Commun. Math. Phys. 399, 1291-1372 (2023) Communications in
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-022-04623-3 Math ematical

Physics
®

Check for
updates

The Green Tensor of the Nonstationary Stokes System
in the Half Space

Kyungkeun Kang', Baishun Lai’, Chen-Chih Lai**, Tai-Peng Tsai’

1 Department of Mathematics, Yonsei University, Seoul 120-749, South Korea.

2 LcsM (MOE) and School of Mathematics and Statistics, Hunan Normal University, Changsha 410081,
Hunan, China. E-mail: laibaishun @hunnu.edu.cn

3 Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada.

4 Present address: Department of Mathematics, Columbia University, New York, NY 10027, USA.

Received: 7 February 2022 / Accepted: 14 November 2022
Published online: 23 January 2023 — © The Author(s), under exclusive licence to Springer-Verlag GmbH
Germany, part of Springer Nature 2023

Abstract: We prove the first ever pointwise estimates of the (unrestricted) Green tensor
and the associated pressure tensor of the nonstationary Stokes system in the half-space,
for every space dimension greater than one. The force field is not necessarily assumed
to be solenoidal. The key is to find a suitable Green tensor formula which maximizes
the tangential decay, showing in particular the integrability of Green tensor derivatives.
With its pointwise estimates, we show the symmetry of the Green tensor, which in turn
improves pointwise estimates. We also study how the solutions converge to the initial
data, and the (infinitely many) restricted Green tensors acting on solenoidal vector fields.
As applications, we give new proofs of existence of mild solutions of the Navier—Stokes
equations in L7, pointwise decay, and uniformly local L7 spaces in the half-space.
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1. Introduction

This paper considers the Green tensor of the nonstationary Stokes system in the half
space. A major goal is to derive its pointwise estimates. Denote x = (x1, ..., X,—1, Xp) =
(«', xp) and x* = (x’, —x,) for x € R", n > 2, and the half space R = {(x', x,,) €
R" | x, > 0} with boundary ¥ = 0R.

1.1. Background. The nonstationary Stokes system in the half-space R}, n > 2, reads

ur—Au+Vm = f ] .
divi — 0 } in R} x (0, 00), (1.1)
with initial and boundary conditions
u(,0) =ugp; ux’,0,t)=0 on T x (0, c0). (1.2)
Here u = (uy, ..., u,) is the velocity, 7 is the pressure, and f = (f1,..., fu) is the

external force. They are defined for (x, t) € R x (0, 00). The Green tensor G;j(x, y, t)
and its associated pressure tensor g;j(x, y, t) are defined for (x, y,t) € R} x R} x R
and 1 < i, j < n so that, for suitable f and ug, the solution of (1.1) is given by

n
wie.n) =3 [ Gty om0 ) dy
j=1 /R

n t
+Z/O /R" Gij(x,y, t —=s)fj(y,s)dyds. (1.3)
j=1 +

Another way to write a solution of (1.1) uses the Stokes semigroup e ™', where A =
—PA is the Stokes operator, and P is the Helmholtz projection (see Remark 3.4)

t
u(t) = e "APug + f e~ TOAP £ (s5) ds. (1.4)
0

We may regard the Green tensor G;; as the kernel of e 'AP. In using (1.3) and (1.4), we
already exclude weird solutions of (1.1) that are unbounded at spatial infinity, and can
talk about “the” unique solution in suitable classes. For applications to Navier—Stokes
equations,

Uy — Au+Ve = —u-Vu, divu =0, in R} x (0, 00), (NS)

with zero boundary condition, a solution of (NS) is called a mild solution if it satisfies
(1.3) or (1.4) with f = —u - Vu and suitable estimates.
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The Stokes semigroup e A and the Helmholtz projection P are only defined in

suitable functional spaces. When defined, the image of P is solenoidal. A vector field
u=(uy,...,u,) in RY is called solenoidal if

divu =0, u,|ly =0. (1.5)

An equivalent condition for u € LllOC R?) is

/ u-Vedx =0, Vo e CORE). (1.6)
RY

For applications to Navier—Stokes equations, although we may assume u is solenoidal,
we do not have div f = 0 for f = —u - Vu. Hence we cannot omit P in the integral of
(1.4).

The initial condition u (-, 0) = ug in (1.2) is understood by the weak limit

lirg (), w) = (uo, w), Yw € C (R}), 1.7
1—04

,0

where C23 (R}) = {w € C°(RY; R") : divw = 0}. A strong limit is unavailable unless
we further assume u is solenoidal, see Theorem 1.3. This agrees with the expectation

that

lim e "APug = Puy.

t—04

There are many results for (1.1) in Lebesgue and Sobolev spaces because the Stokes
semigroup and the Helmholtz projection are bounded in L9 (R}), 1 < ¢ < oo. Solon-
nikov [46] expressed the solution u in terms of Oseen and Golovkin tensors (see Sect.
2) and proved estimates of u;, V>u, Vp in L? in R}r x R, extending the 2D work by
Golovkin [13]. Ukai [52] derived an explicit solution formula to (1.1) when f = 0in R,
expressed in terms of Riesz operators and the solution operators for the heat and Laplace
equations in RY. It is simpler and different from that of [46] and gives estimates in L4
spaces trivially. Cannone—Planchon—Schonbek [3] extended [52] for nonzero f using
pseudo-differential operators. Estimates in borderline L' and L> spaces are studied by
Desch, Hieber, and Priiss [7]. Koch and Solonnikov [30] derived gradient estimates of u
in LZ,, for ¢ > 1 when f is a divergence of some tensor field. These results are applied
to the study of (NS) in Lebesgue spaces.

The pointwise behavior of the solutions of (NS) is less studied, as the Helmholtz
projection is not bounded in L, and there have been no pointwise estimates for G;;
except for two special cases to be explained below. To circumvent this difficulty, many
researchers expand explicitly

e_tAPak (uru)

to sums of estimable terms for the study of (NS). See also the literature review for mild
solutions later, in particular (1.25). The drawback of this approach is that it does not
apply to general nonlinearities f = fo(u, Vu).

The pointwise estimates for G;; and its derivatives will be useful in the following
situations:

1. It gives direct estimates of the Navier—Stokes nonlinearity without expanding its
Helmbholtz projection.
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2. It works for general nonlinearities, for example, those considered in Koba [27], and
those from the coupling of the fluid velocity with another physical quantity such as

fi =2k (bby),  gj=—72 " (dd-0;d),

where f is the coupling with the magnetic field b : Ri x (0,00) — R3 in the
magnetohydrodynamic equations in the half space Ri with boundary conditions b3 =
Oand (V xb) xe3 = 0(see[15,19,20,34]), and g is the coupling with the orientation
field d : Rz x (0,00) — S? in the nematic liquid crystal flows with boundary
conditions d3d|y = 0 and limy|, oo d = e3 (see [16]).

3. It allows to estimate the contribution from a non-solenoidal initial data, e.g., ug € L?
and in particular when ¢ = 1, as done by Maremonti [39] for bounded domains.

4. Pointwise estimates are very useful for the study of the local and asymptotic behavior
of the solutions of (NS), see e.g. [32] and our companion papers [21,22].

In contrast to the absence in the time-dependent case, pointwise estimates for stationary
Stokes system in the half-space have been known; See [23] for the literature and the
most recent refinement.

We now describe the two special cases of known pointwise estimates for G;;. For the
special case of solenoidal vector fields f satisfying (1.5), by using the Fourier transform
in x” and the Laplace transform in ¢ of the system (1.1), Solonnikov [47, (3.12)] derived
an explicit formula of the restricted Green tensor and their pointwise estimates forn = 3
(also see [48,49] for n > 2; The same method is used in [35]). Specifically, he showed
that for ug = 0, and f satisfying (1.5),

n t
u,-(x,t):Z/O /R” Gij(x,y,t —5)fj(y,s)dyds,
j=1 +

. (1.8)
m(x, 1) = Z/O /Rn gj(x,y. t =) fj(y,s)dyds,
j=1 +
with
Gij(x.y.1) = 8;;T(x — y,0) + Gf;(x, y. 1),
G;'kj(-xa Y, t) = —(SUF(.X - y*a t)
3 9
—4(1—5jn)—/ —E@x —2)T'(z —y*, ) dz,
3xj JEx(0,x,] 0%i (1.9)

&y 1) = 4(1 - s,-n>ax_,[/2 E(x — €Y, T(E — y. g’

+L F(x/ - y/ - é/s Yns l)anE(%_/v-xn)dg/:Iv

where y* = (y/, —y,) for y = (¥, yn), and E(x) and I'(x, ¢) are the fundamental
solutions of the Laplace and heat equations in R”, respectively. (See Sect. 2. Our E(x)
differs from [47] by a sign.) Moreover, G;kj and g; satisfy the pointwise bound ([49,
(2.38), (2.32)]) forn > 2,
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oL, 0k 9%, 61 G (x, v, )] S — < o
"I (|xr = y2 1) 2 (x2+1)2 (1.10)
2
1+1 _9n
100 00,3" 250 3,01 S 171 =y P e

His argument is also valid for n = 2 since the fundamental solution E in (1.9) has a
derivative, thus has the scaling property.

Another special case is the pointwise estimate of the Green tensor by Kang [17], but
only when the second variable y is zero, or equivalently y, = 0,

1
1+ l—a

l+n—2
(=P DT

1040/ Gij(x, ¥, 0] S , (1.11)

where « is any number with 0 < « < 1, and we identify y” with (y’, 0). Even for y = 0,
this estimate does not seem optimal because we anticipate the symmetry of the Green
tensor (see Proposition 1.4).

1.2. Results. The following is our first and key pointwise estimates of the (unrestricted)
Green tensor and its derivatives. Even when restricted to y = 0, it is better than (1.11)
by removing the singularity at x,, = 0. It will be further improved in Theorem 1.5 after
we show symmetry.

Proposition 1.1 (First estimates). Letn > 2, x,y e R, t > 0,i,j =1,...,n, and
l,k,q,m € No. Let G;; be the Green tensor for the time-dependent Stokes system (1.1)
in the half-space R, and g be the associated pressure tensor. We have

1
18t ok Y amGii(x, y, 0I<

x/ , V' T Xn l+k+q+n
(= y2+r) 2™ -
o1 e
+
tm(lx*—y|2+t) (x2+t)2(y i}

where ki = (k — 8in)+,
LN, o= 1+ Siaaly [10g (vl 1x = V14 x5, + 30 +V/0) — log(¥D)]. (113)

with ufy =1 — (8k0 + 8k18in)8m0, and vi%, - = 8408 jnbk(1+45;,)0m0 + Sm=0. Also,

ijkq

1 1 1 R 1
19,08, 0,87 (x. ¥, D112 [W (x—k +dolog x_) " ka]y;;qﬂ] ’

(1.14)

where R = |x' — y/| + Xp + yp + /1 ~ |x — y*| + /1.
Comments on Proposition 1.1:

1. The numerator LN:”Z kq is a log correction for n = 2, and equals 1 if n > 3. The
parameters ji}; , v i M q € {0, 1}. For simplicity we may take u; = v

cases.

ikg = = 1 for most
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2. As we will see in Proposition 3.5, the pressure tensor g contains a delta function
supported at t = 0. It is not in (1.14) where t > 0.

3. The estimate (1.12) of 9;G;; is not integrable for 0 < ¢ < 1. It can be improved using
the Green tensor equation (3.1) and estimates of A;G;; and V,g;.

With the first estimates, we are able to prove the following theorems on restricted
Green tensors, convergence to initial data, and symmetry of the Green tensor. We say
a tensor G;j(x, y,t) is a restricted Green tensor if for any solenoidal u¢, the vector

field u;(x,t) = Z?:] fRi C_;,-j (x,y,Dug,j(y)dy is a solution of the Stokes system
(1.1)—(1.2).

Theorem 1.2 (Restricted Green tensors). Let ug € C C],U (@), i.e., it is a vector field in
Cl(R; R") with div ug = 0 and ug |5 = 0. Then

n n
Z/,, Gij(x. y. Duo,;(y) dy = Z[,, Gij(x. y. Duo,j(y) dy
j=1 7% j=1 "
n
= Z/l;n Gij(x,y, Duo,j(y)dy
j=170

as continuous functions in x € R andt > 0, where éi j(x,y,t) is the restricted Green
tensor of Solonnikov given in (1.9), and

Gij(x,y,1) =6 [F(x—y. 1) = T(x —y*, 0)] —48;,Ci(x, y. 1), (1.15)

with Ci(x, y, 1) = [y" [z 0.7 (x — y* — 2,1) % E(z) dZ' dzy.
Comments on Theorem 1.2:

1. The last term of G;; in (1.9) only acts on the tangential components ug ;, j < n.In
contrast, the last term of G;; in (1.15) only acts on the normal component uo,n. We

do not know whether (1.15) has appeared in literature. We will use both Gij j and Gi; 5
in the proof of Lemma 6.1. C; will be defined in (4.4) with estimates in Remark 5.2.

2. We can get infinitely many restricted Green tensors by adding to Gij j any tensor Tj;
that vanishes on all solenoidal vector fields f = (f}), fRZ’- Tii(x,y, ) fi(ydy =
0, for example, a tensor of the form 7;; = 9y, Ti(x, y,t) with suitable regular-
ity and decay. We do not need ) ; 9y, Tij(x,y,t) = 0 nor Tjj|y,—0 = O since
fRﬁ T;j(x,y, 1) fj(y)dy = 0. In fact, if we denote

Xn
C?(x, v, t) = / / I(x —y* — 2,08 E(z)d7 dz,,
0o Jz
then we have the (more symmetric) alternative forms:

Gij(x,y.1) = 8;j [T(x — y, 1) = T(x — y*, )] +4(1 — 8;,)dy,CL (x, y, 1),
Gij(x, v, 1) = 8 [T (x =y, 1) = T(x = y*, )] = 48,0y, C (x, y, 1) (1.16)
= Gij(x,y.1) +8y,4C; (x, y. 1).
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3. In contrast, the unrestricted Green tensor G;; is unique: We require it to satisfy the
equation (3.1)1, the boundary condition (3.1),, and the initial condition that the vector
field u;(x,t) = Z;Zl fRﬁ Gij(x,y,t)(uo)j(y)dy satisfies lim; o, u(-, t) = Pug
for any initial data u( not necessarily solenoidal. Suppose (G,- i (x, v, 1), 8j(x,y,1)
is another pair of unrestricted Green tensor and pressure tensor. For fixed j and y,
the difference u; (x, 1) = (G;; — G;;)(x, y, t) and its companion pressure p(x, t) =
(gj — gj)(x,y,t) satisty the Stokes system (1.1) with zero boundary and initial
values. Under bounds such as

1 1
) at 5 ’
Gnr v PP e v

suggested by Proposition 1.1, we can show u = 0 by energy estimate: Testing (1.1)
by u¢r for some cut-off function ¢g (x) = ®(x/R) and integrating overty < t < t1,
sending R — oo, and then sending 710 — 0,. (Also see [36, Theorem 5]). Hence
Gij = G,‘j.

4. Theorem 1.2 is extended to ug € LY in Remark 9.2 for 1 < p < 00. When p = o0
we can only show the first equality, and we need u in the L>°-closure of C!.

lu(x, DIS

Theorem 1.3 (Convergence toinitial data). Letu(x,t) = Z?:l fRi Gij(x,y, Dug,j(y)
dy for a vector field uq in RY. Let P be the Helmholtz projection in R to be given in
Remark 3.4.

(@ Ifug € CC1 (R), then u(x,t) — (Pug)(x) for all x € RY, and uniformly for all x
with x, > 6 for any § > 0.

(b) Ifup € L1(R}), 1 < q < oo, then u(x,t) — (Pug)(x) in LY (R}).

(©) Ifug € Cl ,(RY), i.e., itis avector field in CL(RY; R") with divug = 0 and ug 5|5 =
0, then ug = Pug and u(x, t) — uo(x) in LY(RY) for 1 < g < oc.

In Part (a), the support of ug is away from the boundary. In Part (c), the tangential
part of up may be nonzero on X, and g = oo is allowed.

Proposition 1.4 (Symmetry of Green tensor). Let G;; be the Green tensor for the Stokes
system in the half-space RY, n > 2. Then for x, y € R} and t # 0 we have

Gij(x,y,0) =Gji(y,x,1), Vx#yE€ RY. (1.17)

For the stationary case, the symmetry is known by Odqvist [43, p.358] for n = 3 and
[23, Lemma 2.1, (2.29)] for n > 2. We do not know (1.17) for the nonstationary case in
the literature. We will prove Proposition 1.4 in Sect. 7, after we have shown Proposition
1.1. It gives an alternative proof of the stationary case for n > 3, see Remark 3.7.

Although G;; is symmetric by Proposition 1.4, the restricted Green tensors in (1.9)
and (1.15) are not. For example, if i < n and j = n,

GinGryi ) = 0, Gy, x,1) = —4/ Bi0nE(y — Tz — x*, 1) dz,
ZX[O,yn]

Gin(x,y,1) = —4Ci(x, y, 1), Gpi(y,x,1) =0.

By the symmetry of the Green tensor in Proposition 1.4, the estimates in Proposition
1.1 can be improved. Our main estimates are the following:
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Theorem 1.5 (Main estimates). Letn > 2, x,y e R, t > 0,i,j = 1,...,n, and
l,k,q,m € Ny. We have
191, ok 8 8mGi(x, y, )< !
X',y Pxn W n A\t ) (|x—y|2+t)l+k+q+n+m
n mn (1.18)
. LN+ LN
l+k—kj+q— qj+n 5
M(xt —yP T2 (a4 ¥ (20t

where LNI"}’,Zq is given in (1.13), k; = (k — 8;p)4, and qj = (@ — 8jn)+.

Comments on Theorem 1.5:

1. Assume | + k + g +n > 3. For the cases when k; = g; = 0 and m = 0, the
time integrals of the above estimates coincide with the well-known estimates of the
stationary Green tensor given in [10, IV.3.52]. We lose tangential spatial decay in
other cases.

2. The estimates of the stationary Green tensor mentioned above have been improved by
[23]. For example, when there is no normal derivative and n + [ > 3, [23, Theorems
2.4,2.5] show

143,
XnYn

Ix — y|n=2# |x — y*|2+3_/n'

|0y, Gl (x, VIS (1.19)

(It can be improved using symmetry, but [23] does not have i = j = n case.)
The tangential decay rate is better than the normal decay and the whole space case,
probably because of the zero boundary condition. Thus (1.18) may have room for
improvement. Compare Theorem 1.6.

The following estimates quantify the boundary vanishing of the Green tensor and its
derivatives at x, = 0 or y, = 0.

Theorem 1.6 (Boundary vanishing). Letn > 2, x,y e R}, t > 0,i,j =1,...,n, and
l,k,qg,m € Ng. Let 0 < o < 1. If k = 0, we have
I Xy
8x’,y’agn 8lm Gl] ('x’ Y, t) 5 l+q+n . a
(x—yP+0"2 "(x —y*>+1)2 120
LN (1.20)
+ 7(1 — ,
’"+2(|x—yI2+t) (y2 +t)2
with LN = 3o (LN™ + LN™" ) (x, y,1). If g = 0, we have
I k Yn
8 /a 8mGlj(x’y7t) 5 ++nn o
e (x = yI2 405" (e — y* 2+ 1) (1
N yn LN , '
M3 (x =y |2+t)7(x 0t

withLNzZ —o(LNV% + LN ) (x, y, 1),

ijkq Jiq
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1.3. Key ideas and the structure of the proof. Let us explain the idea for our key result,
Proposition 1.1: The major difficulty is to find a formula for the Green tensor in which
each term has good estimates. Our first formula (3.10) with the correction term W;;
given by (3.9) is obtained from the definition using the Oseen and Golovkin tensors. The
second formula for W;; in Lemma 4.2 is obtained using Poisson’s formula for the heat
equation to remove the time integration. The idea of using Poisson’s formula is already
in the stationary case of [23,40]. Our final formula for the Green tensor in Lemma
4.3 is obtained by identifying the cancellation of terms in Lemma 4.2, maximizing the
tangential decay. We further transform the term H;; in Lemma 4.3 in terms of D;j,
in Lemma 5.1, which are integrals over ¥ x [0, x,,]. For D;j,,, we do space partition
and integration by parts to estimate their tangential derivatives, and we explore their
algebraic properties, e.g., computing their divergence, to move normal derivatives to
tangential derivatives. These enable us to prove Proposition 1.1.

Maximizing the tangential decay is essential: As seen in Proposition 1.1, normal
derivatives do not increase tangential decay, and maximal tangential decay allows us to
prove the integrability in y of all derivatives of the Green tensor (uniformly in x). This
is used in the proofs of (9.3) of Lemma 9.1 and (9.20) of Lemma 9.4, both relying on
the function H; € L! for H; defined in (9.7), for the construction of mild solutions of
Navier-Stokes equations. The maximal tangential decay is also used to prove that the
Green tensor itself is integrable in y, but with an x,-dependent constant,

|16ty nldysnes 5. (122)

This is proved in (9.10) of Remark 9.2 using Theorem 1.6, and used to prove an extension
of Theorem 1.2 to the L°°-setting, see Remark 9.2. In this sense, the Green tensor in
the half space has a stronger decay than the whole space case. This phenomenon is well
known in the stationary case.

