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Abstract: A closed interval and circle are the only smooth Julia sets in polynomial
dynamics. D. Ruelle proved that the Hausdorff dimension of unicritical Julia sets close
to the circle depends analytically on the parameter. Near the tip of the Mandelbrot set
M, the Hausdorff dimension is generally discontinuous. Answering a question of J-C.
Yoccoz in the conformal setting, we observe that the Hausdorff dimension of quadratic
Julia sets depends continuously on c and find explicit bounds at the tip of M for most
real parameters in the the sense of 1-dimensional Lebesgue measure.

1. Introduction

Hénon attractors.There is a natural connection between quadratic maps fc(z) = z2+c,
c ≥ −2, and Hénon maps

Ta,b(x, y) = (x2 + a + y, bx),

a ≥ −2, b ≥ 0. J-C. Yoccoz posed the following question in the strongly dissipative
planar setting corresponding to c→−2+, [8,54]. Is it true that the Hausdorff dimension
of the Hénon attractor Xa,b (the closure of the unstable manifold) of Ta,b, tends to
1 as (a, b) → (−2, 0), for (a, b) in a set A having (−2, 0) as a Lebesgue density
point in the quadrant (−2,+∞) × (0,∞)? If yes, what is the asymptotic behaviour of
(a, b) �→ dimH(Xa,b) when A � (a, b)→ (−2, 0)?

It is known, by [5,7], that A can be chosen so that Ta,b has a unique SRB invariant
measure μ = μa,b. By the dimension formula [53],

dimH(μ) = hμ ·
[
1

λ1
− 1

λ2

]
,

λ1 and λ2 are the Lyapunov exponents of μ, dimH(μ) is the infimum of the Hausdorff
dimension of sets of full μ-measure, and hμ is the metric entropy. By Pesin’s formula
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hμ is equal to λ1. Clearly, λ1 + λ2 = log b, and λ1 ∼ log 2 for (a, b) close to (−2, 0),
this means that

dimH(Xa,b) ≥ dimH(μ) = 1 +
λ1

|λ2| ≥ 1 +
C

| log b|
for an absolute constant C > 0, giving a weak estimate for the lower bound.

Main result. The following theorem answers the logistic family counterpart to J-C.
Yoccoz’ questions,obtaining strong bounds on the asymptotic behaviourascapproaches
the one-sided density point −2 for a positive measure set of real Collet–Eckmann pa-
rameters (c ∈ [−2, 0] for which lim infn→∞ 1

n log |( f n
c )′(c)| > 0).

Theorem 1. Let dimH(Jc) denote the Hausdorff dimension of the Julia set of the
quadratic map z �→ z2 + c ∈ C. For some constant C > 1,

1 + C−1
√

c + 2 ≤ dimH(Jc) ≤ 1 + C | log(c + 2)|√c + 2

for all c from a subset of real Collet–Eckmann parameters with the point −2 as a one-
sided Lebesgue density point.

Both the upper and the lower bounds are new. The asymptotic lower bound for the
Hausdorff dimension holds for all c > −2, not just a positivemeasure set, see Theorem4.

One of our objectives, in view of Yoccoz’ problem, was to develop methods for
the upper estimates of the Hausdorff dimension which generalize to non-analytic and
higher dimensional systems where, naturally, technicalities are more challenging. The
techniques to prove the lower bound are more anchored in conformal dynamics. A more
detailed discussion of our approach can be found in Section 1.3.

Unimodal maps, logistic family and Mandelbrot set. A differentiable map f of the
interval I is called unimodal if it has exactly one critical point, f ′(α) = 0, and maps the
boundary of I into itself.

The logistic family x �→ ax(1 − x), a ∈ (0, 4] is both the simplest and the most
known model of non-linear dynamics. The family is often studied in the form z2 + c,
c ∈ [−2, 1/4] which is convenient in the complex setting z, c ∈ C. For a fixed c ∈ C,
the Julia set Jc is defined as the smallest non-trivial totally invariant compact set, Jc =
f −1c (Jc), and is the locus of chaotic dynamics. In the real case, density of hyperbolicity
implies that the dynamics on Jc ∩ R is structurally unstable whenever the parameter
c ≥ −2 is not hyperbolic.

The logistic family in the complexparametrization is embedded inside theMandelbrot
setM. Namely, [−2, 1/4] =M ∩ R, where

M = {c ∈ C : ∀n≥0 | f n
c (c)| ≤ 2}.

The Mandelbrot set is one of the most studied irregular fractals in science and a vast
literature exists in relation to its various remarkable properties, see for example [12].

Even in the simplest quadratic case fc(z) = z2 + c, the Hausdorff dimension of
Julia sets dimH(Jc) is notoriously difficult to estimate. The exact values of dimH(Jc)

are known only for c = 0 and −2. M. Shishikura proved in [47] that for a topolog-
ically generic set in ∂M, dimH(Jc) = 2, while the results of [21,23,49] yield that
dimH(Jc) < 2 for almost all parameters c ∈M with respect to the harmonic measure.
Another consequence of [47] is that the dimension function c ∈ ∂M �→ dimH(Jc) is
discontinuous at every c ∈ ∂M such that dimH(Jc) < 2.
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At parabolic parameters such as c = 1/4, the dimension function may be discontin-
uous, as observed in [19], due to parabolic implosion [16,18]. This direction of research
was advanced further in [25,28] in relation to A. Douady’s longstanding project to un-
derstand oscillations of dimH(Jc) near a parabolic bifurcation.

Certain continuity properties of c ∈M �→ dimH(Jc)were obtained in [33,34] and in
[21].

Even restricting to c ∈ ∂M ∩ R, the dimension function is discontinuous at −2, as
detailed in Proposition 1.1. We shall study the asymptotic behaviour at−2 of a large set
of real parameters with respect to Lebesgue measure.

1.1. Real parameters.

Typical parameters. By the work of Benedicks and Carleson, [5, Theorem 1] and the
summary on [5, page 87], there exist positive constants �′ ∈ (0, 1) and � ∈ (0, log 2)
such that the set of non-hyperbolic parameters

Â := {c ∈M ∩ R : ∀n≥1 |( f n
c )′(c)| ≥ �′e�n} (1)

has full one-sided Lebesgue density at−2 (see also Collet and Eckmann [13]). Fix such
a set Â of uniformCollet–Eckmann parameters. This was refined further by J.-C. Yoccoz
in [55] to obtain an explicit bound on � in terms of c + 2. Our Proposition 1.4 will show
that even if one took �′ = 1 and � arbitrarily close to log 2, Â would have positive
measure with −2 as a one-sided density point.

We shall be interested in the dynamics as we approach the parameter−2. For c > −2,
we shall call c, and the associated dynamics, typical, if c ∈ Â.

Non-hyperbolic dynamics. By the work of M. Jakobson [26], for c > −2, a typical
parameter exhibits chaotic dynamics on [c, fc(c)] and the asymptotic distribution of
almost every orbit is given by an invariant measure absolutely continuous with respect
to 1-dimensional Lebesgue measure. A complex counterpart of M. Jakobson theorem
follows from [5,21]: for typical c > −2, there is a continuous conformal measure on
Jc, with respect to which almost every orbit distributes according to the unique invariant
probabilistic measure, equivalent to the conformal one.

Strong phase transition at the tip of the Mandelbrot set. If c < −2 then fc is
hyperbolic and the half-line (−∞,−2] is a hyperbolic geodesic in Ĉ\M landing at−2.
The estimates of [33] and [21] imply that

lim
c→−2−

dimH(Jc) = dimH(J−2) .

Applying realmethods, a preciseHölder estimatewasobtained in [20] for c ∈ (−∞,−2],

C−1
√|c + 2| ≤ 1− dimH(Jc) ≤ C

√|c + 2|
where C > 1 is a universal constant. The result is further discussed in Section 1.4.

By [45], the dimension function c ∈M∩R �→ dimH(Jc) is real analytic for c < −2.
However, at the unfolding parameter c = −2 a strong bifurcation takes place, the relation
c �→ dimH(Jc) enters a discontinuous regime and its oscillations at the right-hand side
of −2 are extreme.
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Proposition 1.1. The dimension function c ∈M ∩R �→ dimH(Jc) is discontinuous at
−2. Moreover,

lim sup
c→−2

dimH(Jc) = sup
c∈M∩R

dimH(Jc) > 1 = lim inf
c→−2+

dimH(Jc) .

Proof. G. Levin and M. Zinsmeister, [30], showed that dimH(Jc) > 4
3 for a (non-

connected) open set of real parameters with −2 in its boundary, showing discontinuity.
Let ĉ be a non-zero parameter in (−2, 1/4]. Given c ∈ [−2,−1], denote by p(c)

the orientation-preserving and q(c) the orientation-reversing fixed points of fc, so 0 <

−q(c) < p(c). For each n ≥ 5, denote by In the parameter set of c ∈ R for which

fc(0) = c < q(c) < f n
c (0) < −q(c) < f n−1

c (0) < f j+1
c (0) < f j

c (0)

for all j = 2, 3, . . . , n − 3. In contains an interval of parameters Jn for which f n
c has

a symmetric closed forward-invariant subinterval Wn(c) ⊂ (q(c),−q(c)). The set of
maps { f n

c }c∈Jn restricted to Wn(c) forms a full unimodal family, see [15, Section II.4], so
for some cn ∈ Jn , f n

cn
restricted to Wn(c) is conjugate to fĉ restricted to [−p(ĉ), p(ĉ)].

We fix such a sequence (cn)n≥5. Standard arguments (reprised later in the paper) show
that cn + 2 ∼ 4−n ∼ p(cn) + cn and that there is a topological disc V ′n containing cn of
diameter ∼ 4−n mapped univalently by f n−1

cn
onto Un = D[q(cn),−q(cn)], the disc whose

diameter is the line segment [q(cn),−q(cn)]. Then Vn := f −1cn
(V ′n) is a topological disc

of diameter ∼ 2−n mapped by f n
cn

as a two-to-one branched cover onto Un .
The orbit of 0 under f n

cn
lies in Vn and f n

cn
: Vn → Un is a quadratic-like map and

conjugate as such to fĉ. See [17] for properties of polynomial-like mappings. Observe
that, as cn → −2 when n →∞, Un → D[−1,1]. As 0 ∈ Vn and diam (Vn) ∼ 2−n , the
modulus of (Un\Vn) grows∼ n. There exist Kn-quasiconformal maps hn : C→C such
that for every z ∈ Vn ,

hn ◦ f n
cn
= fc ◦ hn

and limn→∞ Kn = 1, see [51, Section 11]. In particular,

lim inf
n→∞ dimH(Jcn ) ≥ dimH(Jĉ).

By A. Zdunik’s theorem [56], dimH(Jĉ) > 1, from which the limsup estimate of Propo-
sition 1.1 follows. The liminf estimate is a direct consequence of Theorem 2 or [2].

��
To the best of our knowledge, the value of

sup
c∈M∩R

dimH(Jc) (2)

remains unknown. It is unknown whether the supremum is strictly less than 2.
In [2], examples were given of sequences of Julia sets Jc, c ∈M ∩ R, of infinitely

renormalizable quadratic polynomials fc for which dimH(Jc)→ 1 when c tends to−2.
Theorem1,whichwe discuss in Section 1.3, estimates the dimension for c near−2 for

a large set of parameters. Aweaker, preliminary result, Theorem2, asserts that continuity
of the dimension function c �→ dimH(Jc) holds for typical parameters c > −2.
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Theorem 2. The dimension function

c ∈ Â �→ dimH(Jc)

is continuous at every parameter c ∈ Â.

Proof. This theorem follows from the fact that every map fc, c ∈ Â is uniformly
summable in the sense of [21] and by invoking Theorem 12 of [21]. ��

In particular, Theorem 2 answers the first part of Yoccoz’ question in the quadratic
setting and is a starting point for the research presented in the current paper. A more
general version of Theorem 2 formally follows from [6], namely the limit exists in the
sense of Theorem 2 along any C2-curve ending at −2.

1.2. Unfolding families. It is known, by [56], that dimH(Jc) > 1 for all c ∈M\{0,−2}.
At c = 0 or −2, the Julia set is respectively the unit circle or the segment [−2, 2]. We
can take a one-parameter family traversing either−2 or 0 to understand how an analytic
set unfolds into a fractal. A natural quantity to capture the unfolding is dimH(Jc).

Structurally stable case.D.Ruelle proved in [45] that the function c ∈M �→ dimH(Jc)

is real analytic at every hyperbolic c ∈ C and its asymptotic behaviour at c = 0 is given
by

dimH(Jc) = 1 +
|c|2

4 log 2
+ O(|c|3) . (3)

Themethods used in [45] are an early and innovative application of thermodynamical
formalism.

Logistic family. Our objective is to understand how non-linear attractors unfold within
one-parameter families of bifurcating maps. The logistic family at −2 is a prototype
example of bifurcating dynamics. Our research shows that one of the most important
averaging parameters of the system, the Hausdorff dimension dimH(Jc), for typical
parameters c, shows almost Hölder dependence on c, Theorem 3 and 4.

Additionally, the lower bound of dimH(Jc) is valid for all parameters c ∈ R from a
vicinity of −2.

1.3. Methods and statement of the results. Uniform and explicit estimates of the dimen-
sion function c �→ dimH(Jc) in bifurcating families are a major technical challenge.
Lower bounds on theHausdorff dimension are usuallymore difficult to obtain.We prove,
in Section 6, a uniform lower bound for all parameters by constructing an induced Cantor
repeller and applying Sinai-Ruelle-Bowen methods of thermodynamical formalism. A
careful combinatorial and probabilistic argument yields the final result, Theorem 4.

