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Abstract: We construct extended TQFTs associated to Rozansky–Witten models with
target manifolds T ∗Cn . The starting point of the construction is the 3-category whose
objects are such Rozansky–Witten models, and whose morphisms are defects of all codi-
mensions. By truncation, we obtain a (non-semisimple) 2-category C of bulk theories,
surface defects, and isomorphism classes of line defects. Through a systematic applica-
tion of the cobordism hypothesis we construct a unique extended oriented 2-dimensional
TQFT valued in C for every affine Rozansky–Witten model. By evaluating this TQFT on
closed surfaces we obtain the infinite-dimensional state spaces (graded by flavour and
R-charges) of the initial 3-dimensional theory. Furthermore, we explicitly compute the
commutative Frobenius algebras that classify the restrictions of the extended theories to
circles and bordisms between them.
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1. Introduction and Summary

In an effort to make this paper accessible to readers from both the mathematics and
physics communities, we provide two independent introductions.

1.1. Introduction for physicists. Topological quantum field theories arise in physics for
example as subsectors of honest quantum field theories. In the context of supersymmetric
field theories, topological twists single out these subsectors as the cohomology of a
differential that originates from the supercharges of the initial theory. The resulting
theories describe simpler, often solvable, parts of the initial theory that can be treated
with mathematical rigour.

Mathematically, a TQFT can be viewed as a symmetric monoidal functor Z from
a geometric category of bordisms to the category of complex vector spaces.1 In the
geometric category, objects are closed (d −1)-dimensional manifolds, while morphisms
are represented by d-dimensional bordisms between them, where here and throughout we
assume all manifolds to be oriented. The functor Z associates to the former vector spaces
that correspond to the state spaces obtained by quantisation on the (d − 1)-dimensional
manifold times the time direction, and to the latter linear maps between them. Disjoint
unions of (d − 1)-dimensional manifolds on the geometric side are mapped to tensor
products of the respective state spaces. The vector space associated to the empty set is
C, such that one assigns a number (a linear map from C to C) to a d-manifold without
boundary. The latter can be regarded as the result of evaluating the path integral.

Composition of bordisms in the geometric category consists of gluing d-dimensional
bordisms along their (d − 1)-dimensional boundaries. Functoriality therefore means
that we can cut any manifold into simpler pieces, evaluate Z on them, and glue them
back together in the target category. The result is guaranteed to be independent of the
precise way the manifold was decomposed. Physically, the cutting and gluing procedure
can be interpreted in terms of an evaluation of the path integral on the pieces. In case
of non-empty boundaries, boundary values for local fields must be specified; the path
integral depends on them, and gluing involves a summation over all such boundary
values. Given a local action functional, a piecewise evaluation of the path integral in this
way is naturally independent of the initial decomposition.

To define a TQFT, it is thus enough to specify it on simple building blocks and let
functoriality (and symmetric monoidality) do the rest. This is particularly powerful in
d = 2 dimensions, where one has finite data and simple relations among them: any
closed (oriented) 2-manifold can be decomposed into pairs-of-pants and caps, subject

1 More general target categories are possible and will be encountered in this paper.
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to a finite set of sewing relations. This leads to the well-known result that 2-dimensional
(oriented) TQFTs are classified by commutative Frobenius algebras.

In higher dimensions, the situation is more involved, as there are infinitely many build-
ing blocks as well as relations. To come up with a definition that leads to sufficiently
“simple” structures, mathematicians invented the notion of fully extended TQFTs, which
can be viewed as maximally local extensions of ordinary TQFTs as above. In this set-
ting, the higher bordism category does not only involve d- and (d − 1)-manifolds, but
(oriented) manifolds of any codimension. Objects of this category are 0-dimensional
manifolds, i. e. disjoint unions of points. Morphisms between them are 1-dimensional
lines, whose boundaries correspond to their source and target objects. In turn, these lines
can be connected by 2-dimensional surfaces with corners, which are the 2-morphisms of
the category. One proceeds like this step by step, obtaining a higher category on the ge-
ometric side, whose d-morphisms are represented by d-dimensional bordisms between
(d − 1)-dimensional manifolds; for details see [Lu,CSc].

Just like ordinary TQFTs, fully extended TQFTs are given by functors, which are
now functors between higher categories. In particular, the target categories have to be
higher categories as well (and carry a symmetric monoidal structure). A fully extended
TQFT then associates objects in the target category to points, 1-morphisms to lines, and
so on.

The cobordism hypothesis of [BD,Lu] states that a symmetric monoidal functor from
the fully extended oriented bordism category to a suitable target category is determined
by the object u that the functor assigns to a point, as well as one additional datum λ that
encodes an SO(d)-symmetry on u.2 Thus, the entire extended TQFT can be reconstructed
from u and λ.

Not all objects u of the target category are necessarily potential images of the point.
They have to satisfy certain consistency conditions, the first of which is universal, namely
that they have to be “fully dualisable”. This is a natural finiteness condition in the
categorical setting. To give a flavour of it, we note that in the category of vector spaces
only objects that are finite-dimensional are dualisable. In the setting of higher categories,
this simple dualisability constraint on objects is extended in a natural way, where full
dualisability requires that the dualising 1-morphisms (evaluation, which pairs an object
with its dual, and coevaluation) must have duals as well; these duals in turn come with
dualising 2-morphisms, which also must have duals – and so on. In the case d = 2, there
is only one more consistency condition besides full dualisability: namely that the Serre
automorphism Su (a canonical 1-automorphism of u arising from full dualisability) has
to be trivialisable, i. e. there has to exist a 2-isomorphism λ : Su −→ 1u . Then as shown
in [HV,He] pairs consisting of a fully dualisable object u together with a trivialisation λ

of its Serre automorphism Su give rise to fully extended oriented TQFTs (which are
unique for given u iff the trivialisation λ is unique up to isomorphism, cf. (3.12)).

A class of interesting target categories for extended TQFTs arises from topological
quantum field theory with defects. Here, higher categorical structures arise if one re-
gards bulk theories as objects, codimension-1 defects as 1-morphism, codimension-2
defects as 2-morphisms, etc.3 For instance, in [CMM], the non-semisimple 2-category

2 We stress again that here we consider only oriented TQFTs. The cobordism hypothesis applies more
generally and also classifies TQFTs on bordisms with other tangential structures such as spin or G-bundles –
in which case SO(d) is replaced by Spin(d) or BG , respectively.

3 Even though both involve higher categories, a priori extended TQFTs and defect TQFTs are distinct
concepts. Higher categories are inputs to the former and outputs of the latter.
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of defects in Landau–Ginzburg models was used as the target category of fully extended
2-dimensional TQFTs.

In this paper we aim to constructively apply the cobordism hypothesis to 3-
dimensional Rozansky–Witten models introduced in [RW]. These are topological twists
of N = 4 supersymmetric sigma models with holomorphic symplectic target manifolds.
Defects in these models were described in [KRS,KaR].

For simplicity we restrict our considerations to Rozansky–Witten models with the
affine target manifolds T ∗Cn . These can be obtained by topologically twisting the 3-
dimensional N = 4 supersymmetric theory of n free hypermultiplets, and their defect 3-
category RWaff can be described very explicitly. Objects are Rozansky–Witten theories
with target space T ∗Cn for n ∈ N0, which we will label by lists x := (x1, . . . , xn) of
variables corresponding to the n free hypermultiplet bulk fields.

The 1-morphisms in RWaff are given by surface defects, separating two affine
Rozansky–Witten models x and y, say. From the perspective of the untwisted mod-
els, the surface defects preserve at least a chosen 2-dimensional N = (2, 2) subalgebra
of the bulk supersymmetry, and physics on the defects is formulated in a manifestly
N = (2, 2) supersymmetric way. Surface defects may support additional defect fields,
chiral fields denoted by a which can interact with the bulk fields x and y on either side
of the defect via a superpotential W (a, x, y). Colliding two parallel surface defects, the
respective superpotentials add up, and the squeezed-in bulk fields become fields on the
newly created defect. This defect fusion is the composition of 1-morphisms in the defect
3-category.

The 2-morphisms correspond to line defects separating possibly different surface
defects and are represented by matrix factorisations of the differences of the respective
superpotentials. Again, there is a product corresponding to merging parallel defect lines,
given by the relative tensor product of matrix factorisations. This corresponds to the
composition of 2-morphisms.

Finally, 3-morphisms in RWaff correspond to point defects separating possibly dif-
ferent line defects, and are given by morphisms of matrix factorisations up to homotopy.
Their composition describes the operator product of these local fields and defines the
composition of 3-morphisms in the defect 3-category.

Using the cobordism hypothesis, one may try to construct a fully extended 3-
dimensional TQFT by finding fully dualisable objects in RWaff that come with the
correct SO(3)-symmetry. This is however impossible: no object x = (x1, . . . , xn) in

RWaff with n > 0 is fully dualisable. In fact, such objects x are dualisable only up
to dimension two – the dualising 2-morphisms have no duals themselves. This is due
to the non-compactness of the target spaces T ∗Cn , which implies that the associated
state spaces are infinite-dimensional. Hence, even though they are of course reasonable
quantum field theories from a physics perspective, affine Rozansky–Witten models do
not even satisfy the axioms of an ordinary 3-dimensional TQFT. They do however pro-
vide intricate mathematical as well as physical structures, some of which have been
recently explored in [GHNPPS,CDGG]. In the latter paper, affine Rozansky–Witten
models serve as toy models for a larger class of theories that can be regarded as a derived
and non-semisimple generalisation of 3-dimensional Chern–Simons theory.

In this paper, we avoid the problem posed by infinities by truncating to two di-
mensions, effectively disregarding the problematic partition functions on 3-dimensional
spaces. More precisely, instead of the 3-category RWaff we consider a truncation, the
2-category C whose objects and 1-morphisms are identical to the ones in RWaff, but
whose 2-morphisms are isomorphism classes of 2-morphisms in RWaff. In this trun-

374



Truncated Affine Rozansky–Witten Models as Extended TQFTs

cated setup affine Rozansky–Witten models are fully dualisable. The dualising maps
can be explicitly constructed from identity surface and line defects in RWaff. Moreover,
their Serre automorphisms are trivialisable, and hence affine Rozansky–Witten models
with target manifold T ∗Cn give rise to fully extended 2-dimensional TQFTs Zn with
target category C.

The construction is very explicit, basically relying on the knowledge of the trivial
surface as well as line defects from the category RWaff. As a consequence, we can
straightforwardly evaluate Zn on all bordisms. Evaluating it on closed genus-g sur-
faces 6g yields isomorphism classes of matrix factorisations of 0, whose cohomologies
correspond to the state spaces H6g of the initial 3-dimensional theory. Via an explicit
calculation we obtain the super vector spaces

H6g
∼= H •

(
Zn(6g)

)
∼=

(
C ⊕ C[1]

)⊗2ng
⊗C C[a, x] , (1.1)

where x = (x1, . . . , xn), a = (a1, . . . , an), and [1] denotes a shift of Z2-grading asso-
ciated to fermion number. The spaces (1.1) indeed recover – from the “first principles”
of the cobordism hypothesis – the state spaces of affine Rozansky–Witten model with
target manifold T ∗Cn , which can be obtained by canonically quantising n free hyper-
multiplets on 6g ×R. From this perspective, the xi and ai are the scalar components of

the n hypermultiplets, and the tensor factor (C⊕C[1])⊗2ng corresponds to the fermions
associated to the 2g holomorphic 1-forms on 6g (see Appendix B.2 for more details).

Beyond closed surfaces, we can also evaluate the TQFT Zn on surfaces with boundary,
in particular on caps and pairs-of-pants. As for ordinary 2-dimensional TQFTs, caps and
pairs-of-pants give rise to a commutative Frobenius algebra, albeit now in the category
of endodefects of x . This Frobenius algebra determines the TQFT on any surface with
boundary but without corners. In our construction, it turns out to have a simple physical
interpretation via its action on the endomorphisms of the 1-morphism that Zn associates
to the circle. These endomorphisms represent isomorphism classes of line operators in
Rozansky–Witten models, and the Frobenius algebra encodes their fusion properties.

It is expected that the above programme can be carried out for other Rozansky–
Witten models as well, and that theories with compact target manifolds can even be
understood as fully extended 3-dimensional TQFTs, valued in the defect 3-category of
[KRS,KaR]. If the latter can be endowed with the richer structure of an (∞, 3)-category,
the cobordism hypothesis would even allow to compute the moduli space of Rozansky–
Witten models, and possibly monodromies in this space (see Remarks 3.3 and 3.6 for
some comments in this direction).

Such 3-dimensional theories would not only provide state spaces, but also e. g. map-
ping class group representations on them, which could be compared with those obtained
in [RW]. In fact, in our case of the truncation C it is enough to lift it to a symmet-
ric monoidal (∞, 2)-category by allowing isomorphisms of matrix factorisations as 3-
morphisms, from which the cobordism hypothesis in two dimensions already produces
mapping class group representations.

This paper is organised as follows. In Sect. 2 we introduce our truncation C of the
defect 3-categoryRWaff, which we then use as a target for extended TQFTs. We further-
more introduce a related graded version Cgr that keeps track of flavour and R-symmetries.
We show that all objects of C and Cgr are fully dualisable with trivialisable Serre auto-
morphism (Theorems 2.4 and 2.6).