Having the first estimates of both Green tensor and its associated pressure tensor in
hand, we can investigate restricted Green tensors and initial values, and prove Proposition
1.4 on the symmetry of the Green tensor. Our main estimate Theorem 1.5 is proved using
Proposition 1.1 and Proposition 1.4. We then prove the boundary vanishing Theorem
1.6 using the normal derivative estimates of Theorem 1.5.

1.4. Applications. As an application, we will construct mild solutions of the Navier—
Stokes equations in the half space in various functional spaces. We will provide other
applications in forth coming papers [21] and [22]. Since it is only for illustration, we
only consider local-in-time solutions with zero external force. Fujita-Kato [9,25] and
Sobolevskii [45] transformed (NS) into an abstract initial value problem using the Stokes
semigroup

t
ut) = e Mg — / e TOAPY, (upu) (s) ds, (1.23)
0

whose solution u(¢) lies in some Banach spaces and is called a mild solution of (NS).
In the whole space setting, there is an extensive literature on the unique existence of
mild solutions of (NS). See e.g. [2,8,11,12,24,31,37,42,54] for the most relevant to our
study.

For mild solutions of (NS) in the half-space, the unique local and global existence
in L9(R}) were established by Weissler [53] for 3 < n < g < oo, by Ukai [52] for
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2 <n < g < o0, and by Kozono [33] for 2 < n = g. Canaone-Planchon-Schonbek [3]
established unique existence of solutions in L L3 with initial data in the homogeneous

Besov space B,?,/ go_l (Ri). For mild solutions in weighted L7 spaces, we refer the reader
to [28,29].

For solutions with pointwise decay, Crispo-Maremonti [6] proved the local existence
of solutions controlled by (1 + [x|)™*(1 +1)™#2, a + B = a € (1/2,n) when ug €
L>®(RZ, (1 + |x]|)*dx) and n > 3. If a € [1, n), they further showed the existence is
global in time when u( is small enoughin L> (R, (1+|x|)“dx). The constraints imposed
in [6] on @ and n are relaxed by Chang-Jin [5] to a € (0, n] and n > 2. They proved
the existence of mild solutions to (NS) having the same weighted decay estimate as the
Stokes solutions if a € (0, n]. Note that for the case a = n, the mild solution is local in
time because the weighted estimate of solutions to the Stokes system has an additional
log factor. They also obtained the weighted decay estimates forn < a < n + 1 in [4]
with an additional condition that R}uo e LR, (1 + |x|)“dx). Regarding solutions
whose initial data has no spatial decay, the local existence and uniqueness of strong mild
solutions with initial data in L° were established by Bae-Jin [1], improving Solonnikov
[50] and Maremonti [38] for continuous initial data. Recently, Maekawa-Miura-Prange
[36] studied the analyticity of Stokes semigroup in uniformly local L9 space via the
Stokes resolvent problem and constructed mild solutions in such spaces for g > n.

In the following, Theorems 1.7, 1.8 and 1.10 are already known, while Theorems 1.9
is new. We will provide new proofs using the following solution formula of (NS) with
the Green tensor

n
ui(x,t) = Z./R" éij(x, v, Dug,j (y)dy
= (1.24)

n t
+ Z /(; /]R” 0y, Gij(x, y, t —s)(ugu;)(y, s)dyds.
jok=1 +

We use the restricted Green tensor éi ; for the first term and the (unrestricted) Green
tensor G;; for the second term. Note that the second term is written as

n t
- Z // Gij(x,y,t —s)(Pougu)j(y, s)dyds (1.25)
= o Jre

and explicitly computed in [1,6], as the Green tensor G;; was unknown.
For1 < g < o0, let

LR} ={f e LP(R};R") :div f =0, f(x",0)=0}. (1.26)

Theorem 1.7. Let2 <n < g < oo and ugp € Ll (RY). If g = 0o, we also assume ug in

the L°°-closure of Cg’a(lRTﬁ) andn > 3. There are T = T (n, q, ug) > 0 and a unique
mild solution u(t) € C([0, T]; L9) of (NS) in the class

sup_ (Il llza + 1% (@)l + 12 |Vu(@)l0) < Colluollo
O<t<T

We can take T =T (n, q, ||uollpq) if n < g < oo.



The Green Tensor of the Nonstationary Stokes System 1301

This is known in [33,52,53] for 2 <n < g < oo, and in [1] for ¢ = 0o
For a > 0, denote

{f € Lige = suﬂgn [f () (x)" < oo}, (1.27)
and
{f € Lloc = Suﬂgl Lf Qo {xn) < 00} (1.28)

Theorem 1.8. Let n > 2 and 0 < a < n. For any vector field ug € Y, with divug =0
and uo |z = 0, there is a strong mild solution u € L*°(0, T; Y,) of (NS) for some time
interval (0, T'). Moreover, the mild solution is unique in the class L°°(R’} x (0, T)).

Theorem 1.9. Let n > 2 and 0 < a < 1. For any vector field ug € Z, with divug = 0
and uo n|x = 0, there is a strong mild solution u € L*°(0, T'; Z,) of (NS) for some time
interval (0, T). Moreover, the mild solution is unique in the class L (R} x (0, T)).

Theorem 1.8 corresponds to [5, Theorem 1] and [6, Theorem 2.1]. Theorem 1.9 is
new. Its upper bound a < 1 is less than that in Theorem 1.8.
For 1 < g < oo, denote

LI (RY = {M e L @®Y) | sup llullza(p, nrr) < OO},

xeR}

uloc O'(R ) - {u € Lq

uloc

Ry RY) | divie =0, ugulz =0}.

Theorem 1.10. Let2 < n < g < oo and ug € LY (R%).

uloc,o
(@) If n < g < 00, and supposen > 3 if g = oo, thereare T = T (n, q, ||uo||Lql ) >0
and a unique mild solution u of (NS) with

u(t) € L0, T; L. ) N C(0, T); Wyl o(R1)" NBUC, (RY)),

uloc,o

1/2
sup (Ilu(t)lqu + 130 u(@) | g + 12 V()] 0 ) < G lluoll 4
O0<t<T uloc uloc uloc

(1.29)

®) Ifn=gq, forany0 < T < oo, there are €(T), Ci«(T) > 0 such that iflluolngloC <
€(T), then there is a unique mild solution u(t) of (NS) in the class (1.29).

This theorem is [36, Propositions 7.1 and 7.2]. Continuity at time zero requires further
restrictions on u.

In addition to the existence of mild solutions in various spaces, pointwise estimates of
the Green tensor is useful for the study of local and asymptotic behavior of solutions. In
a forth coming paper [21], we will use the Stokes flows of [18] as the profile to construct
solutions of the Navier—Stokes equations in Ri x (0, 2) with finite global energy such that
they are globally bounded with spatial decay but their normal derivatives are unbounded
near the boundary due to Holder continuous boundary fluxes which are not C! in time.
We will collect other applications in [22].

The rest of this paper is organized as follows. In Sect. 2, we give a few preliminaries
and recall the Oseen tensor and the Golovkin tensor. In Sect. 3, we consider the Green
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tensor and its associated pressure tensor, and derive their first formulas. In Sect. 4, we
derive a second formula for the Green tensor which has better estimates. In Sect. 5, we
give the first estimates in Proposition 1.1 of the Green tensor and the pressure tensor.
In Sect. 6, we study the restricted Green tensors, and how the solutions converge to the
initial values. In Sect. 7, we prove the symmetry of the Green tensor in Proposition 1.4.
In Sect. 8, the ultimate estimate in Theorem 1.5 is derived from Proposition 1.1 using the
symmetry of the Green tensor and the divergence-free condition. We also estimate their
vanishing at the boundary, proving Theorem 1.6. In Sect. 9, we prove the key estimates
for the construction of mild solutions in various spaces for Theorems 1.7, 1.8, 1.9 and
1.10.

Notation. We denote (£) = (|€]% +2)'/? for any £ € R™, m € N. We denote f < g
if there is a constant C such that | f| < Cg.

Green tensor - Gij, gj

Oseen tensor e Sij. s

Golovkin tensor - Kij, kj
Fundamental solutionof — A --- E
Heat kernel r
Poisson kernel for heat equation --- P

2. Preliminaries, Oseen and Golovkin Tensors

In this section, we first recall a few definitions and estimates from [46]. We then give
two integral estimates. We next recall in Sect. 2.2 the Oseen tensor [44], which is the
fundamental solution of the nonstationary Stokes system in R”. We finally recall in Sect.
2.3 the Golovkin tensor [14], which is the Poisson kernel of the nonstationary Stokes
system in R”}.

The heat kernel I and the fundamental solution E of —A are given by

1 1

drt)"2 % £ 0 g iz forn >3,
Fx, 1) = ém) ew dort >0, and E(x) = re=2IBil Ix] =

fort <0, —o loglx|  ifn=2.

The Poisson kernel of —A in RY is Py(x) = —20, E(x). We will use [23, (2.32)] for
n>2,

/2 EE —y)Po(x —&)dE = E(x —y"), Po(x) = =20, E(x). 2.1)

It is because the integral is a harmonic function in x that equals E (x — y*) when x,, = 0,
and was first used in Maz'ja—Plamenevskii-Stupjalis [40, Appendix 1] to study the
stationary Green tensor for n = 2, 3.

We will use the following functions defined in [46, (60)—(61)]:

AGx, 1) = f (.0, DE(x — ) d7 = / PG 0 DEE x)dd (22)
) )

and

B(x,t) = f Fx—-7,HE(E,0)d7 = / L, xp, HEGX' —7,0)dZ. (2.3)
)] )
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They are defined only for n = 3 in [46] and differ from (2.2)—(2.3) by a factor of 4r. The
estimates for A, B, and their derivatives are given in [46, (62, 63)] for n = 3. For general
case, we can use the same approach and derive the following estimates for / + n > 3:

1

[ am <
|axat A(.x’t)| ~ [m+%(x2+[)# (24)
and
1
18L,0% 8™ B(x, 1)| < — — (2.5)
Yo (24 0) T (12 4 1) T
In fact, the last line of [46, page 39] gives
1 xa

L35 B, )| S ———5 e . (2.6)

(x2+1) 7 12

Remark 2.1. For n = 2, the condition / > 1 is needed as A(x,?) and B(x,t) grow
logarithmically as |x| — oc. In fact, one may prove for n = 2

1+ log(lx2| + VD)l + | log(|x1| + [x2] + V1)
7 .

[A(x, )]+ |B(x, )| S

2.1. Integral estimates. We now give a few useful integral estimates.
Lemma 2.1. For positive L, a, d, and k we have
Léa+ L)k ifk <d,

Lrd-tar d —d Ly -
=< L@+ +l0g, by ifk =d,
0 (r+a) Lda+L)yda-bD " ik > q.

Proof. Denote the integral by 1. If a > %, then
L
1< aik/ rd=Vdr ~ LY,
0

Ifa < %, then

a rd*l dr L rd*ldr
1 :/ +
o (r+a) . (r+a)k

L
< a?=* +/ rd=k=1 gy
a

L% ifk <d,
<a’*+dlogl ifk=d,
ad itk > d.

Fork < d,

;< {Lda_k ifa >

Lk g o < L%max(a, L) * < LY+ L),

| 9| B~
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where we used the fact 2max(a, L) > a + L. Next, fork = d,

d

< (1+1 L)
~ (a+ L)4 Og+a ’

(L)' ita=

<
~1+logk ifa <

(S| Sly

because a > % implies that % < 1. Finally, for k > d we get

Ld

Lia=* ifa > . J
1 5 S a min(a, L) ~ T rdok—d®
at=* ifa < (a+L)a

I~ B~

Lemma 2.2. Leta > 0,b >0,k >0, m > 0andk +m > d. Let 0 # x e RY and

_/ dz
~ Jra (2l +a)k(Jz — x|+ by’

Then, with R = max{|x|, a, b} ~ |x|+a +b,

< pd—k—m —m R —k R —m d—k —kypd—m
I SR +8kd R 10g;+5de logz+]lk>a'R a +1,,-qR b .
Proof. Decompose I into

d
1=</ +/ ) = S
lZl<2R  Jpz1=2r/ (zl +@)*(|z — x| + b)™

For I, we have

d
125/ kZ ~ Rd—k—m.
lzZ1>2r 1z[*1z]™

For I we consider the three cases concerning R: R = |x|, R =a,and R = b.

e If R = |x|, we split I; into

I

dz
/W; <& J2 2R (e[ @)k (|2 — x|+ by"

|Z—X\>7

=hi+ha+13.

By Lemma 2.1 we obtain

n 5/ e
<& (2l +a)FRm

d—m —k :
B a1, R (a+R) ifk <d,

2
~ R—m/ STR™(1+log, ®)  itk=d
k ~ + a ’
o (r+a) R™"a *min(a, R)? ifk > d
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since |z — x| > |x| — |z] = R — |z| = £. Also by Lemma 2.1,

5 .d—1
ot [ e [
lz—x|<® R(|z — x| +b)™ o (r+b)ym
Rk @b+ R)™ ifm<d,
S{R*(1+log, %)  ifm=d,
R~*b=" min(b, R)¢ ifm > d

since [z|+a > |x| — |z —x|=R — |z — x| > %,and

dz k 2R d—1 d—k
11 3< [z — <Rk r¢ tdr ~ RN,
(Y 7<\z|<2R |Z|k|Z—X|mN R
R 2

[z=x|>7%

e IfR=a > |x|,

[1 Sf kL
lz]<2r @*(|z — x| + b)"

7,{/‘ dz
<a -
lz—x|<3R (|2 — x| +b)"

B R—k /-3R I‘d_ld}"
- o (r+bym

~ 11,2.
e IfR=0> |x|
d 2R ,.d—1 d
115/ —Zsz_m/ d :Nll’l.
lz]<2r (2| +a)<b™ o (r+a)
Combining the above cases, the proof is complete. O

2.2. Oseen tensor. We first recall the Oseen tensor S;; (x, y, ) = S;j(x — y, t), derived
by Oseen in [44]. For the Stokes system in R":

vy—Av+Vg=f

in R" x (0 2.7
v(x,0) =0, divvzo} in RY x (0, +00), (2.7)

with f(-,¢) = 0fort < 0, the unknown v and ¢ are given by (see e.g. [8] or [46, (46)]):

n t
vi(x, 1) = Z/o /R Sij(x =y, t =) fj(y, s)dyds,
j=1

and

q(x,t):Z/ Asj(x—y,t—s)fj(y,s)dyds
j=17m IR

=3 [ EG=nfi0.0d.
j=1
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Here (S;;, 5;), the Oseen tensor, is the fundamental solution of the non-stationary Stokes
system in R”, and
Sij(x,t) =8;;(x, 1) + 'y (x, 1),
Lij(x, 1) = 9;9; /n F'(x —z,t)E(2)dz, (2.8)
si(x, 1) = —BjEﬂéx)B(t). (2.9)

In [46, (41), (42), (44)] it is shown that (for n = 3, but the general case can be treated in
the same way)

1859 T (x, )] + [8L0" Ty (x, 1)| + (2.10)

aLam s, (x. t)‘ <—
Y (2 +1) "
for n > 2. It holds for n = 2 since we can apply one derivative on E to remove the log.

Remark 2.2. Formally taking the zero time limit of (2.8), we get
Sij(x,04) = 8;8(x) +0;0; E(x). (2.11)

An exact meaning of (2.11) is given by Lemma 2.3. In other words, the zero time limit
of the Oseen tensor is the kernel of the Helmholtz projection Pr» in R",

(Pro); = uj +0;(—=A) "'V - u. (2.12)
Lemma 23. Fix i,j € {1,...,n}, n > 2. Suppose [ € CCI(R”). Let v(x,t) =
S Sij(x =y, 0) f(y) dy and vo(x) = 8 f(x) + 0; [u 0 E(x — y) f(y) dy. Then

lim sup (x)" |v(x, 1) — vo(x)| = 0.
t_)OerER"

Some regularity of f is needed to ensure L° convergence because vy may not
be continuous if we only assume f € C?. By Lemma 2.3 and approximation, the
convergence v(-, t) — vg is also valid in LY(R"), 1 < g < oo, for f € L1(R").

Proof. We first consider u(x, t) = f]R” I'(x —y, t)a(y) dy for abounded and uniformly
continuous function a. Let M = sup |a|. For any ¢ > 0, by uniform continuity, there is
r > 0 such that |a(x) — a(y)| < eif |x — y| < r. Using fRn 'x—y,t)dy=1,

(/ +f )F(x—y,t)[a(y)—a(x)]dy
@) B

5/ F(x—y,t)ady+/ F'x —y,t)2M dy
By (x) BE(x)

lux, 1) —a(x)| =

<eg+CM (24 dz < e+ CMe /3,

|z|>r

This shows |[u(x, ) — a(x)| gy — 0ast — 0. Suppose furthermore a € C?(R"),
a(y) =0if|y| > R > 1. Then for |x| > 2R,

IMmﬂ—a@N=W@JN§/ Flx — y, )M dy
Bpg

< CMe_|x|2/32’[ t—n/2€—|x—y|2/81 dy = CMe_‘xlz/”’_

n
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We conclude for any @ > 0

lu(x, 1) —a(x)| < (||-(+-—;U°‘ Vx € R", (2.13)

where o(1) — 0 as t — 0O, uniformly in x. (Estimate (2.13) is valid for n > 1.)
Recall the definition (2.8) of S;; = §;;I" + I';;. For f € CC1 (R™), by (2.13) with
a=f,

)
v(x, 1) —volx) = W +vi(x,t),

where
vl(x,t)zf / F(x—y—z,t)a/E(Z)dzaif(y)dy—_/ 0 E(x —w)d; f(w)dw
R* JR" R”

= / (f F(w—y, 00 f(y)dy— 3if(w)> jE(x —w)dw.
n Rl’l
For the second equality we used z = x — w and Fubini theorem. By (2.13) again with
a = 8,'f,

o(l)

o(1)
G

x—w|/'™dw < o —
R(lx| + R)"

lvi (x, D] <

We have used Lemma 2.2 for the second inequality.
We now improve its decay in |x| and assume |x| > R + 1. Decompose R" = U + V
where U = {w : |lw — x| < |x|/2} and V = U°. Integrating by parts in w; in V, we get

vi(x, 1) = /U (/Rn C(w—y, 09 f(y)dy — aif(w)> 9 E(x —w)dw
+/V </Rn Fw—y,0)f(y)dy— f(w)) 80, E(x — w) dw

+/3V (/ Fw—y.0)f(y)dy— f(w)) 9 E(x — w)n; dSu
=1L+5L+1.
By (2.13) witha = 9; f,

o(l) - o(l)
'I"ffu<|x|+R>"+2' —el A= G R

By (2.13) witha = f,
1 1
L] < / oDy < 0D
(Tl + B) R(x|+ B

o) o(1)
I _oWM | engg, <0
|3|S/v Tk (] + Ry

The main term is /. This shows the lemma. O
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2.3. Golovkin tensor. The Golovkin tensor K;;(x,t) : R} x R — R is the Poisson
kernel of the nonstationary Stokes system in R}, first constructed by Golovkin [14] for
Ri. Consider the boundary value problem of the Stokes system in the half-space:

ﬁt — AD+ Vp =0
divo=0
o(x",0,t) = ¢(x',t), on ¥ x (0, 00).

} in R} x (0, 00), 2.14)

We extend ¢(x’, 1) = 0 for t < 0. By Solonnikov [46, (82)], the Golovkin tensor
K;j(x,t) and its associated pressure tensor k; are explicitly given by

Xn
Kij(x,t) = =28;; 9, (x, 1) — 48j/ / 0,0z, 1) 0 E(x —2)d7 dzy,
0 X
—28,;0; E(x)8(2), (2.15)
2
ki e 1) = 20,0, EC3(1) + 28, ES (1) + - 8, A0x. 1), (2.16)

where A(x, 1) is defined in (2.2). A solution (0, p) of (2.14) is represented by ([46,
B4)]):

i =3 [ [ Ky == 90, € 00 d€ ds 2.17)
j=1"7%
and

P =23 00 [ EG-€00i€ 0 a8 42 [ EG—£)00,€ 0 d
= N , (2.18)
30 [ A== 9liE ) - e e ds
j=1 0T

Note that ¢;(§’, t) is subtracted from the last integral to make it integrable. Alter-
natively, using (9, — Ay)A = (—=1/(Q2t))A (since (3; — ANC(X',0,1) = (8, —
A)@rt) VTR (X, 1) = —@2)7IT(x’,0,1)), p(x,1) can also be expressed as
[46, (85)]

TR /E Fem @ 2/2 E(x —§)0,(' 1) a8’
—4 0 — Ay GAGx — &t — (€ 1) dE'de.
;( t )»/—00/2 x—=&,t—1)p;i(&",1)dE dT

The last term of (2.16) is not integrable (hence not a distribution) and has to be understood
in the sense of (2.18) or (2.19). By [46] (for n = 3, but the general case can be treated
in the same manner), for n > 2, the Golovkin tensor satisfies, fori, j = 1,...,n and
t >0,

1

Bi/afnaﬁK,‘j(x, t)‘ < — —, o= Si<n8jn. (2.20)
2

as) (x2+1) 7 xZ2+1) 2
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Hereo = 1ifi < n = j and 0 = 0 otherwise. Specifically, the case j < n is [46, (73)],
the case j = n uses j < n case, the formulas for K;, on [46, page 47], and [46, (69)].

