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Abstract: The connection between Feynman integrals and GKZ A-hypergeometric sys-
tems has been a topic of recent interest with advances in mathematical techniques and
computational tools opening new possibilities; in this paper we continue to explore this
connection. To each such hypergeometric system there is an associated toric ideal, we
prove that the latter has the Cohen-Macaulay property for two large families of Feynman
integrals. This implies, for example, that both the number of independent solutions and
dynamical singularities are independent of space-time dimension and generalized prop-
agator powers. Furthermore, in particular, it means that the process of finding a series
representation of these integrals is fully algorithmic.

1. Introduction

Much of our understanding of physical amplitudes in quantum field theory is tied to their
perturbative expansion in terms of Feynman diagrams. This makes Feynman diagrams
and their associated integrals central objects in quantum field theory [14,36,42]. The
analytic view of Feynman integrals is as old as the integrals themselves, e.g. to guarantee
causality they are often continued into the complex plane in a predetermined manner.
An algebraic viewpoint is not as common in physics, even though it has been known for
a some time [28], see also [16]. Recently the algebraic methods of Gelfand, Kapranov
and Zelevinski [15-17,19], using what are now called GKZ A-hypergeometric systems,
in tandem with the Lee-Pomeransky representation of Feynman integrals [31] have
attracted interest (see e.g. [5,10,13,29,30] also [27]), partially due to the computational
utility of this perspective. In this paper we focus on the study of Feynman integrals using
this GKZ A-hypergeometric system point of view.

Throughout this paper we will assume that the underlying Feynman graph G is
two-edge connected, or in common physics terminology, G is one particle irreducible
(1PI). This means that at least two edges in the graph have to be cut for the graph to
become disconnected. This is not a substantial restriction from a physical point of view
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as any connected amplitude can be factored into its 1PI components [3,11,14,35,36].
Moreover, all integrals are assumed to be dimensionally regularized with generalized
dimension D.

More precisely we consider scalar Feynman integrals arising from a 1PI Feynman
diagram, i.e. a graph G = (V, E) where each edge is labeled with a mass m,, momentum
ke, and propagator 1/ (kg - mg) and certain vertices are labeled with a momentum p(v).
This set of distinguished vertices are called external vertices, Ve, and are required to
satisfy momentum conservation Yy, p(v) = 0. Such integrals can be converted to
the Lee-Pomeransky form, which is the standard form we will use here. For a graph G
we work over RIE! where |E| is the size of the edge set E of the graph G. We will also
define the Symanzik polynomials I/ and F associated to G, cf. [4]. The polynomial &/
is obtained by summing over all spanning trees in G and for each such tree adding a
monomial consisting of all variables whose edge is not in the spanning tree, to obtain F
we sum a polynomial depending on { with one obtained by summing over spanning two-
forests of G. Given a spanning two-forest F = (T, T') of G set p(F) = Zveﬂwm p(v).
In symbols the Symanzik polynomials are:

U= > [ ] (1)

T a spanning  e¢gT
tree of G
F=Fu+Fo=UY mixe+ > Ip(E)P [ ] e 2)
ecE F a spanning e¢F
2—forest of G

where m, is the mass associated to the edge e and |p(F )|2 is obtained from the Wick
rotation of the Lorentz form p(F )2 —|p(F )|2. If the Wick rotation is undone, we
consider the Euclidean reagion s.t. p(F)? < 0 for every F.

Our main result is a theorem stating that in many cases the Newton polytope P =
Newt(U + F) (cf. (4)) associated to a Feynman integral is normal. This proves a weaker
version of the conjecture about existence of unimodular triangulations proposed in [29]
for our considered classes of diagrams. When working with Feynman integrals from
the GKZ A-hypergeometric system perspective we will also associate an ideal 74 to
such a system. Our main result will directly imply that this ideal /4 is Cohen-Macaulay;
this in turn has several important theoretical and computational consequences which are
discussed in more depth in Section 1.1.

Theorem 1.1 (Main Theorem). Let G = (V, E) be a Feynman diagram with associated
Symangzik polynomialsU and F. Set G = U+F, then the Newton polytope PG = Newt(G)
is normal if either

em, #0foralle € E, or
e m, = 0 for all e € E and every vertex is connected to an external off-shell leg, i.e.
p% # 0 for every v € V. = V.

The second case especially includes all polygon diagrams like the triangle, box or pen-
tagon.

We prove this theorem in two parts, the massive case is treated in Theorem 3.1
and the massless case in Theorem 3.5. In short, this result means that not only can we
expect the hypergeometric systems associated to a Feynman diagram to have desirable
mathematical properties, but additionally we can expect that the associated Grébner
deformation will be straightforward to compute, allowing us to obtain series solutions
effectively in an algorithmic manner.
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1.1. Feynman integrals and hypergeometric systems. Letb € Z‘:‘;)I be an integral vector,
and D € R; after conversion to Lee-Pomeransky form the Feynman integral associated
to the graph G is the integral J5 (D, b) given by

b1—1 big—1
I'(D/2) X)X

D = D= TG Tl ey~ GmPP

dxy---dxig; (3)

where G = U+ F,and ¢ := Zi b; — L - D/2 with L the number of independent cycles
in the graph G.