The upper bound is, strangely, more involved. The Hausdorff dimension of Julia
sets is strongly discontinuous in the upward direction due to ongoing bifurcations. It
is enough that a Julia set grows locally in one scale or another and a similar growth is
inherited in most scales and points due to invariance and dynamics. This phenomena is
well-known in complex dynamics and leads to discontinuities in the dimension function
c �→ dimH(Jc) [19]. The upper estimates rely on the technique of the Poincaré series,
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[21], statistical properties of conformal densities, the theory of β-numbers from [24],
and the parameter exclusion constructions of [5,55].

Theory of β-numbers and dynamics. P. Jones [29] introduced the technique of β-
numbers to study geometry of planar sets from the viewpoint of the theory of L2 func-
tions. One of the outcomes was quantification of the intuition that sets which wiggle in
most scales must be metrically large.

Definition 1.2. Let K ⊆ R
d with d ≥ 2, x ∈ K and r > 0. We define βK (x, r) by

βK (x, r) := inf
L

sup
z∈K∩B(x,r)

dist (z, L)

r
,

where the infimum is taken over all lines L in Rd .

A bounded set K is called uniformly wiggly if

β∞(K ) := inf
x∈K

inf
r≤diam K

β(x, r) > 0 .

[9, Theorem 1.1] states that if K ⊂ C is a continuum and β∞(K ) > 0 then dimH(K ) ≥
1 + cβ2∞(K ), where c is a universal constant.

In dynamical systems one cannot expect that generic systems be uniformly hyperbolic
and that the geometry of invariant fractals can be controlled at every scale, as is required
in [9]. However, there are numerous results showing that non-uniformly hyperbolic
systems are typical in ambient parameter spaces; examples include the logistic family
[4,26], rational maps [1,46], quadratic polynomials z2 + c with c ∈ ∂M [23,49], Hénon
family [5].

To provide tools to study attractors/repellers of non-uniformly hyperbolic systems,
[24, Theorem1] states that if a continuum K ⊂ C is the union of two subsets K = W∪E ,
H1(E) <∞ and H1(W ) > 0, then

dimH(K ) ≥ 1 + C inf
x∈W

lim inf
r→0

∫ diamK
r β2

K (x, t) dt
t

− log r
, (4)

where C is a universal constant and H1 is the 1-Hausdorff measure. If the infimum in
(4) is bigger than β2

0 then we say that continuum K is mean wiggly with the parameter
β0 ≥ 0.

It follows from [24,40] that Julia sets of quadratic polynomials Jc are uniformly
mean wiggly with β0 comparable to

√
c + 2, c ∈ Â. This yields an ad hoc estimate for

c ∈ Â,

dimH(Jc) ≥ 1 + C |c + 2|
that is much weaker than the estimate given by Theorem 4. The explanation lies in the
fact that (4) is valid for all continua including self-similar curves of von Koch type where
the length in a given scale r in terms of β := β(x, r) is, by the Pythagorean theorem, at
least a constant multiple of

r
√
1 + β2 ∼ r(1 + β2/2).
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The situation is very different for Julia sets Jc, c ∈ Â which have a very particular
property that they contain, at most points and scales r > 0, a “cross” of length∼ r(1+β),
that corresponds to the lower estimate Theorem 4.

Surprisingly, according to [24, Theorem 2], estimate (4) can be almost inversed

dimH(W ) ≤ 1 + C ′ sup
x∈W

lim inf
r→0

∫ diamK
r β2

K (x, t) dt
t

− log r
, (5)

where C ′ > 0 is a universal constant. If the supremum in (5) is smaller than β2
0 then

W is almost flat with β0 ≥ 0, see Fact 5.1. In the non-uniformly hyperbolic setting, of
which c ∈ Â is a particular case, when K is a Julia set, W can be usefully chosen in (5)
so that dimH(K ) = dimH(W ). Indeed, the unique invariant conformal density has the
property that it gives positive mass only to sets of the Hausdorff dimension dimH(K ),
[21]. An additional advantage of such a choice is that every point from W is typical with
respect to the dynamics and the Birkhoff averages converge. This turns out to be crucial
for efficient estimates of the integral quantity

lim inf
r→0

∫ diamK
r β2

K (x, t) dt
t

− log r

which is affected by the density of scales at x where βK (x, r) is large.

Passages to the large scale. The frequency with which points go univalently to the
large scale will play a rôle in our analysis. With this in mind, we introduce the following
terminology.

Definition 1.3. Given z ∈ C, r > 0 and f = fc, we denote by

U(z, r)

the set of positive integers n for which, for some neighbourhood U of z, the map
f n : U → B( f n(z), r) is biholomorphic. We call U a level-n univalent pullback
of B( f n(z), r) containing z, or to z.

More generally, if W is connected and V is a connected component of f −n(W ), we
call V a level-n pullback of W . If W is simply connected then, as f n is a polynomial,
so is V .

Passages of the critical value to the large scale. In particular, the frequency with which
the critical value goes univalently to the large scale has importance for us.

Proposition 1.4. Given δ > 0, there exist constants κ, c0 > −2 and a set of parameters
A ⊆ Â∩[−2, c0]which has−2 as a one-sided Lebesgue density point and the following
properties. For every c ∈ A, n ∈ N, there exists

n∗ ∈ U(c, 1/2) ∩ [n,max (n(1 + τ(c + 2)), n − log(c + 2))
]
,

where τ(ε) = exp(−κ
√− log ε).

For every n,

|( f n
c )′(c)| ≥ en(log 2−δ).
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This is essentially due to Yoccoz [55] and we prove the proposition in Section 2.4.
There is a set AYoc of strongly regular parameters defined by Yoccoz. We shall show
that A can be taken in the form AYoc ∩ [−2, c0]. We fix such a set A, for δ = 1/10.
Remark that c0 > −2 may be further decreased and the conclusion of the proposition
above remains valid.

Conformal and absolutely continuous invariant measures. It is known [21] that every
map fc, c ∈ Â, has a unique probabilistic invariant absolutely continuous invariant
measure σc with respect to the unique geometric measure νc, νc(Jc) = 1,

νc( fc(U )) =
∫

U
| f ′c(z)|dimH(Jc) dνc

for any Borel set U on which f is injective, see Definition 3.1.
We shall eventually apply Birkhoff’s ergodic theorem; to do so, we require new,

strong estimates on the distribution of σc near c (or equivalently, near 0). The following
two propositions are proven in Section 3, see the diagonal estimate on page 32 and the
general upper bound on page 33.

Let σc(r) := σc(B(c, r)) and ε = c + 2.

Proposition 1.5. Given t0 > 1, there exists C > 1 such that, if c ∈ A and c + 2 = ε is
sufficiently small, then for r = a ε, a ≥ εt0 ,

σc(a ε) ≤ C a1/2√ε . (6)

For smaller scales there is a weaker estimate.

Proposition 1.6. There exists C > 1 such that, if c ∈ A and ε is sufficiently small, then
for r = a ε > 0,

σc(a ε) ≤ C max(a1/2, a2/5)
√

ε| log ε| . (7)

Upper estimates of dimH(Jc). Large scale geometric parameters for typical Julia sets
Jc, c ∈ A, like global flatness [24], as well as regularity of the invariant conformal
density, enter into the upper bound of Theorem 3. This surprising observation can be
explained through the ergodic and β-numbers theories.

By [3], the Julia set Jc is contained in the horizontal strip |�(z)| ≤ 2
√

ε, ε = |c +2|,
and hence βs in the large scale are uniformly comparable to

√
ε.

Scales of Julia sets Jc bigger than
√

ε are directly affected by a large scale geometry
which becomes flat when c tends to −2; scales smaller than

√
ε are wiggly with a

frequency that can be calculated by the Birkhoff ergodic theory. A typical orbit that
approaches c at the distance ε suffers | log ε| corresponding scales where the wiggliness
(that is, the beta number) is bigger than

√
ε. Hence, the density of the scales with

wiggliness bigger than
√

ε at the initial point of the orbit is at least σc(ε)| log ε|. Taking
into account (5), the above argument suggests that the upper bound for dimH(Jc) may
not be better than 1 + Cσc(ε)| log ε|.
Theorem 3. There exists κ∗ > 0 and c0 > −2 such that for all parameters c ∈ A ∩
(−2, c0],

dimH(Jc) ≤ 1 + κ∗ | log(c + 2)| (c + 2)
1
2 .
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Lower estimate of dimH(Jc). The lower estimate for dimH(Jc) is based on completely
different techniques from the upper estimate.

Cantor repellers, Definition 6.1, form a well-known class of mappings that was
studied intensively in the context of thermodynamical formalism [10,45,48] and the
relations between harmonic and Hausdorff measures [11,31,32,36] both from ergodic
and probabilistic perspectives.

Amore general class of functions thanCantor repellers is constituted by box mappings
[22], see Section 6. An important property of boxmappings is that they have a non-trivial
inner dynamics through inducing constructions proposed by M. Jakobson [26] for real
unimodal maps and by J.-C. Yoccoz [55] for unicritical polynomials. In the current
paper, we will apply a few simple inducing steps to canonically-defined box mappings
to construct a family ϕc of Cantor repellers for every c close enough to −2.

A novelty of our thermodynamical approach lies in proving uniform estimates of the
Hausdorff dimension of Julia sets Jϕc , initially based on the dimension of the Julia set
of ϕc restricted to the real line, and then using a further branch of ϕc to improve the
lower bound. The thermodynamical foundations of this approach come from [44], we
refer the reader for a more detailed discussion to [42].

Theorem 4. There exists κ∗ > 0 and c0 > −2 such that for every c ∈ (−2, c0],

dimH(Jc) ≥ 1 + κ∗(c + 2)
1
2 .

Notation and uniform constants.Wewill use the notation A � B to indicate that A/B
is bounded from above by a uniform constant (with respect to c ∈ A, where A is fixed
following Proposition 1.4). Similarly, we define A � B. Finally, A ∼ B ⇔ A � B
and A � B, in which case we say that A and B are comparable.

Given a < b, we write �a, b� := [a, b] ∩ Z.

1.4. Hyperbolic estimates along ray (−∞,−2]. Asymptotic estimates at−2 for c < −2
are easier than these for c > −2 as they correspond to hyperbolic dynamics. They were
originally proven in [20], we revisit the estimates giving different proofs based on both
real and complex methods.

Lower bound. An ad hoc estimate for dimH(Jc), c < −2, comes from Manning’s
formula (see [11], [36]) for the Hausdorff dimension of the harmonic measure ωc with
a base point at∞,

dimH(Jc) ≥ dimH(ωc) = log 2

log 2 + Gc(c)
, (8)

where Gc is the Green function for C\Jc; Gc coincides at c with the Green function for
Ĉ\M.

SinceM contains the interval [−2, 0]which has logarithmic capacity 1/2 [35, Corol-
lary 9.9], Gc(c) ≤ 2

√|c + 2| and

dimH(Jc) ≥ log 2

log 2 + 2
√|c + 2| ≥ 1− 2

√|c + 2|
log 2

.

Upper bound via real methods. The estimate that Gc(c) ≤ 2
√|c + 2|, for c < −2, can

be almost inversed due to Tan Lei’s result [52] about the conformal similarity between
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M and J−2 which implies that asymptotically for any positive ε, Gc(c) ≥ |c + 2| 12 +ε.
It was proved by purely real methods in [20] that the ad hoc estimate is indeed precise.
For the convenience of the reader we will present a short proof of the upper estimate of
[20], 1− C ′

√|c + 2| ≥ dimH(Jc).
Let

ε = |c + 2| (9)

and suppose that c ∈ (−3,−2). Let pc be the repelling fixed point of fc at which
fc preserves the orientation on the real line. Let ±y denote the points f −1(−pc), so
y ∼ √ε. Denote by I the interval [−pc, pc]. Since c < −2, f n

c (c) tends to +∞ and
the Julia set is

⋂
n≥0

f −n(I ).

If A is a connected component of f −n(I ), then there are at most two iterates k (0 ≤ k ≤
n − 1) for which f k(∂ A) ∩ {±y} �= ∅, one of which equals n − 1. Denote the other by
k0. Hence f n on A can be decomposed as

f n = f ◦ g1 ◦ f ◦ g2,

(or f n = f ◦ g1 if k0 does not exist) where g1 and g2 = f k0 have uniformly bounded
distortion, using the Koebe distortion theorem for g2 (a neighbourhood of A is mapped
diffeomorphically by g2 onto I and g2(A) is far from ∂ I ) and uniform boundedness of∑n−1

j=k0+1 | f
j

c (A)| together with a standard argument using

n−1∑
j=k0+1

∫ f j
c (y)

f j
c (x)

log |D fc(s)| ds

for g1, noting −pc ∈ f ◦ g2(A).
Let E j = {x ∈ f j (A) : f n− j (x) ∈ [−y, y]} and remark that f j (E0) = E j for

j ≤ n. The measure of En = [−y, y] and En−1 are both ∼ √ε. By bounded distortion
(of g1), |Ek0+1|/| f k0+1(A)| ∼ √ε. Moreover, Ek0+1 is well inside f k0+1(A) in the sense
that each component of f k0+1(A)\Ek0+1 has length uniformly comparable to | f k0+1(A)|.

Pulling back once gives |Ek0 |/| f k0(A)| ∼ √ε and then bounded distortion of g2
gives |E0|/|A| ∼ √ε.