Remark 2.3. (i) In the proof of [46, (73)], in the equation after [46, (72)], there is at least
one x’-derivative acting on B (defined in (2.3)) even if [ = 0. The same is true for
formulas for K;, on [46, page 47]. Hence we have estimate (2.20) for all » > 2 and
do not have a log factor for n = 2. Compare (2.5) and Remark 2.1.

(ii) Solonnikov [46, pp.46-48] decomposes ¥ = w + w’ where

w;(x, 1) = Z/f Kij(x — &'t —5)¢; (&, 5)dE ds,
j<n

wi(x, 1) = // Kin(x — &', 1 —5)pu(&', 5)dE'ds,

and shows that w; (x", 0, 1) = (1 — 8;,)¢;i (x', 1) and w(x', 0, 1) = 8¢ (x', 1).
(iii) The limit of 0(-, t) as t — 0, depends on the lim;_,o, ¢ (-, 1). It is in general nonzero
unless ¢ (-, 1) = 0 for 0 < ¢t < 4. See the following example.

Example 2.4. Let p(&, t) be any continuous function defined on ¥ x R with suitable
decay. Let

u(x, 1) = Vih(x, 1), h(x,t):/ —2E(x — &Np(E, 1)dE'.
>

Let v(x, 1) be defined by (2.17) with ¢ (x’, 1) = u(x’, 0, ). We claim that v(x, t) =
u(x, t). Note that & is harmonic in x and u, |y = p as —29, E(x) is the Poisson kernel
of —A in RY. Since divu = 0 and curl # = 0, by Stein [51] Theorem III.3 on page 65,
we have

upls = p, uils =Rip (i <n),

where R/, is the j-th Riesz transform on R"~!, R, f(¢') = &I f(£). By (2.15) and
2.17),

13,-(x,t)=—2/oo / L L(x —&'t —s5)¢; (&', 5)dE ds
-0 JX
n—1 00 Xn
_42/ / A, </ / l(z,t — ) Bl-E(x—S’—z)dz'dz,,) ¢j(&',s)dg'ds
D /-eoJx o Jx

_4/°°f o (// BTzt — ) 8,-E(x—§/—z)dz’dzn> bu (&', 5) dE'ds
—00 J X 0 x

— 2/ GE(x —ENp (&, 0)dE =11 + b+ I3 + I4.
)

As ¢, = p, 14 = u;(x,t) by definition. If i < n, since ¢; = R},o, we can switch
derivatives

n—1 00 Xn
12:_42/ / A (/ / anF(z,t—s)BjE(x—E’—Z)dz’dzn)
=1 -0 JX 0 >

¢i(§',5)d§'ds
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=4/°°/ 2, (// anr<z,r—s)anE<x—s’—z)dz/dzn>
—00 J X 0 >

¢i (&', s)dE ds
o0
+2/ f 0, T(x —&' t —s)p; (£, 5)dE ds = Iy + Ipp.
—00J X
The second equality is [46, (68)]. Note that I, cancels I, and I, + I3 = 0 because

—2/ GE( —& — 2gu(E . 5)dE = uix — 2.9
>

- —zf2 BuE(x — ' — )i (', 5) dE.

The first equality is by definition of u;. The second is because —29, E is the Poisson
kernel. Thus v; (x, ) = u;(x, t) for i < n. As they are harmonic conjugates of v, and
un, and v, and u, have the same boundary value p, we also have 0, (x, 1) = u,(x, ). O

3. First Formula for the Green Tensor

In this section, we derive a formula of the Green tensor G;; of the non-stationary Stokes
system in the half-space. We decompose G;; = Gi ; + W;; with explicit Gi j given by
(3.5), and derive a formula for the remainder term W;;.

For the nonstationary Stokes system in the half-space R, n > 2, the Green tensor
Gij(x, y,t) and its associated pressure tensor g;(x, y, t), foreach fixed j = 1,...,n
and y € R}, satisfy

n
atG,-j — AxGij +3x1~gj = (Sijay(x)a(l), ZaxiGij =0, forxe Rﬁ andr € R, (3 1)
i=1 .

Gij(x,y,Dlx,=0 =0.

Recall the defining property that solution (u, ) of (1.1)—(1.2) with zero boundary con-
dition is given by (1.3) and

w(x, 1) = /Rn g(x,y,t)~uo(y)dy+f /R" glx,y, t—s)- f(y,s)dyds. (3.2)

The time interval in (3.2) is the entire R as we will see in Proposition 3.5 that g contains
a delta function in time, cf. (2.9). In contrast, G;; is a function and we can define
Gij(x,y,t) = 0fort < 0 in view of (1.3). Note that G;;(x, y,04) # 0, see Lemma
34.

We now proceed to find a formula for G;;. Let u, w solve (1.1)-(1.2) with zero
external force f = 0, and non-zero initial data u(x, 0) = ug(x), in the sense of (1.7).
Then

wi e, 1) = Z/Rn Gij(x, ¥, D)(w0) () d, (3.3)
j=175

and m is given by (3.2) with f = 0. Let Eug be an extension of ug to R” by
Euo(x', x,) = (—ug, up)(x', —x,) for x, <O. (3.4)

Then divEuo(x’, x,) = — divuo(x’, —x,) for x, < 0.
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Remark 3.1. If div ug = 0 and ugj(x’, 0) = 0, then div Eug = 0 in D'(R").

Let & be the solution to the homogeneous Stokes system in R” with initial data Eu.
Then

I:ii(X, 1) =Z‘/Rn Sl-j(x -y, l)(EUO)j(y) dy
j=1
3 /R (Sij(x =y, 1) = €jSij (x =y ) (o) (y) dy
j=175%

=Z/Rn Gij(x. y.1)(uo)j(y) dy,
j=170

where
Gij(x,y,1) = Sij(x —y,1) —€;Sij(x —y*, 1), € =1—28,;. (3.5)

Note that the factor € j is absent in the second term of Solonnikov’s restricted Green
tensor (1.9). Eqn. (3.5) is closer to [23, (2.22)].

Lemma 3.1. We have

Sij(x*, 1) = €€;S;j(x, 1), (3.6)

Gij(x, y, t)\x”:() = 28in Spj(x" =y, 1). (3.7)

Proof. Ifi = j,then S;; (x, t)iseveninall x;. If i # j,then §;;(x, t)isoddinx; and x;,
buteven in xi if k # i, j. In particular, with x;y = x,,, we get (3.6) foralli, j =1,...,n.

By (3.6),
Gij(x,y, l)‘x 0= Sij(x" =y, 1) —€; S =y ) =8;;(x" =y, 1) — € Sij(x =y, 1)

which gives (3.7). O

Let## = u — it|g:. Then @ solves the boundary value problem (2.14) with boundary
data it|y,—0 = —i(x, 1)|x,=0. By the Golovkin formula (2.17),

i (x, 1) = Z/ /EKik(x—E',t—S)(—ﬁk(é’,O,S))dé'ds
k=17

n 00 n y
Y[ Kat—gia= (=3 [ Gy v ow;mdr ) delds
=]/ —® /T i=1 RY

n n .0 }
S LA [ kit €t =96y de'ds | o0y
j=1 IR\ =y e

> / Wij (x, y. o) j ()dy.
j=1 7R

where
Wi (x, y, 1) = —Z/ /;:K,-k(x — &1 =Gy (&, y, 5)dE'ds. (3.8)
k=177

By Lemma 3.1, we have the following first formula of W;;.
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Lemma 3.2 (The first formula of W;;). Forx,y e R}, t > 0, andi, j=1,...,n

Wijx,y, 1) = —2/00 f Kin(x =&t — s)Snj(E’ —v,s)dEg'ds. 3.9
—oco J X

Remark 3.2. Because of §(¢) in the last term of the formula (2.15) of K;;, when we
substitute (2.15) into the right side of (3.9), one of the resulting integrals is spatial only.

Asu=u hRi + i1, the Green tensor G; ; has the decomposition

Gij(x,y, 1) = Gij(x, y, 1) + Wij(x, y, 1)

. (3.10)
= S,~.,~(x -y, t) — e.,'S,:/(x -y, 1)+ W,~.,~(x, v, 1).

All of them are zero fort < 0.
With the first formula of W;;, we have the scaling property of the Green tensor.

Corollary 3.3. For n > 2 the Green tensor G;j obeys the following scaling property
Gij(x,y. 1) = M"G;;(x, Ay, A71).

Proof. Note that I'(Ax, A%t) = A™"T'(x, t) and §(A%t) = A28(¢). It follows directly
from (3.10), (3.9) and the scaling properties of K;; and S;;. O

Remark 3.3. In Lemma 2.1 of the stationary case of [23], the condition n > 3 is needed
for showing the scaling property of G;;(x, y) because the 2D fundamental solution £
does not have the scaling property. However, in the nonstationary case we do not have this
issue. So the scaling property of the nonstationary Green tensor holds for all dimension
n=>2.

Before we consider the zero time limit of G;;, we consider the Helmholtz projection.

Remark 3.4. (Helmholtz projection in RY) For a vector field u in R}, its Helmholtz
projection Pu is given by

Pu); =u; — 9;p, (3.11)

where p satisfies —Ap = —divu, and 9, p = u, on x,, = 0. Using the Green function
of the Laplace equation with Neumann boundary condition, N(x,y) = E(x — y) +
E(x — y*), we have

px) = _./R" N(x,y)divu(y)dy — /): un(Y)N(x, y)dSy. (3.12)

Note the unit outer normal v = —e¢, and g_;; = —0J, p = —uy. The second term is absent
in [41, Appendix], [10, (III.1.18)], and [35, Lemma A.3] because they are concerned
with L9 bounds of Pu with # € L7, for which (3.12) is undefined, and they approximate
iin LY by u € C2°(RY), for which the second term in (3.12) is zero. For our purpose,
we want pointwise bounds and hence we need to keep the boundary term. Integrating
by parts,

px) = fR By, N () dy. (3.13)
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The boundary terms on X cancel. Using the definition of N (x, y),
dy,N(x,y) = —Ff(x), E;.V(x) =0 E(x —y)+€;0;E(x —y*).  (3.14)
Thus

(Pu)i (x) = ui(x) + 9; /Rn Fi (x)uj(y)dy. (3.15)

We now consider the zero time limit of G;;.

Lemma 3.4. (a) For x, y € RY, we have
Gij(x,y,04) = 8;;8(x — y) + 3y, F; (%), (3.16)
where F],_v (x) is defined in (3.14), in the sense that, for any i, j € {1,...,n} and
fe CCl (RY), we have
lim (/R Gij(x, y, ) f()dy = 8 f (x) — By, /Rn Fi(x)f(y) dy) =0,

t—04

(3.17)

for all x € R, and uniformly for x, > §, for any § > 0.

(b) Let ug € Ccl. (R%; R™) be a vector field in RY} and let u(x,t) be given by (3.3). Then
u(x,t) — (Pug)(x) for all x € R}, and uniformly for all x with x, > § for any
§ > 0.

Note that 0y, F' jy (x) is a distribution since it may produce delta function at y. This
lemma shows that the zero time limit of the Green tensor is exactly the Helmholtz
projection in R}, given in (3.15). We will show uniform convergence in Lemma 6.1

where we assume Pug € C Cl (R%), allowing nonzero tangential components of ug|y, and
show L7 convergence in Lemma 6.2 where we assume uo € L?(R’}) but do not assume
uy = Pu().

Proof. (a) We may extend f to R" by setting f(y) = 0 for y, < 0. Recall that
Gij(x,y,t) = é(x, v, 1)+ Wij(x,y, 1), with
G(x,y. 1) = 8ij(x = y.1) = €;Sij(x = y*.0).
By (3.6) and Lemma 2.3,

lim - éij(x, Y, ) f(y)dy

t—04
=38ij f(x)+9; /R" HGE(x —y) — € E(x = y")]f () dy, (3.18)

uniformly in x € R’. Now we consider the contribution from W;; (x, y, ¢). By (3.9) and
(2.19),

xmm»o=4/ /mefu—wm@—»w@m
—o0 J X

= Wiji1(x,y, 1) + Wija(x, y, 1),
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where
w ~
Wit (x y. 1) = —2/ / Rin(x — &', — )50 (' — v, 5) dds,
—o0J X
Wijax. y.1) = 4 / O E(r — E)S,j (' — . 1) dE,
)

and I%ij is the sum of the first two terms in the definition (2.15) of K;;. By (2.20), (2.10),
change of variable s = u? and Lemma 2.2,

t
Wil s [ L :
0 Jx s(x =&+ /)" (xy +4/5) (JE — y|+ /1 —s)"

dt'ds

' 1 1
d&'d
5[0 /zﬁ(xwﬁ)lx—é’ln‘l 1§ = yI" s

1 1
—2log <1+£>/ 1 &'
Xn ) Jy lx =& | —yI"
*
|

t _—
<log (1 +£) {|x T =y log Y
X

n n

+]x — y*l("l)ynl} :
From this, one has

lim Wiji1(x, y, 1) f(y)dy =0

=0+ Jr1

for all x € R, and uniformly for x, > § > 0. On the other hand, by Remark 2.2,
Wija(x,y,t) for x,, y, > 0ast — 0, formally tends to

4 fz BE(x — £)0,0; EE' — y)dE' = —4d,,0,, /E E(x — £YouEE — y)dg'

=—23xi3y,-/ZE(S’—X)Po(y—é’)dé’ (3.19)

a 0
=-2——FE(x—y*) =2¢6;0,0, E(x — y*),
axiayj (x =y jl]('x o)
where Py = —20,E and we’ve used (2.1) for the third equality. It is in the sense of

functions since its singularity is at y = x* ¢ R}. Thus
[ Wiaervengody - [ 2epiape -0 dy
R R

:/n4fzai5(x—g’)sn,(s/—y,t)f(y)dy

_ / 4 /E QE(x —ENEE — y)dE 9, f(y)dy

=4 [ [ s =vnromus= [ a5 - s ron| s - ez
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For the first equality we used (3.19) and integrated by parts in y, in the second integral
using f € C Cl (R"). For the second equality we used the Fubini theorem. By Lemmas
2.3 and 2.2, the above is bounded by

o(1) 1 < o(1)

< dg’

Nfz (EN" |x — &'t
The combination of the above and (3.18) give Part (a).
Part (b) is a consequence of Part (a) and Remark 3.4. O

~ <x>n71 '

Finally we derive a formula for the pressure tensor g;, to be used to estimate g; in
Sect. 5, and show symmetry of G;; in Sect. 7.

Proposition 3.5 (The pressure tensor g;). For x,y e R}, t e R, and j =1,...,n we
have

gi(x,y, 1) =W;(x,y, 1) — F}’(x)a(r), (3.20)
where Wj(x, y, t) is a function with W (x, y, t) = 0 for t <0 and, fort > 0,
'
Wjx,y, 1) =— ZS/ / 0i0n A xn, 1), Sij (X — Yy — &', —yp, t — 1) dE dT
i<n 0 Jx

+Z4/E DECr — £)0,5,(E — v, 1) dg’ (321)

i<n
+ 8/ nAE  xp, 10,0, E(x" —y' — &', —y,) d§’.
by
Proof. For fixed j, the Green tensor (G;;, g;) satisfies (3.1) in R}. Let

gitx,y, ) =s;(x —y, 1) —€js;(x —y*,1)

. (3.22)
= —[E(x =) — €9, E(x — y")] 8.
The pair (é,-j, gj) satisfies in R"
B — A)Gij(x, y, 1) + 8, 87 (x, ¥, 1) = 818y (x)8 () — €;81;8y+ (x)8(1), (323

Yoi_1 05 Gij = 0.
Thus the difference (W;;, w;) = (Gij, gj) — (Gij, gj) solves in R}

(at_A)C)Wij(-xﬂyvt)+3Xiwj('x’y7t)ZO’ Z?:l anWijz()’ (324)
Wiji(x, ¥, Dlx,=0 = =28inSnj(x" — y, 1). '

By (2.19), we have
wi(x, y, 1) = —4[ ZE(x — &Sy — y, 1) dE
X

—4 E —/85,1' /—, dg’
f2 (x = £)0,50) (€' — y. 1) dE 25

+8(0; — Ayr) /oo / A — &'t — r)S,,j(g/ —y,1)dEdt
—o0JX

=1L +5L+1.
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Using (0, — A)S;; +0;s; = §;;8(x)3(¢), we have
h=— 4/2 E(r — ENASy € — yo1) — dus; & — y. )] dE’
. 4/ AvE(x —E)Su (€ — . 1) dE’
X (3.26)
- 4]2 E(x — Y9250 (€ — v, 1) d&'
—450) fz EGr — £, EGE' — y)d&’

The first term of I» in (3.26) cancels I since AE (x —&’) = 0, and the last term of (3.26)
isw;(x, y)§(r) with

wj(x,y) = 49y, /): E(x —&N0,E(E — y)dE' = 209y, L EE —x)Py(y — &) dE’
=20y, E(x — y*) = —2€;3; E(x — y")
using (2.1). Note that
gix,y, 1) +w;(x,)8(t) = —ij(x)S(t). (3.27)
Using (0, — A)S;; + 0;s; = 8;;8(x)8(t) again, we have
o0
I =83 — Ax/)/ / OnAE Xy, T)Sj(x" =y — & =yt — 1) dEdT
—00 3z
~ o
- 8/ f A xn, T) [a,fsn,- — a,,sj] ' —y —E, —ynt —1)dEdT
—o0 JX
o0
= 8./ / 8I1A(§/a Xn, T)ay%Snj(x/ - y/ - 5/7 —Yn; 1 — T) dg/df
—o0 JX
+ 8/ 8,1A(§/, Xns t)anajE(x/ - y/ - %_/v _yn)d%_/'
b
Denote w; (x, y, 1) = wj(x, y, 1) —w;(x, y)(t). We conclude
o0
Wjx,y, )= 8/ / AE, xp, 1:)83S,1j(x/ —y =&, —y,, t —1)dEdr
—00 J X
—4/ E(X—S/)a,%snj(f/—y»l) (3.28)
b

+8/ BuAGE' s o0 EC — ¥ — &', —yn) dE'.
)

Using 8,%S,,j = — Y ;_, 09,8 and integrating by parts in &; the first two terms, we
get (3.21) for w; (x, y, r). Integration by parts is justified since the singularities of the
integrands are outside of ¥, and the integrands have sufficient decay as |§'| — oo by
(2.10) and (2.4) even for n = 2. This and (3.27) prove the proposition. |
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Remark 3.5. (i) Eq. (3.21) is better than (3.28) because its estimate allows more decay
in |x — y*| + 4/1, i.e., in tangential direction. However, it has a boundary singularity
at x, = 0; see Remark 7.1.

(i1) With Proposition 3.5, the pressure formula (3.2) in the case uo = 0 becomes

n(x,t):/ /n g,y t—s)- f(y,s)dyds
b (3.29)
:/(; /n W, v, t—s)- f(y,s)dyds — A@n Fj?'(x) - fi(v, 0 dy.

The last term comes from the Helmholtz projection of f attime 7 (see (3.13)—(3.14)),
and corresponds to the pressure formula above (2.8) in the whole space case. The
first term of (3.29) shows that 7 (-, ¢) also depends on the value of f at times s < ¢.
There is no such term in the whole space case. This history-dependence property of
the pressure in the half space case is well known, see e.g. [52].

Remark 3.6. (Kernel of Green tensor) Consider

G= {u =Vh e CORYR"), lim h(x)= 0} .
|x]—00
If up € G, then u(x, t) given by (3.3) is identically zero, using integration by parts in
(3.3). The whole thing vanishes because Zj 8ij,-j = 0 and Gj,ly,—0 = 0. Thus G
is contained in the kernel of the Green tensor. In fact, it is also inside the kernel of the
Helmbholtz projection in LY(R"), 1 < g < oo, if we impose suitable spatial decay on
functions in G.

Remark 3.7. (Relation between stationary and nonstationary Green tensors) Denote the
Green tensor of the stationary Stokes system in the half space as G?j(x, y). Forn > 3
we can show

/ Gij(x,y, 1) d1 = G (x, y). (3.30)
R

The integral does not converge for n = 2. The idea is to decompose G;;(x, y,t) =
Gi i (x,y,1) + W;j(x,y,t) and show their time integrations converge to corresponding
terms in [23, (2.25)]. This relation gives an alternative proof of symmetry G?/. (x,y) =
G(J).i(y, x) for n > 3 using Proposition 1.4.

4. Revised Formula for the Green Tensor

In this section we derive a second formula for the remainder term W;; which is suitable
for pointwise estimate. We also use it to get a new formula for the Green tensor in Lemma
4.3,

We first recall the Poisson kernel P(x, &', ) for 9, — A in the half-space R! for
xeRland ¢’ € X,

P(x,&,t)=-20,(x —&,1). 4.1)

The following lemma is based on Poisson’s formula, and can be used to remove the time
integration in the first formula (3.9). It is the time-dependent version of (2.1).
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Lemma4.1. Letn > 2. Forx e R}, y e R" and t > 0,
t
| L re—sopeei—ndgas=ra—yn, ¥ =0\ —nb. 62
z

Note that y* = y* if R", and y* = y if y € R".