Suppose that for a given Feynman diagram G the polynomial G has the form G =
Y i_ €ix%. Note that the ¢; are explicitly given constants determined by the momenta,
masses and graph structure. To consider this as an A-hypergoemtric system we will
instead take the coefficients as undetermined parameters and consider G = ) 7, ¢jx%
as a polynomial in the ring Q(D)[cy, ..., ¢/ 1[x1, ..., x|g|], this recovers our original
polynomial ¢/ + F in Q(D)[x1, ..., x|g|] when we set ¢; = ¢;. We abuse notation and
use U, F, and G to denote both the polynomials in Q(D)l[ct, ..., ¢ 1[x1, ..., x|g] and
the resulting polynomial in Q(D)[x1, ..., x|g|] when we set ¢; = ¢;. The polynomial G
determines an (|E| + 1) x r integer matrix A obtained by adding a row of ones above
the matrix with column vectors the exponents a; of G:

A:A_x{l}:=<1 Lol I)EN('E'“)”, @)
ay az - dr—1 ar
where A_ = (ajay -+~ a,—1 a;) € NIEX is the matrix whose columns are the
exponent vectors of G. We will refer to the Newton polytope of G, Newt(G) =
conv({ay, ..., a,}), defined by the convex hull of the vectors as the Symanzik polytope.
We suppose this polytope is given in half-space representation as
N
Newt(@) = () fo e RE| (i, 0) < vi] 5)

i=1

where u; € RIEI vy e RV,

Now return to considering the Feynman integral J (D, b; ¢), which we now take as
a function of ¢ since we consider G as a polynomial in Q(D)l[c1, ..., ¢/ 1[x1, ..., x|
The integral Jg (D, b; c) is a special case of a so called Euler-Mellin integral; it is shown
in [2] that such integrals admit a meromorphic continuation, giving

N
J6(D, b;c) = ®(D, b; c) ]_[ L D/2 = (ui, b)) (6)
i=1
for some function ® entire in D and b; note v, u are as in (5). We will also define a

vector f determined by the vector b and the value D appearing in the Feynman integral
in Lee-Pomeransky form (3), that is
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—-D/2
—by
B = . . (7N

—biE|

The function ®(D, b;c) is a GKZ A-hypergeometric function of ¢ and satis-
fies the GKZ A-hypergeometric system H4(8), which we now define. Let W =
QD)lery--.,¢r, 01, ..., 0-] be a Weyl algebra with 9; denoting the differential opera-
tor association to ¢; (i.e. 9; acts as differentiation by ¢; on a polynomial in Q[cy, . .., ¢,/])
and let 74 = (3" — 3V | Au = Av) be the foric ideal in Q[01, ..., d,] defined by the
matrix A as in (4) above; the toric ideal is a prime binomial ideal and such ideals define
toric varieties, see [40, Chapter 4]. Writing A = [a; ;], the system Hx () is a left ideal
HA(B) := 14+ Z4(B) in W where

ZA(ﬁ)=<Za,~,jcja,—ﬁ,-|i=1,...,|E|+1>. (8)
j=1

Finding a basis consisting of holomorphic functions for the space of solutions to the A-
hypergeometric system H4 (8) gives an expression for ® (D, b; ¢), and hence an expres-
sion for the Feynman integral Jg (D, b; c). By the Cauchy-Kowalevskii-Kashiwara
Theorem (see also [38, Theorem 1.4.19]) the dimension of the complex vector space
of solutions to the system H4(8) in a neighbourhood of a smooth point is equal to
rank(H 4 (B)), the holonomic rank of the ideal H (). Results of [1,16], see also [38,
Theorem 4.3.8], tell us that if the toric ideal /4 is Cohen-Macaulay for a given A then
rank(H4(B)) = (|E|!) - vol(conv(A)) and the singular points where solutions to the
system H4(B) do not exist are independent of §. In fact an even stronger statement
is shown in [32], in particular in [32, Theorem 1.1] it is shown that the toric ideal 74
being Cohen-Macaulay for a given A is equivalent to rank(H 4 (f)) being constant and
independent of .

A basis for the solution space to the system Hy4 () may be computed using tech-
niques described in [38, Chapter 3]. An important step in this computation is finding the
Grobner deformation of H4 () with respect to a generic weight vector v € R”, denoted
IN(—w,w) (Ha(B)). This is also greatly simplified in the case /4 is Cohen-Macaulay since
in this case

N0 (Ha(B)) = ZaA(B) +in,(14), )

[38, Theorem 4.3.8], where the later expression in,, (14) is the initial ideal (or lead term
ideal) of I4. The initial ideal of I4 can be computed directly from a Grobner basis
of I4, which is in turn straightforward to obtain using standard methods. We obtain
the appropriate weight vectors w by computing the Grobner fan of /4 and choosing a
(generic) representative vector @ from each cone in the Grobner fan of 14, an efficient
procedure (and accompanying software implementation) for computing this Grobner
fan of such a toric ideal is detailed in [25]. Grobner fans can also be computed using
the package Gfan [26], we make use of this implementation via it’s Macualay2 [20]
interface in Section 1.2 below. Note we only need to take a generic weight vector in
one Grobner cone to obtain a series solution, however each cone in the fan will give
a different series solution with a different domain of convergence meaning it may be
advantageous to consider different cones for physical reasons related to the desired
domain of convergence. We also note that solutions to the A-hypergeometric system
H 4 (B) can take the form of logarithms, not just power series, see, for example, [37].
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Fig. 1. Feynman diagram G for the massive bubble. There are two edges, with mass m1 associated to the edge
x1, and my associated to the edge x, and two vertices with (external) momenta p and — p, respectively

1.2. Example. We illustrate this process on the Feynman diagram G shown in Figure
1. For further reading on the techniques employed in our example we recommend the
book [38].