Consequently, the length of f −n(I ) is smaller than (1−C
√

ε)n , whereC is a uniform
constant. Since f −n(I ) has 2n components A, using Hölder’s inequality with p = 1

1−α

and q = 1
α
,

∑
|A|α =

∑
1 · |A|α ≤ 2(1−α)n(1− C

√
ε)αn � 1

providedα ≥ 1−C ′
√

ε for some small uniform constantC ′ > 0. Therefore dimH(Jc) ≤
α.
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1.5. Structure of the paper. In the following section we recall general properties of
Collet–Eckmann maps and then give properties of Yoccoz’ strongly regular parameters,
those comprising the set A.

Section 3 contains estimates on the conformal and absolutely continuous invariant
measures. We decompose forward orbits depending on the passages near the critical
point and use ergodicity to obtain estimates on the density of blocks of different types.

In Section 4, density of blocks of the forward orbit are translated into densities
of scales of preimages. Section 5 is dedicated to the proof of the upper bound of the
Hausdorff dimension using the β numbers theory.

The last section presents the proof of the lower bound of the Hausdorff dimension
by constructing a Cantor repeller inside the Julia set.

2. Collet–Eckmann Parameters

2.1. Technical sequences. We shall consider maps f = fc with Collet–Eckmann pa-
rameter c ∈ Â, see formula (1), with associated constants �,�′. We follow closely
the formalism introduced in [21, Lemma 2.2] in order to make precise references to
estimates of [21]. As in [21], we introduce three positive sequences (αn), (γn), (δn) as
follows.

Definition 2.1. For n ≥ 1, set

• δn = 1
8n2

,

• γn = 64 en�/4

1−e−�/4 ,

• αn = (1− e−�/4)
√

δn�′ en�/4/64.

The growth of the derivative of f n will be given in terms of γn , the corresponding
distortion will be bounded by δn , and various constants will be controlled through αn .

Lemma 2.2. The sequences (αn), (γn), and (δn) satisfy

limn→∞ αn = ∞ ,∑
n γ−1n < 1/64 ,∑
n δn < 1/2

and, for every c ∈ Â,

|( f n
c )′(c)| ≥ α2

n γ 2
n / δn .

Proof. The bound is a direct consequence of Definitions (1) and 2.1. ��

2.2. Constants and scales. A scale around the critical point 0 of fc(z) = z2 + c is given
in terms of a fixed number R′ � 1 as in [21] where the general case of rational maps
was studied. We will refer to objects which stay away from the critical points at distance
R′ and are comparable in size to R′ as the objects of the large scale. The proper choice
of R′ is crucial in obtaining uniform estimates based on the Poincaré series technique
of [21].

The following conditions define R′, compare the conditions (i− iv) from [21, Sec-
tion 2.3].
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(i) fix τ so that αk > 103 for all k ≥ τ ; let R > 0 be so small that the first return time
of 0 to {|z| < √R} by fc is at least τ ;

(ii) R′ satisfies the condition 0 < R′ ≤ R infn (αn)2 /103.

Note that R′ � R as α1 < 1. The constants R and R′ above can be fixed uniformly for
c ∈ Â. Indeed, if | f n

c (c)| < √R for some n < τ and c ∈ Â, then by (1)

�′eτ� ≤ |( f τ
c )′(c)| < 4τ

√
R,

so R can be chosen explicitly

R := (�′)24−2τ eτ�.

2.3. Uniform contraction. Replacing R′ by a smaller constant if necessary, the following
backward contraction results hold.

Proposition 2.3. There exist ξ ∈ (0, 1) and C > 0 such that, for all c ∈ Â, for every
n ∈ N, for every ball B(z, r), z ∈ Jc with r ≤ R′, the diameter of every component
of f −n

c (B(z, r)) is smaller than ξn. Moreover, if Wn is a component of f −n
c (B(z, r)),

r ≤ R′, then

diam Wn < Cξn√r . (10)

For all n ≥ 0, z ∈ Jc and Vn a connected component of f −n
c (B(z, 2R′))

diam Vn <
1

1000
. (11)

The constant ξ is called the backward contraction factor, see [40]. For a given c, these
estimates are known to hold; we must check that the estimates are uniform for c ∈ Â.
The proof occupies the remainder of this subsection.

In [21], a decomposition of orbits into three types was introduced. Types 1 and 3
correspond to pieces of the orbit shadowed closely by the corresponding pieces of the
critical orbit. For the reader familiar with the work of [5], types 1 and 3 correspond to
the bound period, the formal definition can be found in [21]. Our focus will be on type
2 preimages which correspond to the free period in [5].

Second type. A piece of a backward orbit is of the second type if there exists a
neighbourhood of size R′ which can be pulled back univalently along the backward
orbit. Type two preimages yield expansion along pieces of orbits of a uniformly bounded
length L . In this setting, type 2 corresponds to pieces of backward orbits which stay at
a definite distance from the critical points. The following lemma shows that L can be
chosen uniformly in c ∈ Â so that any univalent pullback of length at least L of a large
scale ball yields a definite backward contraction.

Lemma 2.4. Given λ > 1, there exist L > 1 such that the following holds for all c ∈ Â,
n ≥ L and z ∈ C with dist (z,Jc) ≤ R′/2. If the ball B(z, R′) can be pulled back
univalently along a sequence f −n

c (z), · · · , f −1c (z), z of preimages of z, then

|( f n
c )′( f −n

c (z))| > λ.
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Proof. Observe that by its definition (1), Â is a compact set.Also, by theCollet–Eckmann
condition (1) for parameters c ∈ Â, the only Fatou component of fc is its basin of
attraction of infinity Ac(∞). If a point z ∈ Ac(∞), then there exists ε > 0 and, for all
z′ ∈ B(z, ε) and c′ ∈ B(c, ε), z′ ∈ Ac′(∞).

Let (ck) ⊂ Â, (zk) ⊂ C and a strictly increasing sequence (Nk) ⊂ N such that for
all k ≥ 0, zk ∈ Jck and the ball B(zk, R′/2) can be pulled back univalently by fck along
a backward orbit of zk of length Nk .

By compactness, we may assume that there exists c ∈ Â and z ∈ B(0, 2) such that

c = lim
k→∞ ck and z = lim

k→∞ f −Nk
ck

(zk).

As c ∈ Â, zk ∈ Jck , z /∈ Ac(∞) so z ∈ Jc.
For any ε > 0, there exists an N such that f N

c (B(z, ε)) contains neighbourhoods of
both fixed points of fc, so for large k, f n

ck
(B(z, ε)) contains both fixed points of fck for

all n ≥ N . Therefore f n
ck

(B(z, ε)) is not contained in a ball of radius R′ for n ≥ N .

Consequently, B(z, ε) is not contained in a pullback of B(zk, R′/2) by f Nk
ck for large k.

Upon choosing ε appropriately, the result follows by the Koebe 1/4 theorem. ��
We fix L provided by the previous lemma for λ = 100.

Contraction of preimages. The Collet–Eckmann condition implies the existence of the
backward contraction factor ξ , via [21, Propositions 2.1 and 7.2], which depends only
on the constant � from (1), see also the condition ExpShrink and the main result in
[39]. Indeed in the proof of [21, Proposition 7.1], we have that ξ−1 can be taken as
infn(ω̃n)

1/n , where

ω̃n := inf
{
γk1 . . . γkl ωm / 16 : k1 + . . . kl + m = n

}

and ωn was defined in the proof of Proposition 2.1 of [21],

ωn := inf

⎧⎨
⎩ K λk0

∏
j≥1

γ ′k j
: k0 + k1 + k2 + · · · ∈ [n − L , n)

⎫⎬
⎭ ,

where K > 0 is the expansion yielded by type 2 preimages of the length l ∈ [0, L), λ is
the average expansion of a type 2 block and

γ ′n := inf

⎧⎨
⎩
∏

j

γi j : i0 + i1 + i2 + · · · = n

⎫⎬
⎭ .

This shows that ξ < 1 and depends solely on � and �′ in (1).
Remark 7.1 of [21] implies the stronger uniform estimate (10). By eventually shrink-

ing R′, we directly obtain (11). This completes the proof of Proposition 2.3.
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2.4. Visits to the large scale for strongly regular parameters. For c ∈ [−2, c0], c0 +2 >

0 and small, we denote by qc the orientation-reversing fixed point of fc and pc the
orientation-preserving one. By direct computation

pc = 2− ε

3
+ O(ε2) and c + pc = 2

3
ε + O(ε2). (12)

The other fixed point, qc, is in a small neighbourhood of −1. We have −2 < −pc <

c < qc < 0.
J.-C. Yoccoz in [55] defines a set of strongly regular parameters, which we shall

denote byAYoc, and shows that−2 is a one-sided density point forAYoc. Let c ∈ AYoc.
Just prior to Definition 3.7 in [55], a sequence of times (Nk)k called regular returns is
defined. By the definition of regular returns, f Nk−1

c (c) ∈ (qc,−qc) and a neighbourhood
of c is mapped by f Nk−1

c diffeomorphically onto the open interval Â of [55] ( defined
such that fc(∂ Â) = {−qc}), which contains a 1

2 -neighbourhood of A = [qc,−qc] if
c is close to −2. The number M = N1 depends on c, increasing as c → −2, log ε =
log |c + 2| ∼ −2M log 2 in [55, Proposition 3.1(3)].

If ε = c + 2 is close to 0 then the critical orbit (starting with fc(c)) is “trapped” for
some time, comparable to M , in a vicinity of pc.

Let gc be the inverse of the restriction of fc to {�(z) > 0}. Observe that gc is univalent
on B(pc, 3) and gc(B(pc, 3)) ⊆ B(pc, 3). Therefore, gk

c is also univalent on B(pc, 3)
for all k > 0. As R′ � 1, the distortion of gk

c is bounded on B(pc, 20R′) by a constant
very close to 1 and by 2 on B(pc, 1/10).

A return Nk , k ≥ 1 is simple if for all Nk < n < Nk+1,

f n
c (0) /∈ A.

Another characterisation of simple returns is [55, Lemma 3.6],

Nk+1 − Nk < M − 1.

By Remark 3.9 in [55], all returns with Nk < 2
√

M M are simple.
Let us denote ck := f Nk

c (0). Assume that Nk is a simple return and letm = Nk+1−Nk .
Then by the distortion bounds above (and few iterates outside B(pc, 1/10)), we have
that for all j ∈ �0, m − 1�

|( f j
c )′( fc(ck))| ∼ |2pc| j and fc(ck) + pc ∼ |2pc|−m .

By estimate (12), for all j ∈ �0, ε−1�,

|2pc| j = 4 j
(
1− ε

6
+ O(ε2)

) j ∼ 4 j .

As m < M − 1 ∼ | log ε| � ε−1, combining the previous two estimates, for all
j ∈ �0, m − 1�,

|( f j
c )′( fc(ck))| ∼ 4 j and fc(ck) + pc ∼ 4−m . (13)

As N1 = M and m ≤ M − 2, by estimate (12)

−pc < c < − fc(c) < fc(ck) and | fc(c) + c| > 5

2
|c + pc| > ε.



Hausdorff Dimension of Julia Sets in the Logistic Family 687

Pulling back once by fc, for all j ∈ �1, m� we have

√
ε < |ck | ∼ 2−m and |( f j

c )′(ck)| ∼ 22 j−m . (14)

Lemma 2.5. Given δ > 0, there exists c0 > −2 such that, if c ∈ [−2, c0] and the first k
return times N1, . . . , Nk of c to A are simple, then∣∣∣( f j

c )′(c)
∣∣∣ ≥ e j (log 2−δ)

for all j = 1, . . . , Nk.

Proof. LetC∗ > 4 be a universal multiplicative constant whichmakes (14) hold. Choose
N large enough that eNδ > C2∗ . Let ε be small enough that eMδ > C2N∗ . Then

4M = 2M eM log 2 > 2M eM(log 2−δ)C2N∗ .

By the conjugacy between f−2 and the full tent map, if x ∈ [−1, 1] and f n−2(x) ∈
B(0, 1.1) then (see [55, Section 2.2]), for all n ≥ 1,

∣∣( f n−2)′(x)
∣∣ ≥ 2n 1

2
.

By continuity, if c is close enough to −2, if x, f n
c (x) ∈ A, and n ≤ N then

∣∣( f n
c )′(x)

∣∣ ≥ 2n 1

4
. (15)

We have N1 = M and ∣∣∣( f j
c )′(c)

∣∣∣ ≥ max(2 j , 4 j/C∗)

for j ≤ M − 1.
Now we examine times Nk j where k0 = 1 and k j+1 is the minimal k′ > k j with

Nk′ − Nk j > N . Let m j = N j+1 − N j ≥ 2 and m = Nk j+1 − Nk j . We have that
m − mk j+1−1 ≤ N . Thus we can split up the iterates from ck j until ck j+1 into one
sequence of simple returns with combined length at most N , and one single simple
return. Applying (15) and (14), we obtain

∣∣( f m
c )′(ck j )

∣∣ ≥ 2m 1

4C∗
.

As eNδ > C2∗ and m > N ,
∣∣( f m

c )′(ck j )
∣∣ ≥ em(log 2−δ).

