is mapped to itself under �

p
u�|u�. From the fact

that �p
u�|u� is self-adjoint and bounded, it follows that the subspace (Im u)⊥ is mapped

to itself under �
p
u�|u�. Equations (4.6) and (4.9) also imply that

�c
�|� = u†�p

u�|u�u. (4.10)

Note that �
p
u�|u� and �c

�|� are positive, self-adjoint, bounded operators. Thus, we
may use the spectral theorem to study them. We will apply the spectral theorem to
(�

p
u�|u�)|Im u and (�

p
u�|u�)|(Im u)⊥ separately.12 We write

(�
p
u�|u�)|Im u =

∫
R

λ d(P Im u
λ ), (�

p
u�|u�)|(Im u)⊥ =

∫
R

λ d(P(Im u)⊥
λ ). (4.11)

For a Borel set � ⊂ R, the projections P Im u
� and P(Im u)⊥

� commute with uu† because
uu† is the projection onto Im u. The spectral decomposition of �

p
u�|u� is given by

�
p
u�|u� =

∫
R

λ d(P p
λ ). (4.12)

By the uniqueness of the spectral decomposition, we have that P p
� = P Im u

� + P(Im u)⊥
� .

Thus, P p
� commutes with uu†. Let �1 and �2 be two Borel sets. Then

u†P p
�1
uu†P p

�2
u = u†P p

�1
P p

�2
u. (4.13)

One can then check that the family of projections u†P p
�u = u†P Im u

� u is a projection
valued measure on Hcode. We will now show that this is the projection valued measure
associated with �c

�|�. From Eq. (4.10), it follows that for any |�〉 ∈ Hcode, we have
that

�c
�|� |�〉 = u†�p

u�|u�u |�〉 =
∫
R

λ d(u†P p
λ u |�〉). (4.14)

12 (�
p
u�|u�

)|Im u denotes the restriction of �
p
u�|u�

to the closed subspace Im u.
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By the uniqueness of the spectral decomposition of �c
�|�, we conclude that u†P

p
�u is

the projection valued measure associated with �c
�|�. It follows that

−〈�| log(�c
�|�)|�〉 = −

∫ ∞

0
log(λ) d(〈�|u†P p

λ u|�〉)

= −
∫ ∞

0
log(λ) d(〈u�|P p

λ |u�〉) = −〈u�| log(�p
u�|u�)|u�〉 .

(4.15)

The same logic can be applied to the commutant algebras M ′
code and M ′

phys . Hence,

S�|�(Mcode) = Su�|u�(Mphys), S�|�(M ′
code) = Su�|u�(M ′

phys). (4.16)

4.2. General proof of Theorem 1.2.

Lemma 4.3. Let Sc�|� denote the relative Tomita operator defined with respect to Mcode.

Let S p
u�|u� denote the relative Tomita operator defined with respect to Mphys . Let Sc ′

�|�
and S p ′

u�|u� denote the relative Tomita operators defined with respect to M ′
code and

M ′
phys . Then uSc�|� = S p

u�|u�u and uSc ′
�|� = S p ′

u�|u�u.

Proof. D(Sc�|�) is given by all |x〉 ∈ Hcode that may be written as

|x〉 = lim
n→∞On |�〉 (4.17)

for some sequence {On} ∈ Mcode such that the limit

|y〉 := lim
n→∞O†

n |�〉 (4.18)

exists. By definition, Sc�|� |x〉 := |y〉. Given |x〉 and |y〉 defined as above, it follows that

u |x〉 = lim
n→∞ Õnu |�〉 , u |y〉 = lim

n→∞ Õ†
nu |�〉 . (4.19)

Hence, u |x〉 ∈ D(S p
u�|u�). It follows that for all |x〉 ∈ D(Sc�|�),

uSc�|� |x〉 = S p
u�|u�u |x〉 ,

which means that S p
u�|u�u is an extension of uSc�|�. To see that S

p
u�|u�u is not a proper

extension, suppose |w〉 ∈ D(S p
u�|u�u). Then u |w〉 ∈ D(S p

u�|u�), meaning that there
exists a sequence {Pn} ∈ Mphys such that

u |w〉 = lim
n→∞Pnu |�〉 , and lim

n→∞P†
n u |�〉 exists. (4.20)

We may also write |w〉 = limn→∞ u†Pnu |�〉. From Lemma 4.2, u†Pnu ∈ Mcode.
Hence, |w〉 ∈ D(Sc�|�); so we may write uSc�|� = S p

u�|u�u as an operator equality
because the operators on both sides have the same domain and act the same way on
vectors in the domain. The same logic establishes that uSc ′

�|� = S p ′
u�|u�u. ��
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Lemma 4.4. Let�p
u�|u� := S p †

u�|u�S p
u�|u� be the relative modular operator associated

with S p
u�|u�. Then,

• �
p
u�|u� maps the vector space (Im u)∩D(�

p
u�|u�) into (Im u), and (�

p
u�|u�)|(Im u)

is densely defined on (Im u).
• �

p
u�|u� maps the vector space (Im u)⊥∩D(�

p
u�|u�) into (Im u)⊥, and (�

p
u�|u�)|(Im u)⊥

is densely defined on (Im u)⊥.
Proof. Let |x〉 ∈ D(S p

u�|u�). Then there exists a sequence {Pn} ∈ Mphys such that

|x〉 = lim
n→∞Pn |u�〉 , and lim

n→∞P†
n |u�〉 exists. (4.21)

Then u† |x〉 ∈ D(Sc�|�). We may write

Sc�|�u† |x〉 = u†S p
u�|u� |x〉 . (4.22)

The fact thatu† |x〉 ∈ D(Sc�|�) andLemma4.3 together imply thatuu† |x〉 ∈ D(S p
u�|u�).