In D dimensions the classical presentation for the Feynman integral for the diagram

in Figure 1 is
5 / dPk 1 1 10)
P2 k2 —m3 (k — p)2 —m3
After Wick-rotating, introducing Feynman parameters and integrating over the loop

momenta, this integral can be written in the Lee-Pomeransky form (up to some factors
of m and i), asin (3) withb = (1, 1) as

J6(D,b) =Tg(D, (1,1)) = M/ Ux) + Fx)"Pdxidx, (11)
9 9 9 F(D _ 2) R% b

Ux) =x1+x2, Fx) = (m% +m% + |p|2)x1x2 +m%x12 +m%x§

(12)

where |p|> > 0 is the Euclidean norm obtained by Wick rotation: p> — —|p|2. This
integral is a special case of the Euler-Mellin integral which admits the meromorphic
continuation

/2 U+ F)"PPdxidx, =T (2 — D/2)T(D — 2)®(D) (13)
R}

where @ (D) is an entire analytic function. Treating all the coefficients of the polynomial
U + F as arbitrary coefficients ¢;, gives

Gx,c) =U(x,c)+ F(x,c) =cix1 +coxp +c3xixa + C4x% + C5x22.
Then the function ® (D; ¢) associated to the resulting integral

Jo(D, 1;¢) = /2 Gx, o) PPdxidxy =T 2 — D/2)T(D —2)®(D;¢)  (14)
R}

is A-hypergeometric as a function of ¢ and satisfies the A-hypergeometric system H4 (S)
with

11111 —D/2
A=110120] ={1} x Newt(G), B = -1 1. (15)
01102 —1

Now let W be the Weyl algebra
W =Q(D)lct, ..., 5,01, ..., 0] (16)
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Then the A-hypergemoetric system Ha(8) = Z4(B) + 4 is the left-ideal in W defined
by

Iy = <332 — 0405, 0203 — 0105, 0103 — 3234> (17)

€101 + 202 + €303 + €404 + c505 = B
ZA(B) = {c101 +¢303 +2c404 = B2 (18)
C282 +C333 + 2C585 = ,33

where 14 is the toric ideal in 9; defined by A. Since m| and m» are assumed to be non-
zero, Theorem 1.1 guarantees that the polytope conv(A) is normal which in particular
implies that /4 is Cohen-Macaulay. For (—w, w) € R!? the Cohen-Macaulay property
of I4 guarantees that the Grobner deformation of Hy (8) can be decomposed as

N(—o,0) (HA(B)) = ZA(B) +ine(14). 19)

The procedure for constructing a series solutions to Hy4 () consists of solving the system
given by the Grobner deformation in(_,, ) (Ha (8)) and lifting these solutions to H (8)
by attaching them to a I"-series.

The solutions to in(—y,)(Ha(B)) will be monomials ¢ = ¢}' -+ c*, u € C. The
toric ideal 74 has a Grobner fan consisting of seven top-dimensional cones, meaning
that there are seven distinct initial ideals in, (Z4). If we choose weight vector v =
0,0, —-2,1, 1), then I4 has the reduced Grobner basis

{(3204) — 0133, (9105) — 0293, (94ds5) — 03) (20)

where the monomials marked with parentheses generates in,, (14). If ¢* is a solution of
the initial system, then the exponent vectors must satisfy

upug = ujus = ugqus = 0, 21
uip
11111 un —D/2
10120 uy | =1 —1 . (22)
01102 uq -1
us

The Cohen-Macaulay property of /4 guarantees that the number of solutions to these
equations is the normalized volume of the polytope conv(A), i.e., these six equations
have three solutions:

u =(2-D,0,-1,D/2—-1,0)
u®=(0,2-D,—1,0, D/2—1) (23)
u® =(1-D/2,1-D/2, D/2-2,0,0).
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. 1 2 3) . .
The three monomials ¢ ), ! ), i generate the solution space of in(_, ) (Ha(B))

and can be lifted to solutions of H4(B) as

. Cu® +1) (i)

@ = _ ith 24

’ %,) F@O+vrn’ 7 0 9
veNU

NY ={v=m(=1,1,1,0,—-1) +n(2, 2,0, —1, 1),
mneZ|m=>2n m=<0, n>m},

N? ={v=m(-1,1,1,0,=1) +n(2, =2,0, —1, 1),
mnerZ|2n>m, m <0, n <0}, and

N® ={w=m(-1,1,1,0,-1) +n2,-2,0,—1,1), mn € Z|n <0, n > m},

where (—1, 1,0, —1) and (2, —2, 0, —1, 1) span the integral kernel of A and the inequal-
ities guarantee that the quotients of I'-functions are always well-defined. A solution
®(D; c) to the hypergeometric system Hy(8) can now be written as ®(D;c) =
Ki1¢pW + Ky9®@ + K36, The coefficients K; must be such that the meromorphic
continuation on the right hand side of (14) matches the left hand side on the domain
of convergence of the integral. For example, K| can be determined by taking the limit
c2, cs — 01in (14) where ¢, and c5 are picked because their respective exponents in u®
are zero. The integral becomes