This proves the lemma at all times Nk j .
For intermediate times, we use k j+1 − k j < N and the initial growth estimate

∣∣∣( f M−1
c )′(c)

∣∣∣ ≥ 4M/C2∗ > 2M eM(log 2−δ)

and apply (14) repeatedly. ��
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Proof of Proposition 1.4. With the notation introduced above, let m = Nk+1 − Nk for
some k ≥ 1. From [55, equation (3.2)] if m > M ,

m ≤ 2−
√

M (Nk + m). (16)

If we set τ(ε) = exp(−κ
√
log 1/ε), for κ small enough, then m ≤ Nkτ(ε), which yields

the bound on n∗ in Proposition 1.4 if c0 + 2 is small enough and c ∈ AYoc.
Now we prove the estimate on the growth of the derivative along the critical orbit of

c ∈ AYoc. By [55, Proposition 3.10] with gB(k) satisfying f Nk−1
c ◦ gB(k) = Id Â and

x = ck , ∣∣∣∣log
(
|( f Nk−1

c )′(c)| hc(c)

hc(ck))

)
− (Nk − 1) log 2

∣∣∣∣ < C M−1Nk,

where log hc(c) ∼ M log 2 and hc(ck) ∼ 1; C is a universal constant. In particular, at
each such time,∣∣∣∣ 1

Nk − 1
log |( f Nk−1

c )′(c)| − log 2

∣∣∣∣ <
C

M

Nk

Nk − 1
+

C ′ M
Nk − 1

,

where C ′ > 0 is an universal constant. The returns being regular, the Koebe distortion
theorem gives a lower bound C1 > 0 to the derivative of f m

c at ck . Hence for any

1 ≤ j ≤ m, |( f j
c )′(ck)| ≥ 4−mC1. We also deduce that

∣∣∣∣∣
log |( f Nk+ j−1

c )′(c)|
Nk + j − 1

− log 2

∣∣∣∣∣ <
C

M

Nk

Nk − 1
+

C ′ M
Nk − 1

+

∣∣∣∣∣
1

Nk + j − 1
log
|( f j

c )′(ck)|
2 j

∣∣∣∣∣ .

The last term above is bounded by 4m/Nk and allows us to treat the case Nk > 2
√

M−2M .
In this case,

4m/Nk ≤ 24−
√

M (1− 22−
√

M )� M−1,

which is immediate if m ≤ M , while for m > M we use (16). As the first non-simple
return happens at a time at least 2

√
M M and simple returns have return time bounded by

M , there is a regular return Nk with

2
√

M−2M < Nk < 2
√

M−1M.

Consequently, for all n ≥ 2
√

M−1M ,
∣∣∣∣1n log |( f n

c )′(c)| − log 2

∣∣∣∣ <
C2

M
∼ 1

log 1
ε

, (17)

where C2 is a universal constant. Given δ > 0, for large M , C2/M < δ. To finish the
proof, note that regular return times up to some Nk > 2

√
M−1M are simple and apply

Lemma 2.5. ��
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Let

k0 := max{k > 0 : Nk < 2
√

M M}.

For each k ∈ �1, k0�, let εk be maximal such that

B(c, εk) ⊆ f 1−Nk
c (B(ck, R′)).

By bounded distortion and Schwarz lemma

εk |( f Nk−1
c )′(c)| ∈ (R′/2, R′) (18)

and ε1 ∼ εR′ ∼ ε.
By estimates (14), for all k ∈ �2, k0�

√
ε � 2Nk−1−Nk ∼ εk

εk−1
∼ |ck−1|. (19)

Let us denote

rc := εk0 .

Lemma 2.6. For any t > 1, if ε = c + 2 is sufficiently small and c ∈ A, then

rc < εt .

Proof. By choice of A following Proposition 1.4, taking δ = 1/10 and c ∈ A, for all
n ≥ 0,

|( f n
c )′(c)| ≥ en(log 2−δ).

Combine this with bound (18) to get

rc < R′e(1−Nk0 )(log 2−δ),

while bound (13) for k = 0 gives ε ≥ e−2M log 2−C , for some uniform constant C > 0.
By inequality (16),

Nk0 ≥ M(2
√

M − 2) > 1 + t
2M log 2 + C

log 2− δ
,

if M is large. The above bounds on ε and rc are sufficient to conclude. ��
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3. Statistical Methods

3.1. Conformal measure of disks centred at c. Conformal or Sullivan-Patterson mea-
sures are dynamical analogues of Hausdorff measures in dynamical systems.

Definition 3.1. Let fc = z2 + c be a rational map with the Julia set Jc. A Borel measure
ν supported on J is called conformal with an exponent p (or p-conformal) if for every
Borel set U on which fc is injective one has

ν( fc(U )) =
∫

U
| f ′c(z)|p dν .

As observed in [50], the set of pairs (p, ν) with p-conformal measure ν is compact
(in the weak-∗ topology). Hence, there exists a conformal measure with the minimal
exponent

δconf(c) := inf{p : ∃ a p-conformal measure on Jc}.
The minimal exponent δconf(c) is also called the conformal dimension of Jc.

The following fact, proven in [21] (Theorems 3 and 7), explains basic properties of
conformal measures for Collet–Eckmann parameters. Several claims of the following
two facts were known (in the Collet–Eckmann setting) earlier, see [38].

Fact 3.2. Let c ∈ A. Then there is a unique, ergodic, non-atomic, and probabilistic
conformal measure νc for fc, with exponent

δconf(c) = dimHJc.

Moreover,

dimH(νc) = dimHJc .

Preliminaries. By compactness, the eventually onto property and Definition 3.1, we
have

ν0 := inf{νc(B(x, R′/2)) : c ∈ A and x ∈ [−pc, pc]} > 0.

Therefore, whenever a branch of f −n
c is univalent on some B(x, R′), x ∈ Jc, there is

a constant Cν > 1 depending only on ν0 and R′, such that if W is the corresponding
connected component of f −n

c (B(x, R′/2))

C−1ν (diam W )δconf (c) ≤ νc(W ) ≤ Cν(diam W )δconf (c). (20)

Moreover, by the bounded distortion of f n
c on W , there is a universal constant K2 > 1

such that if W � y := f −n
c (x), r := K−12 diam W and r ′ := K2 diam W ,

νc(B(y, r)) ≤ Cν K δconf (c)
2 r δconf (c)

and

C−1ν K−δconf (c)
2 r ′δconf (c) ≤ νc(B(y, r ′)).

We apply this now near pc. As pc is a repelling fixed point, any ball of radius at least
comparable to (in particular, at least equal to R′ times) the distance from its centre to
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pc gets mapped by an iterate of fc with bounded distortion to the large scale. Applying
this and using conformality, we obtain that, for all 0 < r < 2 (and c ∈ A)

νc(B(pc, r)) ∼ r δconf (c),

and for all εR′ ≤ r ≤ 2

νc(r) ∼ r δconf (c), (21)

where νc(r) := νc(B(c, r)) = νc(B(−c, r)) and we used the ∼ notation for uniform
constants from page 12.

As an immediate consequence, for all x ∈ [−pc, pc]\(−
√

εR′,
√

εR′),

νc(B(x, |x |/2)) � |x |δconf (c). (22)

Recall the definition of k0 and εk before bound (18). For all k ∈ �1, k0�, by the
bounded distortion of f Nk−1

c ,

νc(εk) ∼ ε
δconf (c)
k . (23)

General estimates. We want to obtain a sharp upper bound for νc(r) for all r > 0. We
have to distinguish two cases depending on the range of r .

Lemma 3.3. There exists a uniform constant S ≥ 1 such that for every 0 < r ≤ rc = εk0
and c ∈ A,

r δconf (c)(1+Sτ(ε)) � νc(r) � r δconf (c)(1−Sτ(ε)),

where τ(ε) = exp(−κ
√
log 1/ε) comes from Proposition 1.4.

Proof. We show the upper bound. Denote by Uk the level (Nk − 1) univalent pullback
of B(ck, R′/2) to c. Let k ≥ k0 be maximal with Uk ⊃ B(c, r). With this choice,

νc(r) ≤ νc(Uk) ∼ diam (Uk)
δconf (c).

Choose k′ ≥ k + 1 minimal with N ′k − Nk ≥ L (the constant L was fixed after the proof
of Lemma 2.4). Then Uk′ ⊂ Uk by Lemma 2.4 and

diam (Uk′) � r � diam (Uk).

It remains to bound the ratio of diam (Uk) and diam (Uk′). By the definitions of k0 before
bound (18) and of τ(ε) in Proposition 1.4,

Nk′ ≤ (Nk + L)(1 + τ(ε)).

By bounded distortion,

diam (Uk′)

diam (Uk)
� diam ( f Nk−1

c (Uk′))

R′
� 4−(Nk′−Nk ) � 4−Nkτ(ε).

Now 4−Nk = ξ SNk , where S = − log 4/ log ξ and ξ is the backward contraction factor
of (10). Meanwhile, ξ Nk > r by choice of k. Hence

diam (Uk′)

diam (Uk)
� r Sτ(ε).
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We conclude that

νc(r) ≤ νc(Uk) � diam (Uk)
δconf (c)

� diam (Uk′)
δconf (c)r−δconf (c)Sτ(ε) � r δconf (1−Sτ(ε)).

The lower bound is proved by a similar method.
��

Sharp estimates for intermediate scales. For scales larger than rc, we need first to
estimate νc(B(0, 2

√
ε)). For any 0 < r < r ′, let us denote A(r, r ′) := B(0, r ′)\B(0, r)

the annulus around the critical point of given radii. Observe that by Definition 3.1

νc(A(r1, r2)) ≤ 21−δconf (c)r−δconf (c)
1 νc(r

2
2 ). (24)

This bound will allow us to transfer estimates near c to estimates for annuli around 0.
The times Nk will allow us to transfer estimates near 0 to estimates around c. We do so
repeatedly in the following bootstrapping argument.

Lemma 3.4. There exists a constant C > 0 such that for all c ∈ A and r ≥ √ε

νc(B(0, r)) ≤ Cr δconf (c).

Proof. First, using bounds (21) and (24), if r ≥ √ε1 �
√

εR′

νc(A(r, 2r)) � r δconf (c),

which, as δconf(c) ≥ 1, sums to

νc(A(
√

ε1, r)) �
∑
n≥1

(
2−nr

)δconf (c) ≤ r δconf (c). (25)

By bounds (24) and (19), we have

νc(A(
√

εk+1,
√

εk)) � ε
−δconf (c)/2
k+1 ε

δconf (c)
k � ε−δconf (c)/4ε

δconf (c)/2
k .

Summing up, together with bound (25), we obtain

νc(A(
√

rc,
√

ε1)) � εδconf (c)/4. (26)

For r ≤ 1
2
√

rc, by Lemma 3.3 and bound (24)

νc(A(r, 2r)) � r δconf (c)(1−Sτ(ε)),

which sums to

νc(B(0,
√

rc)) � r δconf (c)(1−Sτ(ε))
c , (27)

a negligible quantity compared to the estimate we have for νc(A(
√

rc,
√

ε)), as rc � ε2

by Lemma 2.6 and τ(ε)� 1.
Combining (25)-(27), we obtain that for all r ∈ [ε1/4, 2],

νc(B(0, r)) � r δconf (c). (28)
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In order to extend the range of validity to the desired r ∈ [√ε, 2], it suffices to improve
the exponent δconf(c)/4 in (26) to δconf(c)/2. This task occupies the remainder of the
proof.

Let

� :=
{

r ∈ (0, 2] : νc(r) � r δconf (c)
}

.

We have already proven in (23) that εk ∈ � for all k ∈ �1, k0� and estimate (21) shows
that [εR′, 2] ⊆ �. We need to show that [εk+1, εk] ∈ �. For each k ∈ �1, k0 − 1�, we
distinguish three cases:

1. |ck | ≥ R′;
2. |ck | ∈ (ε1/4, R′);
3. |ck | ≤ ε1/4.

The first case is the easiest to treat, as εk+1 ∼ εk by equation (19), so [εk+1, εk] ⊆ �.
To treat case 2, we pull back B(0, 2r) ⊃ B(ck, r) by f 1−Nk

c for all r ∈ [|ck |, R′] and,
using estimate (28), we get that

[|ck |εk, εk] ⊆ �.

By estimate (19), we have that |ck |εk ∼ εk+1 so [εk+1, εk] ⊆ �.
For case 3, we again pull back B(0, 2r) ⊃ B(ck, r) by f 1−Nk

c , this time for all
r ∈ [ε1/4, R′], to obtain

[ε1/4εk, εk] ⊆ �.

By estimate (19), ε1/4εk � √εkεk+1 so [√εkεk+1, εk] ⊆ �.

For r ∈ [(εk+1εk)
1/4,
√

εk/2], as 4r2 ∈ �, we bound νc(A(r, 2r)) by (24) and sum
up to get

νc(A((εk+1εk)
1/4,
√

εk)) � ε
δconf (c)/2
k .

We use estimate (24) for A(
√

εk+1, (εk+1εk)
1/4) to obtain the same upper bound for its

measure, thus

νc(A(
√

εk+1,
√

εk)) � ε
δconf (c)/2
k .

Summing for k ∈ �1, k0 − 1� provides the desired estimate. ��
Lemma 3.5. Uniformly in c ∈ A, for all rc ≤ r ≤ 2,

νc(r) � r δconf (c).

Proof. Remark that, using the notations from the proof of Lemma 3.4, it is enough to
show that � ⊃ [rc, 2]. As its conclusion strengthens bound (28), we can replace ε1/4

by
√

ε in the definition and proof of the three cases treated there. By the bound (14),√
ε < |ck |, so the third case becomes void. The same argument, when

√
ε is substituted

for ε1/4 proves that in the other two cases, for all k ∈ �1, k0 − 1�, [εk+1, εk] ⊆ �. As
ε ∼ ε1, bound (21) completes the proof. ��
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For each c ∈ A, ε = c + 2 let us define

η(ε) := 1− Sτ(ε), (29)

where S and τ(ε) are given by Lemma 3.3.

Proposition 3.6. There exists a uniform constant C > 1 so that for every ζ ∈ (1, 2η(ε)),
c ∈ A and r ∈ (rc, R′)

C−1
∫

B(c,r)

|x − c|−δconf (c)ζ/2 dνc(x) ≤ r1−ζ/2

2− ζ
+

rη(ε)−ζ/2
c

2η(ε)− ζ
. (30)

Proof. We put nc to be the smallest n such that r/2n ≤ rc, hence nc ∼ log r
rc
.