We may uniquely decompose |x〉 into the sum
|x〉 = |a〉 + |b〉 (4.23)

where |a〉 ∈ Im u and |b〉 ∈ (Im u)⊥. We know that |a〉 = uu† |x〉 ∈ D(S p
u�|u�). As

D(S p
u�|u�) is a vector space, this implies that |b〉 ∈ D(S p

u�|u�).
It follows from the above that

D(S p
u�|u�) = Im u ∩ D(S p

u�|u�) ⊕ (Im u)⊥ ∩ D(S p
u�|u�). (4.24)

From Eq. (4.22),

uu†S p
u�|u� |b〉 = 0, (4.25)

which means that S p
u�|u� maps the vector space (Im u)⊥ ∩ D(S p

u�|u�) → (Im u)⊥.
From Lemma 4.3 we may write, for all |x〉 ∈ D(S p

u�|u�),

uSc�|�u† |x〉 = S p
u�|u�uu

† |x〉 . (4.26)

It follows from uu† |x〉 = |a〉 that
uSc�|�u† |x〉 = S p

u�|u� |a〉 . (4.27)

It follows from u† |b〉 = 0 that

uSc�|�u† |a〉 = S p
u�|u� |a〉 , (4.28)

which means that S p
u�|u� maps the vector space (Im u) ∩ D(S p

u�|u�) → (Im u).

We will now show that (Im u) ∩ D(S p
u�|u�) is dense in (Im u). Given any |A〉 ∈

(Im u), choose |X〉 ∈ Hphys such that uu† |X〉 = |A〉. Next, choose a sequence {|xn〉} ∈
D(S p

u�|u�) that converges to |X〉. We then have that limn→∞ uu† |xn〉 = |A〉. Since
|xn〉 ∈ D(S p

u�|u�), we know from earlier that uu† |xn〉 ∈ D(S p
u�|u�). Hence, (Im u) ∩

D(S p
u�|u�) is dense in (Im u). The same logic shows that (Im u)⊥ ∩D(S p

u�|u�) is dense

in (Im u)⊥.
Furthermore, (S p

u�|u�)|(Im u) is a closed operator because (Im u) is a closed subspace.
We can apply all of the above logic to the commutant algebras. To summarize,
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• S p
u�|u� maps thevector space (Im u)⊥∩D(S p

u�|u�) → (Im u)⊥, and (S p
u�|u�)|(Im u)⊥

is closed and densely defined on (Im u)⊥.
• S p

u�|u� maps the vector space (Im u) ∩ D(S p
u�|u�) → (Im u), and (S p

u�|u�)|(Im u)

is closed and densely defined on (Im u).
• S p ′

u�|u� maps thevector space (Im u)⊥∩D(S p ′
u�|u�) → (Im u)⊥, and (S p ′

u�|u�)|(Im u)⊥

is closed and densely defined on (Im u)⊥.
• S p ′

u�|u� maps the vector space (Im u) ∩ D(S p ′
u�|u�) → (Im u), and (S p ′

u�|u�)|(Im u)

is closed and densely defined on (Im u).

It directly follows that the above statements also hold for the adjoints S p †
u�|u� and

S p ′ †
u�|u�. Recall that �

p
u�|u� = S p †

u�|u�S p
u�|u�. We may compute (�

p
u�|u�)|(Im u) from

(S p
u�|u�)|(Im u) and (�

p
u�|u�)|(Im u)⊥ from (S p

u�|u�)|(Im u)⊥ . In particular, (�
p
u�|u�)|(Im u)

is given by

(�
p
u�|u�)|(Im u) = (S p †

u�|u�|(Im u))(S
p
u�|u�|(Im u)) = (S p

u�|u�|(Im u))
†(S p

u�|u�|(Im u)).

(4.29)

It follows that (�
p
u�|u�)|(Im u) is densely defined and self-adjoint on (Im u). The same

logic can be applied to (�
p
u�|u�)|(Im u)⊥ . ��

Having established Lemmas 4.1–4.4, we can now prove Theorem 1.2, which shows
that entanglement wedge reconstruction implies the equivalence of bulk and boundary
relative entropies.

Theorem 1.2. Let u : Hcode → Hphys be an isometry between two Hilbert spaces.
Let Mcode and Mphys be von Neumann algebras on Hcode and Hphys respectively. Let
M ′

code and M ′
phys respectively be the commutants of Mcode and Mphys .

Suppose that

• There exists some state |�〉 ∈ Hcode such that u |�〉 ∈ Hphys is cyclic and sepa-
rating with respect to Mphys .
• ∀O ∈ Mcode ∀O′ ∈ M ′

code, ∃Õ ∈ Mphys ∃Õ′ ∈ M ′
phys such that

∀ |�〉 ∈ Hcode

{
uO |�〉 = Õu |�〉 , uO′ |�〉 = Õ′u |�〉 ,

uO† |�〉 = Õ†u |�〉 , uO′† |�〉 = Õ′†u |�〉 .

Then, for any |�〉, |�〉 ∈ Hcode with |�〉 cyclic and separating with respect to Mcode,

• u |�〉 is cyclic and separating with respect to Mphys and M ′
phys ,

• S�|�(Mcode) = Su�|u�(Mphys), S�|�(M ′
code) = Su�|u�(M ′

phys),

where S�|�(M) is the relative entropy.

Proof. �
p
u�|u� and �c

�|� are positive, densely defined, self-adjoint operators that are
generically unbounded. Thus, we may use the spectral theorem to study them. We will
apply the spectral theorem to (�

p
u�|u�)|Im u and (�

p
u�|u�)|(Im u)⊥ separately. We write

(�
p
u�|u�)|Im u =

∫
R

λ d(P Im u
λ ), (�

p
u�|u�)|(Im u)⊥ =

∫
R

λ d(P(Im u)⊥
λ ). (4.30)



Holographic Relative Entropy in Infinite-Dimensional… 1683

For a Borel set � ⊂ R, the projections P Im u
� and P(Im u)⊥

� commute with uu† because
uu† is the projection onto Im u. The spectral decomposition of �

p
u�|u� is given by

�
p
u�|u� =

∫
R

λ d(P p
λ ). (4.31)

By the uniqueness of the spectral decomposition, we have that P p
� = P Im u

� + P(Im u)⊥
� .