/ dxydx; _T(D=29TA=D/2) 5 p i p-1
R2 (C1x] + c3x1X2 + c4x7) P/ T'(D/2) b

. (25

note the limit is not well-defined for @ (D; c) because ¢; and c5 appear as denominators,
or more precisely, they will have exponents with negative real part'. However, the limit
is well-defined in the Weyl algebra as the restriction ideal:

HAB) ey, e5—0 = (Ha(B) + caW +csW) N Q(D)[c, 3, ca, 01, 03, 04].  (26)

The solution space to this ideal is one-dimensional and spanned by c%fD cy ]cf/ 271,
we thus interpret the limit as ®(D;c) — K lcffD cy lcf/ 21 Equating this with the

explicitly evaluated integral and substituting into (14) yields

_ I(1-DJ2)
T I(D/2)T2—-DJ2)’

K 27

Similarly we obtain

o p g T(D2=DID2-1) o8
2= R =T DD —2)

We have now obtained an explicit series representation for the Feynman integral in
one of the seven Grobner cones, the same procedure can be used to obtain an explicit
representation in the other cones.

The paper is organized as follows; in Section 2 we review several definitions and
results which will be needed to prove the main theorem, Theorem 1.1. The main theorem
is proved in Section 3, this proof is separated into two cases, massive and massless. The
massive case is treated in Section 3.1 and the massless case is treated in Section 3.2.

! Note that the form of N (1) guarantees that the limit is well-defined for oM.
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2. Background

In this section we briefly review several definitions and results from different areas
of algebra which will be needed in Section 3. Readers wishing further details should
consult books such as [7,12,19,33] on algebraic geometry and [34] on matroid theory.
As was discussed in Section 1, in the context of computing series solutions to Feynman
integrals, many things become much simpler when the toric ideal /4 associated to the
matrix A in (4) has the Cohen-Macaulay property. Since the matrix A in (4) is always
full rank with a row of ones the resulting toric ideal is homogeneous; recall an ideal
is called homogeneous if it has a homogeneous generating set (equivalently its Grobner
basis consists of homogeneous polynomials), i.e. I = (gi, ..., g;) where all monomials
appearing in g; have the same degree. Hence we will restrict our attention to the case of
homogeneous ideals.

Let I be a homogeneous ideal in a polynomial ring R = k[z1, ..., z,] over a field
k of characteristic zero defining a projective variety X = V(I) c P'~! with d :=
dim(/) = dim(X) + 1. Then d homogeneous polynomials %1, ... hg in R/I are called
a homogeneous system of parameters for R/I if dimg(R/I + (hy, ..., hg)) < co. We
say that a subsequence hy, ..., hy, is a (R/I)-regular sequence of length r if R/I is a
free k[h1, ..., h,] module, or equivalently if the Hilbert series of I, H(z), is equal to
the Hilbert series of 1 + (A1, ..., h,) divided by the polynomial []}_, (1 — zdee),

Definition 2.1 (Cohen-Macaulay). A homogeneous ideal / in a polynomial R =
kl[z1, ..., zr] over afield k with d = dim([) is Cohen-Macaulay if there exists a homo-
geneous system of parameters hi, ...hg such that hy,...hy is also a (R/I)-regular
sequence of length d.

Our interest is in homogeneous toric ideals. That is for a full rank (| E|+1) x r integer
matrix with first row the all ones vector (e.g. as in (4)) we wish to consider the ideal
Iy = (7" —7" | Au = Av) inthe polynomial ring k[z, . . ., z,]; this ideal 14 is always a
homogeneous prime ideal generated by a finite set of homogeneous binomials. The toric
ideal /4 defines a projective toric variety X4 = V(I4) C P"~!. We say the semi-group
NA is normal if

NA =ZANR>0A.

For toric ideals a result of Hochster’s [22], see also [39, Corollary 1.7.6], gives us a
characterization of the Cohen-Macaulay property of the toric ideal I4 in terms of the
normality of the semi-group NA.

Theorem 2.2 (Hochster). If the semi-group NA is normal then the toric ideal 14 is
Cohen-Macaulay.

Normality of a configuration of lattice points A = A_ x {1} can be characterised by
a combinatorial property of the polytope P = conv(A_):

Definition 2.3 (Normal Polytope). A polytope P is called normal, or said to have the
integer decomposition property? (IDP), if for any k € N

kPNZi=k-1PNZ¢+PNZI. (29)

Proposition 2.4 (Remark 0.1 of [8]). A polytope P is IDP if and only if N(P x {1} N
7y = Roo(P x {1}) N Z4+,

2 This is sometimes called integrally closed.
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This means especially that if all lattice points in conv(A_) are column vectors in A_
(which correspond to exponents of monomials in G), i.e. the set of column vectors
of A_ is conv(A_) N Z<, the toric ideal I, will be Cohen-Macaulay if the polytope
P = conv(A_) is IDP.