Define An = {x ∈ C : 2−(n+1) ≤ |x − c|/r < 2−n}, n ∈ N, and set Ir :=∫
B(c,r)

|x − c|−δconf (c)ζ/2(x)dνc. Splitting B(c, r) into annuli An , n ≥ 0, and using that
νc is non-atomic measure by Fact 3.2,

Ir ≤ 4r−δconf (c)ζ/2

( nc∑
n=0

2nδconf (c)ζ/2νc(An) +
+∞∑

n=nc

2nδconf (c)ζ/2νc(An)

)

For all n ≤ nc, we use the sharp estimate of Lemma 3.5,

ν(An) ≤ ν(B(c, 2−nr)) � r δconf (c)2−nδconf (c)

while for all n ≥ nc, the general estimate of Lemma 3.3 gives

ν(An) � r δconf (c)η(ε)2−nδconf (c)η(ε).

Recall δconf(c) > 1 for c ∈ A and ζ/2 < η(ε) < 1. Also, r2−nc ≤ rc.

Ir � r1−ζ/2
nc∑

n=0
2−n(1−ζ/2) + rη(ε)−ζ/2

+∞∑
n=nc

2−n(η(ε)−ζ/2)

� r1−ζ/2

1− 2−(1−ζ/2)
+ (r2−nc)η(ε)−ζ/2

+∞∑
n=0

2−n(η(ε)−ζ/2)

� r1−ζ/2

2− ζ
+

rη(ε)−ζ/2
c

1− 2−(η(ε)−ζ/2)
� r1−ζ/2

2− ζ
+

rη(ε)−ζ/2
c

2η(ε)− ζ
.

��

3.2. Absolutely continuous invariant measures. Absolutely continuous invariant mea-
sures can exist only with respect to conformal measures without atoms at critical points.
This necessary condition is satisfied for the geometricmeasures of fc(z) = z2+c, c ∈ A.

We refer to Theorem 4 in [21] for the following result.

Fact 3.7. Let c ∈ A. Then fc has a unique absolutely continuous invariant probabilistic
measure σc with respect to the conformal measure νc from Fact 3.2. Moreover, σc is
ergodic, exact, and has positive entropy and Lyapunov exponent.
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To prove the following proposition, we will need to control distortion; we will use
the method of shrinking neighbourhoods, introduced in [37], see also [41]. With our
technical sequence (δn) of Definition 2.1, let �n := ∏

k≤n (1− δk). Let B(z, r) be the
ball of radius r around a point z and { f −n(z)} be a sequence of preimages of z. We define
Un and U ′n as the connected components of f −n(B(z, r�n)) and f −n(B(z, r�n+1)),
respectively, which contain f −n(z). Clearly,

f (Un+1) = U ′n ⊂ Un .

If Uk , for 1 ≤ k ≤ n, do not contain critical points then the distortion of f n : U ′n →
B(z, r�n+1) is bounded (by the Koebe distortion theorem) by a power of 1

δn+1
, multiplied

by an absolute constant.
Since

∑
n δn < 1

2 , one also has
∏

n (1− δn) > 1
2 , and hence always B(z, r/2) ⊂

B(z, r�n).
Let ρc(x) = dσc

dνc
(x) be the Radon-Nikodym derivative of σc with respect to νc.

Proposition 3.8. There exists a uniform constant C > 0 so that for every 0 < r ≤
diam Jc, ζ ∈ (1, 2) and c ∈ A,∫

B(c,r)

ρc(x)ζ dνc ≤ C
∫

B(c,r)

|x − c|−δconf (c)ζ/2 dνc(x). (31)

In particular, by Proposition 3.6, the densities ρc(x) of σc with respect to νc are
uniformly Lζ -integrable. Just Lζ -integrability was proven before in the non-uniform
setting in [21] and [43] for large classes of rational functions.

Proof. By splitting the integral into two integrals, one over the set where ρc(x) ≤
|x−c|−δconf (c)/2 andoneover its complement in B(c, r), it suffices to show theproposition
when ζ is close to 2.

A starting point is a general upper estimate ofρc(x) obtained in [21, Proposition 10.1].
Assume that c ∈ A. Let us set

�̂k(x) :=
(
dist

(
f k
c (0), x

))−δconf (c)/2

and

gc(x) :=
∞∑

k=1
γ
−δconf (c)
k �̂k(x) ,

where γk is defined in Definition 2.1. The [21, Proposition 10.1] asserts that there exists
a positive constant K so that, for all c ∈ A and every x �∈⋃∞n=0 f n

c (c),

ρc(x) < K gc(x) . (32)

The sequence γk (defined in Definition 2.1), independent of c ∈ A, tends exponentially
fast to∞.

Let ζ ∈ [3/2, 2) be an arbitrary number. We use the Hölder inequality similarly to
the proof of [21, Corollary 10.1], for positive sequences x, y,

‖xy‖1 ≤ ‖x1−1/ζ ‖ 1
1−1/ζ

· ‖x1/ζ y‖ζ
� ‖x1/ζ y‖ζ = ‖xyζ ‖1/ζ∗1 ,
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provided x is geometrically decreasing.
With this model, we deduce from (32) that

∫
B(c,r)

ρc(x)ζ dνc ≤ K ζ

∫
B(c,r)

( ∞∑
k=1

γ
−δconf (c)
k �̂k(x)

)ζ

dνc

�
∞∑

k=1
γ
−δconf (c)
k

∫
B(c,r)

�̂
ζ
k (x)dνc . (33)

Suppose that r ≤ R′/6 and let k > 1. If f k
c (0) �∈ B(c, 2r) then we have a direct

bound ∫
B(c,r)

�̂
ζ
k (x)dνc ≤

∫
B(c,r)

�̂
ζ
1(y) dνc(y),

because for all x ∈ B(c, r), |x − c| ≤ |x − f k(0)|.
If f k

c (0) ∈ B(c, 2r), put Bk := B( f k
c (0), 3r) and let

IBk :=
∫

Bk

�̂
ζ
k (x)dνc ≥

∫
B(c,r)

�̂
ζ
k (x)dνc.

We estimate IBk using shrinking neighbourhoods. Given x ∈ Bk\⋃k
n=1 f n

c (0) let
r(x) > 0 be minimal such that some shrinking neighbourhood Um , m = m(x) ≤ k, for
B(x, r(x)) hits the critical point (0 ∈ ∂Um). By construction, r(x) < 2 dist

(
f k
c (0), x

) ≤
6r ≤ R′ and r(x) is comparablewith dist

(
f m(x)
c (0), x

)
.Wecanwrite Bk\⋃k

n=1 f n
c (0) =⋃k

m=1 Em , where Em = {x ∈ Bk : m(x) = m}. For some m, Em may be empty.
By Lemma 2.3 of [21], dist

(
c, f −m+1(x)

) ≤ 6rγ−1m−1 < r , as γm−1 > 64 by Defini-
tion 2.1. Hence, for all m ≤ k,

f −m+1
c (Em) ⊂ B(c, r).

We obtain an upper bound of IBk solely in terms of
∫

B(c,r)
�̂

ζ
1(y) dνc(y), as follows.

We change variables in the integrals (34) and use the fact that the distortion of the inverse
branch of f m−1

c mapping f m
c (0) to c is controlled on B(x, r(x)), for x ∈ Em , by the

technique of shrinking neighbourhoods.

IBk ≤
k∑

m=1

∫
Em

�̂ζ
m(x)dνc(x) (34)

�
k∑

m=1

∫
f −m+1
c (Em )

(δm)−2δconf (c)ζ
�̂

ζ
1(y)

|( f m−1)′(y)|−δconf (c)(1−ζ/2)
dνc(y)

�
k∑

m=1
(δ−4m 4(1−ζ/2)m)δconf (c)

∫
B(c,r)

�̂
ζ
1(y) dνc(y) ,

where the last line follows from ζ < 2 and supx∈Jc
| f ′c(x)| ≤ 4.
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Provided ζ is sufficiently close to 2,

∞∑
k=1

γ
−δconf (c)
k

k∑
m=1

(δ−4m 4(1−ζ/2)m)δconf (c) (35)

is uniformly bounded. Invoking (33), we see that
∫

B(c,r)
ρc(x)ζ dνc can be bounded by

∞∑
k=1

γ
−δconf (c)
k IBk �

∫
B(c,r)

�̂
ζ
1(x) dνc(x). (36)

This completes the case r ≤ R′/6.
Let B ′k := B( f k

c (0), R′/2) for all k > 1. For r ≥ R′/6 we have∫
B(c,r)

�̂
ζ
k (x)dνc ≤

∫
Jc

�̂
ζ
k (x)dνc � IB′k + (R′)−δconf (c) � IB′k ,

because IB′k ≥
∫

B′k
dνc ≥ ν0. Therefore, from (33) and (36),

∫
B(c,r)

ρc(x)ζ dνc �
∞∑

k=1
γ
−δconf (c)
k IB′k �

∫
B(c,R′/6)

�̂
ζ
1(x) dνc(x).

��
Using the the estimate on νc(r) from Lemma 3.5 and bounds (30) and (31), we obtain

good control on σc(r) := σc(B(c, r)).

Proposition 3.9. There exists C > 1 such that
for every c ∈ A and every r1/2c ≤ r ≤ R′,

σc(r) ≤ C r1/2.

Proof. It suffices to show the proposition for ε = c+2 small. Then η(ε) defined by (29)
is greater than 1− 1

8 .
Given ζ ∈ (1, 2η(ε)), the Hölder inequality, together with inequality (31), gives

σc(r) =
∫

B(c,r)

ρc(x)dνc ≤
(∫

B(c,r)

ρc(x)ζ dνc

)1/ζ (∫
B(c,r)

dνc

)1−1/ζ

� (Ir )
1/ζ νc(r)1−1/ζ , (37)

where Ir =
∫

B(c,r)
|x − c|−δconf (c)ζ/2 dνc(x).

By inequality (30),

Ir � r1−ζ/2

2− ζ
+

rη(ε)−ζ/2
c

2η(ε)− ζ
.

Put ζ = 3/2. If r > r1/2c , then

r1−ζ/2

2− ζ
≥ 2 r1/8c ≥ 2 rη(ε)−ζ/2

c ≥ 8
rη(ε)−ζ/2

c

2η(ε)− ζ
,

so Ir � r1/4. Using the estimate of Lemma 3.5 in (37), we obtain

σc(r) � r1/6r δconf (c)/3 � r1/2.

��
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Key “diagonal" estimate. Fix t0  1. By Lemma 2.6, rc < ε2(1+t0), if ε is sufficiently
small. Proposition 3.9 implies that, for r = a ε, a ≥ εt0 ,

σc(a ε) � a1/2√ε .

For the scales smaller than r1/2c we have a slightly weaker estimate. Recall that
τ(ε) = exp(−κ

√
log 1/ε) is the function from Proposition 1.4 and S the constant from

Lemma 3.3.

Proposition 3.10. There exists C > 1 such that for every function u(ε) ≥ Sτ(ε) with
limε→0 u(ε) = 0, every c ∈ A and r ≤ R′,

σc(r) ≤ C u(ε)−1/2νc(B(c, r))(1−8u(ε))/2.

Proof. We apply the Hölder inequality with the exponents ζ ∈ (1, 2η(ε)), η(ε) is the
function from Proposition 3.6, and ζ ′ > 0, 1/ζ + 1/ζ ′ = 1. Similarly to (37),

σc(r) =
∫

B(c,r)

ρc(x)dνc ≤
(∫

B(c,r)

dνc

)1/ζ ′ (∫
Jc

ρc(x)ζ dνc

)1/ζ

� (2η(ε)− ζ )−1/ζ νc(B(c, r))(1−1/ζ ) . (38)

Put ζ = 2η(ε)− 2u(ε). We can assume that Sτ(ε) + u(ε) < 1/4. Then

1/2 + 4u(ε) ≥ 1/ζ ≥ 1/2 + u(ε).

By (38),

σc(r) � u(ε)−1/ζ νc(r)1−1/ζ

� u(ε)−1/2 e−2u(ε) log u(ε) νc(r)(1−8u(ε))/2

� u(ε)−1/2 νc(r)(1−8u(ε))/2.

��
Corollary 3.11. There exists a uniform constant C > 1 such that for all r ≤ R′ and
c ∈ A,

σc(r) ≤ C
√| log ε| r 1

2

(
1− 10
| log ε|

)
.

Proof. As dimH(Jc) = δconf(c) ≥ 1, we may combine the estimate for σc(r) with the
upper bound in Lemma 3.3 to obtain

σc(r) ≤ Cu(ε)−1/2rdimH(Jc)(1−Sτ(ε))(1−8u(ε))/2

≤ Cu(ε)−1/2r1/2−5u(ε) .

By choosing u(ε) = | log(ε)|−1 and c0 > −2 such that for all c ∈ A ∩ (−2, c0],
Sτ(ε) ≤ u(ε), we obtain the claim of Corollary 3.11. ��
General upper bound for σc near c. Assuming that ε < e−50, Corollary 3.11 implies
for r = a ε, a > 0,

σc(a ε) � max(a1/2, a2/5)
√

ε| log ε| .
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4. Orbital Estimates

Recall the definition of M , the first return time of 0 to (qc,−qc). Furthermore, U(z, r) is
the set of times n forwhich there is a level-n univalent pullback of B( f n

c (z), r) containing
z, see Definition 1.3.