Proof. First we consider y € R’. Since u(x, t) = I'(x — y*, t) satisfies
0 — Mu(x,t) =0 for(x, ) € R x (0, 00),
ux',t)y=T(x' —y*, ) =T —y, 1) for(x', 1) € R x (0, 00),
ux,0)=Tkx—y*0) =686(x —y*) =0 forx € R”,

by Poisson’s formula for ; — A in R}, we have
t
/ / P& —y,5)P(x, €1 —5)dE' ds = T(x — y*, 1),
0 J=
Fory e R”, y* e R%. Since I'(§¢' — y,5) =&’ — y*,s),
t t
| [re-yorasi-sais= [ [ re-yores-sias
0 Jz 0 J=
=Tx—y",1=Tkx-y,1).

The combination of the two cases y € R’} and y € R” gives (4.2). O

With Lemma 4.1 in hand, we are able to derive the second formula for W;;.

Lemma 4.2 (The second formula for W;;). For x,y e R} andi, j =1,...,n,
Wij(x, y, 1) = =28in8,;T(x — y*, 1) +28in€;Tpj(x — y*, 1) 43)
_45njci(x,y,t)_4Hij(x7y9t)+vij(x9y,f)7 ’
where
Xn
Ci(x,y, 1) =f / 3T x —y* —2,0) 8 E(z) dZ' dzy, 4.4)
0 Jx
Hij(x,y,t) = —/ 8),jCi(x, y+w,t)o, E(w)dw, 4.5)
R}’l
and
Xn
‘/ij(xa Yy, t) = _Zail’lAj(xﬂ Yy, t) - 4/ / ax,,Aj(x —-Z,Y, I)B,E(Z) dZ/dZn-
0 Jx
(4.6)
Here
Aj(x,y, 1) = aynayj/ G (x,y+w, ) E(w)dw, (4.7)
Wy <—Yn

where G" (x,y, 1) = T'(x — y, 1) — ['(x — y*, 1) is the Green function of heat equation
in R} x (0, 00). Note that Ci(x, y, t) is defined in R}l x R" x (0, 00), and y, is allowed
to be negative.
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Remark 4.1. We can show that C;, H;j, and V;; are well defined using Lemma 2.2.
The x'- and y’-derivatives are interchangeable for C; H;;, and V;;: Bi,Ci (x,y,t) =
(—1)18;, Ci(x, y,t) and similarly for H;;, and V;;.

Remark 4.2. The formula (4.3) is better than (3.9) because the definitions of the terms on
the right side do not involve integration in time. If an integration in time was involved,
there might be singularities at s = 0, ¢ when we use the estimates of K;; and §;; in
(2.20) and (2.10), respectively. Their estimates would be worse and contain, for example,
singularities in x,, for x,, small. The quantity C;(x, f) studied by Solonnikov [46, (66)]

corresponds to our C;(x,0,¢) with y = 0 and he did not study full C;(x, y, t) with
y # Onor Hyj(x, y, 1).

Remark 4.3. The formula (4.3) corresponds to that of the stationary case in [23, (2.36)]:
Wij(x,y) = — (8,-,, - xnax,) (8,,]- - y,,ayj) E(x —y").

Proof of Lemma 4.2. To obtain (4.3), we use the formulae (2.8) and (2.15) and split the
integral of (3.9) into six parts as

o0
f / Kin(x — €'t —5)8,j(§' —y,5)d§'ds =L+ b+ B+ 13+ Is + I,
—00 J X
where

o0
11=—28man,-/ /anr<x—s’,r—s)r(s’—y,sms’ds,
-0 J X

o) Xn
12=—48nj/ / Ox, U / 8nF(z,t—s)8iE(x—%'/—z)dZ’dzn}
-0 JX 0 )

T —y,s5)dE'ds,

o0
=28y [ [ %EG -850 - 9rE - y.5)de'ds
—0 J X
oo
Iy = —28i,,/ / 9,I(x —& t— s)/ 3,0;T (& —y —w, s)E(w)dwdé§'ds,
—0JX R»
e} Xn
Is = —4/ / Oy, [/ / 0nI(z,t —5) HE(x —é’—z)dz/dzn}
—xJz 0 Jz
. U 0.9, T(E — y — w, s)E(w)dw:| dg'ds,
Rﬂ
o0
I = —2/ / REMx —EHS(t —s)/ 9,0;0 (¢ —y—w,s)E(w)dwdé§'ds.
—00JE R”
We use Lemma 4.1 to compute [, I, 14, Is. Indeed, we have
t
I =—2amsn,-/ f 0T (x — &1 — T(E — y,5) dEds
0 Js

t
— Sinbaj / / P&, 1 — )T — y.5)dE'ds
0 >

= 8indnj T(x — Y%, 1) = 818y T(x — ¥*, 1),
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where we used (4.1), Lemma 4.1 and y € R’. And, by changing the variables and
Fubini’s theorem, we have

t Xn
12=—46n,-f /a U /anm—s’—z,t—s)aiE(z)dz/dzn]
0 JX 0 )}

IE —vy,s)dE'ds

Xn t
=— 46,0y, [/ // (/ 0, T(x —& —z,t—y)
o JxzJo )

T —y,s)dE'ds) % E(z)dz'dz,)].
With the aid of (4.1) and Lemma 4.1, we actually get

r X t
I =238,;0y, f / (/ / Px —z,&,t =)L -y, S)dé'dS) 0; E(z) dZ’dZn]
LJO p) 0 JX

=
=28y, / /F(x—z—yﬁ,t)aiE(z)dz/dzn}
Lo Js

.
=280, / / Fx—z—y*10E() dz/dz,,] (since y € R})
LJO =

=28nj/ P =2 =y )G E@E, xp)dz +28,jCi(x, y,1),
>

where C;(x, y, t) is as defined in (4.4).
Moreover, rearranging the integrals and derivatives and using (4.1), we obtain

t
I4=—25m/ / 8,1F(x—$’,t—s)/ 0,0;T (" —y —w,s)E(w)dwd§'ds
0 JZ R~

t
= — 28in0y,dy, [/(; LB,,F()C —E& t—y5) [1.&" rE —y— w,s)E(w)dwdé;"ds]

t
= indy, dy, [fngn </0 /; P(x, &t —TE — (y+w), s)dé’ds) E(w) dwi| .

Hence, applying Fubini’s theorem and Lemma 4.1, we have
Iy = 8indy, dy, U F(x— (y+w), HEw) dw}
Rn
=3inaynay,. |:/ F'(x — (v +w)*, HE(w)dw
! Wp>—Yn
+/ F(x—y—w,t)E(w)dw]
Wp<—Yn
= 8in0y, Gy,. |:/ F'(x — (v +w)*, HE(w)dw
i S
«f <r<x—y—w,r>—r<x—(y+w)*,r>)E<w>dw}
Wp<—Yn

= —8in€;Tyj(x —y*, 1) +8indy, dy; f G"(x,y+w, HEw)dw

Wp<—Yn

= —8in€;jpj(x — y*, ) +8iuAj(x, ¥, 1),
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where G" (x, v,t) =T (x —y,t) — T'(x — y*, 1) is the Green function of heat equation
in R} x (0, 00) and A (x, y,t) is as defined in (4.7).
In addition, by changing the variables, Fubini’s theorem and (4.1), we get

t Xn
15=—4/ / s, [/ f BnF(x—E’—z,t—s)aiE(z)dz’dzn]
0Js 0o Jx

. [/ 8,9, T(E' — y — w, s)E(w)dw] dg'ds
R)l

Xn t
=20y, |:/ / / dy, y; (/ / P(x—z,é’,t—s)F(E’—(y+w),s)d§’ds>
0 z JR”? ’ 0 JX

8 E(2)E(w) dwdz/dzn].
Thus, Lemma 4.1 implies
Xn
Is =20, |:/ / / dy, 0y, T((x —2) = (v + w)ﬁ, 1) 0; E(z)E(w) dwdz/dzni|
0 z JR”?
= 2/ / aynay,r(x/ -7 -0+ w)ﬁ, ) E(, x,)E(w) dwdz
» JR® '
Xn
+2 / / dy,, (/ dy, 0y, M'((x —2) = (y — w)ﬁ, t)E(w)dw) 0 E(z2)d7 dz,
0 p) R~ ’
= 2/ Dpjx' =2 =y, 1) E(Z, x,)d7' + 2Hitj(x, v, 1),
)

where we've used I'(x’ — 2/ — (y +w)*, 1) = ['((x’ — 2/ — y) — w, 1), the functions T
is defined in (2.8), and Hl% is expanded as

Xn
HE (x, 3, 1) = / f By, By, (/ F((x —2) — (v +w)*, DEw) duw
' 0 ) Wp>—Yn
+/ F((x—z)—y—w,t)E(w)dw) 0, E(z)d7 dz,
Wp<—Yn
Xn
:/ f dx,, Dy, Dy </ M(*—z"—y)—w, )E(w)dw
0 z R®
+/ Gh’(x —z,y+w,t)E(w) dw) 8, E(2) d7' dz,
Wp<—Yn

Xn
= H;j(x,y,1) +/ / O, Aj(x —2,y,1)0; E(2) d7 dz,,
0 x

where H;; is defined in (4.5).
For I5 and I, a direct computation gives

s =—26nj/):aiE<x—é)r(s’—y,r)ds’

=—2anj/ PO =2 =y DGEQ, xy)d7,
)y
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and
I = — 2/; E(x —&) Aj\en 0,0;T (" —y —w, 1) E(w) dwd§’
——2 [ HEG =€) € =y e
=— 2]2 Tj(x' =2 =y, ) GE@, xp)d7.
Combining the above computations of Iy, - - - , I, and noting that I3 cancels the first

term of I while I cancels the first term of 15, we get

6
D I = 88T — 5 1) +28,,Ci(x, y. 1) — Sine; Tnj(x — y*. 1)
k=1
+8in A (x, 3, 1) + 2Hf (x, 3, 1).

This completes the proof. O

We now explore a cancellation between C; and H;; in (4.3), and define
Hij(x,y, 1) = Hij(x,y, 1) + 8, Ci(x, y,1). (4.8)
Then (4.3) becomes

Wij(x, y, 1) = =28in8,;T(x — y*, 1) +28ip€,;Tpj(x — y*, 1)

e 4.9)
—4H;j(x,y,)+Vij(x,y,1).

This formula will provide better estimates than summing estimates of individual terms
in (4.3). See Remark 5.2 after Proposition 5.5.
We conclude a second formula for the Green tensor.

Lemma 4.3. The Green tensor satisfies

Gij(x,y. 1) =8 [T(x —y,0) =T(x —y*, )] + [Tij(x — y. 1) — ¢ Tjj(x — y*, 1)]
_41’;l'j(xvy7t)+vij(xayvt)~ (410)
Proof. Recall (3.10) that G;;(x, y,1) = S;jj(x —y, 1) —€;8;;(x —y*, ) + W;; (x, y, 1).
By (2.8) and (4.9), we get the lemma. O

5. First Estimates of the Green Tensor

In this section, we first estimate FI, 7, then estimate V;;, and finally prove the Green
tensor estimates in Proposition 1.1.
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5.1. Estimates of 1-7,]

Lemma 5.1. Fori, j = 1,...,n, we have

Hyj(x, y,0) = =Dyju(x, y,0) if j <n, 5.1)
Hin(x’y’t):Zﬂ<nDiﬁﬁ(xvyat) l‘f‘]:f’l, ’
where form =1, ...,n,
Xn
Digm(x,y,1) = / / T mn(x* —y — 2%, 1)  E(z) d7'dzy. (5.2)
0 z

Proof. By definition,

Hij(x,y, 1) = —/ Biji(x,y+w,t)8nE(w)dw
Rn

= —/ dy; (/ nf T(x—(+w)* —z,00,E(2) dZ/dZn>
R® 0o Jx

o E(w)dw.

Integrating by parts in w,, and applying Fubini’s theorem give, for j = 1, ..., n,
Xn
Hyyn = [ [, [ Brat -y - - wnEwdeaEe dds,
0 Jx R"

Xn
== [ [orumet =y = 2 00 E@ iz = ~Dijatr. .0,
0 )
This proves (5.1) when j < n. For j = n, we use the fact that —AE = § to obtain

H,-n(x,y,t)z—/ 0y, Ci(x, y +w, )0, E(w)dw
R}l

n—1
=—Ci(x,y. 1)+ 2/ 3y, Ci(x, y +w, DIBE (w) dw.
Rn
p=1

Using the same argument above, we get
n—1
Hin(x, y,1) = —=Ci(x, y, 1)+ Y Digg(x, y,1).
p=1
This proves (5.1) when j = n. O
The following lemma enables us to change x,-derivatives to x’-derivatives.

Lemma 5.2. Leti, j,m =1,...,n. Fori <n,

Ox, Dijm(x,y,1) = 0x; Dpjm(x, y, 1) +f BiaijB(x* —y—w,t)o, E(w)dw,
Rn
(5.3)

and fori = n,

n—1
1
8annjm(x, y, 1) =— § BXﬂDﬁjm(-xs v, 1) — E anl—‘jm(x;’< =y, 1). (5.4)
B=1
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Proof. After changing variables, D;j,, becomes

—Yn
Dijm(x,y,1) = / / 3iTimn(z, 1) HE(x — y* —2%)d7'dz,.
—Xp—Yn J X

Fori < n we have

—Yn
Dijm(xa Yy, t) = ax,- f a]an(Z, t) E(X - y* — Z*)dZ/dZn
z

—Xn—Yn

Hence
8x,,l)ijm()cv Y, 1) = 0y, [ 8jrmn(Z/v —Xn = Yn, I)E(X/ - y/ -7, 0) dz’
x

—n
+3xi/ f 8ijn(z,t)8,,E(x—y* —z*)dz/dzn
—Xp—yn JZ

=1+ axi Dnjm(x, v, 1),
where
I =0, / </ iz —w', =Xy — yp — wp, O E(w) dw)
2 n
EG' —y —7,0)d7.
After changing variables £’ = x’ — y' — 7z’ and applying Fubini theorem,
I :/ (ax,./ jou L (x' —y —& —w', —x,
n E
—Yn — wp, DE(E',0)dE") 8, E(w) dw

= / dx; dy; Ay, BX™ —y — w, )3, E(w) dw
Rn
:/ 0i0j0m B(x* —y —w, )3, E(w) dw

using i < n again. This proves (5.3).
For (5.4), we first move normal derivatives in the definition (5.2) of D, to tangential
derivatives. Observe that, using 9; "y, = 9,1 jm,

e—04

Xn
Dyjm(x,y,t) = lim |:/ f 0, Cim(x* —y — 2%, )0, E(2) dz/dzni|
e P
= 1ir18 [/ Cim(x' =y =2/, =y, )0 E(Z, x) dZ’
e—>0, | Jn

_ / Cim =Y =2/ —%n — yu + £ DRE( ) dZ
>

Xn
_/ / Cim(x* —y—2", Z)B,%E(z) dZ/dZn] )
5 X
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by integration by parts in the z,-variable. Using the fact that —AE = §, we obtain

—(n+wn )2

Danl(xv yvt) :a)’ja)’mf e & 8nA(x/_y/_w/aan)E(w)dw
Rl‘l
(xp+yn+wn )2
— 3y, By, /R e T 8, A — Y — w04, O E(w) dw + J,

where

n—1 Xn
J = Z lim / / Tj(x* =y — 2%, DFE(z) d7'dz,
8 e )]

—0
1

n—1 .x,
=3 [ [t =y - s
pm1/0 U=
by integration by parts in the z’-variable. Note that

1
AR, 04, 1) = lim / TG’ —7,0,0)0,E(, e)d7 = -3 (', 0,1)
X

e—04

2
Gen+yn+wn)

since —20, E (x) is the Poisson kernel for the Laplace equationin R}. Usinge™ " 4
Fx'—y —w,0,1)=Tx* —y—w,1), we get

—(n+wn )2

Dyjm(x, y, 1) = dy,dy,, / e A AN —y —w, x,, HEw)dw
R}’l

l *
+ 5 Coj(x™ =y, 1)
n—1 Xn
+ Z/ / Aplmj(x™ —y — 2%, 1)0E(2) dZ'dz,. (5.5)
0o Jx
p=1

In this form we have moved normal derivatives in the definition (5.2) of Dy, to tangential
derivatives. Consequently,

ax,l Dnjm(xv Yy, t)

—(yn+wn)2 2 / ’ / ] %
= ayjaym e & 0, Ax" —y —w,xn,t)E(w)dw—zanij(x —y,1)
Rn
n—1
+ Z/ OpTmj(x" =y =2/ —yu, DO E(Z, xp) d2’
p=17%

n—1 .y
- Z/ / 90T (x* —y — 25, N E(2) d7'dz,
pm170 Uz

*(}’n*wn)z 2 / / / 1 *
= ay,aym e 0 A(x" —y —w,xn,t)E(w)dw—Eanij(x -y, 1)
; R?



1326 K. Kang, B. Lai, C.-C. Lai, T.-P. Tsai

n—1
('n+wn)2
+) ayjaym/ e AR — Y — w, iy DE(w) dw
R?l
p=1

n—1

- ZaXﬂDﬂjm(-xv Vs t)
p=1

The first term cancels the third term since A A(x,t) = 0 for x, > 0. This
proves (5.4). O

Remark 5.1. Note that Lemma 5.1 and (5.4) imply
S O Hij(x, v, 1) = L €0, T (x — y*, 1) — £ 8,8, (x — v, 1),

which is equivalent to Z?:l Ox;Gij(x,y,1) = 0 using Lemma 4.3. Since we will use
(5.4) to prove (1.12), the property Y ', 3y, Gij(x, y, t) = 0 cannot be used to improve
(1.12). However, we will use it to prove (1.18).

The following lemma will be used in the x,-derivative estimate of Proposition 5.5.

Lemma 5.3. For B(x, t) defined by (2.3), for 1, k € Ny,

_ L+ 8 log (Biol] + )
~ (x)l+n71<xn>k '

(5.6)

/ A9 B(x — w, D3, E(w) dw

Note in (5.6) 8xolx’| =0 for k > 0.

Recall that 85{,8};3 satisfies (2.5)—(2.6) if [ + n > 3, which is invalid if / = 0 and
n=2.

Proof. We will prove by induction in k. First consider £ = 0 and full 9 E instead of just
9, E. Change variables and denote J = [, 055! B(w, DIE (x — w) dw. By (2.5),

e ,
e ) () x — ]

which is bounded for all x. We now assume |x| > 10 to show its decay. Decompose
R” to 4 regions: I = {w : |w'| > 2|x|}, I = {w : |w'| < 2|x|, |w,| > |x|/2}, I =
{w:|x|/2 < |w'| < 2|x]|, lwu| < |x|/2}, and IV = {w : |w'| < |x]/2, |w,| < |x]/2}.
Decompose

J = (/+/+/ +/ )(af;lB)(w, DIE(x —w)dw = Jy + Jo + J3 + Ja.
1 II III v

Using (2.6),
_ e—w,%/lo _ e—w,%/lo C
I Tn—1 |y _ one1 s pr A v
1wl [x — w] [w|>2]x| W] [w’| | x|
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Also by (2.6), and with 7/ = x" — w/,

e—w,zl/lo
|J2|5/ st - dw
m X[ e — w|"
1

efwﬁ/lo
d7' dw,
/z'|<3|x| (Jxn — wy| +12/H"!

St |
I g 1= 112

1 3|x]| rn—2 9
= [+n—1/ / o dre” P dw,.
|x] lwalzlxl/2Jo (X — wal +7)

3lx]
[xn—wn|*

1 3 1
|J2|S—l+ 1 f <1 + log+ |X| ) e_wﬁ/lo dwns —.
[ [0 S 1x1/2 |xXn — Wl [x]+n

Xn—Wn
[x—wl"

2
g [ O e
~h

1 (X — 'l + | — wa )"

1 7w2/10 3|x]| rn72
< —|x|l+n—l [Xp — wyle”"n —(|x o drdw,
R 0 n — Wp
1 o min(|x, — wyl, 3|x)* !
L i Mot P
|x|+ = IR |x, — wy|"
1
<

N|x|l+n71'

By Lemma 2.1, the inner integral is bounded by 1 + log,,

For J3, if we have 0, E(x — w) ~
2.1,

in the integrand, using (2.6) and Lemma

If we have dg E(x — w) with 8 < nin J3, and if n > 3, we integrate J3 by parts in wg,
J3 = / 32 B(w, DE(x — w) dw +/ A B(w, DE(x — w)dS,,
11 r

where I' = {(w/, wy) | W] = |x|/2 or |w'| = 2|x], |w,| < |x|/2} is the lateral bound-
ary of III. Now using (2.6) and that [x — w| > c|x|on T,

3] </ R /e_wg/m L s
3| =< w +
m x|y — w|r2 r x|+l x — w27

</ e—w%/lO </ dz7 )d [e—wﬁ/l() 1 Js
N —_— T— Wy + T T T o5 GPw
lwal<lxl/2 X[+ 11<3)x] 121772 r =t x|n=2

1

~ |x|l+n—l '

If B < n = 2, integration by parts does not help. Directly estimating using Lemma 2.1
gives

1 3lxl 1
|J3|§Tf e—wg/m/ ——————drdw,
|| [wnl<lx|/2 0o (xp —wul+r)

5%/ o~ wa/10 <1+10g i) dw,.
|X| " [wn|<|x|/2 |)Cn - wn|
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If |x,| > 3|x]| so that |x, — w,| > £|x|, the integral is of order one. If |x,| < 3|x|
so that |x’| > c|x|, the integral is bounded by log (x’). Thus

1
|J3|§W (1+8n210g (x)).