Section 3 is devoted to the explicit construction of the extended TQFTs. After a
brief review of the cobordism hypothesis and extended TQFTs in Sect. 3.1, in Sect. 3.2
we apply this formalism to construct the unique extended TQFTs Zn with target C
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(Theorem 3.4). In particular, we explicitly determine Zn on closed surfaces 6g (Propo-
sition 3.5), and more generally its associated commutative Frobenius algebra (Proposi-
tion 3.7). Hence we evaluate the functor on the circle, and we frame the result in terms of
the non-semisimple category of Z2-gradedC[a, x]-modules. Finally, Sect. 3.3 provides
an extension to the graded case, which takes into account flavour and R-charges.

We include two appendices. Appendix A contains two technical lemmas on matrix
factorisations, which we use in our explicit calculations. In Appendix B we collect some
facts about the 3-dimensional N = 4 supersymmetry algebra as well as results from the
canonical quantisation of free hypermultiplets.

1.2. Introduction for mathematicians. A fully extended TQFT Z of a given dimension d
is maximally local in the sense that it is a symmetric monoidal functor on a higher bordism
category that features manifolds of all dimensions 0, 1, . . . , d , and Z is compatible with
cutting and gluing along submanifolds of arbitrary codimension. As originally argued
in [BD], this compatibility imposes strong constraints on Z . More precisely, if one
considers d-framed bordisms, then Z is expected to be already determined by what it
assigns to a single positively framed point +, because the d-framed bordism category is
generated as a symmetric monoidal category by the fully dualisable object which is the
positively framed point +. In the case d = 1 this is basically the statement that the framed

half-circles ev+ = −
+

and coev+ = +
−

are the adjunction morphisms that witness
the negatively framed point − as the dual of +, that all framed compact 1-manifolds
are disjoint unions of framed circles and intervals, and that changes in framing can be
described in terms of ev+, coev+ and their adjoints, see e. g. [Lu,DSPS].

In the more general case of bordisms with G-structure for a Lie group G, the cobor-
dism hypothesis states that fully extended TQFTs are classified by fully dualisable
objects in the target category that come with a G-homotopy fixed point structure. In the
(∞, d)-categorical setting, an extended proof sketch was given in [Lu], which was com-
pleted up to a conjecture on factorisation homology in [AF], and a further generalisation
appeared in [GP].

In dimension d = 2, the cobordism hypothesis has been formulated and proven
independently in the setting of (weak) 2-categories. More precisely, in the framed case,
i. e. when G is trivial, 2-dimensional extended TQFTs with values in a given symmetric
monoidal 2-category B are classified by fully dualisable objects of B as shown in [Ps].
In the oriented case, G = SO(2), the classification was described earlier in [SP] in

terms of fully dualisable objects u ∈ B together with a trivialisation Su
∼=

−→ 1u of their
Serre automorphisms. We recall the definition of Su in Sect. 2.4.3, and we review the
2-dimensional oriented cobordism hypothesis in Sect. 3.1.4

Clearly the choice of target category B is crucial. For d = 1 the standard choice are
(super) vector spaces, in which case the classification is entirely explicit: fully dualisable

objects in B = Vectk (or B = Vect
Z2

k
) are precisely finite-dimensional (super) vector

spaces.
In dimension d = 2 there are no standard choices for B, in the sense that there are

various inequivalent symmetric monoidal 2-categories B such that EndB(1) is equiva-

4 The framed and oriented cobordism hypotheses in two dimensions can be understood as the special cases
r = 0 and r = 1 of the r-spin cobordism hypothesis proven in [CSz], where G is the r-fold cover of SO(2).
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lent to Vectk or Vect
Z2

k
.5 The examples that have been studied in detail in the literature

are the 2-category B = Algk (corresponding to state sum models) of finite-dimensional
k-algebras, bimodules and bimodule maps, and B = LG (corresponding to Landau–
Ginzburg models) of isolated singularities {W = 0} and homotopy categories of matrix
factorisations, see [SP] and [CMM], respectively. The result is that extended oriented
TQFTs with values in Algk are classified by separable symmetric Frobenius k-algebras,
while in the case of LG the condition is that the polynomials W must depend on an even
number of variables. Moreover, it follows from [CW,Ba] that there is a 2-category asso-
ciated to B-twisted sigma models, and Calabi–Yau varieties classify extended oriented
TQFTs with values in it.

In dimension d = 3 even fewer examples of target categoriesB and G-structures have
been considered in complete detail. One main result [DSPS,FT] is that fully extended
framed TQFTs with values in the 3-category B = Tensk of k-linear tensor categories are
classified by fusion categories of non-zero global dimension. It is also widely expected
that spherical fusion categories classify extended oriented TQFTs with values in Tensk,
and that they precisely extend Turaev–Viro–Barrett–Westbury models to the point.

In addition to the above state sum models, it is natural to consider topologically
twisted sigma models also in dimension three. Indeed, in [KaR] an extended sketch
of a 3-category RW associated to Rozansky–Witten models was proposed based on
the path integral analysis of [RW,KRS]. Objects of RW are holomorphic symplectic
manifolds, and its Hom 2-categories feature a rich interplay of algebra and geometry. It
remains a challenge to fully exhibit the formidable structure of a symmetric monoidal
3-category on RW , and to study its fully dualisable objects and their homotopy fixed
points. Related applications to homological link invariants have been made e. g. in [OR],
and generally it is expected that Rozansky–Witten models with compact target manifolds
can be extended to the point as TQFTs with values in RW .

In the present paper we explicitly exhibit certain Rozansky–Witten models as ex-
tended oriented TQFTs. For simplicity, we restrict our considerations to Rozansky–
Witten models with affine target manifolds T ∗Cn ∼= C2n . Moreover, we truncate the
subcategory RWaff ⊂ RW of these types of models to the (non-semisimple) 2-category

C := T(RWaff) , (1.2)

which by definition has the same objects and 1-morphisms as RWaff, while 2-morphisms
are isomorphism classes of 2-morphisms in RWaff. The restriction on affine Rozansky–
Witten models allows us to very explicitly construct the symmetric monoidal structure
of C in terms of lists of variables x = (x1, . . . , xn), polynomials, and isomorphism
classes of matrix factorisations (carried out in detail in Sects. 2.1–2.3). The truncation to
two dimensions is necessary as the non-compactness of the target manifolds T ∗Cn leads
to infinite-dimensional state spaces, so affine Rozansky–Witten models cannot even give
rise to closed TQFTs valued in VectC.

In this setup, we prove our first main result (cf. Theorem 3.1):
Theorem. Every object x ∈ C = T(RWaff) is fully dualisable, and up to isomor-

phism there is precisely one associated 2-dimensional extended oriented TQFT Zn with
values in C for every positive integer n.

5 A natural source of candidate target categories are the higher categories associated to defect TQFTs
[CRS], i. e. symmetric monoidal 1-functors on stratified and decorated bordisms.
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We also prove a variant of this result in the presence of gradings for polynomials and
matrix factorisations (Sects. 2.5 and 3.3), the source of which are flavour and R-charges.

The other main result of the present paper is to systematically apply the logic be-
hind the cobordism hypothesis to explicitly compute the invariants associated to the
TQFTs Zn . Specifically, for a closed surface 6g of genus g, we find (in Sect. 3.2.1) that

Zn(6g) ∼=
(
C ⊕ C[1]

)⊗2ng
⊗C C[a, x] (1.3)

as a matrix factorisation of zero (here with differential zero), which in C is isomorphic
to its cohomology, i. e. a Z2-graded vector space (with additional gradings in the case
of flavour and R-charges, cf. Sect. 3.3).

From the perspective of the truncated 2-dimensional TQFT Zn , the infinite-
dimensional vector space (1.3) is interpreted as the “partition function” associated to 6g .
However, from the perspective of 3-dimensional Rozansky–Witten theory with non-
compact target T ∗Cn , it is a “state space”. We note that state spaces of TQFTs with
values in VectC must be finite-dimensional, but infinite dimensions can and do occur for
the extended TQFT Zn with values in C.

We also compute Zn on surfaces with non-trivial boundary, and hence determine
the 2-dimensional closed TQFT with values in C(x, x) obtained by restricting Zn to
dimension 1 and 2. As explained in Sect. 3.2.2, the result can be formulated in terms of
the Grothendieck ring of the homotopy category of matrix factorisations of

∑n
i=1(ai −

di )·(xi −yi ), or equivalently of the non-semisimple category of gradedC[a, x]-modules.

2. 2-Categories of Truncated Affine Rozansky–Witten Models

In this section we study the 2-category C which is the truncation of the 3-category of
Rozansky–Witten theories with affine target manifolds. The basic ingredients are recalled
in Sect. 2.1, and the symmetric monoidal structure for C is described in Sects. 2.2–2.3.
Then in Sect. 2.4 we prove that every object in C is fully dualisable, and we observe that
all Serre automorphisms are trivialisable. Finally, in Sect. 2.5 we discuss a variation Cgr

of C that keeps track of flavour and R-charge degrees, and we prove analogous results
for Cgr.

By a 2-category we mean a (possibly non-strict) bicategory in the sense of [JY,
Sect. 2.1]. For general background on 2-categories we refer to [Le,JY] and to [Ca,
Sect. 2.2] for a short and casual discussion. We use [SP] as our main reference for
symmetric monoidal 2-categories, and [DSPS,Ps] for dualisability.

2.1. Definition of the ungraded 2-category. Here we define the 2-category C. It is ex-
pected to describe, via trunctation, a small sector of the much more intricate 3-categorical
structure of all Rozansky–Witten theories with arbitrary holomorphic symplectic target
manifolds, introduced in [KRS,KaR].

Objects of C are finite ordered sets of variables (x1, . . . , xn) for n ∈ Z>0. We
abbreviate x = (x1, . . . , xn) if the length n can be left implicit, and we note that for
n = 0 we have the empty list x = ∅. Equivalently, we may define objects in C to be the
polynomial rings C[x1, . . . , xn]. We will also use symbols like x ′ or y to denote objects.
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A 1-morphism (x1, . . . , xn) −→ (y1, . . . , ym) in C is a pair (a; W ), where a =

(a1, . . . , ak) is another (possibly empty) set of variables, and W ∈ C[a, x, y] is a poly-
nomial. To emphasise the roles of source and target variables, we sometimes write such
1-morphisms (a; W ) as (a; W (a, x, y)). Using this notation, the horizontal composition
of (a; W ) : x −→ y and (b; V ) : y −→ z is given by

(
b; V (b, y, z)

)
◦

(
a; W (a, x, y)

)
=

(
a, b, y; V (b, y, z) + W (a, x, y)

)
. (2.1)

An example of a 1-endomorphism of x = (x1, . . . , xn) is

1x =
(
a; a · (x ′ − x)

)
, (2.2)

where by definition a · (x ′ − x) =
∑n

i=1 ai · (x ′
i − xi ). Note that in (2.2) we use the two

different symbols x, x ′ to denote the same object; this is analogous to the isomorphism
C[x] ⊗C C[x] ∼= C[x, x ′], which we will often employ implicitly. Below we will see
that, as the notation suggests, 1x is a (weak) unit 1-morphism of x .

To describe 2-morphisms in C, we first recall some basics on matrix factorisations;
see e. g. [KhR,CM] for more details and background. A matrix factorisation of a given
polynomial f ∈ C[x] is a pair (X, dX ), where X = X0 ⊕ X1 is a free Z2-graded C[x]-
module and dX : X −→ X is an odd C[x]-linear module map such that d2

X = f · idX .
The shift (X, dX )[1] of a matrix factorisation (X, dX ) is defined by

(X, dX )[1] := (X1 ⊕ X0,−dX ) . (2.3)

A class of examples of matrix factorisations are those of Koszul type: for k ∈ Z>1

and given polynomials pi , qi ∈ C[x], i ∈ {1, . . . , k}, the Koszul matrix factorisation

[
p, q

]
=

(
K (p, q), dK (p,q)

)
(2.4)

is given by

K (p, q) =
∧ ( k⊕

i=1

C[x] · θi

)
, dK (p,q) =

k∑

i=1

(
pi · θi + qi · θ∗

i

)
, (2.5)

where {θi} is a chosen C[x]-basis of C[x]⊕k . It is straightforward to check that [p, q] is

a matrix factorisation of
∑k

i=1 pi · qi .
For any W ∈ C[x1, . . . , xn], we may specialise to k = n and choose

qi := x ′
i − xi ∈ C[x, x ′] , pi := ∂

x ′,x
[i] W ∈ C[x, x ′] , (2.6)

where

∂
x ′,x
[i] W :=

W (x1, . . . , xi−1, x ′
i , . . . x ′

n) − W (x1, . . . , xi , x ′
i+1, . . . x ′

n)

x ′
i − xi

. (2.7)

The resulting matrix factorisation [p, q] is a matrix factorisation of W (x ′) − W (x) ∈

C[x, x ′] ∼= C[x] ⊗C C[x]; we denote it by IW .
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Finally, matrix factorisations of f ∈ C[x] are the objects of the homotopy category of
matrix factorisations HMF(C[x], f ). By definition a morphism (X, dX ) −→ (X ′, dX ′)

in HMF(C[x], f ) is a class in even cohomology of the differential δX,X ′ defined on
Z2-homogeneous maps as

δX,X ′ : HomC[x](X, X ′) −→ HomC[x](X, X ′)

ζ 7−→ dX ′ ◦ ζ − (−1)|ζ |ζ ◦ dX . (2.8)

We denote the idempotent completion of the full subcategory of finite-rank matrix factori-
sations of f by hmf(C[x], f )ω. Both HMF(C[x], f ) and hmf(C[x], f )ω are typically
non-semisimple.