Lemma 4.1. There exists C > 1 such that the following holds. If |z| ∈ [√10ε, 1/1000),
let

e(z) = min{k ≥ 2 : | f k
c (z)− pc| ≥ 1/20}.

Then 2 ≤ e(z) < M. There exist domains Ŵ ⊃ W � z such that

• f k
c (Ŵ ) ⊂ B(pc, 1/2) for k = 2, . . . , e(z);

• Ŵ is a level-e(z) univalent pullback of B( f e(z)
c (z), 1/1000);

• if V is a level-k pullback, not necessarily univalent, of B( f k
c (z), R′) and k > e(z),

then 0 /∈ V ;
• W is a level-e(z) univalent pullback of B( f e(z)

c (z), R′/2);
• B(z, |z|/C) ⊂ W ⊂ B(z, C |z|).

Proof. Observe that | f e(z)
c (z) − pc| < 1/5 and that |( f k

c )′(−pc)| = (2pc)
k . Let

zn := f n
c (z). By choice of R′ in Subsection 2.2, B(zk, 4R′) ⊂ B(pc, 1/10) for k =

2, . . . , e(z)− 1. From formula (12), |c + pc| < ε. Recall the discussion following (12)
about the dynamics and distortion bounds for gc, the inverse of the restriction of fc to
{�(z) > 0}. It follows that | f k

c (c)−pc| < |zk−pc| for k = 0, . . . , e(z), so e(z) ≤ M−1.
As ge(z)−1

c (B(ze(z), 1/20)) cannot contain pc,

diam ge(z)−1
c (B(ze(z), 1/1000)) < | fc(z) + pc|/4 < | fc(z)− c|/2. (39)

Let Ŵ be the connected component of f −2c (ge(z)−2
c (B(ze(z), 1/1000))) containing z.

The third point follows from (11).
The topological conditions of the lemma define W uniquely. The distortion on W is

uniformly bounded as R′/2 < 1/1000.Thederivative of f e(z)−1
c on fc(W ) is comparable

in modulus to | fc(z) + pc|−1 ∼ | fc(z) − c|−1 = |z|−2. Consequently, diam (W ) is
comparable to |z| and we obtain the final claim. ��

We fix K ≥ 4 satisfy ξ K < C−1/4, where ξ, C are the constants of (10).

Lemma 4.2. Given z ∈ Jc with 0 < |z| < 1 and n ≥ K | log |z||, if V � z is a domain
with

f n
c (V ) = B( f n

c (z), R′),

then 0 /∈ V .

Proof. By (10) and choice of K , diam (V ) ≤ 4log |z| < |z|. ��
Assume that x ∈ Jc\⋃n≥0 f −n

c (0) and define the sets of integers

E1 = E1(x) :=
⋃

�n + 1, n + K !| log |xn||"�,
E = E(x) :=

⋃
�n + 1, n + 3K !| log |xn||"�,
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where the unions are taken over n for which |xn| ∈ (0,
√
10ε).

Let E ′ = E ′(x) denote the union of �n + 1, n + e(xn)� over n for which |xn| ∈
[√10ε, 1/1000). Let G = N\(E∪E ′).We summarise useful properties in the following
lemma.

Lemma 4.3. The sets satisfy G ⊂ N\(E1 ∪ E ′) ⊂ U(x, R′). Each interval �a, b� ⊂ E ′
has |b − a| < M − 1. A maximal interval �a, b� ⊂ N\G with b − a ≥ M has

#�a, b� ∩ E ≥ b − a

2
. (40)

If n ∈ G and n > 2K | log√10ε|, there exists

m = m(n) ∈ �n − 2K | log√10ε|, n − K | log√10ε|� (41)

such that m ∈ U(x, R′). For k ∈ �m, n�,

|xk − c| ≥ 10ε. (42)

Proof. The first two statements follow from (11) and Lemmas 4.1 and 4.2. For (40), note
that �a, b� necessarily intersects E and therefore b− a ≥ 3M , while maximal intervals
in E ′ have length bounded by M − 1.

To show (41), the interval of integers �n − 2K | log√10ε|, n − K | log√10ε|� has
length at least M and is contained inN\E1 andhence contains a numberm inN\(E1∪E ′);
necessarily m ∈ U(x, R′). The final statement follows from �m, n� ∩ E1 = ∅. ��
Estimates based on ergodicity. Let p0 be maximal with e−p0 ≥ 10ε. Set χp :=
χB(c,e−p), the characteristic (or indicator) function of the ball B(c, e−p).

Let X denote the set of points x ∈ Jc\⋃n≥0 f −n
c (0)which satisfy, for each function

h of the form

• χp, p = 1, . . . , p0,
• h p = 3K pχp, p = 1, . . . , 2p0,
• and h∞ =∑∞p=2p0 3K pχp,

lim
N→∞

1

N

N−1∑
k=0

h( f k
c (x)) =

∫
h dσc. (43)

By Birkhoff’s ergodic theorem, σc(X) = 1.
Fix a point x = x0 ∈ X and consider the sets of integers E1 = E1(x), E =

E(x), E ′ = E ′(x) as before. The asymptotic upper density of a set of integers Q in N

is defined by

d(Q) := lim sup
N→+∞

1

N
#{Q ∩ [1, N ]}. (44)

We compute upper bounds for the asymptotic upper density of E using the definition of
p0 and inequalities (6) and (7):
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d(E) ≤ 3K
2p0∑

p=p0

pC1e−p/2 + 3K
∞∑

p=2p0+1

pC1e−(p−p0)2/5
√

ε| log ε| (45)

≤ 6K C1 p0

⎛
⎝√e−p0 + e−2p0/5

√
ε| log ε|

∑
p≥1

pe−2p/5

⎞
⎠

≤ C2ε
1/2| log ε|, (46)

where C1, C2 > 0 are uniform constants; in particular, while E depends on x ∈ X , the
bound (45) holds for all E and ε under consideration. Subsequent bounds will similarly
work for all considered ε and all x ∈ X .

Density of iterates versus density of scales. We want to translate the density of G =
N\(E ∪ E ′) in N into the density of the corresponding scales at x ∈ X . Given n ∈ G,
let n′ > n denote the next smallest element of G. If n′ − n = 1 or n′ − n ≥ M , let
jn = 1. Otherwise, n + 1 ∈ E ′ and |xn| ∈ [

√
10ε, 1/1000). Let jn be minimal with

R′2− jn ≤ |xn|. We consider

N = {(n, j) : n ∈ G, 1 ≤ j ≤ jn}.

For n ∈ G, denote by rn,1 the maximal radius with f n
c (B(x, rn,1)) ⊂ B(xn, R′/2).

For (n, j) ∈ N , let rn, j = 2− j+1rn,1. By bounded distortion, if n′ − n < M ,

diam ( f n
c (B(x, rn, jn ))) ∼ |xn|.

By Lemma 4.1, rn, jn is comparable to rn′,1 if n′ − n < M . Therefore we can fix k∗ ≥ 1
so that

2k∗rn′,1 > rn, jn

for all such pairs n, n′, n′ − n < M .
Let Q denote the set of integers k for which there exists (n, j) ∈ N with rn, j ⊂ Ik ,

where Ik = (2−(k+k∗), 2−k].
Define a function π : G �→ N, π(n) is the smallest integer k such that rn,1 ∈ Ik . By

(10), for large n, n � π(n).
Suppose n, n′ ∈ G. Then π(n′)− π(n) ≤ C3(n′ − n) (since the set W � xn mapped

univalently by f n′−n
c to B(xn′ , R′/2) contains B(xn, 4−n′+n R′/2)). We shall apply this

estimate whenever �n + 1, n′ − 1� contains a component of E , recalling (40). On the
other hand, if �n, n′� is a subset of N\E , then �π(n), π(n′)� ⊂ Q, by choice of k∗.

Therefore d(N\Q) � d(E) � ε1/2| log ε|.
We need additional estimates on the density of G j := {n ∈ G : (n, j) ∈ N },

when j ≥ 2. If n ∈ G j then, crudely, |xn| < C42− j . This latter condition happens
with frequency bounded by σc(B(0, C42− j )) � 2− j . Hence d(G j ) � 2− j and, as
n � π(n),

d(π(G j )) � 2− j . (47)
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5. Proof of Theorem 3

Recall Definition 1.2 of β(x, r)-numbers for K ⊆ R
d with d ≥ 2. Observe that in

general, for x ∈ K and 0 < r < r ′,

βK (x, r) ≤ r ′

r
βK (x, r ′) . (48)

Hence

βK (x, 2−k−k∗) ≤ 2k∗ inf
r∈Ik

βK (x, r) .

Almost flat sets. Let 0 = β0 < β1 < . . . < βn = 1 and F = {(di , βi ) : di ∈
[0, 1] for all i = 1, . . . , n}. A set K ⊂ R

d is almost flat at a point x ∈ K with respect
to F if there exist a partition �i∈�0,n�Qi = N such that for all i ∈ �0, n� and m ∈ Qi

β(x, 2−m) ≤ βi and d(Qi ) ≤ di ,

recalling the definition (44) of the upper density d(Q) of a subset Q ofN. The following
fact is a direct corollary of [24, Theorem 2].

Fact 5.1. Suppose that the set K ⊂ R
d , d ≥ 2, is almost flat at every point x ∈ K with

respect to a given family F as above. Then,

dimH(K ) ≤ 1 + C ′d
n∑

i=1
di β2

i ,

where for each d ≥ 2, C ′d > 0 is a universal constant.

Geometric estimates. The upper bound of Theorem 3 will follow from the estimates
of Section 4 and from Fact 5.1 about the Hausdorff dimensions of almost flat sets. An
initial geometric estimate comes from [3, Proposition 2] stated as Fact 5.2.

Fact 5.2. If a quadratic Julia set Jc is connected and c �= −2 then

Jc ⊂ E4 := {z ∈ C : |z − c| + |z + c| < 4}.
Let ε = c + 2, c > −2, be close to 0. Then the Julia set Jc is contained in the horizontal
strip B(R, 2

√
ε).

Lemma 5.3. There exists a constant C > 0 such that for all c ∈ A,

Jc ⊂
{
z ∈ C : |z| ≤ pc and |�(z)| ≤ C

√
ε(pc − |�(z)|)} .

Proof. Consider the rectangle

Hε := {z : �(z) < 5/4, �(z) < 2
√

ε}.
It contains Jc ∩ {z : �(z) < 5/4}.

Let J +
c := {z ∈ Jc : �(z) ≥ 0}. Using the definition of the map gc on page 18, we

can see that

J +
c ⊂ {p0} ∪

⋃
n≥0

gn
c (Hε) .

Then J +
c is included in a half cone at pc with aperture comparable to

√
ε. As A ⊆ R,

Jc is symmetric w.r.t. both axes. ��



Hausdorff Dimension of Julia Sets in the Logistic Family 703

Combining Lemma 5.3 with (42) and formulas (12), we obtain the following.

Corollary 5.4. For c ∈ A sufficiently close to −2 and x ∈ X, if n ∈ G and m(n) is
given by (41), then

�(xk) ≥ c + ε ,

for all k ∈ �m(n), n�.

In order to recover estimates of β numbers at the large scale via univalent pullbacks,
we will employ the following version of Koebe’s Theorem.

Lemma 5.5. Let g : D→C be univalent satisfying g(0) = 0 and g′(0) = 1. Then for
all z ∈ D,

|g(z)− z| ≤ |z|2 2− |z|
(1− |z|)2 .

Proof. Let g(z) = z +
∑

k≥2 ak zk . By the Bieberbach conjecture, proven by de Branges
[14], we know that for all k ≥ 2, |an| ≤ k. Thus it is enough to compute a bound for

∣∣∣∣∣∣
∑
k≥2

ak zk

∣∣∣∣∣∣ ≤
∑
k≥2

k|z|k = |z|2 2− |z|
(1− |z|)2 .

��
Corollary 5.6. Let g : D→C be univalent, g(0) = 0, g′(0) = 1 and |z| = r ≤ 1/6.
Then

|g(z)− z| ≤ 3r2 .

Corollary 5.7. Let g : D→C be univalent, g(0) = 0 and g′(0) = 1, and let r ≤ 1/6.
Let Y ⊂ B(0, r) and L a line through 0 with g(Y ) ⊂ B(L , ρ), for some ρ > 0. Then
Y ⊂ B(L , ρ + 3r2).

Proof. Suppose z ∈ B(0, r)with dist (z, L) ≥ ρ+3r2. By Corollary 5.6 and the triangle
inequality, dist (g(z), L) ≥ ρ + 3r2 − 3r2. ��

We set β(z, r) := βJc (z, r). The real line is a good comparator when estimating
β-numbers for c near −2. For x ∈ X , we have a corresponding set of neighbourhoods
of x .

Lemma 5.8. There exists C > 1 such that, given (n, j) ∈ N ,

β(x, rn, j ) ≤ C2 jε1/2.

Proof. It is enough to show this when j = 1, and then apply (48).
Given n ∈ G, let m = m(n) ∈ U(x, R′) be given by (41). Each xk , k ∈ �m(n), n� has

real part at least c+ ε by Corollary 5.4. The imaginary part of xn is bounded by 2ε1/2, so
xn is very near the centre of the large-scale line segment B(xn, R′/2)∩R. Consequently
(as m > 2 and n ∈ U(x, R′)), B(xn, R′/2) ∩ R ⊂ (c,∞).

Consider the univalent pullback Wk of W0 := B(xn, R′/2) by f k
c to xn−k . Note

that c /∈ Wk . As W0 ∩ R ⊂ (c,∞), fc(W1 ∩ R) = W0 ∩ R and W1 ∩ R is a line
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segment. By bounded distortion, xn−1 lies in the vertical strip with real part W1 ∩R, so
W1 ∩ R ⊂ (c,∞).