Hence when considering the question of if a toric ideal /4 is Cohen-Macaulay in
Section 3 we will instead seek to prove the stronger sufficient condition that the polytope
P = conv(A_) is normal. We now recall two standard constructions in polyhedral
geometry.

Definition 2.5. Let P, Q C R? be (lattice) polytopes. The Minkowski sum P + Q is
P+Q:={p+qeRd|peP, q € 0}.
The Cayley sum P % Q is the convex hull of (P x {0}) U (Q x {1}) in R%*!,

In Section 3 the notion of an edge-unimodular polytope will play a prominent role.
Recall that a matrix M € Z4*" is said to be unimodular if all d x d minors are either
0, 1, or —1, a matrix is fotally unimodular if every square submatrix is unimodular.
A polytope P is called edge-unimodular if there a unimodular matrix M such that the
edges of P are parallel to the columns of M. In Section 3 we employ Corollary 2.7 which
is a direct consequence of the following result of Howard [23,24], see also Danilov and
Koshevoy [9].

Theorem 2.6 (Theorem 4.7 of [24], cf. [23]). Suppose that M is a unimodular matrix
and that P and Q are lattice polytopes with edges parallel to the columns of M, that is
P and Q are both edge-unimodular with matrix M. Then

PNZi+0nzi=P+0)nZi. (30)

From this theorem we immediately obtain the following result which tells us that
to show the projective normality of a toric variety X 4 it is sufficient to show that the
associated polytope P = conv(A) is edge-unimodular.

Corollary 2.7. If a polytope P is edge-unimodular, then P is IDP.

Proof. Suppose P is edge-unimodular and let Q = (k — 1) P. Since Q is just a dilation
of P, thus Q is also edge-unimodular and the prerequisites of Theorem 2.6 are met.
Hence,

PNZ'+k-1)PNZ=kPNZ°.

O

To prove Theorem 3.5, our main result in the massless case, we will need the following
result by Tsuchiya [41, Theorem 0.4] (see also [21]) where a complete description of
IDP Cayley sums is given.

Proposition 2.8 (Theorem 0.4 of [41]). The Cayley sum P * Q is IDP if and only if P
and Q are IDP and also

(@P+aQ)NZ = (@PnZ+@onz) (31)
for any positive integers ay, as.

An important class of polytopes, which appear in Section 3, are the hypersimplices.
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Definition 2.9 (Hypersimplex). The hypersimplex A(d, k) C R? is the polytope
Ald, k) ={(x1,...,x0) 10 <Xx1,...,xg <1; x1+---+xq =k} (32)

In Section 3 we will also employ several ideas from matroid theory, our main reference
for these notions is the book [34]. Below we give several definitions and a theorem which
will be of particular importance.

Given two matroids M1, M> on the same ground set E, we say that M| is a quotient of
M, if every circuit of M, can be written as a union of circuits in M7. A pair of matroids
{M{, M>} on the same ground set E form a flag matroid if M is a quotient of M>. In
the proof of our main result we will employ the following standard result which tells us
that quotients are flipped by duality.

Proposition 2.10 (Proposition 7.3.1 of [34]). Let M, M> be two matroids on E, then
M, is a quotient of M3 if and only if M3 is a quotient of M.

Given a matroid M we may define the associated matroid polytope Py to be the
convex hull of the indicator vectors of all bases of M. We will also wish to associate a
polytope to a flag matroid {M;, M>}.

Definition 2.11. Let {M, M} be a flag matroid, then the flag matroid polytope is defined
as the Minkowski sum of the constituent matroid polytopes: Py, + Pu,.

3. Normality of Symanzik Polytopes

In this section we prove the main result, namely we show that the polytope associated to
entirely massive or entirely massless Feynmann integrals is always IDP, and hence the
desirable properties of the associated A-hypergeometric system described in Section 1
hold. Throughout this section G = (V, E) will be a 1PI Feynman graph as described in
Section 1.

3.1. Massive Case. Let G be a 1PI Feynman graph with all internal edges massive, i.e.
me # 0 for all e € E. We separate the F-polynomial (2) as F = F,, + Fo where Fy
is defined by the two-forests and F,, is given by Fpy = U - Y m%xe with U as in (1).
The non-vanishing masses guarantees that every monomial in Fy will be present in F,,,
i.e. writing span(F’) for the k-vector space span of the monomials in a polynomial F
over a field k we have span(F,,) 2 span(Fy). To see this, note that every monomial in
JFo can be written on the the form ux; where u is a monomial in ¢/ and x; corresponds
to one of the edges in the spanning tree defining u. If all masses are non-zero, then every
x; will be in the sum > mgxe and thus every monomial in Fy will be in F,.
This means that the Newton polytope Pr := Newt(F) of F satisfies

Pr = Newt(F,;) = Py + Apg, (33)

where Py := Newt({{) and A = A(|E|, 1) = conv(ey, ..., eg)) is the (JE| — 1)-
dimensional standard simplex in RIZ!; note that the final equality in (33) follows from
the definition of 7, = U - ngxe. LetG =U+Fandlet Ap =conv(0,eq, ..., eg|)
be the standard simplex with 0 added as a vertex, then Pg := Newt(G) = Newt(U/ + F)
can be expressed as the sum _

PGZPU+AE. (34)

Our goal is then to prove that the polytope Pg is edge-unimodular.
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Theorem 3.1 (Main TheoremI). Let Pg be the polytope defined in (34); then the polytope
P is edge-unimodular, and hence is IDP.