With the above preparations, we can now define 2-morphisms in C as follows. Let
(a; W ) and (b; V ) be 1-morphisms x −→ y. Then a 2-morphism (a; W ) −→ (b; V )

in C is an isomorphism class of objects in HMF(C[a, b, x, y], V − W ) which has
a representative that is a direct summand of a finite-rank matrix factorisation in
HMF(C[a, b, x, y], V − W ). Put differently, such a 2-morphism is an isomorphism

class of objects in hmf(C[a, b, x, y], V − W )ω. For example, the Koszul matrix fac-
torisation IW from (2.6) and (2.7) represents the unit 2-endomorphism 1(x;W ) on
(x; W ) : ∅ −→ ∅. In general, the unit 2-morphism of (a; W ) : x −→ y is represented
by the analogous Koszul matrix factorisation that treats the variables x, y as spectators,

i. e. there are factors qi = a′
i − ai , and the variables x and y only appear in the pi . We

will usually not make a notational distinction between a 2-morphism in C and a matrix
factorisation that represents it, and we may abbreviate (X, dX ) to X .

Our convention for the standard graphical calculus in 2-categories is that we read 1-
morphisms from right to left, and 2-morphisms from bottom to top. Hence a 1-morphism
(a; W ) : x −→ y and a 2-morphism (X, dX ) : (a; W ) −→ (b; V ) are respectively
presented as follows:

y x
(a; W )

, X

(b; V )

(a; W ) xy

. (2.9)

The horizontal and vertical compositions of two appropriately composable 2-
morphisms (X, dX ) and (Y, dY ) are both given by the tensor product of matrix fac-
torisations

(
X ⊗ Y, dX⊗Y

)

=
((

(X0 ⊗ Y 0) ⊕ (X1 ⊗ Y 1)
)
⊕

(
(X0 ⊗ Y 1) ⊕ (X1 ⊗ Y 0)

)
, dX ⊗ 1 + 1 ⊗ dY

)
,

(2.10)

where however the meaning of “⊗” on the right-hand side is different for each case,
denoting the appropriate relative tensor product over the respective intermediate poly-
nomial ring:
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X ′

(b′; V ′)

(a′; W ′)

X

(b; V )

(a; W ) xyz

:= X ′ ⊗C[y] X

(b, b′, y; V + V ′)

(a, a′, y; W + W ′) xz

,

Y

X

(c; U)

(b; V )

(a; W ) xy

:= Y ⊗C[b] X

(c;U)

(a; W ) xy

(2.11)

From the above and a standard matrix factorisation computation (see e. g. [KhR,
Sect. 4] or [CM, Sect. 2.2]) it follows that 1(a;W ) is indeed the unit 2-morphism on
(a; W ) : x −→ y. We also note that Koszul matrix factorisations as in (2.4)–(2.5) are
tensor products: [

p, q
]

=
⊗

i

[pi , qi ] . (2.12)

The horizontal composition (2.1) is strictly associative up to a re-ordering of the
variables, which we will leave implicit. On the other hand, the unitors of the 2-category
C are non-trivial. For example, for (a; W ) : x −→ y we have

1y ◦
(
a; W (a, x, y)

)
=

(
b; b · (y′ − y)

)
◦

(
a; W (a, x, y)

)

=
(
a, b, y; b · (y ′ − y) + W (a, x, y)

)
. (2.13)

There is a canonical 2-morphism between this and (a; W ) which is represented by the
Koszul matrix factorisation with qi = y ′

i − yi . That this is in fact a 2-isomorphism

λ(a;W ) : 1y ◦
(
a; W (a, x, y)

)
−→

(
a; W (a, x, y)

)
(2.14)

follows from Knörrer periodicity, see [KaR, Sect. 2.2.3 & 2.3]. Analogously we have
right unitors

ρ(a;W ) :
(
a; W (a, x, y)

)
◦ 1x −→

(
a; W (a, x, y)

)
. (2.15)

Summarising, the 2-category C has sets of variables x as objects, polynomials
W (a, x, y) with “extra variables” a as 1-morphisms x −→ y, and isomorphism classes
of matrix factorisations of differences of such polynomials as 2-morphisms.
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2.2. Monoidal structure. To endow C with a monoidal structure, we have to provide a
2-functor

� : C × C −→ C , (2.16)

a unit object 1, an associator a which is part of an adjoint equivalence (a, a−), as well
as 1-unitors l, r , 2-unitors λ′, µ′, ρ′ and a pentagonator π ; see [SP, Sect. 2.3] for details.

On objects, we define the monoidal product to be

(x1, . . . , xn) � (y1, . . . , ym) = (x1, . . . , xn, y1, . . . , ym) , (2.17)

while on Hom categories we have

(
C × C

)(
(x, x ′), (y, y′)

)
C
(
x � x ′, y � y ′

)

((
a; W (a, x, y)

)
,
(
b; V (b, x ′, y ′)

)) (
a � b; W (a, x, y) + V (b, x ′, y ′)

)

((
ã; W̃ (̃a, x, y)

)
,
(̃
b; Ṽ (̃b, x ′, y ′)

)) (
ã � b̃; W̃ (̃a, x, y) + Ṽ (̃b, x ′, y ′)

)
.

�

(X, Y ) X ⊗C Y

(2.18)
In words, � acts as concatenation on lists of variables, as addition on polynomials, and
as ⊗C on matrix factorisations. It is straightforward to check that this gives us a strict
2-functor � : C × C −→ C, whose unit object is clearly

1 = ∅ . (2.19)

This is captured by the 2-functor I from the trivial 2-category to C which sends the
unique object ∗ to 1.

The associator a : � ◦ (� × IdC) −→ � ◦ (IdC × �) by definition has 1- and
2-morphism components

ax,y,z = 1x�y�z , a(a;W ),(b;V ),(c;U ) = λ−1
(a;W )�(b;V )�(c;U )

· ρ(a;W )� (b;V )�(c;U )

(2.20)
respectively. Here and below we suppress re-bracketing operations, and λ, ρ are the uni-
tor 2-isomorphisms (2.14)–(2.15).The associator components are clearly isomorphisms,
and we make the natural choice for the adjoint equivalence (a, a−).

We will frequently employ the 3-dimensional graphical calculus for monoidal 2-
categories developed in [Tr,BMS], using the conventions of [CMS, Sect. 3.1]. As in
string diagrams for 2-categories, objects, 1- and 2-morphisms are represented by 2-,
1- and 0-dimensional strata, respectively. In addition to horizontal composition (from
right to left) and vertical composition (from bottom to top), in a monoidal 2-category we
moreover read the monoidal product from front to back. Hence in C for 2-morphisms

382



Truncated Affine Rozansky–Witten Models as Extended TQFTs

X : (a; W ) −→ (̃a; W̃ ) and Y : (b; V ) −→ (̃b; Ṽ ), we have

Y

(̃b; Ṽ )

(b; V ) x ′y′

� X

(̃a; W̃ )

(a; W ) xy

=
Y

(̃b; Ṽ )

(b; V ) x ′y′

X

(̃a; W̃ )

(a; W ) xy

= Y ⊗C X

(̃a, b̃; Ṽ + W̃ )

(a, b; V + W ) x ′ � xy′ � y

. (2.21)

We continue to enumerate the data of the monoidal structure on C. The pentagonator
is an invertible modification

π :
(
1� ∗ (1IdC

× a)
)
◦

(
a ∗ 1IdC×�×IdC

)
◦

(
1� ∗ (a × 1IdC

)
)

−→
(
a ∗ 1IdC×IdC×�

)
◦

(
a ∗ 1�×IdC×IdC

)
(2.22)

which measures to what extent the associator a satisfies the pentagon axiom. Its com-
ponents are

πw,x,y,z = λ1w,x,y,z◦1w,x,y,z ·
(
�w;x,y,z ·11w,x ,y,z · �w,x,y;z

)
. (2.23)

The left and right 1-unitors are the pseudonatural transformations l : � ◦ (I ×

IdC) −→ IdC and r : � ◦ (IdC × I ) −→ IdC whose components are

l∗,x = 1x = rx,∗ , l1∗,(a;W ) = λ−1
(a;W )

· ρ(a;W ) = r(a;W ),1∗ . (2.24)

Finally, the 2-unitors are the invertible modifications λ′ : 1 ◦ (l ×1) −→ (l ∗1)◦ (a ∗1),
ρ′ : r ◦ 1 −→ (1 ∗ (1 × r)) ◦ (a ∗ 1) and µ′ : 1 ◦ (r × 1) −→ (1 ∗ (1 × l)) × (a ∗ 1) with
components

λ′
∗,x,y = λ−1

1x,y
· �

−1
x;y , ρ′

x,y,∗ =
(
�x;y ◦11x,y

)
· λ−1

1x,y
, µ′

x,∗,y = ρ−1
1x �1y

. (2.25)

It is now a straightforward exercise to verify that the above data satisfy the coherence
axioms of a monoidal 2-category, cf. [SP, Def. C.1]. This can be done analogously to
the proof of [CMM, Prop. 2.2], though our present situation is arguably simpler. Hence
we have:

Proposition 2.1. The data in (2.17)–(2.20) and (2.23)–(2.25) endow C with a monoidal
structure.
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2.3. Symmetric monoidal structure. To endow the monoidal 2-category C with a sym-
metric braided structure, we have to provide a braiding b which is part of an adjoint
equivalence (b, b−), a syllepsis σ , as well as invertible modifications R and S that
mediate between the associator a and the braiding b; see [SP, Sect. 2.3] for details.

The 1-morphism components

bx,y : x � y −→ y � x ≡ y ′ � x ′ (2.26)

of b are simply identity 1-morphisms up to a re-ordering of variables, i. e. bx,y = (c, d; d ·

(y ′ − y) + c · (x ′ − x)) which is identical to the pair which is the identity 1x�y , but

viewed as the 1-morphism (2.26) with a different yet isomorphic target. Analogously,
the 2-morphism components are identity 2-morphisms:

b(a;W ),(b;V ) =

V

W

bx,y

bx ′,y′

W

V

b(a;W ),(b;V )

y′ x

x ′ y

≡ 1(a,b;V +W ) .

(2.27)
Hence b is clearly invertible, and we take its adjoint b− to have identity components as
well.

Since a and b have only identity components, the invertible modificationsσ : 1� −→

b ◦ b, R : a ◦ b ◦ a −→ (IdC � b) ◦ a ◦ (b � IdC) and S : a− ◦ b ◦ a− −→ (b � IdC) ◦
a− ◦ (IdC � b) have components constructed only from the unitors of the underlying
2-category C, and they satisfy their coherence axioms by the coherence theorem for
2-categories. Hence we find:

Proposition 2.2. The above data endow the 2-category C with a symmetric monoidal
structure.

2.4. Full dualisability.

2.4.1. Duals for objects An object x ∈ C is dualisable if there exists an object x# ∈ C

together with adjunction 1-morphisms ẽvx , c̃oevx which satisfy the Zorro moves up to
isomorphism, see e. g. [Ps, Sect. 2]. Here we show that every object in C is dualisable
and self-dual.

For x ∈ C we take the (right) dual object to be

x# := x , (2.28)

and we set

x ′

x
= ẽvx :=

(
a; a · (x ′ − x)

)
: x � x# = (x, x ′) −→ ∅ , (2.29)
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x

x ′

= c̃oevx :=
(
a; a · (x − x ′)

)
: ∅ −→ x# � x = (x ′, x) . (2.30)

To show that these adjunction 1-morphisms indeed exhibit x as its own dual, we have
to prove that there are cusp isomorphisms6

x

cl = cl :
(
ẽvx � 1x

)
◦

(
1x � c̃oevx

) ∼=
−→ 1x , (2.31)

x#

cr = cr :
(
1x# � ẽvx

)
◦

(
c̃oevx � 1x#

) ∼=
−→ 1x# . (2.32)

Writing a(i) and x ( j ) for various copies of the lists of variables a and x , we can apply
the unitors in (2.14) and (2.15) to simplify the domain of cl as follows:

c̃oevx a(2)

x(4)

x(3)

a(4) ẽvx

x(2)

x(1)

x(5)

1x

a(1)

a(3)

1x

= a(1) ·
(
x (2) − x (1)

)
+ a(2) ·

(
x (4) − x (3)

)
+ a(3) ·

(
x (5) − x (4)

)
+ a(4) ·

(
x (3) − x (2)

)

∼= a(2) ·
(
x (5) − x (3)

)
+ a(4) ·

(
x (3) − x (1)

)

= x (3) ·
(
a(4) − a(2)

)
+ a(2) · x (5) − a(4) · x (1)

∼= a(2) ·
(
x (5) − x (1)

)
. (2.33)

Hence the domain of cl is isomorphic to the unit 1x = (a; a · (x ′ − x)). The argument
for cr is analogous, and we have:

Proposition 2.3. Every object in C is dualisable.

6 or “Zorro movies”, as reading the diagrams from bottom to top can be interpreted as straightening the
(reversed) Zorro-Z.

385



I. Brunner, N. Carqueville, D. Roggenkamp

We recall that in any symmetric monoidal 2-category, we do not have to distinguish
between left and right duals for objects because the braiding allows to translate between
left and right duality. Specifically in C, we obtain left adjunction 1-morphisms

evx := ẽvx ◦ bx#,x : x#
� x −→ ∅ , coevx := bx#,x ◦ c̃oevx : ∅ −→ x � x# (2.34)

from the right adjunction 1-morphisms ẽvx , c̃oevx . Thus x# = x is both the left and
right dual of x .

2.4.2. Full dualisability Recall that a 1-morphism M : u −→ v in a 2-category has a
right adjoint if there is M† : v −→ u together with adjunction 2-morphisms ẽvM : M ◦
M† −→ 1v and c̃oevM : 1u −→ M† ◦ M which satisfy the Zorro moves

c̃oevM

ẽvM

= 1M ,

ẽvM

c̃oevM

= 1M† . (2.35)

Similarly, a left adjoint consists of †M : v −→ u together with evM : †M ◦ M −→ 1u
and coevM : 1v −→ M ◦ †M that satisfy analogous Zorro moves. If adjoints for M
exist, then †M and/or M† are unique up to unique 2-isomorphism (compatible with the
adjunction maps).