Repeating this argument for k = 2, . . . , n − m, we obtain that

f n−m
c (Wn−m ∩ R) = B(xn, R′/2) ∩ R.

Let W := Wn−m . We deduce that Jc ∩ W is very close to the real axis: by bounded
distortion, if w ∈ Jc ∩W , then

|�(w)| � diam (W )

R′
sup
z∈Jc

|�(z)| � diam (W ) ε1/2. (49)

By the definitions, f m
c (B(x, rn,1)) ⊂ W . Since n − m > K | log ε|/2,

diam (W ) <
√

ε.

By choice of m, there is a level-m univalent pullback Ŵ � x of B(xm, R′). By bounded
distortion, for a uniform constant C1 > 1,

B(x, rn,1diam (W )−1/C1) ⊂ Ŵ .

This gives us the modulus needed to apply Corollary 5.7.
From (49), for z ∈ f m

c (B(x, rn,1)) ∩ Jc, the distance from z to the horizontal line
passing through xm is bounded, � diam (W )ε1/2. Applying Corollary 5.7 (and some
affine transformations, with r = C1diam (W )),

β(x, rn,1) � ε1/2 + 3εC2
1 � ε1/2.

��
Recall our set Q ⊂ N of controlled scales. We have that, for some uniform constant

C2 > 0,

d(N\Q) ≤ C2ε
1/2| log ε| .

For each scale k ∈ Q, we choose some rn, j ∈ Ik and set ζ(k) := j . Then d({k :
ζ(k) = j}) ≤ k∗d(π(G j )). By Lemma 5.8, we obtain an associated beta number
β(x, rn, j ) ≤ C2 jε1/2. Hence

β(x, 2−k−k∗) ≤ 2k∗C2 jε1/2 =: C32
jε1/2.

We set

β j := min(1, C3 2
jε1/2).

We associate β = 1 to N\Q (shifted by k∗), set d1 = 1 and

d j := k∗ d(π(G j )) � 2− j .

Thus d j β2
j ≤ C42 jε, where C4 > 0 is a uniform constant. Writing j∗ := max{ jn :

n ∈ G}, then 2− j∗ ∼ √ε and, summing over j we obtain

j∗∑
j=1

d j β2
j ≤ C4 2

j∗+1ε � ε1/2 .

The upper bound on d(N\Q) and applying Fact 5.1 completes the proof of Theorem3.
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6. Induced Cantor Repellers and the Lower Bound

We construct an induced Cantor repeller in Proposition 6.2. In Proposition 6.9, we
determine a lower bound on the Hausdorff dimension of its Julia set. As its Julia set is
contained in the Julia set of fc, this will prove Theorem 4.

6.1. Preliminaries.

Cantor repellers and inducing

Definition 6.1. Suppose that D1, . . . , Dn is a collection of open and non-degenerate
topological disks with pairwise disjoint closures compactly contained in a topological
disk D ⊂ C. A map ϕ : ⋃n

i=1 Di �→ D which is biholomorphic onto D on every Di ,
1 ≤ i ≤ n, is called a Cantor repeller.

If ϕ preserves the real line and each branch domain Di is symmetric with respect to R

then ϕ is a real Cantor repeller. With respect to a map f , if there are integers ni such
that ϕ|Di = f ni , we say that ϕ is induced (by f ).

Every fc(z) = z2 + c, c ∈ [−2, 0) has two fixed points p, q ∈ [−2, 2], 0 <

−q < p, and is unimodal on [−p, p]. The non-empty interval U = (q,−q) is called a
fundamental inducing interval.U is a regularly returning set, that is, ∀n > 0, f n

c (∂U )∩
U = ∅.

Let φ = φc be the first return map to U (under the unimodal map f := fc, restricted
to R), defined on

Dφ := {x ∈ U : ∃n > 0, f n(x) ∈ U }
by the formula φ(x) := f n(x)(x) where n(x) := min{n > 0 : f n(x) ∈ U }. As U is
regularly returning, the function n(x) is continuous and locally constant on Dφ . For c
close to −2, the set {x ∈ U : n(x) = 2} has two connected components, dq adjacent to
q and d−q adjacent to −q. We define another regularly returning interval

V = U\dq ∪ d−q . (50)

For a Borel subset X ⊂ R, we denote by |X | its Lebesgue measure. Given an interval
W ⊂ R, we denote by DW the disc in C with diameter W .

Proposition 6.2. There exist C, α > 0 and c∗ > −2 such that for every c ∈ (−2, c∗),
there is a Cantor repeller ϕ : D �→ DV induced by fc with range DV , with the following
properties, ε = c + 2,

• each branch of ϕ is extensible as a univalent map onto DU ,
• the map ϕ is defined on D ⊂ DV ,

|D ∩ R| ≥ |V |(1− Cε3/4), (51)

• there is exactly one component W of D for which φ restricted to D\W is a real
Cantor repeller, and

diam W ≥ C−1
√

ε, (52)

• for every x ∈ D, 2 ≤ |ϕ′(x)|,
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• for all t > 0,
∣∣{x ∈ R : |ϕ′(x)| > et }∣∣ < Ce−αt .

By extensibility above, we mean that the branch of φ is the restriction of a biholo-
morphic map between a larger domain and DU . By the Koebe distortion theorem, the
distortion of any branch of ϕ is bounded by a constant depending only on the modulus
of DU\DV .

Corollary 6.3. With ϕ, α as above, the number of branches ζ for which inf |ζ ′(z)| ∈
[en, en+1] is bounded, for some uniform constant C ′, by C ′en(1−α).

Proof. Given n ≥ 1 and such a branch ζ , sup |ζ ′(z)| ≤ en+C1 for some uniform constant
C1. If there are N such branches, the Lebesgue measure of the real line intersected with
the union of the domains is at least Ne−n−C1 but is bounded by Ce−αn . Hence

N ≤ Ce−αn+n+C1 .

��
The estimates are essentially real and require us to study the dynamics of fc : R→ R.

To obtain the estimates, we carry out some fundamental inducing steps to canonically-
defined box mappings. The reader familiar with such inducing schemes can skip to the
next key estimate, Lemma 6.8.

Box mappings. Consider a finite sequence of compactly nested open intervals around a
point 0 ∈ b0 ⊂ b1 · · · ⊂ bk . Let φ : D �→ R be a real-valued C1 map defined on some
open and bounded set D ⊂ bk ⊂ R satisfying the following:

• φ has at most one local extremum which, if it exists, is at 0;
• if 0 ∈ D, then b0 is a connected component of D;
• for every i = 0, · · · , k, we have that ∂bi ∩D = ∅;
• for every connected component d of D there exists 0 ≤ i ≤ k so that φ : d �→ bi is
proper.

The map φ is a box mapping and the intervals bi are called boxes. If φ has a local
extremum, it has a central branch ψ := φ|b0 and b0 is called the central domain. All
other branches ζd := φ|d are monotone.

A box map φ is induced by a unimodal map fc(x) = x2 + c if each branch of φ

coincides on its domain with an iterate of fc. We shall construct box mappings with up
to four boxes b ⊂ Z ⊂ V ⊂ U , where Z is an interval to be defined and b is the central
domain, should such exist.

6.2. Exponential tails. We say that a map g has exponential tails if there are C, θ > 0
such that |{|g′| ≥ et }| < Ce−tθ for all t ≥ 0. A family of maps (gε)ε∈A has uniform
exponential tails if all gε have exponential tails, with constants C, θ independent of
ε ∈ A.

Lemma 6.4. Let I ⊂ [−2, 2] be an interval containing the domains of maps h with
uniform exponential tails. Given a

compact family of non-zero real polynomial maps f defined on R and a family of
expanding diffeomorphisms g : Y → I with uniformly bounded distortion,
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• h ◦ f has uniform exponential tails;
• h ◦ g has uniform exponential tails.

Proof. There are C, θ > 0 such that |{|h′| ≥ et }| < Ce−tθ for all t ≥ 0 and C1, d
such that | f ′| < C1 on f −1([−2, 2]) and | f −1(A)| ≤ C1|A|1/d for every Borel subset
A ⊂ I . If |(h ◦ f )′(x)| ≥ et then |h′( f (x))| ≥ C−11 et . Hence

∣∣{x : |(h ◦ f )′(x)| ≥ et }∣∣ ≤ ∣∣∣ f −1
(
{y : |h′(y)| ≥ C−11 et }

)∣∣∣
≤ C1C1/de−θ(t−logC1)/d ,

from which the first estimate follows.
The second estimate is straightforward. ��
In particular, pulling back via quadratic maps does not destroy exponential tails. The

following lemma will be used to show that the composition of well-behaved maps with
uniform exponential tails will have uniform exponential tails.

Lemma 6.5. Given K , C, θ > 0 there are C ′, κ > 0 for which the following holds. Let
X be an open interval and H : X → [1,∞). Let g be a function, defined on an open set
Y ⊂ R, which maps each branch domain of g diffeomorphically onto X with distortion
bounded by K and with |g′| ≥ 1. Let

Bt = {x : H(x) > et }; As = {x : |g′(x)| > es}.

If

|Bt | ≤ Ce−tθ |X | and |As | ≤ Ce−sθ

for all s, t ≥ 0, then

∣∣{x ∈ Y : |H(g(x))g′(x)| > et }∣∣ ≤ C ′e−tκ

for all t ≥ 0.

Proof. Let Ws denote the union of all branches of g which contain a point x with
|g′(x)| ∈ [es, es+1). Crudely, Ws ⊂ As−K and Ws ∩ As+K = ∅. Then

∣∣{x ∈ Ws : |H(g(x))g′(x)| > et }∣∣ ≤ |As−K | K |Bt−s−K |
|X |

≤ C2K e2K θ e−sθ e−(t−s)θ

= C2K e2K θ e−tθ .

Now sum over integers s ≥ 0 to obtain

∣∣{x : |H(g(x))g′(x)| > et }∣∣ ≤ C2K e2K θ e−tθ (t + 1) + |At−K |,

from which the result follows. ��
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6.3. Initial inducing. We shall construct successive box mappings with up to four boxes
b ⊂ Z ⊂ V ⊂ U , where Z is an interval to be defined and b is the central domain of the
box mapping, should such exist. We shall call branches mapping monotonically onto V
or U long and other branches will be called short.

Definition 6.6. A diffeomorphism ζ : d → W between intervals d and W is said to
extend (to map) over an interval Ŵ ⊃ W if there are d̂ ⊃ d and an analytic diffeomor-
phism ζ̂ : d̂ → Ŵ whose restriction to d coincides with ζ . We say ζ is extensible over
Ŵ and call d̂ the extension domain.

Note that if ζ is a restriction of f j
c for some j , then so is ζ̂ .

We consider the first return map φ : Dφ �→ U of fc(z) = z2 + c to the fundamental
inducing interval U = (q,−q). If φ has no central domain, we can just take φ∗ to be the
first return map to V and skip to Section 6.5. Henceforth, to avoid unnecessary caveats,
we assume that the central branch ψ : b→ U exists.

We denote by ζl and ζr the two branches adjacent to the central branch; these branches
are monotone. Denote by Z the smallest interval containing the domains of ζl , ψ, ζr .
Put Û := (−γ, γ ), where fc(γ ) = −q (this Û is the same interval as Â of Section 2.4).
Components of the following fact are well-known or follow by elementary arguments,
noting that |c + p| ∼ ε = c + 2.

Fact 6.7. There exist C > 0 and c∗ > −2 such that for every c ∈ (−2, c∗), the first
return map φ for fc to U is a box mapping with boxes b, U. Every monotone branch,
except possibly ζl and ζr , extends over Û . Additionally,

(i) |U | ≤ Cdist
(

U, ∂Û
)

,

(ii) |Z | ≤ C
√

ε,
(iii) φ has only finitely many monotone branches and for every x ∈ Dφ\Z,

3 ≤ |φ′(x)| ≤ C/
√

ε,

(iv) each branch ζl , ψ, ζr , with domain d say, can be represented as f i ◦ f and there
is an interval W ⊃ f (d) such that f i : W → Û is a diffeomorphism onto Û with
infW |( f i )′| ≥ C−1ε−1,

(v) φ has uniform exponential tails.

Indeed, (i) is trivial.
Let r ∈ (0,−q) satisfy Û = ( f (r),− f (r)), and let g = f|[r,p]. The intervals

g−k([r, p]) decrease geometrically so gk has uniformly (in k and in c) bounded distortion
on its domain, noting that r is far from 0 for c close to −2. Then

dist
(

g−k(Û ), p
)
∼ |g−k(Û )| ∼ |g−k(U )|. (53)

Together with |c + p| ∼ ε, one readily deduces (ii), (iv) and the upper bound of (iii).
The lower bound of (iii) follows from the estimate, see [55, Page 5],

|( f i−2)′(x)| = 2n h(x)

h( f i−2(x))
∈ [2i

√
3/4, 2i

√
4/3]

provided that x, f i−2(x) ∈ (−1, 1) = U ; h denotes the conjugacy between f−2 and the
full tent map. For i small, the estimate transfers to other c by continuity; for large return
time i , the estimates on distortion and on |g−k(U )| kick in, with k + 2 = i .
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It remains to show (v). A point x ∈ [−q, p) has initial orbit satisfying

x > fc(x) > · · · > f k
c (x) ∈ [q,−q],

where k is the first entry time to [q,−q] = U .Let s > 2 and let Xs denote the set of points
x in (−q, p)where the first entry of x toU happens with derivative greater than s but the
same is not true of fc(x). Then |Xs | ≤ |U |/s. Moreover, X = ∪k g−k(Xs) has measure
bounded by 2|U |/s (estimated via a geometric series). If x ∈ U and |φ′(x)| > 2s, then
− fc(x) ∈ X . Hence the set of points in U with |φ′(x)| > 2s is contained in a set of
measure

√
2|U |/s, showing (v).