Proof. Note that we can construct a co-graphic matroid from I/ by taking the matroid
whose bases are the complements of the spanning trees of G; Py is the matroid polytope
of this matroid. By a classical result of Gelfand, Goresky, MacPherson and Serganova
[18, Theorem 4.1] the edges of a matroid polytope are parallel to e; — e, i # j, where
ey is the k™ standard basis in RIEl. Hence Py is an edge-unimodular polytope.

The edges of Ag are clearly either parallel to e; — e; or e;.

The Minkowski sum P = Py + Ag contains two types of edges: edges parallel to
edges of Py and edges parallel to edges of Ag. This means that Pg has edges in the
totally unimodular matrix matrix (/|A) where [ is the (|E| x | E|)-dimensional identity
matrix and the columns of A consist of vectors which are the columns of some totally
unimodular matrix. Hence Pg is edge-unimodular and, by Corollary 2.7, is IDP.

Remark 3.2. Lemma A.1 in the Appendix below shows that the lattice points in Pg are
the same as the columns of A_, (i.e. the exponent vectors of G). Thus Pg being IDP is
equivalent to the semi-group NA = N(A_ x {1}) being normal, see Proposition 2.4 and
the surrounding discussion, which also implies that the toric ideal 74 is Cohen-Macaulay
by Hochster’s theorem.

The Symanzik polynomials ¢/ and F are not only relevant in the Lee-Pomeransky
representation but are also used in other parametric representations of Feynman integrals.
As observed in the proof of Theorem 3.1 Py is a matroid polytope, here we prove a
similar result for Pg.

Lemma 3.3. Let Pr be as in (33). Then Pr is a flag matroid polytope.

Proof. Let C(|E|) be the cycle graph on |E| vertices, i.e. the graph with | E| vertices
connectedin aclosed chain with | E| edges. Let M¢ (| g be the associated graphic matroid,
that is the matroid whose independent sets are given by the forests of C(|E|). Then Ag
is the matroid polytope of the co-graphic matroid M. (ED- Note that this is a matroid of
rank one and whose independent sets are 7 = {#, {1}, {2}, ..., {|E|}}, thus we see that
Mé(‘El) = Uy, |g| where Uy, is the uniform matroid of rank &k on {1, ..., n}. Let My,
be the matroid with matroid polytope Py, this is a matroid on the same ground set £
as Uy, g| but has rank L where L is the number of independent cycles in the underlying
Feynman graph.

It is a little easier if we proceed with the dual matroids My (the graphical matroid
on the underlying Feynman graph) and U|g|—1 |E|.

Note that U|g|—1,g| only contains one cycle: {1, ..., |E|}. Now, since we have
assumed that the underlying Feynman graph is 1PI then every element in E will be
in some cycle of My . Thus the union of the cycles in My will be the cycle in U|g|—1,|g|-
This means that My is a quotient of U|g|—1 |E|-

We will now employ Proposition 2.10 which tells us that quotients are flipped by
duality; in particular Proposition 2.10 implies that Uy |g| is a quotient of M7}, and thus
{U1,1E) M;}} is a flag matroid. Since Pr = Py + Apg, where Py, respectively A, are
the matroid polytopes of My;, respectively Uy |g|, and {Uy,|g|, M{;} is a flag matroid,
we conclude that Pr is a flag matroid polytope.

From [6, Theorem 3.1] we have that the edges of a flag matroid polytope are contained
in the set of edges of a totally unimodular matrix. This gives us the following corollary.

Corollary 3.4. Let Pr be as in (33). Then the edges of Pr are parallel to the columns
of a unimodular matrix.
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3.2. Massless case. If all internal edges of a Feynman graph correspond to massless
particles, then the F-polynomial (2) consists only of the sum over spanning 2-forests,
F = Fy, while the U-polynomial (1) is independent of the internal masses. In order for
X to be included in a term of U or F, the corresponding edge e € E must have been
removed. Since an edge can only be removed once, this means that x, can show up at
most once in each term of U/ or F. In particular this means that the vertices of Newt (/)
and Newt(F) are vectors with elements in {0, 1}.

For a Feynman graph with | E| edges and L independent loops, it follows from their
definition that / and F are homogeneous of degree L and L + 1 respectively. This in
particular means that their Newton polytopes are contained in hyperplanes:

Newt@) C {(y1, ..., ye) e RE [y +-- 4 yp =L}, (35)
Newt(F) C {(y1,...,ve) e RE | yi + o v yp = L+ 1} (36)

We noted above that the vertices of the Newton polytopes are vectors built of zeros and
ones, this together with the fact the polytopes are contained in hyperplanes yields

Newt(U) C A(E, L) and Newt(F) C A(E, L + 1),

i.e. the Newton polytopes are subsets of hypersimplices (Definition 2.9). Moreover, the
fact that Py = Newt(l{) and Pr, = Newt(Fy) are in different parallel hyperplanes
(which are isomorphic copies of RIFI=1) means that Pg is their Cayley sum:

PG = PU * PF()- (37)

For a Feynman graph G = (V, E) with m, = 0 for all edges and with all vertices
connected to an off-shell external momenta, i.e. p% # 0, v € V = Ve, we have the
following analog of Theorem 3.1.