An object in a monoidal 2-category is called fully dualisable if it is dualisable, and
if its adjunction 1-morphisms themselves have both left and right adjoints, see e. g. [Ps,
Sect. 3] for more details. Hence to show that every x ∈ C is fully dualisable, we have to
provide (existence of) left and right adjoints for the adjunction 1-morphisms ẽvx , c̃oevx
in (2.29), (2.30) as well as associated adjunction 2-morphisms that satisfy the Zorro
moves. We claim that those data are given by

x#

x
≡

x ′

x
a = coevx = †ẽvx = ẽv†

x :=
(
a; a · (x − x ′)

)
, (2.36)

x

x#

≡
x

x ′

a = evx = †c̃oevx = c̃oev
†
x :=

(
a; a · (x ′ − x)

)
(2.37)

and

y′ a′x ′

ya
x

y

b

c
y′

x ′ x

= evẽvx = ẽṽcoevx
(2.38)
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:=
[
c − a, y − y ′

]
⊗

[
b − a′, x ′ − x

]
⊗

[
a′ − a, y ′ − x

]
,

a′ a

x

y
= coevẽvx = c̃oeṽcoevx

:=
[
a′ − a, y − x

]
, (2.39)

y

a′a

x

= ẽvẽvx = eṽcoevx
:=

[
x − y, a′ − a

]
, (2.40)

x ′

a′

y′

x
a

x

c

bx ′

y′ y

y

= c̃oevẽvx = coeṽcoevx

:=
[
c − a, y′ − y

]
⊗

[
b − a, x − x ′

]
⊗

[
y ′ − x ′, a − a′

]
,

(2.41)

where the labels a, x, y, . . . in the diagrams either indicate objects in C, or the “extra
variables” a in 1-morphisms (a; W ).

Theorem 2.4. Every object in C is fully dualisable, as witnessed by the duality data in
(2.28)–(2.30) and (2.36)–(2.41).

Proof. We have to verify that the Zorro moves for the adjunction 2-morphisms (2.38)–
(2.41) hold. We will do this in detail for the adjunction †ẽvx ⊣ ẽvx .
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One of the two Zorro moves for †ẽvx ⊣ ẽvx states that

y′ ã
x ′

ya
x

y

b

c
y′

x ′ x

a′′

a′′′
y

y

x

x

a′

ã
y′

y′

x ′

x ′

x
b

c
y′

y′

x ′

x ′

a′′′

d

y

x

y

a a′′

=

y′

y′

x ′

x ′

a′

d

. (2.42)

The right-hand side is 1†ẽvx
, represented by the matrix factorisation [d − a′, x ′ − y ′].

Our task is to show that this is also true of the left-hand side. By definition, three of the
four lower subdiagrams are

x

y

a a′′

=
[
a − a′′, y − x

]
(2.43)

y
x

y
x

a′′

a′′′

=
[
a′′′ − a′′, x − y

]
(2.44)

y′ ã
x ′

ya
x

b

c
y′

x ′

y
x

=
[
c − a, y − y ′

]
⊗

[
b − ã, x ′ − x

]
⊗

[
ã − a, y′ − x

]
,

(2.45)
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while for the top subdiagram we have

x
b

c
y′

y′

x ′

x ′

a′′′

d

y

=
[
d − c, y − y ′

]
⊗

[
d − a′′′, x − y

]
⊗

[
d − b, x ′ − x

]
.

(2.46)

This latter matrix factorisation represents the 2-isomorphism 1x,y ◦ †ẽvx −→ †ẽvx , as

can be checked straightforwardly.
Horizontally and vertically composing (2.43)–(2.46) amounts to taking the tensor

product over C[a, a′′, a′′′, ã, b, c, x, y] of those matrix factorisations. Thus, the 2-
morphism on the left-hand side of the Zorro move (2.42) is represented by the matrix
factorisation

[
a − a′′, y − x

]
⊗

[
a′′′ − a′′, x − y

]
⊗

[
c − a, y − y ′

]
⊗

[
b − ã, x ′ − x

]

⊗
[
ã − a, y′ − x

]
⊗

[
d − c, y − y′

]
⊗

[
d − a′′′, x − y

]
⊗

[
d − b, x ′ − x

]

⊗
[
ã − a′, x ′ − y ′

]
. (2.47)

This is to be considered as a matrix factorisation over C[x ′, y ′, a′, d]. The remain-

ing variables b, c, a, a′′, a′′′, ã, x, y are internal variables and can be eliminated by
the following trick, which is formulated and proved as Lemma A.1 in Appendix A.
Let (X, dX ) ≡ (X, dX )(x, a, b) in variables x = (x1, . . . , xn), a = (a1, . . . , ak)

and b = (b1, . . . , bk) be a matrix factorisation. Then under the assumption that for
p = (p1, . . . , pk) ∈ C[x, a, b]×k the variables b are internal to (X, dX ) ⊗ [b − a, p],
this latter matrix factorisation is isomorphic to (X, dX )(x, a, a), i. e. the matrix factori-
sation obtained from (X, dX ) by setting b equal to a. Thus, the internal variable b is
eliminated from the tensor product by setting the Koszul factors b−a to zero. In this way,
one can use the first five tensor factors in (2.47) to set b = c = a = a′′ = a′′′ = ã = a′,
showing that (2.47) is isomorphic to

[
d − a′, y − y′

]
⊗

[
d − a′, x − y

]
⊗

[
d − a′, x ′ − x

]
. (2.48)

Next we can interchange the polynomials of Koszul matrix factorisations [p, q] at
the expense of a shift (recall (2.3)),

[
q, p

]
∼=

[
p, q

]
[k] , (2.49)

where k is the length of the lists p = (p1, . . . , pk) and q = (q1, . . . , qk). Since the shift
of matrix factorisations can be pulled out of the tensor product,

(X, dX )[1] ⊗ (Y, dY ) ∼=
(
(X, dX ) ⊗ (Y, dY )

)
[1] ∼= (X, dX ) ⊗ (Y, dY )[1] , (2.50)

and since a shift by 2 acts trivially, (2.48) is isomorphic to

[
y − y′, d − a′

]
⊗

[
x − y, d − a′

]
⊗

[
d − a′, x ′ − x

]
. (2.51)
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Applying Lemma A.1 again, one can eliminate the variables x and y by means of the

first two tensor factors in (2.51), setting them to y ′. This yields [d − a′, x ′ − y′] which is
indeed a representative of the right-hand side of the Zorro move (2.42). All other Zorro
moves are checked in complete analogy. ⊓⊔

2.4.3. Serre automorphisms Let u be a fully dualisable object in some symmetric
monoidal 2-category B. Then by definition its adjunction 1-morphisms ẽvu, c̃oevu them-
selves have both left and right adjoints; but in fact ẽvu, c̃oevu have arbitrary multi-

ple adjoints ẽv
††
u , †††c̃oevu, . . . , see [Ps, Thm. 3.9]. These are constructed only from

ẽvu, c̃oevu , the braiding b of B, and appropriate powers of the Serre automorphism

Su :=
(
1u � ẽvu

)
◦

(
bu,u � 1u#

)
◦

(
1u � ẽv†

u

)

= bu,uu u

u#

. (2.52)

For example, we have

ẽv†
u

∼=
(
Su � 1u#

)
◦ bu#,u ◦ c̃oevu , (2.53)

ẽv††
u

∼= ẽvu ◦ bu#,u ◦
(
1u# � S−2

u

)
, (2.54)

ẽv†††
u

∼=
(
1u# � S3

u

)
◦ bu#,u ◦ c̃oevu , (2.55)

and similarly for left adjoints of ẽvu and adjoints of c̃oevu . In particular, it follows from
[Ps, Thm. 3.9] that if Su is its own weak inverse, then left and right adjoints coincide.

The Serre automorphisms Su for all u ∈ B are precisely the 1-morphism components
of a pseudonatural transformation7

S : Id(Bfd)× −→ Id(Bfd)× , (2.56)

where by definition (Bfd)× is the maximal sub-2-groupoid of fully dualisable objects
in B, see [HV, Prop. 2.8]. This means that the objects of (Bfd)× are the fully dualisable
objects in B, while the 1- and 2-morphisms in (Bfd)× are precisely the (weakly) invertible
1- and 2-morphisms (between fully dualisable objects) in B.

According to Theorem 2.4, every object in B = C is fully dualisable. Moreover, a
straightforward computation analogous to that of the cusp isomorphism in (2.33) shows
that every Serre automorphism in C is trivialisable:

Proposition 2.5. For all x ∈ C, there are precisely two isomorphisms

Sx
∼=

−→ 1x , (2.57)

represented by the matrix factorisations I1x and I1x [1].

7 As shown in [CSz, Prop. 3.2], if all 1-morphisms in B have adjoints, then S lifts to a pseudonatural
transformation S : Id

Bfd −→ Id
Bfd .
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Proof. Using the fact that x# = x for any object x in C, and plugging the explicit

formulas (2.2), (2.26), (2.29) and (2.36) for 1x , bx,x , ẽvx and ẽv
†
x , respectively, into the

definition (2.52) of the Serre automorphism, one obtains

Sx =
(
1x � ẽvx

)
◦

(
bx,x � 1x#

)
◦

(
1x � ẽv†

x

)

=

x (1)

x (2)

x (3)

x (4)x (5)

x (6)

x (7)

x (8)
a(1)

a(2)

a(3)

a(4)

a(5)

a(6)

a(7)

=
(

a(1), . . . , a(7), x (2), . . . , x (7) ;

7∑

i=1

a(i) ·
(
x (i+1) − x (i)))

=
(

a(1); a(1) ·
(
x (2) − x (1)

))
◦

(
a(2); a(2) ·

(
x (3) − x (2)

))

◦ . . . ◦
(

a(7); a(7) ·
(
x (8) − x (7)

))
(2.58)

=
(
1x

)7
. (2.59)

Since 1x ◦ ϕ ∼= ϕ for any 1-morphism ϕ ∈ C(y, x), we have
(
1x

)7 ∼= 1x , and hence

Sx ∼= 1x . This proves trivialisability of Sx .
Finding all trivialisations Sx ∼= 1x is equivalent to finding all automorphisms of 1x

in C. By definition the latter are isomorphism classes of invertible objects in the monoidal
category hmf(C[a, b, x, y], (a−b) ·(x − y))ω ∼= hmf(C[a, b, x, y], b · y)ω. By Knörrer

periodicity this is equivalent to hmf(C[a, x], 0)ω ∼= modZ2(C[a, x]), the category of
finitely generated free Z2-graded C[a, x]-modules. But up to isomorphism the only

invertible objects in modZ2(C[a, x]) are C[a, x] concentrated in Z2-degree 0 or 1, and
we find that AutC(1x) = {[I1x ], [I1x ][1]}. ⊓⊔

Together with the triviality of the braiding b, this explains why the respective left and
right adjunction 2-morphisms in (2.38)–(2.41) are equal.

2.5. Gradings by flavour and R-symmetries. Rozansky–Witten theories carry two U(1)-
symmetries: R-symmetry and flavour symmetry. In the following we briefly discuss a
variant Cgr of the 2-category C in which we keep track of flavour and R-charges. This is
important in particular when comparing infinite-dimensional state spaces such as (1.3)
to results obtained by other means. We find that all the structure exhibited above for C

lifts to Cgr.

391



I. Brunner, N. Carqueville, D. Roggenkamp

The objects of Cgr are the same as the ones of C, namely finite ordered sets of variables
(x1, . . . , xn), where however we also assign a bidegree (1,−1) to all the variables xi .
The first degree corresponds to the R-charge, the second one to the flavour charge. Put
differently, instead of thinking of the objects as polynomial ringsC[x1, . . . , xn], we think
of them as bigraded rings, where each variable xi is homogeneous of degree (1,−1).

The bigrading is then extended to morphisms in the following way: A 1-morphism
(x1, . . . , xn) −→ (y1, . . . , ym) in Cgr is a triple (a; g; W ), where a = (a1, . . . , ak) is a
possibly empty list of additional variables which are assigned bidegrees

g =
(
g1 = (r1, q1), . . . , gk = (rk , qk)

)
∈ (Q × Q)×k , (2.60)

such that W is a homogeneous element of the (Q×Q)-graded ringC[a, x, y] of bidegree
(2, 0). For ease of notation we will often omit the bidegrees, in particular in cases in
which the bidegrees are determined by the ones of x, y.

A 2-morphism between two 1-morphisms (a; g; W ), (b; h; V ) : x −→ y in Cgr

is given by an equivalence class of matrix factorisations (X, dX ) of V − W over
C[a, b, x, y], which in addition to the ordinary Z2-grading of matrix factorisations pos-

sess a bigrading: the modules X i in X = X0⊕X1 are bigraded modules over the bigraded
ring C[a, b, x, y], and the odd map dX must be homogeneous of bidegree (1, 0). The
extra bigrading induces a bigrading on the space of morphisms of matrix factorisations,
and isomorphisms are required to be homogeneous of bidegree (0, 0).

The definitions of the compositions of 1- and 2-morphisms in Cgr agree with the
corresponding definitions in C, cf. (2.1) and (2.10). In fact, in our entire discussion of the
2-category C, the bigrading just goes along for the ride. All constructions and arguments
are compatible with the bigrading, and everything stated above for the 2-category C

carries over immediately to the graded version Cgr. In particular, we find:

Theorem 2.6. The structure morphisms of the symmetric monoidal 2-category C lift to
a symmetric monoidal structure on Cgr, and every object of Cgr is fully dualisable.