Thus, P p
� commutes with uu†. Let �1 and �2 be two Borel sets. Then

u†P p
�1
uu†P p

�2
u = u†P p

�1
P p

�2
u. (4.32)

One can then check that the family of projections u†P p
�u = u†P Im u

� u is a projection
valued measure on Hcode. We will now show that this is the projection valued measure
associated with �c

�|�. From Lemma 4.3 we have that

uSc�|�u† = S p
u�|u�uu

† = (S p
u�|u�)|(Im u). (4.33)

We may take the adjoint of the above equation to obtain

uSc †�|�u
† = (S p †

u�|u�)|(Im u), (4.34)

from which it follows that

u�c
�|�u† = (�

p
u�|u�)|(Im u), �c

�|� = u†�p
u�|u�u. (4.35)

For any |�〉 ∈ D(�c
�|�), we have that

�c
�|� |�〉 = u†�p

u�|u�u |�〉 =
∫
R

λ d(u†P p
λ u |�〉). (4.36)

By the uniqueness of the spectral decomposition of �c
�|�, we conclude that u†P

p
�u is

the projection valued measure associated with �c
�|�.

It follows that

−〈�| log(�c
�|�)|�〉 = −

∫ ∞

0
log(λ) d(〈�|u†P p

λ u|�〉)

= −
∫ ∞

0
log(λ) d(〈u�|P p

λ |u�〉) = −〈u�| log(�p
u�|u�)|u�〉 .

(4.37)

The same logic can be applied to the commutant algebras M ′
code and M ′

phys . Hence,

S�|�(Mcode) = Su�|u�(Mphys), S�|�(M ′
code) = Su�|u�(M ′

phys). (4.38)

��
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5. Proof of Theorem 1.1

Theorem 1.1. Let u : Hcode → Hphys be an isometry between two Hilbert spaces.
Let Mcode and Mphys be von Neumann algebras on Hcode and Hphys respectively. Let
M ′

code and M ′
phys respectively be the commutants of Mcode and Mphys . Suppose that

the set of cyclic and separating vectors with respect to Mcode is dense in Hcode. Also
suppose that if |�〉 ∈ Hcode is cyclic and separating with respect to Mcode, then u |�〉
is cyclic and separating with respect to Mphys . Then the following two statements are
equivalent:

1. Bulk reconstruction ∀O ∈ Mcode ∀O′ ∈ M ′
code, ∃Õ ∈ Mphys ∃Õ′ ∈ M ′

phys such
that

∀ |�〉 ∈ Hcode

{
uO |�〉 = Õu |�〉 , uO′ |�〉 = Õ′u |�〉 ,

uO† |�〉 = Õ†u |�〉 , uO′† |�〉 = Õ′†u |�〉 .

2. Relative entropy equals bulk relative entropy For any |�〉, |�〉 ∈ Hcode with |�〉
cyclic and separating with respect to Mcode,

S�|�(Mcode) = Su�|u�(Mphys), and S�|�(M ′
code) = Su�|u�(M ′

phys),

where S�|�(M) is the relative entropy.

Proof. Given the proof of Theorem 1.2, we only need to show that statement 2 implies
statement 1. Let |�〉 ∈ Hcode be cyclic and separating with respect to Mcode, and let
U ∈ Mcode and U ′ ∈ M ′

code be unitary operators. We can easily see that

0 = S�|U ′�(Mcode) = Su�|uU ′�(Mphys). (5.1)

Due to Theorem 2.26, this implies that

�
p
u�|uU ′� |u�〉 = |u�〉 , (5.2)

where �
p
u�|uU ′� = S p †

u�|uU ′�S p
u�|uU ′� and S p

u�|uU ′� is the relative modular operator
defined with respect to Mphys . It follows that for any P ∈ Mphys ,

〈uU ′�|PuU ′�〉 = 〈S p
u�|uU ′�u�|S p

u�|uU ′�P†u�〉
= 〈P†u�|S p †

u�|uU ′�S p
u�|uU ′�u�〉 = 〈u�|P|u�〉 . (5.3)

This implies that

〈�|U ′ †u†PuU ′ − u†Pu|�〉 = 0. (5.4)

We now use the assumption that cyclic and separating vectors with respect to Mcode are
dense inHcode. For any |�〉 ∈ Hcode, choose a sequence {|�n〉} ∈ Hcode such that each
|�n〉 is cyclic and separating with respect to Mcode, and |�〉 = limn→∞ |�n〉. Then,

〈�|U ′ †u†PuU ′ − u†Pu|�〉 = lim
n→∞ 〈�n|U ′ †u†PuU ′ − u†Pu|�n〉 = 0. (5.5)

Hence, this implies that the operators that are measured in the limit itself is zero, i.e.
U ′ †u†PuU ′ − u†Pu = 0. This then gives the following identity involving the isometry
u, an arbitrary operator P ∈ Mphys , and a unitary operator U ′ ∈ M ′

code:

u†PuU ′ = U ′u†Pu. (5.6)
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The same logic can be applied to the commutant algebras; thus, for any P ′ ∈ M ′
phys ,

U ∈ Mcode with U unitary, we have a similar relation:

u†P ′uU = Uu†P ′u. (5.7)

Another consequence of Eq. (5.3) is that for any P1,P2 ∈ Mphys , we have that

〈P1uU
′�|P2uU

′�〉 = 〈P1u�|P2u�〉 . (5.8)

Naturally, we define a linear map X ′�U ′ : Hphys → Hphys . We define X ′�U ′
by

X ′�U ′Pu |�〉 := PuU ′ |�〉 ∀P ∈ Mphys . (5.9)

Then we see that X ′�U ′
is densely defined. From Eq. (5.8), we see that X ′�U ′

preserves
the norm of all vectors in its domain. Hence, X ′�U ′

may be uniquely extended to a
bounded operator, which is unitary. By definition, X ′�U ′

commutes with all operators
in Mphys ; hence, we deduce that X ′�U ′ ∈ M ′

phys . (The superscripts on X ′�U ′
remind

us that it depends on the choice of |�〉 andU ′ and that it is in the commutant of Mphys .)
Next, we use Eqs. (5.7) and (5.9) with P ′ = X ′�U ′

. We find that

u†X ′�U ′
uU |�〉 = Uu†X ′�U ′

u |�〉 = Uu†uU ′ |�〉 = UU ′ |�〉 = U ′U |�〉 .