6.4. Inducing. In the inducing process, we shall pre-emptively use boundary refinement,
applying the following map hV , to avoid creating long non-extensible branches in the
pull-back step. The technique of the boundary refinement was proposed in [27] in the
quest to prove the so-called starting condition for unimodal maps [22]. Denote by hV
the first entry map for fc from U to the interval V (defined in (50)). It is a box mapping
with two boxes V, U , is defined almost everywhere on U , coincides with the identity
map on V , and all its branches are long, diffeomorphic onto V and extensible over U
with extension domains contained in U . We remark that hV has exponential tails, as fc
restricted to [−p, p]\V is uniformly expanding.

We now describe a process which transforms the first return map φ to U into a new
box mapping φ∗ with up to three boxes b∗ ⊂ Z ⊂ V .

Postcritical filling.
Let

φ0(x) =
{

x if x ∈ Z ,

φ(x) if x ∈ U\Z .

We construct φ j algorithmically for j = 1, 2, . . . and denote the resulting limit map by
φ∞. If ψ(0) does not belong to the domain of a long branch of φ j−1, let φ j = φ j−1, so
φ∞ = φ j−1 and the process stops.

Otherwise, ψ(0) belongs to the domain dP, j of a long branch ζP, j of φ j−1. We
modify φ j−1 on dP, j to obtain φ j . Set

φ j (x) =
{

φ j−1(x) if x ∈ U\dP, j ,

φ0 ◦ φ j−1(x) if x ∈ dP, j .

If x /∈ Z then |φ′0(x)| > 3. By induction, |φ′j (x)| ≥ 3 j for x ∈ dP, j . By the construction,
φ∞ is a box mapping with long branches mapping over U and short branches, whose
domains all lie in dP,1, mapping over Z . The total length of the short branches is bounded
by

|Z |
∑
j≥0

3− j �
√

ε. (54)

Applying appropriate translations Tj , one can view the branch domains dP, j as pairwise
disjoint and the collection of branches ζP, j as having uniform exponential tails; then
apply Lemma 6.5 (with H = |φ′0| and g = {ζP, j ◦ Tj }) to deduce that φ∞ has uniform
exponential tails.
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Pull-back by φ. We transform the initial box mapping φ into φ∗ by pull-back:

φ∗(x) =
{

hV ◦ φ∞ ◦ φ(x) if x ∈ Z ,

hV ◦ φ(x) if x ∈ V \Z .

Thus defined, φ∗ is a box mapping. Recall that hV coincides with the identity map on
V and that all branches of hV are long, diffeomorphic onto V and extensible over U .
On V \Z , branches of hV ◦ φ are long and extensible over U . By construction of φ∞,
the domain of a long branch ζ of φ∞ does not contain ψ(0). Each branch of hV ◦ ζ

is long, mapping onto V , and is extensible over U with extension domain contained in
the domain of ζ and, therefore, not containing ψ(0). The short branches of hV ◦ φ∞
coincide with those of φ∞. Hence φ∗ has two types of monotone branches, short ones
mapping over Z and long ones mapping over V , extensible over U . The short branches
and the possible central branch of φ∗ have total length

� ε3/4

by (54) and Fact 6.7 (iv). Via Lemma 6.5, hV ◦ φ restricted to V \Z and hV ◦ φ∞ on
U have uniform exponential tails. Consequently, using Fact 6.7 (iv) and Lemma 6.4, φ∗
has uniform exponential tails.

6.5. Construction of Cantor repeller.. We finish the construction of the Cantor repeller
ϕ of Proposition 6.2 for a map f = fc with c in the domain of Fact 6.7. Because
f n(∂V ) ∩U = ∅ for all n ≥ 1, no two branches of φ∗ are adjacent.

Let φ̂∗ denote φ∗ with its short branches removed. Define ϕ̃ by retaining from the
K th iterate φ̂K∗ a finite number of branches contained in V whose domains have union
whose measure is at least |V | −C1ε

3/4, where K ≥ 1 is large enough to ensure that the
map ϕ of the following paragraph satisfies |ϕ′| > 2, via the uniform distortion bound.
Inherited from the same property for φ∗, no two branches of ϕ̃ are adjacent.

Consider a branch ζ of ϕ̃ with domain Iζ ⊂ R. Its inverse extends univalently to
a map ζ−1 defined on C\(R\U ). Let Dζ := ζ−1(DV ), so Dζ ∩ R = Iζ . Because of
negative Schwarzian, these inverse branches have the property of contracting Poincaré
disks so

Dζ ⊂ DIζ

(see [22, Fact 2.1.2]) and thus their images Dζ have pairwise-disjoint closures. We still
need to add one imaginary branch.

Let g denote the restriction of f to the right half-plane {�(z) > 0}, so g is invertible.
The sets g−k(DU ) accumulate geometrically on the fixed point p, just as in (53):

dist
(

g−k(DU ), p
)
∼ diam (g−k(DU )) ∼ diam (g−k−2(DU )).

There exists m ≥ 1 such that f 2(0) ∈ g−m(DU ); for this m, f 2(0) /∈ g−k(DU ) for
k > m. As p − f 2(0) ∼ ε,

ε ∼ diam (g−m−2(DU )) ∼ diam (g−m−2(DV )).

Let W be one of the two connected components of f −1(−g−m−2(DV )). As f (W )∩R ⊂
(−p, c), W ∩ R = ∅. The diameter satisfies diam W ∼ √ε. Set ϕ = f m+3 on W .



Hausdorff Dimension of Julia Sets in the Logistic Family 711

Branches of ϕ̃ are contained in f −1(− ∪m+1
j=1 g− j (DU )) and so have domains whose

closures are disjoint from W .
The inverse of ϕ|W similarly extends univalently to C\(R\U ). Hence the distortion

of iterates of ϕ is uniformly bounded independently of ε.
The map ϕ satisfies all claims of Proposition 6.2.

6.6. Thermodynamical formalism. Let ϕ : D �→ C be a Cantor repeller. Its Julia set

Jϕ =
⋂
n≥0

ϕ−n(C)

is a fully invariant Cantor set. It is well known that ϕ has an absolutely continu-
ous invariant probabilistic measure σ with respect to the dimH(Jϕ)-conformal prob-
abilistic measure ν, σ is an ergodic Gibbs measure with the Hölder potential G(x) =
−dimH(Jϕ) log |ϕ′(x)|.

The Hausdorff dimension of Jϕ is the unique solution of the equation Pϕ(t) = 0,
where the pressure function t ∈ R �→ P(t) defined by

Pϕ(t) = lim
n→∞

1

n
log

∑
y∈ϕ−n(0)

|(ϕn)′(y)|−t

is an analytic and strictly convex function on R, see [42].
The density h(x) = dσ

dν
(x) > 0 is a bounded measurable function and is a fixed point

of the Perron-Frobenius operator for ϕ that acts on continuous functions g : Jϕ �→ R,

Lϕ(g)(x) =
∑

y∈ϕ−1(x)

g(y) exp(G(y)),

and h is the limit of

1

n

n−1∑
k=0

Lk
ϕ(1)(x)

in L1(ν) topology. From the uniform distortion bound for branches of iterates of ϕ one
obtains upper and positive lower bounds on h. The invariant measure σ is a fixed point
of the dual operator L∗ϕ(g) that acts on the space of Borel measures [44].

By the Birkhoff ergodic theorem, almost surely with respect to ν,

lim
n→∞

1

n

n−1∑
k=0

log |ϕ′(ϕk(x))| =
∫
Jϕ

log |ϕ′(x)|dσ. (55)

Families of Cantor repellers. Let us return to our one-parameter family ϕε , ε = c+2 >

0, of Cantor repellers given by Proposition 6.2 and its real counterpart family ϕ̃ε , ε > 0,
defined by restricting ϕε to the real line. To simplify notation, we write J̃ε for Jϕ̃ε

, the
Julia set of the real counterpart, andDn for the domain of ϕ̃n

ε , with connected components
denoted by d. Let

Q(n, t) =
∑

d⊂Dn

|d|t .
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Lemma 6.8. There is a uniform constant K > 0 such that, for any ρ ∈ (0, 1), the
following holds for all ε > 0 small enough.

• dimH(J̃ε) ≥ 1− K ε3/4,

• Q(n, 1 + ρ
√

ε) ≥ K−1
(
1− 4Kρ

√
ε
)n

for all n ≥ 1.

Proof. From (51) and bounded distortion, there exists a uniform C ′ (note |V | > 1) such
that, for n ≥ 1,

∑
d⊂Dn

|d| ≥ (1− C ′ε3/4)n .

If we put t = 1− K ε3/4 and K > 2C ′/ log 2, then

Q(n, t) =
∑

d⊂Dn

|d|1−K ε3/4 ≥ (1− C ′ε3/4)n

maxd⊂Dn |d|K ε3/4

≥ (1− C ′ε3/4)n

2−K ε3/4n
≥ (1 + (K log 2− 2C ′)ε3/4)n .

As ∑
y∈ϕ̃−n

ε (0)

|(ϕn
ε )′(y)|−t ∼ Q(n, t),

the pressure function Pϕ̃ε
(t) = limn→∞ 1

n log Q(n, t) is positive, which implies the
dimension estimate.

The map ϕ̃ε has an invariant probabilistic measure σε with respect to the dimH(J̃ε)-
conformal measure νε , both supported on R. From the uniformly bounded distortion of
iterates of ϕε , there is a uniform bound on the densities with respect to each other. By
bounded distortion and conformality of νε , the Lyapunov exponent

χε =
∫

log |ϕ̃′ε | dσε �
∑
ζ

inf |ζ ′|−dimH(J̃ε ) log inf |ζ ′|,

where the sum is over branches of ϕ̃ε . Applying Corollary 6.3, we deduce that

χε <
∑
n≥0

C ′e(1−α)ne−n(1−K ε3/4)(n + 1) ≤ K ′,

for uniform constants C ′, K ′ > 0. We redefine K := max(K , K ′).
For the final estimate, we make use of the Chebyshev Inequality,

σε({x : log |(ϕ̃n
ε )′(x)| ≥ 2nK }) ≤ nχε

2nK
<

nK

2nK
= 1

2
.

Let In denote the collection of connected components of Dn which contain at least one
point of {x : log |(ϕn

ε )′(x)| < 2nK }. Then
∑
d∈In

νε (d) �
∑
d∈In

σε (d) >
1

2
.
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By bounded distortion, for d ∈ In , |d| � e−2nK . Moreover,

σε(d) ∼ νε(d) ∼ |d|dimH(J̃ε ).

Then

Q(n, 1 + ρ
√

ε) ≥
∑
d∈In

|d|dimH(J̃ε )+ρ
√

ε+K ε3/4 �
∑
d∈In

νε(d) |d|2ρ
√

ε

� 1

2
e−4Kρ

√
εn

≥ 1

2
(1− 4Kρ

√
ε)n .

��
For t ∈ [0, 2], by bounded distortion there is a constant C > 1 such that

inf
z∈DV

∑
y∈ϕ̃−n

ε (z)

|(ϕ̃n
ε )′(y)|−t > C−1Q(n, t). (56)

We now turn our attention to complex estimates.

Proposition 6.9. There is a universal constant ρ > 0 such that, for all small ε > 0,
the Hausdorff dimension of the Julia set Jϕ of the Cantor repeller ϕ = ϕε supplied by
Proposition 6.2 satisfies

dimH(Jϕ) ≥ 1 + ρ
√

ε.

Proof. Let us denote the complex branch of ϕ by ζ : W → DV .
We wish to estimate

∑
y∈ϕ−n(0) |(ϕn)′(y)|−t . We can decompose the set ϕ−n(0) into

a disjoint union of sets

Sα = ζ− jk ◦ ϕ̃
− jk−1
ε ◦ · · · ◦ ζ− j2 ◦ ϕ̃− j1

ε ◦ ζ− j0(0)

indexed by words α = j0 . . . jk for which 0 ≤ j0, jk ≤ n, 1 ≤ j1, . . . , jk−1 ≤ n and∑
i ji = n. Note that, for small ε > 0,

ε
1
2ρ
√

ε >
1

2
.

Then, with t = 1 + ρ
√

ε and κ = 4Kρ, using estimates (52) from Proposition 6.2, (56)
and Lemma 6.8,∑

y∈Sα

|(ϕn)′(y)|−t ≥ (C−1
√

ε)t ( j0+ j2+···+ jk )C−1Q( j1, t) . . . C−1Q( jk−1, t)

≥ C−1K−1(2−1C−2t K−1
√

ε) j0+ j2+···+ jk (1− κ
√

ε)n .

Each word α corresponds to a path in a binomial tree, starting by descending j0 left
branches, then j1 right branches, then j2 left branches and so on. Summing over α, we
obtain (reversing the binomial expansion)∑

y∈ϕ−n(0)

|(ϕn)′(y)|−t ≥ C−1K−1(1 + 2−1C−3K−1
√

ε)n(1− κ
√

ε)n

which is greater than 1 for large n, if we choose ρ < (8C3K 2)−1. Hence the dimension
is at least t = 1 + ρ

√
ε for all small ε > 0. ��
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Corollary 6.10. Theorem 4 holds.

Proof. Simply note that Jc ⊃ Jϕ so dimH(Jc) ≥ dimH(Jϕ). ��
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