Since the arguments are basically identical, we will refrain from repeating them here
for the graded case. Instead, we will briefly sketch a few aspects which differ from the
discussion of C.

Indeed, all 1-morphisms (a; W ) used in the discussion of C above are gradable, in
the sense that it is possible to choose bidegrees for the additional variables ai such that
W is homogeneous of bidegree (2, 0). For instance, the unit 1-morphism 1x ∈ C(x, x)

defined in (2.2) becomes the unit 1-morphism in Cgr by assigning bidegree (1, 1) to
the variables ai . The same holds for the evaluations ẽvx , evx in (2.29), (2.37), and the

coevaluations c̃oevx , coevx in (2.29), (2.36). In fact, for all 1-morphisms mentioned in
the discussion of C, the choice of grading is unique.

Also the 2-morphisms used in the discussion of C are gradable, in the following
sense. They are morphisms between gradable 1-morphisms with a unique choice of
grading, i. e. they correspond to matrix factorisations over a bigraded polynomial ring
R of a homogeneous polynomial of bidegree (2, 0). It turns out that for all the matrix
factorisations (X, dX ) used in our discussion of C, the modules X can be made into
graded R-modules such that dX is homogeneous of degree (1, 0). By specifying the
grading of X , one obtains bigraded matrix factorisations, and hence 2-morphisms in Cgr.
Indeed, for all 2-morphisms relevant for our discussion of C, the choice of grading of X
is unique but only up to grade shift.

Consider a matrix factorisation [p, q] of Koszul type as defined in (2.4)–(2.5) for
which all the polynomials pi and qi are homogeneous with respect to the bigrading.
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This matrix factorisation can be graded by choosing any bigrading of the
∧0

-part
M ⊂ K (p, q). The bigrading on the rest of K (p, q) is then determined by the ho-
mogeneity of dK (p,q). Now M is a rank-1 free module over the bigraded polynomial

ring. Hence, it can be identified with the bigraded polynomial ring itself, which in turn
has a natural bigrading as a module over itself. The choice of this bigrading then de-
termines a bigrading on the entire module K (p, q). We denote this naturally bigraded
module by K (p, q) as well. The only way to change the bigrading is to twist the rank-1
free graded module, M 7−→ M{r, s}, where the degree (m, n)-part of M{r, s} is given
by the degree (m + r, n + s)-part of M:

(
M{r, s}

)
m,n = Mm+r,n+s . (2.61)

The rest of K (p, q) is then twisted accordingly, K (p, q) 7−→ K (p, q){r, s}. We denote
the Koszul type matrix factorisation with the corresponding bigrading by [p, q]{r, s}. In
case of zero twist we write [p, q]{0, 0} = [p, q].

Note that under the tensor product of Koszul type matrix factorisations, the twist
behaves additively:

[
p, q

]
{r, s} ⊗

[
p′, q ′

]
{r ′, s′} =

([
p, q

]
⊗

[
p′, q ′

])
{r + r ′, s + s′}

=
[

p, q
]
{r + r ′, s + s′} ⊗

[
p′, q ′

]

=
[

p, q
]
⊗

[
p′, q ′

]
{r + r ′, s + s′} . (2.62)

Next, we will spell out the gradings of the 2-morphisms appearing in the discussion
of the full dualisability of Cgr. First of all, the matrix factorisations corresponding to the
identity morphisms

y
x

y
x

a

b

= idcoevx = id†ẽvx
= id

ẽv
†
x

=
[
b − a, y − x

]
(2.63)

x

x
y

y
a

b

= idevx = id†̃coevx
= id̃

coev
†
x

=
[
b − a, y − x

]
(2.64)

are not twisted. The matrix factorisations representing for instance the 2-morphisms
between †ẽvx and 1x,y ◦ †ẽvx allow for a twist in terms of parameters rs, qs ∈ Q:

x ′

b

cy

y

x

x

a

d

y′

=
[
d − c, y ′ − y

]
⊗

[
d − a, x ′ − y ′

]

⊗
[
d − b, x − x ′

]
{rs, qs} , (2.65)
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x ′

b

c

y

y

x

x

d

a

y′

=
[
c − d, y ′ − y

]
⊗

[
a − d, x ′ − y ′

]

⊗
[
b − d, x − x ′

]
{−rs,−qs − 2} . (2.66)

Note that the relative twist is fixed by the fact that these 2-morphisms compose to id†ẽvx
.

Hence, we have only one twist parameter (rs, qs) determining the bigrading of these
2-morphisms.

The 2-morphisms corresponding to southern and northern hemispheres as well as
saddles also allow for twists, in terms of parameters rsh, rnh, qsh, qnh ∈ Q:

a′ a

x

y
= coevẽvx = c̃oeṽcoevx

=
[
a′ − a, y − x

]
{rsh, qsh} , (2.67)

y

a′a

x

= ẽvẽvx = eṽcoevx
=

[
x − y, a′ − a

]
{rnh, qnh} , (2.68)

y′ a′x ′

ya
x

y

b

c
y′

x ′ x

= evẽvx = ẽṽcoevx

=
[
c − a, y − y′

]
⊗

[
b − a′, x ′ − x

]

⊗
[
a′ − a, y ′ − x

]
{−rs − rsh,−qs − qsh − 2} , (2.69)
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x ′

a′

y′

x
a

x

c

bx ′

y′ y

y

= c̃oevẽvx = coeṽcoevx

=
[
c − a, y ′ − y

]
⊗

[
b − a, x − x ′

]

⊗
[
y ′ − x ′, a − a′

]
{rs − rnh, qs − qnh + 2} . (2.70)

Here, the relative twists of the southern hemisphere and the saddle are fixed by requiring
the Zorro move (2.42) to hold in the graded setting. Similarly, the relative twists of the
northern hemisphere and the upside-down saddle are fixed by the other Zorro move.

Indeed, using the fact (2.62) that the twist behaves additively under the tensor product,
it is straightforward to verify that all relations required to show that C is symmetric
monoidal and that every object is fully dualisable also holds in Cgr. Moreover,

in the graded case there are as many trivialisations Sx ∼= 1x of the Serre automorphism
as there are invertible shifts – but now both with respect toZ2- as well as (Q×Q)-degrees.

3. Fully Extended Oriented TQFTs

In this section we construct truncated affine Rozansky–Witten models as fully extended
oriented TQFTs. We begin in Sect. 3.1 with a review of the latter, where we recall
the classification in terms of fully dualisable objects and SO(2)-homotopy fixed points,
and how to explicitly compute the entire TQFT in terms of these elementary data.
In Sect. 3.2, using our results from Sect. 2, we apply the general theory to construct
ungraded TQFTs Zn with target category C. These are lifted in Sect. 3.3 to extended
TQFTs Z

gr
n with target Cgr, which incorporate flavour and R-charges. In particular, we

use the cobordism hypothesis to compute the graded vector spaces that Z
gr
n assigns to

closed surfaces, cf. Corollary 3.8 and (3.59).

3.1. Cobordism hypothesis. The cobordism hypothesis [BD,Lu,AF] identifies the fun-
damental building blocks of fully extended TQFTs and explains how to construct state
spaces and partition functions from these data. Here we review what this means in the
2-dimensional oriented case, following [SP,HSV,HV,He].

As laid out in [SP, Sect. 3.1–3.2], there is a symmetric monoidal 2-category of oriented
bordisms Bordor

2,1,0. Its objects, 1- and 2-morphisms are 2-haloed compact 0-dimensional
manifolds, 2-haloed compact 1-dimensional bordisms and diffeomorphism classes of
compact 2-dimensional bordisms with corners, respectively, all with prescribed orien-
tations. Horizontal and vertical composition is given by appropriate gluing of bordisms,
and the monoidal structure is induced from disjoint union.

We will have no need to deal with haloes explicitly. Hence we will treat objects of
Bordor

2,1,0 as finite disjoint unions of positively and negatively oriented points + and −, re-
spectively, while 1- and 2-morphisms are (represented by) oriented 1- and 2-dimensional
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bordisms. For example, the oriented interval [0, 1] can be lifted to the three distinct 1-
morphisms

++ : + −→ + ,
−

+
: + ⊔− −→ ∅ ,

−

+
: ∅ −→ + ⊔ − , (3.1)

where here and below we leave the orientation of bordisms implicit. Horizontally com-
posing the latter two, we obtain the oriented circle S1,

−

+
◦

−

+
= : ∅ −→ ∅ . (3.2)

Two examples of 2-morphisms in Bordor
2,1,0 are

+

−

+

++

− −

−

: 1+⊔− −→
−

+
◦

−

+
, : S1 −→ ∅ .

(3.3)
We observe that the graphical calculus in Bordor

2,1,0 precisely captures the intuition of
horizontally and vertically glueing surfaces with corners. Moreover, it follows that every
object is fully dualisable, with +# = − and

−

+
= ẽv+ = ev− = †coev+ = coev

†
+ = †c̃oev− = c̃oev

†
− , (3.4)

−

+
= coev+ = c̃oev− = †ẽv+ = ẽv

†
+ = †ev− = ev

†
− , (3.5)

while adjunction 2-morphisms are given by saddles and caps as in (3.3) and their
upside-down versions:

−

+

−

+

−−

+ +

= evẽv+ = ẽṽcoev+
, (3.6)

= coevẽv+ = c̃oeṽcoev+
, (3.7)
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= ẽvẽv+ = eṽcoev+
, (3.8)

+

−

+

++

− −

−

= c̃oevẽv+ = coevẽv+ . (3.9)

Note that all but the first equalities in each line of (3.4)–(3.9) are specific to the case
of orientations. For example, these identities do not hold for the tangential structure
of framings, i. e. in the associated 2-category Bordfr

2,1,0 studied in detail in [Ps]; in this

sense our oriented setting with Bordor
2,1,0 is simpler. We also observe that every compact

oriented surface can be (non-uniquely) decomposed into the pieces (3.6)–(3.9). This
will be used repeatedly below, see e. g. (3.21) where a decomposition of the torus T 2 is
shown.

Next we recall the type of TQFT that we will construct examples of. Let B be a
symmetric monoidal 2-category. A 2-dimensional (fully) extended oriented TQFT with
values in B is a symmetric monoidal 2-functor

Z : Bordor
2,1,0 −→ B . (3.10)

We denote the 2-category of such TQFTs as Funsm(Bordor
2,1,0,B). The fundamental

classification result for these TQFTs is in terms of SO(2)-homotopy fixed points in the
maximal sub-2-groupoid (Bfd)× of fully dualisable objects (cf. Sect. 2.4.3 for the latter).
These homotopy fixed points form the objects of a 2-groupoid [(Bfd)×]SO(2). Building
on [HSV,HV] the 2-dimensional oriented cobordism hypothesis was proven in [He,
Cor. 5.9] as the equivalence of symmetric monoidal 2-categories

Funsm
(
Bordor

2,1,0, B
)

∼=
[
(Bfd)×

]SO(2)
. (3.11)

Instead of directly describing the right-hand side in terms of homotopy actions of SO(2)

on B, i. e. monoidal 2-functors 562(SO(2)) −→ Autsm(B), we define an equivalent

2-groupoid B	, following [HV, Thm. 4.3].8 This is also the 2-groupoid in terms of
which we will study the cases when B is one of the 2-categories of truncated affine
Rozansky–Witten models introduced in Sect. 2:

• Objects of B	 are pairs (u, λ), where u ∈ Bfd and λ : Su −→ 1u is a 2-isomorphism
in (Bfd)×.

8 The 2-groupoid B	 is identical to the one denoted 2D1((Bfd)×) in [CSz, Sect. 3.3.3].
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• 1-morphisms (u, λ) −→ (u′, λ′) are 1-morphisms X : u −→ u′ in (Bfd)× such that
the following diagram commutes, where SX is the 2-morphism component of the
pseudonatural transformation (2.56) (see [CSz, Eq. (3.27)]):

X ⊗ Su X ⊗ 1u

X

Su′ ⊗ X 1u′ ⊗ X

1X ⊗ λ

λ′ ⊗ 1X

SX

∼=

∼=

(3.12)

• 2-morphisms X −→ Y in B	 are just 2-morphisms X −→ Y in (Bfd)×.
• Composition and units of B	 are induced from (Bfd)×.