(5.10)

The first equality follows fromEq. (5.7), the second equality follows from (5.9), the third
equality follows from the fact that u†u is the identity on Hcode, and the last equality
follows because U ∈ Mcode and U ′ ∈ M ′

code. Recall that U is an arbitrary unitary
operator in Mcode. We now need Theorem 2.14, which states that any operator in Mcode
may be written as a linear combination of four unitary operators in Mcode [23]. The
above equation implies that for any O ∈ Mcode, we have that

(u†X ′�U ′
u −U ′)O |�〉 = 0. (5.11)

Note that (u†X ′�U ′
u − U ′) is a bounded operator, so its kernel is closed. Recall that

|�〉 is cyclic with respect to Mcode. Since any vector in the Hilbert space may be writ-
ten as limn→∞ On |�〉 for some sequence of operators {On} ∈ Mcode, it follows that
(u†X ′�U ′

u −U ′) annihilates every vector inHcode. In other words,

u†X ′�U ′
u = U ′. (5.12)

Choose an arbitrary |�〉 ∈ Hcode with 〈�|�〉 = 1. We may uniquely write X ′�U ′
u |�〉

as

X ′�U ′
u |�〉 = |a〉 + |b〉 , (5.13)

where |a〉 ∈ Im u, and |b〉 ∈ (Im u)⊥. Note that X ′�U ′
is unitary; hence, we can

decompose as

〈u�|X ′�U ′ †X ′�U ′ |u�〉 = 1 = 〈a|a〉 + 〈b|b〉 . (5.14)

Next, note that

u† |a〉 = u†(|a〉 + |b〉) = u†X ′�U ′
u |�〉 = U ′ |�〉 . (5.15)
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Hence,

〈a|a〉 = 〈u†a|u†a〉 = 〈U ′�|U ′�〉 = 1. (5.16)

This implies that 〈b|b〉 = 0; hence |b〉 = 0. Hence, X ′�U ′
maps the vector space Im u

to itself. We may then use Eq. (5.12) to find that

X ′�U ′
u = uu†X ′�U ′

u = uU ′. (5.17)

Next,we define a linearmap X ′ (U ′�) (U ′ †) : Hphys → Hphys .We define X ′ (U ′�) (U ′ †)

by

X ′ (U ′�) (U ′ †)PuU ′ |�〉 := Pu |�〉 ∀P ∈ Mphys . (5.18)

It is easy to see thatU ′ |�〉 is cyclic and separating with respect to Mcode given that |�〉
is cyclic and separating with respect to Mcode and that U ′ ∈ M ′

code is unitary. It follows

that X ′ (U ′�) (U ′ †) is densely defined and uniquely extends to a bounded operator, which
is unitary. Since Eq. (5.17) is true for any |�〉 ∈ Hcode that is cyclic and separating with
respect to Mcode and any unitary U ′ ∈ M ′

code,

X ′ (U ′�) (U ′ †)u = uU ′ †. (5.19)

This relation can be used to see that for any P ∈ Mphys ,

X ′ (U ′�) (U ′ †)X ′�U ′Pu |�〉 = Pu |�〉 . (5.20)

Thus, we deduce that the two operators we defined are adjoints of each other:

(X ′�U ′
)† = X ′ (U ′�) (U ′ †). (5.21)

We have thus shown that for every unitary operator U ′ ∈ M ′
code, there exists a unitary

operator X ′ ∈ M ′
phys such that

X ′u = uU ′, and X ′ †u = uU ′†. (5.22)

The same logic applies to show that for every unitary operator U ∈ Mcode, there exists
a unitary operator X ∈ Mphys such that

Xu = uU, and X†u = uU †. (5.23)

We conclude the proof by noting that any operator in a von Neumann algebra M may
be written as a linear combination of four unitary operators in M (Theorem 2.14). ��

Our proof provides an explicit formula for reconstructing an operator in Mcode as an
operator in Mphys . Given O ∈ Mcode, we define the operator Õ ∈ Mphys by

ÕP ′u |�〉 := P ′uO |�〉 ∀P ′ ∈ M ′
phys, (5.24)

where |�〉 ∈ Hcode is a fiducial state that is cyclic and separating with respect to Mcode
and M ′

code. This formula follows from writingO as a linear combination of four unitary
operators in Mcode and using Eq. (5.9) on each unitary operator. The arguments in our
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proof then establish that Õu = uO. Note that Õ does not depend on the choice of the
fiducial state |�〉. To see this, we define Õ� ∈ Mphys by

Õ�P ′u |��〉 := P ′uO |��〉 ∀P ′ ∈ M ′
phys, (5.25)

where |��〉 ∈ Hcode is a different fiducial state. Since Õu |��〉 = uO |��〉, it follows
that

ÕP ′u |��〉 = P ′Õu |��〉 = P ′uO |��〉 = Õ�P ′u |��〉 ∀P ′ ∈ M ′
phys . (5.26)

Hence, Õ and Õ� are equal because they are both bounded operators that act the same
way on a dense subspace of Hphys .