Finally we consider Jy4 in region IV. Denote I' = {(w’/, wy,) : |w'| = |x]/2 > |wy]|}
the lateral boundary of IV. Integrating by parts repeatedly,

l
Jy = / B(w, NIE(x — w)dw + Z/ af;,”B(w, D8P E(x — w) - xp(w)dSy
v —AJT

where x, are uniformly bounded functions on I' depending on multi-index p. By (2.6),
that |[x — w| > c|x|]onIV and I', and |w| > c¢|x| on I', and Lemma 2.1,

2 2
e~ Wi /10 eV /10 1
I 5/ e / ds,
| | v (w)n 2 |x|l+" Z r |x|l p+n—2 |x|p+n 1

e—w,z,/lo dz' e—w,z,/lo 1
S Tin s ) dWn + s IS0 S —m
lwal<lxl/2 %] 12/]<31x| 12’1 rlxl x|

If n = 2, we do one less step in integration by parts,

Js = / du B(w, DI 0E(x — w) dw
v
-1
+ Z/ Ol PB(w, 1) 97, 0E (x — w) - xp(w)dS,
r
=0

Thus for n = 2, by (2.6) and Lemma 2.1,
e~V 2/10 —w2/10 1
|J4| S/I‘V |w| |x|l+” 1 +Z/ |x|l p+n— 2|x|p+n ldS

—w2/10 |x]/2
5/ ez+—1 </ & )dw,,+ l41-—1
[wnl<lxl/2 X" 0 lwy| +r ||+
1 1
’ST <1 +/ e_wﬁ/lo (1 +10g |X| >dw,,) 5 Olg+<x;>1 .
||+ [wnl<x|/2 |wy | x|+

Unlike log (x’) for J3, we need log (x) for Jy.
Summing the estimates, we conclude for k = 0, for all x € R" and n > 2,

1 + 6,2 log (x)

<x)l+n—l 5.7

/ I B(x — w, l)aE(w)dw‘ <
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Suppose now k > 1 and (5.6) has been proved forall k' < k—1.Thanksto —AE = §,
we can reduce the order of the x,,-derivative in the integral as

J= / @19k BY(x — w, )3, E(w) dw
Rn

n—1
=@ B)(x, 1) — Z/ @ 95 By, BY(x — w, 1)dg, E(w) dw.
R7
Bi=1

If k =1, (5.6) follows from (2.5) and (5.7),
1 + 6,2 log (x)
(x)l+n
N 1 48,2 log(|x| +e) - 1 48,2 log(|x,| +e)
™ (xytnt (xl+e)f ™~ ()= (x| +e)

IS8 B(x, D]+

efx,%/lo

In the last inequality we have used that for m > 1
f()=t""logr isdecreasingint > e. (5.8)

If k > 2, by integrating by parts, the second term becomes
/Rn @408 9y, B)(x — w, 1)dp, E(w) dw
:f (aif‘af;zaiﬁl B)(x — w, D3, E(w) dw.
Rn

By (5.6) for kK’ = k — 2, and (5.8) withm = 2,

1+ 68,2 log (x)

IS5 8 B, D+ — s
X Xn <)C)l+n+1 ()Cn>k 2

—x2/10
56 . 178n§log(|x|+e) 51+;3n21(1)g(x,2)‘ -
) )T (] + R 2 T () )
Lemma 5.4. For B(x, t) defined by (2.3), for 1, k € Ny, for § < n,
1+ 8,2 log (Sg<11x'| + [ xnl)
I+1 qk _ < n =
/R” 0y 0y, B(x —w, g E(w) dw‘ ST )P (D) 5.9)

Note in (5.9) S<1|x'| = 0 fork > 1.

Proof. The case k = 0 is proved in the proof for Lemma 5.3. When k > 1, we integrate
by parts

J= / I B(x —w, DIgE(w)dw = / I agB(x — w, DI, E(w) dw.
R~ R~

By Lemma 5.3,

1+ 8p210g (Sg<1|x'] + |xp])

JI<
IS (o)1 (xR
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The following is our estimates of derivatives of D; .

Proposition 5.5. Forx,y e R}, I, k,q e No, i, m =1,...,n, and j < n, we have

1+ puép2log (v|x" — ¥'| + x5 + yu)

(x — y*)”]”"_“ (xn + yn)? (yn)?

19, 8% 3% Dyjm(x,y, DIS

X',y Vxn

, (5.10)

where 0 = (k + 8mn — 8in — D, t = 1 — 850 — 8k18in, and v = 8408m<nbk(1+5;,)-

Remark 5.2. By a similar proof, we can show

1.2
e 30

oL, /a 9 Ci(x,y. DI S - (5.11)

l+nfl< g+1’

) X+ yu) K ()

whose decay in x” is not as good as (5.10) since 9, in the definition of C; has an
additional 9, derivative than 9;I";,, in the definition of D;,,. This is why formula (4.9)
for W;; is preferred than (4.3). It is worth to note that the main term of G;"j in (1.9) is

closely related to 9y, C; (compare (1.16)). Henceforth, their estimates (1.10) and (5.11)
are similar.

Proof. 9y yr, dy,-estimate: Recall the definition (5.2) of D;jn. Changing the vari-
ables w = x — y* — z after taking derivatives, and using j < n,

3% 0%, Dijm(x, y, 1) = f A T (w, D) B E(x — y* — w)dw
B I

up to a sign, where I[1 = {w € R" : y, < w, < x, + y,}. It is bounded for finite
|x — y*|, and to prove the estimate, we may assume R = |x — y*| > 100. Decompose
I1 = I1; + I1, where

M =N {jwl < 3R}, Mh=Tn{wl>3R}.

Integrating by parts in IT; with respect to w’ iteratively, it equals

=/ (34 Tun(w, 1)) 3G Ex — y* — w) dw'dw,
I

+Zf

l
81799 Ty, 1)) 0P E - xp(x — y* — w)dS,
N{|w|= *R}

+f (12"08, Do, D) BEG —y* = wydw = h+ b+ 1,
I,

where y, are bounded functions on the boundary. Estimate (2.10) and Lemma 2.1 imply

Xn+Yn 1 ,
PABS dw' dw,
YV ro-1 (JW'| + w,, + 1)4+1 RI+n

1 XntYn 1 X
S dw, < " .
™ Rl /y (wp + DAL~ Ry, 4+ 1)4 (x + Y + 1)
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For I, estimate (2.10) gives

1
|I2| < Z/ ]+q p+n |x_y _w|n+p ldS

I=3R (W

1 o 1
~ Z R!*+q—p+n Rntp—1 R ~ Rl+qtn
p=0

Using the estimate (2.10) and Lemma 2.2,

1 1
EIS / 7 i T dw
1_[2 (w) +g+n+ |x —_ y* _ wln_
1

Xn+Yn
<
ORIt/ /) /R (w'| +w, + D2 (" =y = w']+ (% + yn — )"
1

W2 )2 R
S I+q+n+1/2 / <R Z+R7Y log )dwn
R Yn (xn + yn — wp)

Xp R 1
~ et (1“"% )<W

noting |x’—y’|+wy+1+x,+y, —w, ~ R.Therefore, we concludethatfori,m = 1,...,n
and j < n,

dw'dw,,

S S
(x — y*) I (y,)e

e 0y, -estimate: Note j < n always. Also note that j and m in D;;,, are not changed in
(58.3)and (5.4). For k > 1 and i < n, by (5.3) and Lemma 5.3,

10, 0%, Dijm(x, y, DI S (5.12)

0y 0 0%, Dijm Cx, y, D005 7105, Dajin (x, 3, 1)
LN/

+ x — y*>l+n+1—6mn (xn + yn)k+‘7_1+5mn ) (5.13)

where
LN =148 log (lx" — y'| + X0+ Yu)s V= 80(rg—1+8mm) = Sk18q08m<n-

For k > 1 and i = n, by (5.4) and (2.10),

0 0 8%, Dujm (x, y, DS0L,05 710, Dpjm (x, y, 1) +

Y T Xn ~Yx',y

W, (5.14)

where 8 < n.The proof of (5.10) is then completed by induction in k using (5.13), (5.14)
and the base case (5.12). O

Proposition 5.6. For x,y e R", t > 0,1,k,q,m € No, i, j = 1,...,n, we have
1L, 8k 8¢ aM H;j(x, y, 1)

X',y Y xn
_l+ude [10g(v|x/— ’|+xn+yn+f>—log(f>] (5.15)
: R e e (C AR LS J O S B

whereo = (k_ain_(sjn)+: w = 1=(8x0+8k18in)Smo, and v = 8q05jn3k(1+8,-,,)8m0+8m>0-
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Proof. From (5.1) and (5.10),
1+ 8u0log (v|x" — y'[ + X, + yn)

a, ok ol Hij(x,y, DIS : 5.16
OO O 3 G5 3e D S = (e 5 () 410
with corresponding o, u and v. Note that H; ; satisfies the scaling property
1 i
Hz](x th) - _n (\/— \/— ) (517)

Therefore, (5.15) can be obtained by differentiating (5.17) in ¢ and using (5.16). Indeed,

/ k ad am A" _ 9\ M 1+k+q+71 i k q X y
al, y/axnayna Aijey.0 = (5)" (=3 3;« s %H (7 7 !
~ l+k+q+n xp )p 1 k 11 X
Here we use % to indicate a total derivative, and BXp for a partial derivative in that

position, e.g., %(f(ax,by)) = ady f(ax, by). Note that %8;(,, and %Byp do not

change the decay estimate no matter p < n or p = n, except that wetake u = v =1
when m > 0 for simplicity. This completes the proof of Proposition 5.6. |

5.2. Estimates of Vj;.
Lemma 5.7. Let V;j(x, y, t) be defined by (4.6), x,y e R}, t > 0. Fori < n,
Xn
V[j(xa))a I)ZZGJ‘/ / 8anm((xn_Zn)enaw»t)
0o Jrr

O E(w+x" —y" +zpen) dwdzy. (5.18)

Fori =n,

Vij(x, y, 1) = —2€; Z/ / G" (X0 — zn)en, w, 1)

B<n
ajaﬁE(w+x’—y*+znen)dwdz,,. (5.19)

Proof. First of all, by changing variables w = (y + w)™* in definition (4.7),
Aj(x,y, 1) = dy,0y, /R G (x, w*, HE@* — y)dw
= —dy,y, /R G" (x, W, E (i — y*) db (5.20)
= —dy, fR GM (x, W, )0, E(D — y*) db.

Decompose Vi (x, y, 1) = Vjj1(x, y, )+V;j2(x, y, 1), where Vi 1 (x, y, 1) = —=28;, A
(x,y,t)and

Xn
Vija(x,y, 1) = —4/ / A, Nj(x — 2, y, D E(z) dZ'dzy. (5.21)
0 by
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If i < n, integrating by parts,
Xn
Vijo(x, y, 1) = 4/ / 0,0x, A j(x —z,y,DE(z)dZ'dz,
0 JE
Xn
= —40y, / / O, Aj(x —z,y,)E(2) d7'dz,.
0 JZ

From the third line of (5.20), changing variable w = % —x’ and using G (x, w+p’, t) =
G"(x —p/,w,t)forany p’ € %,

Aj(x,y, 1) = =0y, Ayl G (xpen, w, I Ew +x — y*) dw. (5.22)

Using (5.22),
Vija(x, y,1)
Xn
= 48)‘1' / / axn (ayj / Ght((-xn - Zn)en, w, t)anE(w + -x/ - Z/ - y*) dw)
0 Jx R
E(z)d7dzy

Xn
= 28)(,' / 8xn8y,' / Ght((xn — Zn)en, W, 1)
0 - JRY

+

(2/ Ew+x —7 —y*)E(z)dz') dwdz,.
)

Using the stationary Poisson formula (2.1), w +x’ — 2/ — y* €e R? and E(z) = E(Z’ —
(znen)),

Xn
‘/l'j,Z(x? Vs t) = _zaxi / axna}’j / Ght((-xrl - Zn)en’ w, t)
0 R

Ew+x" —y*+z,e,)dwdz,

Xn
= —2/ ayj/ 3y, G" (X0 — zn)en, w, 1)
0 R!

GEwW+x —y*+z,e,)dwdz,.

(5.23)

Since V;j1 = 0 wheni < n, we get (5.18).
Ifi =n,

Xn
Vijoalx,y, 1) = —4/ / O, A j(x —2,y, )0, E(z)dZ'dzy.
0 JX

From the second line of (5.20), changing variable w = % — x’ and using G" (x, w +
Pt =G"(x —p,w,t)forany p' € %,

Aj(x,y, 1) = —8yn8yj/ G" (x, W, NE@ — y*)dw

R* (5.24)

= —dy,dy, / G" (xpen, w, NE(w +x" — y*) dw.
RY
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Using (5.24),

Vijo(x, v, 1)

Xn
24/ / Ox,, <8Yn8)’j/ Ght((xn _Zn)en’w’l)E(w'*'x,_Z/_y*)dw)
0 Js R?
3 E(2)dz'dz,

= 2/ ’ Bx, Dy, Dy, / G" ((xy — z0)en, w, ) (2/ Ew+x" —z7 —y"3,E(z) dz/) dwdz,.
0 R )
By (2.1), one has
2/ Ew+x' —7 —y90,E(2)d7 = 2/ E(@ —(w+x" —y))o,E(zne, — 7)) d7
)] D)
=—Ew+x" —y*"+2z,e,)

and

Xn
‘/isz(‘x’ y’ t) = _2/ axn ayn ayj / Ght(('xn - Zn)en» w, t)
0 R}

+

E(w+x" —y*+z,e,)dwdz,

Xn
= _2/ 8yj / aanht((xn — Zn)en, W, )0y
0 R"

E(w+x" — y*+z,e,) dw dz,.

(5.25)

Therefore, forall 1 <i, j < n,includingi = n or j = n, we have (5.23). Integrating
(5.23) by parts fori = n,

Vija(x, y,1)

Xn
_ 26/./ / 8, GM (Cn — zn)ens w. 1) 300 Ew +x" — y* + znen) dw dzy
o Jr:
Xn
= —2¢; / / 3znGht((xn —Zn)en, w, 1) ;0 E(w +x" — y* + zpe,) dw dzy
0o Jrr
= —2ej/ G" 0, w, 1) 0 E(w+x —y*)dw
RY

+26j/ Gh'(xnen,w,t)ajanE(w+x’—y*)dw
Rn

+

Xn
+2€j/ f G (% — zn)en, w, 1) JOTE(w +x" — y* +z4e,) dw dzy
o Jr?

Xn
=0—Viji(x,y,1)+2¢ / / G ((xy — zn)en, w, 1)
o Jrr

Z BjB,%E(w +x =y +z,e,)dwdz,.

B<n

Then (5.19) follows from the above equation and 8,%E =-> B<n 8§E , completing the
proof of the lemma. O
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Proposition 5.8. Forx,y e R}, t > 0,1, k,q,m € No, i, j =1,...,n, we have
1
9% 0%, 35, 07" Vi (x, 3, OIS — = k= (k= 8
M (|x — y*2 +t)7(x2 +1)72
(5.26)

Proof. 9y yr, 3y, -estimate: We first estimate V;;(x, y, 1).
Fori = n and j < n, changing variable in (5.19), it follows that

an(x v, 1) =-2 Z/ / Gh[((xn — zZn)en, (Xn — Zp)en —w, 1)
B<n Wy <Xp—Zn
GjBﬁE(w—x+y*)dwdzn. (5.27)

We split the set A := {w € R" : w, < x, — z,,} into two disjoints sets denoted by
X — *
Al = {w:|w—x+y*| >%}0A,
X — k
Ag = {w:lw—x+y*|§%}ﬂA.

For the region on Ay, it is direct that

G ((tn — zn)en. (xn — Zn)en — w, 1) ;05 E(w — x + y*) dw dz,

AL

0
c *n
lx —y*I"* Jo  Ja,

On the other hand, on Ag, noting that |w| >
we estimate

G ((xn — z0)ens (tn — Zn)en — w, r)\ dw dz,.
(5.28)

@ and using the integration by parts,

9j05G" ((xn — zn)en, (Xn — zn)en — w, 1) E(w — x + y*) dw dz,,
Ag

—clx—v*|2 c
P — y* P <

= ce T
v =y

Fori = n and j = n, as similarly as the case j # n, it split the integral as follows:

Vij(x, v, 1) —22/ / Ght (en — zw)en, (xn — zZn)en — w, 1)

B<n Wy <Xp—2Zn

8,18/3 Ew—x+yY)dwdz,

Xn
=2Z/ / dwdzn+22/ / dwdz,.
pon 0 JAL As

B<n
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The first term can be treated exactly the same way as (5.28), and thus the detail is skipped.
For the second term, we use the integration by parts for only tangential derivatives, which
gives

2 Z/ / 8 Ght ((xn — zn)en, (xp — zZw)en —w, D) 9 E(w — x + y*) dwdz,
Asg

B<n

2 C
< ce Y~y <
|x — y*|"

Fori < n,noting that G ((xp—zn)en, w, 1) = 0if z,, = x,, it follows via integration
by parts in (5.18) that

V(e v, 1) =2ej/ G (nems w, 1) 80, Ew + % — y*) duw
RY

Xn
+2ej/0 '/Rn G" ((xy — zn)en, w, 1) 0,00 (5.29)

Ew+x" — y*+z,e,) dwdz,.
If j = n, then the second term can be treated exactly the same way as the case i = n
and j < n, since 3,%8iE(w +x' = y*+z4e) = — Z;} a,fBiE(w +x' = y*+zpep),

and thus it remains to consider the first term. As before, due to change of variables, we
rewrite it as

—2/ G (xpen, w, 1) 3,0, E(w +x" — y*) dw

= —2/ GM (xpen, xnen — w, 1) 3,0 E(w — x + y*) dw
Wy <Xn

=—2f -~~dw—2/ <o dw.
Ar Ag

Here we split the integral into two regions Ay and Ag with replacement of A :=
{w e R" : w, < x,}. The first term is rather direct that

'—2/ G" (xpepn, xnew — w, 1) 9,5 E(w — x + y) dw| < ————.
Ap |X—y*|”

For the second term, since i < n, by integration by parts, we have
—2/ coodw = 2/ Bw,Ght(xnen, Xpep —w, 1), E(w — x +y*) dw.
Ag As
Therefore, we obtain

‘2[ 3w, GM (xpep, Xnen —w, 1) 9, E(w — x + y*) dw| < ce =Py _ ¥
As
C
Ty
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If j < n, then the first term in (5.29) can be estimated similarly as the boundary term as
the case i < n, j = n, and thus we omit the details. It remains to estimate the second
term in (5.29). Using the change of variables and separating the domain, we have

Xn
2/ / Ght((xn — Zn)en, W, 1)8znawjaiE(w+x/_y*+Znen)dU)dZn
0 "

Xn
=2 / / GH (o — z)em Cin — zn)en — w. 1) Bz, B, 34 Ew — x + %) dw dzy
o Jr :

Xn Xn
2/ f ---dwdzn+2/ / - dwdz,.
0 Ap 0 AS

The first parts is controlled by |x — y*|™", which can be shown as before, and thus we
consider the only the second term. Since i, j < n, via the integration by parts, we obtain

Xn
‘Zf / awj-aw,-Ght((xn — Zp)en, (Xn — Zn)en — w, 1)8z,,E(w_x+y*)deZn
0 Ags

oy — ¥ 2 c
<cem Ty — yHlx, £ ——.
lx — y*|

Hence, fori, j =1, ..., n, we have

[Vij(x, v, DI S o (5.30)

Any higher tangential derivative can be treated similar way as above. Furthermore,
any order of normal derivative for y,, work out as well, with the aid of AE = 0. Therefore,
we conclude that fori, j = 1,...,n,
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1

0L, 9%, Vij(x, v, DI S
e Jy,-estimate:
Fori < n, it follows from (5.29) and G ((x, — zu)en, w, 1) = 0 if z,, = x,, that
9% Vij(x, y, D)

< / 9% G" (xpen, w, 1) ;0 E(w +x" — y*)dw’
Rﬂ

+

+ / 3y, G" (0, w, 1) 85 20,0;0, E(w +x — y*) dw

4.

+

+f Bfn_lGh’(O,w,1)an8j8iE(w+x—y*)dw‘
R!

Xn
+ f / O GM((xn — zn)en, w, 1) 9,00 E(w +x" — y* + zyen) dw dzy
0o Jr?