Hence an object in B	 is a fully dualisable object u ∈ B together with a trivialisation λ

of its Serre automorphism. Very roughly, the equivalence [(Bfd)×]SO(2) ∼= B	 comes
about by combining the framed cobordism hypothesis (which states that fully extended
framed TQFTs are classified by fully dualisable objects in the target category) with the
fact that oriented bordisms can be obtained from framed bordisms through quotienting
by the relation S+

∼= 1+ (in the 2-category Bordfr
2,1,0, see [Ps]). Using this, the cobordism

hypothesis (3.11) can be reformulated and rendered more explicitly to state that 2-
dimensional extended oriented TQFTs with values in B are classified by what they
assign to the positive point +, together with a trivialisation of the Serre automorphism:

Theorem 3.1. ([HSV,HV,He]) There is an equivalence of symmetric monoidal 2-
categories

Funsm
(
Bordor

2,1,0, B
) ∼=
−→ B	

Z 7−→
(
Z(+), λ : SZ(+)

∼=
−→ 1Z(+)

)
. (3.13)

To understand that this is really a classification result, we should explain how to (re-
)construct a TQFT merely from an object (u, λ) ∈ B	. To do so, we use the fact that, up to
isomorphisms, symmetric monoidal 2-functors map adjunction data to adjunction data.
Hence, up to isomorphisms which will not play a role in our applications in Sects. 3.2–3.3,

given u ∈ Bfd and λ : Su
∼=

−→ 1u , we construct an extended TQFT Z : Bordor
2,1,0 −→ B

by setting

Z(
−

+

) = Z(ẽv+) = ẽvu , (3.14)

Z(
−

+

) = Z(coev+) = coevu , (3.15)

Z

( )
= Z(evẽv+) = evẽvu , (3.16)
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Z

( )
= Z(coevẽv+) = coevẽvu (3.17)

Z

( )
= Z(ẽvẽv+) = ẽvẽvu , (3.18)

Z

( )
= Z(c̃oevẽv+) = c̃oevẽvu . (3.19)

As Z sends units to units, this determines Z on any compact oriented surface. For
example, on a sphere we have

Z(S2) = Z

( )
= Z(ẽvẽv+ · coevẽv+) = ẽvẽvu · coevẽvu , (3.20)

while on a torus we have

Z(T 2) = Z




−

+

−

+

−−

+ +

−

+

−

+

−−

+ +

+

−

+

−

−

+

−

+




= ẽvẽvu ·
[
1ẽvu ◦

(
evẽvu · c̃oevẽvu

)
◦ 1coevu

]
· coevẽvu . (3.21)
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Here we assumed that the adjunction data for the adjunction 1-morphisms ẽvu, c̃oevu,

evu, coevu are chosen in B such that they satisfy the strict identities †ẽvu = coevu = ẽv
†
u

etc., analogous to the strict identities (3.4)–(3.5) in Bordor
2,1,0. This is always possible and

guarantees that e. g. the 2-morphism Z(ẽvẽv+) = ẽvẽvu : ẽvu ◦ ẽv
†
u −→ 11 compiles, i. e.

is compatible with (3.15). If other adjunction data were chosen in B, the 2-isomorphisms

ẽv
†
u

∼= coevu etc. (uniquely determined by the trivialisation λ) have to be inserted by
hand to make the formulas for Z on surfaces compile. Note that in the cases B = C and
B = Cgr, our strict assumption on adjunction data is satisfied, see e. g. (2.36), (2.37),
as every object x has an essentially unique trivialisation of its Serre automorphism (cf.
Proposition 2.5 and its bigraded version, as well as Theorem 3.4 below), so in this sense
we can treat the latter as the identity.

Along the same lines, and with the above assumption on adjunction data, we find that
for any closed oriented surface 6g of genus g ∈ Z>0:

Z(6g) = ẽvẽvu ·
[
1ẽvu ◦

(
evẽvu · c̃oevẽvu

)g
◦ 1coevu

]
· coevẽvu . (3.22)

Example 3.2. Consider the symmetric monoidal 2-category AlgC of finite-dimensional
C-algebras, their finite-dimensional bimodules and bimodule maps. The monoidal prod-
uct is given by ⊗C, horizontal composition is the relative tensor product over the inter-
mediate algebra, and vertical composition is concatenation of C-linear maps.

As explained in [SP, Sect. 3.8], an object A ∈ AlgC is fully dualisable with trivi-
alisable Serre automorphism iff A comes with the structure of a separable symmetric
Frobenius algebra over C. Its dual is the opposite algebra A# = Aop, whose multi-
plication is that of A pre-composed with the swap map a ⊗ b 7−→ b ⊗ a, with ẽvA
and c̃oevA given by A viewed as a C-(A ⊗C Aop)- and an (Aop ⊗C A)-C-bimodule,

respectively. Since A is symmetric, we have ẽv
†
A = Ae (A∗)C ∼= Ae AC = coevA, where

A∗ := HomC(A,C) and Ae := A ⊗C Aop, hence we find that an extended TQFT ZA
classified by A associates the 0-th Hochschild homology and cohomology to the oriented
circle:

HH0(A) = A ⊗Ae A = ẽvA ◦ coevA ∼= ZA
(
ẽv+ ◦ coev+

)
= ZA(S1)

= ZA
(
ẽv+ ◦ ẽv

†
+

)
∼= A ⊗Ae A∗ ∼= EndAe (A)

= HH0(A) . (3.23)

Moreover, one finds that ZA sends the pair-of-pants to the induced (commutative) mul-
tiplication on HH0(A), while its values on the upside-down pair-of-pants, the cap and
the cup are similarly induced from the Frobenius algebra structure of A.

The above discussion for the 2-category AlgC is naturally interpreted as that of
oriented state sum models as fully extended oriented TQFTs. Other standard examples
of 2-dimensional TQFTs such as B-twisted sigma models and Landau–Ginzburg models
also have well-established 2-categories associated to them which can be taken as targets
for fully extended TQFTs, see e. g. [CW,Ba] and [CM,CMM], respectively, for the
symmetric monoidal and duality structures. In the former case the Serre automorphism
corresponds to tensoring with shifted canonical line bundles, and to a shift of matrix
factorisations in the latter case. In all cases the expression (3.22) reproduces the partition
functions on genus-g surfaces obtained earlier by other methods.
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Remark 3.3. A natural interpretation of the cobordism hypothesis in Theorem 3.1 is
that the 2-groupoid B	 contains information about the moduli space MB∞

of extended
oriented TQFTs with values in a 2-categoryB. Indeed, we may think ofBas the truncation
of an (∞, 2)-category B∞. Then according to the (∞, 2)-version of the cobordism
hypothesis [Lu,AF], extended oriented TQFTs with values in B∞ are classified by an

∞-groupoid B
	
∞ of SO(2)-homotopy fixed points on fully dualisable objects in B∞, and

our B	 is its 2-categorical truncation. But by the homotopy hypothesis an ∞-groupoid
is to be identified with a topological space. In particular, isomorphism classes of objects
and isomorphism classes of 1-morphisms of B	 correspond to connected components
50(MB∞

) and to morphisms in the fundamental groupoid 51(MB∞
), respectively, of

the moduli space of extended oriented TQFTs with values in B∞.

3.2. Truncated affine Rozansky–Witten models. In this section we apply the oriented
cobordism hypothesis (Theorem 3.1) to the 2-category C of truncated affine Rozansky–
Witten models, establishing that every (x1, . . . , xn) ∈ C gives rise to a unique extended
TQFT Zn . We then go on, in Sect. 3.2.1, to explicitly compute the Z2-graded vec-
tor spaces Zn(6g) associated to closed surfaces 6g of genus g. From the perspective
of 2-dimensional TQFT, the vector spaces Zn(6g) are “partition functions” for the
“spacetimes” 6g , but since Zn is the truncation of a 3-dimensional field theory, they are
naturally interpreted as “state spaces” of the latter. Finally in Sect. 3.2.2 we compute Zn
on surfaces without corners like the pair-of-pants to identify the commutative Frobenius
algebra classifying the closed TQFT obtained from Zn by restriction, and we discuss its
relation to Grothendieck rings.

3.2.1. Partition functions and state spaces According to Theorem 2.4 and Proposi-
tion 2.5, every object in C is fully dualisable, and there are precisely two trivialisations
of its Serre automorphism. One finds that both correspond to isomorphic TQFTs:

Theorem 3.4. For every (x1, . . . , xn) ∈ C there is an extended oriented TQFT

Zn : Bordor
2,1,0 −→ C (3.24)

with Zn(+) = (x1, . . . , xn). Such TQFTs are unique up to isomorphism.

Proof. Existence of Zn is immediate from the cobordism hypothesis. To prove unique-
ness we have to show that the two TQFTs corresponding (via Theorem 3.1) to (x, [I1x ])

and (x, [I1x [1]]) in C	 are isomorphic.
Note that in general the way a chosen trivialisation λ of a Serre automorphism Su

enters into the construction of the associated oriented TQFT is via identities like (2.53)
and more generally [Ps, Thm. 3.9], which expresses adjoints of evaluation 1-morphisms
in terms of coevaluation 1-morphisms and a single factor of Su (or S−1

u ). In particular,

the left and right adjoints of adjunction 1-morphisms differ by S2
u or S−2

u , and one finds
that the associated adjunction 2-morphisms involve an even number of λ-factors (see
e. g. [CSz, (3.31)–(3.34)] for more details). In our case of u = x and λ = [I1x ] or
λ = [I1x [1]] these contributions are identities in both cases, because a double shift is
trivial both under horizontal and vertical composition. ⊓⊔

Since the 2-category C is under explicit control, it is straightforward to compute what
the TQFT Zn does to bordisms, following the general discussion of Sect. 3.1. Using the
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adjunction 1-morphisms (2.36), (2.37) we immediately see that to a circle, Zn assigns

Zn(S1) =
(

a, a′, x, x ′;
(
a − a′

)
·
(
x − x ′

))
. (3.25)

Roughly, we may think of Zn(S1) as the homotopy category of matrix factorisations of
(a − a′) · (x − x ′) – but as discussed in Sect. 3.2.2 below, Zn does not know about the
entire structure of that category.

To surfaces, the TQFT Zn associates isomorphism classes of matrix factorisations.
For instance, Zn(6g) for a closed surface 6g of genus g is an isomorphism class of matrix
factorisations of 0 ∈ C[a, a′, x, x ′]. Matrix factorisations of zero are isomorphic to the
Z2-graded vector spaces given by their cohomology. Hence, Zn(6g) can be viewed
as such a vector space, which should correspond to the state space of the underlying
3-dimensional theory on 6g .

In the following Proposition 3.5, we explicitly calculate Zn(6g), and indeed repro-
duce the state spaces of the affine Rozansky–Witten model with target manifold T ∗Cn .
Since affine Rozansky–Witten models are free theories, their state spaces can be cal-
culated in a straightforward manner, cf. [RW]. (We will discuss the agreement of these
state spaces with our results in slightly more detail in the graded setting in Sect. 3.3
below.)

Proposition 3.5. Let 6g be a closed surface of genus g ∈ Z>0. Then

Zn(6g) ∼=
(
C ⊕ C[1]

)⊗2ng
⊗C C[a, x] (3.26)

as Z2-graded vector spaces, where C[a, x] = C[a1, . . . , an, x1, . . . , xn] has degree 0.

Proof. We first consider the case g = 0, i. e. 60 = S2. By (2.39), (2.40) and (3.20)
we have Zn(S2) ∼= [y − x, a′ − a] ⊗ [a′ − a, x − y] as a matrix factorisation of

zero over C[a, a′, x, y]. Using Lemma A.1 this matrix factorisation can be simplified

by eliminating the internal variable a′. This yields the matrix factorisation [y − x, 0]

over C[a, x, y], whose cohomology is given by the Z2-graded vector space C[a, x] in

degree 0. Hence Zn(S2) ∼= C[a, x].
Next we consider g > 1. Vertically composing c̃oevẽvx in (2.41) with evẽvx in (2.38)

(with b 7−→ b̃ and c 7−→ c̃) and then horizontally composing with

y
x

y
x

d

e

=
[
e − d, x − y

]
,

x ′

x ′

y′

y′d ′

e′

=
[
e′ − d ′, y ′ − x ′

]
(3.27)
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we find

Zn




−

+

−

+

−−

+ +

−

+

−

+

−−

+ +

+

−

+

−

−

+

−

+




=

xx ′

x ′ b̃

b

c
d

e

d ′

e′

x

y

y

y′

y′

c̃

=
[
c̃ − a, y − y ′

]
⊗

[̃
b − a′, x ′ − x

]
⊗

[
a′ − a, y ′ − x

]

⊗
[
c − a, y′ − y

]
⊗

[
b − a, x − x ′

]
⊗

[
y′ − x ′, a − a′

]

⊗
[
e − d, x − y

]
⊗

[
e′ − d ′, y′ − x ′

]
. (3.28)

Here we used that all compositions are given by the tensor product of matrix factori-
sations. The first line on the right-hand side of (3.28) corresponds to the saddle, the
second line to the upside-down saddle, and the last line to the two half-cylinders in the
decomposition. The variables a and a′ in (3.28) are internal. Eliminating them using
Lemma A.1, we obtain that (3.28) is isomorphic to

[
c̃ − c, y − y ′

]
⊗

[̃
b − c, y ′ − x

]
⊗

[
b − c, x − x ′

]
⊗

[
y′ − x ′, c − b̃

]

⊗
[
e − d, x − y

]
⊗

[
e′ − d ′, y ′ − x ′

]
. (3.29)

Next, we repeatedly apply the fact (proved as Lemma A.2 in the appendix) that

[
p, q

]
⊗

[
p′, q ′

]
∼=

[
p ± p′, q

]
⊗

[
p′, q ′ ∓ q

]
,

whenever p, q, p′, q ′ are lists of variables of the same length. Furthermore, since in

general (X, dX ) ∼= (X,−dX ), and hence in particular [a, x] ∼= [−a,−x], we find
with (2.50) that (3.29) is isomorphic to

[
c̃ − c, y − y′

]
⊗

[̃
b − b, x ′ − x

]
⊗

[
e − d, x − y

]
⊗

[
e′ − d ′, y′ − x ′

]

⊗
[
0, y ′ − x

]
⊗

[
0, b̃ − c̃

]
. (3.30)
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Next, we pre-compose this with the 2-morphism

x

y

x ′

y′

d ′ d

b

c ∼=
[
b − d, x ′ − x

]
⊗

[
c − d, y − y′

]
⊗

[
d ′ − d, x ′ − y ′

]

(3.31)

obtained by composing

x ′

x ′

y′

y′a′

d ′

y′

y′

x ′

x ′

a

dxb

c y

(3.32)

=
[
d ′ − a′, y ′ − x ′

]
⊗

[
b − a, x ′ − x

]
⊗

[
d − a, x − y

]
⊗

[
c − a, y − y′

]