6. Discussion

In this section, we discuss the physical implications of Theorem 1.1. In particular, we
explain in physical settings the validity of the technical assumptions of the theorem. In
Sect. 6.1, we motivate our use of von Neumann algebras by explaining how they arise in
quantum field theory, with an approach inspired by [15]. In Sect. 6.2, we summarize rea-
sons why Theorem 1.1 is only approximately applicable to quantum gravity. In Sect. 6.3,
we summarize the Reeh–Schlieder theorem. In Sect. 6.4, we use the Reeh–Schlieder the-
orem to physically motivate the assumptions of Theorem 1.1. In Sect. 6.5, we compare
Theorem 1.1 with previous work on finite-dimensional error correction [13].

6.1. Von Neumann algebras in quantum field theory. Quantum field theories are char-
acterized by algebras of operators acting on a Hilbert space H. For every open region
in spacetime, there is an associated algebra [15]. We will assume that there is a unique
ground state |�〉 ∈ H. The closure of the set of states obtained by acting on |�〉 with all
operators in the algebra associated with the entire spacetime is defined to be the vacuum
superselection sector, H0. By definition, each superselection sector of the theory is an
invariant subspace of this algebra.

Theories with lagrangian descriptions have a notion of an elementary field. Given
an open region of spacetime U , we can define an associated operator algebra A(U)

by smearing the elementary fields with functions supported only in U .13 The operator
algebra A(U) generically contains unbounded operators. Given A(U), we may obtain
a von Neumann algebra M(U), which only consists of bounded operators, as follows
[15]. For every unbounded operator (which we assume to be closed) in A(U), we may
perform a polar decomposition to obtain a partial isometry and a self-adjoint positive
operator,which is canonically associatedwith a set of projections by the spectral theorem.
The von Neumann algebra M(U) is generated by the set of all spectral projections and
partial isometries associated with the operators inA(U).14 We assume that the operators

13 Assuming that the time-slice axiom [15] holds, A(U) should really be associated with the domain of
dependence of U , as operators in the domain of dependence are related to operators in U via an equation of
motion. Note that the time-slice axiom does not hold for generalized free fields [28], which we consider in
Sect. 6.2.
14 If a subalgebra S of bounded operators contains the identity and is closed under hermitian conjugation,

then its double commutant, S′′, is the von Neumann algebra generated by S. Von Neumann algebras are
naturally associated with causally complete subregions [14,23].



1688 M. Jinwoo, D. K. Kolchmeyer

in A(U) may be approximated by operators in M(U). As shown in [14], the Reeh–
Schlieder theorem implies that states with bounded energy-momentum are cyclic with
respect toA(U) for any open subregion of spacetime U . We assume that this is also true
for M(U).

6.2. Approximate entanglement wedge reconstruction. Throughout the paper, we have
used von Neumann algebras to denote subregions in the bulk and the boundary. In
AdS/CFT, the boundary theory is a quantum field theory, so the discussion in Sect. 6.1
directly applies. However, the bulk theory is a theory of quantum gravity (string theory).
For states with a semi-classical bulk dual, the bulk theory may be effectively described
using quantum field theory on an asymptotically AdS background that might contain
black holes. The applicability of quantum field theory motivates us to use von Neumann
algebras to describe operators associated with covariantly defined subregions in the bulk,
like the entanglement wedge of a boundary subregion.15 Since entanglement wedges are
causally complete, they naturally have an associated von Neumann algebra.

Since the long-distance bulk physics is only approximately described by quantum
field theory, we need a generalization of Theorem 1.1 that relates the approximate bulk
reconstruction to the approximate equivalence of relative entropies between the boundary
and the bulk [31–33]. We want to note that our formulation of bulk reconstruction in
Theorem 1.1 is exact in the sense that correlation functions of operators in Mcode exactly
equal correlation functions computed on the boundary with the corresponding operators
in Mphys .

To be more precise, Theorem 1.1 is only valid for certain choices of the code sub-
space. If the code subspace consists of states with semi-classically distinct geometries,
it is not clear how von Neumann algebras can be associated with subregions in a state
independent way. For Theorem 1.1 to be relevant, we could choose Hcode to be a sub-
space describing long wavelength modes in quantum field theory on a fixed background
and the entanglement wedge to be the classical minimal area surface corresponding to
a boundary subregion. To order G0

N , the bulk dual of entanglement entropy is given
by the bulk entanglement entropy of the entanglement wedge plus a local integral on
the minimal area surface [34]. This was used to relate the bulk and boundary modular
hamiltonians [10]. Since the bulk and boundary modular hamiltonians only differ by
operators localized on the minimal surface, the bulk and boundary relative entropies
are equivalent up to O(GN ) corrections [10]. The bulk dual of relative entropy beyond
order G0

N involves bulk modular hamiltonians evaluated with respect to different bulk
surfaces [31].16 Since the formula for the bulk dual of relative entropy in Theorem 1.1
is only valid to order G0

N , the two main statements in Theorem 1.1 can only be true
in quantum gravity in an approximate sense. Theorem 4 of [35] proves that in the case
of finite-dimensional von Neumann algebras, the approximate equivalence of bulk and
boundary relative entropies implies approximate bulk reconstruction. Furthermore, [32]
proves that entanglement wedge reconstruction can be exact to all orders in perturbation
theory, under the assumptions that the code subspace is at most polynomially large in

15 Associating a set of operators with a subregion in the bulk is highly nontrivial due to nonlocal effects in
the bulk [29]. This is addressed in [30], which studies information measures for sets of operators that are not
closed under multiplication. We do not consider this subtlety in our analysis.
16 It will be interesting to generalize equation (5.4) in [31] to an expression that uses infinite-dimensional

von Neumann algebras.
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G−1
N and the difference of bulk and boundary relative entropies is nonperturbatively

small (the latter assumption is a result of [31]).17

It is possible for both statements in Theorem 1.1 to be exactly true in the limit
GN → 0. In this case, the AdS/CFT duality relates a (d +1)-dimensional quantum field
theory in AdS and a d-dimensional generalized free field theory, for which all connected
n-point correlation functions vanish when n ≥ 3.18 Wemay setHcode = Hphys because
every state in the boundary theory has a geometric dual. The case where the bulk theory
is a free scalar is studied in [28]. The authors of [28] work in Poincaré coordinates,
which has d-dimensional Minkowski space as its conformal boundary. They argue that
in the boundary generalized free field theory, the algebra associated with the domain of
dependence of any ball-shaped region in a spatial slice of Minkowski space is equal to
the algebra associated with the causal wedge in the bulk.19 This statement is expressed in
equation (5.7) of [28]. This implies that Mcode and Mphys are isomorphic, i.e. Mcode =
Mphys , which means that the bulk and boundary relative entropies are equal.