2
< —%’ N _ ¥k« _ x| n,—k
Se F =y T+ 4 =y She—=y7 1y,

For i = n, using Gh’((xn — zZn)en, w, 1) = 01if z, = x, in (5.19), we deduce

Xn
Ox, Vinj (x, y, D= _26j E / / Oy, Ght((xn —zZn)en, w, 1) ajaé
B<n 0 wy >0

Ew+x" —y*+z,e,) dwdz,.
Thus, it is readily to show that
18, Vaj (x, v, DIS|x =y 7"
Similarly, for k > 2,
O Vaj(x,y, 1)

= —2¢; Z/ NG (xnen. w. 1) ;05 E(w +x — y*) dw

B<n wy, >0

— 2¢; Z/ X 2GM (xpen, w, 1) D050, E(w +x" — y*) dw — - -+
w,

B<n >0

- 26j Z/ o 8anht(xnenv w,t) 8,-8285’2E(w +x = v dw
wy>

B<n

Xn
_26j2/ f aanht((xn — Zp)en, w, 1) 8,8}%83
0 wy, >0

B<n
E(w+x" —y*+z,e,) dwdz,,

and thus,

2 2
k —n —n—1, - —n=2 —n—k
|ax,1an(xv)’y1)| 56’ 8 |x_y*| " +e 8 |x_y*| " +"'+|x_y*| "

< lx =yt
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Therefore, we obtain

k.. <

10y, Vij(x, y, DIS gy (5.32)
where k; = (k — §ip)+.
Finally, Proposition 5.8 follows from (5.31), (5.32), and the scaling property

Vii(eoyit) = =, ( 2 1)

ij Ly, 0)=—=Vij\—7= —F7= 1]

ij y . ij «/? «/;

|

5.3. Proof of Proposition 1.1. We now prove Proposition 1.1.

Proof of Proposition 1.1. We first estimate the Green tensor G;;, which satisfies the
formula in Lemma 4.3. By (2.10) and Proposition 5.6, the estimates of G;; is bounded
_ ltk+gtn —~
by the sum of (]x — y[>+¢)” 2 ", those in Proposition 5.6 for H;; and those in
Proposition 5.8 for V;;. This shows (1.12).
We now estimate the pressure tensor g;. Recall the decomposition formula (3.20)

that g; = —F/.y (x)8(t) + ﬁj in Proposition 3.5. For ¢ > 0, it suffices to estimate

3% 0% 0%, W, (x, y, 1) N—ZS/ / 3K AE, xp, 1)L 00!

<n

Sij(x" =y —&, —yu,t —1)dE'dT
+> 4 / Lok G Ex — Yot S — y. 1) dE’

i<n

+ 8/ P AE xp, 1)L 07 0 E( — Y — £, —y,) dE’
)
=:1+11+1IL

We first estimate 1. Using (2.4) and (2.10), we get

1 1
Igf/ dg'dr
0 Jx f%(|§’|+xn+ﬁ)k+’l (1€ — (X" — Y| + yu + A/t — T)lra+n+]

- (/01/2/;/;2/2){...} dg'dT =: 1) + 1.

We have

12 { |
ms [ ([ 4 i I
N P e N (R S O PN L
Let

= |x — y*[+ 1.
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By Lemma 2.1 (k > d case),

NG 1

|Il|/§f / k+n—1 / / l / [ ldg/
s (18] + x )= 1(E | + 200 + V1) (1§ — (X = Y| + yp + /D)HaH7*

</ 1 1 dé;'/
~ s (E T+ x)H=1 (18 — (X' — y)| + yp + 1)+ :
By Lemma 2.2,
R
ISR 4 soR™ 747" og (x_) + TpoRTaT 1k
n
+ Ry, + 7Ima2

For I and all » > 2, by Lemma 2.1,

1 t 1
I 5/ 1 / d d I
- T 12(|E| + Xy + D ( £ (|E = (" = Y|+ yu + 1 = )lraenl T) §

5/ ; :
= 13 (8| + xp + VDR
t

d /7
(I&" = & = )+ y)H =& — () = y)[> + y7 +1) :

1 1
5/ o dE
5 (€] + 20 + /DR (1§ = (= y)[ + yp)+at
By Lemma 2.2,

L SRITakon=ty Relmamn(y, 4 iy ~ko 1 gk e

Now, we estimate II. Using the definition of E, (2.10) and Lemma 2.2, after integrating
by parts, we get

1 1
I < dg',
| | /\J\/;: (|~’;:/| +xn)k+n71 (|%—/ _ (x/ _ y/)| + oy + \/;)l+q+n+] S

which is similar to /;. Hence

R
1+ 10 <8R~ log <x—> + DRIk RO (x4 )R]

n

i R—k—n+l(yn +¢;)—1—q—2+ R—k—nyn*l*Q*]_

Using (2.4) and the definition of E, we have

1 1
jut s/ 1 o oy 95
2 12(E] + xp + Ok (18— (X = ¥+ yp)tFa
By Lemma 2.2,

1
<2 (akOR—l—‘I—” log

+ Lo R™797 (g + V1) T 4 R_k_"“ylfl*q*]) .

R
Xn + /1
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‘We conclude

oL, ok e B <5 [ s10=—log X ! !
| X',y Y xpn U ¥n w/ ()C, Y, t)|r\/t kOW 0g ; + Rl+fI+”xk + Rk+n—l I+g+1 .
n Yn
This proves estimate (1.14) and completes the proof of Proposition 1.1. O

Remark 5.3. The pressure tensor estimate (1.14) is sufficient for our proof of Proposition
1.4, and can be improved by several ways: One can get alternative estimates by integrating
&’ by parts in all three terms I, II and III to move decay exponents from y, to x,.
Furthermore, we can rewrite the last term III using integration by parts and AE = 0 as

I 8/ 3 AE  xn, DEWX —y =&, —y)d&" if j <n,
= T

Zi<n sz 81'81114(%_/7 Xn, t)aiE(x/ - y/ - é:/’ _yn)dé:/ lf] =n.

6. Restricted Green Tensors and Convergence to Initial Data

In this section we first study the restricted Green tensors acting on solenoidal vector fields,
showing Theorem 1.2. In addition to the restricted Green tensor Gi ; of Solonnikov given
in (1.9), we also identify another restricted Green tensor 6,- j in (1.15).

We then use them to show the convergence to initial data in pointwise and L9 sense
for solenoidal and general u( in Lemma 6.1 and Lemma 6.2, respectively. These show
Theorem 1.3.

Proof of Theorem 1.2. Suppose divug = 0 and ug ,|x = 0. Let
n
ul (x,1) = Z/ Gij(x, y, Duo () dy,
- R
J=17"

n
if (x, 1) = Z/R Gij(x, y, Duo j(y)dy, @y (x,1) 6.1)
j=177

n
= Z[n Gij(x,y, Hug,j(y)dy.
j=17%
By Lemma 4.3,

uf(ron) = fR (M = y.0) = Tl = ", 1) (wo)i () dy

+

+Z/ (Tij(x — y, 1) — €i€;Ti5(x — y*, 1)) (u0) j (y) dy
j=17R: (6.2)

_4Z/Rn ﬁij(x,y,t)(uo)j(y)dy+Z/Rn Vij(x, v, Do) (y) dy
Jj=1 + j=1 +

=1+ DL+13+14.



1342 K. Kang, B. Lai, C.-C. Lai, T.-P. Tsai

Note that /; corresponds to the tensor §;; [I'(x — y, 1) — I'(x — y*, )] in both (1.9)
and (1.15). We claim Ir+I4 = 0. Indeed, since I';;(x — y,1) — €;€;1;;(x — v 1) +

Ti(x,y,1) = / Iy [Tx—y—w, 1) —T(x —y* —w, )] E(w)dw
Rn

+ [—mmayn / G"(x,y+w,)Ew)dw
Wn<—Yn

Xn
—4/ / 0y, (ayn / GMx -z, y+w, HEw) dw) dz’dzn:| ,
0 z Wy <—Yn

by (2.8), (4.6) and (4.7),

n n
L+ly= Z/Rn By, Ty (x, y, ) (uo) j (y) dy = — Z/H;n T;(x, y, )dy,; (uo) j(y) dy = 0.
j=1""5%+ j=1""5+

For I3, by separating the sum over j < n and j = n, and using Lemma 5.1,

I3 = —42/]1@(—&‘,’")(% v, D) (o) j(y)dy — 4/}1@ Z Digg(x,y, t)(10)n(y) dy.

j<n + B<n

Note that
> [ Dune v 00,09 dy
j<n +

-/ 4 ( [ an(x*—y—z*,t)aiE(z)dz’dzn) (o), () dy
n 0o Js

j<n

—TL / : </0 n /2 Pn(x* =y =25 HKEQ) dZ’dZn) By, (o) () dy

j<n

2/ (/ / Con(x* —y — 2%, 09, E(2) dz’dz,,> 3y, (0)n(y) dy
R: \Jo J¥

Xn
_ /R /0 f Bu T (5 — v — 2%, D E(2) d=/dzn (o) (y) dy
" %

= /n Dipn(x,y,t)(uo)n(y) dy.

R!

Hence

I = —4/n Z Dippg(x,y,1t) (uo)n(y)dy.
+ﬁ=]
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Since

n Xn n
> Digplx.y. 1) = / / > 0pTpa(x* — y — 2*, D E(2) d7'dz,
p=1 0 JE oy

Xn n
:/ /Za§ﬂ/ 0T (x*—y—2"—w,1)
o Jrio Rn

E(w)dw d;E(z)d7 dz,

1343

Xn
= - / / (" —y—z2" 00 E(2)dz'dz, = +Ci(x, y, 1),
0 )

where we used —AE = §, (6.2) becomes

> [, Gute v ) ) dy
=17’

(6.3)

= /Rn(F(X =y ) =T —y" 0))ue)i(y)dy — 4/Rn Ci(x,y. 1) (uo)a(y)dy.

This gives (1.15). On the other hand,

Xn
I3 = 4f / / 0L (x* —y — 2", 10 E(z) dz'dz, (uo)n(y) dy
nJo Js
Xn
= 4/ / / D(x* —y =25 00 E(z)dz'dzy 0,(uo)n(y) dy
r:Jo Js

Xn
> / / / D — y — 2% 00 E(2) d2'dzy 3 o) () dy
B<n +J0 z

= —42 /Rn Jip(x,y,1) - (uo)p(y) dy,
B<n® T+

where for § < n
Xn
sp =y, [ [ r6t =y - 0B s,
0 Jx
Xn
= 8xﬁ / / Iz —y* OH%E(x —2)d7dz,.
0 Jx
we conclude that
n
> [ G0, dy
j=17%
= /Rn (C(x =y, 1) = T(x — y*, 1)) (uo)i (y) dy

4% [ dptcnn - i dy.
B<n +

which gives (1.9). This completes the proof of Theorem 1.2.

6.4)
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Remark 6.1. Similar to Theorem 1.2, we have restricted pressure tensors. Let f €
Cg. (R} x R; R") be a vector fieldin R} x Rand f =P f,ie.,div f =0and f,|x =0.
Then

n )
Z/ / gi(x,y, t —s)fj(y,s)dyds
j=17 7 R
n t
=Z/ f§j<x,y,r—s)f,~<y,s>dyds
j=1/-0 RY

n t
:Z/ / g,y t—5)fi(y,s)dyds,
j=1770% RY

where

g_}(-xv y9 t) = (5j11 - 1)8_))] Q(-x9 ys t)v ’g\j(xv ya t) = 6]}’18_))] Q(-xs ys t)v

and
Q(-xs Y, t) = 4‘/; [E(x - 5/)3nr(5/ -y t) + F(_X/ - y/ - %Jv Yns t)anE(E/? xn)] dsl

An equivalent formula of g; appeared in Solonnikov [49, (2.4)], but no g;. Both g;
and g are functions and do not contain delta function in time. Note that g (x, y, 1) =
gilx,y, 1) — dy; Q(x, y, 1). We can get infinitely many restricted pressure tensors by
adding to them any gradient field dy, P (x, y, 7). O

Lemma 6.1. Let ug € Cc1 (@; R™) be a vector field in R} and ug = Puy, i.e., divug =0
and uo nlx = 0. Then foralli =1,...,n,and 1 < g < 00,

ey = ©6.5)

[l_i)IBIJr Huo,i(x) - Z?:l f]Rﬁ Gij(xv Y, t)uO,j(y) dy

Note that the exponent ¢ in (6.5) includes co but not 1.

Proof. Choose R > 0 so that K = {(x’,x,,) eR": x| <R,0<x, < R} contains
the support of ug. Since ug is uniformly continuous with compact support inside K,

H/" [(x =y, Duo,i () dy — ug,i (x) + [n C(x* =y, Dug i (y)dy -0
R LYRY) + L{(RY)
(6.6)
ast — 0, for all i. In view of (6.3), to show (6.5), it suffices to show
lirg sup [[vi (-, Dl Larry =0, (6.7)

— n
+xeRY

where

vi(x, 1) = /R” Ci(x,y, Duo.n(y)dy.
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Note that |ug ,(y)| < Cyy, for some C > 0, since ug ,|x = 0 and ug € Cc1 (@). Using
estimate (5.11) for C;, we have

‘,2
i x. )] / < Cynd
vi(x, )] < T Cndy
K (yn + /1) (1x — y*1+1)" (6.8)
1 i
5 e_m dy :/ f(x —y,l)g(%t)dy,
/K (Jx — y|+ /1)1 R?

where

b
g0, 1) = e W Lx(x).

1
N CFVATY

By Young’s convolution inequality,

lvi G Ol La@ey SN * )G DllLawny < LFCONr@nllgC, OllLr @

where
1 1 1
—+—-=—+1, 1<p,q,r <oo.
p r q

_n_
n—1°

Gl ( / ! d )Up o/
Y ny — _—— Z = .
LP(R™) - (|Z|+\/;)(n_1)p

Next, we compute L"-norm of g. We need 0 <

We first compute L”-norm of f.If p >

1 1
S ES h <
» q<lsotat1 r < oQ.

R 2 R )
_fn _ Jioo_u”
/ |g|r = / / e 30 dZ/dZn =CR" 1\/;/ ' e 3 du § \/;
R® 0 B;e 0

1
Hence [|g(-, D)l S V17, and

o (p—1)+1 Liivn=D(1=1
1 ) Dlle S V50T a5t

To have vanishing limit when ¢ — 0., we require 5 +1+(n—1) (% — 1) > 0.

2 min(g, %)) so that all conditions

When g € (-5, oc], we can choose p € (527, =

on p,

n 11 1 1
, 0<——=<1, —+1l+(n=D(==1)>0
n—1 P 9 q p

pP >

are satisfied. This shows (6.7) for all ¢ € (%5, oo].
For the small g case, let

uj (1) = /R Gy, v, Do () dy,
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where G;"j is given in the (1.9), and is the sum of the last terms of (1.9). It suffices to
show

lim. Jui e 0 gy =0

2

Cy? _n .
By estimate (1.10), |G};(x, y, D) < e (Jx* — y[*>+¢) 2. For 1 < g < oo, using
the Minkowski’s inequality,

1
; < G! Tax )’ d
”u[ (x’t)”L‘j.(Rﬁ) ~ R R jj(x’ y’t) X |M0(Y)| y

q
dx _oi
5/ / ——g | ¢ 7 luo(y)ldy
R% R% (Ix*—y|2+t) 2

R 2
1 _ S
5/[ —— ¢ ' ddm
0 ISR (y, + /1) 4

1(1_ng=D R/t 1
) [ 1 e,
0

n

where y, = /tz,. Therefore, if 1 < q < ;59 then the right hand side goes to zero as
t — 0;.
The case ¢ = -5 can be obtained using the previous cases and the Holder inequality.
This finishes the proof of Lemma 6.1. O

Remark 6.2. In the proof of Lemma 6.1, we have used G, ; for large g and Gi j for small
q. We do not use G;; for small ¢ because the estimate (6.8) for v; does not have enough

decay in x. We can not use Gi j for g = 0o because, although the pointwise estimate of
u,’.‘(x, 1) using (1.10) converges to 0 as t — 0 for each x € R”, it is not uniform in x. In
contrast, it is uniform for v; thanks to |ug ,(y)| < Cyy.

Lemma 6.2. Let uy be a vector field in R, ugp € LI(R}), 1 < g < oo, and let
wi(x, 1) =35y Jgn Gij(x, ¥, Duo,j(v) dy. Then u(x, t) — (Puo)(x) in LI (RY).
This lemma does not assume u# = Pu, and implies (1.7).

Proof. Since the Helmholtz projection P is bounded in L?(RR}), we also have Pug €
L2(R?}). For any ¢ > 0, choose a = Pa € Cfo(@; R™) with |la — Pugll e < e.
Such a may be obtained by first localizing Pug using a Bogovskii map, and then
mollifying the extension defined in (3.4) of the localized vector field. Let v;(x, 1) =
Z?:l fRﬁi Gij(x,y,1)aj(y)dy. By Lemma 6.1, there is 7, > 0 such that

v, 1) —allpawny <€, Vi e(0,1).
By L? estimate (9.1) in Lemma 9.1, ||u(t) — v(#)|l;¢ < C ||Pug — all « < Ce. Hence
lu(®) —Puolipe < llu(®) —v@)lLe +llv(®) —allLqs +lla —Pugllqe < Ce
fort € (0, t;). This shows L?-convergence of u(t) to Puy. O

Proof of Theorem 1.3. Part (a) is by Lemma 3.4. Part (b) is by Lemma 6.2. Part (c) is
by Lemma 6.1. O
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7. The Symmetry of the Green Tensor

In this section we prove Proposition 1.4, i.e., the symmetry of the Green tensor of the
Stokes system in the half-space,

Gij(x,y,1) = Gji(y,x,1), V¥x,y e R! VteR\{0}. (7.1)

In the Green tensor formula in Lemma 4.3, this symmetry property is valid for the
first three terms but unclear for the last two terms —e;e;T';; (x — y*, 1) — 4H;; (x, y, 1).
To prove it rigorously, we will use its regularity away from the singularity, bounds on
spatial decay, and estimates near the singularity from the previous sections. For example,
without the pointwise bound in Proposition 1.1, the bound (7.4) is unclear, and it will
take extra effort to show their zero limits as € — 0. '

Denote Glyj(z, 1) = Gij(z,y,7) andg;'(z, 1) =gj(z,y, 1) =z, 'L')—F}(Z)S('C)
by Proposition 3.5. Equation (3.1) reads: For fixed j = 1,2,--- ,nand y € R},

n
afGl?’j - AZG[yj + azl.gjy. = 8;j8y(2)8(1), Z 3z, Giyj =0, (z,7)eR! xR, (7.2)

i=1

and Gl)] (z/,0,7) =0.Denote U := R”? x R and

By
QY'=B) x(t—€, t+e€).
The inward normal v, on 9 Q7" is defined on its lateral boundary as

Zi — i
|z — vl

Vi(Z, T) = -

Lemma7.1.Forj=1,....,n,y e R}, t > 0,and all f{ € C®[R} x [0, ]; R"), we
have

fi(y,0) = lim Z[ /| ‘ F} (@) fi(z, 0)vi dS;
1 Z—Yy|=€

e—>04
k_
€

_// Gy (2, OV fi(z, 7) - v dSpdt
0 Jiz—y|=e
€

* f f (V:G}; (2. 1) - v2) fi(z. 7) dS.d
0 Jlz—yl=e

—// W} (2, 7) fi(z, z)ukdszdr] (7.3)
0 J|z—y|=¢€

Proof. We first assume f € C2°(R} x R; R"). By the defining property (7.2) of Green
tensor, we have

[ 0= /U (61 D= e, T) = Acfie ) = D2 D Sz, D | dzde
k=1

+f F;(z)divf(z,O)dz.
R
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Separating the domain of the first integral, we have

70,00 = lim 37 [ o[ GHE DA D =~ Atz
=1 €

~>0+

—0)(2, D, Sz r)] dzdt

+f F div f(z,0)dz
rR? 7

S L) e
6HO+ lz—y|>€ lz—y|<e

+/ F}(2)div f(z,0) dz.
R}

Here we have used the fact that G,{j (z,7) = wjy- (z,T)y=0fort <O.
Integrating by parts and using f € C°(R} x R), we get

fiy,0)= hn(}

e9]
+/ / 9: Gy, (z, 0 filz, 7) dzdt
lz—yl|>e

/| o ovae D e VGl o] s
7—y|=€

ZU | G (2. 0.) fic(z. 0) dz
k=1 lmyl>e

+

o0
Aszj(Z, 7) fi(z, 1) dzdt
|z—y|>€

/ @;(z, T) fi(z, T)vi dS.dt
|z—yl=€

o]

o\o\,\go

0

+/ Bka;j(% 7) fi(z, T)dzdt
0 |z—y|>€

+f Gz, €) fi(z, e)dz+[ / 3. G} (2, 7) fi (2, T) dzd
lz—yl<e lz—y|<e

. / /| | [-61,@ OV fie. 0 + i V.G, 1)
z—yl=¢
(=v,)dS.dt —/Oo/ A:Gy;(z, ) fi(z, ©) dzdt
lz—yl<e
_/ / 1’47;(1, 7) fx(z, T)(—vp) dzdt
lz—yl=e

[e¢)
+/ / 3, W} (z, T) fie(z, ©) dzdt
lz—yl<e

+ </ +/ > F3 () fi(z, 0) dz].
lz—yl<e lz—yl>€
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Yy Yy =y _ Yy y Yy _
Note that a,ij - AZij + akaj = atij - AZij + azkgj = 0 for T > 0 and that

GZ]. (z,04) = o F ]y (z) if y # z. Therefore, after combining and integrating by parts the
sum of the first term and the last term,

n
fi(y,0) = lim Z[/ FY(2) fi(z. 0)vic dS;
€e—>04 =1 lz—yl=e
€
_/ f GZJ(L )V, fi(z, 1) - v, dS.dr
0 |z—y|=€
€
+/ / (VZGI{j(Z’ T) V) fr(z, T)dSdt
0 Jlz—yl=e
€
_/ f W}Y(Z, 7) fk(z, v dSzdt
0 |z—y|=€

+f Gy(z,€) fi(z, ©)dz + f F3 (2)y fi(z, 0) dz] .
la—yl<e le=yl<e

The last two terms vanish as € — 0, since

N A [
~Jo (r+ e

_ nl
Pldr <er -0 ase — 0,

/ GZj(z,e)fk(z,e)dz
lz—yl<e

(7.4)

by (1.12) and Lemma 2.1, and

/ F} ()0 fi(z, 0) dz
lz—yl<e ~

€IV
gf I f||°°r”_1dr§e—>03se—>0+.
0 rn—l

Hence (7.3) is valid for all f € C°(R} x R).