(the right diagram corresponds to the inverse of (2.46)) with

a′ a

x ′

y′ =
[
a′ − a, x ′ − y ′

]
. (3.33)

We obtain that Zn sends the decomposition

−

+

−

+

−−

+ +

−

+

−

+

−−

+ +

+

−

+

−

−

+

−

+

(3.34)
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of the torus with one disc cut out to the isomorphism class of the tensor product of the
matrix factorisations (3.30), (3.31):

[
c̃ − c, y − y′

]
⊗

[̃
b − b, x ′ − x

]
⊗

[
e − d, x − y

]
⊗

[
e′ − d ′, y′ − x ′

]

⊗
[
0, y ′ − x

]
⊗

[
0, b̃ − c̃

]

⊗
[
b − d, x ′ − x

]
⊗

[
c − d, y − y ′

]
⊗

[
d ′ − d, x ′ − y′

]
. (3.35)

The first four tensor factors in (3.35) can now be used to eliminate the internal variables
by means of Lemma A.1. One is left with the tensor factors in the last two lines of (3.35),
with the replacements b 7−→ b̃, c 7−→ c̃, d 7−→ e and d ′ 7−→ e′. Note that the third
line of (3.35) comes from the 2-morphism (3.31) associated to the southern hemisphere
with four marked points on the equator. Since it is only changed by the replacement
of variables above, it reproduces the same 2-morphism. The matrix factorisations in
the second line of (3.35) can both be brought into the form [0, 0] ∼= (C ⊕ C[1])⊗n by
applying Lemma A.2. Thus, (3.35) is isomorphic to

(
C ⊕ C[1]

)⊗2n
⊗C

x

y

x ′

y′

e′ e

b̃

c̃ . (3.36)

Post-composing this with

b̃ xx ′

yy′

e′ e

c̃

∼=
[
y ′ − y, c̃ − e′

]
⊗

[
y − x, e − e′

]
⊗

[
x − x ′, b̃ − e′

]
,

(3.37)

we obtain Zn(61) = Zn(T 2) ∼= (C ⊕ C[1])⊗2n ⊗C C[a, x] by the type of reasoning
we used to establish Zn(S2) ∼= C[a, x].

Finally, we can obtain the 2-morphism corresponding to the genus-g surface 6g
by composing the g-th power of (3.28) with the 2-morphisms corresponding to the
hemispheres. Making repeated use of the fact that the 2-morphism (3.28) composes
with the one associated to the southern hemisphere to (3.35), we produce the formula
for Zn(6g) in (3.26). ⊓⊔

Remark 3.6. We may apply the cobordism hypothesis to obtain some information on
the moduli space MC of truncated affine Rozansky–Witten models. Indeed, according
to Remark 3.3 and because we have that C× ∼= C	 (as implied by Theorem 3.4), the
connected components and the fundamental groupoid of MC are encoded in 50(C

×)

and 51(C
×).

To determine 50(C
×), we note that if for positive integers m and n we have

(x1, . . . , xm) ∼= (x1, . . . , xn) in C, then Zm ∼= Zn as TQFTs. Hence because Zm(6g) ≇
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Zn(6g) for m 6= n by Proposition 3.5, we have Zm ≇ Zn for m 6= n, which in turn
implies (x1, . . . , xm) ≇ (x1, . . . , xn). Thus

50(MC) ∼= 50(C
×) ∼= N . (3.38)

To determine 51(C
×), we must consider all invertible 1-morphisms in C and ask

when two parallel such 1-morphisms (a; W ), (b; V ) : x −→ y are isomorphic. Because

of (3.38) invertibility implies x ∼= y, while an isomorphism (a; W ) ∼= (b; V ) in C by

definition gives π0(hmf(C[a, x, y], W )ω) ∼= π0(hmf(C[b, x, y], V )ω). If this were to

lift to an equivalence hmf(C[a, x, y], W )ω ∼= hmf(C[b, x, y], V )ω, then [Ka, Thm. 1.4]
would imply that W and V differ by an even number of squares, and by Knörrer peri-
odicity we would then find that the fundamental groups of MC are all trivial.

3.2.2. Commutative Frobenius algebras and Grothendieck rings From every fully ex-
tended 2-dimensional TQFT Z one obtains a closed TQFT by restricting Z to circles
and bordisms between them. In particular, from the extended TQFT Zn of Theorem 3.4
we obtain a closed oriented TQFT

Zcl
n := Zn

∣∣∣
Bordor

2,1,0(∅,∅)
: Bordor

2,1 −→ C(x, x) . (3.39)

Recall that 2-dimensional oriented closed TQFTs with values in a given symmet-
ric monoidal category (V,⊗,1) are equivalent to commutative Frobenius algebras
(A, µ, η, β) in V , see e. g. [Ko]. If V = VectC with the standard tensor product, those
algebras are precisely ordinary commutative Frobenius algebras overC. In general, A is
an object in V together with a commutative associative multiplication µ : A ⊗ A −→ A,
a unit η : 1 −→ A, and a non-degenerate pairing β : A ⊗ A −→ 1 that is compatible
with µ. Applying this classification result to the closed TQFT Zcl

n , we can equivalently
describe it as follows:

Proposition 3.7. The closed TQFT Zcl
n is classified by the commutative Frobenius al-

gebra (A, µ, η, β) in C(x, x) with

A = Zn
( )

∼=

(
a, d, x, y;

(
a − d

)
·
(
x − y

))
, (3.40)

µ = Zn

( )
∼=

[
a′′ − a, y − y ′

]
⊗

[
a′′ − a′, x ′ − x

]
⊗

[
a′ − a, y′ − x

]
(3.41)

⊗
[
d ′′ − d ′, y′ − x ′

]
⊗

[
a′′ − d, x − y

]
,

η = Zn
( )

∼=
[
a − d, x − y

]
, (3.42)

β = Zn

( )
∼=

[
d − a, y − y ′

]
⊗

[
d − a′, x ′ − x

]
⊗

[
a′ − a, y′ − x

]
(3.43)

⊗
[
y′ − x ′, d − d ′

]
.
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Proof. We already noticed the expressions for Zn( ) and Zn( ) in (3.25) and (3.33),

respectively; here we simply re-named some of the variables. To compute the action of Zn
on the pair-of-pants, we decompose it as

= . (3.44)

Hence Zn( ) is given by first horizontally composing (2.38) and (3.27), and then
vertically post-composing with

[
d ′′ − e′, y′ − x ′

]
⊗

[
a′′ − c, y − y ′

]
⊗

[
a′′ − e, x − y

]
⊗

[
a′′ − b, x ′ − x

]
, (3.45)

which (up to re-naming of variables) is the inverse of (3.32). A straightforward compu-
tation then shows that this gives the expression (3.42), viewed as a 2-morphism

(
a′ − d ′

)
·
(
x ′ − y ′

)
+

(
d − a

)
·
(
x − y

)
−→

(
d ′′ − a′′

)
·
(
x ′′ − y ′′

)
(3.46)

in C (after re-naming x 7−→ x ′′ and y 7−→ y ′′). The expression for Zn( ) in (3.43)
is obtained similarly, by composing with (2.40) with suitably re-named variables. ⊓⊔

The commutative Frobenius algebras of Proposition 3.7 can be partially described by
ordinary algebras over C, as we shall discuss next. First, as already noted around (3.25),
we may think of Zn(S1) = (a, d, x, y; (a − d

)
·
(
x − y)) as the associated (non-

semisimple) homotopy category of matrix factorisations

An := hmf
(
C[a, d, x, y];

(
a − d

)
·
(
x − y

))ω
∼= modZ2

(
C[a, x]

)
. (3.47)

(For the equivalence to Z2-graded C[a, x]-modules we recall the argument in the proof
of Proposition 2.5.)

The algebra structure in Proposition 3.7 is compatible with the standard monoidal
structure on An . To see this, note that Zn( ) ∈ An is represented by the unit object, and

a straightforward computation shows that (where A′
n is a copy of An with all variables

primed, and similarly for A′′
n)

Zn( ) : A′
n × An −→ A′′

n(
P(a′, d ′, x ′, y ′), Q(a, d, x, y)

)
7−→ P(d ′′, d, x ′′, y ′′) ⊗C[d] Q(d, a′′, x ′′, y ′′) ,

(3.48)

which is indeed the relative tensor product of matrix factorisations.
Since C (and hence Zn) sees only isomorphism classes of matrix factorisations,

Zn( ) induces the monoidal product for An only on isomorphism classes of objects.
If C were the truncation of a 3-category associated to a 3-dimensional theory T , the 3-
morphisms of the latter would in particular include the morphisms of An and complete
its monoidal structure. This monoidal structure would then be interpreted as the fusion
of topological line defects (on the identity surface defect) in T . Moreover, the braiding
of line defects would give rise to a braided monoidal structure on An .
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From the perspective of our truncated 2-category C and the TQFT Zn taking values
in it, what is visible of the monoidal category An is its Grothendieck ring K0(An).
By definition, this is the abelian group generated by isomorphism classes of objects
in An subject to relations coming from short exact sequences in An , together with
multiplication

(
[P], [Q]

)
7−→

[
Zn( )(P, Q)

]
. (3.49)

It follows from Proposition 3.7 that this product is associative and unital with respect
to the unit [Zn( )].

In addition to the unital associative structure, K0(An) has a coassociative comulti-
plication

[
P ≡ P(d, a, x, y)

]
7−→

[
Zn( )(P)

]
(3.50)

=
[

P(d ′, a′, x ′, y ′) ⊗
([

a′′ − a′, 0
]
⊗

[
x ′ − x, 0

])

⊗
[
d ′′ − a′′, x ′′ − y′′

]]

where the last expression is a consequence of a straightforward computation along the
lines of the proof of Proposition 3.7, and by the same argument this comultiplication is
compatible with the multiplication in (3.49) in the sense that

[
Zn

( )
(P, Q)

]
=

[
Zn

( )
(P, Q)

]
=

[
Zn

( )
(P, Q)

]
. (3.51)

However, the counit β ·(η◦1A) of the Frobenius algebra classifying Zcl
n does not induce

a counit for the complexification of K0(An) (viewed as an algebra either over C or over
C[x, y]). The reason is that β · (η ◦ 1A) applied to an object in An produces a matrix
factorisation of zero, and not an element in C or C[x, y]. This is consistent with the fact
that the complexification of K0(An) is infinite-dimensional while Frobenius algebras in
VectC are necessarily finite-dimensional.

In summary, the extended TQFT Zn induces an associative unital coassociative non-
counital algebra structure on the Grothendieck ring of An , where multiplication and
comultiplication are compatible as in the case of Frobenius algebras. The lack of a
counit, or equivalently the lack of a non-degenerate pairing, is expected for a truncation
of a 3-dimensional twisted sigma model with non-compact target T ∗Cn .

Finally, we mention that while Zn does not know about the full structure of An , it does
see more than its Grothendieck ring. For example, by combining Proposition 3.5 with
the discussion in [CDGG, Sect. 2.6.2] we explicitly verify that the state space assigned
to the torus is the full Hochschild homology of the non-semisimple category An :

Zn(T 2) ∼= HH•(An) . (3.52)

3.3. Including flavour and R-charges. The discussion of Sect. 3.2 carries over imme-
diately to the graded setting. As discussed in Sect. 2.5, also every object in Cgr is fully
dualisable, and there are

as many trivialisations of its Serre automorphism as there are (Z2 × Q × Q)-shifts,
all of which lead to equivalent TQFTs. Thus, for every object x ∈ Cgr, there is an
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extended oriented TQFT

Z
gr
n : Bordor

2,1,0 −→ Cgr (3.53)

with Z
gr
n (+) = (x1, . . . , xn). Since all the structure morphisms of Cgr are lifts of those in

C, the gradings immediately push through all the calculations of Sect. 3.2. In particular,

Z
gr
n (S1) =

(
a, a′, x, x ′;

(
a − a′

)
·
(
x − x ′

))
, (3.54)

where now x, x ′ carry bidegree (1,−1), and a, a′ have bidegree (1, 1). Modulo a caveat
analogous to the ungraded case, we may think of Z

gr
n (S1) as the homotopy category of

bigraded matrix factorisations of (a − a′) · (x − x ′).
To a closed surface 6g of genus g, the TQFT Z

gr
n associates an isomorphism class of

bigraded matrix factorisation of zero, or equivalently, the (Z2 × Q × Q)-graded vector
space given by its cohomology. This vector space corresponds to the state space of the
underlying 3-dimensional Rozansky–Witten theory.

Making use of the fact that the gradings behave additively under the tensor product,
cf. (2.62), it is straightforward to incorporate the bigrading into the calculations in the
proof of Proposition 3.5, leading to:

Corollary 3.8. Let 6g be a closed oriented surface of genus g, then

Z
gr
n (6g) ∼=

((
C ⊕ C[1]{0, 1}

)⊗n
⊗C

(
C ⊕ C[1]{0,−1}

)⊗n
{−rnh − rsh,−qnh − qsh}

)⊗g

⊗C C[a, x]{rnh + rsh, qnh + qsh} . (3.55)

This space indeed agrees with the state space of the Rozansky–Witten theory with target
manifold T ∗Cn from [RW], cf. Appendix B and [CDGG, Sect. 2]. For fixed degrees, the
corresponding subspace of the state space is finite-dimensional. We furthermore note
that for the case g = 1 the choices for the parameters rnh, rsh, qnh, qsh drop out,9 and
that the state space associated to the torus

Z
gr
n (T 2) ∼= HH•(A

gr
n ) (3.56)

is the full Hochschild homology of the (Z2 × Q × Q)-graded C[a, x]-modules

A
gr
n := hmfgr

(
C[a, d, x, y];

(
a − d

)
·
(
x − y

))ω
∼= modgr

(
C[a, x]

)
, (3.57)

where the a- and x-variables have bidegrees (1, 1) and (1,−1), respectively, as discussed
in Sect. 2.5.