6.3. The Reeh–Schlieder theorem. In the previous subsection, we explained howwe use
vonNeumann algebras to approximately characterize bulk physics. Beforewe physically
motivate the assumption in Theorem 1.1 that the set of cyclic and separating vectors with
respect to Mcode is dense in Hcode, we outline the conclusions of the Reeh–Schlieder
theorem. Our discussion of the Reeh–Schlieder theorem follows the spirit of [14].

For the purposes of presenting the Reeh–Schlieder theorem, we restrict ourselves
to quantum field theory in d-dimensional Minkowski space. Let Pμ be the energy-
momentum operator. Each component of Pμ is a self-adjoint operator with its own set
of spectral projections. Let S� be the subset of momentum space defined by

S� = {pμ : |pμ| < � ∀μ ∈ {0, 1, . . . , d − 1}}
for some cutoff energy�. Using the spectral projections of each Pμ, we may construct a
projection operator�S� that projects onto the subspace of stateswith energy-momentum
in S�. As Pμ is defined by smearing the local operator T 0μ (where Tμν is the stress
tensor) over an entire spatial slice,20 �S� leaves each superselection sector invariant.
Furthermore, for every |�〉 ∈ H,

lim
�→∞ �S� |�〉 = |�〉 .

Thus, the set of states of bounded energy-momentum in a given superselection sector is
dense in that superselection sector.

TheReeh–Schlieder theoremmaybe applied to states of bounded energy-momentum.
Let |�〉 denote such a state. Let� denote a spatial slice. Given an open proper subregion
V ⊂ �, let UV be a small neighborhood in spacetime containing V . The Reeh–Schlieder
theorem tells us that the closure of the set of states obtained by acting on |�〉 with

17 In certain contexts, the entanglement wedge reconstruction proposal must be nonperturbatively approx-
imate (see [32,33]). The approximate reconstruction with nonperturbative gravity corrections is rigorously
formulated and analyzed in [36], that further expands the scope of our algebraic framework.
18 The fact that all correlation functionsmay be expressed in terms of two-point functions arises from large-N

factorization in the boundary CFT.
19 This statement is also true for conformal transformations of such regions. For these boundary regions,

the causal wedge is the same as the entanglement wedge [37].
20 Technically, a spatial slice is not an open subregion of spacetime.
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operators in the algebra A(UV ) is equal to the closure of the set of states obtained by
acting on |�〉 with all local operators, which is the superselection sector of |�〉.

Let us restrict our attention to a single superselection sector. Then |�〉 is cyclic with
respect to A(UV ) and M(UV ). Since V is a proper subregion of �, the Reeh–Schlieder
theorem may also be applied to the subregion UV ′ , where V ′ is the complement of the
closure of V in �. The result is that |�〉 is also separating with respect to M(UV ) [14].
Thus, in quantum field theory in Minkowski space restricted to a single superselection
sector, the fact that the set of states of bounded energy-momentum is dense implies that
the set of cyclic and separating vectors with respect to M(UV ) is dense.

6.4. Physical motivation for the assumptions of Theorem 1.1. We now use the Reeh–
Schlieder theorem to understand the assumptions in Theorem 1.1 in a physical context.
Without loss of generality, we assume that the bulk-to-boundary isometry u in The-
orem 1.1 maps Hcode into a single superselection sector of Hphys . That is, the code
subspace lies within a single superselection sector. If this is not the case, then we can
decomposeHcode into orthogonal subspaces that each are mapped into different super-
selection sectors of the boundary theory, and we can study Theorem 1.1 separately for
each orthogonal subspace.

In Theorem 1.1, we assume that the set of cyclic and separating vectors with respect to
Mcode is dense inHcode. If the bulk theorywas quantumfield theory inMinkowski space,
then the discussion in Sect. 6.3 directly applies. However, the discussion in Sect. 6.3
does not directly imply this because the bulk theory is only approximately described by
quantum field theory and the background spacetime is asymptotically AdS. In [38], a
version of the Reeh–Schlieder theorem is proved for free scalar fields in global AdS. The
theorem is valid for the vacuum state of the field quantized in global AdS, the vacuum
state of the field quantized in any causal wedge, and finite-energy excitations of these
vacua. If we choose to ignore the gravitational backreaction in the bulk and treat the
bulk theory as a local QFT, then the Reeh–Schlieder theorem [20] applied to the bulk
implies that the set of cyclic and separating vectors with respect to Mcode, where Mcode
is associated with an entanglement wedge, is dense in the bulk vacuum superselection
sector H0.21 This is because the Reeh–Schlieder theorem guarantees the existence of
a single cyclic and separating vector (namely the vacuum), which in turn implies the
existence of a dense set of cyclic and separating vectors. In particular, note that [39,40]
proves that the set G(Mcode), defined as

G(Mcode) :=
{
O ∈ Mcode : O−1 ∈ Mcode

}
, (6.1)

obeys the property that G(Mcode) |�〉 is dense inHcode, where |�〉 is the vacuum state.
Furthermore, if O ∈ G(Mcode), then it is straightforward to show that O |�〉 is cyclic
and separating with respect to Mcode. Hence, the assumption that the set of cyclic and
separating vectors with respect to Mcode is dense in Hcode follows from the Reeh–
Schlieder theorem.

In a generic local quantum field theory, the von Neumann algebra of a type III1
factor22 is associated with a causal subregion of the spacetime. When Mcode and M ′

code
are type III1 factors, the assumption of Theorem 1.1 that cyclic and separating states
with respect to Mcode are dense inHcode also follows from a result of Connes–Størmer,
which is presented below.