If f e CERY x [0, 1]), we can extend it to f € CX (R} x R). Hence (7.3) is
valid for all such f. Finally, if f € C°(R} x [0, f]) for some ¢t > 0, let f = ft
where ¢ (z, T) is a smooth cut-off function which equals 1 in Qzéo. Then (7.3) is valid

for f € C(R} x [0,00)) and hence also for f. This completes the proof of the
lemma. O

We now prove the symmetry.
Proof of Proposition 1.4. Fix ® € CX(R), ®(s) = 1fors < 1, and &(s) = O for

s > 2. Forfixedx #y e R}, t > 0,and i, j = 1,...,n, by choosing fi(z,7) =
Gyi(z,t = T)n"'(z, 7) in (7.3) of Lemma 7.1, where ™ is a smooth cut-off function

defined by
J— t_
Ux’t(Z,‘L'):l—CD<|x Z|>Cb(| T|>’
€ €
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and using that n°'(z,7) = 1lon{(z,7) : 0 <t < ¢, |z —y| < €} fore < |x — y|/3,
we obtain

n

G)]C'i(ya t) = lim Z |:/ F;(Z)G;{Ci(za D dS;
1 L/ lz—yl=e

e—04
k=
€ y
- / / G])(J(Zv T)Vsz[(Z, t— T) s Vz dSZd'L'
0 Jlz—y|=€
€
+/ / (V:Gy;(z, T) - v)Gyi(z, 1 — 1) dS;dt
0 |z—y|=€

€
_// @f(z,r)G;i(z,t—r)vkdszdr]. (7.5)
0 Jiz—y|=€

Switching y and j in the above identity with x and i, respectively, and changing the
variables in T, we get

n

Gj;(x, 1) = lim Z U Ff )Gy, (z, Hve dSS;
’ |z—x|=€ ’

e—04

k=1

t
- / / Gyi(z, 1t — r)VZG,{j(z, T)-v,dS.dt
t—e J|z—x|=¢€ (7.6)

t
+/ / (V:G;(z, 1 = 1) - v)Gy,(z, 1) dS.dt
t—e J|z—x|=¢€
t
_/ / w;(z,t — t)G,fj(z, )V dSZdt:| .
t—e J|z—x|=€
Denote
UL = {®RIN{lz] < L. Lzy > 1)) x [8,1 = 8]} \ (QF" U 00)
for0 <8 < e <min(t, |x — y|)/2 and L > 2(|x| + |y| + 1). Since G};(z,t — ) and

Gy(z, ) are smooth in UX?, [(a, — A)Gy; + aZkgf] (z,7) and [(—=d; — A,)G]

+BZkgf(z, t — 1) vanish in UGL"S, and g;(x, y,t) = @j(x, y,t) fort > 0,

n
0= Z/U“ f@t =00 - AIGY + 9,8} | (2. 7 dzde
k=1 €

n
_ Z/UM G)(2,0) [(=0 — AIGY, + 0,8} ] (2.t — D) dzd
k=1"Ue

n € t—e t—8
D 2LV Y AR Y S A (SR E
k=1 $ |z—y|>e€ € |z|<L t—e |z—x|>€
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By integration by parts, Gy (2, 0,1) = 0, Gy;(z,04) = 8 F; () if y # 2, Y4, 95, Gy
= 0, and taking limits L — oo and § — 04, (¢ > 0 fixed), we get

n

> [—/ Gii(z,t—e)G;fi(z,e)dz—/ Gii(z, O F] (D) dS;
lz—yl<e ’ ’

k=1 |z—y|=¢€
[ Gheasyei-ods [ Gheor@uds.
|z—x|<e ’ lz—x]=€ ~
€
—/ / [Ggi(z, =DV 1) — G2 DV (et — r)] v, dS,dx.
0 |z—y|=€ ’
t
—f / [Gg,-(z, = DV:Gi(@ 1) — G2 DVl (et — r)] v, dS.dr.
t—e J|z—x|=€
€
+f / (Gt = D) 1) = G DB (.1 = D wedsdr.
0 |z—y|=¢€

t
+/ / [Ggi(z, = DB 1)~ G DB} (@t — r)] " dSzdr} —0. (1.7)
t—e J|z—x|=€

Note that the above integrals are over finite regions. We can take limits § — 0, because
in these regions we do not evaluate GZ j (z, ) and @]y. (z, T) at their singularity (y, 0), nor

Gyi(z,t — ) and W} (z, r — 7) at their singularity (x, 7). To justify the limits L — oo,
we first need to show that the far-field integrals

J1 = / [Gii(z, t)Fj?’(z) — sz (z, I)F,»X(Z)] v dS.
REN{lzl=L}
t
S = / / [Gii(z, 1 = )V:Gy(z, 1) — Gy (2, V. G (2, 1 — t)] v, dS.dt
0 JRIN{|z[=L} :
t
b= / / [ ki (@1 = DB 1) = Gy (2. DDy (2.1 = r)] v dS.dt
0 JRIN{z[=L}
vanish as L — oo. By (1.12),

|Jll,§/ L"L'™"dS, =CL™ — 0.
RiN{|z|=L}

For Jo with L > 2(|x| + |y| + +/1), the worst estimate of VZGZj(Z, 7) by (1.12) is
L™ (z, + +/T) " log L. Thus

T

t
|J2|5/ / L L7t 2(log L + |log t|1,<1) dS.dt
0 JRIN(|z|I=L)
<ViL~™Dog L — 0.

For the integral J3, by (1.14) with r = min(x,, y,) > 0,

t i L 1
|J3|§/ / LY [— log — + —1i| dS;dr.
0 JRIN(lzI=L) Lt "z, L'
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Using
1
flz|=L,zn<1 [log z,|dS; 2/0 /lz/lz\/Lz_Z%HogznldSz/dzn
5 /(«)1 L"*2 | logznl dzngL"*z,
we get

|31 <Vt (L_"_l logL+L7" 2+ L_"r_l) — 0, asL — oo.

We also need to show the boundary integrals similar to Jy, J and J3 at z,, = 1/L
(instead of |z| = L) vanish as L — oo. This is clear for J; and J; as Gy, (z 0,1)=0

and the factors F Yand V Gk ; are bounded near z,, = 0. For J3, estimate (1.14) of the
factor w w; Y hasa log singularity log z,,, and we use the boundary vanishing estimate (1.20)
of Gy, !

t znlog(e+|ﬁ|)
A / /
0 Jo=1/L VT —T(|2 = X[+ |zp — xp| + /T — )"
1 ( 12/ = Y+ + T
log| 1+

(12 = V'l + 20+ yn + /)" Zn
which vanishes as L — oo. Note that the proof of the base case (no derivatives) of
(1.20), to be given in Sect. 8, does not rely on the symmetry.

The above show (7.7).
Now take € — 0. Using (7.5) and (7.6), the identity (7.7) becomes

- T

1 —

) ds.dr,

n

lim Z |:—/ Gyi(z, t — e)G,{j(z, €)dz +/ % (@, e)G,fj(z,t —e€)dz
lz—yl<e lz—x|<e

e—0
* k=1

€
- / / G,{j(z, W (z, 1 — ) dS;dt (7.8)
lz—y|=€
t
+f /I | ii(Z,t—‘[)l/ﬁ;(Z, r)vdezdr} —G);i(y,t)+Gl-yj(x,t) =0.
—X|=€
The first two terms tend to zero as € — 0, by the same reason as for (7.4). Moreover,

since w; (z, t—7) is uniformly bounded (independent of €) for (z, ) € {(z, 7) : [z—y| =
€, 0 < t < €} by (1.14), we obtain from (1.12) that

€ 1
< ——dS.d
~ fo /|z—y=e (Iz =yl +/O)" 1(719)

Gk] Z, T)W Yz, t — ) dS dt

z—y|=e€

1
e ]dt<6+5n2610g — 0 ase — 0,.

/o (6"‘\/_)"

Similarly, flt_e flz—XI=6 G} (z, t—t)u)/y.(z, )V dS.dt goestozeroase — 0,.By (7.4)
and (7.9), the equation (7.8) turns into

~GY(y. 1) + Gl (x.1) =0,
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This completes the proof of Proposition 1.4, i.e., the symmetry (7.1) of the Green
tensor. O

Remark 7.1. We can actually show an alternative estimate of @Jy. (z, T) which has no

singularity as z,, — 04 by estimating (3.28) instead of (3.21), cf. Remark 3.5(i). Using
it, we don’t need the vanishing estimate (1.20). We do not present it in this way since its
proof is more involved, in particular in the case n = 2.

8. The Main Estimates of the Green Tensor

In this section we prove the main estimates in Theorems 1.5 and 1.6.

Proof of Theorem 1.5. From (1.12) we have that

|ai/’y/3§na;lnatm(;ij(x’ Yy, t)' <

I+k+ q+n +m

mn
Nt/kq

_y2
(Jx = ylI*+1) @)

+
t’"(lx*—y|2+t) " (x2 +r)2(y 3

where k; = (k — §;n)+, and
Lszkq =1+ 8112/1“?11( I:log(vz{;'lkqu/ - y/| +Xptyn + \/;) - lOg(\/;)] )
Rix =1 = k0 + 8k18in)0m0,  Vijkg = 400 jnSk(1+81,)0m0 + Sm>0-
On the other hand, by the symmetry of the Green tensor (Proposition 1.4) and (1.12),

0L, % 99 01 Gyj(x. y. )] = | (ajc,,y,aga;ﬂna,mcﬁ) ¥, x, )|

Y Xn
B 1 LNmk (8.2)

’

t’"(lx*—y|2+t) (yn+t) (x +1)3

I m

~ . 2 1+k;+
(Ix = yl=+1)

where g; = (¢ — djn)+, 0x, denotes the partial derivative in the n-th variable, and 9y,
denotes the partial derivative in the 2n-th variable. The combination of (8.1) and (8.2)
gives

0L, 0%, 08,07 Gij(x, y, D <

n I+k+g+n
(| — y[24) 5
mn mn
. LNqu+LNﬂqk
I+k—kj+q— qj+n ki qj °
M(xt = yP T T (D2 (40T
This shows (1.18) and completes the proof of Theorem 1.5. O

We next show the boundary vanishing of derivatives of G;; at x, = 0 or y, = 0.
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Proof of Theorem 1.6. Denote
LN = Zk o(LN?: ljkq +LNﬂqk)(x, v, 1).

By ax, ),,8yn 9/"Gjjlx,=0 = 0 and (1.18) with k = 1, we have

afc,,y,a;’na?Gij(x, v, 1)

a)lc/’y/axn a)q’n 8[”1Glj(x/v va y’ t) dZ}’l

Xn
=
0
Xn 1
S /0 [ Tagt (8.3)

(x" = y' 1> +1zn — ynl> +1) o

LN
+ [+q—q +n dzp

(X" = Y+ (zn + yu)? +1) (z3 +f)2(y +f) 1
=1L +1.

Above we have used that LN:’}Z ” (x', zn, y, 1) is nondecreasing in z,,.

We first estimate 1.

Case 1. If 3x,, < yp, then |z, — y,| > %(xn +y) and z, + y, > ‘—lt(xn + y,) for
0 < z; < xp. Thus, (8.3) gives

Xn

(Ix = y*12+1)

nLs

q+n+| +m N

Case 2. If y, < 3x, < % (Ix" = | + yn + /1), then x, + y, < %(|x’ — |+ /1),
which implies |x — y*| + /1<|x" — y'| ++/t. We drop |z, — y,| in the integrand of (8.3)
to get

Xn Xn

115 lqn++m‘

l+g+n+1
(2 = yP+0"F7 7 (x = y* 2 +1)

Case 3. If 3x, > y, > %(|x’—y’|+yn+\/f) or 3x, > %(|x/—y/|+yn+\/f) > Vu,
then x,, &~ |x — y*| + /1. By (1.18) with k = 0,

< 1 Xn

l+g+n ~ l+g+n 1°
(Ix=yP+0) 2" (x=—yP+0)"2 "(x — y*> +1)2
Thus, we have

1 Xn

I < .
~ l+q+n ~ l+q+n 1
(Ix=yP+n72"  (x =y +0" 2 "(x = y*[2+1)2

Next, we estimate /.
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Ifx, <y, + %ﬁ, then |x — y*|2+1 ~ |x' — y'|* + y,% +t. We drop z, in and the
integrand of (8.3) to get

x, LN
125“ 1 - +4—q;+
"2 (|x' — y|2+yn+t) = ozent
< x, LN
l+q— q +n °
t’”+2(|x—y P+07 7 (2 +t)2

Ifx, >y, + %\/f, then x, > /1. By (1.18) with k = 0,

< LN < Xn LN

—q +n ~ —q +n

m(lx —y* I2+t) (y,,+t)2 R (3 — |2+t) 7 7

Combining the above cases, we derive

Xn

3 05,0/ Gij(x, y, 0| S — 1
(lx =y2+0)"2 "(x —y*[>+1)2
x, LN

+ q—q j+n i’

q
(= P T 02 40 Y
which is (1.20) for « = 1. Since (1.20) also holds for « = 0 by (1.18), it holds for

all 0 < o < 1. Finally, (1.21) follows from the symmetry. This completes the proof of
Theorem 1.6. O

9. Mild Solutions of Navier-Stokes Equations

In this section we apply our linear estimates to the construction of mild solutions of
Navier—Stokes equations (NS).

9.1. Mild solutions in L9. In this subsection we prove Lemma 9.1. It is standard to
prove Theorem 1.7 using estimates in Lemma 9.1 and a fixed point argument. We skip
the proof of Theorem 1.7.

Lemma9.1. Letn >2, 1 < p<g<ooandl <gq.

() Ifup € LE(R?) and ii; (x, t) = > izt fRn Gij(x,y, Duo,;(y)dy, then

i, Ol Lo gy < cr 3G luollLrrry, ifuo =Puo,  (9.1)

nol 0, 1<p<g<o0o,
L9-1im 12 Dk, 1) = fl=p<aqs 9.2)
ug, ifl <p=qg<oo.

(9.2)7 is also valid for p = q = 00 if ug in the L*°-closure ong’O(}R?ﬁ).

(b) Let F € LP(R}), a,b € No,and 1 < a+b. Assumeb > landn > 3ifp =q = o0
Then

L,,
<Ct T T Fllpgn . 93)

” / 0901 Gij (x, v, DF (n)dy
L9 (RY)
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Proof. We consider (9.1) and decompose i; (x, t) defined in (6.1) as

i (x, 1) = /Rn (x =y, Duo,i (y)dy +/Rn Gy (x, y, Huo,j(y)dy

+

_ . heat *
=:u; " (x, 1) +u; (x,1).

The basic property of heat kernel yields

nel 1
IIMheatlqu(Rg) <crlay luollLr ey -
By (1.10), u*(x, t) is bounded by

_of
e t

R? (|x" = ¥+ x5 + Yy

o 1 , o
— *x lug(x’, yo)le™ 7 dy,,
/0 (40 1+ iy 210G Il

where *y indicates convolution over X. By Minkowski and Young inequalities,

Ji(x) = o ldy

= 1 o3
e Gy xi)llLa (s f,/ ‘ xx |uo(x’, yo)l e” 1 dy,
I (NG e
* 1
< | ~
0 (|.X/| +xn + yn + \/;)n L7 (%)
_of 1 1 1
luoCo y)llr(sye™ @ dyn, —+1=—-+—,
q r p
S 1 (1_1 : ”uO('?yn)”LP(E)e tdyy.
G+ yn + /D) )(5_17)

By Minkowski inequality again, (here we need ¢ > 1)
el oy = 119 Cxd o) Lo 0,00

o0
5/ !
0

1—(n—1(1-1
(xn"'yn"'\/;) (q p> L4 (x,€(0,00))

of
Nuo(-, )’n)”LP(z) e 1 dyn

o0 1 o
< /0 7ot lm e F dn 0

1

1 oep(i_1
O+ 500
By Holder inequality,

© 1 o7
el La@ny S lluoll e ey / " T T dy,
(/B8 75)

1G-3)
SN P lug |l pe ey
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by the change of variables y, = /7z. This proves (9.1).

For (9.2), denote 0 = %(% - 37). Ifl <p<gqg <oo,theno > 0.Forany e > 0, we
can choose b € LE N LY with lug — bl » < e.Letv;(x,1) = PO fRi Gij(x,y,0)b;
(y)dy. Then by (9.1),

17 i, Dllga <t Mol Ollpa +17 N, 1) = v(, llg
St NIbll e + lluo — bl

which is less than Ce for ¢ sufficiently small. This shows (9.2);.

Ifl < p=g < oo, For any ¢ > 0, there is M > 0 such that H luoCs ya)llpacsy Im
||Lq(0’oo) <&, where Ly (yn) = 1if luo(C, yu)ll za(x) = M, and 1 (y,) = O otherwise.
Then

NuoCy y)llpasy < M+ luoCs ya)llpacsy Lm-
Applying Holder inequality to (9.4),

o 1 of

10 2oy S| o Co v llza sy T | g 0,00y +/ - Me= T dy,

0 (+/1)1-1
e+ M1/

which is bounded by Ce for ¢ sufficiently small. Since uheat (. 1) — upin L9 ast — 0O,
this shows it (-, 1) — ug in L1 as t — 0,. This shows (9.2),.
If p = g = oo and ug in the L°°-closure of Ccl.ya (R%), for any & > 0, we can choose

beCl, R with [lug — bl < e.Letv;(x,1) = Y _, Jer Gij(x,y,Hbj(y)dy. By
Lemma 6.1, lim;—, [lvi (-, 1) — bllpoowry = 0. Then by (9.1),

i, 1) —uollzoe < i, 1) = v(, Dllgoe +[[0(-, 1) = blipee + b = uoll Lo Se +0(1),

which is less than Ce for ¢ sufficiently small. This shows the remark after (9.2),.
For (9.3), denote

w(x,t):f 90Gij(x.y. OF(y)dy, m=a+b.
R!

By Theorem 1.5,

|x*—y]
1 1+ 38,2 log(l + =—=)
|a)ccla)lfyGlj(x7y9t)|§ n+m + n { b*
(e =yP+D72 (X = yP+02(2+02 (32 +1)2
Using
log(e +r) _ log(e + s)’ <s<r
(e+r)" = (e+s)" -
we have
1 82 log(e + 222

10¢02Gij(x. y. 0| <

X

n+m + n a *
(x—y2+0"F  (x—yP+0iG2+nT(G2+1)2
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Extend F(y) to y € R" by zero for y, < 0. We have

|w(x,r>|§/w Hp'(x = y)IF ()ldy

1 1
" / Hy(x — y)|F )| _dy . 9.5)
R” 2+1)2 (g +0)2

=wi(x, 1) +wa(x, 1),

where
HO(x) =1~ " H? (i) , HY(x)= ————— e L' nNL®®R"), (9.6)
NG (x2+1)"
m On2 1 +
H(x0) =%y <i) H (x) = 2208 1D 9.7)
NG (x> +1)2
By Young’s convolution inequality with é = %+ % -1,
mnl 1
ot <HH0 Fll, =t 233G ‘HOH Flips-
lwaC,Ollea S [HE) o IF s g

It remains to estimate wy (-, t).

If p < g, we drop the factors (y,% +1)72 and (x,% + t)_% in (9.5), H;(x — y*) by
H;(x — y), and applying Young’s convolution inequality with é =14 % — 1 to get

—r

S

f%/R Hi(x —WIFWIdy| <172 1 Hllpr @ IF e

L4

m
77_‘.