Theorem 3.5 (Main Theorem Il). Let G = (V, E) be a Feynman graph with m, = 0
foralle € E and Vexy = V, and let U and Fy be as above. Then the polytope P =
Newt(U + Fo) is IDP.

In light of (37) we will apply Proposition 2.8 to prove that the Cayley sum Pg is IDP,
hence proving Theorem 3.5. To employ Proposition 2.8 we need to show three things:

(1) Py is edge-unimodular (with respect to the unimodular matrix M) and hence IDP.
As already discussed, this is clear since Py is a matroid polytope (see the beginning
of the proof of Theorem 3.1).
(ii) Pp, is edge-unimodular (with respect to same unimodular matrix M as in (i)) and
hence IDP, this is considered in Lemma 3.6.
(iii) That equation (31) holds for the pair Py and Pp,, this is considered in Lemma 3.7
(keeping in mind Py and Pp, are both edge-unimodular with the same M).

We now consider (ii) above. For each subgraph g C G = (V, E) we associate the 0/1
vector in RIZ! indexed by the edges removed from G to get g, this association is clearly
bijective. Given a 0/1 vector w in RIEl we will write g,, to denote the corresponding
subgraph of G obtained by removing the edges corresponding to entries in w with
coordinate one.

Lemma 3.6. Let Fy be the set of all spanning two-forests where we view the elements
in Fy as 0/ vectors in RIE| ie. Fy is the the set of exponent vectors of monomials
appearing in Fo, the part of F in (2) consisting only of the sum over spanning 2-forests.
Then Fy is a set of bases of a matroid. Further the column matrix of the edges of the
polytope Pr, = conv(Fy) forms a totally unimodular matrix.
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Proof. Recall that a finite non-empty set B C Z, is a base of a matroid if the following
two properties hold: -

(B1) all u € B have the same norm,
(B2) if u, v € B with u; > v;, then there exists j € {1,...,n} withu; < v; such that
u —e; +e; € B, where ¢y denotes the 2" standard basis vector.

We now show these two properties hold for the set of exponent vectors of Fy; for a
vector u € Z2 , we will use the norm |u| = uy + - - - + uy,.

(B1) The polynomial Fy is homogeneous of degree L + 1, where L is the number of
independent cycles in G, so every u € Fy satisfies |u| = L + 1.

(B2) Assume u and v are two different elements in Fy such that u; > v; for some i.
Then the graph g, ., corresponding to the 0/1 vector u — e; can be one of two
types of graphs: (a) a spanning tree or (b) a graph with two components, one a tree
and the other containing one and only one cycle.

(a) By assumption u; < v; for some j, since g, is a spanning tree we know that
Su—e;+e; is a spanning two-forest, i.e. u — e; +¢; € Fy.

(b) For contradiction, assume that forall j suchthatu; < v; wehaveu—e;+e; ¢ Fy.
This assumption means that for any edge j we cutin the graph g,,_., corresponding
to the vector u — ¢;, the cycle in g, _., will stay intact. Let’s do all these cuts;
then the graph g, +y~ ., will still contain the cycle. The resulting graph contains
the edge i and all the cuts from u and v, since the edge i is in the graph g,
corresponding to v, this means that the resulting graph is a subgraph of g,. But
by assumption g, is a spanning two-forest and thus can not contain any cycles.
We have a contradiction.

Applying [18, Theorem 4.1] gives us that the column matrix of the edges of Pp, forms
a totally unimodular matrix and in particular are parallel to e; — e;. O

Lemma 3.7. Let P and Q both be edge-unimodular lattice polytopes with edges parallel
to the columns of the same unimodular matrix M. Then P and Q satisfy (31).

Proof. This follows directly from Theorem 2.6 since edge directions are invariant under
scaling. In particular P and Q have the same edge directions as a; P and a2 Q. O

Proof of Theorem 3.5. As discussed in (i) above Py is edge-unimodular via [18, The-
orem 4.1] since it is a matroid polytope. By Lemma 3.6 Pp, is also edge-unimodular
(again via [18, Theorem 4.1] since it is a matroid polytope). Further we saw in the proof
of Lemma 3.6 that the edges of Pg, are parallel to e; — ¢;,1 # j, and saw in the proof
of Theorem 3.1 that the edges of Py are also parallel to e; — ¢;, i # j. Hence Py and
P, are both edge-unimodular lattice polytopes with edges parallel to the columns of
the same unimodular matrix. It follows by Lemma 3.7 that (31) is satisfied for Py and
Pr,. Thus Proposition 2.8 applies and P = Py * P, is IDP.