21 IfH0 is a proper subset ofHcode , we should redefine Hcode to beH0 for Theorem 1.1 to apply.
22 The definition of a type III1 factor is given in [41].
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Theorem 6.1. (Connes–Størmer [21]) A factor M is of type III1 if and only if the action
of its unitary group on its state space by inner automorphisms is topologically transitive
in the norm topology.

Let us elaborate on the special case of type III1 factors. Let |�〉 be a cyclic and separating
vector with respect to M . The above theorem implies that the set of vectors that can be
written as UU ′ |�〉, where U ∈ M and U ′ ∈ M ′ are both unitary operators, is dense
in H. Given that |�〉 is cyclic and separating with respect to M , UU ′ |�〉 is also cyclic
and separating. The existence of one cyclic and separating vector |�〉 in Theorem 1.1
guarantees, for a factor of type III1, that the set of cyclic and separating vectors with
respect to Mcode is dense inHcode.

It would be interesting to investigate the plausibility of the assumption that the set of
cyclic and separating states with respect to Mcode is dense inHcode whenHcode contains
black hole microstates. For a sufficiently large boundary subregion, the entanglement
wedge of Mcode will contain the black hole, and the operators in Mcode correspond to
local operators associated with the field degrees of freedom outside of the black hole
as well as operators that act on the black hole microstates, whose description involves
quantum gravity at the Planck scale. In quantum field theory, it is possible to generate the
whole Hilbert space by acting on the vacuumwith operators in a small subregion because
the vacuum is highly entangled. It would be interesting to understand how the presence
of a black hole changes the structure of spacetime entanglement outside the horizon.
Holographic tensor network models suggest that entanglement wedge reconstruction is
possible in the presence of a black hole [42]; operators outside the black hole can in
fact be “pushed through” the black hole tensor [32]. However, tensor network models of
holography involve finite dimensional Hilbert spaces and thus cannot capture the pattern
of entanglement that makes the Reeh–Schlieder theorem work.

Finally, we address the assumption in Theorem 1.1 that for all states |�〉 ∈ Hcode
that are cyclic and separating with respect to Mcode, u |�〉 is cyclic and separating with
respect to Mphys . In [38], the Reeh–Schlieder theorem holds for the vacuum of global
AdS, implying that the vacuum is cyclic and separating with respect to the local operator
algebra associated with a bulk subregion. The image of the bulk vacuum state under the
bulk-to-boundary isometry is the boundary vacuum state, which is cyclic and separat-
ing with respect to the local operator algebras associated with boundary subregions.
Likewise, finite-energy excited states in the bulk map to states in the boundary CFT
of bounded energy-momentum, which are also cyclic and separating. This supports the
assumption of Theorem 1.1 that the cyclic and separating states with respect to Mcode
map to the cyclic and separating states with respect to Mphys .

6.5. Finite-dimensional quantum error correction. In this section, we explain Theo-
rem1.1 in the context of previouswork onfinite-dimensional error correction [12,13,43].
First, we interpret the assumption that cyclic and separating vectorswith respect toMcode
map to cyclic and separating vectors with respect to Mphys in the case that Hcode and
Hphys are finite dimensional. As discussed in [13], a finite dimensional Mcode induces
a decomposition of the code subspace,

Hcode = ⊕αHaα ⊗ Hāα , (6.2)
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such that any O ∈ Mcode may be written in block-diagonal form:

O =
⎛
⎜⎝
Oa1 ⊗ Iā1 0 · · ·

0 Oa2 ⊗ Iā2 · · ·
...

...
. . .

⎞
⎟⎠ . (6.3)

In the setup of [13], Hphys may be written in the factorized form Hphys = HA ⊗ H Ā
where each factor corresponds to a boundary subregion and its complement. Let Mphys
induce the factorizationHphys = HA ⊗H Ā such that operators in Mphys act trivially on
H Ā. As [13] points out, subalgebra codes with complementary recovery are especially
relevant for AdS/CFT as they display a Ryu–Takayanagi formula with a nontrivial area
operator. For such codes, an orthonormal basis of Haα ⊗ Hāα may be written as

u |α, i j〉code = UAUĀ

(
|α, i〉Aα

1
|α, j〉 Āα

1
|χα〉Aα

2 Ā
α
2

)
, (6.4)

for a decomposition of HA given by

HA = ⊕α(HAα
1

⊗ HAα
2
) ⊕ HA3 , (6.5)

and similarly for H Ā. Also,

dimHAα
1

= dimHaα and dimH Āα
1

= dimHāα .

For each α, i and j are indices that denote basis vectors in Haα and Hāα respectively.
We have explicitly included u, the isometry from the code subspace to the physical
Hilbert space. UA,UĀ are unitary matrices that act on HA,H Ā, and |χ〉Aα

2 Ā
α
2
is a state

that depends on the specific code under consideration. It is important that in the state
|χ〉Aα

2 Ā
α
2
, subsystems Aα

2 and Āα
2 are entangled. If |χ〉Aα

2 Ā
α
2
were a factorized state for

everyα, then itwould not be possible to express |α, i j〉code as in (6.4) for arbitrary choices
of the factorizationHphys = HA⊗H Ā. That is, the codewould not be useful for studying
bulk reconstruction for arbitrary choices of boundary subregions. Furthermore, equation
(5.26) of [13] would imply that the area operator vanishes.