1;-5)
St PO H ey E e -

Note that H; € L” since r > 1 when p < ¢. Thus, we get for p < ¢ that

1
-2+
lwa (- Dl St° G p)”F”LP-

If p = g = oo, by the hypotheses b > 1 and n > 3 so there is no log term in (9.7).
In this case,

1
wae 0% [ HGe =0 dy ———
R! a+n2  (G+n):2
1
rg”F‘”LOo g/ n bdy
(en +0)2 JRY (|x — y*|2+1)2(y2 +1)2

o0 1
SHF e g/ ; - dy,
(Gn+0)2Jo (xZ+y2+1)2(y2+1)2

< 1F]lpee dySt™ 2 |[Fllpee .

o0
(xn +t)% /0 (y’%+z)%

This proves (9.3). O
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Remark 9.1. Let 1 < p < q < oo and ug € L5 (R"). We claim that

uf (x.1) = /R Gijx.y.Duo j (V) dy, Tf (x.1) = /R Gij(x.y. Dug, (0 dy,  (9:8)
are also defined in L9 (R’) for fixed ¢ > 0 and (9.1) holds for ul and 7t
Jutc.0) +|at el

Our claim does not include the case p = g asin (9.1). Foru”, this is because |Gij(x,y,1)]

<(Jx — y| ++/t)™" and, by Young’s convolution inequality with 1 + l = l + l,

—nl_1y
<Ct 2'pr 4 u n 9.9
LI@RY) = ” 0||LP(R+) ( )

L4(RY)

o], < Joxts Vi su], <( [ e vian) ol

‘*(*‘*)nuouLp

where we used ¢ > p so that » > 1. For &, by (1.15), we can decompose

At = [ TG =0y

+f G (x. y. Duo j(0dy =t ul* (x, 1) + @} (x, 1),

RY

where 6;*1 (x,y,1) = =6;;T(x — y*, 1) —45;,C;(x, y, t). The first term uheat satisfies
(9.9) by the basic property of heat kernel. The second term z*(x, ) is bounded by

2
o

e 1
RE (IX" = Y|+ X0+ Yn + VD" + V1)

using (5.11). Similar to the proof of (9.1), we can first apply Minkowski and Young
inequalities in x” (using ¢ > p so that r > 1), and then Minkowski and Holder inequal-

[ (x, DI

luo(y)ldy

n(l_1
ities in x,, to bound |7* (-, Dlizawny bytz(‘f 1’) luoll L @w?)- The above shows (9.9) for
1<p<q<ooanduoeLp(]R)

Remark92 The followmg extends Theorem 1.2. Assume up € L RYH, 1 < p < 00,
and ul, L and 7L are defined as in (9.8). There exist ”0 € C1 (R ) such that “0 — U
in L”(R )as k — oo. Let
uk(x, 1) = / Gij(x, y, hug ;(y)dy, iif (x, 1) =/ Gij(x. y. Dugy ;(y) dy.
R! R"
ﬂmoakamdn%mm»

They are equal by Theorem 1.2 since ”0 € C,., ! (R ). On the other hand, by (9.1) and
9.9),

o=t o fo-sul, o-vol,
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which vanishes as k — oo. This shows u (r) = L (t) = @ (¢)in L for any g € (p, o0]
and fixed ¢. o
For up € L3°(R?) and ug in the L*>-closure of CCI,U (R™), we can also show u” (1) =

i (¢) (but we do not know about 7 (¢)). We use the boundary vanishing (1.20) to get

k() = ke 0) = '/R Gij (v, v, 1) (10,1 () = () dy

=i [uo — ut]

LOO
where
c n d
1= y
R: (1x — y| + /1) (Xp + Yo + /1)
00 Xn
5/ dyn
0 (|xn_Yn|+\/;)(xn+Yn+\/;)
z(xn"'\ﬁ) X
/S/ ! dyn
0 (lxn_yn|+\/;)(xn+\/;)
+/OO 2 dy,<In(e + 1) (9.10)
— dy,SIn(e + —). .
2(xp++/1) y,% ! «/?

It converges to 0 as k — oo, and the convergence is uniform in x,, < M J/t for any fixed
t, M > 0. As uk(r) — % (r) in L by (9.1), this shows u” (x, 1) = X (x, 1). O

9.2. Mild solutions with pointwise decay. In this subsection we prove Theorems 1.8
and 1.9. We first consider Theorem 1.8. Recall Theorem 1.8 is a direct consequence of
[5, Theorem 1] using the estimates in [4, Theorem 1] for 0 < a < n. For a = n, the
hypothesis of [5, Theorem 1] is not satisfied: (1 + |x| + /)" e "Aug ~ log(2 +1) &
L°(R} x (0, 00)) (see [4, Theorem 1] and (9.11)). Nonetheless, the proof of local
existence still works if || (1 + x| + /)" e ug ||LOQ(]R<,,X(0 ) = C(T), which is true for
up € Y,. Theorem 1.8 can be proved using the estimates in Lemma 9.2 below and the
same iteration argument in [5]. We omit its proof and focus on Lemma 9.2.

Lemma 9.2. Letn > 2 and 0 < a < n. Forug € Y, withdivug = 0 and up »,|s =0,

n
> [ Gyt yeuo )dy|| < €+ burlog, 0 ol ©-11)
j=1 + Y,

For F € Yy,

<Ct7'2||F|y,, . (9.12)

H/ ay[,Gi,-(x, v, ) Fpi(y)dy
R Y,

The estimate (9.11) is proved in [4, Theorem 1] with space-time decay (see also [6,
Theorem 4.2]), whereas (9.12) is not known in [6] and [4] since the pointwise estimates
of the Green tensor G;; was not available. Instead, they used (1.25) for the bilinear form
in the Duhamel’s formula when constructing mild solutions.

Note that Yy = L°° and a < n in (9.11) since the decay cannot be faster than the
Green tensor. The case a = 0 is a special case of (9.1). It is similar to [50, Theorem 1.1]
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which further assumes continuity. We do not assume any boundary condition on F;.
Also note

e

= sup [u(x)]*(x)* = [lull}, .

Y, n
2 xeRY

Proof. If a = 0, the lemma follows from (9.1) and (9.3) with p = g = oo. Thus, we
consider a > 0. For (9.11), write

n
Z/Rn Gij(x. y. g, j(y)dy = /Rn L(x —y, Duo,i (y)dy +/Rn Gy (x, y, Huo,j(y)dy
j=1 + + +

=: uf’em(x, 1) +uj(x,1).
Itis known that for0 <a <n

uheat

v S(L+8ap log, 1) fluolly, - 9.13)

See e.g. [26, Lemma 1] for n = 3 case. Its statement corresponds to 1 < a < n but its
proof also works for 0 < a < 1.
For u™* with |uo(y)|<(y) ™%, by (1.10), (for both n > 3 and n = 2)

cy,zl

(e, ST (x) = / dy.

Ry (Ix* — y|2 +1)7 (y)

Suppose 0 < a <n — 1. By Lemma 2.2,

L‘y%

o0
1
15/ e*T/ dy'dy,
0 5 (IX = V'] + X0 + Y + VDY | + 3 + 1) "

o

[} 1 -t
5/ 1 + - d}’n
0 | (xl+yn + T+ D (x| + yu + V1 + D + yu + /1)

2

- 1 . 1 /00 e
u
~ 1)a 1)a Xn
(x| +V/1+ D (x| + 1+ D4 Jo ($)+1

P S
“(xl+ 1+ )8

This proves
Jur]y, Slhuolly, . 0<a<n—1.

If a = n — 1, we have an additional term from Lemma 2.2,

o2 1 + /1
/ ef}T log (1 + al f) dyy,
0 (x| + yp + 1+ 1)" ynt1

o [ ()
S Y ha ,
~xl+ i+ ) Jo w1l ) On
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where

/°° _cy%(|x|+ﬁ)£
e ! dyn
0 yn+1
b +/1\° o of +/1\°
[ (Y o [ ()
0 ynt+1 x| +v/T yn+1

< (el + VOF (] + v+ D)8 % /Oooe—uzﬁdu

<|x|++1+1.

So the additional term is bounded by (|x| + /7 + )™ = (|x| + /7 + 1) 7.
If n — 1 < a < n, we have an additional term from Lemma 2.2,

o0 e T
/ dyn
0 (x| +yn + /T + D) (yn + D]

1 [x]+/1+1 1
5 / dyn
(x| +~1+ D" [ Jo (yn + Da—n+l

00 P
+ dy
/.xwm (x| + /7 + 1ya=n+l ="

1 1 1 o )
S —u
Txl+ VD" [(|x| i D (i D fo ‘ ﬁd”}
1

<—.
Tl + N1+ DA

If a = n, we have the same additional term from Lemma 2.2,

00 fﬁ oo | —
/ et dyy< / e 1 dy
0 (x| +y+vE+ D+ D) T(xl+TH D Jo a1 "
cv,%
1 /ﬁ 1 % o=t
S A=
(xl+t+Dn \Jo yu+l " s oy "

1
<
Sgrviry e+ v +1).

We have proved
[y, Sluolly, . 0<a<n:i [u*®], Slog2+1) luoly, .

and hence (9.11).
We next consider (9.12). For k = O and/+¢q = 1, by Proposition 1.1 withk = k; =0
and ¢ = 1 we have

1 1

+ .
2 sl x _ 2 ) i
(lx =yl=+0) (Ix* = yl*+1)2(y; +1)

105,05, Gij (x, y, DS 9.14)
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It suffices to show

I +]2,Sl_l/2ﬁ
where
I = ! ! dy,
R: (Ix =yl + /D ()%
53 ! ! dy.

= Jrr (2% =yl + D + VD) (9)

For I7, by Lemma 2.2, we have

1 1
I = 3
re (Jx — y| + /D) (Jy] + 1)
1 1

<
Nrl+ T+ D2 (] + 7+ D

Thus, if 0 < a <n,

dy

(L2amn log(h]+ V7 + 1)+ L2gn )

L< ! .
(x| + 1+ DVt

For I, let A = x, + y, + +/1. We have

*© 1 ’ dyn
125 ’ 1 n 1 2ady :
0 s (X" =y 1+A)" Y+ ya+ 1) Yn + /1

LetR=|x'|+A+(y,+1) ~ |x|+y,+ 1+ /7. By Lemma 2.2,

o — — — R IL2a>n—l dyn
1</ RZ”A1+R”<IL:_10 +
2 0 < 2a=n=l gyn+1 (Yn+1)2a+l_n Yn+«/;

(9.15)

=1L+ 14+ Is.

We have

e dyy 1
I3<f 5 .
“Joo (xl+ 1+ VD2 (v + /D27 (Ix] + 1+ /D)2t

If2a =n—1,forany0 <€ <a,wehaven — 1 — € > a and

Yn

I</°° 10g(yn + x| + 1 + /1)
“Jo G lxl+ 1+ VD)1
1 1

< <
Y(xl+ L+ VO (x| + L+ VDAV
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-1
If = <a<n,

|x|+l+J oo d
<_ Y
“kf |x|+1+«/ O + X[+ 1+ /1)1 (yy + 1)2a+1=n
1 /X'”*f dyi LU dw
~ (5 + 1+ 0" O + D21 T 7 Jipetens y29]

_1 ( , Laamnlog( + 14 VD) Lo >
NG (|x|+1+«/?)2“ (Ix] + 1+ /1)% (Ix]+ 1+ /1)
Thus, if 0 < a < n,
1
(Ix] + 7+ D)/t
This and the I; estimate (9.15) show (9.12). O

LS+ Ig+ I5<

Remark. In the proof of (9.12), we use Proposition 1.1 instead of Theorem 1.5 to avoid
LN since u j; may be 1 when g = 1.

We next consider Theorem 1.9. It can be proved using the same iteration argument
in [5] and the estimates in the following.

Lemma 9.3. Letn > 2 and 0 < a < 1. Forug € Z, withdivug = 0 and up ,|x = 0,

> [ Gty un ay| = CA+satog ol ©16)
RY
Z(l
For F € Z»,,

H/R dy,Gij(x, y, DFp;(dy| < Ct7'2|[Flz,. (9.17)

Za
Our estimates for both inequalities fail for @ > 1. See Remark 9.3 after the proof.

Proof. If a = 0, the lemma follows from (9.1) and (9.3) with p = g = oo. Thus, we
only consider 0 < a < 1. We may suppose that |ugllz, = 1 without loss of generality.
For (9.16), write

n
Z/Rn Gij(x, y, Dug j(y)dy = /Rn F(x =y, Duo,i (y)dy + /Rn Gy (x, y, Huo,j(y)dy
i—1 ¥ + +

_ . heat *
=:u; Y (x, 1) +u; (x,1).

Denote by 'y the k-dimensional heat kernel. When |ug(y)| < (y,) ¢, we have

o0 F - 9t
|Mlheat(x’t)|§/ M/ Fn—l(x/_y/vt)dy/dyn
0 z

(yn + )¢
S/OO Fl(xn_)’n»t)d .
0 (yn + D¢

S+ 84=1log, 1) (xy + 1)
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‘We have used the one dimensional version of (9.13) for the last inequality and 0 < a < 1.
For u* with |ug(y)| < (y,) ™%, by (1.10), (for both n > 3 and n = 2) we get

2
_ 9
|u*<x,t)|5J<x,r>=/ LR
RE (|x* — p[2 +1)2 (yn)*

For 0 < a < oo, we have

o0 e 1
JSf ‘ / dy'dy,
0 n+ D Js (I = Y[ +x0+yu + /D"

2

_ 9D

00 e
S/ dyy
0 (yn"‘l)a(xn"'y;'t"'\/;)

7
1 T

1 xn+\/; 1
< dy, + £ dy.
xn+«/?/o On+ D" e+ T+ D8 orgi ya+ 41

Using Lemma 2.1 to bound the first integral, we have

g | (n + /1) (14841 log, (x, + /1)) . 1 /oo e
N (1 + x, + /r)min(a.1) (n+/1+D Jo u+l

<1 +8a1log, (xa + /1)

~ (oxn + \/;_'_ l)min(a,l) ’

When a = 1, we want to improve the above numerator 1 + 8,1 log, (x, + JHto a
function of ¢ independent of x,,. It suffices to consider the case x,, > 10 + /1. In this

case,
2 i )2
1 [®e T 1Yo 1 [®e et
VS _/ d))ng_/ dyn+_/
XnJo yntl XnJo yntl Xn JJtr Yn

1 1
< —log(Wi+1)+—.
Xn Xn

dyn

We conclude when a = 1, either x,, > 10 + /7 or not,

J<10g(2+\/;).
N xp AT

Combining the above estimates of uhea’ and J, the estimate (9.16) is deduced.
Next, we will show (9.17). For k = 0 and [ + ¢ = 1, by Proposition 1.1 with
k =k;i =0and g = 1, we have

1 1

+ .
) sl £ _ |2 12 i
(Ix =yl=+0) (Ix* = yl=+0)2(yy +1)

103,04, Gij (x, y, DIS (9.18)

It suffices to show, for a > 0,

1
I + Izgl_l/z—
(xn)*
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where

1 1

R (I =yl /DT ()%
1 1

T SR (% = Y]+ O G+ VD) ()

I dy,

I

dy.

Indeed, via Lemma 2.2, we have

I </°° ! / ! dy'd
15 yay,
0 On+ D2 Jx (Ix — y| + /1) "

o0 1
5/ dy
0 O+ D2(x, — yul +v/D2 "
<R 4 85, R72log R + 104 R72+ R724t71/2
<t_1/2L’
~ (xn>a

where R = x,, + /7 + 1. We have used ¢ < 1 to bound 12a>1R_2§t_1/2ﬁ. On the

other hand,

o0
1
Iz§f dy'dy
0 i+ D2y, + /1) Jx (Ix* — y| + /)" "

5/00 ! dy.
0 (yn"'l)za(yn'*'\/;)(xn"'yn"'\/;)

If x, < 1, we have

1 00
I </ ! d +/ ! dyn < !
o G2 TN e g e

If x, > 1, using 0 < a < 1 we have

o0
1
125/ dy
0 (i + D2/ xd(y, + Diza "

_ 1 fw 1 dy. — c
_xg\/; 0 ()’11+1)1+a yn_xg\/;-

Combining the above estimates of /1 and I, we obtain (9.17).

|

Remark 9.3. The restriction a < 1 is used for both estimates of u/¢?* and J for (9.16)
and for both 11 and I, for (9.17) in the above proof. In fact, J has the lower bound for

t=1andalla > 0,

ez [ Ddn o L
O<yn<1 s Y +xn+ D" 71 +x,
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9.3. Mild solutions in Lzloc. In this subsection we prove Lemma 9.4. The estimates in
Lemma 9.4 are used by Maekawa, Miura and Prange to construct local in time mild
solutions of (NS) in Lzloc(Rﬁ) in [36, Prop 7.1] for n < ¢ < oo and [36, Prop 7.2] for
q = n. Their same proofs give Theorem 1.10.

p

Lemma 9.4. Letn > 2. Let 1 < p < g < o0. Forug € Luloc’a,

n
Zf éij(x,y,t)uo,j(y)dy
j=1 7%

LY

uloc

n(l 1

,,,,, 1
< C<l+t 1G5 q>+1,,:q:11n+ ;) luoll (9.19)

LetFeLfloc,a,beNoandl <a+b. Assumeb > landn >3 if p = q = oo.
Then

a+ _nel 1
<Cm T+ 25 O)Fllp o 920)
L\liloc o

H [ a6y nF ey

These estimates correspond to [36, Proposition 5.3] and [36, Theorem 3]. Their proof
is based on resolvent estimates in [36, Theorem 1], which does not allow ¢ = 1. Thus
our estimates for p = g = 1 are new. Also note that we do not restrict a, b < 1 as in
[36, Theorem 3].

Proof. First consider (9.19). The endpoint case p = g = oo follows from (9.1). Let
p < oo. The formula (1.8) gives

n

> [ Gt inuo 0y = [ Tl =501, on0i00dy
N Rll Rn

j=17

+ [ Gy w0 00y
R
__. heat *
=:u; " (x, 1) +u; (x,1).

Since u’¢?" is a convolution with the heat kernel in R”, it satisfies the estimate in (9.19)
by Maekawa—Terasawa [37, (3.18)]. It suffices now to show that u*(x, 7) also satisfies
the same estimate. By (1.10), u™*(x, ¢) is bounded by
_on
e t

Ji(x) = u d
1 (x) - (|x’—y’|+xn+yn+ﬁ)”| ol dy

o0 1
_/0 (/] + Xn + yu + /1"

where *xy indicates convolution over X. Denote

o=[-L 11l cs, Qu=k+0, kez' "

2
, _on
*x luo(x’, yp)le™ 7 dyy,

Our goal is to bound

el (@ ¢ G i+ 1)
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by the right side of (9.19), uniformly for all j* € Z"~! and j, € Ny. By translation, we
may assume j' = 0. Decompose

Lo
ho= Y / e) o (o, luo y)l) e dy.

kezn! (lx/|+xn+Yn+\/;)n

By Minkowski and Young inequalities with 1 + é = % + %,

||Jt(',xn)||Lq(Q)

]le(x) , /
< . n
- Z / H (|X/|+xn+yn+\/_)n *E’( 0, () |uo(x", y )|)

klezn—1, k—1e3Q

L0

o

T dyn
s > / I - luo oyl rggp e ™ : dy,.
k,lezn=! k—1€3Q
where
1
"=”(|x/|+xn+yn+ﬁ>"

L:/(Qk)

We have [} &~ (1+|k|+xn+yn+\/—) " whenk # 0, and Io<(1+X, + yp+/1) " 7 (x,,

Y D) T byLemmaZ 1.
By M1nkowsk1 inequality again with I = (jj,, j, + 1),

1l Lacoxny = [ C 2 Loyl 1 1)
<y / Helzg oy ToCe 3l oeaagy €2 dyn
kezn—1

We have ||Ik||Lg except when k = 0 and y, + Jt <1.Fork =0,

<t
0 (1) ™ (14 |k |+ +4/1)"

1
||IO||L‘1 (1)5 n—1
! Con+yn + VD" 1 0)
1 1
< +1,-45—11n
~ n— n pP=q= + ’
(n+ /DT Vi
using n — _1+(n—1)(‘ —%)zl.Thus
j*1 o
1illacoxnS ) Z/ (1+|k|+y T o, y)llLpragy €™ dyn+ M,
kezr—1 j=0 "
where

1 2
a7
M —/ ||IO||L‘{ ) ||”0(',yn)||Lp(4Q)£’ ©dyy.
0 o
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By Holder inequality with p’ = %,

o0
I ellLacoxn S Z Z lwoll L (k440)x (j, j+1))

kezn=1 j=0
1 o
t

e
(1+ [k[ + yn + /D"

/
Ly, (j.j+1)

o
1 c?
< E E u e T +M
~ ol ke vy

kezn—1 j=0

S lluoll

e 1
—d
uloc /Rz (L+1yl+ /D"
Also by Holder inequality, when (p, g) # (1, 1),

y+MSluollp +M.

1 o

l+ﬂ—ﬂe
n+ND) "7
while when p =g =1,

M luollpr

uloc

7
Ly, (0,1)

o

< .
MS HMOHL.luoc ” (1 +1Iny

1 (141 1
Yo + 1 ¢ ~\ e luoll 1 -

L2°(0,1)

We have shown
_nel 1 1
||Jt||LZIOC < <t 1) 4 1p—g=11ny ;) ”u0||1~floc . 9.21)

This proves (9.19).
For (9.20), denote

w(x,t):/ 300G (x, y. OF(y)dy, m=a+b.
RY

By (9.5), lw(x, t)|Swi(x, ) +wy(x, t), where wy (x, 1) = fRn H,O(x — )| F(y)|dy with
HY(x) given by (9.6), and wy (x, 1) = (x2 + )¥/? [p, Hi(x — y)|F(0)|(y2 +1)*/*dy
with H?(x) given by (9.7).

For w (x, t), by Maekawa-Terasawa [37, Theorem 3.1] with é = % +-=—1,

1
P

F .
Ll(Rn)> I ”Ll'fmc

It remains to estimate w2 (x, #). When p = g = oo, noting that L3} - = L, (9.20)

H{)‘

fonoollgg, <% (BEa0 | m] ]
LulocN 1 L (R")

follows from (9.3). For p < ¢, we drop the factors (y,% + t)_% and (x,f + t)_% in (9.5),
H(x . y*) by H;(x — y), and applying Maekawa-Terasawa [37, Theorem 3.1] with
1 1
=+ —1

r 9

q P

m nl 1
. <=5 (126 r(RP : )
a0l S73 (r IH | Loy + I H ey ) 1F N
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Note that H; € L” since r > 1 when p < ¢. Thus, we get for p < ¢ that

_m ﬂ(l_l)
lwaCDllgs, St7% (2977 4 1) 1Pl

This shows (9.20). O
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