In the physics literature, these spaces are often described in terms of their generating
functions

Z6g (s, t, u) := trZgr
n (6g)

(
sF t R uQ

)
, (3.58)

where F is the fermion number operator counting the homological Z2-degree, while R
and Q are the flavour and R-charge operators, respectively. Such indices can often be

9 A more general discussion of state spaces as well as indices can be found in [CDGG], where also flat
background connections combining twisted mass parameters with the flavour symmetry are considered. Here,
the torus is again special in the sense that for generic background connections the state space becomes trivial.
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evaluated by path integral computations in rather general situations, going beyond the
free field case. From (3.55) one reads off the generating function

Z6g (s, t, u) =
((

1 + su
)n (

1 + s
u

)n
t−rnh−rsh u−qnh−qsh

)g trnh+rsh uqnh+qsh

(
1 − tu

)n (
1 − t

u

)n . (3.59)

Setting s = −t (i. e. counting the odd homological degree with a minus sign in the
generating function and adding the homological degree to the R-charge) we obtain the
more familiar form

Z6g (t, u) := Z6g(−t, t, u) =
((

1 − tu
)n (

1 − t
u

)n
t−rnh−rsh u−qnh−qsh

)g−1
, (3.60)

which after setting rnh + rsh = −1 and qnh + qsh = 0 agrees with the formulas of e. g.
[GHNPPS, Sect. 2].

The discussion of the commutative Frobenius structure in Sect. 3.2.2 for the ungraded
case carries over in a straightforward manner to the graded case. Inclusion of the gradings
yields the commutative Frobenius algebra (Agr, µgr, ηgr, βgr) in Cgr(x, x), where

Agr =Z
gr
n

( )
∼=

(
a, d, x, y;

(
a − d

)
·
(
x − y

))
, (3.61)

µgr =Z
gr
n

( )
∼=

[
a′′ − a, y − y′

]
⊗

[
a′′ − a′, x ′ − x

]
⊗

[
a′ − a, y ′ − x

]

⊗
[
d ′′ − d ′, y′ − x ′

]
⊗

[
a′′ − d, x − y

]
{−rsh,−qsh − 2} ,

(3.62)

ηgr =Z
gr
n

( )
∼=

[
a − d, x − y

]
{rsh, qsh} , (3.63)

βgr =Z
gr
n

( )
∼=

[
d − a, y − y′

]
⊗

[
d − a′, x ′ − x

]
⊗

[
a′ − a, y ′ − x

]

⊗
[
y′ − x ′, d − d ′

]
{rnh − rsh, qnh − qsh − 2} . (3.64)

This structure can also be expressed in terms of Grothendieck rings in complete analogy
to the case of Sect. 3.2.2.

Acknowledgements. We are grateful to Pantelis Fragkos, Alexei Oblomkov, Ingmar Saberi, Pavel Safronov,
and Gregor Schaumann for helpful discussions. I. B. is supported by the Deutsche Forschungsgemeinschaft
(DFG) under Germany’s Excellence Strategy EXC-2094 390783311 and the DFG grant ID 17448, N. C.
is supported by the DFG Heisenberg Programme, and D. R. is supported by the Heidelberg Institute for
Theoretical Studies.

Funding Open access funding provided by University of Vienna.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

410



Truncated Affine Rozansky–Witten Models as Extended TQFTs

A. Two Technical Lemmas

In dealing with matrix factorisations we repeatedly apply the following two lemmas.
The first one deals with the elimination of internal variables:

Lemma A.1. Fix x = (x1, . . . , xn), a = (a1, . . . , ak), b = (b1, . . . , bk), W ∈

C[x, a, b] and p = (p1, . . . , pk) ∈ C[x, a, b]×k . Let (X, dX ) be a matrix factorisation
of W such that ∂bi (W +

∑
i (bi − ai )pi) = 0 for all 1 6 i 6 k. Then the infinite-rank

matrix factorisation [b − a, p] ⊗ (X, dX ) over C[x, a], in which b appears as internal
variables, is isomorphic to

[
b − a, p

]
⊗ (X, dX ) ∼= (X, dX )(x, a, a) , (A.1)

where (X, dX )(x, a, a) is obtained by setting b = a in (X, dX ). In particular, it is a
matrix factorisation of W (x, a, a) over C[x, a].

Proof. We set (Y, dY ) := [b − a, p] ⊗ (X, dX ), and we denote the components of dX

and dY by d i
X : X i −→ X i+1 and d i

Y : Y i −→ Y i+1. Moreover, we consider the ring

R := C[x, a]/(W (x, a, a)), and the modules Si
X := X (x, a, a)i ⊗C[x ,a] R, Si

Y :=

Y i ⊗C[x,a,b] R[b]. Then the R-module

M := S0
Y

/(
d1

Y (S1
Y ), b1 − a1, . . . , bk − ak

)
(A.2)

has an R-free Koszul type resolution

· · · −→ F2
f2

−→ F1
f1

−→ F0 −→ M , (A.3)

which after finitely many steps turns into the two-periodic exact sequence

· · · −→ S1
Y

d1
Y

−→ S0
Y

d0
Y

−→ S1
Y

d1
Y

−→ S0
Y −→ · · · (A.4)

On the other hand, M is isomorphic to the R-module

N = SX
0

/(
d1

X (x, a, a)(S1
X )

)
, (A.5)

obtained by setting b = a in M . This module has an R-free resolution

· · · −→ E2
e2

−→ E1
e1

−→ E0 −→ N , (A.6)

which is two-periodic from the start and defined by (X, dX )(x, a, a):

Ei := Si
X , ei := d i

X (x, a, a) . (A.7)

The isomorphism between M and N now lifts to the resolutions F• and E• and defines
an isomorphism between the matrix factorisations (Y, dY ) = [b − a, p] ⊗ (X, dX ) and
(X, dX )(x, a, a). (For the general relation between modules over hypersurface rings and
matrix factorisations, see [Ei]. This type of argument has been used to determine fusion
of matrix factorisations in [BR], see also [BKR].) ⊓⊔

The second lemma can be used to add and subtract terms in Koszul factors of a tensor
product of Koszul matrix factorisations:
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Lemma A.2. Let [p, q] and [p′, q ′] be two Koszul matrix factorisations of the same
size, i. e. the lists of variables p, q, p′, q ′ all have the same length, say k. Then

[
p, q

]
⊗

[
p′, q ′

]
∼=

[
p ± p′, q

]
⊗

[
p′, q ′ ∓ q

]
.

Proof. Let us first prove the statement for rank-1 Koszul matrix factorisations, i. e. for
k = 1. In this case, [p, q] ⊗ [p′, q ′] ∼= (X, dX ) with X = C[p, q, p′, q ′]⊕4 and

dX =




q1 q ′
1

−p′
1 p1

p1 −q ′
1

p′
1 q1


 . (A.8)

Conjugating dX with the matrix

T =




1 0
0 1

1 ±1
0 1


 (A.9)

yields

T dX T −1 =




q1 q ′
1 ∓ q1

−p′
1 p1 ± p′

1
p1 ± p′

1 −(q ′
1 ∓ q1)

p′
1 q1


 . (A.10)

This has the same form as dX in (A.8) where p1 is replaced by p1 ± p′
1 and q ′

1 by q ′
1 ∓q1.

Hence,

[
p, q

]
⊗

[
p′, q ′

]
∼= (X, dX ) ∼=

[
p ± p′, q

]
⊗

[
p′, q ′ ∓ q

]
. (A.11)

This also implies the statement for higher rank. For this we note that [p, q] =⊗k
i=1[pi , qi ], and use the fact that up to isomorphism the tensor product of matrix

factorisations is commutative and associative. ⊓⊔

B. Super Algebras, Twists and Symmetries

In this appendix we collect a few formulas that show how the topological theory consid-
ered in the main part of the paper arises as a topological subsector of a supersymmetric
3-dimensional N = 4 theory of free hypermultiplets. We use standard physics notation
and follow the original work [RW] for our arguments.

B.1. Algebras. The 3-dimensional N = 4 super Poincaré algebra is

{
Q AȦ

α , QB Ḃ
β

}
= ǫABǫ Ȧ Ḃ Pαβ . (B.1)

The Lorentz symmetry is SU(2)E , and the indices α, β refer to it. The R-symmetry is
a product of two copies of SU(2) denoted as SU(2)H × SU(2)C . The upper undotted
index A refers to SU(2)H , while Ȧ refers to SU(2)C . The supercharges transform as
(2, 2, 2) under SU(2)E × SU(2)H × SU(2)C .
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We consider a theory of hypermultiplets. A hypermultiplet contains four scalars in the
representation (1, 2, 1) of SU(2)E × SU(2)H × SU(2)C as well as fermions in (2, 1, 2).
In addition, there is an Sp(n) flavour symmetry for n hypers, under which scalars and
fermions in the same hypermultiplet transform in the same way. Geometrically, the
hypers take value in a hyper Kähler manifold, which in the case of the current paper
is T ∗Cn , where the Kähler forms transform in the adjoint of SU(2)H and are invariant
under SU(2)C .

There are two different topological twists, using either of the two SU(2) R-
symmetries. We pick the SU(2)C (Rozansky–Witten) twist and modify the Lorentz
symmetry to become the diagonal

SU(2)′E ⊂ SU(2)E × SU(2)C . (B.2)

As a consequence, we obtain a pair of scalar supercharges Q A, A ∈ {1, 2}, and a pair
of vector supercharges Q A

µ , where µ ∈ {0, 1, 2} is the 3-dimensional vector index. The

scalars in the hypermultiplet remain scalars with respect to SU(2)′E , and the fermions
become scalars and vectors.

Following Rozansky and Witten [RW], we pick a complex structure, thereby breaking

SU(2)H to U(1), and denote the scalars in it by φ I and φ̄ Ī . Here, I takes values 1, . . . , 2n
for a target manifold of real dimension 4n. Furthermore, the scalar originating from the
fermions is denoted ηI , the vector χ I

µ. Combining also the two scalar supercharges into

a holomorphic and an anti-holomorphic one, one obtains for the Q̄-variation of the fields
a flat space version of [RW, Eq. (2.22)]:

δφ I = 0 , δηI = 0 , δχ I
µ ∼ ∂µφ I , δφ̄ Ī ∼ ηI . (B.3)

B.2. State spaces. To obtain the state space H6 associated to a surface 6, we quantise on
6×R whereR is the time direction, and we follow the procedure of [RW, Sect. 5]. Such
state spaces have recently been computed for more general theories (and both twists)
by considering the supersymmetric quantum mechanics along the lines of [BFK]. The
state space is a Fock space, carrying a representation of the algebra given by quantising
the Poisson brackets given in [RW]. Since one restricts to a topological subsector, one
only needs to take care of the zero modes of all fields. If 6 is S2, the only contribution
to the cohomology comes from the bosons φ I . For a single hypermultiplet, I takes two
values 1, 2. In the main text x corresponds to the zero mode of φ2, and a to the zero
mode of φ1. For n hypermultiplets, the state space HS2 is simply a polynomial ring in
2n variables, which we denote C[x, a].

For surfaces 6g of genus g > 1, we pick a basis of harmonic 1-forms ω(α) on 6g

and expand the vectors χ I
µ along 6g as χ I

µ(x) = χ I
αω

(α)
µ where µ ∈ {1, 2} and α ∈

{1, . . . , 2g}. The χ I
α are constant fermionic coefficients. To quantise, it is furthermore

necessary to pick a polarisation. We take the canonical commutation relations from
[RW], {

χ I
α , χ J

β

}
= ǫ I J (L−1)αβ , (B.4)

where L is the intersection form on 6g . The fermionic part of the state space can thus

be regarded as being generated by 2g fermions χ I
α , where α takes g values.

The state space (for a single hypermultiplet) associated to 6g thus is H6g = (C ⊕

C[1])⊗2g ⊗C C[a, x]. This space is naturally Z2-graded, splitting into bosonic and
fermionic subspaces.
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B.3. Gradings. There are two global symmetries that act on the fields of the twisted
theory. The first one originates from the SU(2)H R-symmetry of the untwisted theory.
Since we have chosen a complex structure, this R-symmetry is broken, leaving a U(1)

R-symmetry, whose associated charges we denote qR . Under it, the scalars φ I have

eigenvalue +1, whereas the conjugate scalars have eigenvalue −1. The fields ηI and χ I
µ

originating from the fermions have charge 0, since the fermions of the original theory
transformed trivially under SU(2)H . Furthermore, there is a flavour symmetry with a
U(1) subgroup whose charges we denote qF . Decomposing the initial N = 4 algebra
with respect to a N = (2, 2) subalgebra, the two resulting chiral multiplets transform

with opposite flavour charge. Hence φ1 and φ2 have opposite charge. We summarise
these charges as follows:

φ1 φ̄1 φ2 φ̄2 χ1
µ χ2

µ η1 η2

qR 1 −1 1 −1 0 0 0 0
qF 1 1 −1 −1 1 −1 1 −1

Note that the opposite flavour charges and equal R-charges assigned to φ1 and φ2 directly
match with the opposite flavour charges of variables x and a in the main text. Further-
more, the gradings in (3.55) are directly compatible with the ones originating from the
assignment of R- and flavour charges, if we identify the two factors corresponding to
the fermions in (3.55) with contributions from χ1

α and χ2
α .
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