We now discuss the implications of Theorem 1.1 for the state |χα〉Aα
2 Ā

α
2
. Let us

assume that dimHA = dimH Ā and that for every α, dimHaα = dimHāα . Otherwise,
there do not exist any cyclic and separating vectors with respect to Mcode or Mphys .
A vector in Hphys is cyclic and separating with respect to Mphys if and only if it has
maximal Schmidt number with respect to Hphys = HA ⊗ H Ā. The assumption that
cyclic and separating vectors with respect to Mcode map to cyclic and separating vectors
with respect to Mphys implies that |χ〉Aα

2 Ā
α
2
must have maximal Schmidt number with

respect to the factorizationHAα
2
⊗H Āα

2
and that dimHAα

2
= dimH Āα

2
. To see why, note

that a cyclic and separating vector |�〉 ∈ Hcode with respect to Mcode may be written as

|�〉 =
∑
α,i, j

cα
i j |α, i j〉code , (6.6)

where cα
i j is a full-rank square matrix for each α. Using Eq. (6.4) to map |�〉 to

u |�〉 ∈ Hphys , we see that if |χα̂〉Aα̂
2 Ā

α̂
2
does not have maximal Schmidt number for

some α̂, then we can annihilate u |�〉 with an operator that, up to conjugation by UA,
acts as the identity on H Ā, annihilates HA3 , annihilates HAα

1
⊗ HAα

2
for α �= α̂, and

acts nontrivially on HAα
1

⊗ HAα
2
. This implies that u |�〉 is not separating with respect
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to Mphys , which contradicts the assumption. Another consequence of the assumption is
thatHA3 andH Ā3

must be trivial. Previous work on finite-dimensional error correction
[13,43] has highlighted the crucial role of entanglement in bulk reconstruction. We have
shown that the Reeh–Schlieder theorem suggests that cyclic and separating vectors with
respect to Mcode are mapped via the bulk-to-boundary isometry to vectors that are cyclic
and separating with respect to Mphys . In the context of finite-dimensional subalgebra
codes, this implies that the area term in the Ryu–Takayangi formula cannot vanish.

Our proof of entanglement wedge reconstruction in Theorem 1.1 is constructive.
Given a bulk operator O ∈ Mcode, Eq. (5.24) provides an explicit formula for a bound-
ary operator Õ ∈ Mphys . In order to understand our formula in the finite dimensional
case, we use the decomposition HA = ⊕α(HAα

1
⊗ HAα

2
) (and similarly for H Ā) and

let |�〉 (defined in Eq. (6.6)) be our fiducial state. The action of O ∈ Mcode on a code
subspace basis vector is

O |�〉 =
∑

α,i,î, j

cα
i j 〈î |Oaα |i〉 |α, î j〉code , (6.7)

where Oaα is defined in Eq. (6.3). By Eq. (6.4) we then have that

u |�〉 =
∑
α,i, j

cα
i jUAUĀ

(
|α, i〉Aα

1
|α, j〉 Āα

1
|χα〉Aα

2 Ā
α
2

)
, (6.8)

uO |�〉 =
∑

α,i,î, j

cα
i j 〈î |Oaα |i〉UAUĀ

(
|α, î〉Aα

1
|α, j〉 Āα

1
|χα〉Aα

2 Ā
α
2

)
. (6.9)

Equation (5.24) then defines Õ ∈ Mphys by

Õ P ′UAUĀ

∑
α,i, j

cα
i j

(
|α, i〉Aα

1
|α, j〉 Āα

1
|χα〉Aα

2 Ā
α
2

)

:=
∑

α,i,î, j

cα
i j 〈î |Oaα |i〉P ′UAUĀ

(
|α, î〉Aα

1
|α, j〉 Āα

1
|χα〉Aα

2 Ā
α
2

)
, (6.10)

where P ′ ∈ Mphys can be any operator that acts as the identity on HA. With a suitable
choice of P ′, we may show that for any α, i, j ,

Õ UAUĀ

(
|α, i〉Aα

1
|α, j〉 Āα

1
|χα〉Aα

2 Ā
α
2

)

= UAUĀ

⎛
⎝∑

î

〈î |Oaα |i〉 |α, î〉Aα
1
|α, j〉 Āα

1
|χα〉Aα

2 Ā
α
2

⎞
⎠ . (6.11)

Thus, Theorem 1.1 along with the reconstruction formula in Eq. (5.24) is an appropri-
ate infinite-dimensional generalization of the finite-dimensional subalgebra codes with
complementary recovery studied in [13].

6.6. Outlook for holographic relative entropy. The entanglement wedge reconstruction
proposal is an example of bulk reconstruction. It asserts that for holographic theories,
local operators in the entanglement wedge of a boundary subregion A can be written
in terms of CFT operators localized on A [10,12,42,44]. Assuming that the operators
in Mcode and M ′

code in Theorem 1.1 lie respectively in an entanglement wedge and
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its complement, Theorem 1.1 establishes entanglement wedge reconstruction from the
equivalence of bulk and boundary relative entropies and vice versa. Thus, it has been
suggested that the entanglement wedge is “dual” to its corresponding boundary subre-
gion [10]. Another interesting result of [10] is that bulk modular flow is dual to boundary
modular flow, which we have captured in Eq. (4.35). The bulk and boundary modular
operators act on the code subspace in the same way.

Quantum error correction in finite dimensional Hilbert spaces has been crucially
used to argue for the entanglement wedge reconstruction proposal [12,13]. WhenHcode
and Hphys are finite-dimensional, Theorem 1.1 has parallels to Theorem 1.1 of [13].
In Theorem 1.1, we assume that cyclic and separating vectors with respect to Mcode
are dense in Hcode, which is essentially a bulk version of the Reeh–Schlieder Theo-
rem [38]. We also assume that cyclic and separating states with respect to Mcode map
to cyclic and separating states with respect to Mphys , the algebra corresponding to a
boundary subregion. These assumptions guarantee that the subalgebra codes studied in
[13] have a nonzero area operator [13]. Defines relative entropy in the boundary theory
as S(ρ, σ ) = Tr ρ(log ρ − log σ). The definition of relative entropy we use in the bulk
and boundary is appropriate for infinite-dimensional Hilbert spaces and reduces to the
aforementioned formula in the finite-dimensional case [16]. Thus, we have shown that
the relative entropy formula in [16] naturally describes the holographic relative entropy
in quantum field theory to order G0

N .
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