Remark 3.8. Since Py and Pp, are matroid polytopes they have no interior lattice points
and additionally they lay in parallel hyperplanes; hence the Cayley sum Pg = Py * P,
also has no interior lattice points and Pg NZ/£! consists only of the vertices of Pg. This
means that, if the columns of the matrix A_ are the exponent vectors of the polynomial
G = U + Fy, then the semi-group NA = N(A_ x {1}) is normal, and the associated
toric ideal 14 is Cohen-Macualay.
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Appendix A: A Lemma on Lattice Points

Author: Uli Walther Department of Mathematics, Purdue University. E-mail:
walther @purdue.edu

In this section we will consider G = (V, E) as any Feynman graph, not necessarily a
1PI graph, and let E,, denote the set of all edges e with m, # 0. In order to rule out
complications from trivialities we assume that G has at least one edge that is not a loop.
In other words, we assume that the rank of the associated co-graphic matroid is greater
than one.

Lemma A.1. Let G = (V, E) be any Feynman graph and let E,, C E be the set of all
edges with non-zero mass, m, # 0. Let U be as in (1), with Py = Newt(U) and let
AE,, bethe simplex in RIEn| given by the convex hull of the set of standard basis vectors
{ej | ] € En} with ZE,,, being the convex hull of this simplex along with the vector
0 € RIEnl. The lattice points contained in the polytope P = Py + A E,, are exactly those
of the form v + v’ where v is a vertex of Py and V' is a vertex of ZE,,,

Proof. Let Mj; denote the co-graphic matroid of the graph G and Py its matroid poly-
tope. The lemma clearly holds if | E| = 1, and more generally in the case where E is the
union of a basis for M}, with a set of loops, since then My, has exactly one basis and so
Py is a point and the sum Py + A E,, 1s a shifted standard simplex. Let w be a point of
Py + Ag,,. Then w can be written as a real linear combination

w=Yepi (38)

where the real numbers ¢; > 0 with |c| = ) ¢; = 1 and where each p; is a vertex of
the polytope Py + Ag,,. Let r := rank(M{;). Note that, for the vertex p; in RIEn| the
entry-wise sum | p; | equals either r or r + 1. It follows that [w| € {r, » + 1}. Now assume
in addition that w a lattice point; we must then have |w| € {r, r + 1}. Moreover, in either
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case, since r and r + 1 are consecutive integers, the linear combination ) ¢; p; can only
non-trivially involve such p; with |w| = |p;]|.

Let M p be the set of basis of a matroid M on ground set E with vp € Z!F| denoting the
indicator vector of a base B € M g; results of White [43, Theorems 1 and 2] tell us that
the points (1, @) in Z x Z/£! inside the positive cone spanned by all pairs (1, vg), are
precisely the vectors (1, vg) for B € Mp. In our case this result tells us that if jw| = r
(in which case each p; with nonzero ¢; must have | p;| = r and be the indicator vector of
a basis for M Z} then w is a vertex of Py ,andsow = w+0 € Py + Ag,, is as stipulated
in the lemma. We thus assume from now on that |jw| =r +1,sow € Py + A Ep-

We consider first the massive case E,, = E. Both P = Py and A E,, are contained in
the unit cube, so any lattice point w of Py + A E,, has coordinate value x,(w) in the set
{0, 1, 2}, for any e € E. If x,(w) = O then all nontrivial terms in (38) must also satisfy
Xxe(pi) = 0. Since the set of exponent vectors in I/ with vanishing e-coordinate is made
of the indicator vectors of the bases for the submatroid of bases of M;; that avoid e (the
cographic matroid to the graph derived from G by contracting e), it follows by induction
on |E| that in this case w is as stipulated in the lemma.

We can therefore assume that thereisnoe € E withx,(w) = Oandso |w| > |E| > r.On
the other hand, we know that |[w| = r + 1, and so |E| € {r — 1, r}. In the latter case, M(*]
is Boolean where the lemma is straightforward (a Boolean matroid is one whose only
base is the ground set). So we are reduced to checking the case | E| = r + 1 which forces
w = (1,..., 1). In the massive case E,, = E, choose any basis B for M}, necessarily
of size r. Its indicator vector is the difference w — ey for the edge {f} := E — B and
thusw = (w —ey) +ey € Py + ZE," is a sum of vertices as required.

In the non-massive case, E,, is a proper subset of E. The previous arguments above
show that we are reduced to investigating w = (1,...,1), and |E| € {r,r + 1}. The
Boolean case being trivial, it suffices to show thatif |[E| =r+1thenw = (1,..., 1) is
either not in Py + A, at all, or equal to the sum of a basis indicator vector of My, with
a suitable ey with f € E,,. If the latter fails, none of the bases for M l’j (all of which
are of size r = |E| — 1) are the complement in E of an element of E,,. In other words,
every element of E,, is contained in each basis. In that case, M 2} is the matroid sum of
the Boolean matroid on E,, (with unique basis E,,) with the co-graphic matroid M ,
of the graph G,, on the ground set E — E,, where G, is the graph derived from G boy
deleting the edges of E,,. The matroid basis polytope of M; is that of M l"}o shifted by

> FeEn €f- In other words, we have reduced the problem to the massless case E,,, = @.
Then, however, |w| = r + 1 implies that w cannot be in Py + A Ep -
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